Summary of some issues in adhesive joints and bonding technology
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"572",leadTitle:null,fullTitle:"Abrasion Resistance of Materials",title:"Abrasion Resistance of Materials",subtitle:null,reviewType:"peer-reviewed",abstract:"Abrasion is the primary type of wear in almost all fields of industry. It is particularly\nrelevant to the longevity of pipelines and pumps and to almost all processing\nindustries and applications where a constant interface exists with abrasive\nsubstances such as dust, sediments, or fluids with mineral particles. The performance\nof systems can be degraded depending on the properties of abrasive particles\nsuch as size, velocity, angle of impact and shape. Furthermore, abrasion\nsignificantly affects the appearance of end-products, which can be especially important\nin applications where surface finishes are of prime importance.\nThe use of materials which are resistant to abrasion can help retain the appearance\nof finished products, cut costs associated with maintenance and wear, and\nprevent system downtime. Materials which are abrasion-resistant are useful\nfor situations where serious damage and mechanical wear can occur and where\nthere is critical demand.\nThe aim of this book is to evaluate abrasion-resistant materials that are already in\nuse or under development, as well as to present information on new techniques\nin the design and application of such materials. This book will be of interest to a\nwide audience of engineers dealing with wear problems.",isbn:null,printIsbn:"978-953-51-0300-4",pdfIsbn:"978-953-51-6152-3",doi:"10.5772/1083",price:119,priceEur:129,priceUsd:155,slug:"abrasion-resistance-of-materials",numberOfPages:212,isOpenForSubmission:!1,isInWos:1,hash:"dabbdebe02130a5659585033b4b43075",bookSignature:"Marcin Adamiak",publishedDate:"March 16th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/572.jpg",numberOfDownloads:83164,numberOfWosCitations:57,numberOfCrossrefCitations:21,numberOfDimensionsCitations:62,hasAltmetrics:0,numberOfTotalCitations:140,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 23rd 2011",dateEndSecondStepPublish:"March 23rd 2011",dateEndThirdStepPublish:"July 28th 2011",dateEndFourthStepPublish:"August 27th 2011",dateEndFifthStepPublish:"December 25th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"15522",title:"Dr.",name:"Marcin",middleName:null,surname:"Adamiak",slug:"marcin-adamiak",fullName:"Marcin Adamiak",profilePictureURL:"https://mts.intechopen.com/storage/users/15522/images/system/15522.jpg",biography:null,institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Silesian University of Technology",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"952",title:"Surface Engineering",slug:"metals-and-nonmetals-surface-engineering"}],chapters:[{id:"31697",title:"Abrasion Resistance of Polymer Nanocomposites - A Review",doi:"10.5772/27960",slug:"abrasion-resistance-of-polymer-nanocomposites",totalDownloads:5601,totalCrossrefCites:2,totalDimensionsCites:12,signatures:"Giulio Malucelli and Francesco Marino",downloadPdfUrl:"/chapter/pdf-download/31697",previewPdfUrl:"/chapter/pdf-preview/31697",authors:[{id:"72195",title:"Prof.",name:"Giulio",surname:"Malucelli",slug:"giulio-malucelli",fullName:"Giulio Malucelli"},{id:"83566",title:"Prof.",name:"Francesco",surname:"Marino",slug:"francesco-marino",fullName:"Francesco Marino"}],corrections:null},{id:"31698",title:"Abrasive Effects Observed in Concrete Hydraulic Surfaces of Dams and Application of Repair Materials",doi:"10.5772/27964",slug:"abrasive-effects-observed-in-concrete-hydraulic-surfaces-of-dams-and-application-of-repair-materials",totalDownloads:4781,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"José Carlos Alves Galvão, Kleber Franke Portella and Aline Christiane Morales Kormann",downloadPdfUrl:"/chapter/pdf-download/31698",previewPdfUrl:"/chapter/pdf-preview/31698",authors:[{id:"72206",title:"Dr.",name:"José",surname:"Galvão",slug:"jose-galvao",fullName:"José Galvão"},{id:"84169",title:"Dr.",name:"Kleber",surname:"Portella",slug:"kleber-portella",fullName:"Kleber Portella"}],corrections:null},{id:"31699",title:"Abrasion Resistance of High Performance Fabrics",doi:"10.5772/28485",slug:"abrasion-resistance-of-high-performance-fabrics",totalDownloads:7082,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Maja Somogyi Škoc and Emira Pezelj",downloadPdfUrl:"/chapter/pdf-download/31699",previewPdfUrl:"/chapter/pdf-preview/31699",authors:[{id:"74034",title:"Dr.",name:"Maja",surname:"Somogyi",slug:"maja-somogyi",fullName:"Maja Somogyi"},{id:"83343",title:"Prof.",name:"Emira",surname:"Pezelj",slug:"emira-pezelj",fullName:"Emira Pezelj"}],corrections:null},{id:"31700",title:"Numerical Simulation of Abrasion of Particles",doi:"10.5772/28863",slug:"numerical-simulation-of-abrasion-of-particles-",totalDownloads:2481,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Manoj Khanal and Rob Morrison",downloadPdfUrl:"/chapter/pdf-download/31700",previewPdfUrl:"/chapter/pdf-preview/31700",authors:[{id:"75672",title:"Dr.",name:"Manoj",surname:"Khanal",slug:"manoj-khanal",fullName:"Manoj Khanal"},{id:"122120",title:"Dr.",name:"Rob",surname:"Morrison",slug:"rob-morrison",fullName:"Rob Morrison"}],corrections:null},{id:"31701",title:"Low Impact Velocity Wastage in FBCs - Experimental Results and Comparison Between Abrasion and Erosion Theories",doi:"10.5772/28974",slug:"low-impact-velocity-wastage-in-fbc-experimental-results-and-comparison-between-abrasion-and-erosion-",totalDownloads:2239,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"J. G. Chacon-Nava, F. Almeraya-Calderon, A. Martinez-Villafañe and M. M. Stack",downloadPdfUrl:"/chapter/pdf-download/31701",previewPdfUrl:"/chapter/pdf-preview/31701",authors:[{id:"76045",title:"Dr",name:null,surname:"Chacon-Nava",slug:"chacon-nava",fullName:"Chacon-Nava"}],corrections:null},{id:"31703",title:"Heat and Thermochemical Treatment of Structural and Tool Steels",doi:"10.5772/29290",slug:"heat-and-thermochemical-treatment-of-structural-and-tool-steels",totalDownloads:3659,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jan Suchánek",downloadPdfUrl:"/chapter/pdf-download/31703",previewPdfUrl:"/chapter/pdf-preview/31703",authors:[{id:"77193",title:"Prof.",name:"Jan",surname:"Suchanek",slug:"jan-suchanek",fullName:"Jan Suchanek"}],corrections:null},{id:"31704",title:"Analysis of Abrasion Characteristics in Textiles",doi:"10.5772/29784",slug:"analysis-of-abrasion-characteristics-in-textiles",totalDownloads:27083,totalCrossrefCites:6,totalDimensionsCites:18,signatures:"Nilgün Özdil, Gonca Özçelik Kayseri and Gamze Süpüren Mengüç",downloadPdfUrl:"/chapter/pdf-download/31704",previewPdfUrl:"/chapter/pdf-preview/31704",authors:[{id:"79302",title:"Dr.",name:"Nilgün",surname:"Özdil",slug:"nilgun-ozdil",fullName:"Nilgün Özdil"},{id:"113444",title:"Dr.",name:"Gonca",surname:"Ozcelik",slug:"gonca-ozcelik",fullName:"Gonca Ozcelik"},{id:"118975",title:"Dr.",name:"Gamze",surname:"Supuren Menguc",slug:"gamze-supuren-menguc",fullName:"Gamze Supuren Menguc"}],corrections:null},{id:"31705",title:"Rubber Abrasion Resistance",doi:"10.5772/30556",slug:"abrasion-resistance-of-rubber",totalDownloads:21250,totalCrossrefCites:7,totalDimensionsCites:17,signatures:"Wanvimon Arayapranee",downloadPdfUrl:"/chapter/pdf-download/31705",previewPdfUrl:"/chapter/pdf-preview/31705",authors:[{id:"83055",title:"Dr.",name:"Wanvimon",surname:"Arayapranee",slug:"wanvimon-arayapranee",fullName:"Wanvimon Arayapranee"}],corrections:null},{id:"31706",title:"Effect of Abrasive Size on Wear",doi:"10.5772/30913",slug:"effect-of-abrasive-size-on-wear",totalDownloads:5944,totalCrossrefCites:0,totalDimensionsCites:4,signatures:"J. J. Coronado",downloadPdfUrl:"/chapter/pdf-download/31706",previewPdfUrl:"/chapter/pdf-preview/31706",authors:[{id:"84749",title:"Prof.",name:"John",surname:"Coronado",slug:"john-coronado",fullName:"John Coronado"}],corrections:null},{id:"31707",title:"Abrasion Resistance of Cement-Based Composites",doi:"10.5772/34798",slug:"abrasion-resistance-of-cement-based-composites",totalDownloads:3044,totalCrossrefCites:3,totalDimensionsCites:3,signatures:"Wei-Ting Lin and An Cheng",downloadPdfUrl:"/chapter/pdf-download/31707",previewPdfUrl:"/chapter/pdf-preview/31707",authors:[{id:"101665",title:"Dr",name:null,surname:"Cheng",slug:"cheng",fullName:"Cheng"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1386",title:"Pitting Corrosion",subtitle:null,isOpenForSubmission:!1,hash:"9f2daf36b4026a2e1d1ad133951d0075",slug:"pitting-corrosion",bookSignature:"Nasr Bensalah",coverURL:"https://cdn.intechopen.com/books/images_new/1386.jpg",editedByType:"Edited by",editors:[{id:"97204",title:"Prof.",name:"Nasr",surname:"Bensalah",slug:"nasr-bensalah",fullName:"Nasr Bensalah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6402",title:"Corrosion Inhibitors, Principles and Recent Applications",subtitle:null,isOpenForSubmission:!1,hash:"d6298a77f8cb2edd6411d905fd2f8c08",slug:"corrosion-inhibitors-principles-and-recent-applications",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/6402.jpg",editedByType:"Edited by",editors:[{id:"181600",title:"Dr.",name:"Mahmood",surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5205",title:"High Temperature Corrosion",subtitle:null,isOpenForSubmission:!1,hash:"b04403ba3287b9a301028c82c3e5ddf4",slug:"high-temperature-corrosion",bookSignature:"Zaki Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/5205.jpg",editedByType:"Edited by",editors:[{id:"52898",title:"Prof.",name:"Zaki",surname:"Ahmad",slug:"zaki-ahmad",fullName:"Zaki Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66066",slug:"erratum-microbial-responses-to-different-operating-practices-for-biogas-production-systems",title:"Erratum - Microbial Responses to Different Operating Practices for Biogas Production Systems",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66066.pdf",downloadPdfUrl:"/chapter/pdf-download/66066",previewPdfUrl:"/chapter/pdf-preview/66066",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66066",risUrl:"/chapter/ris/66066",chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]}},chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]},book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10708",leadTitle:null,title:"Topics in Regional Anesthesia",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe goal of this book on Topics in Regional Anesthesia is to review selected subjects of importance in daily practice. Since the first years of the introduction of cocaine by Carl Koller in 1884, the evolution of regional anesthesia has been continuous, gradual and safe. Its development has been based on anatomy, the pharmacology of local anesthetics and adjuvant drugs, as well as advances in the various blocking techniques, with ultrasound guidance being the most recent advent. The use of ultrasound in regional anesthesia has shown the reduction of complications, which makes it mandatory to knowledge and acquire skills in all ultrasound-guided techniques.
\r\n\r\n\tUltrasound-guided regional blocks will be reviewed extensively, as well as intravenous regional anesthesia, thoracic spinal anesthesia. The role of regional anesthesia and analgesia in critically ill patients is of paramount importance. In addition, we will review the current role of regional techniques during the Covid-19 pandemic. Complications and malpractice is another topic that should be reviewed. Regional anesthesia procedures in some specialties such as pediatrics, orthopedics, cancer surgery, neurosurgery, acute and chronic pain will be discussed.
",isbn:"978-1-83969-570-4",printIsbn:"978-1-83969-569-8",pdfIsbn:"978-1-83969-571-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"264f7f37033b4867cace7912287fccaa",bookSignature:"Prof. Víctor M. Whizar-Lugo and Dr. José Ramón Saucillo-Osuna",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10708.jpg",keywords:"Regional Anesthesia, Ultrasound-Guided Regional Anesthesia, Local Anesthetics, Preventive Analgesia, Peripheral Blocks, Pediatric Regional Anesthesia, Intravenous Regional Anesthesia, Techniques, Complications, Adjuvants in Regional Anesthesia, Opioids, Alfa2 Agonists",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 23rd 2021",dateEndSecondStepPublish:"March 23rd 2021",dateEndThirdStepPublish:"May 22nd 2021",dateEndFourthStepPublish:"August 10th 2021",dateEndFifthStepPublish:"October 9th 2021",remainingDaysToSecondStep:"18 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Whizar-Lugo has published more than 100 publications on Anesthesia, Pain, Critical Care, and Internal Medicine. He works as an anesthesiologist at Lotus Med Group and belongs to the Institutos Nacionales de Salud as an associated researcher.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo",profilePictureURL:"https://mts.intechopen.com/storage/users/169249/images/system/169249.jpg",biography:"Víctor M. Whizar-Lugo graduated from Universidad Nacional Autónoma de México and completed residencies in Internal Medicine at Hospital General de México and Anaesthesiology and Critical Care Medicine at Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán in México City. He also completed a fellowship at the Anesthesia Department, Pain Clinic at University of California, Los Angeles, USA. Currently, Dr. Whizar-Lugo works as anesthesiologist at Lotus Med Group, and belongs to the Institutos Nacionales de Salud as associated researcher. He has published many works on anesthesia, pain, internal medicine, and critical care, edited four books, and given countless conferences in congresses and meetings around the world. He has been a member of various editorial committees for anesthesiology journals, is past chief editor of the journal Anestesia en México, and is currently editor-in-chief of the Journal of Anesthesia and Critical Care. Dr. Whizar-Lugo is the founding director and current president of Anestesiología y Medicina del Dolor (www.anestesiologia-dolor.org), a free online medical education program.",institutionString:"Institutos Nacionales de Salud",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],coeditorOne:{id:"345887",title:"Dr.",name:"José Ramón",middleName:null,surname:"Saucillo-Osuna",slug:"jose-ramon-saucillo-osuna",fullName:"José Ramón Saucillo-Osuna",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000033rFXmQAM/Profile_Picture_1611740683590",biography:"Graduated from the Facultad de Medicina de la Universidad Autónoma de Guadalajara, he specialized in anesthesiology at the Centro Médico Nacional de Occidente in Guadalajara, México. He is one of the most important pioneers in Mexico in ultrasound-guided regional anesthesia. Dr. Saucillo-Osuna has lectured at multiple national and international congresses and is an adjunct professor at the Federación Mexicana de Colegios de Anestesiología, AC, former president of the Asociación Mexicana de Anestesia Regional, and active member of the Asociación Latinoamericana de Anestesia Regional.",institutionString:"Centro Médico Nacional de Occidente",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Dr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48490",title:"Adhesive Properties of Metals and Metal Alloys",doi:"10.5772/60599",slug:"adhesive-properties-of-metals-and-metal-alloys",body:'Adhesive bonding provides an invaluable alternative to other modern methods of joining structural materials [1-3]. At present, bonding technology offers a range of applications for a number of various branches of industry, including in building, automotive, aircraft, machine-building, packaging manufacturing, and marine applications [4]. Bonded joints find applications in various structures and constitute an extensively used form of adhesive joint [5]. Adhesive bonding technology offers numerous advantages over other methods, and joining materials of dissimilar physical or chemical properties is a prominent mark of superiority. This feature frequently determines that adhesive bonding is the only applicable method, particularly in the case of adherends of different chemical composition and physical properties, which could pose a considerable problem if, e.g., a welded joint were to be applied.
The increasing popularity of adhesive bonding as a method for joining metals is a result of several factors [1-10], e.g., high joint strength and lack of stresses within the joint, along with low cost per unit resulting predominantly from the amount of adhesive used to form a single joint. Further advantages of adhesive joints are as follows: vibration damping, forming the joint without machine tools, expensive equipment or materials (nevertheless in certain cases the cost of technological instrumentation may prove to be high), lack of electrochemical phenomena usually accompanying other methods of joining metals, and the joining of dissimilar structural materials, frequently of substantial disproportions in geometric dimensions [2, 5]. Currently, adhesive joining is frequently applied in bonding polymer composite and metal substrates. Structural adhesive bonding is an indispensable method of joining thin-walled elements of sandwich construction, whose advantages are lightness and rigidity, which are essential properties in aircraft constructions [1, 3].
One requirement of structural bonded joints is proper strength [2, 3, 5]. This is important due to the fact that one of the basic requirements to be fulfilled by an adhesive joint is obtaining the desired static strength. The strength of adhesive joints is determined by several major factors: technological, structural, material and environmental [6, 7, 11-19].
Adhesive bonding technology comprises several consecutive technological operations: surface treatment, preparation and application of adhesive, joining substrates, cure conditioning, finishing and joint quality control [2, 3, 5]. Individual operations may consist of a number of stages of specific technological parameters; they might also require various items of equipment and instrumentation. Detailed conditions of adhesive bonding operation are selected based on, inter alia, the type of substrate, the geometry of elements and structures, joint formation conditions, production type, etc. [1-4, 7, 14, 18, 20, 21].
A summary of the previous studies of some issues in adhesive joints and bonding technology is presented in Table 1.
\n\t\t\t\tIssues in adhesive joints and bonding\n\t\t\t | \n\t\t|
Influence of factors on adhesive joints’ strength | \n\t\t\tTechnological factors, e.g., surface treatment [1-4, 6, 9, 10-12, 17, 19] | \n\t\t
Structural factor [2, 3, 14, 18, 21] | \n\t\t|
Advantages of adhesive joints and bonding | \n\t\t\tAdvantages of adhesive joints and comparison of bonding with other joining method [2, 3, 5, 20] | \n\t\t
Adhesive properties | \n\t\t\tSurface free energy [12, 13, 19, 22] | \n\t\t
Wettability [19, 22] | \n\t\t
Summary of some issues in adhesive joints and bonding technology
The subject of the test and analysis were the issues of surface treatment, particularly the influence of surface treatment on surface free energy and strength of adhesive joints, and also the influence on the geometric structure of adherends.
Surface pretreatment is one of the first and most important technological stages in the adhesive bonding process. It is preceded by the analysis of properties, type and geometrical structure of a material surface for adhesive bonding, as the choice of an appropriate surface pretreatment method depends on these data [4-8]. In adhesive bonding, the surface of joined elements is defined as the part of the material where interactions with an adhesive occur [2]. This is connected both with the area and depth of interaction. In order to produce strong adhesive joints, surface pretreatments for adhesive bonding should ensure the following [3, 5, 13, 20]:
removal of all contaminants that could significantly decrease adhesive joint strength (such as lubricants, dusts, loose corrosion layers, micro-organisms) from surfaces to be bonded,
good surface wettability,
repeatability of properties,
correct surface development,
good activation of surfaces of elements being bonded.
Surface treatment includes, inter alia, the following operations [5, 7, 23-26]:
removal of surface contaminants, residues of technological processes (e.g., stamping, rolling, forging or machining) or of a protective layer providing, e.g., corrosion protection in storage and transport, and in the case of polymers, removal of additives migrating to the surface layer,
changes in the geometric structure of the surface, through, e.g., increasing the surface roughness, which results in the development of a “true” wetting surface, the contact surface of, for instance, adhesive or paint,
reduction of intermolecular forces’ range, leading to the increase of the surface free energy, which is of significance to the wetting process.
Critchlow et al. [27] underline that a particular pretreatment for structural bonding will ideally produce a surface which is free from contamination, wettable by the adhesive, highly macro- or micro-rough, mechanically stable, and hydrolytically stable.
Spadaro, Dispenza and Sunseri [28] systematized surface treatment operations when presenting test results of the impact of surface treatment operations on adhesively bonded joints of aluminium alloys.
The selection of surface preparation method, including the choice of proper technological operations aimed at developing a desired structure and energetic properties, is dependent on multiple factors, predominantly the type of materials to be joined with an adhesive bond.
In the test of adhesive properties and adhesive strength the following materials were used:
aluminium alloy sheets: EN AW-2024PLT3 and EN AW-7075PLT0,
titanium sheets: CP1 (Grade 1) and CP2 (Grade 2),
X5CrNi181 stainless steel.
The following surface treatments were tested:
degreasing (chemical clearing) with degreasing agents
mechanical treatment with abrasive tools ,
anodizing,
chromate treatment,
etching,
a combination of selected aforementioned methods.
Chemical cleaning of a surface, frequently referred to as degreasing, constitutes, in the majority of instances, the first surface treatment operation in the preparation of adherends for adhesive joining [5]. The surface of adherends is covered with a layer of grease, dust, various machining residues, or organic and non-organic substances. That is why chemical degreasing is applied to remove from the surfaces of adherends all contaminants which could decrease the strength of the adhesive bond in the adherends’ contact area [20]. The selection of chemical cleaning method and degreasing agent is contingent on numerous factors, such as: the efficiency of chemical cleaning, the dimensions of adherends, the type of material, technological equipment available, etc. [2]. The degreasing process can be conducted with different degreasing agents and instrumentation [2, 3, 5].
The following cleaning methods are used in industrial manufacture [5]:
solvent wipe,
immersion in an ultrasonic solvent bath,
vapour degreasing with solvent,
washing with aqueous solutions,
high-pressure water steam cleaning.
The most frequently applied degreasing agents include: acetone, petrol, benzene, ethanol, trichloroethane, tetrachloroethane, toluene, methyl ethyl ketone (MEK), to name but a few [2, 5]. A variety of cleansing agents such as organic solvents and water-miscible detergents are commonly available. The chemical cleaning procedure is carried out in immersion washers, treatment chambers or with a soaked cloth [5].
Mechanical methods find applications in both the removal of contaminants and the changing of surface geometry [29]. The structure of the surface layer is a feature heavily dependent on the surface roughness. Although mechanical treatment acts towards changing the surface structure, and therefore towards its development, it fails to activate it for bonding.
Methods of mechanical treatment, employed as preparation of the adherend surface, include the following: abrasive tool treatment, abrasive blasting, grit blasting, peening, brushing, scraping and sanding [5, 11, 30, 31].
When employing these treatment methods, particular attention should be given to surface roughness geometry [32] so as not to generate excessive internal stresses, which could contribute to lowering the adhesive joint’s strength. L.F.M. da Silva et al. [33] highlight that considerable surface roughness might result in increased stress concentration and consequently lower joint strength. Extreme surface roughness of adherends can lead to lowering of the adhesively bonded joint’s strength when the adhesive fails to penetrate and wet the surface irregularities. Analysis of surface topography with regard to the wetting angle proves that irregularities in the shape of elongated ridges, characterized by low apex angle value and high accumulation, are the most advantageous. It has been shown in the literature [21] that the highest joint strength properties are obtained when the surface roughness parameter of adherends (Maximum Profile Valley Depth) Rm = 7 ÷ 25 μm.
Some researchers argue that mechanical methods applied in surface treatment generate non-axial shear stresses, which lead to structural micro-cracks, e.g., micro-stresses, dislocations, sharp edges, crevices, etc. It was, furthermore, concluded that mechanical treatment can cause compressive stresses in the surface layer of adherends and, consequently, their plastic deformation. This, in turn, is a factor introducing stresses into the adhesive layer, which could reduce adhesive joint strength by 10-50 % [21].
Surface preparation with chemical treatment methods is employed in the case of adherends of a substantial amount of surface contamination. Chemical methods, based on liquid chemical compounds, enable surface and surface layer development. Their chemical constitution ensures high physicochemical activity of the surface with a bonding agent (e.g., adhesive), applied or medium substance [2, 5].
Aluminium alloy etching [21] showed that the constitution of etching bath has a great impact on the adhesive joint’s strength; for instance, shear strength of aluminium alloys subjected to etching in 4 % NaOH is 40 % higher than in the case of 20 % HNO3.
Anodizing is a widely used surface treatment operation applied in metals, consisting in electrolytic formation of oxide film. Anodizing finds applications predominantly in aluminium and its alloys; however, it may be used in certain types of steel, titanium and magnesium alloys. Eloxal process (electrolytic oxidation of aluminium) is a term frequently encountered in reference to aluminium anodizing [34].
Anodic oxidation of aluminium, known as anodizing, is a process during which on the surface of metal a thicker oxide layer is formed, providing superior corrosion protection to the natural passivation layer [35-37].
The anodizing process consists in the aluminium surface being transformed into aluminium oxide when exposed to electrolyte solution yielding OH- hydroxide ions [38]:
The resulting oxide layer thickness grows with anodizing time. It may amount to several dozen mm for protective and decorative layers or even exceed 100 mm for durable engineering application aluminium layers. The final structure of layers depends on the alumina-solubility of the electrolyte solution [39].
In the initial stages of aluminium oxide film formation, a dense thin layer (0.01 – 0.1 μm) of Al2O3 is formed (the so-called barrier or blocking layer), which subsequently changes into a porous layer as a result of barrier layer reformation at the oxide-electrolyte interface. The barrier layer is generated owing to Al3+ ions’ migration in the electric field and their reaction with O2- or OH- ions producing anhydrous Al2O3. The final stage consists in the porous layer’s expansion in thickness (up to 100 μm) [36].
Oxide films obtained from poorly soluble solutions are characterized by a specific porous structure. Regularly distributed pores almost throughout the oxide layer and perpendicular to the surface have a diameter ranging from several to several tens of nanometres, depending on the conditions of anodic oxidation. The barrier layer is a thin non-porous layer situated from the inside. Due to the fact that the pores are densely distributed and small in diameter, the surface of such aluminium oxide is well-developed and is characterized by high adsorptivity, which is used in, e.g., introducing dyes.
For protective and decorative applications, it is the sulphuric acid bath which is the most commonly used. The layer thickness is adjusted according to norms depending on the operating conditions of the product [40].
The characteristic porous structure of oxide layers formed in the process of anodizing in sulphuric acid facilitates subsequent chemical dyeing operations. Organic dyes are frequently applied, most of which easily adsorb on the developed aluminium oxide surface. The process is usually performed in diluted dye solution at elevated temperature and in adjusted dye solution pH. The process, however, has one disadvantage, namely the poor light-fastness of the resulting surface colouring, particularly when exposed to direct sunlight. That is why only a small number of organic dyes are permitted for dyeing aluminium architectural elements [38, 41].
Chromate coatings are recognized as conversion coatings, i.e., coatings generated as a result of the chemical or electrochemical reaction of a metal surface layer with certain chemical compounds in which the produced salt is practically insoluble in the medium where the reaction is conducted [42, 43].
The previous study [44] provides results of the application of surface treatment operations on aluminium alloy sheets: yellow and black anodizing in sulphuric acid, self-colour anodizing and chromate conversion coating lead to certain changes in the surface free energy values. However, different variants of anodizing in sulphuric acid resulted in changes in percentage distribution of the dispersive and the polar component of the surface free energy. The results of the surface free energy and its component calculations indicate that the highest surface free energy value was obtained in the case of chromate coating (69.8mJ m-2) and self-colour anodizing in sulphuric acid (68.5mJ m-2). Simultaneously, the lowest value of the surface free energy was observed for black anodization.
A summary of the previous studies of selected surface treatment of various adherends are presented in Table 2.
\n\t\t\t\tNo.\n\t\t\t | \n\t\t\t\n\t\t\t\tType of surface treatment\n\t\t\t | \n\t\t\t\n\t\t\t\tType of adherend\n\t\t\t | \n\t\t
1 | \n\t\t\tDegreasing | \n\t\t\taluminium [12] | \n\t\t
2 | \n\t\t\tMechanical treatment | \n\t\t\taluminium [6, 30], steel [2, 32], titanium [4] | \n\t\t
3 | \n\t\t\tChemical treatment | \n\t\t\tpolymers [23], titanium [4] | \n\t\t
4 | \n\t\t\tElectrochemical treatment: anodizing, chromate coating | \n\t\t\taluminium [24, 27, 39, 41-44] | \n\t\t
5 | \n\t\t\tOthers: plasma treatment | \n\t\t\taluminium [47] | \n\t\t
The examples of type of surface treatment and adherends
Numerous studies [2, 5, 7, 23-26] stress the importance of the effect of surface pretreatments for adhesive bonding and their effect on adhesive joint strength and the quality of adhesively bonded joints.
The research subject was a shear-loaded single lap adhesive joint of selected structural materials. Sample dimensions are presented in Figure 1: length of adherends l = 100±0.4 mm, width b = 20±0.3 mm, bond-line thickness: gk = 0.1±0.02 mm [46].
Single lap adhesive joint: b – adherends width, g – adherends thickness, gk – bond-line thickness, l – adherends length, lz – overlap length, P – force representing load type and direction
Thickness of adherends g and overlap length lz, are presented in Table 3 [46].
\n\t\t\t\tNo.\n\t\t\t | \n\t\t\t\n\t\t\t\tType of adherend\n\t\t\t | \n\t\t\t\n\t\t\t\tAdherend thickness g, mm\n\t\t\t | \n\t\t\t\n\t\t\t\tOverlap length\n\t\t\t\t \n\t\t\t\tlz, mm\n\t\t\t | \n\t\t
1 | \n\t\t\tEN AW-2024PLT3 aluminium alloy sheet | \n\t\t\t0.64 | \n\t\t\t24 | \n\t\t
2 | \n\t\t\tEN AW-7075PLTO aluminium alloy sheet | \n\t\t\t0.80 | \n\t\t\t27 | \n\t\t
3 | \n\t\t\tCP1 titanium sheet | \n\t\t\t0.40 | \n\t\t\t8 | \n\t\t
4 | \n\t\t\tCP3 titanium sheet | \n\t\t\t0.80 | \n\t\t\t16 | \n\t\t
5 | \n\t\t\tX5CrNi181 stainless steel | \n\t\t\t1.00 | \n\t\t\t14 | \n\t\t
Dimensions of analysed adhesive joints
Adhesive joints were formed with a two-component epoxy adhesive, Loctite 3430 [47], suitable for the analysed adherends, with a short cure time at room temperature. The adhesive was prepared with a static mixer and applied on one of the adherends, in accordance with the manufacturer’s recommendations. Even bond-line thickness was ensured in preliminary research by, inter alia, selecting a suitable amount of adhesive and pressure while curing.
Proper surface treatments were selected according to the given structural material:
degreasing (chemical clearing) with degreasing agents,
mechanical treatment with abrasive tools ,
anodizing,
chromate treatment,
etching,
a combination of selected methods listed above.
Degreasing in experimental tests was carried out with Loctite 7036 degreasing agent, mostly containing aliphatic hydrocarbons. Chemical cleaning with Loctite 7063 was a three-stage process consisting in spraying the surface of adherends, removing the agent with a cloth, and after the final application of the degreaser leaving the sample to dry. Chemical cleaning took place at an ambient temperature of 20±2 °C, and in relative humidity of 32-40 % [47].
Since chemical cleaning is rarely sufficient for providing good adhesion, as previously mentioned, the sample preparation included an abrasive mechanical treatment stage, performed with abrasive paper, which is the most convenient material for mechanical treatment of adherends. This approach is selected because of its high efficiency and accessibility combined with low cost, and its uncomplicated and versatile application in various conditions. Another important advantage of this method is that it requires little effort to ensure the machined surface shows marks in no direction.
Mechanical treatment in experimental tests was carried out with P320 abrasive paper.
The last stage of this surface treatment operation, having treated the surface with abrasive paper, was to remove the remaining contaminants from the surface with Loctite 7036 degreasing agent.
Sulphuric acid anodizing was another surface treatment used in tests. Adherends were immersed in 180-200 g/l solution of sulphuric acid at the temperature of 10÷15 °C for 35 minutes. Afterwards, the samples were dyed yellow in a 40÷55 g/l solution of K2Cr2O7, pH 4.5÷6.2, at the temperature of 90÷95 °C for 35 minutes.
Another batch of samples was subjected to chromate treatment, consisting of a 30 second immersion in a 5.5 g/l solution of Na2Cr2O7; a 4 g/l solution of Na2SO4; 4.5-5.5 g/l solution of H3BO3 and a 1.5 ml/l solution of HNO3, pH 1.4-1.6.
Finally, the last surface treatment applied in tests for comparison was etching in a 40-60 g/l aqueous solution of sodium hydroxide. The adherends were immersed for 3-4 minutes at 45-55 °C, subsequently rinsed with warm running water and finally left to dry.
For the sake of control, a part of the samples remained untreated. This allowed the determination of the actual impact of surface treatments on the surface free energy values of adherends.
Joint forming conditions were as follows:
cure temperature 20±2 °C,
relative humidity 32-40 %,
pressure when curing 0.02 MPa;
seasoned for 48 h at ambient temperature of 20±2 °C.
Adhesive joint tensile-shear strength tests were performed in accordance with EN DIN 1465 standard on Zwick/Roell Z100 and Zwick/Roell Z150 testing machines. Testing speed was equal to 5 mm/min.
The results of shear strength tests on EN AW-2024PLT3 aluminium alloy sheet adhesive joints are presented in Figure 2. The results presented in figures are mean values of 8-2 measurements performed for each surface treatment variant.
Shear strength tests of EN AW-2024PLT3 aluminium alloy sheet adhesive joints after different surface treatment methods: U - untreated, D - degreasing (chemical cleaning), M - mechanical treatment, MD - mechanical treatment and degreasing, E - etching A – anodizing, Ch - chromate treatment
Application of anodizing and chromate operations as an EN AW-2024 aluminium alloy sheet surface treatment method produced adhesive joints of maximum shear strength of 11.09 MPa and 12.39 MPa, respectively. Similarly good results in promoting joint strength were observed when the surface of EN AW-2024PLT3 aluminium alloy sheets was subjected to exclusively mechanical treatment; the results in that case amounted to 8.43 MPa and 8.66 MPa; therefore, the joint strength was six times higher than in the case where no surface treatment was applied. In the failure of EN AW-2024PLT3 aluminium alloy sheet adhesive joints, a characteristic and repeatable shape of failed elements can be noticed. An observed plastic deformation of adherends results from shear and bending stresses.
Test results for homogenous EN AW-2024PLT3 aluminium alloy sheet adhesive joints’ strength after certain surface treatment procedures are presented in Figure 3.
Shear strength tests of EN AW-7075PLT0 aluminium alloy sheet adhesive joints after different surface treatment methods: U - untreated, D - degreasing (chemical cleaning), M - mechanical treatment, MD - mechanical treatment and degreasing
Adhesive joints were formed on 0.80 mm thick sheet samples. The highest sheet adhesive joint strength was observed after mechanical treatment (5.75 MPa), while the lowest was produced in the case of untreated adherends (4.30 MPa). In the latter case (variant M), the increase in joint strength was equal to 25 % as compared with variant U (untreated surface). The analysis of chemical treatment leads to the conclusion that the application of this particular operation generates conditions promoting joint strength. In addition, a positive impact of degreasing on joint strength can be observed in relation to the variant with no chemical treatment (approx. 9 % higher). It was observed that in each case when preparation of adherends’ surface for adhesive joining was performed, higher joint strength is produced in comparison with variant U (untreated surface).
Adhesive joint strength tests were carried out on two types of titanium adherend: CP1 and CP3. CP1 titanium sheet adhesive joint strength after the analysed surface treatments is presented in Figure 4.
Shear strength tests of CP1 titanium sheet adhesive joints after different surface treatment methods: U - untreated, D - degreasing (chemical cleaning), M - mechanical treatment, MD - mechanical treatment and degreasing
This shows that the highest strength was demonstrated by samples subjected to degreasing, and mechanical and degreasing. The shear strength of these joints was nearly four times higher than in the case of an untreated surface, whereas exclusively mechanical treatment only proved slightly less effective. The shear strength developed here was notably lower by 7 MPa as compared to variant D (degreasing).
Strength test results for CP3 titanium sheet adhesive joints after the analysed surface treatment are shown in Figure 5.
Shear strength tests of CP3 titanium sheet adhesive joints after different surface treatment methods: U - untreated, D - degreasing (degreasing), M - degreasing, MD - mechanical treatment and degreasing
The application of mechanical and chemical treatment as surface treatment operations for CP3 titanium sheets was translated into the highest joint strength (14.20 MPa). The shear strength of such joints was seven times greater than in the case of an untreated surface. When treated mechanically, with no chemical cleaning, or in the case where only mechanical cleaning was applied, the resulting joint shear strength was lower. Homogeneous CP3 titanium sheet adhesive joint shear strength after degreasing constituted 68 % of strength value obtained following variant MD of surface preparation and 76 % of variant M (mechanical treatment).
Stainless steel adherend samples were treated in an identical manner to the case of aluminium and titanium sheet adherends. Joint strength test results after the analysed surface treatment are presented in Figure 6.
Shear strength tests of stainless steel adhesive joints after different surface treatment methods: U - untreated, D - degreasing (chemical cleaning), M - mechanical treatment, MD - mechanical treatment and degreasing
It was observed that the highest values of joint strength were obtained after mechanical and chemical treatment (14.84 MPa), but it was observed that there were large differences in the obtained test results. Standard deviation is significantly greater than for other types of surface treatment. The difference in the values of the strength after the application of degreasing and after machining and degreasing is about 10 %. Based on the results of the statistical analysis, it can be seen that the use of both degreasing and mechanical treatment makes it possible to obtain the same strength, with a higher reproducibility for the degreasing. Comparing the results of the bond strength after the surface treatment and without treatment by test materials to prepare the surfaces for bonding, it can be noted that each of the analysed types of surface treatment allows for a greater strength to be obtained than the variant of untreated surface.
In numerous instances, when degreasing follows mechanical treatment, the resulting joint strength is higher as compared to joint strength of materials subjected exclusively to mechanical treatment. These results are evident in the case of CP1 and CP3 titanium sheet adhesive joints, while in EN AW-2024PLT3 and EN AW-7075PLTO aluminium alloy sheets the increase was insignificant. It ought to be mentioned, however, that chemical cleaning produced the highest scatter of joint strength value results as compared with other surface treatment operations. It could be indicative of higher non-uniformity of adhesive properties obtained in the case in question, which would in turn result in considerable differences in adhesive joint strength values obtained in tests. This observation is, furthermore, confirmed by the SFE value analysis carried out after degreasing of, e.g., CP1 (Figure 4) and CP3 (Figure 5) titanium sheets.
Adhesive properties of the surface layer of structural materials determine the adequacy of the constituted surface layer for the processes where adhesion plays an essential role [48, 49].
Adhesive properties can be described with different physical quantities: the contact angle Θ and related wetting phenomenon, the work of adhesion Wa and the surface free energy. The contact angle Θ is an indicator of wettability – good wettability is marked by a small contact angle (Θ < 90°), whereas poor wettability co-occurs with a high contact angle (Θ > 90°) [50-52].
The small contact angle of water is presented in Figure 7 and the contact angle of diidomethane is presented in Figure 8. Figure 9 presents the high contact angle of water (Θ > 90°). Direct measurement of the contact angle of a liquid drop on the analysed surface is presented in Figures 7-9.
Many researchers argue that adhesive properties can be determined with surface free energy (SFE). This thermodynamic quantity describes the surface energetic state and is characteristic of particular solids or liquids. There are a number of SFE calculation methods, e.g., the Fowkes method, the Zisman method, the Owens-Wendt method and the van Oss-Chaudhury-Good method, the Neumann method and the method of Wu [49, 43-56].
The small contact angle of water (Θ < 90°)
The small contact angle of diidomethane (Θ < 90°)
The high contact angle (Θ > 90°)
Numerous methods for direct measurement of the surface free energy are applied in liquids; however, in solids only indirect methods for determining the SFE can be applied.
Tests were conducted on the following types of material:
EN AW-2024PLT3 aluminium alloy sheets,
EN AW-7075PLTO aluminium alloy sheets,
CP1 titanium sheets,
CP3 titanium sheets,
X5CrNi181 stainless steel.
Surface treatment operations were selected according to a given structural material [47]:
Degreasing with degreasing agents,
mechanical treatment with abrasive tools
anodizing,
chromate treatment,
etching,
a combination of selected methods listed above.
Adhesive properties were determined by free surface energy. Free surface energy, in turn, was determined by the Owens-Wendt method. The method assumes that free surface energy (γS) is a sum of two components: polar (γSp) and dispersive (γSd), and that they all are characterized by the following dependence [5, 12, 22]:
The polar component is defined as a sum of components generated by intermolecular forces, including polar, hydrogen, inductive, acidic and basic, excluding dispersive forces. Dispersive forces, on the other hand, are components of free surface energy. To determine polar and dispersive components of free surface energy, it is necessary to measure wetting angles of the surfaces of the materials being tested using two measuring liquids. Measuring liquids used to this end are liquids whose free surface energy and its polar and dispersive components are known. One of the liquids is apolar, while the other is bipolar. Distilled water was used as the bipolar liquid and diiodomethane was used as the apolar liquid. The components γSd and γSp of the tested materials can be determined using the relevant formulas given in the studies [12, 22].
The essential values of the applied measuring liquids’ surface free energy γS and its components are listed in Table 4.
\n\t\t\t\tNo.\n\t\t\t | \n\t\t\t\n\t\t\t\tMeasuring liquid\n\t\t\t | \n\t\t\t\n\t\t\t\t\n\t\t\t\t\tγL\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t \n\t\t\t\t[mJ/m2]\n\t\t\t | \n\t\t\t\n\t\t\t\t\n\t\t\t\t\tγL\n\t\t\t\t\t\td\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t \n\t\t\t\t[mJ/m2]\n\t\t\t | \n\t\t\t\n\t\t\t\t\n\t\t\t\t\tγL\n\t\t\t\t\t\tp\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t \n\t\t\t\t[mJ/m2]\n\t\t\t | \n\t\t
1 | \n\t\t\tDistilled water | \n\t\t\t72.8 | \n\t\t\t21.8 | \n\t\t\t51.0 | \n\t\t
2 | \n\t\t\tDiiodomethane | \n\t\t\t50.8 | \n\t\t\t48.5 | \n\t\t\t2, 3 | \n\t\t
Values of free surface energy γL of the measuring liquids applied and its components [22]
To calculate free surface energy, the wetting angle Θ of the surfaces of the tested materials was measured. The measurements were made using the method for direct measurement of the angle formed by a measuring liquid drop and the surface being examined. The measurements of the wetting angle were performed at a temperature of 26±2 °C and air humidity of 30±2 %. The volume of drops of the measuring liquids ranged from 0.8 to 1.5 μl. To every sample surface (there were 10 samples for each material), five drops of the measuring liquids were applied. After that, 5-10 measurements were made and the mean for each sample batch was calculated. The wetting angle was measured immediately following the application of a drop of the measuring liquid (after a few seconds). The measurements were made using a PGX goniometer manufactured by Fibro System (Sweden) and a PG programme for computer image analysis.
The preparation of adherends for bonding was material-dependent, i.e., certain treatments, such as anodizing, chromate treatment or etching, were only applicable for 2024 aluminium alloy sheet adherends. The remaining samples were subjected to standard operations, mainly degreasing, mechanical treatment and the combination of the two. Figure 10 and Figure 11 present the values of the surface free energy γS and its components for the analysed aluminium alloys after particular surface treatments.
Surface free energy of EN AW-2024PLT3 aluminium alloy sheets: U – untreated, D – degreasing (chemical cleaning), M – mechanical treatment, MD – mechanical treatment and degreasing, A – anodizing, Ch – chromate treatment, E – etching
Figure 12 and Figure 13 present the values of the surface free energy γSp and its components for titanium sheets after particular surface treatments.
Figure 14 presents the values of the surface free energy γS and its components for stainless steel after particular surface treatments.
After analysis of the test results presented in Figures 10-14, it becomes apparent that there is a direct correlation between different surface treatments and the surface free energy of adherends. The final values of γS, however, depend on the type of material rather than the type of surface treatment. Furthermore, the values of polar γSp and dispersive γSd components of the surface free energy exhibit the tendency to vary not only within the same type of material but within the same type of surface treatment as well. In each of the analysed instances (excluding anodizing, Table 2.15) the γSd component significantly dominates over the γSp in total γS. It can be nevertheless noted that although anodizing produces a higher polar component of the surface free energy, γS component values are comparable.
Surface free energy of EN AW-7075PLTO aluminium alloy sheets: U – untreated, D – degreasing (chemical cleaning), M – mechanical treatment, MD – mechanical treatment and degreasing
Surface free energy of CP1 titanium sheets: U – untreated, D – degreasing (chemical cleaning), M – mechanical treatment, MD – mechanical treatment and degreasing
Surface free energy of CP3 titanium sheets: U – untreated, D – degreasing (chemical cleaning), M – mechanical treatment, MD – mechanical treatment and degreasing
Surface free energy of stainless steel: U – untreated, D – degreasing (chemical cleaning), M – mechanical treatment, MD – mechanical treatment and degreasing
Bearing in mind the frequently negligible differences between the values of the surface free energy of different adherends after different surface treatments, the results were subjected to statistical analysis [46].
The geometric structure of substrate surfaces is of considerable significance from the perspective of adhesive bonding. According to the mechanical theory of adhesion, penetration of micropores in adhered elements is an essential condition to be fulfilled in order for the mechanical interlocking to bear loads. The mechanical theory of adhesion recognizes different factors contributing to increasing adhesive joint strength [2, 3, 5, 21]. One of these dependencies is that with increased surface roughness of a given material, the number of irregularities which can be penetrated by the adhesive grows. This leads to the conclusion that the strength of adhesive joints formed on porous substrates is significantly higher than in the case of smooth-surface adherends, resulting from a considerably larger contact surface [3].
Excessive numbers of narrow micropores may hinder adhesive penetration, particularly in the case of high viscosity adhesive or that of high surface tension, where the adhesive may stop at the peaks of irregularities. In such a situation, micropores tend to trap air bubbles to form an additional weak boundary layer, acting to the detriment of adhesion. Therefore, there exists a degree of surface roughness the exceeding of which produces disadvantageous conditions for the intermolecular bonds between adhesive and substrate.
The literature [2, 3, 23] presents dependencies used to describe the penetration of adhesive into micropores and irregularities of the surface in adhesive bonding. Depth of penetration is contingent on several factors, e.g., diameter of pores, viscosity, the surface free energy of adhesive or the wetting angle.
Different studies have analysed phenomena relevant to the relationship between surface roughness of adherends, their energetic state and wettability [32, 57, 58].
Mechanical treatment is one of the methods applied for the purpose of preparing the surface of adherends for bonding. Mechanical treatment consists in the removal of various surface contaminants, e.g., corrosion layers, and in addition, it enables surface development by constituting the geometric structure of adhered surface.
Of the numerous mechanical pretreatment methods, some prominent examples that could be mentioned are: sand- or grit-blasting, grinding or using coated abrasives [32, 58, 59]. Studies of the correlation between surface preparation and adhesive joint strength rarely offer detailed analysis of the impact of surface roughness parameters on adhesively bonded joint strength [59]. Moreover, certain researchers [2, 3] argue that surface roughness profile parameters alone fail to produce a satisfactory description of the degree of surface development.
The surface tests presented here indicate diversification of the geometric structure of adherends with respect to mechanical adhesion. Geometric structure often determines penetration of the adhesive into the surface irregularities and might promote mechanical adhesion, which is of great importance to adhesive bond strength.
Surface profiles, obtained from, inter alia, profilometer measurements, reveal that chemical cleaning fails to modify the surface geometry of analysed materials. On the other hand, mechanical, chemical and electrochemical treatments do generate considerable changes which consequently promote adhesion. It is for that reason that surface images and profiles were used in the characterization of the surface after chemical cleaning and mechanical treatment. In the case of EN AW-2024 aluminium alloy sheet, profiles and images were obtained following all applied surface treatments, i.e., anodizing, chromate treatment and etching, whereas for CP3 titanium sheets they were obtained after etching. The tables collate the results of measurements of surface roughness parameters, which represent mean values of 10-12 repetitions for each parameter.
The roughness of specimens was qualified by the method for measuring contact roughness, using an M2 profilometer manufactured by Mahr. The surface view was obtained using NanoFocus μscan AF2.
Two types of aluminium alloy sheets were tested in this study: EN AW-2024 (according to EN AW-2024-AlCu4Mg1 [60]) and EN AW-7075 (according to EN AW-7075-ALZn5.5MgCu [60]). The tests were performed on samples of different thicknesses and tempers [61-63]. Thickness and temper characteristics of analysed materials are presented in Table 5 and Table 6.
\n\t\t\t\tNo.\n\t\t\t | \n\t\t\t\n\t\t\t\tType of material\n\t\t\t | \n\t\t\t\n\t\t\t\tSheet thickness g, mm\n\t\t\t | \n\t\t\t\n\t\t\t\tTemper\n\t\t\t | \n\t\t
1 | \n\t\t\tEN AW-2024 aluminium alloy sheet | \n\t\t\t0.64 | \n\t\t\tT3 | \n\t\t
2 | \n\t\t\tEN AW-2024PL aluminium alloy sheet | \n\t\t\t0.64 | \n\t\t\tT3 | \n\t\t
3. | \n\t\t\tEN AW-2024PL aluminium alloy sheet | \n\t\t\t0.64 | \n\t\t\tTO | \n\t\t
Characteristics of EN AW-2024 aluminium alloy sheets
Designations [350]:
O - thermally treated to produce stable tempers to develop mechanical properties, as after annealing,
T3 – heat treated, subjected to cold working and natural ageing until reaching a stable condition,
PL – plated.
\n\t\t\t\tNo.\n\t\t\t | \n\t\t\t\n\t\t\t\tType of material\n\t\t\t | \n\t\t\t\n\t\t\t\tSheet thickness g, mm\n\t\t\t | \n\t\t\t\n\t\t\t\tTemper\n\t\t\t | \n\t\t
1 | \n\t\t\tEN AW-7075PL aluminium alloy sheet | \n\t\t\t0.80 | \n\t\t\tTO | \n\t\t
Characteristics of EN AW-7075 aluminium alloy sheets
Designations [350]:
O - thermally treated to produce stable tempers to develop mechanical properties, as after annealing,
PL – plated.
Table 7 and Table 8 present characteristic surface roughness profile parameters (average from 10-12 values) of the analysed aluminium alloys subjected only to degreasing (chemical cleaning).
\n\t\t\t\tNo.\n\t\t\t | \n\t\t\t\n\t\t\t\tType of aluminium alloy\n\t\t\t | \n\t\t\t\n\t\t\t\tMean values of surface roughness parameters, μm\n\t\t\t | \n\t\t||||||
Ra\n\t\t\t | \n\t\t\tRz\n\t\t\t | \n\t\t\tRz max\n\t\t\t | \n\t\t\tSm\n\t\t\t | \n\t\t\tRp\n\t\t\t | \n\t\t\tRpk\n\t\t\t | \n\t\t\tRvk\n\t\t\t | \n\t\t||
1 | \n\t\t\tEN AW-2024T3 | \n\t\t\t0.28 | \n\t\t\t2.10 | \n\t\t\t2.50 | \n\t\t\t70 | \n\t\t\t0.90 | \n\t\t\t0.34 | \n\t\t\t0.37 | \n\t\t
2 | \n\t\t\tEN AW-2024PLT3 | \n\t\t\t0.20 | \n\t\t\t1.61 | \n\t\t\t2.80 | \n\t\t\t208 | \n\t\t\t0.77 | \n\t\t\t0.28 | \n\t\t\t0.44 | \n\t\t
3 | \n\t\t\tEN AW-2024PLTO | \n\t\t\t0.60 | \n\t\t\t4.10 | \n\t\t\t5.30 | \n\t\t\t70 | \n\t\t\t2.56 | \n\t\t\t1.04 | \n\t\t\t0.65 | \n\t\t
Surface roughness parameters of EN AW-2024 aluminium alloy sheets
\n\t\t\t\tNo.\n\t\t\t | \n\t\t\t\n\t\t\t\tType of aluminium alloy\n\t\t\t | \n\t\t\t\n\t\t\t\tMean values of surface roughness parameters, μm\n\t\t\t | \n\t\t||||||
Ra\n\t\t\t | \n\t\t\tRz\n\t\t\t | \n\t\t\tRz max\n\t\t\t | \n\t\t\tSm\n\t\t\t | \n\t\t\tRp\n\t\t\t | \n\t\t\tRpk\n\t\t\t | \n\t\t\tRvk\n\t\t\t | \n\t\t||
1 | \n\t\t\tEN AW-7075PLTO | \n\t\t\t0.15 | \n\t\t\t1.12 | \n\t\t\t2.06 | \n\t\t\t203 | \n\t\t\t0.54 | \n\t\t\t0.22 | \n\t\t\t0.41 | \n\t\t
Surface roughness parameters of EN AW-7075PLTO aluminium alloy sheets
It was noted that it could be as a result of rolling that particular surface roughness values are obtained. In EN AW-2024 aluminium alloy sheets’ temper O there was a marked increase in surface roughness as compared with EN AW-7075 aluminium alloy sheets’ temper O.
The surface roughness parameter results of the analysed aluminium alloy sheets (after degreasing) are furthermore reflected by surface images and profiles from a 3D profiler. Representative sheet specimens of different tempers are presented in Figures 15-18 [44].
Surface of EN AW-2024PLT3 aluminium alloy sheet; degreasing, 3D profiler
Representative profile of EN AW-2024PLT3 aluminium alloy sheets; degreasing
Surface of EN AW-7075PLTO aluminium alloy sheets; degreasing, 3D profiler
Representative profile of EN AW-7075PLTO aluminium alloy sheets; degreasing
In comparing images and profiles of the analysed surfaces, it emerges that it was probably the differences in the rolling process of the analysed sheets that produced differences in the geometric structure of the surface.
Surface roughness measurements of EN AW-2024PLT3 and EN AW-7075PLTO aluminium alloy sheets after different surface treatments are presented in Table 9 and Table 10.
As opposed to chemical cleaning, mechanical treatment did modify the geometric structure of aluminium alloy sheet surface. Surface roughness parameters of EN AW-7075PLTO following mechanical treatment and degreasing are decreased in comparison with samples subject to mechanical treatment only, which could be a consequence of removing mechanical treatment residue from the surface. Model images and roughness parameters (average from 10-12 values) after this surface treatment method are presented in Figures 19-22.
\n\t\t\t\tNo.\n\t\t\t | \n\t\t\t\n\t\t\t\tSurface treatment\n\t\t\t | \n\t\t\t\n\t\t\t\tMean values of surface roughness parameters, μm\n\t\t\t | \n\t\t||||||
Ra\n\t\t\t | \n\t\t\tRz\n\t\t\t | \n\t\t\tRz max\n\t\t\t | \n\t\t\tSm\n\t\t\t | \n\t\t\tRp\n\t\t\t | \n\t\t\tRpk\n\t\t\t | \n\t\t\tRvk\n\t\t\t | \n\t\t||
1 | \n\t\t\tChemical cleaning | \n\t\t\t0.20 | \n\t\t\t1.36 | \n\t\t\t2.59 | \n\t\t\t270 | \n\t\t\t0.65 | \n\t\t\t0.28 | \n\t\t\t0.64 | \n\t\t
2 | \n\t\t\tMechanical treatment | \n\t\t\t1.31 | \n\t\t\t9.83 | \n\t\t\t14.24 | \n\t\t\t137 | \n\t\t\t4.87 | \n\t\t\t2.17 | \n\t\t\t2.52 | \n\t\t
3 | \n\t\t\tMechanical treatment and chemical cleaning | \n\t\t\t1.40 | \n\t\t\t9.58 | \n\t\t\t12.46 | \n\t\t\t125 | \n\t\t\t4.44 | \n\t\t\t2.00 | \n\t\t\t2.73 | \n\t\t
4 | \n\t\t\tAnodizing | \n\t\t\t0.41 | \n\t\t\t3.78 | \n\t\t\t5.79 | \n\t\t\t122 | \n\t\t\t1.49 | \n\t\t\t0.52 | \n\t\t\t1.02 | \n\t\t
5 | \n\t\t\tChromate treatment | \n\t\t\t0.37 | \n\t\t\t3.48 | \n\t\t\t5.70 | \n\t\t\t108 | \n\t\t\t1.52 | \n\t\t\t0.73 | \n\t\t\t0.77 | \n\t\t
6 | \n\t\t\tEtching | \n\t\t\t0.33 | \n\t\t\t2.72 | \n\t\t\t4.63 | \n\t\t\t145 | \n\t\t\t1.04 | \n\t\t\t0.48 | \n\t\t\t0.87 | \n\t\t
Surface roughness parameters of EN AW-2024PLT3 after different surface treatments
\n\t\t\t\tNo.\n\t\t\t | \n\t\t\t\n\t\t\t\tSurface treatment\n\t\t\t | \n\t\t\t\n\t\t\t\tMean values of surface roughness parameters, μm\n\t\t\t | \n\t\t||||||
Ra\n\t\t\t | \n\t\t\tRz\n\t\t\t | \n\t\t\tRz max\n\t\t\t | \n\t\t\tSm\n\t\t\t | \n\t\t\tRp\n\t\t\t | \n\t\t\tRpk\n\t\t\t | \n\t\t\tRvk\n\t\t\t | \n\t\t||
1 | \n\t\t\tChemical cleaning | \n\t\t\t0.31 | \n\t\t\t2.31 | \n\t\t\t4.64 | \n\t\t\t290 | \n\t\t\t1.13 | \n\t\t\t0.64 | \n\t\t\t0.72 | \n\t\t
2 | \n\t\t\tMechanical treatment | \n\t\t\t1.58 | \n\t\t\t12.07 | \n\t\t\t16.96 | \n\t\t\t142 | \n\t\t\t6.17 | \n\t\t\t2.68 | \n\t\t\t3.14 | \n\t\t
3 | \n\t\t\tMechanical treatment and chemical cleaning | \n\t\t\t1.28 | \n\t\t\t9.16 | \n\t\t\t12.12 | \n\t\t\t113 | \n\t\t\t4.41 | \n\t\t\t1.79 | \n\t\t\t2.53 | \n\t\t
Surface roughness parameters of EN AW-7075PLTO after different surface treatments
Surface of EN AW-2024PLT3 aluminium alloy sheets; mechanical treatment, 3D profiler
Representative profile of EN AW-2024PLT3 aluminium alloy sheets; mechanical treatment
Surface of EN AW-7075PLTO aluminium alloy sheets; mechanical treatment, 3D profiler
Representative profile of EN AW-7075PLTO aluminium alloy sheets; mechanical treatment
The surface of EN AW-2024PLT3 and EN AW-7075PLTO aluminium alloys after mechanical treatment manifests a considerably higher number of micro-irregularities in the uniform distribution on the surface (Figures 19 and 21). Simultaneously, an increase in surface roughness resulting from mechanical treatment (4-6 times) (Table 9 and Table 10), compared with most of the other surface treatments, should be noted.
Surface of EN AW-7075PLTO aluminium alloy sheets; anodizing, 3D profiler
The surface roughness parameter results for the analysed aluminium alloy sheets EN AW-2024PLT3 after anodizing, chromate treatment and etching are reflected by surface images and profiles from a 3D profiler. Representative sheet specimens are presented in Figures 23-28.
Representative profile of EN AW-2024PLT3 aluminium alloy sheets; anodizing
Surface of EN AW-2024PLT3 aluminium alloy sheets; chromate treatment, 3D profiler
Representative profile of EN AW-2024PLT3 aluminium alloy sheets; chromate treatment [44]
Surface of EN AW-2024PLT3 aluminium alloy sheets; etching, 3D profiler
Representative profile of EN AW-2024PLT3 aluminium alloy sheets; etching
The results of surface roughness parameter measurement carried out on test samples subjected to anodizing indicate that anodizing has an impact on the height of surface irregularities.
Comparing analysed samples subjected to surface treatment technologies, it was chromate conversion coating which proved to have the greatest impact on both the height and the structure of surface irregularities, as shown in Figure 25 and Figure 26. In the case of this method, the decrease in the values of irregularities’ height parameters ranged between -6.2 % for the Rk and -42.6 % for the Rvk, while there was practically no difference in the values of the two parameters Rp and Rpk. As a result, noticeable smoothing of the test sample surface was achieved. Reduced mean spacing of profile peaks’ Sm by 18 % and the local S by 12.5 % together represent an increased number of irregularities, as confirmed by the representation of the roughness profile in Figure 26 and of the structure in Figure 25 [44].
Results obtained from adhesive joint strength testing of the materials show that surface treatment plays an important role in increasing the strength of analysed joints. Moreover, the application of the same surface treatment in the context of different structural materials produces different strength values.
Tests indicate that in numerous instances it is mechanical treatment only or mechanical treatment followed by degreasing which translate into the highest joint strength. Statistical analysis of adhesive joint strength test results demonstrated that in certain cases no significant differences between different surface treatments effects can be detected. Moreover, degreasing conducted after mechanical treatment is not reflected in a significant increase in joint strength values.
In certain joints, e.g., CP1 titanium sheets, degreasing is sufficient to provide relatively high joint strength. Furthermore, in certain applications, the differences between the effects of degreasing and mechanical treatment with degreasing showed no statistical significance. It was also noted that mechanical treatment can produce joints of substantial strength (e.g., EN AW-7075PLTO aluminium sheet adhesive joints).
The applied surface treatment methods, such as mechanical, chemical and electrochemical methods, modify geometry and roughness parameters. Chemical cleaning, however, has little impact on surface geometry, in the case of both untreated and mechanically treated surfaces. Nevertheless, in certain applications, change in surface parameters can be observed.
The surface treatment method that introduces extensive changes in the analysed materials’ surface geometry is mechanical treatment. In some cases it has, moreover, played a role in increasing surface roughness parameters, e.g., in aluminium alloys and titanium sheets.
The application of various surface treatments in different structural materials allows for modification of their adhesive properties, determined by the surface free energy. Statistical analysis proved that in the majority of cases the surface free energy values responded considerably to the surface treatment operations. Although in some of the analysed variants the differences in γS values were negligible, they were nevertheless statistically relevant (level of significance of 0.05).
It was noted that different surface treatments contribute not only to the surface free energy changes but to the SFE components’ share in the total value. In the majority of variants of EN AW-2024PLT3 aluminium alloy sheet surface treatment, the dispersive component amounted to the 93-99 % of the total surface free energy. Electrochemical treatment (anodizing and chromate treatment) produced very different results. The polar component γSp after chromate treatment was greater than the dispersive component γSd, and after anodizing the polar component amounted to 41 % of total SFE. It appears, then, that chemical treatment methods manifest capabilities to increase the surface free energy and to balance the dispersive-to-polar component ratio. This ratio is typical of particular technologies of surface treatment; for instance in CP1 and CP3 titanium sheets, the dispersive component of the SFE ranges between 73 % and 87 % of the total surface free energy, whereas for stainless steel it is 78 %-90 %.
With regard to the surface free energy values in EN AW-2024PLT3 aluminium alloy sheets, it is electrochemical treatment (chromate treatment and anodizing) which is the most advantageous. In the case of other treatments, the second-best mechanical treatment is additionally beneficial in EN AW-7075PLTO aluminium alloy sheets and CP1 titanium sheets.
Development of surface geometry and roughness parameters of the analysed adherends does not always correlate with the increase in the values of the surface free energy of these materials. It is a non-linear dependence, in which the increase of surface roughness parameters is on several occasions not reflected in an identical increase in the surface free energy.
The assumption, then, should be that in order for the determination of a particular surface for adhesive processes to be comprehensive, it should account for the adherend’s surface geometry as well as its adhesion properties. The geometry of the surface can influence the mechanical adhesion, and the surface free energy is connected with both mechanical adhesion and the other constituent of adhesion: proper adhesion.
In digital communication systems, sinusoidal carriers with high frequency are used to carry information by modulation process where these carriers are deterministic with constant power over the time of transmission. Another proposed type of carriers is currently analyzed and is called chaotic. The chaotic signal is non-periodic, random-like, with low cross-correlation and impulse-like auto correlation. It is derived from dynamical systems, particularly from the independent state variables. The instantaneous value is often bounded between two constant peaks determined by the trajectory of the generated maps. To simplify the description of chaotic signal generation, let us consider the discrete time presentation for the iterative equation, that is, xn = f(xn − 1, u) where xn is output vector of the state variable sampled at nth instant, f(xn–1) is the iterative function determined by the map, finally μ is the parameter which controls the behavior of the chaotic function.
In chaos-based digital communications, bits are mapped to actual non-periodic output of chaotic circuits and the sample function for a given symbol is non-periodic and different from one bit to another [1]. Sample of chaos-based signal for symmetric tent map is shown in Figure 1.
Chaotic signal generated by symmetric tent map.
Based on the previous discussion, receivers of digital chaotic communication systems can be broadly classified according to the receiver structures such as coherent, non-coherent and differentially coherent systems [2].
In coherent systems, a local synchronized copy of each sample function has to be produced at the receiver. When the transmitted signal is corrupted by the random noise, it will be challenging to synchronize the local generated carrier with that in the transmitters as in coherent shift keying (CSK) [1]. The idea of CSK is to map each information bit to chaos bases signal say f1 and f2. If “+1” is to be sent, then chaos signal from generator f1 is to be transmitted with one bit duration, and if “−1” is to be sent, chaos signal from generator f2 is transmitted with same bit duration. The receiver should generate exact copy from f1 and f2 to recover the information. This is done by using dedicated synchronization circuits [3].
This type of chaos receivers offers simple solution for synchronization problem by estimating one unique parameter such as power. This is achieved by multiplying and integrating the product of received sample signal with itself to estimate the signal energy. Chaos ON OFF keying (COOK) and non-coherent chaos shift keying are a practical implementation of this idea [4]. In COOK, the signal is transmitted within bit duration only if information “+1” is to be transmitted. Otherwise, no transmission is taken place at “−1” bit duration. A bit control switch is used to control the emission of signal at the transmitter output. However, obtaining an optimum threshold to distinguish between signal sets does not depend only on signal power at the correlator output but also on the noise power estimation that is the major drawback of such systems [1].
Another scheme is developed where a reference signal is followed by another reference signal modulated by the information bit and called information carrying signal. This arrangement is known as differentially coherent systems. Here, every bit is presented by two sample functions. In the case of bit 1 transmission, the information is sent by transmitting two identical sample functions. For bit 0, the reference signal is transmitted and followed by an inverted copy of the sample function. General structure of the receiver is based on how to correlate the reference signal with information bearing signal.
Differentially coherent systems show better bit error rate (BER) performance among other existing chaos-based systems and in different channel conditions [5]. In spite of some structure complexity, hardware design is studied and tested.
In this chapter, standard differentially coherent schemes are described and tested by computer simulations, analytical expression to estimate BER in additive white Gaussian channel is obtained using Gaussian approximation method [6, 7]. A brief description of recently developed system is discussed.
Differential chaos shift keying (DCSK) transmitter structure is shown in Figure 1. Each information bit is represented by twin of successive chaotic signal slots with length of samples, where 2M represents the spreading factor. First time slot contains a reference signal and second slot contains the information bearing signal. That is simply a delayed version of the reference signal multiplied by the information bit. Thus, the instantaneous value of the transmitted signal at any instant can be written as
Average bit energy for a single bit can be given by:
where V(.) is the variance operator.
There are many chaotic maps which can be used as a signal source [1, 8]. However, symmetric tent map is selected to produce the chaotic signal due to its simplicity. Its discrete form is given by the equation xn + 1 = 1 − 2|xn| where x is uniformly distributed between 1 and −1. It can be easily shown that E(x) = 0,
Received signal sample ri = si + ζi is received via noisy channel characterized by Gaussian distribution where noise sample ζi is stationary random process withE(ζ) = 0 and its power spectral density given by
Average value of the correlator output can be determined by the value of information bit in the first term, while other terms will have mean value of zero due to their statistical independence [1, 6, 9, 11]. The correlator output is passed to the detector with zero threshold value to minimize BER as described in (4).
As the chaotic signal x is stationary and xi is statistically independent from ζj at any(i, j), correlator output ZDCSK tends to have Gaussian distribution at sufficient value of M. Therefore, BER analytical evaluation of DCSK is obtained by calculating the means and variances of conditional probability of P(ZDCSK| b = 1) and P(ZDCSK| b = − 1), respectively; then theoretical estimate of BER can be calculated as (5)
where
Two major drawbacks of DCSK systems are as follows: (1) data rate is reduced by half because of the need of separate reference signal and (2) a technical issue can be generated from continuous change of switch position in Figure 2.
DCSK transmitter.
DCSK receiver.
Sending reference signal and information bearing signals in separate time slot will result in data rate reduction by half. Instead, orthogonality between each chaotic signal and its delayed version can be utilized efficiently by adding the generated chaotic signal with the modulated version of the previous signal. This scheme is known as correlation delay shift keying (CDSK) [6]. Information bit is sent by transmitting a signal as the sum of a chaotic sequence xi and of the delayed chaotic sequence multiplied by the information signal blxi − L, where l is the bit counter and L is the amount of sequence to be delayed. Hence, the transmitted signal of CDSK at any instant i is given by
where L ≥ M and Eb = 2MV(x).
Compared with structure of DCSK, structure of CDSK transmitter is characterized by replacing the switch by an adder as illustrated in Figure 4. Data rate is doubled when compared with DCSK because of reference time slot utilization [6]. Putting delay L = M, then the receiver of CDSK is similar to that DCSK and each received sample ri segment is correlated with the previous one ri − M. Hence, correlator output ZCDSK can be computed as
CDSK transmitter.
It can be clearly observed that the correlator output ZCDSK contains more intra-signal and noise terms compared to DCSK. Hence, BER performance is expected to be lower. The cross terms in (7) is statistically independent and ZCDSK tends to have Gaussian distribution at sufficient value of M. Theoretical value of BER can be found by calculating the mean and variance of ZCDSK when the transmitted bit is +1 and −1, respectively. Decoding is performed according to the same rule in (4) and BER is given by [6].
To enhance the bandwidth efficiency of DCSK and CDSK, a pair of information bits can be modulated using same reference signal by reusing each reference signal twice [9]. First, reference signal is modulated with information bit after delay of M sequence as a standard DCSK. Second, information bit is modulated after the delay of 3 M. Both modulated segments are added together in the second time slot. The scheme is illustrated in Figure 5. Thus, transmitted signal which is emitted from HE-DCSK transmitter can be written as:
HE-DCSK transmitter diagram.
where k is the pair sequence number. Signal is received through AWGN where each received signal is delayed and correlated twice, first, after M samples delay and second, after 3M as shown in Figure 6. The scheme represents an extended version of DCSK receiver, therefore the output of first modulator Zl can be given by:
HE-DCSK receiver diagram.
Similarly, Z2 can be calculated by
Both correlator output Z1 and Z2 exhibit Gaussian distribution. BER of any correlator can be given as [9]
The system is initially proposed [12] and developed by Albassam [13]. In this scheme, reference signal is generated and added to its time-reversed version. Hence, no separate time slot for reference signal is needed. This will generate a symmetric signal around the middle of bit duration. First half is transmitted directly and the second half is modulated with information bit. Provided that M is spreading factor, transmitted signal can be given by
Transmitter block diagram is illustrated in Figure 7.
Channel under investigation is AWGN and the received signal can be written as
At the receiver, each incoming noisy segment undergoes time reversal process. Hence, the output after the time reversal unit
Perfect bit synchronization is assumed where each incoming signal ri is correlated with time-reversed version
Similarly, BER rate can be readily shown to have
In all previous systems, each transmitted signal is composed of two separate segments such as reference signal and information bearing signal. A simplified system with minimum energy requirement is proposed in Ref. [14]. Simply, a chaos source generates a signal for one bit to be sent as a reference. Then, the transmitter will decide to send either same reference signal or newly generated one using a bit controlled switch as shown in Figure 9. For example, if information bit 1 is transmitted, delayed version of the reference signal is transmitted. Otherwise, the transmitter will generate a new signal. Therefore, each segment will play a dual role; one as information bearing signal at the time of bit generation and as a reference signal for the next bit duration. This eliminates the need for sending reference separately. Without loss of generality, we will consider the analysis for the first bit b where b ∈ {1, 0} and the transmitted signal Si at the ith instant can be represented as
Time reversal DCSK transmitter.
Time reversal DCSK receiver diagram.
Energy efficient DCSK transmitter diagram.
The source emits M samples for each information bit in addition to the initial reference signal. Thus, the average bit energy transmitted can be found as.
Information decoding is performed by correlating each incoming signal ri with its delayed version and the correlation product is averaged over M. Information bit
EF-CDSK receiver.
The received signal ri can be described as ri = si + ζi and the correlator output Zef can be formulated as
Signal energy estimation can be obtained only by taking the mean value of first term in (7). Ideally, this will be either zero or Var(x), all other terms are the zero mean. Obviously, it can be observed that the number of cross-terms of EF-CDSK correlator is less to that in CDSK. However, the distance between signal elements (average value of the correlator for each transmitted bit) is half compared to that in DCSK. Despite all that, the information can be decoded according to the following rule
where αth is the decoding threshold and it is given by Eb/2.
BER expression can be found by calculating mean and variance of the Gaussian distribution function of P(Z| b = 1) and P(Z| b = − 1) and can be formulated as
A simulation result of BER for DCSK, CDSK, HE-DCSK and TR-DCSK schemes BER versus
BER vs. Eb/N for DCSK system at M = 50,100 and 300.
BER vs. Eb/N for CDSK system at M = 50,100 and 300.
BER vs. Eb/N for HE-DCSK system at M = 50,100 and 300.
BER vs. Eb/N for TR-DCSK system at M = 50,100 and 300.
In Figure 15, an overall comparison between an optimum differentially coherent systems performance is shown. With respect to DCSK, CDSK system has degradation in performance by 2–3 dB. This is due to two fundamental reasons: (1) number of cross terms in CDSK correlator is more than in DCSK and (2) incomplete orthogonality between intra-signal terms [1, 6, 9], which can affect the correlator output negatively. Additionally, HE-DCDK outperform DCSK at M = 100 and when
Simulation result and theoretical evaluation for DCSK, CDSK, HE-DCSK and TR-DCSK at M = 500.
In Figure 14, theoretical estimation of BER for all the above mentioned systems in (5), (8), (13) and (18) is plotted against simulation result. Clearly, there is an acceptable matching between theoretical expression and simulated version. However, these expressions are derived based on GA approximation method, which is suitable for the system operating in large spreading factor. To have more accurate derivation, it is preferred to implement integration method [15].
Many chaotic systems have been suggested to enhance BER and bandwidth efficiency of DCSK. Single reference segment is used as a reference to modulate and demodulate multiple successive bits in Ref. [16]. Average bit energy is reduced with bit error rate enhancement. However, the system is not suitable for secure communications due to easy spectrum prediction in addition to the need for multiple delay elements in both transmitter and receiver which increase the system complexity. Chaotic signals have fluctuated energy due to randomness nature of the signal. To have fixed energy, FM-DCSK is proposed in Ref. [17] as a possible solution. Permutation between chaotic samples is implemented to destroy the similarity between the reference signal and information signal in DCSK. Moreover, permutation is used to reduce the interference between different users in multiple access-DCSK (MA-DCSK).
Sending both reference and information bearing signal in separate time slot causes a reduction in bandwidth efficiency of differential coherent systems such as DCSK. Hence, many systems have been designed to combine both reference signal and information bearing signal in one time slot. Xu and Wang proposed a code-shifted DCSK (CS-DCSK) system [18]. System is based on using Walsh code to combine reference signal and information bearing signal in single time slot rather than sending them separately. An extend version of CS-DCSK which sent multiple bits using single reference is named as (high data rate-DCSK) [19]. Another scheme which is based on mapping series of bits into two channels and each encoded output is consider as an initial condition value for the sequence generator pairs and their outputs are added and up converted [20]. Implementation of delay diversity scheme as a basic building block for space time block coder (STBC) is suggested in ref. [21]. Here, bits stream is converted from series to parallel; an each bit in parallel channel is modulated by DCSK modulators and followed by analogue space time block coder (STBC). This arrangement gains advantage of transmission by 5 dB at BER of 1 × 10−4 compared with the single input-single output DCSK.
Efficiency of multicarrier modulation has been used to send multiple bits of modulating each information bits with subcarrier using multicarrier modulation-DCSK. The system provides a considerable saving in bandwidth [22]. However, the cost which needs to pay is the complexity of having multiple carrier multipliers in the transmitter side and bank of matched filter on the receiver side.
Transmitting reference signal followed by information bearing signal is the common signal format for most of the differential coherent spread spectrum systems which can be affected by fast fading channel. A suggested scheme to send only one sample form reference signal followed directly by one sample from information bearing signal is analyzed and tested in Ref. [23]. The system provides immunity against fading in continuous mobility environment. System block diagram is almost similar to standard DCSK except for switching timing.
Major drawback of DCSK system is the addition of channel random noise in both signal segments reference and information bearing signal. Therefore, a noise reduction technique has been introduced to reduce the noise variance by sending a repeated subsegment of samples inside one bit duration rather than sending continuous stream of samples. At the receiver, averaging operation is performed over the repeated segment before the standard correlation procedure [24]. This enhances the BER performance over other newly developed segments.
The Edited Volume, also known as the IntechOpen Book, is an IntechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters.
",metaTitle:"Edited Volumes",metaDescription:"The Edited Volume, also known as the InTechOpen Book, is an InTechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters. ",metaKeywords:null,canonicalURL:"/pages/edited-volumes",contentRaw:'[{"type":"htmlEditorComponent","content":"WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\\n\\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nQUALITY CONTENT
\\n\\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\\n\\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\\n\\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\\n\\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\\n\\nACCESS
\\n\\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\\n\\nYOUR WORK, YOUR COPYRIGHT
\\n\\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\\n\\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\\n\\nOur Open Access book collection includes:
\\n\\n3,332 OPEN ACCESS BOOKS
\\n\\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\\n\\n113+ MILLION DOWNLOADS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview of all publishing process steps and descriptions here.
\\n\\nCURRENT PROJECTS
\\n\\nTo view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\n\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\n\nQUALITY CONTENT
\n\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\n\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\n\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\n\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\n\nACCESS
\n\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\n\nYOUR WORK, YOUR COPYRIGHT
\n\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\n\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\n\nOur Open Access book collection includes:
\n\n3,332 OPEN ACCESS BOOKS
\n\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\n\n113+ MILLION DOWNLOADS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview of all publishing process steps and descriptions here.
\n\nCURRENT PROJECTS
\n\nTo view current Open Access book projects that are Open for Submissions visit us here.
\n\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118374},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5247},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"403",title:"Microbial Genetics",slug:"karyology-microbial-genetics",parent:{title:"Karyology",slug:"karyology"},numberOfBooks:5,numberOfAuthorsAndEditors:169,numberOfWosCitations:69,numberOfCrossrefCitations:34,numberOfDimensionsCitations:80,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"karyology-microbial-genetics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5085",title:"Telomere",subtitle:"A Complex End of a Chromosome",isOpenForSubmission:!1,hash:"2a8f40859d7bc312dea327fd9b058a20",slug:"telomere-a-complex-end-of-a-chromosome",bookSignature:"Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/5085.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4720",title:"Flow Cytometry",subtitle:"Select Topics",isOpenForSubmission:!1,hash:"5a842a00d86bc7f956a5fd1fe6d62b8a",slug:"flow-cytometry-select-topics",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/4720.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3536",title:"Chromatin Remodelling",subtitle:null,isOpenForSubmission:!1,hash:"31abe97fe35989e4547bab854b38e03a",slug:"chromatin-remodelling",bookSignature:"Danuta Radzioch",coverURL:"https://cdn.intechopen.com/books/images_new/3536.jpg",editedByType:"Edited by",editors:[{id:"165250",title:"Dr.",name:"Danuta",middleName:null,surname:"Radzioch",slug:"danuta-radzioch",fullName:"Danuta Radzioch"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1578",title:"Flow Cytometry",subtitle:"Recent Perspectives",isOpenForSubmission:!1,hash:"fccad401cbcf998ea4de62d524abf82d",slug:"flow-cytometry-recent-perspectives",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/1578.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2291",title:"Clinical Flow Cytometry",subtitle:"Emerging Applications",isOpenForSubmission:!1,hash:"a5414617aafe62d7c6ec8205028f6967",slug:"clinical-flow-cytometry-emerging-applications",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/2291.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"44225",doi:"10.5772/55370",title:"Role of Enhancer of Zeste Homolog 2 Polycomb Protein and Its Significance in Tumor Progression and Cell Differentiation",slug:"role-of-enhancer-of-zeste-homolog-2-polycomb-protein-and-its-significance-in-tumor-progression-and-c",totalDownloads:3389,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"chromatin-remodelling",title:"Chromatin Remodelling",fullTitle:"Chromatin Remodelling"},signatures:"Irene Marchesi and Luigi Bagella",authors:[{id:"91878",title:"Prof.",name:"Luigi",middleName:null,surname:"Bagella",slug:"luigi-bagella",fullName:"Luigi Bagella"},{id:"164852",title:"Dr.",name:"Irene",middleName:null,surname:"Marchesi",slug:"irene-marchesi",fullName:"Irene Marchesi"}]},{id:"52461",doi:"10.5772/65353",title:"Molecular Diagnosis and Precision Therapeutic Approaches for Telomere Biology Disorders",slug:"molecular-diagnosis-and-precision-therapeutic-approaches-for-telomere-biology-disorders",totalDownloads:1213,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"telomere-a-complex-end-of-a-chromosome",title:"Telomere",fullTitle:"Telomere - A Complex End of a Chromosome"},signatures:"Rosario Perona, Laura Iarriccio, Laura Pintado-Berninches, Javier\nRodriguez-Centeno, Cristina Manguan-Garcia, Elena Garcia, Blanca\nLopez-Ayllón and Leandro Sastre",authors:[{id:"179373",title:"Dr.",name:"Leandro",middleName:null,surname:"Sastre",slug:"leandro-sastre",fullName:"Leandro Sastre"},{id:"184869",title:"Dr.",name:"Rosario",middleName:null,surname:"Perona",slug:"rosario-perona",fullName:"Rosario Perona"},{id:"184870",title:"Dr.",name:"Laura",middleName:null,surname:"Iarriccio",slug:"laura-iarriccio",fullName:"Laura Iarriccio"},{id:"184871",title:"MSc.",name:"Laura",middleName:null,surname:"Pintado-Berninches",slug:"laura-pintado-berninches",fullName:"Laura Pintado-Berninches"},{id:"184872",title:"MSc.",name:"Javier",middleName:null,surname:"Rodriguez-Centeno",slug:"javier-rodriguez-centeno",fullName:"Javier Rodriguez-Centeno"},{id:"184873",title:"Ms.",name:"Cristina",middleName:null,surname:"Manguan-Garcia",slug:"cristina-manguan-garcia",fullName:"Cristina Manguan-Garcia"},{id:"184874",title:"Dr.",name:"Elena",middleName:null,surname:"Garcia",slug:"elena-garcia",fullName:"Elena Garcia"},{id:"184875",title:"Dr.",name:"Blanca",middleName:null,surname:"Lopez-Ayllon",slug:"blanca-lopez-ayllon",fullName:"Blanca Lopez-Ayllon"}]},{id:"37421",doi:"10.5772/38616",title:"What Flow Cytometry can Tell Us About Marine Micro-Organisms – Current Status and Future Applications",slug:"what-flow-cytometry-can-tell-about-marine-microrganisms-current-status-and-future-applications",totalDownloads:2396,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"flow-cytometry-recent-perspectives",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Recent Perspectives"},signatures:"A. Manti, S. Papa and P. Boi",authors:[{id:"118302",title:"Dr.",name:"Anita",middleName:null,surname:"Manti",slug:"anita-manti",fullName:"Anita Manti"}]}],mostDownloadedChaptersLast30Days:[{id:"49878",title:"Immunophenotyping of Acute Leukemias – From Biology to Clinical Application",slug:"immunophenotyping-of-acute-leukemias-from-biology-to-clinical-application",totalDownloads:2485,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-select-topics",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Select Topics"},signatures:"Francesco Mannelli",authors:[{id:"178848",title:"M.D.",name:"Francesco",middleName:null,surname:"Mannelli",slug:"francesco-mannelli",fullName:"Francesco Mannelli"}]},{id:"50878",title:"Detection of Anti-HLA Antibodies by Flow Cytometer",slug:"detection-of-anti-hla-antibodies-by-flow-cytometer",totalDownloads:2351,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-select-topics",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Select Topics"},signatures:"Tülay Kılıçaslan Ayna and Aslı Özkızılcık Koçyiğit",authors:[{id:"178265",title:"Dr.",name:"Tulay",middleName:null,surname:"Kilicaslan Ayna",slug:"tulay-kilicaslan-ayna",fullName:"Tulay Kilicaslan Ayna"}]},{id:"37054",title:"Effect of Monocyte Locomotion Inhibitory Factor (MLIF) on the Activation and Production of Intracellular Cytokine and Chemokine Receptors in Human T CD4+ Lymphocytes Measured by Flow Cytometry",slug:"effect-of-monocyte-inhibitory-locomotion-factor-mlif-on-the-activation-and-production-of-intracellul",totalDownloads:1566,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"clinical-flow-cytometry-emerging-applications",title:"Clinical Flow Cytometry",fullTitle:"Clinical Flow Cytometry - Emerging Applications"},signatures:"Sara Rojas-Dotor",authors:[{id:"109461",title:"Dr.",name:"Sara",middleName:null,surname:"Rojas-Dotor",slug:"sara-rojas-dotor",fullName:"Sara Rojas-Dotor"}]},{id:"50807",title:"The Role of Cytometry for Male Fertility Assessment in Toxicology",slug:"the-role-of-cytometry-for-male-fertility-assessment-in-toxicology",totalDownloads:1268,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-select-topics",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Select Topics"},signatures:"Maria de Lourdes Pereira, Helena Oliveira, Henrique M.A.C.\nFonseca, Fernando Garcia e Costa and Conceição Santos",authors:[{id:"79715",title:"Prof.",name:"Maria De Lourdes",middleName:null,surname:"Pereira",slug:"maria-de-lourdes-pereira",fullName:"Maria De Lourdes Pereira"},{id:"174419",title:"Prof.",name:"Fernando",middleName:null,surname:"Garcia E Costa",slug:"fernando-garcia-e-costa",fullName:"Fernando Garcia E Costa"},{id:"185982",title:"Prof.",name:"Helena",middleName:null,surname:"Oliveira",slug:"helena-oliveira",fullName:"Helena Oliveira"},{id:"185983",title:"Prof.",name:"Henrique M.A.C.",middleName:null,surname:"Fonseca",slug:"henrique-m.a.c.-fonseca",fullName:"Henrique M.A.C. Fonseca"},{id:"185984",title:"Prof.",name:"Conceição",middleName:null,surname:"Santos",slug:"conceicao-santos",fullName:"Conceição Santos"}]},{id:"37421",title:"What Flow Cytometry can Tell Us About Marine Micro-Organisms – Current Status and Future Applications",slug:"what-flow-cytometry-can-tell-about-marine-microrganisms-current-status-and-future-applications",totalDownloads:2393,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"flow-cytometry-recent-perspectives",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Recent Perspectives"},signatures:"A. Manti, S. Papa and P. Boi",authors:[{id:"118302",title:"Dr.",name:"Anita",middleName:null,surname:"Manti",slug:"anita-manti",fullName:"Anita Manti"}]},{id:"37445",title:"Retracted: Applications of Quantum Dots in Flow Cytometry",slug:"applications-of-quantum-dots-in-flow-cytometry",totalDownloads:1852,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-recent-perspectives",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Recent Perspectives"},signatures:"Dimitrios Kirmizis, Fani Chatzopoulou, Eleni Gavriilaki and Dimitrios Chatzidimitriou",authors:[{id:"45414",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kirmizis",slug:"dimitrios-kirmizis",fullName:"Dimitrios Kirmizis"},{id:"122229",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Chatzidimitriou",slug:"dimitrios-chatzidimitriou",fullName:"Dimitrios Chatzidimitriou"},{id:"134576",title:"BSc.",name:"Fani",middleName:null,surname:"Chatzopoulou",slug:"fani-chatzopoulou",fullName:"Fani Chatzopoulou"},{id:"134577",title:"Dr.",name:"Helen",middleName:null,surname:"Gavriilaki",slug:"helen-gavriilaki",fullName:"Helen Gavriilaki"}]},{id:"51979",title:"Telomeres and Cellular Senescence in Metabolic and Endocrine Diseases",slug:"telomeres-and-cellular-senescence-in-metabolic-and-endocrine-diseases",totalDownloads:1188,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"telomere-a-complex-end-of-a-chromosome",title:"Telomere",fullTitle:"Telomere - A Complex End of a Chromosome"},signatures:"Ryusaku Matsumoto and Yutaka Takahashi",authors:[{id:"187040",title:"Dr.",name:"Yutaka",middleName:null,surname:"Takahashi",slug:"yutaka-takahashi",fullName:"Yutaka Takahashi"}]},{id:"52461",title:"Molecular Diagnosis and Precision Therapeutic Approaches for Telomere Biology Disorders",slug:"molecular-diagnosis-and-precision-therapeutic-approaches-for-telomere-biology-disorders",totalDownloads:1213,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"telomere-a-complex-end-of-a-chromosome",title:"Telomere",fullTitle:"Telomere - A Complex End of a Chromosome"},signatures:"Rosario Perona, Laura Iarriccio, Laura Pintado-Berninches, Javier\nRodriguez-Centeno, Cristina Manguan-Garcia, Elena Garcia, Blanca\nLopez-Ayllón and Leandro Sastre",authors:[{id:"179373",title:"Dr.",name:"Leandro",middleName:null,surname:"Sastre",slug:"leandro-sastre",fullName:"Leandro Sastre"},{id:"184869",title:"Dr.",name:"Rosario",middleName:null,surname:"Perona",slug:"rosario-perona",fullName:"Rosario Perona"},{id:"184870",title:"Dr.",name:"Laura",middleName:null,surname:"Iarriccio",slug:"laura-iarriccio",fullName:"Laura Iarriccio"},{id:"184871",title:"MSc.",name:"Laura",middleName:null,surname:"Pintado-Berninches",slug:"laura-pintado-berninches",fullName:"Laura Pintado-Berninches"},{id:"184872",title:"MSc.",name:"Javier",middleName:null,surname:"Rodriguez-Centeno",slug:"javier-rodriguez-centeno",fullName:"Javier Rodriguez-Centeno"},{id:"184873",title:"Ms.",name:"Cristina",middleName:null,surname:"Manguan-Garcia",slug:"cristina-manguan-garcia",fullName:"Cristina Manguan-Garcia"},{id:"184874",title:"Dr.",name:"Elena",middleName:null,surname:"Garcia",slug:"elena-garcia",fullName:"Elena Garcia"},{id:"184875",title:"Dr.",name:"Blanca",middleName:null,surname:"Lopez-Ayllon",slug:"blanca-lopez-ayllon",fullName:"Blanca Lopez-Ayllon"}]},{id:"44220",title:"Condensins, Chromatin Remodeling and Gene Transcription",slug:"condensins-chromatin-remodeling-and-gene-transcription",totalDownloads:2090,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"chromatin-remodelling",title:"Chromatin Remodelling",fullTitle:"Chromatin Remodelling"},signatures:"Laurence O. W. Wilson and Aude M. Fahrer",authors:[{id:"164464",title:"Mr.",name:"Laurence",middleName:null,surname:"Wilson",slug:"laurence-wilson",fullName:"Laurence Wilson"},{id:"164788",title:"Dr.",name:"Aude",middleName:null,surname:"Fahrer",slug:"aude-fahrer",fullName:"Aude Fahrer"}]},{id:"44225",title:"Role of Enhancer of Zeste Homolog 2 Polycomb Protein and Its Significance in Tumor Progression and Cell Differentiation",slug:"role-of-enhancer-of-zeste-homolog-2-polycomb-protein-and-its-significance-in-tumor-progression-and-c",totalDownloads:3388,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"chromatin-remodelling",title:"Chromatin Remodelling",fullTitle:"Chromatin Remodelling"},signatures:"Irene Marchesi and Luigi Bagella",authors:[{id:"91878",title:"Prof.",name:"Luigi",middleName:null,surname:"Bagella",slug:"luigi-bagella",fullName:"Luigi Bagella"},{id:"164852",title:"Dr.",name:"Irene",middleName:null,surname:"Marchesi",slug:"irene-marchesi",fullName:"Irene Marchesi"}]}],onlineFirstChaptersFilter:{topicSlug:"karyology-microbial-genetics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/156596/caroline-campos",hash:"",query:{},params:{id:"156596",slug:"caroline-campos"},fullPath:"/profiles/156596/caroline-campos",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()