Increase of carbon fiber composites for aircraft application.
\r\n\t
",isbn:"978-1-83962-501-5",printIsbn:"978-1-83962-500-8",pdfIsbn:"978-1-83962-502-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"4cbb2249cfca82e925cd46bee62b5b24",bookSignature:"Prof. Bernhard Resch",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10487.jpg",keywords:"Neonatal Infections, Early Onset Sepsis, Late-Onset Sepsis, Respiratory Tract Infections, Gastrointestinal Infections, Bacterial Meningitis, Viral Meningitis, Encephalitis, Measles, Rotavirus, Varicella, Pneumococcal Invasive Infection",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 11th 2020",dateEndSecondStepPublish:"December 9th 2020",dateEndThirdStepPublish:"February 7th 2021",dateEndFourthStepPublish:"April 28th 2021",dateEndFifthStepPublish:"June 27th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Professor of Pediatrics specialized in neonatal intensive care medicine and neonatal infections, deputy head of the Division of Neonatology at Medical University Graz, international well-known clinical researcher, editor, book author, and reviewer for all pediatric high ranking journals.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"66173",title:"Prof.",name:"Bernhard",middleName:null,surname:"Resch",slug:"bernhard-resch",fullName:"Bernhard Resch",profilePictureURL:"https://mts.intechopen.com/storage/users/66173/images/system/66173.png",biography:'Born in Graz, Austria, Prof. Resch received his medical degree at the Karl-Franzens-University Graz in 1988. Following post-doc studies at the Division of Neonatology, and the Department of Pediatric Surgery of the University Hospital Graz, he became consultant of Pediatrics in 1997 and consultant of Neonatal and Pediatric Intensive Care Medicine in 2000. Since 2004, he is Professor of Pediatrics and since 2008, Head of the Research Unit of Neonatal Infectious Diseases and Epidemiology of the Medical University Graz. Since 2012 he is Deputy Head of the Division of Neonatology of the Medical University of Graz. His main research fields include neonatal infectious diseases, RSV infection, periventricular leukomalacia of the preterm infant, the neonatal microbiome and the role of probiotics.\nHe is a member and board member of several scientific societies including ESPID, past president of the Austrian Society of Perinatal Medicine, and member of the editorial board of several international journals including "BMC Infectious Diseases" and "Frontiers in Pediatrics"',institutionString:"Medical University of Graz",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Medical University of Graz",institutionURL:null,country:{name:"Austria"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"990",title:"Human Respiratory Syncytial Virus Infection",subtitle:null,isOpenForSubmission:!1,hash:"b5d980a120eec6669c7f37a5082f0696",slug:"human-respiratory-syncytial-virus-infection",bookSignature:"Bernhard Resch",coverURL:"https://cdn.intechopen.com/books/images_new/990.jpg",editedByType:"Edited by",editors:[{id:"66173",title:"Prof.",name:"Bernhard",surname:"Resch",slug:"bernhard-resch",fullName:"Bernhard Resch"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2990",title:"Neonatal Bacterial Infection",subtitle:null,isOpenForSubmission:!1,hash:"093e4b7e0964b0fe0229a4b4cafef28c",slug:"neonatal-bacterial-infection",bookSignature:"Bernhard Resch",coverURL:"https://cdn.intechopen.com/books/images_new/2990.jpg",editedByType:"Edited by",editors:[{id:"66173",title:"Prof.",name:"Bernhard",surname:"Resch",slug:"bernhard-resch",fullName:"Bernhard Resch"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8250",title:"The Burden of Respiratory Syncytial Virus Infection in the Young",subtitle:null,isOpenForSubmission:!1,hash:"576eea34382b48ecff475d3f267837a2",slug:"the-burden-of-respiratory-syncytial-virus-infection-in-the-young",bookSignature:"Bernhard Resch",coverURL:"https://cdn.intechopen.com/books/images_new/8250.jpg",editedByType:"Edited by",editors:[{id:"66173",title:"Prof.",name:"Bernhard",surname:"Resch",slug:"bernhard-resch",fullName:"Bernhard Resch"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"62484",title:"Design Optimization and Higher Order FEA of Hat-Stiffened Aerospace Composite Structures",doi:"10.5772/intechopen.79488",slug:"design-optimization-and-higher-order-fea-of-hat-stiffened-aerospace-composite-structures",body:'In recent years the commercial aircraft industry is increasing their reliance on composite materials to produce lighter and more durable aircrafts. Figure 1 shows a Boeing 787 aircraft contains 50% by weight of its materials as composites, which is about 32,000 kg of carbon-fiber-reinforced polymer (CFRP) [1].
Boeing 787 aircraft contains 50% of composite materials.
The carbon fiber composites have a higher strength-to-weight ratio than traditional metal materials thus help making the aircraft lighter and to exceed the fuel efficiency target. Due to this important feature, the use of fiber reinforced composite laminates as primary structural components in these important large-scale and weight-critical applications has increased considerably (Table 1). Aircrafts with major composite parts including fuselage, wings, tail sections, doors and interior are presently being developed and gradually brought into service.
Year | 1982 | 1995 | 2006 | 2008 |
---|---|---|---|---|
Model | Boeing 767 | Boeing 777 | Airbus 380 | Boeing 787 |
Structures | Secondary | Primary/Secondary | Primary/Secondary | Primary/Secondary |
Amount of CFRP/aircraft | 1.5 tons | Approx. 10 tons | Approx. 35 tons | Approx. 35 tons |
Amount of CF/aircraft | 1 ton | Approx. 7 tons | Approx. 23 tons | Approx. 23 tons. |
Increase of carbon fiber composites for aircraft application.
For better efficiency in terms of strength and weight-optimization, aerospace structures are frequently appended with stiffener components. Figure 2 shows a 787’s disassembled composite fuselage section which is composed of hat-stiffened composite panels that represent the design methodology of meeting the high stiffness while keeping the minimal weight requirements. This laminated composite stiffened panel is a critical component and extensively used structure in aircrafts, and can operate when subjected to harsh environments such as severe dynamic loading.
Disassembled composite fuselage section of the Boeing 787.
Many work have been done on design and analysis of hat-stiffener structures. Recent advances in performing global and detailed analyses have made it possible to determine failure modes, strength, durability, and damage tolerance of composite structures with confidence. Bhar et al. [2] performed linearly elastic static and natural vibration analysis using an extended HSDT (higher-order shear deformation theory). Kim et al. [3] manufactured stiffened panels using co-curing, co-bonding and secondary bonding processes and evaluated them using 3D measurement and ultrasonic tester. Lauterbach et al. [4] built analysis tools including an approach for predicting interlaminar damage initiation and degradation models for capturing interlaminar damage growth as well as in plane damage mechanisms. Gangadhara et al. [5] analyzed stiffened panels using formulation based on the concept of equal displacements at the shell-stiffener interface. Kumar et al. studied the transient response of laminated stiffened plates using MSC/Patran and LS-DYNA3D [6] and Kristinsdottir et al. [7] presented an optimization formulation for the design of large panels when loads vary over the panel. Junhou et al. and Shenoi et al. [8, 9] examined the key aspects defining the performance characteristics of hat-stiffener joints in marine structures. Paul et al. [10] performed an integrated step-by-step design and analysis procedure for the hat-stiffened panels loaded in axial compression using the computer code BUSTCOP. Xiong and coworkers [11] has tested and analyzed the buckling and failure loads of hat-stiffened composite panels. Other research work have been focused on FEA modeling [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], manufacturing [23, 24, 25, 26, 27, 28, 29], evaluation of microstructures and damage evolution [30, 31, 32, 33], and the enhancement of the mechanical properties [34, 35, 36, 37] of composites at both materials- and structures-level.
Most commercial CAD/FEA software has included some form of parameterization of design variables. Basic research-level higher order structural elements are also developed. These tools allow quick, easy and accurate topology and geometry model creation with design constraints, implicit parameterization for easy model variation, integrated Finite Element generator, models and components storage in library for generation of knowledge database and reusability, shape and size optimization in a closed batch loop, on-the-fly definition of design variables and design space, and integration of specific applications like commercial optimization and design tools. In this work, we plan to utilize these aspects to create a Higher Order Abstract Structural Elements, later abbreviated as HOASE.
The goals and key feature of this work include analyzing the geometric parameter sensitivity of the hat stiffener, and developing and demonstrating a proof-of-concept theoretical model which is a parametric analytical solution that is theoretically equivalent to hat-stiffener stiffened panels in mechanical response. The analytical solution contains parametric information incorporating geometric, design allowables, and manufacturing information such as laminate stacking order. The constructions of these equivalent analytical models will be stored in a database from which they can be easily retrieved and parametrically modified.
Achieving the above requires specific technical objectives including:
Select composite ply materials and corresponding stochastic material properties for tracking them to parametric design allowables.
Explore the design space and using Finite Element Method (FEM) to analyze the parametrical sensitivity of the basic composite structural elements: hat stiffeners.
Develop an equivalent model using analytical solution and run case studies for various loading conditions to develop the empirical relationships between design parameters and allowables/performance. This takes into account the key geometric and material parameters and gives a higher and lower boundary of the relatively equivalent hat-stiffener stiffened panel.
Manufacture hat-stiffened composite panel and perform experimental investigation to compare its mechanical response with FEA models’ prediction and the mechanical response bounds resulting from the analytical models. Finally, this work would provide the aviation industry with a parametric databases of hat stiffener design and analysis.
In this work, hat stiffeners and plates were selected as basic elements for parametric analysis and for constructing an analytical solution. The plate element is an orthotropic laminated element with material, number of plies, stacking sequence, width, length, and thickness parameters. The hat stiffener element is also parametrically defined in terms of several geometric parameters as shown in Figure 3.
Hat stiffener basic element with geometric parameters.
FEM was utilized to produce sensitivity of structural behavior (deflection, stresses) to basic elements’ parameters and for comparing final experimental results with modeling. Laminated plate, hat-stiffener, hat-stiffener bonded to base plate were modeled in MSC NASTRAN for this purpose. Laminated plate modeling in FEM is routine and therefore not discussed for the sake of brevity. The hat stiffener (with and without plate to which it is bonded) are modeled as follows. Height of the stiffener web (h), width of the stiffener cap (W1), bottom width in between stiffener flanges (W2), width of the stiffener flange (due to symmetric, the left and right width are the both L1) are the geometric parameters considered in addition to thickness of a ply, ply orientation and the stacking sequence. The length of the hat stiffener is fixed at 508 mm (which is 20 inches).
Material properties are taken from Cytec information sheet CYCOM 5320 [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. These unidirectional fiber tape tensile properties are:
E1 = 1.59E5 MPa;
E2 = 9.3E3 MPa;
Poisson’s Ratio v = 0.336;
Shear modulus G12 = G13 = 5.6E3 MPa.
QUAD4 MSC Nastran element and PCOMP material properties input was used for analysis. A uniform pressure of 6.89E-2 MPa is applied on each of the two bottom flange surfaces for the hat-stiffener simulation. For the second set of simulations, same magnitude of pressure, 6.89E-2 MPa is applied on the plate to which hat-stiffener is bonded. Longitudinal edges are free to rotate but not translate (Tx = Ty = Tz = 0). The transverse direction edges are free. These longitudinal edge boundary conditions represent fixed edges rather than simply supported, because edge cross sections are constrained from rotation. Same boundary conditions for flat plates will represent simply supported conditions.
Longitudinal edges (the two edges of the skin plate only, not including hat stiffener web and top cap) are simply supported as Tx = Ty = Tz = 0 for hat stiffener bonded to the plate. The transverse edges of the plate are subjected to the boundary conditions Tx = Ry = Rz = 0, corresponding to all four edges simply supported. These boundary conditions are chosen to demonstrate extreme sensitivity of structural response to boundary conditions.
To study the sensitivity of hat-stiffener’s geometric parameters, hat-stiffener models are created first. The hat-stiffener element is modeled and analyzed using MSC NASTRAN to construct parametric design space. As presented in the last section, design parameters were defined for hat-stiffeners. The parametric range and increments we defined here covered most of the practical design exploration space and are summarized in Table 2.
Hat-stiffener parametric design exploration space.
These parametric variations represent 1680 models and design points. A smaller set of parameter combinations are analyzed to get the design trends. We explored maximum specific bending rigidity contribution of hat-stiffeners to membrane skin which is designed to take torsional shear. Representative 10 psi uniform pressure loading and simply supported boundary conditions on a 508 mm (20 inches) long hat cross section beam are analyzed. The cross-sectional area of hat-stiffeners varies with design parameters. A baseline configuration with minimum cross-sectional area is chosen to illustrate effect of parameters on bending. This configuration represents 12.7 mm (0.5 inch) bottom flange length, 25.4 mm (1 inch) bottom hat width, 12.7 mm (0.5 inch) top hat width, 12.7 mm (0.5 inch) hat height, 1.016 mm (0.04 inch) thickness and [0/90/45/−45]s stacking order.
Figure 4 shows the mid-point transverse deflection and maximum flexural stress at mid-point on the beam as a percent change from the baseline configuration. Stacking sequence and therefore corresponding laminate thickness is kept constant. The ratio of top and bottom hat widths is kept constant at 0.5 for all parametric variations. Three curve-sets show variation of deflection and flexural longitudinal stress with hat height, width and bottom flange length, respectively. As expected, it is evident that bottom flange length contribution is minimal to the flexural behavior of the stiffener. The maximum change in bending rigidity is achieved by changing hat height up to three times the top flange width.
Hat stiffener basic element bending behavior.
A proof-of-concept analytical model consists of a rectangular plate stiffened by several hat stiffeners was established in MATLAB.
Figure 5 shows steps incorporated in constructing the analytical model. Composite ply properties, stacking sequence for hat and plate laminates, plate and hat stiffener geometric parameters, stiffener spacing, boundary conditions and loading are specified for the analytical model. Orthotropic plate properties are obtained by scaling, homogenizing and distributing stiffener properties over the space between the stiffeners.
Equivalent orthotropic plate for hat-stiffener stiffened skin.
Let θ be the angle between x-axis (stiffener longitudinal direction) and j is the ply fiber direction in sections plane, a is the equal distance between stiffeners. The bottom and top flanges as well as webs are defined as continuous plies of the orthotropic plate as follows:
For bottom flange:
For top flange:
For webs, define:
And therefore, contribution from two web laminates is:
These equivalent
To better understand and predict the mechanical behavior of the structure, a demonstration FEA model of one panel with multiple hat stiffeners bonded onto it was built in MSC Nastran (Figure 6). A few composite ply material properties were selected from the Cytec Cycom 5320 prepreg data sheet for creating the model and database.
Midpoint deflection of the demonstration part FEA model.
For the geometric configuration of the model: this demonstrator model comprises a base panel of in-plane dimensions 304.8 mm (which is 12 inches) × 863.6 mm (which is 3 inches) with four hat stiffeners on it., each separated by approximately 85.725 mm (which is 3.37 inches). The bottom width of the hat stiffener is approximately 86.36 mm (which is 3.4 inches) with 60.96 mm (which is 2.4 inches) as the distance between the lower two corners of the hat stiffeners and 12.7 mm (which is 0.5 inch) overhang (i.e., flange) on the either side. The base panel has 8 plies of laminates with 5320 unidirectional prepreg properties and they are in a quasi-isotropic layup as follows: [90,−45,+45,0]S. Each of the four hats also consists of eight unidirectional fiber plies in the same quasi-isotropic layup.
Simulation of panel-level hat-stiffeners requires understanding of global and local effects of the parameters. One should consider local maximum deflection occurring in between the stiffeners on the panel, because that may become a dominant parameter for deformation constraints satisfaction.
To validate the modeling prediction of the center point deflection of the stiffened panel, a composite panel bonded with multiple hat-stiffeners was manufactured as a demonstrator part. During fabrication of the structural element and the final demonstration part, unidirectional Cytec Cycom 5320 prepreg material, out-of-autoclave curing, and secondary bonding technique were used.
The basic structural elements comprise of flat panels and hat cross section beams. The assembly of these basic structural elements forms the demonstrator part represented by a large panel stiffened by four equidistant hat beams, as shown in Figure 7. To accurately predict and compare with the FEA results, the demonstration part has identical set up with the MSC Nastran FEA model built and explained in the last section.
Manufacturing and assembly of basic structural elements into a demonstration part.
The demonstration part was tested under near-uniform 1 psi loading and the center point deflection was recorded so it can be compared with FEA results. Photographs of the testing setup are shown in Figure 8. The experimental testing of the demonstrator part involves simply supporting the edges and subjecting it to a uniform pressure loading condition by placing sandbags at the center. Experimentally measured panel displacements are then compared to predictions from both analytical constructs as well as FEA models.
Simply supported hat-stiffened composite panel under near-uniform pressure loading.
The demonstration plate midpoint deflections are experimentally obtained for 150, 225, 300, 375 and 400 lb. load are 0.022, 0.032, 0.039, 0.045 and 0.047 in, respectively. The first increment (150 lb) was using lead balls filled bags providing close to uniform loading. The remaining increments were obtained using iron discs that did not provide as uniform loading as lead balls filled bags would have. As the results are shown in Figure 9, the midpoint deflection is 1.52 mm (0.06 in) for 1 psi uniform loading while FEA simulation gave 1.83 mm (0.07 in).
Midpoint deflection of the demonstration part.
The analytical bounds for stiffened plates were also obtained. The midpoint deflection from the homogenized orthotropic plate gives the lower bound and simply supported idealized plate between the stiffeners gives upper bound. The lower bound provides better approximation for plates with closely spaced stiffeners. The real deformation starts to approach the upper bound as spacing between stiffeners increases. The lower bound for midpoint deflection under 1 psi is 0.133 mm (0.0052 in) and the upper bound is 2.85 mm (0.11 in).
The work performed establishes the basis for continuing future work to further develop a set of parametric models. The conceived process of designing advanced composite aircraft structural components from these parametric modeling constructs will be matured, implemented and validated to demonstrate the benefits of starting the design with validated parametric design elements.
This work has illustrated the process of developing an analytical model and the design and analysis of the parametric composite hat-stiffened panels. The amount of the work involved in designing to this level of abstraction is a significant part of the design of an aircraft. This work is needlessly repeated by designers again and again and can be standardized to abbreviate the design process, and has successfully shown most of the processes involved in creating parametric models with a hat-stiffener stiffened composite laminated plate model development.
Most commercial CAD/FEA software includes some form of parameterization of design variables. Basic research level higher order structural elements have also been developed. These tools allow quick, easy and accurate topology and geometry model creation with design constraints; implicit parameterization for easy model variation; integrated Finite Element generator; models and components storage in library for generation of knowledge database and reusability; shape and size optimization in a closed batch loop; on-the-fly definition of design variables and design space; and integration of specific applications like commercial optimization and design tools. Our future work includes integrating these models in similar design tools, such as a combination of MSC Nastran, ABAQUS, MATLAB and C++ platform.
Authors would like to appreciate Brian Casey, Senior Engineer of MSC NASTRAN Development, for his important suggestions and the time he has spent on proof-reading the manuscript.
The study of polymeric nanocomposites has grown during the last 10 years due to the remarkable properties that result from the combination of a continuous phase (polymer matrix) and a dispersed phase (nanoparticles), where at least one dimension of the dispersed phase is found in the scale of nanometric size (<100 nm). Such nanocomposites have attracted the attention of academic and industrial researchers due to their extraordinary electrical, thermal, chemical, and biological properties and potential applications in various sectors of the industry such as in the health sector, automotive industry, energy, construction, and food industry among others [1, 2]. One of the most popular methods used to prepare such materials is melt extrusion, since it is a flexible and versatile process, which does not require the use of solvents and can be scaled up at industrial level.
\nHowever, even with all these advantages, the lack of homogeneous dispersion of nanoparticles in the polymer matrix is still a problem with melt extrusion. An alternative to improve the dispersion is the application of ultrasound waves during the polymer processing in the molten state, named ultrasound-assisted extrusion. The first report of the use of ultrasound coupled in extrusion was made by Isayev et al. for processing vulcanized elastomers devulcanization [3]. These authors reported that the ultrasound waves have the ability to cause an incision in the C-S and S-S bonds of the crosslinked rubber, causing the breaking of the reticulated network and thereby achieving the devulcanization of the rubber. Later, it was applied to the study of polymer mixtures in the molten state [4], and in the last decade, this technology has been used for the preparation of polymer nanocomposites. Although it has been proven that this technology improves the dispersion of nanoparticles and that it has a great potential for application, the fundamentals for applying this technology in melt extrusion process are still not well understood. For example, the effects observed by the application of ultrasound have been explained on the basis of acoustic cavitation, treating the molten polymer as a Newtonian system; however, polymer cannot be considered as Newtonian fluids. For this reason, a general overview of the basic principles of ultrasound, the development and use of this technology in the preparation of polymeric nanocomposites in the molten state, and the mechanisms that have been proposed so far for the understanding of the phenomenon that generates the dispersion of the nanoparticles in the polymer is described below.
\nThermoplastic polymers and nanoparticles are the main materials used to produce polymer nanocomposites by melt extrusion. Thermoplastic polymers include polyolefins, polyesters, and polyamides among other polymer families. On the other hand, the nanoparticles can be classified according to the number of dimensions in the nanometer range. Zero-dimensional (0D): it is defined as a particle that is measured within a nanoscale range, that is, less than 100 nm, among them are all the nanoparticles, for example ZnO, TiO2, etc. One-dimensional (1D) has two dimensions in this scale, such as nanotubes and nanofiber. Finally, two-dimensional (2D) is referred to nanoparticles, where one dimension is in the nanometer scale, for example graphene and nanodisks [5].
\nUnlike particles of micro size, in the nanoparticles, the interparticle forces such as Van der Waals and electrostatic forces, as well as the magnetic attraction, become stronger, which results in the nanoparticles forming agglomerates, which are difficult to disperse individually and uniformly in the polymeric matrix; this implies obtaining compounds similar to conventional composites [6]. For this reason, various techniques in the modification of nanoparticles have been explored.
\nThe modification of the surface, in general, decreases the surface energy of the nanoparticles, improving the affinity between the polymer matrix and the nanoparticles. Natural clays have a stratified structure bonded by strong covalent bonds [7], thus hindering its homogeneous dispersion in many polymers. Therefore, a surface modification is needed, and in this case, it is carried out through a cation exchange process, in which the sodium and calcium cations present in the inter-clay galleries are replaced by alkylammonium species, usually quaternary ammonium containing alkyl, phenyl, benzyl, and pyridyl groups [8]. In metal nanoparticles such as nanoparticles of silicon dioxide, titanium dioxide and aluminum oxide are surface modified with organosilane coupling agents [9], while in carbon-based nanoparticles, surface modification is carried out by covalent functionalization or not covalent. In CNT for example, functionalization of the covalent bond of functional entities can be performed at the ends of the tubes or on their side walls. This process can be carried out by reaction with some molecules with high chemical reactivity, such as fluorine [10]. A noncovalent functionalization is the π-π interactions with aromatic molecules, such as pyrene, widely used to modify graphene [11].
\nAnother approach to modify the surfaces of nanoparticles is based on grafting synthetic polymers on the surface of the substrate, which improves the chemical functionality and alters the topology of the surface of the materials [12]. The graft can be done in two ways: (1) by means of obtaining a polymer with a reactive terminal group and subsequently it is grafted to the surface of the nanomaterial, and (2) the graft is made from the growth of the polymer from an initiator [13].
\nIn spite of all the available modifications for nanoparticles, sometimes they are not usually enough and it is necessary to look for alternative or previous methods to the extrusion process that helps us to de-agglomerate the nanoparticles and to reduce the size of these. One of these methods is mechanical milling by high-energy ball mill. The alteration of the solids by mechanical grinding gives rise not only to the fragmentation of the particles but also to structural changes, polymorphic transformations, variation of the properties of the surface, generation of defects, increases of reactivity, induction of chemical reactions, etc. [14]. Mechanical grinding has been applied in phyllosilicates, for example some studies have been carried out on kaolinite, pyrophyllite and some smectites, finding that grinding originates first a disordered phase of the mineral and later a more amorphous phase giving a structural destruction of the same, resulting in an exfoliation of the clay layers [15, 16]. It has also been successfully applied to carbon materials either to modify the morphology of carbon nanotubes or to introduce functional groups, which allow an improvement in dispersion and compatibility with the polymer matrix.
\nAnother way is to carry out a premixing of the nanoparticles with the polymer using by calendaring. This method has been used in the exfoliation and dispersion of montmorillonite in a DEGBA epoxy resin [17], as well as in dispersion of multiple-wall carbon nanotubes in an epoxy resin [18]. In both cases, a better dispersion of the nanoparticles in the polymer matrix was observed.
\nMechanical agitation is a common technique for the dispersion of nanoparticles in liquid systems; however, after a while, the nanoparticles tend to agglomerate. To improve the efficiency of dispersion and exfoliation, the ultrasound waves have been applied to stir particles, taking as the separation of individualized nanoparticles results. Ultrasonication is an effective method to disperse CNT in liquids that have a low viscosity, such as water, acetone, and ethanol. In this stage of application of ultrasound, some power factors must be taken care of, for example, because in the case of nanotubes, it has been seen that ultrasound waves can induce defects such as the formation of amorphous carbon in the CNT [19]; recommendations have been made as a sonication of the low power bath to preserve the length and structure of the CNT [20].
\nAfter applying these methods to modify the nanoparticles aiming to improve their dispersion in the polymer, it is necessary to consider the conditions of the extrusion process where these nanoparticles are incorporated, since it can be in different modalities or extrusion conditions in order to avoid reagglomerations or degradations of the polymer.
\nIn general, the most used mixing methods for the preparation of nanocomposites are in-situ polymerization, solution, and melt mixing. In the in-situ polymerization method, the nanoparticles are first dispersed in the liquid monomer (or a monomer solution), and from there, they are mixed to carry out the polymerization, which can be initiated by heat or by the diffusion of an initiator. In the solution method, the polymer is dissolved in a solvent, and the filler is dispersed in the same solution. The intercalated nanocomposite is obtained by removing the solvent by vaporization or precipitation [21]. Because both processes use a solvent, it is not practical at the industrial level. The melt mixing method takes advantage of the melt temperature of the polymer matrix, and in this way, it achieves the mixing with the nanoparticles. Within this method, one of the most striking is the melt extrusion process [22].
\nMelt extrusion is a continuous process that consists of passing a material in the molten state through a profile or given geometry. The preparation of a large variety of polymeric nanocomposites has been reported through this process from varying the polymer matrix to modifying the geometry and size of the nanoparticles to be used. It has been observed that the size and dispersion of the nanoparticles in the polymer are related to the improvement in the properties of the final nanocomposite. A great challenge in the preparation of polymeric nanocomposites is to achieve the homogeneous dispersion of the nanoparticles in the polymer matrix, knowing that a complete dispersion of the nanoparticles allows a greater matrix-nanoparticle interaction responsible for the improved properties in the final material [23].
\nIn a broad definition, the extrusion process refers to any transformation operation in which a molten material is forced to traverse a nozzle to produce an article of constant cross section and in principle of indefinite length [24]. From the point of view of plastics, melt extrusion is clearly one of the most important processes of transformation, where the polymer is fed in solid form; it is heated until reaching the molten state and leaves the extruder in the latest state. In this case, the extruder acts as a pump, providing the necessary pressure to pass the polymer through the nozzle.
\nAn extruder must have a system for feeding the material, a system for melting-plasticizing it, a pumping and pressurizing system (which usually generates a mixing effect), and finally, a device for forming the molten material. Figure 1a shows a basic scheme of an extruder [25]. Depending on the pressure that is exerted along the barrel or extrusion barrel, three main zones can be identified as indicated in Figure 1b. The feeding zone is the closest to the feeding of the material, where it is gradually compacted at a certain speed. The transition zone is a zone of intermediate compression of the material where the fusion takes place, in addition to which the air that could be trapped in the same escapes by means of the feed hopper. Finally, there is the dosing zone, in which the molten material is homogenized and pressurized to exit the extruder by means of the forming nozzle [26].
\n(a) Basic diagram of an extruder, (b) evolution of the pressure along an extruder [25].
One of the most important parts in this process is the screw and the barrel, since they contribute to carry out the functions of transporting, heating, melting, and mixing the material. For this reason, the stability of the process and the quality of the final product depend to a great extent on the screw design. The screw consists of a long cylinder surrounded by a helical fillet (Figure 2). The most important parameters to design it are: the length (L), diameter (D), the angle of the propeller (θ), and the thread pitch (w). When only one screw is used, the machine is called single-screw extruder, while when two screws are used, the term double-screw or twin-screw extruder is used. The mixing is highly dependent on the number of screws and its configuration. In the case of twin-screw extruders, the screws can co-rotate or counter-rotate and have different degrees of interpenetration. In Figure 3, some possible variants are shown. The advantages of its use include a good mixing and degassing capacity, as well as good control of the residence time and its distribution. Some disadvantages of these extruders are their price superior to that of the single screw and the fact that their performance is difficult to predict.
\nScrew of an extruder [25].
Possible arrangement of the spindles in the twin screw extruders; (a) rotation against rotary and (b) rotary rotation; different degrees of interpenetration of the screws [25].
It is important to mention that the selection of a twin-screw extruder to a single-screw extruder depends mainly on the efficient transport as a function of the friction of the material with the barrel and the extrusion screw. In a single screw-extruder, a high level of friction material/barrel and a low level in the screw provide a high carry per revolution. On the other hand, a poor carry per revolution will result in a low level of friction in the barrel and a high level in the screw. In addition, the amount of friction between the metal of the barrel or the screw and the performance of the extruder can change caused by a decrease in temperature. These troubles are minimized in a twin-screw extruder, where the interlock between the screws forms very close chambers, carrying the material forward [27].
\nOne aspect of great relevance is the definitive choice of the number and geometric design of the areas of the screw; this decision depends not only on the design of the nozzle and the expected flow rates but also on the melting characteristics of the polymer, its rheological behavior, and the speed of the screw. A simple screw, of three zones, is usually defined according to the number of turns of the propeller in the areas of feeding, compression, and dosing. An example of different screw configurations is shown in Figure 4.
\nExamples of different types of screw [25].
Most plastics need a previous stage of mixing before processing. Sometimes, it requires only extensive mixing, where the components of the formulation are mixed superficially and is made in fast mixers, and in other, intensive mixing of the different components of the formulation is necessary and is usually carried out in extruders. In some cases, both are necessary, extensive mixing prior to intensive. The use of twine-screw extruders is common in mixing lines. The configuration of the line is determined, among other things, by the type of additives to be combined in the extrusion. These lines usually have pelletizers at the extruder exit to obtain the material in pellet form. When additives or abrasive fillers have to be mixed with the polymer, the polymer is usually added in the first feed hopper, and the filler is added once the plastic has melted, thereby reducing wear of the extruder caused by the filling. With large amounts of filler, the melt often has a large amount of air, steam, or gases, and so the extruder must have a vent zone (Figure 5).
\nTypical mixing line [25].
The characteristics of the melt extrusion process both in the selection and configuration of the screw type, as well as the feeding of the materials, affect the pre-dispersion of the nanoparticles, since a homogeneous predispersion will improve the dispersion efficiency when using ultrasound.
\nIn the last decade, the application of ultrasound waves for the preparation of polymer nanocomposites by melt extrusion has shown a growing interest. It seems that the scientific interest is ten times larger than the industrial interest, since only 3 patents have been registered in comparison to 36 published articles, as can be seen in Figure 6. This gives us a perspective of the relevance that this technology has had in recent years. Several studies report the preparation of polymer nanocomposites by means of ultrasound-assisted extrusion, resulting in the break nanoparticle agglomerates as nanoclays, as well as improvements in the dispersion of nanoparticles in a polyamide 6 [28]. Another study reported an improvement in both rheological and mechanical properties after the ultrasonic treatment, where it is also shown that this change in properties is attributed to the decrease in the size of the clay agglomerates in HDPE [29].
\nProduction of articles and patents on ultrasound-assisted extrusion for the preparation of polymeric nanocomposites (last 10 years).
Other authors argue that the application of ultrasound to extrusion has to be carried out in stages to favor the dispersion of the nanoparticles, as in the case of carbon nanotubes (CNT), where it has been found that the dispersion of CNT can be favored when using two stages of processing. The first is the preparation of a masterbach (concentrate method), which is then diluted in the polymer to increase the dispersion of CNT. It is generally accepted that the dispersion is improved due to the high voltage of cutting that acts on the agglomerates during the second stage [30]. The combination of the masterbach technique with assisted ultrasound has been an important improvement for the dispersion of nanoparticles in polymeric matrices, mainly tested in polymer-CNT systems [31]; in turn, it has also been shown that ultrasound can favor the hybridization of polymer chains on the nanoparticles [32].
\nBefore delving into the subject, it is necessary to mention that sound is a mechanical wave that needs a medium for its propagation. This medium can be liquid, solid, or gas. The propagation of the sound according to the medium can be transverse and longitudinal, and this will depend on the direction in which the energy travels. The frequency of audible sound for humans is between 20 Hz and 20 kHz. That inaudible sound with values of frequencies above 20 kHz is known as ultrasound. The ultrasound of low power or high frequency corresponds to the sound of low amplitude (higher frequency) and is related to the physical effect of the medium on the wave and is in a range of 2–10 MHz; these frequencies are widely used in the medical area for obtaining images and chemical analysis. On the other hand, ultrasound of high power (low frequency), between 20 and 100 kHz, is used for cleaning, plastic welding, as well as for the area of sonochemistry, which with the development of high-performance equipment power, can reach frequencies up to 2 MHz [33].
\nChemical and physical effects of ultrasound in liquid systems are typically explained in terms of acoustic cavitation. The definition of cavitation is complicated. In some cases, acoustic cavitation is defined as an isothermal transition of the liquid-vapor phase limit in a fluid due to a decrease in pressure, as a response to the change below of the vapor pressure of the liquid, or when the temperature has risen above the boiling point [34]. In both cases, acoustic cavitation is presented as a response to the decrease in pressure due to the propagation of an acoustic wave. In other words, during the expansion and compression characteristic of ultrasound waves, there is a formation, growth, and the implosive collapse of bubbles. But how is this bubble formed? The nucleus theory states that any liquid contains intrinsically tiny spaces (cavitation nuclei) full of gases, which undergo a change of pressure to quickly grow to cavities and then to bubbles. However, this principle has evolved, and it is accepted that a nucleus is needed that originates cavitation. The formation of this core can occur in two ways: for pure homogeneous liquid that does not contain impurities or gas, cavities will form due to the effect that the acoustic pressure will have on the liquid called homogeneous nucleation. In real systems or practical experiments, it is thought that a heterogeneous nucleation occurs, in which the neighboring liquid molecules are broken because the liquid contains “weak sites,” in the limits of the liquid and a solid or in the liquid-solid-gas interfaces, where cavitation can start more easily [35]. These cavitation cores generate bubbles that expand during the phase of rarefaction and collapse during the compression phase; stable and transient bubbles are formed [36]. Stable bubbles can remain oscillating during many cycles of acoustic pressure. On the other hand, transients generally exist for less than one cycle; during this cycle, they expand at least twice their original size and then collapse violently. It is said that the pressure and temperature inside the bubble increase to more than 1000 atm and 5000 K [37] during cavitation (Figure 7). The collapse of the bubble is a violent process which generates localized shock waves, which results in an effect on the liquid or solid.
\nAcoustic cavitation phenomenon in Newtonian fluid.
The incorporation of ultrasound in melt processing methods requires, in its simplest form of a processing system or equipment, a sonotrode, and an ultrasonic wave generator. At present, double or single screw extruders with different arrangements in their mixing zones are used, at speeds ranging from 50 to 100 rpm, in order to improve the efficiency in the dispersion of nanoparticles, while temperature profiles vary according to the polymer-nanoparticle system. As for the treatment with ultrasound, a specially designed camera to contain a sonotrode is attached to the extruder, which in general according to the literature is usually made of titanium. This chamber has a controlled temperature and a nozzle to extract the molten nanocomposite. The sonotrode is connected to an ultrasonic generator, which operates at frequency intervals that can range from 10 to 100 kHz and with powers that can reach 1000 W. The data obtained are usually collected by means of an oscilloscope. Figure 8 shows a system developed by Ávila-Orta et al. [38].
\nTypical configuration of an extruder coupled with an ultrasound device.
Ultrasound has been applied to molten polymers as a very efficient way to reduce the resistance of the shaping channels by decreasing the viscosity of the polymers. The results showed that the application of ultrasound disturbs the convergent flow of molten polymer in the entrance zone and changes the flow patterns, which leads to lower elastic stresses, increasing the movement of the molecular chains, so that the elastic recovery is faster. Guo et al. [39] demonstrated significant changes in the properties of polymeric materials by applying ultrasound during the extrusion process and applying ultrasonic oscillations in the direction parallel to the polymer melt flow (Figure 9). Scientists at the University of Akron have applied longitudinal vibrations in the direction perpendicular to the direction of flow using two sonotrodes symmetrically in the nozzle during the extrusion double screw of polymer nanocomposites containing carbon nanotubes and polypropylene clays (Isayev et al. [30]; Figure 10). In addition to dispersing nanocomposites, the application of ultrasound to the polymer has resulted in an increase in crystallinity, the reduction of structural defects, and the improvement of mechanical properties.
\nSchematic diagram of the ultrasonic irradiation extrusion system used by Guo et al. [39].
Schematic diagram of the ultrasonic irradiation extrusion system used by scientists at the University of Akron, Isayev et al. [30].
Ultrasound in the extrusion process has been used to improve the compatibility and dispersion of additives. The effects of ultrasound on polymers can be both physical and chemical. Some physical changes induced by ultrasound in polymer systems are the dispersion of loads and other base components. Several systems have been developed, where good results of nanoparticle dispersion are obtained. Different ways of feeding and positions of the ultrasound along the zones of the extruder have been tested, aiming to find out the behavior of the nanoparticles in the matrix depending on the type of configuration. Some configurations of ultrasound-assisted extrusion of equipment that have been patented are shown in Figure 11. It is important to mention that within the aspects that modify the dispersion of the nanoparticles is the intensity of the applied ultrasound, where it has been demonstrated that the power of the ultrasound is a function of the reduction in the size of the agglomerates of nanoparticles, which favors the dispersion. It has also been found that a good exfoliation and dispersion are improved at low extrusion rates in order to increase the time of the ultrasonic treatment [44]. However, high exposure times to ultrasonic vibrations produce a degradation of the polymeric material, that is, there is a breakdown of the polymer chains, as demonstrated by means of rheological studies.
\nSome configurations of the process of extrusion assisted by ultrasound in molten polymers. (a) [40], (d) [41] ultrasound equipment placed at the exit of the extruder. (b) [42], (c) [43] ultrasound chamber along the extrusion equipment.
In the last two decades, the effect of ultrasound in the preparation of nanocomposites has been studied. In 2003, Isayev and Hong employed for the first time the ultrasonic vibration to prepare nanocomposites. This study reported that the application of ultrasound improves the dispersion and reduced size of silica agglomerate (0.3 μm). The viscosity of the ultrasonically treated mixtures was found to be higher than that of the silane-treated mixtures.
\nTable 1 summarizes information from publications involving the use of the ultrasonic treatment technology for the preparation of polymer nanocomposites. The information shows the polymer matrix studied, the nanoparticles, the focus of the study, and improved properties. It is evident that the most studied structures using ultrasound are clays and those based on carbon such as graphene and nanotubes.
\nPolymer nanocomposite | \nFocus of the study | \nProperty improvement(s) | \nReference | \n|
---|---|---|---|---|
Carbon nanoparticles | \nMWCNT | \nEffect of ultrasound on thermal, electrical, mechanical and rheological properties. | \nImprovement electrical and thermal conductivity, Young’s modulus. Storage modulus and complex viscosity generally increased. | \n[30, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54] | \n
CNF | \nEffects of the variation of the ultrasonic amplitude and concentration on CNFs (morphology), rheology, electrical resistivity, abrasion and mechanical properties. | \nImproved dispersion, elongation at break, Young’s modulus and tensile strength. The abrasion resistance was improved at certain amplitudes at low CNT loadings only. | \n[55, 56] | \n|
GNP | \nEffects of the ultrasound vibration on exfoliation, and dispersion of GNP’s in the polymer matrix. | \nIncreased the exfoliation and dispersion of GNPs on the polymer. Thermal and conductivity properties were increased. | \n[47] | \n|
Ceramic nanoparticles | \nCloisite 20A | \nEffects of ultrasound on clay dispersion, morphology, mechanical and rheological properties. | \nImproved clay dispersion compared with non-treated ones, intercalated-exfoliated structures was found. Young’s modulus enhanced and increase viscosity in most studies. | \n[57, 58, 59, 60] | \n
Sepiolite | \nEffect of ultrasound on dispersion and mechanical properties of polymer matrix | \nImproves nanoclay dispersion, which results in an enhancement of the reinforcement of the fillers and decreases the viscosity of the composites during the process. | \n[61] | \n|
Nanosilica | \nEffects of ultrasound on the morphology, as well as the rheological and mechanical properties of the composites | \nImprove strength and elongation of the composites at break, ultrasound-induced homogeneous dispersion of nanoparticles in the polymeric matrix | \n[62] | \n|
Other nanoparticles | \nFlash aluminum flake pigments (FAFP) | \nEffects of the ultrasound intensity, experimental temperature, filler content, and particle size on the composite viscosity | \nComposite viscosity decreased as the ultrasound intensity and the filler content decreased. | \n[63] | \n
Summary of the experimental results of some reviewed publications involving the application of extrusion assisted by ultrasound for preparation of polymer nanocomposites, last 10 years.
Regarding the use of ultrasound in the preparation of nanocomposites with clay, improvements in degree of clay dispersion have been found. Kim and co-workers made use of the ultrasonic-assisted continuous extrusion process to the preparation of polypropylene (PP) and polystyrene (PS) nanocomposites with 3% loading of organophilic montmorillonite clay. They found that the waves of ultrasound improve the compatibility between PP and PS and breakup of the clay agglomerates and as a result exfoliated the clay layers in the PP/PS matrix [64]. Similar observations were made for PP/clay nanocomposites. Two methods for the fabrication of polypropylene/clay nanocomposites are compared. In the first approach, a two-stage process was implemented. First, the nanocomposites were prepared using a co-rotating twin-screw extruder followed by a single-screw extruder, in which the ultrasound was implemented. In the second method, a single-stage process was used. In addition, two regimens of feeding were used in the process. In both processes, it was observed that the ultrasound generates a degradation of the polymer matrix and intercalation/exfoliation of clay; however, the single-stage process led to a minor polymer degradation [65]. Li et al. [28] prepared polyamide 6/montmorillonite nanocomposites by using a conventional and an ultrasonic extrusion technology. The results showed that the elongation at break and impact strength of the ultrasonicated nanocomposites increase due to the improved dispersion of montmorillonite and decreased size of spherulites [28]. Other works have focused on the preparation of clay nanocomposites with different polymer matrix as a HDPE and LLDPE. For example, Niknezhad and Isayev [59] applied ultrasound continuous method for the production of films polymer/clay nanocomposites. In this process, compounding, ultrasonic treatment, and film casting were combined in a single-step process. It has been found that the effect of the dispersion of the clay depends on the amplitude of ultrasound used, affecting the crystallinity and the mechanical properties of the material, as well as the permeability to gases [59]. On the other hand, the application of ultrasound irradiation and maleic anhydride (MA) addition, during the preparation of PP/Clay nanocomposites in a twin screw extruder, showed to have a very significant effect on the simultaneous grafting of MA onto the PP chains and in the exfoliation/dispersion of the clay. The tensile modulus increased with ultrasound intensity, and an opposite effect occurs with elongation, which decreases with the applied ultrasound [58].
\nAs for carbon-based nanocomposites, polyetherimide (PEI) systems with 20% carbon nanofibers (CNF) have been studied. It was established that ultrasound with high power is effective in obtaining relatively more homogeneous dispersion with improved electrical and thermal conductivity in the CNF/PEI nanocomposites in comparison with extruded untreated ones. An increase in Young’s modulus was observed while retaining tensile strength up to 15% of CNF [54]. In another study, it was mentioned that the effect of ultrasound on the rheological, electrical, morphological, and mechanical properties of the Polyetherimide (PEI) matrix with multiple-wall carbon nanotubes (MWCNT) has been carried out from 1 to 10% by weight. In ultrasound-treated nanocomposites, an increase in viscosity and storage module was observed. As for the mechanical properties, the authors conclude that there is a relationship between the content of MWCNT and the application of ultrasound because the Young module and the resistance showed an increase by using 5 and 10% load. The authors also notice that working amplitudes are important factor to improve the dispersion. Rheological and electrical percolations were found between 1 and 2% in load weight of MWCNT. The observed effect is attributed to the fact that the ultrasound breaks the agglomerates of MWCNT improving its dispersion, which affects to a greater degree the rheology of the material than to the electrical conductivity [30]. Blanco et al. [53] mention that ultrasonic vibration has a significant effect on the conductivity of PA/MWCNT systems; in these nanocomposites, the percolation rate is reduced from 7 to 3 wt% when ultrasound is applied. This is attributed to a better dispersion of nanotubes in the matrix, resulting in an increase of three orders of magnitude in the electrical resistivity for the system PA6/MWCNT at 7 wt%. These authors concluded that the application of ultrasound improves the processability of the material and that it is possible to reduce the percentage of nanotubes in the preparation of nanocomposites with conductive properties without affecting thermal properties [53]. Ávila-Orta et al. [51] used polypropylenes with different flow rates (MFI) and 10% multiwall carbon nanotubes for the preparation of nanocomposites. Four different fabrication methods based on melt extrusion were used. In the first method, melt extrusion fabrication without ultrasound assistance was used. In the second and third methods, an ultrasound probe attached to a hot chamber located at the exit of the die was used to subject the sample to fixed frequency and variable frequency, respectively. In the fourth method, the carbon nanotubes were treated in a fluidized air-bed with an ultrasound probe before being used in the fabrication of nanocomposites. It was found that the MFI decreases regardless of the method used in processing, the same is not the case with the other properties. For example, as to the size of agglomerates, the smallest value was found using PP of MFI = 2.5 using variable ultrasound frequency in processing; in this sample, it was found a lower surface/agglomerate ratio and a higher value of electrical charge (1040 V) [51]. A similar study showed that the electrical properties in nanocomposites of PP/MWCNT with different values of MFI of the polymer matrix depend on the methods used in the ultrasound-assisted extrusion because the ultrasound waves decrease the agglomerates of nanotubes producing conductive materials and static dissipators with a negative dielectric constant [66].
\nIn summary, the application of ultrasound in the preparation of nanocomposites by extrusion generates an increase in some properties of great importance. However, the mechanisms by which ultrasound helps in the dispersion of nanoparticles is not known with precision, which is a significant aspect and would help to improve and create innovative methodologies aimed at the implementation of more specific nanocomposites.
\nThe effect of ultrasound on fluids and Newtonian systems has been explained in terms of acoustic cavitation. This process, as mentioned above, involves at least three stages: nucleation, bubble growth, and the implosive collapse of the same, propitiating stable and transient acoustic cavitation events that are the cause of the effect of ultrasound. However, these physical or chemical effects will not be presented if ultrasound-led energy is less than the cavitation threshold [67]. In non-Newtonian fluids, the bubble in polymer solution implodes less violently compared to a Newtonian fluid such as water (Figure 12), which makes the impact of the liquid jet on the limit very small or even null. In particular, the dynamics of the collapse of bubbles near a solid boundary appears to be a critical problem in the dispersion of nanostructures in liquid systems, since the impact of the liquid jet on the surface of the agglomerates is considered mechanism dominant for the reduction of agglomerate size during acoustic cavitation [68].
\nComparison between the dynamics of the induced ultrasound of a Newtonian fluid and a non-Newtonian.
If a solid is within the sample, the cavitation is given in a different way, due to the liquid–solid interface. An accepted explanation is that the cavitation that takes place near the solid surface will generate microjets of fluid of high velocity, directed toward the solid surface. The impact of microjets of fluid on the solid surface causes localized erosion. In addition to this effect, we have the formation of shock waves, inducing effects such as breaking aggregates of particles [69].
\nResearchers have tried to explain the phenomenon of the dispersion of nanoparticles in polymeric matrices when using ultrasound in molten state. In this context, Zhong et al. argue that the propagation of the ultrasonic wave in a material generates waves of oscillatory pressure and induces the expansion and contraction of bubbles in the polymeric matrix that leads to a possible rupture of the agglomerates of nanoparticles, which would give place to a better dispersion. A small amount of bubbles usually dissolves or is trapped in the polymer that melts during extrusion [70]. In polymeric compounds, the particles are easily present in the form of porous agglomerates that introduce more gaps in the system. The existence of bubbles in the nanocomposites decreases the speed of the ultrasound and therefore the energy consumption. Based on experimental observation, a possible cavitation mechanism is suggested, depicted in Figure 13. The cavitation of bubbles in compounds can occur by internal and external cavitation mechanisms. The cavitation of the outer bubble could remove the particles from the primary agglomerates (Figure 13a), while the cavitation of the inner bubble would break the agglomerates from the inside (Figure 13b). One or both of these mechanisms would lead to better dispersion seen after ultrasonic treatment [71].
\nPhenomenon of internal acoustic cavitation (a) and external (b) in polymeric nanocomposites according to Zhong et al. [71].
Espinoza-González proposed [72] a mechanism based on mechanochemistry to explain the physical and chemical effects of ultrasound in polymer matrices, as well as for the dispersion mechanism of nanostructures. This mechanochemical mechanism is mainly based on the deformation or stress experienced by the chemical bonds during the vibration movement. The generated vibration movement causes the appearance of different fatigue points along the polymer chain called nodes, in which the greatest deformation occurs between the links of the chain, reducing the energy of link dissociation leading to the activation of multiple reaction mechanisms, degradation, or chain extension.
\nUltrasound-assisted extrusion process turns out to be a very promising technology and that in the last 10 years has shown great advances in its application to the elaboration of polymeric nanocomposites. However, the mechanism to achieve the deagglomeration of nanoparticles and their dispersion in the polymer remains unknown. The phenomenon of acoustic cavitation is mainly proposed for the explanation of bubble dynamics, but it is possible to find in the literature and as mentioned above that the strict notion of cavitation is an isothermal transition of the liquid–vapor phase limit in a fluid of a single component, due to a decrease in pressure [34, 35, 73]. In other words, the cohesion between the fluid particles is overcomed by an externally applied stress, which causes the homogeneous nucleation of the vapor. Based on this argument and answering the initial question of the text on the phenomenon by which the dispersion of nanoparticles in polymeric systems results, the phenomenon of acoustic cavitation is questionable, since it is not enough to be able to explain the dispersion of nanoparticles during the ultrasound-assisted extrusion process to produce nanocomposites, since there is no phase change and also due to the viscoelastic characteristics of the polymer matrices that imply higher cutting efforts, which would hinder the formation of bubbles. However, it has been proven that in polymeric solutions, there is poor bubble formation due to cavitation effects [74]. On the other hand, there is also the idea that ultrasound causes vibrational effects on the polymer related to relaxation times at the chain level [75], which could help explain that the effects of friction in the polymer are the main causes of the dispersion of nanoparticles in the formation of nanocomposites.
\nA number of researches are still necessary to understand the effects of the different parameters (power, amplitude, and working frequencies) of the ultrasound waves in the preparation of nanocomposites, as well as the mechanism of action. To understand the nature of a system as robust as ultrasound-assisted extrusion, it is necessary to simplify the system, so that the dispersion phenomenon can be analyzed from the simplest possible perspective. For example, studies can be carried out in batch systems of polymer melts and nanoparticles.
\nIn the last decade, the use of the ultrasonic assisted extrusion process has been used in the preparation of polymeric nanocomposites. This process has shown improvements in the dispersion of nanoparticles in the polymer matrix, which has led academics to make improvements in the design to achieve a greater effect on the properties of the final compound. Although the technique of ultrasound is known, it has not been possible to clearly explain the mechanisms of its action in polymer-nanoparticle systems, where despite the efforts made to achieve an adequate understanding of how the dispersion of nanoparticles occurs, it is still insufficient for the polymer nanocomposite theory to explain this phenomenon, and this limits the application of ultrasound in the manufacture of nanocomposites with specific properties. However, the large number of satisfactory results obtained in scientific articles on the novel properties and innovations that are made in patents on equipment and processing of nanocomposites provides a broad perspective of the evolution of this technology and its potential applications.
\nThe authors acknowledge the financial support of CIQA through grant 6438 (2018), and of CONACyT through grants 294030 (LANIAUTO) and 296395 is greatly appreciated.
\nThe authors declare no conflict of interest.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15790}],offset:12,limit:12,total:118189},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"title"},books:[{type:"book",id:"10818",title:"21st Century Approaches to Management and Accounting Research",subtitle:null,isOpenForSubmission:!0,hash:"dd81bc60e806fddc63d1ae22da1c779a",slug:null,bookSignature:"Dr. Sebahattin Demirkan and Dr. Irem Demirkan",coverURL:"https://cdn.intechopen.com/books/images_new/10818.jpg",editedByType:null,editors:[{id:"336397",title:"Dr.",name:"Sebahattin",surname:"Demirkan",slug:"sebahattin-demirkan",fullName:"Sebahattin Demirkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10771",title:"Advancements Towards Sustainability of HVAC & R Systems",subtitle:null,isOpenForSubmission:!0,hash:"0718b748e10605d793d244c62797acf4",slug:null,bookSignature:"Dr. Ahmed Niameh Mehdy Alhusseny, Dr. Qahtan Al-Aabidy and Dr. Adel Gharib Nasser",coverURL:"https://cdn.intechopen.com/books/images_new/10771.jpg",editedByType:null,editors:[{id:"208783",title:"Dr.",name:"Ahmed",surname:"Alhusseny",slug:"ahmed-alhusseny",fullName:"Ahmed Alhusseny"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10773",title:"Advances in Fatigue and Fracture Testing and Modelling",subtitle:null,isOpenForSubmission:!0,hash:"22eb4fe235e1d5d074c3ad7643f8a567",slug:null,bookSignature:"Dr. Zak Abdallah and Dr. Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10773.jpg",editedByType:null,editors:[{id:"201670",title:"Dr.",name:"Zak",surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10701",title:"Alkenes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f6dd394ef1ca2d6472220de6a79a0d9a",slug:null,bookSignature:"Dr. Reza Davarnejad",coverURL:"https://cdn.intechopen.com/books/images_new/10701.jpg",editedByType:null,editors:[{id:"88069",title:"Dr.",name:"Reza",surname:"Davarnejad",slug:"reza-davarnejad",fullName:"Reza Davarnejad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!0,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:null,bookSignature:"Prof. Hussain Al-Rizzo and Dr. Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10711",title:"Arthroscopy",subtitle:null,isOpenForSubmission:!0,hash:"afa83f11ba2442e7612f5b8c6aa3c659",slug:null,bookSignature:"M.D. Carlos Suarez-Ahedo",coverURL:"https://cdn.intechopen.com/books/images_new/10711.jpg",editedByType:null,editors:[{id:"235976",title:"M.D.",name:"Carlos",surname:"Suarez-Ahedo",slug:"carlos-suarez-ahedo",fullName:"Carlos Suarez-Ahedo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10681",title:"Biodegradation",subtitle:null,isOpenForSubmission:!0,hash:"9a6e10e02788092872fd249436898e97",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes, Dr. Rodrigo Nogueira de Sousa and Dr. Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10763",title:"Biodiversity of Ecosystems",subtitle:null,isOpenForSubmission:!0,hash:"c96b42d4539957c58dfc2eb8fd9ffc21",slug:null,bookSignature:"Dr. Levente Hufnagel",coverURL:"https://cdn.intechopen.com/books/images_new/10763.jpg",editedByType:null,editors:[{id:"10864",title:"Dr.",name:"Levente",surname:"Hufnagel",slug:"levente-hufnagel",fullName:"Levente Hufnagel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10878",title:"Bioethical Issues in Healthcare",subtitle:null,isOpenForSubmission:!0,hash:"a6f32d3f2227df637fffd969a0cb5ed7",slug:null,bookSignature:"Dr. Peter A. Clark",coverURL:"https://cdn.intechopen.com/books/images_new/10878.jpg",editedByType:null,editors:[{id:"58889",title:"Dr.",name:"Peter A.",surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10884",title:"Bisphenols",subtitle:null,isOpenForSubmission:!0,hash:"d73ec720cb7577731662ac9d02879729",slug:null,bookSignature:"Prof. Pınar Erkekoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10884.jpg",editedByType:null,editors:[{id:"109978",title:"Prof.",name:"Pınar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:101},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"650",title:"Hydraulics",slug:"geology-and-geophysics-hydraulics",parent:{title:"Geology and Geophysics",slug:"geology-and-geophysics"},numberOfBooks:1,numberOfAuthorsAndEditors:19,numberOfWosCitations:2,numberOfCrossrefCitations:2,numberOfDimensionsCitations:3,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"geology-and-geophysics-hydraulics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"4687",title:"Effects of Sediment Transport on Hydraulic Structures",subtitle:null,isOpenForSubmission:!1,hash:"c98566272eada12d6eaddf8e47e3b171",slug:"effects-of-sediment-transport-on-hydraulic-structures",bookSignature:"Vlassios Hrissanthou",coverURL:"https://cdn.intechopen.com/books/images_new/4687.jpg",editedByType:"Edited by",editors:[{id:"37707",title:"Prof.",name:"Vlassios",middleName:null,surname:"Hrissanthou",slug:"vlassios-hrissanthou",fullName:"Vlassios Hrissanthou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"49294",doi:"10.5772/61576",title:"Simulation of Reservoir Siltation with a Process-based Soil Loss and Deposition Model",slug:"simulation-of-reservoir-siltation-with-a-process-based-soil-loss-and-deposition-model",totalDownloads:1645,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"effects-of-sediment-transport-on-hydraulic-structures",title:"Effects of Sediment Transport on Hydraulic Structures",fullTitle:"Effects of Sediment Transport on Hydraulic Structures"},signatures:"Marcus Schindewolf, Constanze Bornkampf, Michael von Werner\nand Jürgen Schmidt",authors:[{id:"174672",title:"Dr.",name:"Marcus",middleName:null,surname:"Schindewolf",slug:"marcus-schindewolf",fullName:"Marcus Schindewolf"},{id:"174673",title:"Dr.",name:"Constance",middleName:null,surname:"Bornkampf",slug:"constance-bornkampf",fullName:"Constance Bornkampf"},{id:"174674",title:"Dr.",name:"Michael",middleName:null,surname:"Von Werner",slug:"michael-von-werner",fullName:"Michael Von Werner"},{id:"174675",title:"Prof.",name:"Jürgen",middleName:null,surname:"Schmidt",slug:"jurgen-schmidt",fullName:"Jürgen Schmidt"}]},{id:"49484",doi:"10.5772/61459",title:"Assessment of Reservoir Sedimentation Effect on Coastal Erosion and Evaluation of Sediment Removal Techniques for Its Reduction — The Case of Nestos River, Greece",slug:"assessment-of-reservoir-sedimentation-effect-on-coastal-erosion-and-evaluation-of-sediment-removal-t",totalDownloads:1311,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"effects-of-sediment-transport-on-hydraulic-structures",title:"Effects of Sediment Transport on Hydraulic Structures",fullTitle:"Effects of Sediment Transport on Hydraulic Structures"},signatures:"Manolia Andredaki, Anastasios Georgoulas, Vlassios Hrissanthou\nand Nikolaos Kotsovinos",authors:[{id:"37707",title:"Prof.",name:"Vlassios",middleName:null,surname:"Hrissanthou",slug:"vlassios-hrissanthou",fullName:"Vlassios Hrissanthou"},{id:"113298",title:"Prof.",name:"Nikolaos",middleName:null,surname:"Kotsovinos",slug:"nikolaos-kotsovinos",fullName:"Nikolaos Kotsovinos"},{id:"174591",title:"Dr.",name:"Anastasios",middleName:null,surname:"Georgoulas",slug:"anastasios-georgoulas",fullName:"Anastasios Georgoulas"},{id:"174790",title:"Dr.",name:"Manolia",middleName:null,surname:"Andredaki",slug:"manolia-andredaki",fullName:"Manolia Andredaki"}]},{id:"49551",doi:"10.5772/61643",title:"General Hydraulic Geometry",slug:"general-hydraulic-geometry",totalDownloads:1135,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"effects-of-sediment-transport-on-hydraulic-structures",title:"Effects of Sediment Transport on Hydraulic Structures",fullTitle:"Effects of Sediment Transport on Hydraulic Structures"},signatures:"Levent Yilmaz",authors:[{id:"19701",title:"Prof.",name:"Levent",middleName:null,surname:"Yilmaz",slug:"levent-yilmaz",fullName:"Levent Yilmaz"}]}],mostDownloadedChaptersLast30Days:[{id:"49294",title:"Simulation of Reservoir Siltation with a Process-based Soil Loss and Deposition Model",slug:"simulation-of-reservoir-siltation-with-a-process-based-soil-loss-and-deposition-model",totalDownloads:1650,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"effects-of-sediment-transport-on-hydraulic-structures",title:"Effects of Sediment Transport on Hydraulic Structures",fullTitle:"Effects of Sediment Transport on Hydraulic Structures"},signatures:"Marcus Schindewolf, Constanze Bornkampf, Michael von Werner\nand Jürgen Schmidt",authors:[{id:"174672",title:"Dr.",name:"Marcus",middleName:null,surname:"Schindewolf",slug:"marcus-schindewolf",fullName:"Marcus Schindewolf"},{id:"174673",title:"Dr.",name:"Constance",middleName:null,surname:"Bornkampf",slug:"constance-bornkampf",fullName:"Constance Bornkampf"},{id:"174674",title:"Dr.",name:"Michael",middleName:null,surname:"Von Werner",slug:"michael-von-werner",fullName:"Michael Von Werner"},{id:"174675",title:"Prof.",name:"Jürgen",middleName:null,surname:"Schmidt",slug:"jurgen-schmidt",fullName:"Jürgen Schmidt"}]},{id:"49325",title:"Bedload and Suspended Sediment of a Watershed Impacted by Dams",slug:"bedload-and-suspended-sediment-of-a-watershed-impacted-by-dams",totalDownloads:1298,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"effects-of-sediment-transport-on-hydraulic-structures",title:"Effects of Sediment Transport on Hydraulic Structures",fullTitle:"Effects of Sediment Transport on Hydraulic Structures"},signatures:"Jose Ramon B. Cantalice, Wagner Luis da Silva Souza, Yuri Jacques\nAgra Bezerra Silva, Sergio M.S. Guerra, Alex Mauricio Araújo,\nDouglas Monteiro Cavalcante and Cinthia Maria Cordeiro Atanazio\nCruz Silva",authors:[{id:"174133",title:"Prof.",name:"Jose Ramon",middleName:"Barros",surname:"Cantalice",slug:"jose-ramon-cantalice",fullName:"Jose Ramon Cantalice"},{id:"174468",title:"Dr.",name:"Wagner Luis",middleName:null,surname:"Sousa",slug:"wagner-luis-sousa",fullName:"Wagner Luis Sousa"},{id:"174469",title:"Dr.",name:"Yuri",middleName:null,surname:"Silva",slug:"yuri-silva",fullName:"Yuri Silva"},{id:"174470",title:"Prof.",name:"Alex",middleName:null,surname:"Araujo",slug:"alex-araujo",fullName:"Alex Araujo"},{id:"174471",title:"MSc.",name:"Douglas",middleName:null,surname:"Cavalcante",slug:"douglas-cavalcante",fullName:"Douglas Cavalcante"},{id:"174472",title:"Prof.",name:"Sergio Monthezuma",middleName:null,surname:"Guerra",slug:"sergio-monthezuma-guerra",fullName:"Sergio Monthezuma Guerra"}]},{id:"49521",title:"The Impact of Ice Cover and Sediment Nonuniformity on Erosion Around Hydraulic Structures",slug:"the-impact-of-ice-cover-and-sediment-nonuniformity-on-erosion-around-hydraulic-structures",totalDownloads:1213,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"effects-of-sediment-transport-on-hydraulic-structures",title:"Effects of Sediment Transport on Hydraulic Structures",fullTitle:"Effects of Sediment Transport on Hydraulic Structures"},signatures:"Peng Wu, Jueyi Sui and Ram Balachandar",authors:[{id:"36919",title:"Dr.",name:"Ram",middleName:null,surname:"Balachandar",slug:"ram-balachandar",fullName:"Ram Balachandar"},{id:"174497",title:"Prof.",name:"Jueyi",middleName:null,surname:"Sui",slug:"jueyi-sui",fullName:"Jueyi Sui"},{id:"174521",title:"Dr.",name:"Peng",middleName:null,surname:"Wu",slug:"peng-wu",fullName:"Peng Wu"}]},{id:"49551",title:"General Hydraulic Geometry",slug:"general-hydraulic-geometry",totalDownloads:1135,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"effects-of-sediment-transport-on-hydraulic-structures",title:"Effects of Sediment Transport on Hydraulic Structures",fullTitle:"Effects of Sediment Transport on Hydraulic Structures"},signatures:"Levent Yilmaz",authors:[{id:"19701",title:"Prof.",name:"Levent",middleName:null,surname:"Yilmaz",slug:"levent-yilmaz",fullName:"Levent Yilmaz"}]},{id:"49484",title:"Assessment of Reservoir Sedimentation Effect on Coastal Erosion and Evaluation of Sediment Removal Techniques for Its Reduction — The Case of Nestos River, Greece",slug:"assessment-of-reservoir-sedimentation-effect-on-coastal-erosion-and-evaluation-of-sediment-removal-t",totalDownloads:1311,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"effects-of-sediment-transport-on-hydraulic-structures",title:"Effects of Sediment Transport on Hydraulic Structures",fullTitle:"Effects of Sediment Transport on Hydraulic Structures"},signatures:"Manolia Andredaki, Anastasios Georgoulas, Vlassios Hrissanthou\nand Nikolaos Kotsovinos",authors:[{id:"37707",title:"Prof.",name:"Vlassios",middleName:null,surname:"Hrissanthou",slug:"vlassios-hrissanthou",fullName:"Vlassios Hrissanthou"},{id:"113298",title:"Prof.",name:"Nikolaos",middleName:null,surname:"Kotsovinos",slug:"nikolaos-kotsovinos",fullName:"Nikolaos Kotsovinos"},{id:"174591",title:"Dr.",name:"Anastasios",middleName:null,surname:"Georgoulas",slug:"anastasios-georgoulas",fullName:"Anastasios Georgoulas"},{id:"174790",title:"Dr.",name:"Manolia",middleName:null,surname:"Andredaki",slug:"manolia-andredaki",fullName:"Manolia Andredaki"}]}],onlineFirstChaptersFilter:{topicSlug:"geology-and-geophysics-hydraulics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/159145/antonio-cossu",hash:"",query:{},params:{id:"159145",slug:"antonio-cossu"},fullPath:"/profiles/159145/antonio-cossu",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()