Clinical results observed to date with application of normothermic regional perfusion in donation after circulatory death organ transplantation.
\r\n\t
",isbn:"978-1-83962-877-1",printIsbn:"978-1-83962-876-4",pdfIsbn:"978-1-83968-120-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"52f37e72f4007a3248a3658dbaeb1172",bookSignature:"Prof. Constantin Volosencu",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10402.jpg",keywords:"Control Systems, Robotics, Advanced Control Systems, Digital Signal Processing, Computer Vision, Deep Learning, Big Data, Predictive Models, Investment Management, Algorithmic Trading, Wireless Communications, Wireless Systems Simulation",numberOfDownloads:47,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 25th 2020",dateEndSecondStepPublish:"September 15th 2020",dateEndThirdStepPublish:"November 14th 2020",dateEndFourthStepPublish:"February 2nd 2021",dateEndFifthStepPublish:"April 3rd 2021",remainingDaysToSecondStep:"6 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Volosencu is author of 10 books and has over 155 scientific papers published. He holds 27 patents and has developed electrical equipment for machine tools, spooling machines, high power ultrasound processes and other, with the homologation of 18 prototypes and 12 zero manufacturing series.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.jpeg",biography:"Constantin Volosencu is a professor at the Polytechnic University of Timişoara, Department of Automation. He is the editor of 9 books, author of 10 books, 5 book chapters, and over 180 scientific papers published in journals and conference proceedings. He is also a holder of 27 patents, and a manager of research grants. He is a member of editorial boards of international journals, a former plenary speaker, a member of scientific committees, and chair at international conferences. His research is in the field of control systems, electrical drives, power ultrasounds, fuzzy logic, neural networks, fault detection and diagnosis, sensor networks, and distributed parameter systems. He has developed electrical equipment for machine tools, spooling machines, high-power ultrasound processes and others.",institutionString:"Polytechnic University of Timişoara",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"8",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:[{id:"74718",title:"Laser Point Cloud Segmentation in MATLAB",slug:"laser-point-cloud-segmentation-in-matlab",totalDownloads:47,totalCrossrefCites:0,authors:[{id:"199330",title:"Associate Prof.",name:"Bahadır",surname:"Ergun",slug:"bahadir-ergun",fullName:"Bahadır Ergun"},{id:"201823",title:"Dr.",name:"Cumhur",surname:"Sahin",slug:"cumhur-sahin",fullName:"Cumhur Sahin"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247041",firstName:"Dolores",lastName:"Kuzelj",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247041/images/7108_n.jpg",email:"dolores@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"2020",title:"New Technologies",subtitle:"Trends, Innovations and Research",isOpenForSubmission:!1,hash:"170d84903f390df23023d0623d8577d3",slug:"new-technologies-trends-innovations-and-research",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/2020.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6024",title:"System Reliability",subtitle:null,isOpenForSubmission:!1,hash:"5cf0113f60979705f5b0b0ea0bac3028",slug:"system-reliability",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/6024.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2021",title:"Cutting Edge Research in New Technologies",subtitle:null,isOpenForSubmission:!1,hash:"5c14eed0ff55904ca388c886570c85fc",slug:"cutting-edge-research-in-new-technologies",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/2021.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4646",title:"Cutting Edge Research in Technologies",subtitle:null,isOpenForSubmission:!1,hash:"a0c6cc73cb98936693e6e4845a19dfcf",slug:"cutting-edge-research-in-technologies",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/4646.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,isOpenForSubmission:!1,hash:"54f092d4ffe0abf5e4172a80025019bc",slug:"fuzzy-logic",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7501",title:"Fault Detection and Diagnosis",subtitle:null,isOpenForSubmission:!1,hash:"5143fb77b96f488e4ec5dd6e7947904c",slug:"fault-detection-and-diagnosis",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/7501.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6603",title:"Actuators",subtitle:null,isOpenForSubmission:!1,hash:"33056f58590b5920dd938eff4810e8dc",slug:"actuators",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/6603.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9287",title:"Control Theory in Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7c584de5f40193b636833aa812dab9d5",slug:"control-theory-in-engineering",bookSignature:"Constantin Volosencu, Ali Saghafinia, Xian Du and Sohom Chakrabarty",coverURL:"https://cdn.intechopen.com/books/images_new/9287.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"44249",title:"Diagnosis and Management of Common Oral and Maxillofacial Lesions",doi:"10.5772/54646",slug:"diagnosis-and-management-of-common-oral-and-maxillofacial-lesions",body:'Diagnosis and management of oral and maxillofacial lesions is of paramount important to practicing surgeons. Multiple references and textbooks are needed to study these lesions. Herein we attempted to gather common pathological entities occurring in this region and describe the characteristics, clinical presentation, histopathology, diagnosis and management of each in one chapter. Epithelial tumors are presented first.
Common epithelial tumors of concern to oral and maxillofacial surgeons are: Inverted papilloma, Squamous cell carcinoma, Pleomorphic adenoma, Mucoepidermoid carcinoma, Sinonasal undifferentiated carcinoma, Adenoid cyctic carcinoma, Basal cell carcinoma and Verrucous carcinoma.
Inverted papillomas characteristically arise from the lateral nasal wall in the region of the middle turbinate or ethmoid recess, and often extend secondarily into the sinuses, especially the maxillary sinus. Nasal obstruction is the most common presenting symptom. Other manifestations include nasal drainage, epistaxis, anosmia, headaches (especially frontal), epiphora, proptosis and diplopia. Pain, on the other hand, is an uncommon initial complaint, occurring in only about, 10% of all cases. When present, it should always arouse suspicion of secondary infection or malignant change (Fig. 1).[1,2]
Inverted papilloma of the right nasal cavity and maxillary sinus.
Inverted papillomas are composed exclusively or almost exclusively of hyperplastic ribbons of basement membrane-enclosed epithelium that grow endophytically into the underlying stroma. Infrequently, a minor exophytic component may be seen. The epithelium is multilayered, usually 5-30 cells thick, and formed of squamous or ciliated columnar (respiratory epithelial) cells admixed with mucocytes. Nonkeratinizing squamous or transitional-type epithelium tends to predominate, and is often covered by a single layer of ciliated columnar cells (Fig. 2).[1,-3]
Inverted papilloma low power photomicrograph. Note epithelial-lined, duct-like structures that endophytically project into the underlying stroma
Complete surgical excision is the treatment of choice. Inadequate excision of lesions probably accounts for the local recurrence rate of 22-50% [1-,3]
Squamous cell carcinoma (SCC) of the jaws or antrum is not an uncommon malignancy. It is largely of unknown cause but may be related to known carcinogens. However, unlike squamous cell carcinomas in other head and neck sites, squamous cell carcinomas of the paranasal sinuses have been associated only weakly with tobacco use. It occurs more often in men (2–5 times) and affects individuals with a mean or median age of 60 to 65 years. Signs and symptoms depend on the stage of the disease and direction of tumor growth. Early on, they are vague and often confused with other lesions. [1,3- 8] Complaints can be grouped into five categories: nasal, oral, ocular, facial, and neurological. Nasal manifestations include unilateral stuffiness, obstruction rhinorrhea, and epistaxis. Oral findings include pain referred to the upper premolar and molar teeth; loosening of the teeth; swelling or ulceration of the palate, alveolar ridge, or gingivobuccal sulcus; or a fistula. Common ocular features consist of swelling of the eyelids, excessive tearing, visual disturbances, and proptosis. Facial symptoms from involvement of the anterior wall of the sinus and are characterized by swelling and asymmetry of the cheeks. Neurological manifestations are often due to tumor infiltration of the branches of the fifth cranial nerve with subsequent numbness or paresthesia of the lips or cheek. Approximately 10% to 15% of patients present with positive regional lymph nodes, usually the upper jugular, submandibular and retropharyngeal. Distant metastases at the time of diagnosis, however, are uncommon [9-11] Clinically, it usually appears exophytic with an indurated margin. Extension into structures, such as the tongue, cheek, oral cavity, alveolus or palate, infratemporal fossa, and periorbital soft tissue, is not uncommon (Fig. 3). [1,3-8]
Squamous cell carcinoma ulcerated lesion of the hard palate
Computed tomography and MRI are indispensable, not only in determining the extent of disease, but also in assisting the surgeon in selecting the best operative approach (Fig. 4).
SCC of the right maxillary sinus.
The vast majority of squamous carcinomas are either well or moderately differentiated. Poorly differentiated tumors are less common (Fig. 5).[2]
Moderately differentiated SCC; small nests of squamous cells with central keratinization.
SCC of the jaws and oral cavity usually is treated by block resection and 1-2 cm free margins. Some cases are treated by radiotherapy or combined radical surgery and radiotherapy. However, even with radical treatment the prognosis is poor, with a 5-year survival rate of approximately 40%. The presence of metastatic deposits in local lymph nodes reduces the survival rate to less than 8%, as does involvement of the pterygopalatine fossa. With or without cervical node involvement, death usually occurs from local destruction and the inability to control the primary disease [1,3- 8] Because the tumors of the sinus are generally advanced at the time of diagnosis, a combination of surgery and radiation is used in most instances, with or without chemotherapy. Local recurrence, seen in about 30% to 45% (range 18–75%) of cases, is the most common cause of treatment failure and death. Virtually, all recurrences appear within two years of therapy and most within one year. During the course of the disease, 25% to 30% of patients will develop positive regional lymph nodes and 10% to 20% may experience distant metastases.[9,10,11]
Pleomorphic adenoma is the most common salivary gland tumor and accounts for about 60% of all salivary neoplasms[1,2,8]
Pleomorphic adenomas are usually slow-growing painless masses. Small tumors typically form smooth, mobile, firm lumps but larger tumors tend to become bossellated and may attenuate the overlying skin or mucosa. Pain or facial palsy is uncommon but are occasionally seen, usually in relation to infarcted tumors. The size of most tumors vary from about 2-5 cm but some reported cases have been massive. In the palate, tumors are usually seen at the junction of the hard and soft palate unilaterally. In the hard palate they feel fixed due to the proximity of the underlying mucoperiosteum.[2,8]
Pleomorphic adenoma shows a remarkable degree of morphological diversity The essential components are the capsule, epithelial and myoepithelial cells, and mesenchymal or stromal elements. The epithelial component shows a wide variety of cell types including cuboidal, basaloid, squamous, spindle cell, plasmacytoid and clear cells. Rarely, mucous, sebaceous and serous acinar cells are seen. These cells are cytologically bland and typically have vacuolated nuclei, without prominent nucleoli, and a low mitotic activuty. The epithelium usually forms sheets or duct-like structures. The mesenchymal-like component is mucoid/myxoid, cartilaginous or hyalinized and sometimes this tissue forms the bulk of the tumor (Fig. 6). [1]
Pleomorphic adenoma. A.Squamous differentiation B.Plasmacytoid differentiation. C. Chondroid differentiation.
Although pleomorphic adenoma is a benign tumor it can cause problems in clinical management due to its tendency to recur and the risk of malignant transformation. Therefore it should be removed with free margins and the adjacent bone i.e. hard palate (or a layer of bone i.e. cortex of mandible). Recurrences are rare in the minor glands but in a meta-analysis of parotid tumors 3.4% of tumors recurred after 5 years and 6.8% after 10 years with a range of 1-50%. Many recurrent pleomorphic adenomas are multifocal and some are so widely distributed that surgical control becomes impossible.[2]
Mucoepidermoid carcinoma is most common in the parotid gland and usually appears as an asymptomatic swelling. Mucoepidermoid carcinoma is the most common malignant salivary gland tumor in children. The minor glands constitute the second most common site, especially in the palate. Intraosseous tumors also may develop in the jaws. Pain or facial nerve palsy may develop, usually in association with high grade tumors. [1,2,8]. CT scan and MRI are essential prior to treatment (Fig.7).
CT scan of mucoepidermoid carcinoma in right maxillary sinus.
As its name implies, mucoepidermoid carcinoma is composed of a mixture of mucus-producing cells and squamous (epidermoid) cells The mucous cells vary in shape but contain abundant foamy cytoplasm that stains positively with mucin stains. The epidermoid cells are characterized by squamoid features, often demonstrating a polygonal shape, intercellular bridges, and. rarely, keratinization. In addition, a third type of cell—the intermediate cell is typically present and is believed to be a progenitor of both the mucous and the epidermoid cells. Intermediate cells vary in appearance from small, basaloid ("maternal") cells to slightly larger ovoid cells with scant, pale eosinophilic cytoplasm. Some tumors also show variable numbers of clear cells (Fig.8).[1]
High-grade salivary-type mucoepidermoid carcinoma cells, and rare mucinous cells exhibiting mild nuclear changes, cords and strands of squamoid cells and clear pleomorphism.
The treatment of mucoepidermoid carcinoma is predicated by the location, histopathologic grade, and clinical stage of the tumor. Early-stage tumors of the parotid can often be treated by subtotal parotidectomy with preservation of the facial nerve. Advanced tumors may necessitate total removal of the parotid gland, with sacrifice of the facial nerve. Submandibular gland tumors are treated by total removal of the gland. Mucoepidermoid carcinomas of the minor glands usually are treated by assured complete surgical excision with free margins. For low-grade. Neoplasms, only a modest margin of surrounding normal tissue may needed to be removed, but high-grade or large tumors warrant wider resection, similar to that required for squamous cell carcinomas. If there is underlying bone destruction, then the involved bone must be excised. Radical neck dissection is indicated for patients with clinical evidence of metastatic disease and also may be considered for patients with larger or high-grade tumors. Postoperative radiation therapy also may be used for more aggressive tumors.[1] The prognosis depends on the grade and stage of the tumor. Patients with low-grade tumors generally have a good prognosis. For most primary sites, local recurrences or regional metastases are uncommon, and around 90% to 98% of patients are cured. The prognosis for those with intermediate-grade tumors is slightly worse than that for low-grade rumors. The outlook for patients with high-grade tumors is guarded, with only 30% to 54% of patients surviving.[1]
Sinonasal undifferentiated carcinoma (SNUC) is a rare, highly aggressive, and clinicopathologically distinctive neoplasm of the nasal cavity and paranasal sinuses. The tumor was first described in 1986. Since then fewer than 100 cases have been reported. In the earlier literature, tumors of this type were probably reported as anaplastic or undifferentiated carcinomas. The histogenesis is uncertain; some investigators have theorized that the cell of origin may be related to the Schneiderian membrane or olfactory epithelium. The pathogenesis of SNUC is poorly understood. A few cases have been associated with a history of smoking or the presence of Epstein-Barr virus (EBV). Although a strong correlation with these factors has not been established. In some instances, patients have developed SNUC secondary to radiation therapy for nasopharyngeal carcinoma or retinoblastoma.[1,3-8]
Although a broad age range (3rd- 9th decades) has been reported, there is a tendency for older patients to be affected, with a median age at presentation being in the 6th decade. Men are affected more commonly than women, with a male to female ratio of approximately 2:1 to 3:1. SNUC is well known for rapid development of locally extensive disease. The neoplasm typically appears as a large tumor mass that can involve multiple regions of the sinonasal tract, usually including the nasal cavity, maxillary sinus, and ethmoid sinuses. In addition, extension into contiguous sites—such as the nasopharynx, orbit, and cranial cavity—is common. Inferior penetration into the oral cavity is possible as well. There is usually relatively rapid development of multiple sinonasal symptoms, including nasal obstruction, discharge, epistaxis, swelling, and pain. Orbital involvement may lead to proptosis, periorbital swelling, diplopia and vision loss. Cranial nerve palsies are a common finding as well. Radiographic assessment is best performed by CT or MRI, which typically reveals a large, expansile sinonasal mass with bony destruction and invasion of adjacent structures (Fig.9). [1-8]
Sinonasal undifferentiated carcinoma mass in the right maxillary sinus.
Sinonasal undifferentiated carcinoma is characterized by trabeculae, ribbons, sheets, and nests of polygonal cells with minimal cytoplasm and pleomorphic, hyperchromatic vesicular nuclei. No squamous or glandular differentiation should be observed. Mitotic figures are numerous. Tumor necrosis, apoptosis. and lymphovascular invasion are usually prominent. The surface epithelium overlying the tumor may exhibit dysplasia or carcinoma in situ. Immunohistochemical staining for cytokeratin or epithelial membrane antigen is typically positive (Fig.10). [1 -8]
Undifferentiated carcinoma neoplastic cells with characteristic, chromatically uniform, vesicular nuclei, with no evidence of squamous differentiation.
The standard approach has been aggressive multimodal therapy, including complete surgical resection when feasible followed by adjuvant radiation and/or chemotherapy. The prognosis for this lesion is extremely poor, with an overall 5-year survival rate of less than 20%. However, a few centers recently have reported promising results with induction chemotherapy followed by radiation and surgical resection of any remaining disease. This newer treatment approach has been associated with 2-year survival rates of 64% to75%. High-dose chemotherapy and bone marrow transplantation may extend the life of the patient. Local recurrence is common and is the major cause of morbidity and mortality. Metastasis is possible, usually to cervical lymph nodes, bone, liver, or brain. [1-8]
The adenoid cystic carcinoma usually appears as a slow growing mass. Pain is a common and important finding, occasionally occurring early in the course of the disease before there is a noticeable swelling. Patients often complain of a constant, low-grade, dull ache, which gradually increases in intensity. Facial nerve paralysis may develop with parotid tumors. Palatal tumors can be smooth surfaced or ulcerated. Tumors arising in the palate or maxillary sinus often show radiographic evidence of bone destruction of the hard palate with extension of the tumor into the nasal cavity and maxillary sinuses (Fig.11).[1-8]
Adenoid cystic carcinoma. Note destruction of the left maxillary sinus.
Three major patterns are recognized: [1] cribriform. [2] tubular, and [3] solid. Usually a combination of these is seen, and the tumor is classified based on the predominant pattern (Fig.12).[1-8]
Adenoid cystic carcinoma; cribriform variants may show tumor cell sheets containing cylindrical, pseudoluminal spaces.
Adenoid cystic carcinoma is a relentless tumor that is prone to local recurrence and eventual distant metastasis. Surgical excision is usually the treatment of choice, and adjunct radiation therapy may slightly improve patient survival in some cases. Because metastasis to regional lymph nodes is uncommon, neck dissection typically is not indicated. Because of poor overall prognosis, regardless of treatment, clinicians should be cautioned against needlessly aggressive and mutilating surgical procedures for large tumors or cases showing metastases. [1- 8]
Basal cell carcinoma (BCC), the most common skin cancer (and the most common of all cancers), is a locally invasive, slowly spreading, primary epithelial malignancy that arises from the basal cell layer of the skin and its appendages. Basal cell carcinoma is a disease of adult caucasions, especially those with fair complexions. Although most patients are older than 40 years of age at the time of diagnosis, some lesions are detected as early as the second decade of life, particularly in patients with red or blonde hair and blue or green eyes. Approximately 80% of lesions occur on the head and neck, with the remainder involving the trunk and limbs[1,8]
The basal cell carcinoma displays a considerable diversity of appearances under the microscope i.e. nodulocystic (noduloulcerative), superficial, adenoid, pigmented, infiltrative, morpheaform, and keratotic. The noduloulcerative pigmented, and syndrome-related basal cell carcinomas are comprised of uniform ovoid, dark-staining basaloid cells with moderate-sized nuclei and relatively little cytoplasm. The cells are arranged into well-demarcated islands and strands, which appear to arise from the basal cell layer of the overlying epidermis and invade into the underlying dermal connective tissue. Epithelial islands typically demonstrate palisading of the peripheral cells; frequently a clear zone of artifactual retraction is seen between the epithelial islands and the connective tissue (Fig.13).[1,8]
BCC. Tumor nests are composed of small, monotonous cells with dark nuclei and scant basophilic cytoplasm.
The treatment of basal cell carcinoma often depends on the size and site of the lesion. Small lesions (lesions < l cm) are treated by routine surgical excision, laser ablation or electrodesiccation and curettage (with 3- to 5 mm margins of clinically normal-appearing skin beyond the visible lesion). These methods result in a cure rate of 95% to 98%. Radical surgical excision and radiation therapy are recommended for large or aggressive lesions. For sclerosing types of BBC, recurrent lesions, or lesions situated near embryonic planes of fusion (along which these tumor cells tend to invade), a procedure called Mohs micrographic surgery should be used. This technique essentially uses frozen-section evaluation of specially mapped and marked surgical specimens to determine whether tumor tissue has been left behind. If it has, then the surgeon can return immediately to that particular area and remove more tissue, repeating the process until the patient is free of diseased margins.[1,8]
Verrucous carcinoma (VC) is a nonmetastasizing variant of well-differentiated squamous cell carcinoma (SCC) characterized by an exophytic, warty, slowly growing neoplasm with invading margins.[2,8]
Hoarseness is the most common presenting symptom; other symptoms include airway obstruction, weight loss, dysphagia, and throat pain. Enlarged lymph nodes are common and reactive rather than neoplastic (Fig. 14).[2,8]
Verrucous carcinoma wart-like appearance.
VC consists of thickened club-shaped papillae and blunt intrastromal invaginations of well-differentiated squamous epithelium with marked keratinization and thin fibrovascular cores. The squamous epithelium lacks cytologic criteria of malignancy, and by morphometry, the cells are larger than those seen in SCC. Mitoses are rare, and observed in the basal layers (Fig. 15).[2,8]
Verrucous carcinoma. A large lesion with abundant keratosis arranged in "church-spire" configuration. There is a broad, pushing border of infiltration.
Patients with VC may be treated by excision (by laser or surgery), or by radiotherapy. Although surgery is more effective, radiotherapy is an acceptable alternative for patients who are poor surgical candidates.
Malignant soft tissue tumors included here are Fibrosarcoma, Malignant fibrous histocytoma, Angiosarcoma, Rhabdomyosarcoma, Leiomyosarcoma, Kaposi sarcoma, Liposarcoma.
Presenting complaints are typically related to a nasal mass, obstruction or epistaxis, nasal discharge, pain or swelling in the facial region, or sensory changes involving the regional nerves. Radiographic studies typically documented a nasal or paranasal sinus mass with some associated bone erosion [12-14] This is also seen in the jaws.
Unlike the fibromatoses, fibrosarcomas are highly cellular proliferations. The spindle cells are often oriented in well-formed fascicle that frequently intersect at approximately 90 degree angles, creating a herringbone" pattern. Nuclear pleomorphism is usually not striking, but mitotic figures are often abundant, even in well-differentiated forms of the tumor. In the head and neck region, most fibrosarcomas are well-differentiated, low-grade neoplasms (Fig. 16).[1,8]
Low-grade fibrosarcoma consists of interlacing fascicles of spindle cells infiltrating around seromucinous glands.
The immunohistochemical reactivity of fibrosarcoma does not differ from that of aggressive fibromatosis. The neoplastic cells are often strongly reactive for vimentin and weakly reactive for actin. Negativity for epithelial markers (cytokeratin epithelial membrane antigen) and 8-100 protein is helpful in excluding differential diagnosis.[2,8]
Optimal treatment for aggressive fibromatosis is wide surgical resection. Unfortunately, this is often not an option in the head and neck region. Accordingly, the behavior in this location is more aggressive than in areas of easy resectability. In the head and neck, recurrence rates approach 60 to 70 percent excluding oral and paraoral lesions which are more amenable to surgery and have a recurrence rate of approximately 25 %. [2,8]
Patients may have nasal obstruction, often associated with epistaxis while pain, sinusitis, nasal discharge, swelling, anosmia, and proptosis are less common. Malignant fibrous histiocytoma (MFH) is currently used as a diagnosis of exclusion for sarcomas. Only 3% of MFH occur in the head and neck, with 30% of these arising in the sinonasal area.[2,8]
Sinonasal MFH are generally infiltrative and ulcerative, but can occasionally be circumscribed. Pleomorphic MFH, the most frequent morphologic subtype of MFH in the sinonasal tract, is characterized by spindle to pleomorphic cells in a storiform growth pattern, with easily identified mitotic figures including atypical forms, and necrosis. The cells are fusiform with, indistinct cytoplasm. Tumoral giant cells with multiple nuclei may be found (Fig. 17).[1,2,8]
Malignant fibrous histocytoma showing spindle-shaped cells with storiform pattern.
MFH is usually positive for vimentin and focally for actins. Importantly, MFH is a diagnosis of exclusion and is generally negative for desmin, skeletal muscle specific markers, S100 protein, HMB-45, epithelial markers and lymphoid markers.[2,8]
Compared with other anatomical sites, MFHs of the head and neck generally have a slightly lower rate of recurrence and metastases.[15]
Angiosarcoma is a malignant neoplasm of vascular phenotype whose constituent tumor cells have endothelial features.
Presenting symptoms include swelling, pain, epistaxis, deviation or swelling of tonsils, nasal obstruction, and sinusitis. [16,17]
Most sinonasal angiosarcomas are histologically low-grade. They infiltrate the adjacent tissues and bone, accompanied by necrosis and hemorrhage. They are comprised of tortuous anastomosing vascular channels that dissect the stroma, capillary sized vessels and cavernous vascular spaces. The lining endothelial cells range from flat to plump spindly to epithelioid, and often form papillary tufts (Fig. 18). [1- 8]
Angiosarcoma shows large vessel like spaces partially lined by enlarged, hyperchromatic endothelial cells.
Angiosarcomas are immunoreactive for CD34, CD31, Factor VIII R-Ag and vimentin, and focally keratin (especially the epithelioid variant) and actin [18]
Patients are usually treated by surgical resection with radiation and/or chemotherapy. Recurrences are common (50%), likely due to incomplete excision or possible multifocality. Metastasis is uncommon, and the predilection sites are the lung, liver, spleen, and bone marrow. [1,2,4,5,7,8,19]
Rhabdomyosarcoma primarily occurs during the first decade of life but also may occur in teenagers and young adults. It is rare in people older than 45 years, and approximately 60% of all cases occur in males. Embryonal rhabdomyosarcomas are most common in the first 10 years of life and account for about 60% of all cases. Alveolar rhabdomyosarcomas occur most often in persons between 10 and 25 years of age: they account for 20% to 30% of all tumors. Pleomorphic rhabdomyosarcomas represent less than 5% of all cases and show a peak prevalence in patients older than 40 years of age. The tumor is most often a painless, infiltrative mass that may grow rapidly. In the head and neck region the face and orbit are the most frequent locations followed by the nasal cavity. The palate is the most frequent intraoral site, and some lesions may appear to arise in the maxillary sinus and break through into the oral cavity[1- 8]
Several microscopic patterns of pediatric rhabdomyosarcoma are recognized including: Embryonal rhabdomyosarcoma, Non Otherwise Specified, Botryoid, Spindle, Alveolar rhabdomyosarcoma, Undifferentiated sarcoma and Anaplastic rhabdomyosarcoma. The anaplastic cells vary according to type (Fig.19).
A. Embryonal rhabdomyosarcoma. B. Alveolar subtype of rhabdomyosarcoma.
There is immunoreactivity for desmin, muscle specific actin, myoglobin, fast myosin, nuclear MyoD1 and nuclear myogenin (skeletal muscle myogenin myf4). CD99 may be positive in 16% of cases [20,21].
Before 1960 the prognosis for a patient with rhabdomyosarcoma was extremely poor, with more than 90% of patients dying. With the advent of multimodal therapy during the past several decades, the prognosis has improved dramatically. Treatment typically consists of local surgical excision followed by multiagent chemotherapy (vincristine actinomycin D. and cyclophosphamide). Postoperative radiation therapy also is used, except for localized tumors that have been completely resected at initial surgery. The 5-year survival rate for embryonal rhabdomyo sarcoma not otherwise specified [NOS]) is around 66%, although the figures for botryoid (95%) and spindle cell variants (88%) are much better. The 5-year survival rate for alveolar rhabdomyosarcoma is only 53%. and survival drops to slightly less than 50% for anaplastic rhabdomyosarcoma and undifferentiated sarcomas. [1-8]
Leiomyosarcoma is a malignant tumor of smooth muscle phenotype.
Patients may have swelling, pain and the duration of symptoms is usually long. There is usually no lymphadenopathy. Plain radiographs show opacification of the nasal cavity or sinus(es), often suggesting sinusitis Only a small number of sinonasal leiomyosarcomas have been reported, accounting for <1% of all non-epithelial tumors. They occur in all ages, with a peak in the 6th decade (mean, 53 years) without a gender difference. [2,22]
Leiomyosarcomas are infiltrative neoplasms accompanied by surface ulceration Bone or cartilage invasion is more frequent than surface or seromucinous gland invasion. Leiomyosarcomas are composed of right-angle intersecting bundles of spindle cells. Pallisading storiform and “haemangiopericytoma -like” patterns can occur. The tumors are hypercellular, but coagulative tumor necrosis and hemorrhage can create a hypocellular appearance. The tumor cells have elongated, vesicular to hyperchromatic, lobulated or indented nuclei with blunt ends (“cigar shaped”). The cytoplasm is fibrillary and eosinophilic, with frequent perinuclear vacuolation. Mitoses, both typical and atypical, are present to a variable degree. [2,22] Histochemistry and immunoprofile intracytoplasmic glycogen can be demonstrated with a PAS stain. Masson trichrome stain demonstrates red, longitudinally oriented parallel fibrils within the cytoplasm. Tumor cells are diffusely and strongly immunoreactive for vimentin, actin(smooth muscle or muscle- specific), desmin and h-caldesmon.There is generally no reactivity with keratin CD34, CD117, S-100 protein or HMB-45 The Ki-67 index is usually >15% (Fig. 20).[2,3,22]
Leiomyosarcoma fascicles of spindle-shaped cells with conspicuous eosinophilic cytoplasm.
About half of the reported cases develop local recurrence, often within a year and nearly 1/3 of these patients subsequently develop metastasis (mostly to the lungs and liver). Complete surgical excision is difficult to achieve, and radiation and chemotherapy are used with variable success. Poor prognostic factors include involvement of more than one contiguous site, large tumor size (>5 cm), high mitotic count (>20/10 high power field), tumor necrosis, and tumor stage. [2,22,23]
Kaposi sarcoma (KS) is a locally aggressive tumor that typically presents with cutaneous lesions in the form of multiple patches, plaques or nodules but may also involve mucosal sites, lymph nodes and visceral organs. The disease is uniformly associated with HIV and human herpes virus 8 (HHV-8) infection.[2,8]
KS is characterized by the appearance of purplish, reddish blue or dark brown macules, plaques and nodules that may ulcerate. They are particularly frequent in distal extremities and may be accompanied by lymphedema. Early oral KS is represented by solitary or multiple red or bluish flat lesions, while the later stage is characterized by a nodular, sometimes massive appearance with or without secondary ulceration (Fig. 21). [2,8]
Kaposi sarcoma of the palate.
KS lesions of the skin or the mucosa are uncharacteristic and present with subtle vascular proliferation; vascular spaces are increased in number, of irregular shape, and may dissect collagen fibres in the superficial corium. They often run parallel to the epithelium. The vascular proliferation is often perivascular and periadnexal. Endothelial cells lining the spaces are flattened or more oval, with little atypia. Preexisting blood vessels may protrude into the lumen of new vessels. Admixed are sparse lymphocytes and plasma cells; frequently, extravasated erythrocytes and deposits of hemosiderin surround the vascular structures (Fig. 22). [2,8]
Vascular slits and sparsely distributed lymphocytes of KS.
The lining cells of clearly developed vascular structures are usually positive for vascular markers, while the spindle cells consistently show positive reaction for CD34 and commonly for CD31 but are factor VIII negative. All cases, irrespective of epidemiologic subgroup, are HHV-8 positive. The new marker FLI1, a nuclear transcription factor, appears to be expressed in almost 100% of different vascular tumors, including KS [24]
The evolution of disease depends on the epidemiological-clinical type of KS and on its clinical extent. It is also modified by treatment that includes surgery, radio and chemotherapy. [25]
Liposarcomas are primarily seen in adults, with peak prevalence between the ages of 40 and 60. The tumor is typically a soft, slow-growing, ill-defined mass that may appear normal in color or yellow. Pain or tenderness is uncommon: when present, it is usually a late feature. The neck is the most common site for liposarcomas of the head and neck region. The most frequent oral locations are the tongue and cheek.[1,8]
Most liposarcomas can be divided into three major categories: 1. Well-differentiated liposarcoma/atypical lipomatous tumor, 2. Myxoid/round cell liposarcoma, 3. Pleomorphic liposarcoma(Fig.23). [1,8]
Liposarcoma showing lipoblasts interspersed between mature appearing adipocytes.
Benign and malignant odogentic tumors included here are the Calcifying epithelial odontogenic tumor (CEOT), Ameloblastic fibroma (AF), Cementoblastoma, Odontoma, Odontogenic myxoma, Ameloblastoma, Ameloblastic carcinoma and Adenomatoid odontogenic tumor.
CEOT accounts for approximately 1% of all odontogenic tumors occurring in patients between 20 and 60 years of age, with a mean age of 40 years. There is no gender predilection. Most cases are intraosseous, approximately 6% arise in extraosseous locations. Intraosseous tumors affect the mandible more often than the maxilla with a ratio of 2:1.[2,8]
The tumor presents as an asymptomatic slow-growing expansile mass of the jaw. Peripheral gingival lesions are firm painless masses. Radiographically, most CEOTs present as mixed radiolucent-radiopaque lesions, but they may show considerable variation. They may be unilocular or multilocular. In about half of the cases, an unerupted tooth, most often a mandibular third molar, is associated with the lesion. CT and MRI provide useful information in the diagnosis and treatment of CEOT [26]
The tumor consists of a fibrous stroma with islands and sheets of polyhedral epithelial cells with abundant eosinophilic cytoplasm, sharply defined cell borders and well-developed intercellular bridges. Their nuclei are frequently pleomorphic, with giant nuclei being common. Mitotic figures are rarely encountered unless malignant transformation occurs (Fig.24).[27]
CEOT depicting fibrous stroma with islands and sheets of polyhedral epithelial cells with abundant eosinophilic cytoplasm.
Most cases of AF present as a painless swelling or are discovered due to disturbances of tooth eruption. Radiographically, the tumor presents as a well-demarcated radiolucency, often in connection with a malpositioned tooth (Fig.25).[30]
AF presenting as well demarcated osteolysis with sclerotic rim.
The epithelial component of AF consists of branching and anastomosing epithelial strands that form knots of varying size. These have a peripheral rim of columnar cells similar to the inner enamel epithelium that embraces a loosely arranged spindle-shaped epithelium identical to stellate reticulum.The epithelial component resembles ameloblastoma. The stromal component however differs in that it is an immature cell-rich myxoid tissue with an embryonic appearance. Some AFs may contain granular cells (Fig.26). [30]
Ameloblastic fibroma with strands and islands of odontogenic epithelium showing peripheral palisading, embedded in a cell-rich ectomesenchyme resembling the dental papilla.
Treatment consists of enucleation and curettage. Recurrence may occur but this does not justify initial aggressive treatment.[30] Rarely, AF may progress to malignancy (ameloblastic fibrosarcoma).
Cementoblastoma is a rare benign neoplasm which forms cementum-like material attached to the tooth root.
Cementoblastomas are rare, accounting for only about 4% of cementum-containing lesions. There is no significant gender predilection and lesions are discovered in the 2nd-3rd decades. Lesions present with varied levels of pain and a swelling of the buccal or lingual aspect of the alveolar ridge as a result of bone expansion. The involved tooth usually remains vital. There is a predilection for the mandibular, particularly the mandibular permanent first molar.[5,8]
The tumor is well-defined, radiopaque or mixed density, round mass, intimately associated with the tooth root. Additionally, a thin radiolucent rim surrounds the tumor, representing the periodontal ligament. Root resorption is common. Irregular soft tissue may surround the lesion (Fig. 27). [5,8]
Radiograph of a radiodense calcified mass attached to the root of the mandibular first molar is characteristic for a cementoblastoma.
Cementoblastoma is composed of a dense mass of cementum in a loose fibrovascular stroma. Lesions usually show prominent cementoblastic rimming and may demonstrate a characteristic basophilic appearance and reversal lines of the cementum. Multinucleated osteoclastic giant cells are usually present. The periphery may have radiating columns of unmineralized tissue (Fig. 28). [5,8]
Cementoblastoma. Mineralized tissue containing numerous plump cementoblasts.
Odontoma is the most common odontogenic tumor, although it may best be classified as a hamartoma composed of enamel, dentin, pulpal tissue, and cementum. Academically, odontomas are subclassified into two types, although management is identical: compound when composed of rudimentary teeth-like structures and complex when composed of haphazardly arranged tooth structure. [5,8]
Odontoma occurs more frequently than all other odontogenic tumors combined. Odontomas show no gender predilection. Odontomas develop most commonly in the first two decades, the time normal teeth are developing and erupting. Most odontomas are asymptomatic, found incidentally on routine dental radiographs, while larger lesions may interfere with eruption of normal adjacent teeth, prompting radiographic investigation. [5,8]
Odontomas present as a radiodense calcified mass surrounded by a thin radiolucent rim. Compound odontomas will appear like small, malformed teeth while complex odontomas present as radiodense masses of calcified tooth material, slightly more difficult to diagnose[5,8]
Sections of immature, developing compound odontomas show several dysmorphic tooth germs in a loosely textured connective tissue with cords and islands of odontogenic epithelium. Much of the enamel matrix is preserved in spite of decalcification The distinction between complex and compound odontoma is mainly based on the presence of tooth- like structures in compound odontomas (Fig. 29). [5,8]
A. Compound odontoma. Enamel matrix and odontogenic epithelium in an odontoma. B. Odontoma, complex type. Enamel, dentin, and cementum-like tissue are arranged in a haphazard pattern.
Small OMs are asymptomatic. Large OMs cause painless expansion. Cortical perforation may occur when large. Unilateral sinonasal obliteration may mimic nasal polyposis. Radiographically, OM appears as a unilocular or multilocular radiolucency, sometimes showing a fine “soap bubble” or“honeycomb” appearance occasionally with fine trabeculations. The borders of the tumor are usually well-defined and corticated but can be poorly defined or diffuse. Root displacement occurs, as does root resorption. Larger OMs may present with periosteal reactions. CT may reveal the fine bony septa and allows for anatomic deliniation.[1,2,31]
OM is characterized by randomly oriented stellate, spindle-shaped and round cells with long, fine, anastomosing pale or slightly eosinophilic cytoplasmic processes extending from the centrally placed nucleus. Cells are evenly dispersed in an abundant mucoid or myxoid stroma that contains only a few fine collagen fibres. Binucleated cells, mild pleomorphism and mitotic figures may occur. Rests of odontogenic epithelium are not obvious in most lesions and are not required for establishing final diagnosis. Some OMs may permeate into the marrow spaces in a pseudo-malignant pattern. Some OMs have a tendency to produce collagen fibres and are designated myxofibroma. There is no evidence that these more collagenous variants behave differently. Histochemical studies show that the ground substance is rich in acid mucopolysaccharides, primarily hyaluronic acid and, to a lesser degree, chondroitin sulphate (Fig.30).[1,2,32]
Odontogenic myxoma with randomly oriented stellate, spindle-shaped and round cells with long cytoplasmic processes.
The tendency of OM to permeate into marrow spaces makes effective enucleation and curettage difficult. Small lesions have been successfully treated in this way but larger lesions may require complete excision with free margins. Recurrence rates from various studies average about 25% but in spite of this, the prognosis is good. Recurrence usually follows incomplete removal within 2 years but may also occur later. Death may ensue due to cranial base extension.[1-3,33]
Ameloblastoma occurs exclusively in the jaws, rarely in the sinonasal cavities. Most maxillary cases occur in the posterior region. Small lesions may be asymptomatic swellings of the jaws. Pain or paraesthesia is rare. They may be unilocular or multilocular radiolucencies resembling cysts and they may reveal scalloped borders [1,2,34]. The most typical radiographic feature is that of a multilocular radiolucent lesion. The lesion is often described as having a "soap bubble" appearance (when the radiolucent loculations are large) or as being "honeycombed"(when the loculations are small). Buccal and lingual cortical expansion is frequently present. Resorption of the roots of teeth adjacent to the tumor is common. In many cases an unerupted tooth, most often a mandibular third molar is associated with the radiolucent defect. Solid ameloblastomas may radiographically appear as unilocular radiolucent defects, which may resemble almost any type of cystic lesion (Fig. 31). [1-5]
Ameloblastoma involved maxillary sinus.
The follicular and plexiform patterns are the most common. Less common histopathologic patterns include the acanthomatous, granular cell, desmoplastic, and basal cell types (Fig. 32).[1-3, 8]
Follicular ameloblastoma
Patients with conventional solid or multicystic intraosseous ameloblastomas have been treated by a variety of means. These range from simple enucleation and curettage to en bloc resection. Other surgeons advocate that the margin of the resection should be at least 1.0 to 1.5 cm past the radiographic limits of the tumor. Ameloblastomas of the posterior maxilla are particularly dangerous because of the difficulty of obtaining an adequate surgical margin around the tumor. Marginal resection is the most widely used treatment but recurrence rates of up to 15% have been reported after marginal or block resection.[1,2,8]
Only 19 cases have been reported to occur in the maxilla. Males and females are equally affected. The posterior segments of the jaws represent the most common site. Generally, ill defined or irregularly marginated radiolucencies are characteristic. Cortical expansion often with perforation, may be present as well as infiltration into adjacent structures (Fig. 33).[2,35]
Ameloblastic carcinoma in maxillary sinus
Ameloblastic carcinoma is characterized by malignant cytologic features in combination with the overall histological pattern of an ameloblastoma. A tall columnar cellular morphology with pleomorphism mitotic activity, focal necrosis, perineural invasion and nuclear hyperchromatism may be present. Peripheral palisading and so-called reverse or inverted nuclear polarity will be present. A stellate reticulum structure will usually be seen. Cystic spaces may be present that are lined by epithelium Atypical cells form nests and broad ribbons which may branch and anastomose with focal areas of subtle necrosis to more obvious central, comedo necrosis like areas (Fig. 34).[1,2,36]
Ameloblastic Carcinoma. A tall columnar cellular morphology with pleomorphism mitotic activity
Intraosseous AOTs may be found in association with unerupted permanent teeth (follicular type), in particular the four canines that account for 60% with the maxillary canines alone accounting for 40%. Most AOTs are asymptomatic. When growth of the intraosseous variants causes cortical expansion, it may present as a palpable bony-hard swelling with or without slight pain. The intraosseous AOTs may cause displacement of neighbouring teeth. The peripheral variant presents as a fibroma or an epulis-like lesion of the gingiva Radiographically, the intraosseous, follicular AOT, shows a well-defined, unilocular radiolucency around the crown and often part of the root of an unerupted permanent tooth, mimicking a dentigerous cyst. If not associated with an unerupted tooth (extrafollicular type), AOT presents as a unilocular radiolucent lesion. In two thirds of the intraosseous variant, the radiolucency shows discrete radiopaque foci. The peripheral variant may disclose erosion (saucerization) of the alveolar bone crest.(Fig.35).[1,2,8]
AOT involving the maxillary sinus.
Microscopically, the tumor is composed of spindle shaped epithelial cells that form sheets, strands, or whorled masses of cells in a scant fibrous stroma. The epithelial cells may form rosette-like structures about a central space, which may be empty or contain small amounts of eosinophilic material. This material may stain for amyloid. The tubular or ductlike structures, which are the characteristic feature of the adenomatoid odontogenic tumor, may be prominent, scanty, or even absent in a given lesion. These consist of a central space surrounded by a layer of columnar or cuboidal epithelial cells. The nuclei of these cells tend to be polarized away from the central space. The mechanism of formation of these tubular structures is not entirely clear but is likely the result of the secretory activity of the tumor cells, which appear to be preameloblasts. In any event, these structures are not true ducts, and no glandular elements are present. Small foci of calcification may also be scattered throughout the tumor (Fig. 36).[1,2]
AOT. Solid, cell-rich area of minimal stromal connective tissue showing duct-like structures.
These include: Hodgkins, Burkitt’s lymphoma, Plasmacytoma (multiple myeloma) and Non-Hodgkins lymphoma.
Hodgkin\'s lymphoma almost always begins in the lymph nodes, and any lymph node group is susceptible. Oral involvement has been reported, but it is rare. In about 30% of patients with Hodgkin\'s disease, other systemic signs and symptoms may be present, such as weight loss, fever, night sweats, and generalized pruritus (itching).[1,8]
Hodgkin\'s lymphoma is recognized to comprise two main forms. [1] Nodular Ivmphocyte-predominant Hodgkin\'s lymphoma and [2] Classic Hodgkin\'s lymphoma, the latter of which is divided into five subtypes. Although this group of diseases has certain features in common, current immunohistochemical and molecular biologic techniques have allowed distinctions to be made among the various types. The common features include effacement of the normal nodal architecture by a diffuse, often mixed, infiltrate of inflammatory cells that is interspersed with large, atypical neoplastic lymphoid cells. In the case of classical Hodgkin\'s lymphoma, this atypical cell is known as a Reed- Sternberg cell (Fig. 37). [1,8]
Hodgkin\'s lymphoma. This high-power photomicrograph shows the characteristic Reed-Sternberg cell.
The treatment of Hodgkin\'s lymphoma depends on the stage of involvement. Patients who had limited disease often were managed by local radiation therapy alone. Recent treatment trends, however, combine less extensive radiotherapy fields with milder multiagent chemotherapy regimens to maximize disease control and minimize long-term complications of therapy. [1,8]
Burkitt\'s lymphoma is a malignancy of B-lymphocyte origin that represents an undifferentiated lymphoma[1,8]
As many as 50% to 70% of the cases of endemic Burkitt\'s lymphoma present in the jaws. The malignancy usually affects children (peak prevalence, about 7 years of age) who live in Central Africa, and a male predilection is usually reported. The posterior segments of the jaws are more commonly affected, and the maxilla is involved more commonly than the mandible (a 2:1 ratio). Sometimes all four quadrants of the jaws show tumor involvement. The tendency for jaw involvement seems to be age related; nearly 90% of 3 year-old patients have jaw lesions, in contrast to only 25% of patients older than age 15. Sporadic Burkitt\'s lymphoma tends to affect patients over a greater age range than is noted for the African tumor. Although the abdominal region is typically affected, jaw lesions have been reported in sporadic cases.[1,8] The growth of the tumor mass may produce facial swelling and proptosis. Pain, tenderness, and paresthesia are usually minimal, although marked tooth mobility may be present because of the aggressive destruction of the alveolar bone. Premature exfoliation of deciduous teeth and enlargement of the gingiva or alveolar process may also be seen. The radiographic features are consistent with a malignant process and include a radiolucent destruction of the bone with ragged, ill-defined margins. [1,8]
Burkitt\'s lymphoma histopathologically represents an undifferentiated, small, noncleaved B-cell lymphoma. The lesion has broad sheets of tumor cells that exhibit round nuclei with minimal cytoplasm. Each tumor nucleus often has several prominent nucleoli and numerous mitotic cells. Immunohistochemical studies using markers identify proliferating cells (e.g. Ki-67) typically show that almost 100% of the tumor cells are in the process of replicating. On viewing the lesion on low-power magnification, a classic "starry-sky" pattern is seen (Fig. 38) [1,8]
Burkitt\'s lymphoma "starry-sky" appearance, a pattern caused by interspersed histiocytic cells with abundant cytoplasm
Burkitt\'s lymphoma is an aggressive malignancy that usually results in the death of the patient within 4 to 6 months after diagnosis if it is not treated. Treatment generally consists of an intensive chemotherapeutic regimen, which emphasizes the use of high doses of cyclophosphamide. More than 90% of the patients respond to this treatment. The prognosis for Burkitt\'s lymphoma in the past was poor, with a median survival time of only months.
The plasmacytoma is a unifocal, monoclonal, neoplastic proliferation of plasma cells that usually arises within bone. [1- 8]
The plasmacytoma usually is detected in an adult male, with an average age at diagnosis of 55 years. The male-to-female ratio is 3:1. Most of the lesions present centrally within a single bone.
Approximately 80% to 90% of extramedullary plasmacytomas develop in the head and neck region, and such lesions have been reported in the tonsils, nasopharynx, and paranasal sinuses.[1-8]
The histopathologic features of the plasmacytoma are identical to those of multiple myeloma. Sheets of plasma cells show varying degrees of differentiation. Immunohistochemical studies demonstrate that these plasma cells are monoclonal. As many as 25% to 50% of these patients also show a monoclonal gammopathy on evaluation by serum protein immunoelectrophoresis (Fig. 39).[1-8]
Plasmacytoma. Sheets of monomorphous-appearing plasma cells
Immunohistochemically, the plasma cells express cytoplasmic immunoglobulin with light chain restriction. CD20 is negative in most cases, and some cases express CD79a. PAX-5 is negative, while Oct-2 and Bob.1 are frequently positive. There is usually expression of CD38, CD138 and VS38, markers characteristically positive in but not specific for plasma cells.Epithelial membrane antigen is commonly positive, and rare cases can show cytokeratin immunoreactivity (often with a dot pattern). Leukocyte common antigen, CD31 or CD56 is sometimes positive. [1-8]
Plasmacytomas are usually treated with radiation therapy, and typically a dose of at least 4000 cGy is delivered to the tumor site. A few lesions have been surgically excised with good results, although this is not the preferred treatment in most instances. Unfortunately, when patients with plasmacytoma of bone are observed on a long-term basis, most will eventually develop multiple myeloma. [1-8]
Lymphomas of the paranasal sinuses commonly show bony destruction and local extension to adjacent structures including the orbit, palate, nasal cavity, nasopharynx, and soft tissues in the cheek and infratemporal fossa. The maxillary sinus is the most commonly involved paranasal sinus. Patients may present with nasal obstruction, epistaxis, nasal discharge, pain and nasal swelling or facial swelling. Locally advanced cases can cause destruction of midline facial structures. The nasal septum or palate may be perforated. Extension to the orbits can lead to proptosis and visual disturbance. Regional lymph node involvement may occur in some patients. Occasional patients have systemic symptoms including fever and weight loss. Hemophagocytic syndrome with pancytopenia occurs at presentation in a minority of patients with extranodal NK/T cell lymphoma of nasal type. [1-8, 38]Lymphoma in patients with AIDS usually occurs in extranodal locations, with the CNS being the most common site. Oral lesions are seen in approximately 4% of patients with AIDS-related NHL and most frequently involve the gingiva, palate, tongue, tonsil, or maxillary sinus (Fig. 40). [1-8]
Non-hodgkins lymphoma with destruction in the left maxillary sinus.
Non-hodgkins lymphoma consists of several subtypes: Diffuse small cleaved cell, Diffuse mixed small and large cell, Diffuse large cell, Diffuse large cell immunoblastic, Follicular large cell, Small noncleaved cell, Lymphoblastic, Follicular mixed small and large cell, Small lymphocytic and Follicular small cleaved cell variants.
Non-Hodgkins lymphoma; Diffuse small cell lymphoma.
The lymphoma most commonly exhibits an NK-cell immunophenotype of CD2+, surface CD3(Leu4)-, cytoplasmic CD3+, CD56+. CD43 and CD45RO are commonly positive, but other T-cell markers (including CD5) and NK-cell markers (CD16, CD57) are usually negative[1-8,39]
Radiotherapy and/or systemic chemotherapy is the treatment of choice for localized disease. Treatment of DLBCL follow protocols for similar tumors elsewhere in the body, as some series showed that chemotherapy might be beneficial. The overall survival for extranodal NK/T cell lymphoma of nasal-type is only 30-50%. In patients achieving complete remission, local relapse occurs in one-third to one-half of cases, and systemic failure is also common. Factors associated with a worse outcome include: Advanced stage, poor systemic status and severe disease.There is no conclusive evidence to suggest that the histological grading of NK/T cell lymphoma can predict the clinical outcome. Expression of cutaneous lymphocyte antigen (CLA) may be associated with a worse prognosis, but this finding has yet to be confirmed. [1-8]
Cherubism, Paget’s Disease, Osteoid osteoma, Osteoma, Juvenile ossifying fibroma, Fibrous dysplasia, Giant cell tumor (central and peripheral), Chondrocarcoma, Osteosarcoma and Ewing’s sarcoma are common bone tumors discussed herein.
Cherubism is a rare, autosomal dominant inherited disease that causes bilateral swelling of at least the mandible but often also the maxilla. [1,5,8]
Males are affected more commonly than females and most patients present in early childhood. There is often a history of other afflicted family members. The resulting painless, symmetrical, facial deformity mimics the angelic faces of the cherubs portrayed in Renaissance and Baroque paintings, hence its name. Sometimes there is upward displacement of both eyes. The disease progression is self-limited, stabilizing at the end of puberty. Complications developing from the jaw disorder can result in poor dentition, impacted teeth, and malaligned teeth. [1,5,8]
Radiographic findings are not pathognomonic, but the presence of bilateral, usually symmetrical involvement of the maxilla and mandible is certainly most suggested. The affected jaw areas show cortical expansion and attenuation (thinning) as well as a soap bubble-like multilocular radiolucency. Teeth and tooth germs may be displaced (Fig.42).[1,5,8]
Bilateral soap bubble-like radiolucencies with displaced teeth and tooth germs in cherubism.
Cherubism shows multinucleated, osteoclast-like giant cells lying in a fibroblastic background stroma. The fibroblastic tissue may vary in cellularity from very dense to cell-poor. Mitotic figures may be encountered but are usually not numerous and not atypical. The giant cells mostly cluster in areas of hemorrhage, but they also may lie more dispersed among the lesion. Bone formation is usually confined to the periphery of the lesion, as a reactive remodeling.There may also be a component consisting of immature odontogenic tissue due to developing tooth germs lying within the lesional tissue (Fig.43). [1,5,8]
Histologically cherubism shows moderately cellular fibroblastic tissue with dispersed osteoclast-like giant cells and some extravasation of erythrocytes.
With the onset of puberty, the lesions may lose their activity and may mature to fibrous tissue and bone. Facial deformity may necessitate cosmetic surgery.
Paget\'s disease of bone is a condition characterized by abnormal and anarchic resorption and deposition of bone, resulting in distortion and weakening of the affected bones. The cause of Paget\'s disease is unknown, but inflammatory, genetic, and endocrine factors may be contributing agents. In some studies 15% to 40% of affected patients have a positive family history of the disease. In recent years, recurrent mutations in the sequestosome 1 gene (SQSTA11, also known as p62) which participates in the regulation of osteoclastic activity via the nuclear factor-KB (NF-KB) transcription activation pathway, have been identified in both familial and sporadic cases of the disease. [1,8]
Jaw involvement is present in approximately 17% of patients diagnosed with Paget\'s disease. Maxillary disease, which is far more common than mandibular involvement, results in enlargement of the middle third of the face. In extreme cases, the alteration results in a lion-like facial deformity (leontiasis ossea). Nasal obstruction, enlarged turbinates, obliterated sinuses, and deviated septum may develop secondary to maxillary involvement. The alveolar ridges tend to remain symmetrical but become grossly enlarged. If the patient is dentulous then the enlargement causes spacing of the teeth. Edentulous patients may complain that their dentures no longer fit because of the increased alveolar size. Radiographically, the early stages of Paget\'s disease reveal a decreased radiodensity of the bone and alteration of the trabecular pattern. Particularly in the skull, large circumscribed areas of radiolucency may be present (osteoporosis circumscripta (Fig.44).[1,8]
Paget\'s disease. Periapical film showing the "cotton wool" appearance of the bone.
Microscopic examination shows an apparent uncontrolled alternating resorption and formation of bone. In the active resorptive stages, numerous osteoclasts surround bone trabeculae and show evidence of resorptive activity. Simultaneously, osteoblastic activity is seen with formation of osteoid rims around bone trabeculae. A highly vascular fibrous connective tissue replaces the marrow. A characteristic microscopic feature is the presence of basophilic reversal lines in the bone. These lines indicate the junction between alternating resorptive and formative phases of the bone and result in a "jigsaw puzzle." or "mosaic," appearance of the bone (Fig.45). [1,8]
Paget\'s disease. Osteoblastic and osteoclastic activity surround the bone trabeculae.
Osteoid osteoma is a benign bone-forming tumor of limited growth potential, usually less than 1.5 cm, typically associated with nocturnal pain that is relieved by salicylates. It is very rare in the head and neck. It occurs in young patients (first three decades), with male predominance. On plain radiographs, dense cortical sclerosis surrounds a radiolucent nidus. Histologically, the nidus shows interconnected, ossified woven bone rimmed by osteoblasts. Fibrous tissue, vessels and multinucleated giant cells are identified inbetween the bony trabeculae (Fig.46).[1,2,8]
Osteoid osteoma. Osteoblasts surround the trabeculae.
Osteomas are benign tumors composed of mature compact or cancellous bone. Osteomas are essentially restricted to the craniofacial skeleton and rarely symptomatic. Although pain, swelling, sinusitis, and nasal discharge are possible. In rare cases, paranasal sinus osteomas may expand into orbital structures and result in proptosis, diplopia, and decreased visual acuity. [1-8] Osteomas of the jaws may arise on the surface of the bone, as a polvpoid or sessile mass (periosteal, peripheral or exophytic osteoma). Or they may be located in the medullary bone (endosteal or central osteoma). Extraskeletal lesions of soft tissue, typically located within muscle or the dermis of the skin (osteoma cutis), also are possible. Most jaw osteomas are detected in young adults and are generally asymptomatic. Paranasal sinus lesions also are possible and are actually more common than gnathic lesions. The frontal sinus is most commonly involved, followed by the ethmoid and maxillary sinuses. [1-8] Radiographically. osteomas appear as circumscribed sclerotic masses. Periosteal osteomas may show a uniform sclerotic pattern or may demonstrate a sclerotic periphery with a central trabecular pattern. Smaller endosteal osteomas are difficult, if not impossible, to differentiate from foci of sclerotic bone representing the end stage of an inflammatory process (condensing osteitis, focal chronic sclerosing osteomyelitis) or from noninflammatory foci of sclerotic bone (idiopathic osteosclerosis). The true nature of these osteomas can be confirmed only by documentation of continued growth (Fig.47). [1-8]
Osteoma in left side of maxilla.
A well-circumscribed nodule of mature dense bone is the characteristic feature.Bony trabeculae sometimes are rimmed by osteoblasts. Between bony trabeculae there may be fibrous tissue or fatty stroma with varying amounts of hematopoietic elements. Occasionally there are foci of mature cartilage (Fig.480.[1,8]
Osteoma. Trabeculae of lamellar bone with an intervening bland fibrous stroma.
Paranasal sinus osteomas may not require removal unless they become large or symptomatic; small, periosteal lesions may be removed endoscopically. Whereas larger lesions typically require an open surgical approach. Osteomas are completely benign, and patients do not experience malignant change. Recurrence after excision is extremely rare.[1- 8]
Although the two forms demonstrate different histopathologic and clinical features, several investigators have chosen to compromise and accept two patterns of juvenile ossifying fibroma: [1] trabecular and [2] psammomatoid.[1- 8]
In most instances, the neoplasms often grow rapidly, are well-circumscribed, and lack continuity with the adjacent normal bone. The lesions are circumscribed radiolucencies that in some cases contain central radiopacities. In some cases "ground glass" opacification may be observed. The age at diagnosis varies, with reported cases occurring in patients from younger than 6 months to older than 70 years of age. Lesions arising in the paranasal sinuses penetrate the orbital, nasal, and cranial cavities. Nasal obstruction, exophthalmos. or proptosis may be seen. Rarely, temporary or permanent blindness occurs in maxillary lesions exhibiting aggressive behavior (Fig.49).[1-8]
CT of Juvenile ossifying fibroma in left maxillary sinus.
Both patterns are typically nonencapsulated but well demarcated from the surrounding bone. The tumor consists of cellular fibrous connective tissue that exhibits areas that are loose and other zones that are so cellular that the cytoplasm of individual cells is hard to discern because of nuclear crowding. Myxomatous foci are not rare and often are associated with pseudocystic degeneration. Mitotic figures can be found but are not numerous. Areas of hemorrhage and small clusters of multinucleated giant cells are usually seen (Fig.50).[1-8]
Juvenile ossifying fibroma bony trabeculae lined by a rim of osteoblasts
For smaller lesions, complete local excision or thorough curettage appears adequate. For some rapidly growing lesions, wider resection may be required. In contrast to the negligible recurrence rate seen in the common types of ossifying fibromas. Recurrence rates of 30% to 58% have been reported for juvenile ossifying fibromas. Malignant transformation has not been documented.[1-8]
Fibrous dysplasia is a developmental tumor-like condition that is characterized by replacement of normal bone by an excessive proliferation of cellular fibrous connective tissue intermixed with irregular bony trabeculae. Fibrous dysplasia is a sporadic condition that results from a postzygotic mutation in the GNAS1 (guanine nucleotide-binding protein, a-stimulating activity polypeptide 1] gene. Clinically, fibrous dysplasia may manifest as a localized process involving only one bone, as a condition involving multiple bones, or as multiple bone lesions in conjunction with cutaneous and endocrine abnormalities (Fig.51). [1 -8]
Clinical features of fibrous dysplasia
The disease is limited to a single bone. This type accounts for about 80% to 85% of all cases, with the jaws being among the most commonly affected sites. The chief radiographic feature is a fine "ground glass" opacification that results from superimposition of a myriad of poorly calcified bone trabeculae arranged in a disorganized pattern. When the maxilla is involved, the lesional tissue displaces the sinus floor superiorly and commonly obliterates the maxillary sinus. Imaging studies in cases with maxillary involvement may show increased density of the base of the skull involving the occiput, sphenoid, roof of the orbit, and frontal bones. This is the most characteristic radiographic feature of fibrous dysplasia of the skull (Fig.52). [1 -8]
Fibrous dysplasia of the maxilla.-ground glass appearance.
Involvement of two or more bones is termed polyostotic fibrous dysplasia. a relatively uncommon condition. The number of involved bones varies from a few to 75% of the entire skeleton. When seen with cafe au lait (coffee with milk) pigmentation, the process is termed Jaffe-Lichtenstein syndrome. Polyostotic fibrous dysplasia also may be combined with cafe au lait pigmentation and multiple endocrinopathies. such as sexual precocity, pituitary adenoma, or hyperthyroidism. This pattern is known as the McCune-Albright Syndrome.[1-8]
The prototypical appearance of fibrous dysplasia consists of irregularly shaped trabeculae of osteoid and woven bone diffusely embedded in a cellular fibrous tissue stroma (Fig.53).[1,2]
Fibrous dysplasia. Trabeculae of woven bone without osteoblastic rimming.
Clinical management of fibrous dysplasia of the jaws may present a major problem. Although smaller lesions, may be surgically treated in their entirety without too much difficulty, the diffuse nature and large size of many lesions particularly those of the maxilla, preclude removal without extensive surgery. In many cases, the disease tends to stabilize and stop enlarging when skeletal maturation is reached. Some lesions, however, continue to grow, although slowly, in adult patients. Some patients with minimal cosmetic or functional deformity may not require or desire surgical treatment. Cosmetic deformity with associated psychologic problems or functional deformity may dictate surgical shaving in the younger patient. Such a procedure usually entails surgical reduction of the lesion to an acceptable contour without attempts to remove the entire lesion. The cosmetic result is usually good, but regrowth may occur over time. [1 -8]
Molar and premolar areas are more often affected than the anterior parts or the ascending ramus. Involvement of the condyle or maxillary sinus is rare. Most cases present as asymptomatic incidental findings. Some, however, present with pain or paraesthesia, swellings or loosening of teeth. Nasal obstruction may occur. Central or peripheral giant cell lesions (GCL) are expansile, radiolucent and often multiloculated lesions, rarely mixed opacities, with scalloped and mostly well-defined but non-corticated borders. With increasing size, multilocularity is more often noticed (Fig. 54). [1,2,40]
Giant cell lesion with destruction of the maxillary sinus.
The lesion consists of spindle-shaped fibroblastic or myofibroblastic cells, loosely arranged in a fibrous, sometimes fibromyxoid, vascularized tissue hemosiderin deposits, macrophages with hemorrhagic areas, lymphocytes, granulocytes and, rarely, plasma cells. Especially in the hemorrhagic, areas, evenly dispersed or small clusters of osteoclast-like giant cells are found. In addition, traversing collagen bundles are present, often accompanied by metaplastic bone formation giving the lesion a somewhat lobular appearance (Fig. 55). [1,2,3,41]
Giant cell lesion; scattered multinucleated cells surrounded by a fibrous tissue stroma.
Histological findings are not predictive of biological behaviour. The treatment of GCL is careful enucleation. In case of recurrences, more extensive surgery should be considered. Administration of calcitonin (intranasal or subcutaneously), or glucocorticoids (intralesional) has proven effective in some cases. Also antiangiogenic therapy with interferon alpha has been successfully applied. [1,2,3]
Chondrosarcoma is a malignant tumor characterized by the formation of cartilage.
A painless mass or swelling is the most common presenting sign. This may be associated with separation or loosening of teeth. Chondrosarcoma may involve the alveolar portion of the maxilla, the maxillary sinus or the nasal septum. Radiographically, the tumor usually shows features suggestive of a malignancy, consisting of a radiolucent process with poorly defined borders. The radiolucent area often contains scattered and variable amounts of radiopaque foci, caused by calcification or ossification of the cartilage matrix. Some chondrosarcomas show extensive calcification and radiographically appear as a densely calcified mass with irregular peripheral margins. Penetration of the cortex can result in a sunburst pattern similar to that seen in some osteosarcomas. When occurring in the head and neck, chondrosarcomas arise most frequently in the maxilla.[1,2,5] Maxillary tumors involve primarily the maxillary sinuses and nasal cavity and are less confined as they quickly erode the thin maxillary bone walls. Early jaw symptoms frequently include malocclusion with developing diastemas, loose teeth and eventual bony destruction (Fig. 560. [1- 5]
Chondrosarcoma of the left maxilla
Chondrosarcomas are composed of cartilage showing varying degrees of maturation and cellularity. In most cases, typical lacunar formation within the chondroid matrix is visible, although this feature may be scarce in poorly differentiated tumors. The tumor often shows a lobular growth pattern, with tumor lobules separated by thin fibrous connective tissue septa (Fig. 57). [1- 5]
Chondrosarcoma. Cartilaginous neoplasm shows an abundant matrix that surrounds chondrocytes and mild nuclear irregularities.
The prognosis for chondrosarcoma is related to the size, location, and grade of the lesion. The most important factor is the location because this has the greatest influence on the ability to achieve complete resection. The most effective treatment for chondrosarcoma is radical surgical excision. Radiation and chemotherapy are less effective when compared with osteosarcoma and are primarily used for unresectable high-grade chondrosarcomas.[5,6] Chondrosarcomas are associated with an excellent prognosis if the lesions are completely resected. Approximately 20% of patients die of tumor, most often with uncontrolled local recurrence. Mesenchymal chondrosarcoma is a high-grade tumor with an unpredictable prognosis. Patients with tumor of the facial skeleton do better than those with tumors of the remainder of the skeleton[1,2,4- 6]
The maxilla and mandible are involved with about equal frequency. Mandibular tumors arise more frequently in the posterior body and horizontal ramus rather than the ascending ramus. Maxillary lesions are discovered more commonly in the inferior portion (alveolar ridge, sinus floor, palate) than the superior aspects (zygoma, orbital rim). Swelling and pain are the most common symptoms Loosening of teeth, paresthesia. and nasal obstruction (in the case of maxillary tumors) also may be noted. Some patients report symptoms for relatively long periods before diagnosis, which indicates that some rare osteosarcomas of the jaws grow rather slowly. The radiographic findings vary from dense sclerosis to a mixed sclerotic and radiolucent lesion to an entirely radiolucent process. The peripheral border of the lesion is usually ill-defined and indistinct, making it difficult to determine the extent of the tumor radiographically. In some cases, an extensive osteosarcoma may show only minimal or subtle radiographic change with only slight variation in the trabecular pattern. Occasionally, there is resorption of the roots of teeth involved by the tumor. This feature is often described as "spiking" resorption as a result of the tapered narrowing of the root. The "classic" sunburst or sun ray appearance caused by osteophytic bone production on the surface of the lesion is noted in about 25% of jaw osteosarcomas. Often this is appreciated best on an occlusal projection. In few cases a triangular elevation of the periosteum, referred to as Codman\'s triangle, may be observed (Fig. 58).[1,3,8]
A. CT scan of an osteosarcoma of the maxilla. B. Oral view.
Depending on the amount of osteoid, cartilage or collagen fibers produced by the tumor, many pathologists subclassify osteosarcomas into Osteoblastic, Chondroblastic and Fibroblastic subtypes. These histopathologic subtypes, however, do not have influence on the prognosis. Other less commonly encountered histopathologic variations include malignant fibrous histiocytoma-like, small cell, epithelioid, telangiectatic and giant cell-rich (Fig. 59).[1,2,8]
Osteosarcoma. Dense, irregular osteoid separated by a cellular stroma.
Multicenter investigations of different therapies to osteosarcoma of long bones have led to an improved prognosis that now appears superior to that associated with gnathic neoplasms. These protocols involve neo adjuvant (preoperative) chemotherapy followed by radical surgical excision with careful pathologic examination of the specimen to evaluate the chemotherapeutic effects on the tumor. Adjuvant (postoperative) chemotherapy is used and may be modified if poor histopathologic response to the neoadjuvant regimen is noted. Some investigators have demonstrated 4-year survival rates exceeding 80% with this approach Limited numbers of patients with jaw osteosarcomas have been treated with these protocols, and superior results have been claimed compared with surgical treatment alone.[1,2]
Sinonasal EWS/PNET most commonly occur in the maxillary sinus and nasal fossa and mandible [1,2,8] Symptoms include pain, mass, and obstruction. The tumor can be polypoid when arising from the nasal cavity. Bony erosion may or may not be present [2,8]
The tumor is composed of densely distributed, uniform, small to medium sized, round cells with a high nuclear to cytoplasmic ratio and fine chromatin. Mitotic activity is high, and coagulative necrosis is common. Some cases show more densely clumped chromatin or a greater degree of nuclear pleomorphism. Home Wright rosettes are rare Fig. 60.[1,2,8]
Ewing sarcoma. Intermediate-sized cells, scanty cytoplasm and increased mitotic figures.
The immunophenotype includes reactivity for CD99 (MIC2, O13, HBA-71, p30/32, and 12E7), vimentin, and on occasion focally for keratins. Some cases express neural markers, such as synaptophysin, S100 protein, NSE, neurofilament protein, GFAP, and chromogranin. Fli-1 (one portion of the gene fusion product of EWS/FLI1) can be detected by immunohistochemistry.[2,8]
Neurofibroma, Schwannoma,Malignant melanoma are common neuroectodermal lesions.
This benign tumor of peripheral nerve sheath phenotype with mixed cellular components, including Schwann cells, perineurial hybrid cells and intraneural fibroblasts.
Symptoms include epistaxis, rhinorrhoea, swelling, mass, obstruction, and pain [1,8]
Neurofibromas are generally submucosal paucicellular lesions. They are composed of spindled cells with wavy, dark-staining nuclei and scanty cytoplasm, in a background of wavy collagen fibres, myxoid stroma and mast cells. The center of the lesion usually shows residual neuritis (Fig. 61).[1,2,8]
Oral neurofibroma. Spindle cells with dark serpentine nuclei are surrounded by a myxoid matrix.
The tumor is diffusely immunoreactive for S100 protein, but the proportion of positive cells is lower than that in schwannoma. CD34 stains the admixed fibroblasts.[2]
A usually encapsulated, benign tumor composed of differentiated, neoplastic Schwann cells.
Less than 4% of schwannomas involve the nasal cavity and paranasal sinuses and they occur in middle aged adults with an equal gender distribution. Sinonasal schwannomas arise from the branches of the trigeminal (5th cranial) nerve and autonomic nervous system, and most commonly involve the ethmoid and maxillary sinuses, followed by the nasal cavity, sphenoid and frontal sinuses. The presenting symptoms include obstruction, rhinorrhea, epistaxis, anosmia, headache, dysphagia, hearing loss facial or orbital swelling, and pain Sinonasal schwannoma ranges in size up to 7 cm. It is a well-delineated but non-encapsulated globular, firm to rubbery yellow-tan mass. The cut surfaces show tan-grey, yellowish, solid to myxoid and cystic tissue, commonly with hemorrhage.[1,2,8]
Schwannoma is composed of cellular Antoni A areas with Verocay bodies and hypocellular myxoid Antoni B areas. The cells are fusiform with elongated fribillary cytoplasm, and buckled to spindled nuclei which show little pleomorphism, although scattered large pleomorphic or bizarre cells can be present in some cases. Nuclear palisading is often evident in some foci. There are frequently small to medium-sized vessels with ectasia, thrombosis and perivascular hyalinization in the Antoni B areas. Extensive degenerative changes can occur, and may result in only a thin rim of recognizable tumor. Cellular variants exhibit only the Antoni A pattern, but no fascicular growth or Verocay bodies (Fig. 62).[2,42]
Schwannoma cellular areas (Antoni A) and loose, myxoid foci (Anroni B)
More than half of mucosal melanomas occur in the head and neck area (including the oral and sinonasal regions). Symptoms include nasal obstruction, epistaxis, nasal polyp, pain, nasal discharge of variable duration, and melanorrhoea (“coal flecked” or brown nasal discharge (Fig. 63).[1,2,43]
Malignant melanoma involving maxillary sinus and alveolar ridge.
The tumors are comprised of epithelioid, spindled, plasmacytoid, rhabdoid and/or multinucleated tumor cells. The cells are generally medium to large-sized They have a high nuclear to cytoplasmic ratio with pleomorphic nuclei containing prominent eosinophilic nucleoli and intranuclear cytoplasmic inclusions. Nuclear molding may be present. The cytoplasm is usually densely eosinophilic, and variably contains melanin pigment. Mitoses, including atypical forms, are frequent and easily identifiable. Vascular invasion and neurotropism may be identified in up to 40% of cases. An inflammatory infiltrate admixed with pigment-laden histiocytes is commonly identified within or adjacent to the tumor. Tumor cell necrosis is common, particularly in tumors displaying a peritheliomatous or pseudopapillary growth pattern. Other growth patterns include solid, alveolar or sarcomatoid (Fig. 64). [1-8]
Malignant melanoma expresses S100 protein, vimentin and variably HMB45, tyrosinase, melan-A and microphthalmia transcription factor. Neuron specific enolase, CD117, CD99 synaptophysin, CD56, and CD57 have been reported to be occasionally positive but epithelial membrane antigen, cytokeratins, and muscle markers are not expressed. [2,43]
Malignant melanoma. Malignant cells with a high nuclear to cytoplasmic ratio with pleomorphic nuclei containing prominent eosinophilic nucleoli.
The features best related to tumor behavior are the stage of disease and the depth of invasion. Surgical excision is the mainstay of treatment although the extent of the excision is somewhat controversial. Older literature suggests that surgical margins of 3 to 5 cm around the tumor are necessary to achieve control, regardless of the site of the lesion. More recent studies indicate that a 1-cm margin is adequate for small cutaneous tumors less than 2 mm in thickness. For larger, more deeply invasive tumors, wide surgical excision still is recommended.[1,2,8]
Donation after circulatory death (DCD) donors, which are declared dead following cardiorespiratory arrest, are an increasingly more common source of organs for transplantation. They may be classified among four categories depending on events and conditions surrounding arrest: category I, dead on arrival (no attempt at resuscitation); category II, sudden cardiac arrest followed by unsuccessful resuscitation; category III, arrest following intentional withdrawal of life support in ventilated patient not meeting brain death criteria; and category IV, cardiac arrest while brain dead. Categories 1, 2 and 4 are classified as uncontrolled DCD (uDCD) and category 3 as controlled DCD (cDCD) [1]. In practice, category III cDCD and, to a lesser extent, category II uDCD donors comprise essentially all DCD donors that are used for transplantation globally. The period of warm ischemia surrounding arrest, however, provokes organ injury, and DCD in general yields fewer organs per donor and ones of inferior quality when compared with donation after brain death (DBD) [2]. For this reason, there has been increasing interest in forgoing rapid cold preservation and recovery following the declaration of death (still the “gold standard” for DCD organ recovery in most transplant centers) and instead using normothermic regional perfusion (NRP) to temporarily restore oxygenated blood flow the abdominal and more recently thoracic organs prior to recovery.
\nDuring warm ischemia, ATP degradation leads to the progressive accumulation of xanthine and hypoxanthine, important sources of superoxide radical at organ reperfusion [3]. A period of post-ischemic NRP in DCD donors is useful to restore cellular energy substrates [4], reduce levels of nucleotide degradation products [5], improve the concentrations of endogenous antioxidants [6], and even stimulate processes of cellular repair prior to graft recovery [7] (Figure 1). An experimental study demonstrates that by blocking the A2 receptors of adenosine, the beneficial effects of NRP are abolished, indicating that NRP mediates its effect, at least in part, through adenosine as a form of ischemic preconditioning [8]. Post-ischemic NRP may also be useful to reduce the vasoconstrictive effects of cold graft washout with the static cold storage solution [9] and offers an opportunity to assess organ viability prior to recovery [10, 11].
\nDuring ischemia, the concentrations of adenine nucleotides (ATP, ADP, AMP) and nucleosides (adenosine, inosine) progressively decline. Also, the concentrations of nucleotide breakdown products (xanthine, hypoxanthine) increase, thereby leading to the production of oxygen free radicals upon reperfusion. Normothermic regional perfusion is capable of reversing these processes and increases the concentrations of endogenous antioxidants, effectively recharging and reconditioning organs in the abdomen and chest prior to recovery for transplantation.
While NRP relies on extracorporeal membrane oxygenation (ECMO) technology, its clinical application is, in general, less complex than that of therapeutic ECMO. A venous cannula is placed to derive blood from the donor inferior vena cava or right atrium, which is then pumped through a membrane oxygenator and a heat exchanger before returning to the donor arterial bed (aorta or iliac or femoral artery). An in-line reservoir may be included in the circuit, as well, to allow for replacement of volume prior to circuit failure in the event of volume loss or inadequate venous return due to severe vasoplegia (particularly relevant in the setting of uDCD). The precise positioning of occlusion balloon catheters or clamps used to exclude other vascular beds is what determines whether NRP is either thoracoabdominal or abdominal only.
\nIn uDCD, cannulation for the establishment of abdominal NRP is performed post-mortem after death is declared, typically in the emergency department. In cDCD, in contrast, cannulation for abdominal NRP may be performed either prior to the withdrawal of life support (pre-mortem) or following the declaration of death. Pre-mortem cannulation may be performed either percutaneously or via femoral cut-down in a variety of settings (intensive care unit, radiology suite, operating room). Post-mortem cannulation, on the other hand, is most often done in open abdomen in the operating room, though some centers have used femoral artery and vein catheters or guidewires placed prior to withdrawal of care to access and thereby cannulate the femoral vasculature following the declaration of death [12].
\nFor uDCD donors and cDCD donors with pre-mortem cannulation, a bolus of heparin is administered, and cannulation of unilateral femoral vessels is performed either via open femoral cutdown and isolation of the femoral artery and vein or percutaneously using Seldinger technique [11]. Cannulae are left clamped and connected to the tubing of the primed NRP circuit. The contralateral femoral artery is also cannulated with an aortic occlusion balloon catheter, which is left deflated in the case of cDCD and advanced into the supraceliac aorta under radiographic control. Following the withdrawal of life support and the declaration of death in cDCD, the aortic occlusion balloon is inflated, and the abdominal NRP circuit is initiated (Figure 2). Proper positioning of the balloon excluding the aortic arch vessels is confirmed by chest radiograph and absence of flow measured in a left radial arterial catheter.
\nAbdominal normothermic regional perfusion. Cannulae are placed in the femoral artery and vein in the groin region. A Fogarty balloon catheter is introduced through the contralateral femoral artery and positioned in the supraceliac abdominal or thoracic aorta.
For cDCD donors undergoing open post-mortem cannulation, once death has been declared, the surgical team performs midline laparotomy to cannulate the abdominal aorta immediately proximal to and the infrarenal inferior vena cava immediately distal to their respective bifurcations. Cannulae are connected to the tubing of the primed NRP circuit, the supraceliac aorta is clamped, and NRP is initiated.
\nBlood is sampled at baseline and every 30 minutes during abdominal NRP to determine biochemical, hematological, and acid-base parameters. In general, pump flow is maintained >1.7 L/min/m2, temperature 35–37°C, PaO2 100–150 mmHg, and hemoglobin >7 g/dL. Hepatic transaminases should remain stable throughout NRP; levels >3× the upper limit of normal at baseline and/or >4× the upper limit of normal at the end of NRP may be considered relative contraindications for recovery of the liver and pancreas [10, 11]. In general, NRP is run for a minimum of 1 hour and a maximum of 4 hours to allow adequate reconditioning of the abdominal organs and recovery of energy substrates without provoking additional end-organ injury [4, 5, 7, 8, 13, 14].
\nWhile the circuit for abdominal NRP may be established pre-mortem, cannulation to establish a complete thoracoabdominal NRP circuit is done post-mortem in the operating room. After the declaration of death, the chest is entered through a midline sternotomy, and the pericardium is opened. A bolus of heparin is injected into the heart directly, an arterial cannula is inserted into the distal ascending aorta/aortic arch, and a venous cannula is inserted into the right atrium. Cannulae are connected to the tubing of the primed NRP circuit, the aortic arch vessels are clamped, and NRP is initiated.
\nDuring thoracoabdominal NRP, pump flow is maintained ≥2.5 L/min/m2, temperature 35°C, and hemoglobin >10 g/dL. Prompt laparotomy is performed to assess hepatic and intestinal perfusion and to exclude the lower extremities from the perfusion circuit. Once cardiac contractility has been restored, weaning from NRP is attempted. If the heart is able to take over circulation, functional assessment is performed using transesophageal echocardiography and pulmonary artery flotation catheter (Swan-Ganz) monitoring. In general, acceptance criteria for a cDCD heart recovered with NRP include central venous pressure ≤12 mmHg, pulmonary capillary wedge pressure ≤12 mmHg, cardiac index ≥2.5 L/min/m2, and left ventricular ejection fraction ≥50% [15, 16, 17].
\nTo date, the great majority of human transplants performed using organs recovered with NRP have been donor using DCD kidneys and livers. In more recent years, the use of DCD pancreata and even hearts recovered with NRP has also been reported.
\nWhen compared with other solid organs for transplantation, the kidney is relatively resilient and withstands the ischemic insult inherent to the DCD process relatively well. Nonetheless, kidneys from DCD donors recovered with NRP as opposed to rapid in situ cold preservation or hypothermic perfusion/“total body cooling” (TBC) have demonstrated significantly better immediate as well as ongoing graft function [18, 19, 20]. Reports from different groups in Europe, the United States, and Asia have described the use of NRP in both uDCD and cDCD kidney transplantation, with rates of delayed graft function (DGF) around 50–70% and 30–40%, respectively; negligible (if any) primary non-function (PNF); and excellent 1-, 5-, and even 10-year graft survival rates [19, 20, 21, 22, 23, 24, 25, 26, 27]. While reported rates of DGF may still seem to be high even among DCD kidneys recovered with NRP (especially those arising through uDCD), the pathogenesis and, consequentially, implications of DGF seem to be less severe than those associated with DGF arising in the context of DBD kidney transplantation. Ischemic injury appears to be implicated to a greater extent in the development of DGF among DCD kidneys, whereas, in DBD, alloimmune phenomena prevail [28]. A recent large single-center study reported 73% DGF among 237 uDCD kidneys recovered with NRP versus 46% among a contemporary cohort of matched DBD kidneys, but 10-year graft survival rates did not vary at all between the two groups and were excellent in both (82 and 80%, respectively). The authors also noted that while donor age >50 years was significantly associated with graft loss among uDCD kidneys, the development of DGF in the immediate post-transplant period was not [27].
\nThe cells of the liver, in particular those lining the biliary tree, are particularly sensitive to warm ischemia, and initial experiences with DCD liver transplantation described high rates of graft dysfunction and non-function and non-anastomotic biliary strictures/ischemic type biliary lesions (ITBL) in up to 50% of cases [29]. While complication rates have improved with experience, the rate of post-transplant ITBL remains higher among recipients of DCD versus DBD grafts: 16 versus 3%, according to two meta-analyses [30, 31]. The clinical relevance of ITBL lies in the fact that up to 70% of patients with ITBL require re-transplantation or die [32].
\nAfter an initial period where different donor maintenance techniques were used, including rapid in situ cold preservation, simultaneous chest and abdominal compressions, and TBC, NRP has come to be the “gold standard” and primary means by which uDCD livers are recovered for transplantation. Using NRP, even livers with extensive pre-recovery warm ischemic periods of up to 2.5 hours have been successfully transplanted, with biliary complication and graft survival rates comparable to those seen using cDCD livers that have suffer considerably less warm ischemia [10, 11, 33, 34, 35].
\nIn spite of its relative success in the setting of uDCD, the application of NRP in cDCD liver transplantation remains more limited. The great majority of cDCD livers that are transplanted in the world today are still recovered with rapid in situ cold preservation, and reports on the use of NRP in cDCD liver transplantation have been, until recently, anecdotal [12, 24, 25, 26, 36, 37]. In the past year, however, two larger multicenter studies have come out describing the benefits that may be achieved with post-mortem NRP in cDCD liver transplantation. First, a Spanish national study compared the results of 95 cDCD liver transplants performed with post-mortem NRP with those of 117 cDCD liver transplants performed with super rapid recovery (SRR). Median donor age in the study was relatively high (57 years [25-75% interquartile range, IQR 45–65] NRP, 56 years [25-75% IQR, 47–64] SRR). With a median follow-up of 20 months, the use of post-mortem NRP appeared to significantly reduce rates of postoperative biliary complications (overall 8% NRP vs. 31% SRR, p < 0.001; ischemic type biliary lesions 2% NRP vs. 13% SRR, p = 0.008) and graft loss (12% NRP vs. 24% SRR, p = 0.008) [38]. Similarly, a combined experience from centers in Cambridge and Edinburgh in the United Kingdom compared the results of 43 cDCD liver transplants performed with post-mortem NRP with those of a contemporary cohort of 187 cDCD liver transplants performed with SRR. Median donor age was less for cDCD livers with NRP versus those with SRR: 41 years (25-75% IQR 33–57) vs. 54 years (25-75% IQR 38–63), respectively. Reported rates of anastomotic biliary strictures were 7% NRP vs. 27% SRR (p = 0.004), ITBL 0 NRP vs. 27% SRR (p < 0.001), and 90-day graft loss 2% NRP vs. 10% SRR (p = 0.102) [39].
\nThe Michigan Group described one cDCD pancreas transplant in which the donor was maintained with NRP, though the outcome of the graft was not mentioned [24]. In another multicenter report from the United Kingdom, two SPK were described (again, outcomes not mentioned), and two more pancreata were sent for isolation of islets, one with good yield [25]. In Spain, where NRP is now routinely used to recover abdominal organs when cDCD liver and/or pancreas transplantation is contemplated, a total of five cDCD pancreas transplants were performed between 2015 and 2017, and all these grafts remain functional at the time of this writing [40].
\nThe application of thoracoabdominal NRP has been described in clinical series on cDCD heart transplantation; however, no report has been published to date describing the transplantation of the lungs from these same cDCD donors. (Transplantation of DCD lungs recovered with “dual temperature” in situ cold flushing in the chest with abdominal NRP running simultaneously, on the other hand, has been described and is performed routinely in some settings.) The fact remains that DCD donor lungs tolerate warm ischemia and the process of DCD donation and recovery relatively well, and post-DCD lung transplantation outcomes without NRP appear to be comparable to those of DBD lung transplantation [41].
\nThe cDCD heart, on the other hand, is more susceptible to warm ischemic injury, and cDCD hearts recovered and transplanted after in situ cold preservation followed by static ex situ cold storage can offer suboptimal outcomes. A recent report on pediatric cDCD heart transplantation describes 61% 1-year graft survival as opposed to 91% for DBD hearts of similar baseline characteristics [42]. Performing thoracic NRP, on the other hand, allows for restoration of contractile function and performance of a standard functional assessment in ischemically injured cDCD cardiac allografts prior to recovery. Clinical application of thoracoabdominal NRP in cDCD heart transplantation has been described by the Papworth Hospital Group from the United Kingdom. In combination with subsequent ex situ normothermic machine perfusion (NMP), the use of thoracoabdominal NRP has allowed 100% utilization of organs subsequently undergoing NMP and lower early allograft dysfunction versus cDCD hearts undergoing NMP only (8% vs. 17%, respectively) [16, 17]. Thoracoabdominal NRP followed by static cold storage has even been used to successfully transplant a cDCD heart procured at the same center [17]. If broader application of this last strategy is shown to be just as efficacious, it has the potential to significantly reduce the costs associated with cDCD heart transplantation by obviating the need for ex situ NMP, which is a very expensive modality costing approximately $45,000 for each heart perfusion unit.
\nThere are some ethical concerns surrounding the use of NRP in donation after circulatory death, and laws vary from one country to another regarding whether or not NRP may be applied in DCD and, if so, how and when.
\nIn uDCD, cardiac arrest is sudden and unexpected, and death is declared based on the irreversible loss of cardio-respiratory function (demonstrated after prolonged efforts to reverse it have failed). Death is usually declared in the emergency room by a team entirely independent of that responsible for organ recovery and preservation. More often than not, potential uDCD donors are declared dead prior to the arrival of next-of-kin. Based on a consequentialist ethical standpoint and the principles of utility and donor autonomy, certain countries, including Spain and France, allow cannulation maneuvers to commence in this setting, even in cases where first-person consent may not have yet been obtained [43, 44]. The will of the patient regarding donation is always subsequently investigated in the context a family interview, where information regarding the circumstances of the arrest, the outcome of resuscitation maneuvers, and the measures taken related to the donation process is relayed. Next-of-kin then decide, taking into consideration the potential donor’s wishes, whether to proceed with donation or abort the process.
\nIt should be clear that NRP is organ maintenance and not therapy. While the technology employed is similar, terms such as “extracorporeal membrane oxygenation/ECMO” and “extracorporeal life support/ECLS” should not be used in relation to organ donation. Such terminology is confusing, especially considering the fact that it is used to describe therapeutic maneuvers that may be used to recover patients suffering sudden cardiac arrest more commonly occurring inside the hospital itself.
\nIn cDCD, the usual stand-down period of 2–5 min of asystole that is used to declare death does not necessarily reflect an irreversible loss of cardiac function, evidenced by the fact that cDCD hearts have been recovered and successfully transplanted [17, 45]. The “irreversibility” of death in cDCD is therefore predicated on the concept of permanence—the fact that loss of cardiac function will eventually become irreversible because it will not be reversed (and eventually lead to the loss of all brain and brain stem functions, as well). As it re-establishes circulation to some parts of the body, however, the use of NRP in this context remains controversial. At the least, clear and effective measures need to be put in place to ensure that cerebral reperfusion does not occur when NRP is established. Through the use of NRP, circulation is only restored to a limited region of the body, and a critical aspect of NRP in cDCD is ensuring lack of flow to the aortic arch vessels, thereby maintaining the permanence of circulatory arrest in the brain and brainstem. With pre-mortem cannulation, positioning of the aortic occlusion balloon in the supradiaphragmatic aorta distal to the left subclavian artery is confirmed radiographically prior to withdrawal of care. As additional measure, the aortic occlusion balloon may be briefly inflated for a few seconds prior to ventilatory withdrawal, in order to ensure disappearance of femoral arterial pressure and simultaneous maintenance of a normal pressure waveform in the left radial arterial line. In doing so, the minimum filling volume needed to entirely blocks the supradiaphragmatic aorta may be recorded [46]. Once NRP is initiated, adequate occlusion is confirmed through the use of a left radial artery catheter demonstrating absence of flow.
\nThe timing of when cannulation for abdominal NRP may be performed in potential cDCD donors varies by country. In certain countries, such as Spain and the United States, pre-withdrawal heparinization and cannulation are permitted [24, 43]. In the United Kingdom, on the other hand, a potential cDCD donor may only be cannulated once death has been declared [25]. Pre-mortem cannulation is advantageous in that it is performed in a less stressful and more orderly fashion, and regional perfusion may be commenced immediately after the death declaration, thereby limiting the length of warm ischemia suffered. Ideally, pre-mortem cannulation should be performed in the least invasive manner possible (e.g., percutaneously).
\nTable 1 summarizes the current state of NRP in the various fields of clinical DCD organ transplantation. The application of post-mortem NRP appears particularly relevant and advantageous in DCD kidney, liver, and heart transplantation, and the future will tell if it can have impact the fields of DCD pancreas and lung transplantation, as well. Some ethical concerns remain surrounding its use, primarily in the context of cDCD, and clear and effective steps need to always be taken to ensure lack of reperfusion of the brain and brainstem once NRP has been initiated. Through these measures and continued dialog with both intensive care as well as extra- and intrahospitalary emergency medical professionals, the hope is that the use of NRP and, thereby, DCD organ transplantation in general may be expanded to offer more organs and ones of better quality to a greater number of patients with end-stage organ disease.
\nKidney | \nLower rates of immediate post-transplantation delayed graft function and primary non-function and improved ongoing graft function among both uDCD and cDCD allograft recipients. | \n
Liver | \nLower rates of post-transplantation biliary complications, including ischemic type biliary lesions, and less graft loss among cDCD livers; considered essential for the evaluation and recovery of uDCD livers | \n
Pancreas | \nFeasible, though more experience is required to determine its true impact | \n
Lung | \nNo reports to date | \n
Heart | \nLess early allograft dysfunction; allows for in situ functional assessment that can not only help avoid subsequent costly and potentially unsuccessful ex situ normothermic machine perfusion functional assessment but perhaps even the use of NMP altogether | \n
Clinical results observed to date with application of normothermic regional perfusion in donation after circulatory death organ transplantation.
None to declare.
IntechOpen books are available online by accessing all published content on a chapter level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2021-02-26
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2021-02-26
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndSecondStepPublish"},books:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10543",title:"Psychology and Patho-physiological Outcomes of Eating",subtitle:null,isOpenForSubmission:!0,hash:"2464b5fb6a39df380e935096743410a0",slug:null,bookSignature:"Dr. Akikazu Takada and Dr. Hubertus Himmerich",coverURL:"https://cdn.intechopen.com/books/images_new/10543.jpg",editedByType:null,editors:[{id:"248459",title:"Dr.",name:"Akikazu",surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:195},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"567",title:"Computer Surveillance",slug:"computer-surveillance",parent:{title:"Human-Computer Interaction",slug:"human-computer-interaction"},numberOfBooks:11,numberOfAuthorsAndEditors:220,numberOfWosCitations:428,numberOfCrossrefCitations:265,numberOfDimensionsCitations:500,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"computer-surveillance",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,isOpenForSubmission:!1,hash:"c730560dd2e3837a03407b3a86b0ef2a",slug:"biometric-systems",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",editedByType:"Edited by",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8321",title:"Digital Forensic Science",subtitle:null,isOpenForSubmission:!1,hash:"15540cde4d2e598046f7a520f6c4b107",slug:"digital-forensic-science",bookSignature:"B Suresh Kumar Shetty and Pavanchand Shetty H",coverURL:"https://cdn.intechopen.com/books/images_new/8321.jpg",editedByType:"Edited by",editors:[{id:"70242",title:"Dr.",name:"B Suresh",middleName:"Kumar",surname:"Shetty",slug:"b-suresh-shetty",fullName:"B Suresh Shetty"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3532",title:"Brain-Computer Interface Systems",subtitle:"Recent Progress and Future Prospects",isOpenForSubmission:!1,hash:"5005164831ec70d92d9d69788277eb20",slug:"brain-computer-interface-systems-recent-progress-and-future-prospects",bookSignature:"Reza Fazel-Rezai",coverURL:"https://cdn.intechopen.com/books/images_new/3532.jpg",editedByType:"Edited by",editors:[{id:"1995",title:"Dr.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3167",title:"Applications of Self-Organizing Maps",subtitle:null,isOpenForSubmission:!1,hash:"e9d75ec4b405059c7edf889ad434a7cb",slug:"applications-of-self-organizing-maps",bookSignature:"Magnus Johnsson",coverURL:"https://cdn.intechopen.com/books/images_new/3167.jpg",editedByType:"Edited by",editors:[{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1975",title:"Speech Enhancement, Modeling and Recognition- Algorithms and Applications",subtitle:null,isOpenForSubmission:!1,hash:"e5001fc052cc367bd092b2c412888a7b",slug:"speech-enhancement-modeling-and-recognition-algorithms-and-applications",bookSignature:"S. Ramakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/1975.jpg",editedByType:"Edited by",editors:[{id:"116136",title:"Dr.",name:"Srinivasan",middleName:null,surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1372",title:"Face Analysis, Modeling and Recognition Systems",subtitle:null,isOpenForSubmission:!1,hash:"71c9fb38fdc6f61f0af8839a3102ac3f",slug:"face-analysis-modeling-and-recognition-systems",bookSignature:"Tudor Barbu",coverURL:"https://cdn.intechopen.com/books/images_new/1372.jpg",editedByType:"Edited by",editors:[{id:"33538",title:"Dr.",name:"Tudor",middleName:null,surname:"Barbu",slug:"tudor-barbu",fullName:"Tudor Barbu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"440",title:"Speech and Language Technologies",subtitle:null,isOpenForSubmission:!1,hash:"f09f63aefa849a15cc4d5268207be9fd",slug:"speech-and-language-technologies",bookSignature:"Ivo Ipsic",coverURL:"https://cdn.intechopen.com/books/images_new/440.jpg",editedByType:"Edited by",editors:[{id:"10238",title:"Prof.",name:"Ivo",middleName:null,surname:"Ipsic",slug:"ivo-ipsic",fullName:"Ivo Ipsic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"47",title:"Recent Advances in Brain-Computer Interface Systems",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"recent-advances-in-brain-computer-interface-systems",bookSignature:"Reza Fazel-Rezai",coverURL:"https://cdn.intechopen.com/books/images_new/47.jpg",editedByType:"Edited by",editors:[{id:"1995",title:"Dr.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5249",title:"Human-Computer Interaction",subtitle:null,isOpenForSubmission:!1,hash:"aeaff3ae678fbd79431e526cbf1f9165",slug:"human-computer-interaction",bookSignature:"Inaki Maurtua",coverURL:"https://cdn.intechopen.com/books/images_new/5249.jpg",editedByType:"Edited by",editors:[{id:"990",title:"Mr.",name:"Inaki",middleName:null,surname:"Maurtua",slug:"inaki-maurtua",fullName:"Inaki Maurtua"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5325",title:"State of the Art in Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"8045e37f9f5a19f658562957f0cb74ca",slug:"state_of_the_art_in_face_recognition",bookSignature:"Dr. Mario I. Chacon M.",coverURL:"https://cdn.intechopen.com/books/images_new/5325.jpg",editedByType:"Edited by",editors:[{id:"5024",title:"Dr.",name:"Mario I.",middleName:null,surname:"Chacon Murguía",slug:"mario-i.-chacon-murguia",fullName:"Mario I. Chacon Murguía"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3786",title:"Advances in Human Computer Interaction",subtitle:null,isOpenForSubmission:!1,hash:"b1eb4ba3bda75266f3509c41949dff16",slug:"advances_in_human_computer_interaction",bookSignature:"Shane Pinder",coverURL:"https://cdn.intechopen.com/books/images_new/3786.jpg",editedByType:"Edited by",editors:[{id:"252217",title:"Dr.",name:"Shane",middleName:null,surname:"Pinder",slug:"shane-pinder",fullName:"Shane Pinder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:11,mostCitedChapters:[{id:"44907",doi:"10.5772/56135",title:"A Review of P300, SSVEP, and Hybrid P300/SSVEP Brain- Computer Interface Systems",slug:"a-review-of-p300-ssvep-and-hybrid-p300-ssvep-brain-computer-interface-systems",totalDownloads:5616,totalCrossrefCites:37,totalDimensionsCites:61,book:{slug:"brain-computer-interface-systems-recent-progress-and-future-prospects",title:"Brain-Computer Interface Systems",fullTitle:"Brain-Computer Interface Systems - Recent Progress and Future Prospects"},signatures:"Setare Amiri, Ahmed Rabbi, Leila Azinfar and Reza Fazel-Rezai",authors:[{id:"1995",title:"Dr.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai"},{id:"165327",title:"Ms.",name:"Setare",middleName:null,surname:"Amiri",slug:"setare-amiri",fullName:"Setare Amiri"},{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"},{id:"165329",title:"Mr.",name:"Ahmed",middleName:null,surname:"Rabbi",slug:"ahmed-rabbi",fullName:"Ahmed Rabbi"}]},{id:"44252",doi:"10.5772/56436",title:"Review of Wireless Brain-Computer Interface Systems",slug:"review-of-wireless-brain-computer-interface-systems",totalDownloads:8265,totalCrossrefCites:21,totalDimensionsCites:35,book:{slug:"brain-computer-interface-systems-recent-progress-and-future-prospects",title:"Brain-Computer Interface Systems",fullTitle:"Brain-Computer Interface Systems - Recent Progress and Future Prospects"},signatures:"Seungchan Lee, Younghak Shin, Soogil Woo, Kiseon Kim and\nHeung-No Lee",authors:[{id:"141571",title:"Prof.",name:"Kiseon",middleName:null,surname:"Kim",slug:"kiseon-kim",fullName:"Kiseon Kim"},{id:"164977",title:"Prof.",name:"Heung-No",middleName:null,surname:"Lee",slug:"heung-no-lee",fullName:"Heung-No Lee"},{id:"165217",title:"Mr.",name:"Seungchan",middleName:null,surname:"Lee",slug:"seungchan-lee",fullName:"Seungchan Lee"},{id:"168249",title:"Mr.",name:"YoungHak",middleName:null,surname:"Shin",slug:"younghak-shin",fullName:"YoungHak Shin"},{id:"168250",title:"Mr.",name:"SooGil",middleName:null,surname:"Woo",slug:"soogil-woo",fullName:"SooGil Woo"}]},{id:"31885",doi:"10.5772/39246",title:"Recognition of Emotion from Speech: A Review",slug:"recognition-of-emotion-from-speech-a-review-",totalDownloads:4498,totalCrossrefCites:20,totalDimensionsCites:28,book:{slug:"speech-enhancement-modeling-and-recognition-algorithms-and-applications",title:"Speech Enhancement, Modeling and Recognition- Algorithms and Applications",fullTitle:"Speech Enhancement, Modeling and Recognition- Algorithms and Applications"},signatures:"S. Ramakrishnan",authors:[{id:"116136",title:"Dr.",name:"Srinivasan",middleName:null,surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}]}],mostDownloadedChaptersLast30Days:[{id:"37680",title:"Application of Self-Organizing Maps in Text Clustering: A Review",slug:"application-of-self-organizing-maps-in-text-clustering-a-review",totalDownloads:2943,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"applications-of-self-organizing-maps",title:"Applications of Self-Organizing Maps",fullTitle:"Applications of Self-Organizing Maps"},signatures:"Yuan-Chao Liu, Ming Liu and Xiao-Long Wang",authors:[{id:"153838",title:"Dr.",name:"Yuan-Chao",middleName:null,surname:"Liu",slug:"yuan-chao-liu",fullName:"Yuan-Chao Liu"}]},{id:"64377",title:"Data Collection Techniques for Forensic Investigation in Cloud",slug:"data-collection-techniques-for-forensic-investigation-in-cloud",totalDownloads:309,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"digital-forensic-science",title:"Digital Forensic Science",fullTitle:"Digital Forensic Science"},signatures:"Thankaraja Raja Sree and Somasundaram Mary Saira Bhanu",authors:[{id:"242329",title:"Ph.D. Student",name:"Rajasree",middleName:null,surname:"Thanka Raja",slug:"rajasree-thanka-raja",fullName:"Rajasree Thanka Raja"},{id:"252907",title:"Prof.",name:"Mary Saira Bhanu",middleName:null,surname:"S",slug:"mary-saira-bhanu-s",fullName:"Mary Saira Bhanu S"}]},{id:"44252",title:"Review of Wireless Brain-Computer Interface Systems",slug:"review-of-wireless-brain-computer-interface-systems",totalDownloads:8268,totalCrossrefCites:21,totalDimensionsCites:35,book:{slug:"brain-computer-interface-systems-recent-progress-and-future-prospects",title:"Brain-Computer Interface Systems",fullTitle:"Brain-Computer Interface Systems - Recent Progress and Future Prospects"},signatures:"Seungchan Lee, Younghak Shin, Soogil Woo, Kiseon Kim and\nHeung-No Lee",authors:[{id:"141571",title:"Prof.",name:"Kiseon",middleName:null,surname:"Kim",slug:"kiseon-kim",fullName:"Kiseon Kim"},{id:"164977",title:"Prof.",name:"Heung-No",middleName:null,surname:"Lee",slug:"heung-no-lee",fullName:"Heung-No Lee"},{id:"165217",title:"Mr.",name:"Seungchan",middleName:null,surname:"Lee",slug:"seungchan-lee",fullName:"Seungchan Lee"},{id:"168249",title:"Mr.",name:"YoungHak",middleName:null,surname:"Shin",slug:"younghak-shin",fullName:"YoungHak Shin"},{id:"168250",title:"Mr.",name:"SooGil",middleName:null,surname:"Woo",slug:"soogil-woo",fullName:"SooGil Woo"}]},{id:"44926",title:"Emotion Recognition Based on Brain-Computer Interface Systems",slug:"emotion-recognition-based-on-brain-computer-interface-systems",totalDownloads:4811,totalCrossrefCites:1,totalDimensionsCites:12,book:{slug:"brain-computer-interface-systems-recent-progress-and-future-prospects",title:"Brain-Computer Interface Systems",fullTitle:"Brain-Computer Interface Systems - Recent Progress and Future Prospects"},signatures:"Taciana Saad Rached and Angelo Perkusich",authors:[{id:"164187",title:"M.Sc.",name:"Taciana",middleName:null,surname:"Rached",slug:"taciana-rached",fullName:"Taciana Rached"},{id:"165310",title:"Dr.",name:"Angelo",middleName:null,surname:"Perkusich",slug:"angelo-perkusich",fullName:"Angelo Perkusich"}]},{id:"5449",title:"Simple Guidelines for Testing VR Applications",slug:"simple_guidelines_for_testing_vr_applications",totalDownloads:2865,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"advances_in_human_computer_interaction",title:"Advances in Human Computer Interaction",fullTitle:"Advances in Human Computer Interaction"},signatures:"Livatino Salvatore and Koeffel Christina",authors:null},{id:"70281",title:"Advancing Automation in Digital Forensic Investigations Using Machine Learning Forensics",slug:"advancing-automation-in-digital-forensic-investigations-using-machine-learning-forensics",totalDownloads:700,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"digital-forensic-science",title:"Digital Forensic Science",fullTitle:"Digital Forensic Science"},signatures:"Salman Iqbal and Soltan Abed Alharbi",authors:[{id:"304135",title:"Dr.",name:"Salman",middleName:null,surname:"Iqbal",slug:"salman-iqbal",fullName:"Salman Iqbal"},{id:"304140",title:"Dr.",name:"Soltan",middleName:null,surname:"Alharbi",slug:"soltan-alharbi",fullName:"Soltan Alharbi"}]},{id:"37940",title:"Non-Linear Spatial Patterning in Cultural Site Formation Processes - The Evidence from Micro-Artefacts in Cores from a Neolithic Tell Site in Greece",slug:"non-linear-spatial-patterning-in-cultural-site-formation-processes-the-evidence-from-micro-artefacts",totalDownloads:1359,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"applications-of-self-organizing-maps",title:"Applications of Self-Organizing Maps",fullTitle:"Applications of Self-Organizing Maps"},signatures:"Dimitris Kontogiorgos",authors:[{id:"16504",title:"Dr.",name:"Dimitris",middleName:null,surname:"Kontogiorgos",slug:"dimitris-kontogiorgos",fullName:"Dimitris Kontogiorgos"}]},{id:"39063",title:"Using Self-Organizing Maps to Visualize, Filter and Cluster Multidimensional Bio-Omics Data",slug:"using-self-organizing-maps-to-visualize-filter-and-cluster-multidimensional-bio-omics-data",totalDownloads:2376,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"applications-of-self-organizing-maps",title:"Applications of Self-Organizing Maps",fullTitle:"Applications of Self-Organizing Maps"},signatures:"Ji Zhang and Hai Fang",authors:[{id:"153169",title:"Prof.",name:"Ji",middleName:null,surname:"Zhang",slug:"ji-zhang",fullName:"Ji Zhang"}]},{id:"5459",title:"The Method of Interactive Reduction of Threat of Isolation in the Contemporary Human Environment",slug:"the_method_of_interactive_reduction_of_threat_of_isolation_in_the_contemporary_human_environment",totalDownloads:2011,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"advances_in_human_computer_interaction",title:"Advances in Human Computer Interaction",fullTitle:"Advances in Human Computer Interaction"},signatures:"Teresa Musiol and Katarzyna Ujma-Wasowicz",authors:null},{id:"38276",title:"Spatial Clustering Using Hierarchical SOM",slug:"spatial-clustering-using-hierarchical-som",totalDownloads:1947,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"applications-of-self-organizing-maps",title:"Applications of Self-Organizing Maps",fullTitle:"Applications of Self-Organizing Maps"},signatures:"Roberto Henriques, Victor Lobo and Fernando Bação",authors:[{id:"153104",title:"Prof.",name:"Victor",middleName:null,surname:"Lobo",slug:"victor-lobo",fullName:"Victor Lobo"},{id:"154014",title:"Prof.",name:"Fernando",middleName:null,surname:"Bacao",slug:"fernando-bacao",fullName:"Fernando Bacao"},{id:"163960",title:"Prof.",name:"Roberto",middleName:null,surname:"Henriques",slug:"roberto-henriques",fullName:"Roberto Henriques"}]}],onlineFirstChaptersFilter:{topicSlug:"computer-surveillance",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/161274/thierry-lave",hash:"",query:{},params:{id:"161274",slug:"thierry-lave"},fullPath:"/profiles/161274/thierry-lave",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()