Planned versus actual coverage of the survey.
\r\n\tIn sum, the book presents a reflective analysis of the pedagogical hubs for a changing world, considering the most fundamental areas of the current contingencies in education.
",isbn:"978-1-83968-793-8",printIsbn:"978-1-83968-792-1",pdfIsbn:"978-1-83968-794-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"b01f9136149277b7e4cbc1e52bce78ec",bookSignature:"Dr. María Jose Hernandez-Serrano",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10229.jpg",keywords:"Teacher Digital Competences, Flipped Learning, Online Resources Design, Neuroscientific Literacy (Myths), Emotions and Learning, Multisensory Stimulation, Citizen Skills, Violence Prevention, Moral Development, Universal Design for Learning, Sensitizing on Diversity, Supportive Strategies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 14th 2020",dateEndSecondStepPublish:"October 12th 2020",dateEndThirdStepPublish:"December 11th 2020",dateEndFourthStepPublish:"March 1st 2021",dateEndFifthStepPublish:"April 30th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Phil. Maria Jose Hernandez Serrano is a tenured lecturer in the Department of Theory and History of Education at the University of Salamanca, where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. in Education and Training in Virtual Environments by research with the University of Manchester, UK (2009).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"187893",title:"Dr.",name:"María Jose",middleName:null,surname:"Hernandez-Serrano",slug:"maria-jose-hernandez-serrano",fullName:"María Jose Hernandez-Serrano",profilePictureURL:"https://mts.intechopen.com/storage/users/187893/images/system/187893.jpg",biography:"DPhil Maria Jose Hernandez Serrano is a tenured Lecturer in the Department of Theory and History of Education at the University of Salamanca (Spain), where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. on Education and Training in Virtual Environments by research with the University of Manchester, UK (2009). She obtained a Visiting Scholar Postdoctoral Grant (of the British Academy, UK) at the Oxford Internet Institute of the University of Oxford (2011) and was granted with a postdoctoral research (in 2021) at London Birbeck University.\n \nShe is author of more than 20 research papers, and more than 35 book chapters (H Index 10). She is interested in the study of the educational process and the analysis of cognitive and affective processes in the context of neuroeducation and neurotechnologies, along with the study of social contingencies affecting the educational institutions and requiring new skills for educators.\n\nHer publications are mainly of the educational process mediated by technologies and digital competences. Currently, her new research interests are: the transdisciplinary application of the brain-based research to the educational context and virtual environments, and the neuropedagogical implications of the technologies on the development of the brain in younger students. Also, she is interested in the promotion of creative and critical uses of digital technologies, the emerging uses of social media and transmedia, and the informal learning through technologies.\n\nShe is a member of several research Networks and Scientific Committees in international journals on Educational Technologies and Educommunication, and collaborates as a reviewer in several prestigious journals (see public profile in Publons).\n\nUntil March 2010 she was in charge of the Adult University of Salamanca, by coordinating teaching activities of more than a thousand adult students. She currently is, since 2014, the Secretary of the Department of Theory and History of Education. Since 2015 she collaborates with the Council Educational Program by training teachers and families in the translation of advances from educational neuroscience.",institutionString:"University of Salamanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salamanca",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"39160",title:"Mineralization of Lipid A-Phosphates in Three- and Two-Dimensional Colloidal Dispersions",doi:"10.5772/48493",slug:"mineralization-of-lipid-a-phosphates-in-three-and-two-dimensional-colloidal-dispersions",body:'Crystal growth and crystal nucleation has attracted interest for centuries and goes back to Johannes Kepler [1] in 1611. Though progress in the understanding of crystal nucleation and crystal growth were theoretically developed, exact quantitative prediction of the nucleation rates and their kinetics still remains unresolved [2]. As early in 1959, the protocol of preparation of virus crystals and their physical analysis revealed an interparticle spacing of 250 nm [3, 4]. The crystal growth from microcrystalline material to single crystals of viruses marked another event for crystal nucleation. It was concluded for this Tipula iridescent virus that the hydrated virus particles in the crystal are not in contact but are separated by large distances of water (~ 50 nm) showing soft modes in the direction of a lattice site and the lattice displacements at a given time is caused by a longitudinal phonon with a wave vector at the zone boundary [5, 6]. These crystals are probably held together by long-range forces operating at a distance comparable with the size of the particles themselves. This is very similar to the recently discovered autovaccines obtained from non-pathogenic E. coli as liquid colloidal and solid nanocrystals [7-11]. The former virus crystals as well as the discussed liquid autovaccine crystals seem to present the well-established instance of a unique ordering of iso-dimensional colloidal particles in three dimensions in solutions and in the solid state. This holds also for the prediction of polymorphic crystal forms like liquid crystals, especially for complex crystalline solid forms originating from colloidal dispersions of e.g. chiral Lipid A-phosphates [12], cationic lipids [13-17], anionic surfactants [18], diblock copolymers [19], or surfactant-water complexes [20]. Crystallization, phase transitions and crystal growth remain a central topic of condensed matter physics. A detailed understanding of the controlled formation of crystalline materials is of great importance for numerous applications, especially for colloidal particles [21-23], biomimetic approaches to mineralization [24], curved crystalline shapes that emerged from mixtures of barium or strontium carbonates and silica in alkaline media [25], and usually from devices derived from self-assembly of colloidal materials [26, 27].
In view of the above mentioned and widely accepted explanations and morphological descriptions of crystal, nuclei formation and phase transformations, the focus of this contribution relies on recent advances in the physical understanding of the disorder-order, fluid-crystal-fluid transitions of Lipid A-phosphates, the formation of a re-entrant phase, particularly for Lipid A-diphosphate e.g freezing and melting, and the molecular mimicry of hierarchical self-assembly of Lipid A-phosphates. This was achieved using a variety of experimental techniques e.g. scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and small-area electron diffraction (SAED), small-angle X-ray diffraction & solution scattering (SAXD & SAXS), static & quasi-elastic light scattering (LS & QELS). The contribution is outlined as follows: In remainder of the brief introduction, a short description is given which is devoted to the chemistry and importance of this class of molecules (“nano-medicine”) in the day-to-day life. In Section 3, the phase transition of Lipid A-diphosphate clusters, the formation of various crystal forms as a function of particle number density (n) or volume fraction (ϕ), ionic strength (I) and T will be introduced since they affect the crystallization in 2d and 3d. Observations on freezing and melting of Lipid A-diphosphate clusters on a physical molecular level are also presented. The occurrence of the re-entrant fluid phase of Lipid A-diphosphate clusters upon addition of μM NaOH after a crystalline BCC phase will be compared with the various crystalline phases upon decreasing I and increase of n for NaCl. The self-assembly of Lipid A-diphosphates clusters composed of different “subunits” e.g. six-hexaacylated chains and the corresponding Lipid A-diphosphate with four acylated fatty acid chains with the same phosphorylated disaccharide will be discussed in more detail (crystals, symmetry packing). These crystalline Lipid A-diphosphate cluster complexes may be called “autovaccines” (Note: An immunizing agent is composed of a selected or modified chemical entity of an original microorganism or virus, which does not cause clinical signs associated with the parent microorganism or virus, but still infects & multiplies in the host so as to induce immunity). Section 4 reports on the formation of Lipid A-diphosphate crystals by surface-induced gradient-induced crystallization in monolayers, their thermodynamics with relation to surface tension and their morphologies. In Section 5 the conclusions are presented.
The lipopolysaccharides (LPS) are a group of diverse lipid-containing carbohydrates that exhibit a wide variety of biological activities. They occur naturally on the outer cell membranes of Gram-negative bacteria such as Escherichia coli. Although the lipopolysaccharides are large molecules, most of their biological activities result from the activity of a small portion of the molecule known as Lipid A-diphosphate. The structure of Lipid A consists of two β (1,6)-linked D-glucosamine units with polar phosphate groups at 1 and 4\' positions (Fig. 1) [28]. This problem caused approximately 21 000 mortalities in 1996 in the U.S. alone [29].
Chemical structures of Lipid A-diphosphate (A) and two Lipid A-diphosphate derivatives (B & C) with strong biological implication on the anti-inflammatory mediator level [28, 30]. Lipid A-diphosphate from E. coli is a 1,4-di-phosphorylated β-1,6-linked D-glucosamine disaccharide with four residues of amide-and O-esterified R-(-)-3-hydroxy fatty acids (* denotes the chiral centers in the hydroxy fatty-acid esters), apart from the chiral and epimeric carbons in the glucosamine moieties which are not marked. The antagonistic Lipid A-diphosphate molecules shown in B & C contain the same disaccharide as in (A); however, they differ in the number anchored carbohydrate positions and the number of chiral fatty-acid chains but the chain lengths is the same. The monophosphate of Lipid A is only phosphorylated at the reducing end of the disaccharide (C-1).
The Lipid A-diphosphate is associated with lethal endotoxicity, pyrogenicity and specific immune response. It is also responsible for triggering a cascade of cellular mediators, e.g. tumor necrosis factor α, interleukins, leukotrienes, thromboxane A2 from monocytes and macrophages. The Lipid A-diphosphate and their analogues are distinct from normal lipids with respect to structure, chirality and chemical building units (Fig. 1) [30]. The 2 and 2\' amino positions and the 3 and 3\' hydroxyl groups are esterified with hydroxy fatty acids. It is known that natural Lipid A-phosphates and approximants are potent immunostimulants which induce a number of desirable effects but also some undesirable ones [30]. Various analogues of Lipid A-diphosphate have been developed to avoid such unwanted effects as toxicity and pyrogenicity, and therefore, they are very distinct from other lipids and surfactants.
Lipid A-diphosphate and approximants possess beneficial effects in clinical therapy against chronic inflammatory diseases and are capable of decreasing resistance to antibiotics and cationic antimicrobial peptides (CAMP) [31]. In this context the CAMP play also a significant role in the immune reaction to gut commensals (inflammatory bowel disease (Crohn), ulcerative colitis) and possibly in antibiotic resistance [30, 31]. This infers to an increased bacterial invasion of the surface of the respective tissues accompanied by the loss of the protective barrier. This accounts for bacterial contamination of the intestinal surface where host and invader are physically in close contact. Accordingly, this view strongly supports the production of “intestinal autovaccines” and its therapeutic potential e.g for protection of CAMP synthesis and sustaining remissions. The chemical structure of the pro-inflammatory component of LPS, Lipid A (Fig. 1), varies between bacteria of different species where the Gram-negative bacteria modulate the structure of their LPS.
By applying freeze-fracture electron microscopy and X-ray diffraction techniques a qualitative phase relationship of Lipid A-diphosphate has been reported [32, 33]. These results were taken from samples of Lipid A extracted from Salmonella Minnesota, E. coli rough mutant LPS and from Salmonella enterica serovar Minnesota. In their qualitative study the aqueous specimens have been examined in the presence of mM phosphate buffers by synchrotron radiation and analyzed by their diffraction profiles e.g. cubic, hexagonal or simple cubic structures. However, there ionic strength was a magnitude higher than the one used for preparing electrostatically stabilized Lipid A-diphosphate dispersions with I = 10-4 to 10-6 M [12]. Especially, SAXD and SAXS are very suitable to characterize the 3-d structure or ordering in solution of the self-assembled Lipid A-phosphate clusters and probe their corresponding long-range order parameters. For comparison with light scattering, the most important advantage of the applied X-rays is their low refractive index contrast (the difference in index of refraction is of the order of 10-6), so the occurrence of multiple scattering and incoherent background scattering is significantly reduced and a much wider range of scattering vectors are available. It was observed that upon reaching a nanocluster size of 500 – 600 nm the suspensions became iridescent to visible light: thus, the iridescence acts as a visual marker of nanocluster size. Recently, the iridescent solutions have been physically analyzed and interpreted in terms of mass, surface charge, size and shape. The influence of polydispersity in charge, size and mass has been elucidated and included in all further experiments and simulations [7-13]. The most compelling observations of the colloidal crystallization and also of Lipid A-diphosphates in aqueous solutions at very low ionic strength conditions (< 10-6 M) are the order-disorder transition and the structural transition from a body-centered cubic (BCC) to a face-centered (FCC) structure [34, 35]. In these dispersions it is essential to consider the co-occurrence of phase separation and crystalline ordering, where it has been suggested that the crystalline phase is a supercooled liquid phase with some liquid retained in a metastabile state for a certain period of time, even at ϕ > 0.58. Experimental phase diagrams of Lipid A-diphosphate dispersions in NaCl or NaOH as shown in Fig. 2 are very helpful in searching for crystal formation, order–disorder as a function of ionic strength I, n and T. Moreover, they are useful for comparison with the theoretical predictions [36, 37]. Normally the crystalline arrays form spontaneously through self-assembly of charged colloidal Lipid A-phosphate spheres in low ionic strength but at low polydispersity in size, mass and charge. The spontaneous formation of self-assembled Lipid A-diphosphate crystallization is mainly driven by the excluded-volume entropy. The decrease in entropy in the colloidal crystals is associated with a nonuniform mean density, however, a greater local volume that each particle can independently explore compensates for these phenomena. If the amount of base (cs) were increased, a new fluid re-entrant disordered phase of self-assembled Lipid A-diphosphate clusters was encountered followed by a fluid ordered-crystalline BCC phase for low n when using NaOH as an electrolyte in the crystallization process.
It was possible to prepare stable aqueous colloidal dispersions of Lipid A-diphosphate and their approximants with low polydispersity in shape, size, and charge over a discrete range of volume fraction, ϕ [9-11]. The phase transitions were a correlated liquid phase, a cubic FCC and a body-centered cubic crystalline phase [35]. These phases were detected in the presence of mM NaCl for different volume fractions, ϕ; and various crystal forms (BCC and FCC) could be obtained. It was found that these assemblies were consistent with an assembly for a BCC lattice (Im3m) with a = 35.5 nm. However, a mixture of equimolar concentrations of the two antagonistic molecules revealed a SAXS-powder diffraction pattern a light scattering profile for crystals of sizes of 1 μm that could be indexed for a much larger face-centered (Fd3m) unit cell, with a = 58.0 nm. However, when employing the similar conditions for colloidal Lipid A-diphosphate dispersions but through addition of μM NaOH rather than by removing NaCl [35] a very different phase behavior was observed (Fig. 2). By varying the amount of added NaOH (or NaCl) it was possible to determine the effective charge,
When the NaOH concentration and the particle-number density of Lipid A-diphosphate is increased, the length scale of the repulsion decreased, because of many-body effects and the disorder-order-transition occurred at a particle-number density close to the freezing transition. When the NaOH concentration and the particle-number density of Lipid A-diphosphate is increased, the length scale of the repulsion decreased, because of many-body effects and the disorder-order-transition occurred at a particle-number density close to the freezing transition. At lower particle-number densities, as the length scale of the repulsive forces increased, the fluid-crystalline transition gave rise to BCC-type crystals.
Experimental phase diagrams of self-assembled charged Lipid A-diphosphate and their approximants at constant temperature (T = 291 K) as a function of particle number density, n, and ionic strength (I). (A) Ordered crystal phases appeared after considerable reduction of (I) with a large Debye length (NaCl) due to a stabilized electrostatic repulsion between the various self-assembled Lipid A-diphosphate clusters: ▼ Lipid A-diphosphate (A in Fig. 1) crystals; ● self-assembled Lipid A-diphosphate clusters comprising of Lipid A-diphosphate (A) and (C) shown in Fig. 1; ■ self-assembly of Lipid A-diphosphate clusters with (A) and (B) components; ■ self-assembly of components B and C; ▼ self-assembly of component (A) with six chains & with two double chained Lipid A-diphosphate at the non-educing end of the disaccharide; ■ self-assembly of the Lipid A-diphosphate approximant C (Fig. 1). Inset: Single spherical Lipid A-diphosphate clusters with d = 70.0 nm (SEM image). They form because of low shape and charge polydispersity (≤ 10%). (B) Phase diagram of charged spherical Lipid A-diphosphate clusters with the same composition as in (A), however, in the presence of μM NaOH. The re-entrant melting lines are shown at the left boundary (charging) and at the right boundary (screening), respectively. The two-phase regions are indicated as horizontal arrows. The red dotted lines indicate the equivalent titration points obtained from conductometric titrations. The ●●●lines are theoretical fits to the experimental data applying an effective charge of Zeff¯= 345 ± 76 for the left boundary, for the right boundary at maximum interaction the effective charge was Zeff¯= 320 ± 50. The corresponding values for NaCl (A) were Zeff¯= 470 ± 61 and Zeff¯= 500 ± 50, respectively. Insets: An ordered hexagonal columnar phase of non-crystalline Lipid A-diphosphate in the aqueous dispersion (Fluid 2) in (B) at high μM NaOH, contrary to (A). Lipid A-diphosphate clusters of diameter d = 6.0 nm are only present in the Fluid 1 Phase (SEM image) in (B), whereas the Lipid A-clusters in the hexagonal Fluid Phase 2 exhibit a nearest neighbor distance of 35.1 nm and a packing fraction of 0.68.
This implies that self-screening was much smaller than in previous studies and very different for Lipid A-monophosphate phases [38]. The experimental observations and the simulation support the existence of a transition from a fluid to a BCC structure rather than to an expected FCC structure for Lipid A-diphosphate clusters in e.g 5.0 mM NaCl. However, there was no FCC structure present for a certain NaOH concentration, but there was a crystalline BCC phase present between two clearly defined fluid phases with no crystals. It was rather unusual to encounter BCC structures for ionic strengths of different magnitude (5.0 μM NaCl vs. 50.0 μM NaOH) and for the same n, therefore, the OH- ions must contribute to the scenario. It is also feasible that the structural transition path was influenced by topological dissimilarities but differently forms the corresponding Lipid A-monophosphate crystalline phase, because of altered elastic deformations between the crystalline BCC phase which formed and the fluid phases from which it originated. The nearest-neighbor interparticle distance, 2dexp\n\t\t\t\t\t= 2π/Q110 = 32.2 nm was estimated from the experimental peak positions and compared with the average theoretical distance, 2 dth =
The observed intersphere spacing was normally close to the calculated mean sphere distance except at the interfacial region of the dispersions, where there was contact with the air or a wall. Melting is initiated when the amplitude of vibration becomes sufficiently large for the occurrence of partly shared occupancy between adjacent particles. It occurs when the root mean square of the vibration amplitude of a crystal exceeds a threshold value (~ 0.15 dN-N) according to Lindemann [39] and it would result in a movement of ~ 6.0 nm, which is a distance significantly smaller than the spacing between the surfaces of any of the spherical colloidal Lipid A-diphosphate clusters and a distance much less than the screening length. The Lindemann rule does not hold for crystals in 2d which have quasi-long-range instead of long-range translational order [40]. Measurements of the short-time and the long-time diffusion constants by quasi-elastic light scattering yielded a ratio of ~ 11 in the freezing region for the Lipid A-diphosphate cluster [41]. Furthermore, the possibility exists that the charge deduced from the melting line was also essential to center the particle within the cubic BCC unit cell. Note: According to the rule of Verlet and Hansen [42], crystallization occurs when the structure factor of ordinary liquids exceeds a value of 2.85 for 3d and
This result may explain why the Lipid A-diphosphate basic arrays adopted the form of colloidal clusters at low particle-number densities and low NaOH concentrations. The number of seeding Lipid A-diphosphate clusters of
Some new crystalline Lipid A-diphosphate clusters and their approximants have been developed since the protocol for obtaining electrostatically stabilized solutions of Lipid A-diphosphates or for the corresponding monophosphates at various n was available [11-13]. The well-ordered Lipid A-diphosphate clusters and the presence of higher order diffraction peaks corroborated the existence of crystalline Lipid A-diphosphate material documented for the BCC and FCC structures assigned to the space groups Im3¯m & Fd
A) SAXS profiles I(Q) vs. Q, with Q = (4π/λ) sinθ/2), of BCC type colloidal crystals (λ = 1.54 nm) with a = 37.6 nm composed of Lipid A-diphosphate and “subunit” C (Fig. 1). The assigned space group was Im3m, origin at center m3m, and equivalent positions 0, ½, ½; ½, 0, ½; ½, ½, 0 (Q229) based on the molecular composition and the assumed spherical diameter of d = 7.0 nm which was consistent with form-factor scattering at higher Q. The black dotted scattering profile is for the Lipid A-diphosphate phase at ϕ = 3.5 x 10-4, I = 0.5 mM NaCl, the solid-red line is the profile for an equimolar mixture of the antagonistic molecule depicted in B of Figure 1 for Lipid A-diphosphate with a = 35.5 nm. (B) SAXS profiles of colloidal crystals of the FCC type (Fd3¯m), the black-dotted line corresponds to Lipid A-diphosphate with a = 57.5 nm comprising of the components A and B (Fig. 1). The red-solid line is for the colloidal mixture of Lipid A-diphosphate and antagonistic Lipid A-diphosphate [47] (Fig. 1B) both are at ϕ = 5.4 x 10-4, I = 0.5 mM NaCl. The green solid SAXS profile represents the results from a mixture of Lipid A-diphosphate with the corresponding monosaccharide of Lipid A-diphosphate at ϕ = 3.4 x 10-4, I = 0.5 mM NaCl. Insets: Crystal morphologies as they appear in SEM images and simulated with the Accelrys Software Materials Studio 4.4 Module Morphology Version 6.0, San Diego (USA). The corresponding TEM images are shown in (C) and (D); the scale bar is 10 nm; (D) illustrates the chemical structure of the antagonistic Lipid A-diphosphate [47] composed only of a diphosphorylated glucosamine residue and two fatty-acid chains.
The two space groups were also centrosymmetric and belong to the Laue classes m
A) S(Q) vs. Q profile for colloidal FCC-type crystals of Lipid A-diphosphate clusters with a = 57.0 nm for n = 140 μm-3 and cS = 2.05 μM NaOH. The lower curve (- - -) reveals the differences between observed (•••) and calculated (─) intensities of the refined parameters form Rietveld analysis and X-ray powder diffraction pattern (Fd3¯m, site: 8a: 1/8, 1/8, 1/8 and 16-hedra: site 16d: ½, ½, ½, 12-hedra). (B) An SEM image is shown of μm sized single crystals (bar scale ≈1.0 μm) and the overall morphology of this crystal type and the Miller indexed faces are shown in (C).
By using computer simulations with multi-slice calculations, the Lipid A-diphosphate structure was obtained. The image multi-slice image simulations were carried out for the 100kV TEM Joel Microscope (T 3010) with imaging facilities for hollow-cone illuminations and using the Cowley algorithm [46, 47]. In addition, after successful indexing of the X-ray diffraction profiles and the selected area diffraction pattern (SAED), after the successful indexing of the powder-diffraction patterns and the selected-area diffraction patterns, a Pawley refinement was performed, taking the following parameters into consideration: cell parameters, peak-profile parameters, background and zero shifts. Following this refinement, a structure solution was imitated using a direct-space Monte Carlo-simulated annealing approach and a full-profile comparison was implemented. By employing a global optimization algorithm, trial structures were continuously generated by modifications in the specified degrees of freedom, i.e. three translations, three rotations and the dihedral angles.
It was possible to show that most of the Lipid A-diphosphate particles were orientated in the [001] direction with respect to the substrate for one of the five deformed tetrahedral subunits, i.e., the fivefold axis was parallel to the surface of the substrate [48]. Due to the presence of Lipid A-diphosphate and the surface tension, the only growth in the direction of the fivefold axis of decahedra was possible, resulting in long rods.
Since n = n* (n* = particle/length3) the orientational entropy and the electrostatic repulsion of the free energy expression for these charged rods favor antiparallel alignment of the rods [45], this will give rise to a cubic lattice-like interparticle structures as noticed in Figure 5(C). For n >> n* and 10 μM NaOH a hexagonal packing of parallel rods can be anticipated as an appropriate description. If one considers the correlation of nearest-neighbor rods of Lipid A –diphosphate, then a parallel alignment of nearest neighbor rods is observed with a local ordering parameter S = 0.07 at n = 2.8 n*. Individual rod-shaped particles are noticed in Figure 5B whereas in Figure 5A N-regions of Lipid A-diphosphate particles are observed, where the particles exhibit parallel orientations, which may correspond to Sm precursors. When n is significantly increased, the Lipid A-diphosphate clusters grow laterally, their contours become clearer, and more layering of the clusters appear. The particle packing fraction ϕP for the Sm phase was estimated to 0.28. The Sm layer period and in-layer separation were calculated to be 2.8 and 2.4 nm, respectively, for n = 5.5 n*.
A) S(Q) vs. Q profile for colloidal FCC-type crystals with a = 57.0 nm for n = 140 μm-3 and cS = 2.05 μM NaOH. The lower curve (- - -) reveals the differences between observed (•••) and calculated (▬) intensities of the refined parameters. The inset depicts a SEM image of single crystals (size ≈1.0 μm) and the morphology of this crystal type. (B) S(Q) vs. Q profiles as a function of n obtained by static light scattering for rods (▬) and SAXS (▬) at cs = 7.6 μM NaOH, pH 7.85. These materials do not exhibit any iridescence. The dotted lines (---) represent the calculated S(Q) values for an isotropic solution of rods with L = 800 nm and d = 5.6 nm as a function of n; ( ) for a calculated dodecahedral Lipid A-diphosphate rod-model for n = 40 μm-3 (T = 295 K). (C) shows a high resolution electron micrograph (HTEM) image of highly ordered and crystalline Lipid A-diphosphate nanorods in the [100] direction observed at pH 7.85 approaching the melting line for n = 55 μm-3 (T = 295 K), the scale bar is 100 nm. (D) shows a HRTEM image of Lipid A-diphosphate observed at pH 7.85, crossing the melting line for n = 55 μm-3 (T = 295 K), and at 5 μM NaOH. The scale bar is also 100 nm.
The various morphologies of Lipid A-diphosphate and Lipid A-monophosphate nanocrystals as observed by SEM are shown in Figure 7.
A) – (C) show overviews of HRTEM images of crystalline Lipid A-diphosphate rods at pH 7.85 (295 K) along the [111] plane. The bar in (A) is 50 nm, 100 nm in (B) and 200 nm in (C). (D) Shows a long rod of Lipid A-diphosphate as a SEM image, the bar is 1 μm. This crystalline rod reveals FCC stacking faults along the [111] plane. A calculated Fourier transform image for models of truncated dodecahedral Lipid A-diphosphate particles is shown in (E); they are obtained form SAED pattern (F) from the lattices shown in (A) to (C). Model calculations support a five-fold axis in the [1-10] direction, and parallel to the (001) plane, i.e. 0º and 18º, but perpendicular to the fivefold axis (E) accounting for the experimental SAED pattern shown in (F).
These crystals are obtained at different particle number densities n as indicated and at constant T but at very low ionic strength, (I ~ 10-6 M in NaCl or I ~ 10-5 M in NaOH. Although the obtained nanocrystals at 10 μM NaOH show a better 3d order than those grown in very low NaCl concentrations according to the corresponding SAED and SAXS pattern quality, they generally reveal SEM images of icosahedral or dodecahedral morphology. Typical sizes of these crystals are of the order of 0.3-1 μm. Moreover, there was no congruent metastable other phases found for the icosahedral phase for the crystals grown in the presence of 10 μM NaOH, but there was in the presence of 1.0 μM NaCl, or 10 nM Ca2+ [11]. ]. Therefore, some small portion of FCC Lipid A-diphosphate was always present. Rhombic triacontahedral has been observed for Lipid A-monophosphate nanocrystals and is not the only icosahedral quasicrystal.
The antagonistic mediated incorporation into cubic crystalline Lipid A-diphosphate assemblies is more effective if the colloidal particles are oblate ellipsoids rather than curved. The assumed deformable soft spheres incorporate flexibility on a simple level [47]. At mechanical equilibrium the soft Lipid A-diphosphate sphere may be approximated into a prolate or oblate ellipsoid of revolution while preserving its volume at πd3/6 where d is the hydrodynamic diameter of the soft sphere (~ 7 nm). The distortion is given through the aspect ratio ρ = a/b of the self-assembly, a is the symmetry semiaxis length of the ellipsoid and b is its orthogonal semiaxis length.
SEM images of the morphologies of Lipid A-diphosphate (A – C) and Lipid A-monophosphate crystals (D - E). These crystals are usually grown from aqueous dispersions containing either 10-5 M NaCl (A, B, E) or 10 μM NaOH (D, F). The icosahedral phase exhibits nanocrystals with pentagonal dodecahedral faceting. The scale bar is 100 nm in (A) - (C) and (E). The scale bar in (D) is 0.5 μm. In (F) faceted Lipid A-monophosphate nanocrystals are shown, the scale bar is 1.0 μm. The particle number density, n, was 350 μm-3 in (A) –(C), 150 μm-3 in (D) – (E), and 450 μm-3 in (F).
Furthermore, some Lipid A-diphosphate and approximants were formed by a peritectic reaction from the solid Lipid A-diphosphate phase and the liquid Lipid A-diphosphate (Form C of Fig. 1) at T = 295 K. These nanocrystals possess pentagonal dodecahedral solidification morphologies, but with exclusively pentagonal faces. Since this observation is associated with molecular motion and rearrangements of the positions in the Lipid A-phosphate nanocrystals lattices above a certain temperature (T > 295 K) or slowly cooling form T = 295 K to T = 288 K, which was deduced from broadening of the X-ray diffraction lines and SAED peaks, these modes belong to the phason long-wave-length phason. Relaxation of the phason strain is a diffusive process and therefore intimately related to the crystal growth process and is much slower than the phonon strain.
Quasicrystals exhibited non-crystallographic packing of non-identical Lipid A-phosphate spheres and a spatial packing of these spheres in either a cuboctahedron or an icosahedron were representative of sound physical models. Following an increase in temperature, a BCC phase was revealed and this structure gave rise to dodecagonal quasicrystals, which formed from spherical particles. Electron diffraction patterns of the dodecahedrons were recognized from the magnitudes of non-identical intensities of Lipid A-diphosphate and antagonistic Lipid A-diphosphate, which contained only 4 acyl-chains. It should be noted that the observed (3.3.4.3.4) was a crystalline analogue of the above-mentioned icosahedral quasicrystal with a different length scale. The tiling pattern of triangles (N3) and squares (N4) where the vertices were surrounded by a triangle-square-triangle tiling pattern possessed a p4gm plane group. Another coded Lipid A-diphosphate approximant showed an 8/3 ratio with 6-fold symmetry and plane group p6mm. Both (3.3.4.3.4) and dodecagonal phases revealed a N3/N4 ratio of approx. 2.34; the ratio of the p6mm plane group was 8/3. Because bond orientational order existed, the direction of domains was classified into three orientations for the (3.3.4.3.4) tiling, but only two for the 8/3 approximants. The average magnitude of the prominent scattering vectors, ׀Q׀ = 0.121 nm-1, and the length of sides of the triangles and of the squares was 50 nm.
Under the assumption that the macroscopic shape of a crystal is related to its microscopic symmetry and taking the various X-ray diffraction patterns, the SAED’s and the morphology into consideration, the Lipid A-diphosphate structures and their approximants can be reconciled by lowering the symmetry from cubic, Im
Space groups such as Im
Packing of Fd3¯m and Pm3¯n tetrahedrally close-packed Lipid A-diphosphate and Lipid A-monophosphate structures for two cubic crystalline phases using Wigner-Seitz cells. For both structures, aqueous bilayer compartmentalizes the hydrophobic portion of the Lipid A-phosphates into tetrahedrally networks. This network is a combination of a pentagonal dodecahedron (blue) with 14 –face polyhedra (green) in Pm3¯n and with 16-face polyhedra (green) in Fd3¯m.
Normally equilibrium thermodynamics prevent faceting in two dimensions (2d) because the one-dimensional perimeter of a two-dimensional crystal exhibits no long-range order at any non-zero temperature. However, the formation of stable facets during crystallization need not prevent faceted crystal growth in two dimensions, which is supported both experimentally [18, 51-53] and by computer simulations [54-56]. This possibility is extremely useful in studies of cell surface recognition in the presence of Lipid A-diphosphate e.g. surface patterning, mechanical properties and cell mechanics with optical tweezers. Moreover, surface tension effects become important as the interface is no longer planar and it introduces a length scale of the order of a few nm, influencing crystal shape, morphology and stability as well as biomineralization [57].
We observed a surface-tension gradient induced crystal growth phenomena in Lipid A-diphosphate and Lipid A-diphosphate approximants layers comprising of the same chemical composition as studied for the re-entrant phase BCC and FCC networks. Briefly, the surface tension gradient was created by heating the trough (1 cm3, 5.0 mins/ºC), measuring simultaneously the surface tension, γ, for various n, either in the presence of a fluorescent dye (Alexa Fluor 488, Molecular Probes USA) which was spread on the aqueous surface, or by direct observation with a Scanning Electron Microscope (SEM) when the samples were withdrawn from the container under a light microscope (Olympus BX 60) and transferred to a substrate, coated with Pt (1min) and studied in a SEM (JEOL 6400). A video recording system was hooked up to the light microscope for monitoring the morphology changes with time. Double-chained lipids reveal saturation coverage of ~1.0 molecule/0.5nm2 in aqueous media, which are magnitudes different from Lipid A-diphosphate where ordering of Lipid A-diphosphate occurs at concentrations that are less than 1.33 x 10-11 mbar∙s or saturation monolayer coverage of ~ 10-5 L [58, 59]. The surface density of the dye is ~ 10-2 molecule/nm2. Since n is much lower than the CMC of Lipid A-diphosphate (14.0 μg/mL (3.5 x 10-5 mM) at 10ºC and 7.5 μg/mL at 20ºC (2.0 x 10-5 mM; Kraft point 5.8ºC), the dye does not dissolve in the bulk phase, and because the measurements are far from the stability region of the Lipid A-diphosphate 3d crystals, the surface film is 2-dimensional. By compressing the monolayer film a liquid phase-liquid condensed phase coexistence space is reached. The coexistence phase is characteristic of the formation of dark and fractal like liquid condensed phase domain when viewed through the fluorescent microscope. The morphology of the various 2d Lipid A-diphosphate images and their evolution are depicted in Figure 9.
Faceted domains built up on the tip of the fractal branches, but these tips are not stable and after continuous crystal growth a dendritic pattern evolved. The domains are squeezed in-between the dendritic stems promote to grow. However, the external tips of the domains have a higher probability to expand into a dendritic pattern. It appears that the hexagonal shaped Lipid A-diphosphate crystals grew in the liquid-crystalline boundary (Fig. 9). It was also observed that the hexagonal domains enlarged to the dendritic pattern, where the corners of the hexagons are very sharp and the dendrites revealed stable tips and strong stems are clearly observed. Quantitatively, the Lipid A-diphosphate is higher than in the middle of the straight edge at the corners of the faceted pattern. This implies that the main transfer rate to the corners is higher than at other places in space causing an instability region. As a result the crystal edge corners grew more rapidly than the center region and (curled) dendrites appeared on the corners of the hexagon (Fig. 9g).
Development of fractal crystalline pattern of Lipid A-diphosphate domains as a function of time. The video-recorded light-optical microscopy images were directly converted to black and white images by using the Adobe Photoshop (version 8.0.1.) (a) Observed fractal patter when the monolayer of Lipid A-diphosphate is compressed to the liquid-crystalline to liquid-expanded coexistence region. (b) – (e) show the time evolution of the same Lipid A-diphosphate pattern from fractal to dendritic behavior under the microscope. At the tips (red arrows) in (b & c) become thicker and reveal facets; normally these tips grow into thick dendrites with clearly main stem, strong and stable tips (d & e). The bar size is 50 μm. The morphologies of the liquid-crystalline domains of Lipid A-diphosphate are shown (f-i). In (f) a HRTEM image of faceted cubic-like and unconnected Lipid A-diphosphate crystals are shown (the bar is 100 nm). (g) depicts the observed hexagon domain which grows usually near the cubic-like crystal domain; but this is dependent on T, however, at constant I; the bar size is 10 nm. (h) Shows a SEM image of fusing Lipid A-diphosphate crystals observed when the monolayer expands to a fluid state, or compresses to a certain density dc where the crystals contact one another and fuse. The bar is 10 μm, T = 295 K and c = 6.0 μg/mL. (i) Shows single Lipid A-diphosphate nanocrystals grown at T = 295 k but in c = 60.0 μg/mL and in the presence of 20 μM NaOH. These nanocrystals exhibit icosahedral faces and also rhombic triacontahedral faceting; the bar size is 1 μm.
For this instability, a field gradient existed where crystals grew faster as they reached deeper into the gradient. As a result of this instability was an invasion of the more viscous phase by the less viscous phase without ordering or a characteristic length scale. It was also a process which operated during diffusion-limited aggreagtion, in which case the diffusive instability led to a fractal structure. Moreover, in the growth process far from equilibrium the aggregation of the fractal-like domains can be faster than the relaxation process of the Lipid A-diphosphate clusters. Hence the Lipid A-diphosphate clusters form rectangular lattices. The 2d-hexagonal domains nucleated and grew under lower force, where in the meantime the Lipid A-diphosphate clusters gain enough time to relax to minimum lattice energy positions. Therefore, the difference in macroscopic morphology together with the caused instability implies that, the structure of the liquid crystal domains depend on the driving force. Also what should be mentioned is the influence of different chiral conformers in the bulk solution whose presence has been supported by circular dichroism experiments and molecular simulations (unpublished results, 2011). The observed hexatic phase (Fig. 10), which separates the isotropic liquid Lipid A-diphosphate cluster phase and the liquid crystalline phase has short-range translational and quasi long-range orientational order.
In accord with theory [22, 60-64] we are able to detect three phases: a liquid, hexatic and a crystal Lipid A-diphosphate phase, but no fluid-crystal or hexatic-crystal phase coexistence phase. This is supported from surface tensiometry measurements as a function of T and μg/mL bulk concentration revealing hexagonally shaped crystals.
SAED’s (Joel, T 3010, 300 kV, 15 cm) and SAXS images for the various crystalline Lipid A-diphosphate clusters at different μM NaOH and Lipid A-diphosphate concentrations (c). (A) SAED for a 2d-pattern, a 10 nm thick layer obtained from very small Lipid A-diphosphate crystallites (sizes ~ 0.1-0.2 μm, c = 3.5 μg/ml, T = 295 K and γc = 25.5 mN/m in 5 μM NaOH. This 2d pattern indicates a hexagonal or centered trigonal unit cell with a = 3.70 nm. The bar size is 0.5 nm-1, and the image was obtained with a CCD camera. (B) Enlarged SAED pattern of a 2d crystallite for c = 8.5 μg/ml, Tc = 295 K and γc = 25.5 mN/m but for 5.75 μM NaOH. This crystalline Lipid A-diphosphate material is maintained for approximately 1-1.5 h., and is indicative for the hexatic phase (inset). (C) SAXS pattern for the fluid phase where only diffuse rings but no dots are visible and close to the melting line; a change from solid to liquid occurred (dγ/dT < 0, Ss >Sb) where Ss is larger than the bulk entropy (Sb) and where the density is very similar to that of the bulk (for T > Tc).
Normally, lipids or surfactant concentrations are well in the range of mM (mg/mL) when forming a liquid-like monolayer, but in the case of Lipid A-diphosphate we are in the μg/ml range or lower and strongly dependent on polydispersity in charge and size distribution! This is significantly different from insoluble surfactant monolayers. Preliminary theoretical fitting results of the thermodynamics, γ(T) vs. T (T< Tc), with Tc is the critical temperature where the slope changed (dγ/dT)c, yielded values for the chain interactions of b
Different phase can be distinguished from 2d structure factors (Fig. 10). The functional form of the angular intensity profile of S(Q) is the square root Lorenzian of the hexatic phase and Lorenzian of the crystal phase [65, 66]. In the hexatic phase both the ring and the six spots (Fig. 10A & B) are clearly noticeable, where the six spots indicate a small ordered patchy like located in the dense liquid Lipid A-diphosphate dispersion (Fig. 10C). Using the disorder parameter
But, when melting of Lipid A-diphosphate crystals commenced above a critical temperature (Tc), γc as a function of n, the evaporation rate becomes slower when the crystallites shrink. These crystallites may sediment rapidly when transforming into the bulk liquid with a higher density than from the onset of the crystallization, where a lower density of the bulk solution is met than the actual crystal and evaporates swiftly. This melting scenario is reminiscent to the coexistence of a dense and expanded crystal phase. This Lipid A-diphosphate crystal phase also depends strongly on polydispersity in size, mass and charge for T and n is constant. The total number of Lipid A-diphosphate crystals depends on the kinetics during the monolayer compression and is a function of n, T and γ. Once the early seed have developed the number of domains is fixed and does not change with subsequent compression unless the monolayer expands to a fluid state, or compresses to a certain density dc where the crystals contact one another and fuse (Fig. 8h). Evidently this depends on the rate of compression (or evaporation) or “impurities” seen as “various Lipid A-diphosphate conformers” present in the bulk Lipid A-diphosphate dispersion due to the conformational changes of the disaccharide as noticed from the crystal structures of Lipid A-monophosphate [73]. The cause of this resulting instability originates from an increase of lipid A-phosphate conformers over another conformer on a characteristic length scale rather than on impurities [74]. It is also a process which operated during diffusion-limited aggreagtion, in which case the diffusive instability led to a fractal structure. Furthermore, the shape of the Lipid A-diphosphate crystals (Fig. 8A) is also affected by the interfacial free energy between the solid and liquid phase. Particularly, the interface influences the free energy penalty Aγ, which is proportional to the area of the interface and the surface energy γ. Consequently, the free energy difference of the crystal and the fluid is:
Where V is the volume of the crystal nucleus, ncrystal is the particle number density in the crystal and Δμ = μFluid - μcrystal is the difference of the chemical potential of fluid and crystal, respectively.
Furthermore, the 2d order quality of the Lipid A-diphosphate crystals is influenced by grains due to mixed sizes and shapes (Fig. 9C). Complete uniformity cannot be expected. Assuming the 2d lattice and the force between adjacent spheres (or ellipsoidal particles with a low axial ratio) are identical may yield under compression (sedimentation, gravity, capillary forces) another packing than hexagonal resulting in change to a cubic lattice. This cubic lattice has actually been found for both lipids. Consequently the ordered 2d hexagonal structure which is present in the fluid state in the presence of μM NaOH (Fig. 2B) has a minimum density, whereas the intermediate density rests with the detected cubic structure and finally the maximum density will be closer to the hexagonal close packing than to the simple cubic structure. This is contrary for the Lipid A-diphosphate invariant to the particle number density, n, and T=constant, but at very low I of μM to mM NaCl or nM Ca2+, respectively [9, 11].
The influence of the Lipid A-diphosphate crystal-crystal-coexistence within the crystallization process has also to be considered. Since there is a noticeable variation in large and small μm-sized crystals as a function of polydispersity in size and charge, the ratio may be important so that the expanded Lipid A-diphosphate crystal phase is metastabile and a function of ϕ, T and I. As a result the density of the Lipid A-diphosphate nuclei is increasing with ϕ (n), which is contrary of the classical nucleation theory (CNT) [60]. According to this theory the density of the crystal is the same as the bulk density, or the density decreases with increasing of the Young-Laplace pressure, Πc = γ/Lc =
The successful production of Lipid A-phosphate crystals makes it extremely useful to study various Lipid A-diphosphate assemblies of e.g. four, three, and penta- or hexaacylated Lipid A-phosphate approximants including those of modified disaccharide or monosaccharide moieties. This still remains to be elucidated. It was possible to construct different Wigner-Seitz polyhedra that make up the overall volume of the Frank-Kasper type unit cells with complexes comprised of Lipid A-diphosphate, antagonistic and non-toxic Lipid A-phosphate analogues depending on volume fraction, ϕ (ϕ = υ2 c), the nature of the counterions and temperature. They form by spontaneous self-assembly and appear to obey the principles of thermodynamically reversible self-assembly but once self-assembled strongly resist disassembly. Base on these principles, Lipid A-phosphate assemblies can be designed which form large unit cells by containing more than hundreds of Lipid A-phosphates. The range of Lipid A-phosphate structures may also be increased further by employing various different (“non-identical subunits”) and identical subunits of Lipid A-phosphate in analogy with block copolymers. The rational design of such assemblies and the nucleation and creation of polymorphic Lipid A-phosphates production of mesoscopic suitable cellular networks, and structure-function relationships will be impacted by a theoretical and practical understanding of the spherical assemblies, rod-like assemblies and the mixtures thereof. Furthermore, the unit cell found for a four-single-chained Lipid A-phosphate approximant contained four honeycomb cells: two triangular and two quadrangular. However, the corresponding monophosphate contained 16 cells, of which either 10% or 66% were quadrangular. Given the theoretical and practical importance of this system, we expect that the attention given to it will substantially increase our knowledge on Lipid A-di-and monophosphates and the driving forces for the ordered assemblies. Furthermore, the structure of the Lipid A-diphosphate rod can be explained as truncated large dodecahedra.
The crystallization and phase behaviour of the Lipid A-diphosphate in two-dimensional (2d) and three-dimensional (3d) systems has been elucidated in more detail than before and analyzed as a function of ϕ, T, γ, morphology, and structure stability with the application of the CNT and KTHNY theories. But the experimental situation appear to be more complicated, because no real long-range translational order exists in 2d crystals and the phase behaviour close to freezing has been found to be richer than in 3d systems. We discovered for the Lipid A-diphosphate system a hexatic phase with short-range-translational order and quasi-long-range orientational order between crystal and liquid.
The authors thank Professors S. E. Donnelly, Drs. N. M. Boag, S. Simpson (Manchester, U.K.) for very critical discussions on electron microscopy, X-ray diffraction and chirality, and for using the High Resolution Electron Microscope (Joel T 3010) and the X-ray diffraction equipments. Professor K. Stadtlander (Iserlohn, Germany) for lending us the Olympus light microscope and the video camera. Financial support from the Biomaterials Project (Bruxelles, Grant BMH4-CT-96-0013), Chemical-Biotechnological Laboratories Inc (Iserlohn) and from Orthomol (Langenfeld, Germany) are gratefully acknowledged.
Research methodology is the path through which researchers need to conduct their research. It shows the path through which these researchers formulate their problem and objective and present their result from the data obtained during the study period. This research design and methodology chapter also shows how the research outcome at the end will be obtained in line with meeting the objective of the study. This chapter hence discusses the research methods that were used during the research process. It includes the research methodology of the study from the research strategy to the result dissemination. For emphasis, in this chapter, the author outlines the research strategy, research design, research methodology, the study area, data sources such as primary data sources and secondary data, population consideration and sample size determination such as questionnaires sample size determination and workplace site exposure measurement sample determination, data collection methods like primary data collection methods including workplace site observation data collection and data collection through desk review, data collection through questionnaires, data obtained from experts opinion, workplace site exposure measurement, data collection tools pretest, secondary data collection methods, methods of data analysis used such as quantitative data analysis and qualitative data analysis, data analysis software, the reliability and validity analysis of the quantitative data, reliability of data, reliability analysis, validity, data quality management, inclusion criteria, ethical consideration and dissemination of result and its utilization approaches. In order to satisfy the objectives of the study, a qualitative and quantitative research method is apprehended in general. The study used these mixed strategies because the data were obtained from all aspects of the data source during the study time. Therefore, the purpose of this methodology is to satisfy the research plan and target devised by the researcher.
The research design is intended to provide an appropriate framework for a study. A very significant decision in research design process is the choice to be made regarding research approach since it determines how relevant information for a study will be obtained; however, the research design process involves many interrelated decisions [1].
This study employed a mixed type of methods. The first part of the study consisted of a series of well-structured questionnaires (for management, employee’s representatives, and technician of industries) and semi-structured interviews with key stakeholders (government bodies, ministries, and industries) in participating organizations. The other design used is an interview of employees to know how they feel about safety and health of their workplace, and field observation at the selected industrial sites was undertaken.
Hence, this study employs a descriptive research design to agree on the effects of occupational safety and health management system on employee health, safety, and property damage for selected manufacturing industries. Saunders et al. [2] and Miller [3] say that descriptive research portrays an accurate profile of persons, events, or situations. This design offers to the researchers a profile of described relevant aspects of the phenomena of interest from an individual, organizational, and industry-oriented perspective. Therefore, this research design enabled the researchers to gather data from a wide range of respondents on the impact of safety and health on manufacturing industries in Ethiopia. And this helped in analyzing the response obtained on how it affects the manufacturing industries’ workplace safety and health. The research overall design and flow process are depicted in Figure 1.
Research methods and processes (author design).
To address the key research objectives, this research used both qualitative and quantitative methods and combination of primary and secondary sources. The qualitative data supports the quantitative data analysis and results. The result obtained is triangulated since the researcher utilized the qualitative and quantitative data types in the data analysis. The study area, data sources, and sampling techniques were discussed under this section.
According to Fraenkel and Warren [4] studies, population refers to the complete set of individuals (subjects or events) having common characteristics in which the researcher is interested. The population of the study was determined based on random sampling system. This data collection was conducted from March 07, 2015 to December 10, 2016, from selected manufacturing industries found in Addis Ababa city and around. The manufacturing companies were selected based on their employee number, established year, and the potential accidents prevailing and the manufacturing industry type even though all criterions were difficult to satisfy.
It was obtained from the original source of information. The primary data were more reliable and have more confidence level of decision-making with the trusted analysis having direct intact with occurrence of the events. The primary data sources are industries’ working environment (through observation, pictures, and photograph) and industry employees (management and bottom workers) (interview, questionnaires and discussions).
Desk review has been conducted to collect data from various secondary sources. This includes reports and project documents at each manufacturing sectors (more on medium and large level). Secondary data sources have been obtained from literatures regarding OSH, and the remaining data were from the companies’ manuals, reports, and some management documents which were included under the desk review. Reputable journals, books, different articles, periodicals, proceedings, magazines, newsletters, newspapers, websites, and other sources were considered on the manufacturing industrial sectors. The data also obtained from the existing working documents, manuals, procedures, reports, statistical data, policies, regulations, and standards were taken into account for the review.
In general, for this research study, the desk review has been completed to this end, and it had been polished and modified upon manuals and documents obtained from the selected companies.
The study population consisted of manufacturing industries’ employees in Addis Ababa city and around as there are more representative manufacturing industrial clusters found. To select representative manufacturing industrial sector population, the types of the industries expected were more potential to accidents based on random and purposive sampling considered. The population of data was from textile, leather, metal, chemicals, and food manufacturing industries. A total of 189 sample sizes of industries responded to the questionnaire survey from the priority areas of the government. Random sample sizes and disproportionate methods were used, and 80 from wood, metal, and iron works; 30 from food, beverage, and tobacco products; 50 from leather, textile, and garments; 20 from chemical and chemical products; and 9 from other remaining 9 clusters of manufacturing industries responded.
A simple random sampling and purposive sampling methods were used to select the representative manufacturing industries and respondents for the study. The simple random sampling ensures that each member of the population has an equal chance for the selection or the chance of getting a response which can be more than equal to the chance depending on the data analysis justification. Sample size determination procedure was used to get optimum and reasonable information. In this study, both probability (simple random sampling) and nonprobability (convenience, quota, purposive, and judgmental) sampling methods were used as the nature of the industries are varied. This is because of the characteristics of data sources which permitted the researchers to follow the multi-methods. This helps the analysis to triangulate the data obtained and increase the reliability of the research outcome and its decision. The companies’ establishment time and its engagement in operation, the number of employees and the proportion it has, the owner types (government and private), type of manufacturing industry/production, types of resource used at work, and the location it is found in the city and around were some of the criteria for the selections.
The determination of the sample size was adopted from Daniel [5] and Cochran [6] formula. The formula used was for unknown population size Eq. (1) and is given as
where n = sample size, Z = statistic for a level of confidence, P = expected prevalence or proportion (in proportion of one; if 50%, P = 0.5), and d = precision (in proportion of one; if 6%, d = 0.06). Z statistic (Z): for the level of confidence of 95%, which is conventional, Z value is 1.96. In this study, investigators present their results with 95% confidence intervals (CI).
The expected sample number was 267 at the marginal error of 6% for 95% confidence interval of manufacturing industries. However, the collected data indicated that only 189 populations were used for the analysis after rejecting some data having more missing values in the responses from the industries. Hence, the actual data collection resulted in 71% response rate. The 267 population were assumed to be satisfactory and representative for the data analysis.
The sample size for the experimental exposure measurements of physical work environment has been considered based on the physical data prepared for questionnaires and respondents. The response of positive were considered for exposure measurement factors to be considered for the physical environment health and disease causing such as noise intensity, light intensity, pressure/stress, vibration, temperature/coldness, or hotness and dust particles on 20 workplace sites. The selection method was using random sampling in line with purposive method. The measurement of the exposure factors was done in collaboration with Addis Ababa city Administration and Oromia Bureau of Labour and Social Affair (AACBOLSA). Some measuring instruments were obtained from the Addis Ababa city and Oromia Bureau of Labour and Social Affair.
Data collection methods were focused on the followings basic techniques. These included secondary and primary data collections focusing on both qualitative and quantitative data as defined in the previous section. The data collection mechanisms are devised and prepared with their proper procedures.
Primary data sources are qualitative and quantitative. The qualitative sources are field observation, interview, and informal discussions, while that of quantitative data sources are survey questionnaires and interview questions. The next sections elaborate how the data were obtained from the primary sources.
Observation is an important aspect of science. Observation is tightly connected to data collection, and there are different sources for this: documentation, archival records, interviews, direct observations, and participant observations. Observational research findings are considered strong in validity because the researcher is able to collect a depth of information about a particular behavior. In this dissertation, the researchers used observation method as one tool for collecting information and data before questionnaire design and after the start of research too. The researcher made more than 20 specific observations of manufacturing industries in the study areas. During the observations, it found a deeper understanding of the working environment and the different sections in the production system and OSH practices.
Interview is a loosely structured qualitative in-depth interview with people who are considered to be particularly knowledgeable about the topic of interest. The semi-structured interview is usually conducted in a face-to-face setting which permits the researcher to seek new insights, ask questions, and assess phenomena in different perspectives. It let the researcher to know the in-depth of the present working environment influential factors and consequences. It has provided opportunities for refining data collection efforts and examining specialized systems or processes. It was used when the researcher faces written records or published document limitation or wanted to triangulate the data obtained from other primary and secondary data sources.
This dissertation is also conducted with a qualitative approach and conducting interviews. The advantage of using interviews as a method is that it allows respondents to raise issues that the interviewer may not have expected. All interviews with employees, management, and technicians were conducted by the corresponding researcher, on a face-to-face basis at workplace. All interviews were recorded and transcribed.
The main tool for gaining primary information in practical research is questionnaires, due to the fact that the researcher can decide on the sample and the types of questions to be asked [2].
In this dissertation, each respondent is requested to reply to an identical list of questions mixed so that biasness was prevented. Initially the questionnaire design was coded and mixed up from specific topic based on uniform structures. Consequently, the questionnaire produced valuable data which was required to achieve the dissertation objectives.
The questionnaires developed were based on a five-item Likert scale. Responses were given to each statement using a five-point Likert-type scale, for which 1 = “strongly disagree” to 5 = “strongly agree.” The responses were summed up to produce a score for the measures.
The data was also obtained from the expert’s opinion related to the comparison of the knowledge, management, collaboration, and technology utilization including their sub-factors. The data obtained in this way was used for prioritization and decision-making of OSH, improving factor priority. The prioritization of the factors was using Saaty scales (1–9) and then converting to Fuzzy set values obtained from previous researches using triangular fuzzy set [7].
The researcher has measured the workplace environment for dust, vibration, heat, pressure, light, and noise to know how much is the level of each variable. The primary data sources planned and an actual coverage has been compared as shown in Table 1.
Planned versus actual coverage of the survey.
The response rate for the proposed data source was good, and the pilot test also proved the reliability of questionnaires. Interview/discussion resulted in 87% of responses among the respondents; the survey questionnaire response rate obtained was 71%, and the field observation response rate was 90% for the whole data analysis process. Hence, the data organization quality level has not been compromised.
This response rate is considered to be representative of studies of organizations. As the study agrees on the response rate to be 30%, it is considered acceptable [8]. Saunders et al. [2] argued that the questionnaire with a scale response of 20% response rate is acceptable. Low response rate should not discourage the researchers, because a great deal of published research work also achieves low response rate. Hence, the response rate of this study is acceptable and very good for the purpose of meeting the study objectives.
The pretest for questionnaires, interviews, and tools were conducted to validate that the tool content is valid or not in the sense of the respondents’ understanding. Hence, content validity (in which the questions are answered to the target without excluding important points), internal validity (in which the questions raised answer the outcomes of researchers’ target), and external validity (in which the result can generalize to all the population from the survey sample population) were reflected. It has been proved with this pilot test prior to the start of the basic data collections. Following feedback process, a few minor changes were made to the originally designed data collect tools. The pilot test made for the questionnaire test was on 10 sample sizes selected randomly from the target sectors and experts.
The secondary data refers to data that was collected by someone other than the user. This data source gives insights of the research area of the current state-of-the-art method. It also makes some sort of research gap that needs to be filled by the researcher. This secondary data sources could be internal and external data sources of information that may cover a wide range of areas.
Literature/desk review and industry documents and reports: To achieve the dissertation’s objectives, the researcher has conducted excessive document review and reports of the companies in both online and offline modes. From a methodological point of view, literature reviews can be comprehended as content analysis, where quantitative and qualitative aspects are mixed to assess structural (descriptive) as well as content criteria.
A literature search was conducted using the database sources like MEDLINE; Emerald; Taylor and Francis publications; EMBASE (medical literature); PsycINFO (psychological literature); Sociological Abstracts (sociological literature); accident prevention journals; US Statistics of Labor, European Safety and Health database; ABI Inform; Business Source Premier (business/management literature); EconLit (economic literature); Social Service Abstracts (social work and social service literature); and other related materials. The search strategy was focused on articles or reports that measure one or more of the dimensions within the research OSH model framework. This search strategy was based on a framework and measurement filter strategy developed by the Consensus-Based Standards for the Selection of Health Measurement Instruments (COSMIN) group. Based on screening, unrelated articles to the research model and objectives were excluded. Prior to screening, researcher (principal investigator) reviewed a sample of more than 2000 articles, websites, reports, and guidelines to determine whether they should be included for further review or reject. Discrepancies were thoroughly identified and resolved before the review of the main group of more than 300 articles commenced. After excluding the articles based on the title, keywords, and abstract, the remaining articles were reviewed in detail, and the information was extracted on the instrument that was used to assess the dimension of research interest. A complete list of items was then collated within each research targets or objectives and reviewed to identify any missing elements.
Data analysis method follows the procedures listed under the following sections. The data analysis part answered the basic questions raised in the problem statement. The detailed analysis of the developed and developing countries’ experiences on OSH regarding manufacturing industries was analyzed, discussed, compared and contrasted, and synthesized.
Quantitative data were obtained from primary and secondary data discussed above in this chapter. This data analysis was based on their data type using Excel, SPSS 20.0, Office Word format, and other tools. This data analysis focuses on numerical/quantitative data analysis.
Before analysis, data coding of responses and analysis were made. In order to analyze the data obtained easily, the data were coded to SPSS 20.0 software as the data obtained from questionnaires. This task involved identifying, classifying, and assigning a numeric or character symbol to data, which was done in only one way pre-coded [9, 10]. In this study, all of the responses were pre-coded. They were taken from the list of responses, a number of corresponding to a particular selection was given. This process was applied to every earlier question that needed this treatment. Upon completion, the data were then entered to a statistical analysis software package, SPSS version 20.0 on Windows 10 for the next steps.
Under the data analysis, exploration of data has been made with descriptive statistics and graphical analysis. The analysis included exploring the relationship between variables and comparing groups how they affect each other. This has been done using cross tabulation/chi square, correlation, and factor analysis and using nonparametric statistic.
Qualitative data analysis used for triangulation of the quantitative data analysis. The interview, observation, and report records were used to support the findings. The analysis has been incorporated with the quantitative discussion results in the data analysis parts.
The data were entered using SPSS 20.0 on Windows 10 and analyzed. The analysis supported with SPSS software much contributed to the finding. It had contributed to the data validation and correctness of the SPSS results. The software analyzed and compared the results of different variables used in the research questionnaires. Excel is also used to draw the pictures and calculate some analytical solutions.
The reliability of measurements specifies the amount to which it is without bias (error free) and hence ensures consistent measurement across time and across the various items in the instrument [8]. In reliability analysis, it has been checked for the stability and consistency of the data. In the case of reliability analysis, the researcher checked the accuracy and precision of the procedure of measurement. Reliability has numerous definitions and approaches, but in several environments, the concept comes to be consistent [8]. The measurement fulfills the requirements of reliability when it produces consistent results during data analysis procedure. The reliability is determined through Cranach’s alpha as shown in Table 2.
Internal consistency and reliability test of questionnaires items.
K stands for knowledge; M, management; T, technology; C, collaboration; P, policy, standards, and regulation; H, hazards and accident conditions; PPE, personal protective equipment.
Cronbach’s alpha is a measure of internal consistency, i.e., how closely related a set of items are as a group [11]. It is considered to be a measure of scale reliability. The reliability of internal consistency most of the time is measured based on the Cronbach’s alpha value. Reliability coefficient of 0.70 and above is considered “acceptable” in most research situations [12]. In this study, reliability analysis for internal consistency of Likert-scale measurement after deleting 13 items was found similar; the reliability coefficients were found for 76 items were 0.964 and for the individual groupings made shown in Table 2. It was also found internally consistent using the Cronbach’s alpha test. Table 2 shows the internal consistency of the seven major instruments in which their reliability falls in the acceptable range for this research.
Face validity used as defined by Babbie [13] is an indicator that makes it seem a reasonable measure of some variables, and it is the subjective judgment that the instrument measures what it intends to measure in terms of relevance [14]. Thus, the researcher ensured, in this study, when developing the instruments that uncertainties were eliminated by using appropriate words and concepts in order to enhance clarity and general suitability [14]. Furthermore, the researcher submitted the instruments to the research supervisor and the joint supervisor who are both occupational health experts, to ensure validity of the measuring instruments and determine whether the instruments could be considered valid on face value.
In this study, the researcher was guided by reviewed literature related to compliance with the occupational health and safety conditions and data collection methods before he could develop the measuring instruments. In addition, the pretest study that was conducted prior to the main study assisted the researcher to avoid uncertainties of the contents in the data collection measuring instruments. A thorough inspection of the measuring instruments by the statistician and the researcher’s supervisor and joint experts, to ensure that all concepts pertaining to the study were included, ensured that the instruments were enriched.
Insight has been given to the data collectors on how to approach companies, and many of the questionnaires were distributed through MSc students at Addis Ababa Institute of Technology (AAiT) and manufacturing industries’ experience experts. This made the data quality reliable as it has been continually discussed with them. Pretesting for questionnaire was done on 10 workers to assure the quality of the data and for improvement of data collection tools. Supervision during data collection was done to understand how the data collectors are handling the questionnaire, and each filled questionnaires was checked for its completeness, accuracy, clarity, and consistency on a daily basis either face-to-face or by phone/email. The data expected in poor quality were rejected out of the acting during the screening time. Among planned 267 questionnaires, 189 were responded back. Finally, it was analyzed by the principal investigator.
The data were collected from the company representative with the knowledge of OSH. Articles written in English and Amharic were included in this study. Database information obtained in relation to articles and those who have OSH area such as interventions method, method of accident identification, impact of occupational accidents, types of occupational injuries/disease, and impact of occupational accidents, and disease on productivity and costs of company and have used at least one form of feedback mechanism. No specific time period was chosen in order to access all available published papers. The questionnaire statements which are similar in the questionnaire have been rejected from the data analysis.
Ethical clearance was obtained from the School of Mechanical and Industrial Engineering, Institute of Technology, Addis Ababa University. Official letters were written from the School of Mechanical and Industrial Engineering to the respective manufacturing industries. The purpose of the study was explained to the study subjects. The study subjects were told that the information they provided was kept confidential and that their identities would not be revealed in association with the information they provided. Informed consent was secured from each participant. For bad working environment assessment findings, feedback will be given to all manufacturing industries involved in the study. There is a plan to give a copy of the result to the respective study manufacturing industries’ and ministries’ offices. The respondents’ privacy and their responses were not individually analyzed and included in the report.
The result of this study will be presented to the Addis Ababa University, AAiT, School of Mechanical and Industrial Engineering. It will also be communicated to the Ethiopian manufacturing industries, Ministry of Labor and Social Affair, Ministry of Industry, and Ministry of Health from where the data was collected. The result will also be availed by publication and online presentation in Google Scholars. To this end, about five articles were published and disseminated to the whole world.
The research methodology and design indicated overall process of the flow of the research for the given study. The data sources and data collection methods were used. The overall research strategies and framework are indicated in this research process from problem formulation to problem validation including all the parameters. It has laid some foundation and how research methodology is devised and framed for researchers. This means, it helps researchers to consider it as one of the samples and models for the research data collection and process from the beginning of the problem statement to the research finding. Especially, this research flow helps new researchers to the research environment and methodology in particular.
There is no “conflict of interest.”
Unsubscribe unsuccessful, no matching records found in our database.
",metaTitle:"Unsubscribe Unsuccessful",metaDescription:"Unsubscribe unsuccessful, no matching records found in our database.",metaKeywords:null,canonicalURL:"/page/unsubscribe-unsuccessful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!0,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:null,bookSignature:"Dr. Borwen You and Dr. Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",editedByType:null,editors:[{id:"191131",title:"Dr.",name:"Borwen",surname:"You",slug:"borwen-you",fullName:"Borwen You"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10575",title:"Magnetic Skyrmions",subtitle:null,isOpenForSubmission:!0,hash:"d93d7485e8a6a30d9e069aed78fdb355",slug:null,bookSignature:"Prof. Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/10575.jpg",editedByType:null,editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!0,hash:"b8dac1788dc54d12f8fc3d94a7e3e338",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:16},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:4},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5143},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"247",title:"Automation",slug:"automation",parent:{title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics"},numberOfBooks:10,numberOfAuthorsAndEditors:205,numberOfWosCitations:232,numberOfCrossrefCitations:209,numberOfDimensionsCitations:409,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"automation",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9902",title:"Service Robotics",subtitle:null,isOpenForSubmission:!1,hash:"9b42f533ea14906bcd1e07df74b33ac2",slug:"service-robotics",bookSignature:"Volkan Sezer, Sinan Öncü and Pınar Boyraz Baykas",coverURL:"https://cdn.intechopen.com/books/images_new/9902.jpg",editedByType:"Edited by",editors:[{id:"268170",title:"Dr.",name:"Volkan",middleName:null,surname:"Sezer",slug:"volkan-sezer",fullName:"Volkan Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5809",title:"Service Robots",subtitle:null,isOpenForSubmission:!1,hash:"24727d51a5f26cb52694ad979bbbc1f8",slug:"service-robots",bookSignature:"Antonio J. R. Neves",coverURL:"https://cdn.intechopen.com/books/images_new/5809.jpg",editedByType:"Edited by",editors:[{id:"1177",title:"Prof.",name:"Antonio",middleName:"J. R.",surname:"Neves",slug:"antonio-neves",fullName:"Antonio Neves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5798",title:"Surgical Robotics",subtitle:null,isOpenForSubmission:!1,hash:"0b5965ad361c21e8be05cdd6cce1293a",slug:"surgical-robotics",bookSignature:"Serdar Küçük",coverURL:"https://cdn.intechopen.com/books/images_new/5798.jpg",editedByType:"Edited by",editors:[{id:"5424",title:"Dr.",name:"Serdar",middleName:null,surname:"Küçük",slug:"serdar-kucuk",fullName:"Serdar Küçük"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"889",title:"Robotic Systems",subtitle:"Applications, Control and Programming",isOpenForSubmission:!1,hash:"e560d53a4116a307638d95c63c1a78a3",slug:"robotic-systems-applications-control-and-programming",bookSignature:"Ashish Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/889.jpg",editedByType:"Edited by",editors:[{id:"80372",title:"Dr.",name:"Ashish",middleName:null,surname:"Dutta",slug:"ashish-dutta",fullName:"Ashish Dutta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"152",title:"Robot Arms",subtitle:null,isOpenForSubmission:!1,hash:"ad134b214c187871a4740c54c479eccb",slug:"robot-arms",bookSignature:"Satoru Goto",coverURL:"https://cdn.intechopen.com/books/images_new/152.jpg",editedByType:"Edited by",editors:[{id:"6232",title:"Prof.",name:"Satoru",middleName:null,surname:"Goto",slug:"satoru-goto",fullName:"Satoru Goto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3593",title:"Remote and Telerobotics",subtitle:null,isOpenForSubmission:!1,hash:"06ddc7871a0815453ac7c5a7463c9f87",slug:"remote-and-telerobotics",bookSignature:"Nicolas Mollet",coverURL:"https://cdn.intechopen.com/books/images_new/3593.jpg",editedByType:"Edited by",editors:[{id:"6147",title:"Dr.",name:"Nicolas",middleName:null,surname:"Mollet",slug:"nicolas-mollet",fullName:"Nicolas Mollet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3690",title:"Robotics and Automation in Construction",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"robotics_and_automation_in_construction",bookSignature:"Carlos Balaguer and Mohamed Abderrahim",coverURL:"https://cdn.intechopen.com/books/images_new/3690.jpg",editedByType:"Edited by",editors:[{id:"81514",title:"Dr.",name:"Carlos",middleName:null,surname:"Balaguer",slug:"carlos-balaguer",fullName:"Carlos Balaguer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3694",title:"New Developments in Robotics Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"new_developments_in_robotics_automation_and_control",bookSignature:"Aleksandar Lazinica",coverURL:"https://cdn.intechopen.com/books/images_new/3694.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3692",title:"Frontiers in Robotics, Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"frontiers_in_robotics_automation_and_control",bookSignature:"Alexander Zemliak",coverURL:"https://cdn.intechopen.com/books/images_new/3692.jpg",editedByType:"Edited by",editors:[{id:"3914",title:"Prof.",name:"Alexander",middleName:null,surname:"Zemliak",slug:"alexander-zemliak",fullName:"Alexander Zemliak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3607",title:"Automation and Robotics",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"automation_and_robotics",bookSignature:"Juan Manuel Ramos Arreguin",coverURL:"https://cdn.intechopen.com/books/images_new/3607.jpg",editedByType:"Edited by",editors:[{id:"6112",title:"Dr.",name:"Juan-Manuel",middleName:null,surname:"Ramos-Arreguin",slug:"juan-manuel-ramos-arreguin",fullName:"Juan-Manuel Ramos-Arreguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,mostCitedChapters:[{id:"5555",doi:"10.5772/5865",title:"Trends in Robotics and Automation in Construction",slug:"trends_in_robotics_and_automation_in_construction",totalDownloads:17988,totalCrossrefCites:14,totalDimensionsCites:33,book:{slug:"robotics_and_automation_in_construction",title:"Robotics and Automation in Construction",fullTitle:"Robotics and Automation in Construction"},signatures:"Carlos Balaguer and Mohamed Abderrahim",authors:null},{id:"56199",doi:"10.5772/intechopen.69874",title:"Robots in Agriculture: State of Art and Practical Experiences",slug:"robots-in-agriculture-state-of-art-and-practical-experiences",totalDownloads:2399,totalCrossrefCites:18,totalDimensionsCites:31,book:{slug:"service-robots",title:"Service Robots",fullTitle:"Service Robots"},signatures:"Juan Jesús Roldán, Jaime del Cerro, David Garzón‐Ramos, Pablo\nGarcia‐Aunon, Mario Garzón, Jorge de León and Antonio Barrientos",authors:[{id:"130776",title:"Prof.",name:"Antonio",middleName:null,surname:"Barrientos Cruz",slug:"antonio-barrientos-cruz",fullName:"Antonio Barrientos Cruz"},{id:"162360",title:"Dr.",name:"Jaime",middleName:null,surname:"Del Cerro",slug:"jaime-del-cerro",fullName:"Jaime Del Cerro"},{id:"199008",title:"M.Sc.",name:"Juan Jesús",middleName:null,surname:"Roldán",slug:"juan-jesus-roldan",fullName:"Juan Jesús Roldán"},{id:"199515",title:"MSc.",name:"Mario",middleName:null,surname:"Garzón",slug:"mario-garzon",fullName:"Mario Garzón"},{id:"199517",title:"MSc.",name:"David",middleName:null,surname:"Garzón",slug:"david-garzon",fullName:"David Garzón"},{id:"199518",title:"MSc.",name:"Jorge",middleName:null,surname:"De León",slug:"jorge-de-leon",fullName:"Jorge De León"},{id:"199519",title:"MSc.",name:"Pablo",middleName:null,surname:"Garcia-Aunon",slug:"pablo-garcia-aunon",fullName:"Pablo Garcia-Aunon"}]},{id:"27402",doi:"10.5772/25756",title:"Novel Assistive Robot for Self-Feeding",slug:"novel-assistive-robot-for-self-feeding",totalDownloads:5774,totalCrossrefCites:15,totalDimensionsCites:21,book:{slug:"robotic-systems-applications-control-and-programming",title:"Robotic Systems",fullTitle:"Robotic Systems - Applications, Control and Programming"},signatures:"Won-Kyung Song and Jongbae Kim",authors:[{id:"64432",title:"Dr.",name:"Won-Kyung",middleName:null,surname:"Song",slug:"won-kyung-song",fullName:"Won-Kyung Song"},{id:"72153",title:"Dr.",name:"Jongbae",middleName:null,surname:"Kim",slug:"jongbae-kim",fullName:"Jongbae Kim"}]}],mostDownloadedChaptersLast30Days:[{id:"56199",title:"Robots in Agriculture: State of Art and Practical Experiences",slug:"robots-in-agriculture-state-of-art-and-practical-experiences",totalDownloads:2399,totalCrossrefCites:18,totalDimensionsCites:31,book:{slug:"service-robots",title:"Service Robots",fullTitle:"Service Robots"},signatures:"Juan Jesús Roldán, Jaime del Cerro, David Garzón‐Ramos, Pablo\nGarcia‐Aunon, Mario Garzón, Jorge de León and Antonio Barrientos",authors:[{id:"130776",title:"Prof.",name:"Antonio",middleName:null,surname:"Barrientos Cruz",slug:"antonio-barrientos-cruz",fullName:"Antonio Barrientos Cruz"},{id:"162360",title:"Dr.",name:"Jaime",middleName:null,surname:"Del Cerro",slug:"jaime-del-cerro",fullName:"Jaime Del Cerro"},{id:"199008",title:"M.Sc.",name:"Juan Jesús",middleName:null,surname:"Roldán",slug:"juan-jesus-roldan",fullName:"Juan Jesús Roldán"},{id:"199515",title:"MSc.",name:"Mario",middleName:null,surname:"Garzón",slug:"mario-garzon",fullName:"Mario Garzón"},{id:"199517",title:"MSc.",name:"David",middleName:null,surname:"Garzón",slug:"david-garzon",fullName:"David Garzón"},{id:"199518",title:"MSc.",name:"Jorge",middleName:null,surname:"De León",slug:"jorge-de-leon",fullName:"Jorge De León"},{id:"199519",title:"MSc.",name:"Pablo",middleName:null,surname:"Garcia-Aunon",slug:"pablo-garcia-aunon",fullName:"Pablo Garcia-Aunon"}]},{id:"73486",title:"Application of Artificial Intelligence (AI) in Prosthetic and Orthotic Rehabilitation",slug:"application-of-artificial-intelligence-ai-in-prosthetic-and-orthotic-rehabilitation",totalDownloads:307,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"service-robotics",title:"Service Robotics",fullTitle:"Service Robotics"},signatures:"Smita Nayak and Rajesh Kumar Das",authors:[{id:"204704",title:"Mrs.",name:"Smita",middleName:null,surname:"Nayak",slug:"smita-nayak",fullName:"Smita Nayak"},{id:"321308",title:"Dr.",name:"Rajesh",middleName:null,surname:"Das",slug:"rajesh-das",fullName:"Rajesh Das"}]},{id:"55313",title:"The Surgical Robot: Applications and Advantages in General Surgery",slug:"the-surgical-robot-applications-and-advantages-in-general-surgery",totalDownloads:1358,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Rodolfo José Oviedo Barrera",authors:[{id:"204248",title:"Dr.",name:"Rodolfo",middleName:"José",surname:"Oviedo",slug:"rodolfo-oviedo",fullName:"Rodolfo Oviedo"}]},{id:"55664",title:"Bilateral Axillo-Breast Approach Robotic Thyroidectomy: Introduction and Update",slug:"bilateral-axillo-breast-approach-robotic-thyroidectomy-introduction-and-update",totalDownloads:1278,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Do Hoon Koo, Dong Sik Bae and June Young Choi",authors:[{id:"198460",title:"Dr.",name:"Do Hoon",middleName:null,surname:"Koo",slug:"do-hoon-koo",fullName:"Do Hoon Koo"},{id:"200696",title:"Prof.",name:"Dong Sik",middleName:null,surname:"Bae",slug:"dong-sik-bae",fullName:"Dong Sik Bae"},{id:"200697",title:"Prof.",name:"June Young",middleName:null,surname:"Choi",slug:"june-young-choi",fullName:"June Young Choi"}]},{id:"57523",title:"A Personal Robot as an Improvement to the Customers’ In- Store Experience",slug:"a-personal-robot-as-an-improvement-to-the-customers-in-store-experience",totalDownloads:964,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"service-robots",title:"Service Robots",fullTitle:"Service Robots"},signatures:"Joana Santos, Daniel Campos, Fábio Duarte, Filipe Pereira, Inês\nDomingues, Joana Santos, João Leão, José Xavier, Luís de Matos,\nManuel Camarneiro, Marcelo Penas, Maria Miranda, Ricardo\nMorais, Ricardo Silva and Tiago Esteves",authors:[{id:"199794",title:"Ph.D.",name:"Inês",middleName:null,surname:"Domingues",slug:"ines-domingues",fullName:"Inês Domingues"},{id:"199930",title:"MSc.",name:"Ricardo",middleName:null,surname:"Silva",slug:"ricardo-silva",fullName:"Ricardo Silva"},{id:"199974",title:"MSc.",name:"Luís",middleName:null,surname:"Matos",slug:"luis-matos",fullName:"Luís Matos"},{id:"205325",title:"MSc.",name:"Daniel",middleName:null,surname:"Campos",slug:"daniel-campos",fullName:"Daniel Campos"},{id:"205326",title:"MSc.",name:"Joana",middleName:null,surname:"Santos",slug:"joana-santos",fullName:"Joana Santos"},{id:"205327",title:"MSc.",name:"João",middleName:null,surname:"Leão",slug:"joao-leao",fullName:"João Leão"},{id:"205328",title:"MSc.",name:"José",middleName:null,surname:"Xavier",slug:"jose-xavier",fullName:"José Xavier"},{id:"205329",title:"MSc.",name:"Manuel",middleName:null,surname:"Camarneiro",slug:"manuel-camarneiro",fullName:"Manuel Camarneiro"},{id:"205330",title:"MSc.",name:"Marcelo",middleName:null,surname:"Penas",slug:"marcelo-penas",fullName:"Marcelo Penas"},{id:"205331",title:"MSc.",name:"Maria",middleName:null,surname:"Miranda",slug:"maria-miranda",fullName:"Maria Miranda"},{id:"205332",title:"Mrs.",name:"Ricardo",middleName:null,surname:"Morais",slug:"ricardo-morais",fullName:"Ricardo Morais"},{id:"205333",title:"Dr.",name:"Tiago",middleName:null,surname:"Esteves",slug:"tiago-esteves",fullName:"Tiago Esteves"}]},{id:"54250",title:"The Next-Generation Surgical Robots",slug:"the-next-generation-surgical-robots",totalDownloads:2624,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Zheng Wang, Sicong Liu, Jing Peng and Michael Zhiqiang Chen",authors:[{id:"197125",title:"Dr.",name:"Zheng",middleName:null,surname:"Wang",slug:"zheng-wang",fullName:"Zheng Wang"},{id:"197412",title:"Dr.",name:"Sicong",middleName:null,surname:"Liu",slug:"sicong-liu",fullName:"Sicong Liu"},{id:"204520",title:"Dr.",name:"Jing",middleName:null,surname:"Peng",slug:"jing-peng",fullName:"Jing Peng"},{id:"204521",title:"Dr.",name:"Michael",middleName:null,surname:"Chen",slug:"michael-chen",fullName:"Michael Chen"}]},{id:"5577",title:"Advanced Control Schemes for Cement Fabrication Processes",slug:"advanced_control_schemes_for_cement_fabrication_processes",totalDownloads:9422,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"robotics_and_automation_in_construction",title:"Robotics and Automation in Construction",fullTitle:"Robotics and Automation in Construction"},signatures:"Susana Arad, Victor Arad and Bogdan Bobora",authors:null},{id:"56421",title:"Robotic Splenic Flexure and Transverse Colon Resections",slug:"robotic-splenic-flexure-and-transverse-colon-resections",totalDownloads:897,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Igor Monsellato, Maria Caterina Canepa, Vittorio d’Adamo,\nGiuseppe Spinoglio, Fabio Priora and Luca Matteo Lenti",authors:[{id:"80720",title:"Ph.D.",name:"Igor",middleName:null,surname:"Monsellato",slug:"igor-monsellato",fullName:"Igor Monsellato"},{id:"211489",title:"Dr.",name:"Fabio",middleName:null,surname:"Priora",slug:"fabio-priora",fullName:"Fabio Priora"},{id:"211494",title:"Dr.",name:"Maria Caterina",middleName:null,surname:"Canepa",slug:"maria-caterina-canepa",fullName:"Maria Caterina Canepa"},{id:"211495",title:"Dr.",name:"Vittorio",middleName:null,surname:"D'Adamo",slug:"vittorio-d'adamo",fullName:"Vittorio D'Adamo"},{id:"211500",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Spinoglio",slug:"giuseppe-spinoglio",fullName:"Giuseppe Spinoglio"},{id:"212109",title:"Dr.",name:"Luca Matteo",middleName:null,surname:"Lenti",slug:"luca-matteo-lenti",fullName:"Luca Matteo Lenti"}]},{id:"5555",title:"Trends in Robotics and Automation in Construction",slug:"trends_in_robotics_and_automation_in_construction",totalDownloads:17988,totalCrossrefCites:14,totalDimensionsCites:33,book:{slug:"robotics_and_automation_in_construction",title:"Robotics and Automation in Construction",fullTitle:"Robotics and Automation in Construction"},signatures:"Carlos Balaguer and Mohamed Abderrahim",authors:null},{id:"55190",title:"Concept of Virtual Incision for Minimally Invasive Surgery",slug:"concept-of-virtual-incision-for-minimally-invasive-surgery",totalDownloads:832,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"surgical-robotics",title:"Surgical Robotics",fullTitle:"Surgical Robotics"},signatures:"Yuki Horise, Atsushi Nishikawa, Toshikazu Kawai, Ken Masamune\nand Yoshihiro Muragaki",authors:[{id:"13925",title:"Prof.",name:"Atsushi",middleName:null,surname:"Nishikawa",slug:"atsushi-nishikawa",fullName:"Atsushi Nishikawa"}]}],onlineFirstChaptersFilter:{topicSlug:"automation",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/158729/svetlana-morozkina",hash:"",query:{},params:{id:"158729",slug:"svetlana-morozkina"},fullPath:"/profiles/158729/svetlana-morozkina",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()