Operation parameters for CS systems [8].
\r\n\tHydrogen gas is the key energy source for hydrogen-based society. Ozone dissolved water is expected as the sterilization and cleaning agent that can comply with the new law enacted by the US Food and Drug Administration (FDA). The law “FDA Food Safety Modernization Act” requires sterilization and washing of foods to prevent food poisoning and has a strict provision that vegetables, meat, and fish must be washed with non-chlorine cleaning agents to make E. coli adhering to food down to “zero”. If ozone dissolved water could be successively applied in this field, electrochemistry would make a significant contribution to society.
\r\n\r\n\t
\r\n\tOxygen-enriched water is said to promote the growth of farmed fish. Hydrogen dissolved water is said to be able to efficiently remove minute dust on the silicon wafer when used in combination with ultrasonic irradiation.
\r\n\tAt present researches on direct water electrolysis have shown significant progress. For example, boron-doped diamonds and complex metal oxides are widely used as an electrode, and the interposing polymer electrolyte membrane (PEM) between electrodes has become one of the major processes of water electrolysis.
\r\n\t
\r\n\tThe purpose of this book is to show the latest water electrolysis technology and the future of society applying it.
The preparation of polymers with morphology well determined in the nanometric range is one of the great challenges in the polymer science and technology. The possibility to prepare nanofibers (or nanofibers) brings the opportunity to produce polymers with new or reinforced properties. Many ways have been developed to synthesize polymeric nanofibers, for instance, the polymerization into media having large organic acids. The interfacial polymerization can also form nanofibers at an aqueous-organic interface. Hence, a great variety of “bottom-up” approaches, such as electrospinning, interfacial, seeding, and micellar, can be employed to obtain pure polymeric nanofibers. The preparation of nanostructured polymers by self-assembly with reduced post-synthesis processing warrants further applications, especially in the field of biotechnology and removable resources. The notable applications include tissue engineering, biosensors, filtration, wound dressings, drug delivery, and enzyme immobilization. In this chapter, the state-of-the-art results of synthesis, spectroscopic characterization, and applications of polyaniline nanofibers will be reviewed. The main goal of this work is to contribute to the rationalization of some important results obtained in this wonder area of polymeric nanofibers.
\nDespite that nanofibers are produced for a long time, only in recent years, the scientific interest in this field has rapidly increased. The reason for that is, probably, owing to the improvement of the synthetic pathways in the production of better nanofibers. In addition, the combination of spectroscopic and microscopic techniques leads to a better corrletion between structure and properties of nanofibers. Figure 1 shows that in 2018, more than 6000 papers having “nanofiber” or “nanofibre” as keyword were published. In addition, Figure 2 shows that at least 20 different research fields have more than 1000 papers published related to “nanofiber” or “nanofibre.” These two graphs clearly show that nanofibers are one of the focuses in the science of advanced materials.
\nNumber of publications by year having the keyword “nanofiber” or “nanofibre” in the text. The research was done in November 25, 2018, using Web of Science database. The total score found are 54,611 papers.
Number of publications by year having the keyword “nanofiber” or “nanofibre” in the text divided by the main research areas or categories. The research was done in November 25, 2018, by using Web of Science database.
Our group has dedicated to the preparation and characterization of polyaniline nanofibers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Among the different techniques used for structural investigation, resonance Raman spectroscopy is the most important technique for these systems. Thus, in this chapter, mainly the Raman results obtained for polyaniline (PANI) will be discussed.
\nNowadays, the preparation of conductive polymers with organized morphology and structure is a desired deal. Since the discovery of poly(acetylene) doping process in the early 1970s [11, 12, 13, 14, 15, 16] and posterior investigation of its properties mainly done by Hideki Shirakawa, Alan J. Heeger, and Alan G. MacDiarmid (see Figure 3), the field of conductive polymers brings many contributions to different applications: from batteries to organic light-emitting diode (OLED) displays. The preparation of nanostructured conductive polymers can turn the polymer more efficiently to applications. The doping process [17, 18, 19, 20, 21, 22, 23, 24, 25] in conjugated polymers is characterized by the passage from an insulating or semiconducting state with low conductivity, typically ranging from 10−10 to 10−5 Scm−1, to a “metallic” regime (ca. 1–104 Scm−1; see Figure 3).
\nThe Nobel winners (Hideki Shirakawa, Alan J. Heeger, and Alan G. MacDiarmid) and the chemical structures of the most common conductive polymers. The conductivity values for different materials are displayed in comparison with conducting polymers before and after the doping process. The doping causes (addition of nonstoichiometric chemical species in quantities commonly low ≤10%) dramatic changes in the electronic, electrical, magnetic, optical, and structural properties of the polymer.
Reversibility is one main characteristic of chemical doping; in fact, the polymer can return to its original state without major changes in its structure. Counterions stabilize the doped state in the polymeric chain. The conductivity can be modulated only by adjusting the doping level, varying from non-doped insulating state to highly doped or metallic. All conductive polymers (and their derivatives), for example, among others, may be doped by p (oxidation) or n (reduction) through chemical and/or electrochemical process [16, 17, 18]. The doping process can also be characterized by no loss or gain of electrons from external agents. This is the point for polyanilines (see Figure 4), and this process is named internal redox process.
\nGeneralized representation of chemical structure of PANI and its most common forms.
PANI-ES is formed after protonation with the appearance of the free radical tail of band in the NIR spectral region (starting from ca. 1.6 eV or 780 nm), which is attributed to a charge transfer from the highest occupied energy level of the benzene ring (HOMO) to the lowest unoccupied energy level of a semiquinone (polarons) ring (LUMO) [25].
\nPANI nanofibers can be prepared by using different routes, and the resulting polymer shows improvement in its electrical, thermal, and mechanical stabilities. The conventional synthesis of polyaniline, based on the oxidative polymerization of aniline in the presence of a strong acid dopant, typically results in an irregular granular morphology with a very small percentage of nanoscale fibers. Highly uniform PANI nanofibers with diameter ranging from 30 to 120 nm, depending on the dopant, are prepared by interfacial polymerization [26, 27]. The diffusion of the formed product from the interfacial solvent-solvent region to the bulk of the solvent can suppress uncontrolled polymer growth by isolating the fibers from the excess of reagents. In fact, the addition of certain surfactants to such an interfacial system grants further control over the diameter of the nanofibers. Isolation of the nanostructured PANI from the solution can be achieved by filtration in a nanoporous filters or dialyzed, and then the cleaned solution containing the nanofibers is centrifuged in order to separate the nanofibers from the solution.
\nAnother approach is the synthesis of PANI nanofibers or nanotubes by making use of large organic acids. These acids form micelles upon which aniline is polymerized and doped. Fiber with diameters from 30 to 60 nm can be modulated by reagent ratios [28, 29, 30, 31]. PANI nanofibers can also be obtained in ionic liquids (ILs) as synthetic media [2, 6]. There is a large variety of ionic liquids, and the most used ones are derived from imidazolium ring, pyridinium ring, quaternary ammonium, and tertiary phosphonium cations. The most unusual characteristic of these systems is that, although they are liquids, they present structural organization and can act as a template-like system, and PANI nanofibers are obtained when the aniline is polymerized in these media.
\nRaman spectroscopy is a technique par excellence for probing the vibrational frequencies by inelastic scattering the incident light (see Figure 5) [32, 33, 34, 35]. In the conventional Raman spectroscopy, the intensities of the Raman bands are linearly proportional to the intensity of the incident light and proportional to the square of the polarizability tensor. However, when the laser line falls within the region of a permitted electronic transition, the Raman bands that are tightly coupled or associated with the excited electronic state have a tremendous increase of about 105–6 times; this is what characterizes the resonance Raman effect. In the case of multi-chromophoric system, like polyaniline, just by tuning an appropriate laser radiation on an electronic transition of the polymer, the spectrum changes dramatically (see Figure 6).
\nSchematic representation of Raman effect. The Raman scattering was discovered by C. V. Raman and is characterized by inelastic scattering of the incident radiation (νo) with laser energy (EO). The scattered light has two components: Stokes radiation (νs) with lower energy than Eo (Es < Eo) and the anti-stoke radiation (νas) with higher energy than Eo (Eas > Eo).
Resonance Raman spectra of PANI-NSA after heating at indicated temperatures and doping with HCl. For comparison the SEM images are also given.
PANI shows a characteristic Raman bands for each oxidized or protonated form [36, 37, 38, 39, 40]. The presence of a free carrier tail absorption in the UV–VIS–NIR spectra for both PANI nanofibers/nanotubes prepared with NSA (β-naphthalenesulfonic acid) or with DBSA (dodecybenzenesulfonic acid) confirmed that polymeric chains have an extended conformation. In addition, the band at 609 cm−1 is sensible to conformation changes of the PANI chains [1, 3]. The studies of doping and heating behavior of PANI-NSA nanofibers show the loss of the fibrous morphology of PANI after treatment with HCl solution [4]. However, the PANI nanofibers are more susceptible to cross-linking (bands at 578 and 1340 cm−1; see Figure 6) than conventional PANI, and after heating at 200°C, it is possible to dope the polymer with HCl and maintain the nanostructured morphology.
\nPANI nanofibers prepared from interfacial polymerization were also characterized by Raman spectroscopy. Bands at 200 and 296 cm−1 related to Cring-N-Cring deformation and lattice modes of polaron segments of PANI practically disappear in the Raman spectra of PANI nanofibers. The changes indicate the increase of the torsion angles of the Cring-N-Cring segments. In addition, the FTIR spectra for PANI nanofibers display higher changes in the region from 2000 to 4000 cm−1. Both data are associated to the formation of bipolarons (protonated, spinless units) in the PANI nanofiber backbone higher than the conventional PANI. The PANI nanofiber morphology permits major diffusion of the ions inside the polymeric matrix leading to a more effective protonation of the polymeric chain [5]. In addition, only for PANI nanofibers with a diameter of 30.0 nm, low dispersion of the νC〓N band is seen (see Figure 7). The Raman dispersion is associated to the electron–phonon coupling into a conjugated structure. In other words, very low D values indicated more electronic homogeneity into the PANI nanofibers, due to the stacking of quinoid-quinoid rings, leading to high torsion Cring-N-Cring angles.
\nRaman dispersion of PANI nanofibers.
The structural studies of the polyaniline nanofibers by using resonance Raman spectroscopy, as the main technique, have been decisive to elucidate intra- and interchain interactions and chemical and thermal stabilities of PANI nanofibers. The presence of phenoxazine rings is observed in PANI nanofibers formed in micellar media. The presence of these rings is crucial for stacking and stabilization of the fibers. In addition, the changes in bands at low energies are associated with an increase in the torsion angles of Cring-N-Cring segments due to the formation of bipolarons (protonated, spinless units) in the PANI nanofibers. The major diffusion of the ions inside the nanofiber gives a more effective protonation. However, only with the previous thermal treatment, it is possible to retain the nanofiber morphology.
\nHence, the π-stacking between quinoid rings and the presence of π-π stacking formed by phenoxazine rings can be the driving forces for the formation of the fiber morphology of PANI. The quality of the PANI nanofibers can be monitored by the influence over the Raman dispersion curves. Finally, the example of characterization of PANI nanofibers by using Raman spectroscopy can be applied to other nanofiber materials with the improvement of future nanofiber structural studies.
\nTitanium (Ti) is a lustrous metal with a silver color. This metal exists in two different physical crystalline state called body centered cubic (bcc) and hexagonal closed packing (hcp), shown in Figure 1 (a) and (b), respectively. Titanium has five natural isotopes, and these are 46Ti, 47Ti, 48Ti, 49Ti, 50Ti. The 48Ti is the most abundant (73.8%).
\n\nCrystalline state of titanium: (a) bcc, and (b) hcp [8].
Titanium has high strength of 430 MPa and low density of 4.5 g/cm3, compared to iron with strength of 200 MPa and density of 7.9 g/cm3. Accordingly, titanium has the highest strength-to-density ratio than all other metals. However, titanium is quite ductile especially in an oxygen-free environment. In addition, titanium has relatively high melting point (more than 1650°C or 3000°F), and is paramagnetic with fairly low electrical and thermal conductivity. Further, titanium has very low bio-toxicity and is therefore bio-compatible. Furthermore, titanium readily reacts with oxygen at 1200°C (2190°F) in air, and at 610°C (1130°F) in pure oxygen, forming titanium dioxide. At ambient temperature, titanium slowly reacts with water and air to form a passive oxide coating that protects the bulk metal from further oxidation, hence, it has excellent resistance to corrosion and attack by dilute sulfuric and hydrochloric acids, chloride solutions, and most organic acids. However, titanium reacts with pure nitrogen gas at 800°C (1470°F) to form titanium nitride [1, 2].
\nSome of the major areas where titanium is used include the aerospace industry, orthopedics, dental implants, medical equipment, power generation, nuclear waste storage, automotive components, and food and pharmaceutical manufacturing.
\nTitanium is the ninth-most abundant element in Earth‘s crust (0.63% by mass) and the seventh-most abundant metal. The fact that titanium has most useful properties makes it be preferred material of future engineering application. Moreover, the application of titanium can be extended when alloyed with other elements as described below.
\nAn alloy is a substance composed of two or more elements (metals or nonmetals) that are intimately mixed by fusion or electro-deposition. On this basis, titanium alloys are made by adding elements such as aluminum, vanadium, molybdenum, niobium, zirconium and many others to produce alloys such as Ti-6Al-4V and Ti-24Nb-4Zr-8Sn and several others [2]. These alloys have exceptional properties as illustrated below. Depending on their influence on the heat treating temperature and the alloying elements, the alloys of titanium can be classified into the following three types:
\nThese alloys contain a large amount of α-stabilizing alloying elements such as aluminum, oxygen, nitrogen or carbon. Aluminum is widely used as the alpha stabilizer for most commercial titanium alloys because it is capable strengthening the alloy at ambient and elevated temperatures up to about 550°C. This capability coupled with its low density makes aluminum to have additional advantage over other alloying elements such as copper and molybdenum. However, the amount of aluminum that can be added is limited because of the formation of a brittle titanium-aluminum compound when 8% or more by weight aluminum is added. Occasionally, oxygen is added to pure titanium to produce a range of grades having increasing strength as the oxygen level is raised. The limitation of the α alloys of titanium is non-heat treatable but these are generally very weldable. In addition, these alloys have low to medium strength, good notch toughness, reasonably good ductility and have excellent properties at cryogenic temperatures. These alloys can be strengthened further by the addition of tin or zirconium. These metals have appreciable solubility in both alpha and beta phases and as their addition does not markedly influence the transformation temperature they are normally classified as neutral additions. Just like aluminum, the benefit of hardening at ambient temperature is retained even at elevated temperatures when tin and zirconium are used as alloying elements.
\nThese alloys contain 4–6% of β-phase stabilizer elements such as molybdenum, vanadium, tungsten, tantalum, and silicon. The amount of these elements increases the amount of β-phase is the metal matrix. Consequently, these alloys are heat treatable, and are significantly strengthened by precipitation hardening. Solution treatment of these alloys causes increase of β-phase content mechanical strength while ductility decreases. The most popular example of the α-β titanium alloy is the Ti-6Al-4V with 6 and 4% by weight aluminum and vanadium, respectively. This alloy of titanium is about half of all titanium alloys produced. In these alloys, the aluminum is added as α-phase stabilizer and hardener due to its solution strength-ening effect. The vanadium stabilizes the ductile β-phase, providing hot workability of the alloy.
\nThe α-β titanium alloys have high tensile strength, high fatigue strength, high corrosion resistance, good hot formability and high creep resistance [3].
\nTherefore, these alloys are used for manufacturing steam turbine blades, gas and chemical pumps, airframes and jet engine parts, pressure vessels, blades and discs of aircraft turbines, aircraft hydraulic tubing, rocket motor cases, cryogenic parts, and marine components [4].
\nThese alloys exhibit the body centered cubic crystalline form shown in Figure 1 (a). The β stabilizing elements used in these alloy are one or more of the following: molybdenum, vanadium, niobium, tantalum, zirconium, manganese, iron, chromium, cobalt, nickel, and copper. Besides strengthening the beta phase, these β stabilizers lower the resistance to deformation which tends to improve alloy fabricability during both hot and cold working operations. In addition, this β stabilizer to titanium compositions also confers a heat treatment capability which permits significant strengthening during the heat treatment process [4].
\n\nAs a result, the β titanium alloys have large strength to modulus of elasticity ratios that is almost twice those of 18–8 austenitic stainless steel. In addition, these β titanium alloys contain completely biocompatible elements that impart exceptional biochemical properties such as superior properties such as exceptionally high strength-to-weight ratio, low elastic modulus, super-elasticity low elastic modulus, larger elastic deflections, and low toxicity [1, 3].
\nThe above properties make them to be bio-compatible and are excellent prospective materials for manufacturing of bio-implants. Therefore, nowadays these alloys are largely utilized in the orthodontic field since the 1980s, replacing the stainless steel for certain uses, as stainless steel had dominated orthodontics since the 1960s [2].
\nBecause of alloying the titanium achieve improved properties that make it to be preferred material of choice for application in aerospace, medical, marine and instrumentation. The extent of improvement to the properties of titanium alloys and ultimately the choice of area of application is influenced by the methods of production and processing as discussed in the subsequent sections.
\nThe base metal required for production of titanium alloys is pure titanium. Pure titanium is produced using several methods including the Kroll process. This process produces the majority of titanium primary metals used globally by industry today. In this process, the titanium is extracted from its ore rutile—TiO2 or titanium concentrates. These materials are put in a fluidized-bed reactor along with chlorine gas and carbon and heated to 900°C and the subsequent chemical reaction results in the creation of impure titanium tetrachloride (TiCl4) and carbon monoxide. The resultant titanium tetrachloride is fed into vertical distillation tanks where it is heated to remove the impurities by separation using processes such as fractional distillation and precipitation. These processes remove metal chlorides including those of iron, silicon, zirconium, vanadium and magnesium. Thereafter, the purified liquid titanium tetrachloride is transferred to a reactor vessel in which magnesium is added and the container is heated to slightly above 1000°C. At this stage, the argon is pumped into the container to remove the air and prevent the contamination of the titanium with oxygen or nitrogen. During this process, the magnesium reacts with the chlorine to produce liquid magnesium chloride thereby leaving the pure titanium solid. This process is schematically presented in Figure 2.
\nKroll process for production of titanium: (a) chlorination, (b) fractional distillation [5].
The resultant titanium solid is removed from the reactor by boring and then treated with water and hydrochloric acid to remove excess magnesium and magnesium chloride leaving porous titanium sponge, which is jackhammered, crushed, and pressed, followed by melting in a vacuum electric arc furnace using expendable carbon electrode. The melted ingot is allowed to solidify in a vacuum atmosphere. This solid is often remelted to remove inclusions and to homogenize its constituents. These melting steps add to the cost of producing titanium, and this cost is usually about six times that of stainless steel. Usually the titanium solid undergo further treatment to produce titanium powder required in alloying process. The basic methods used to produce titanium powder are summarized below.
\nThe first method is called the Armstrong process, shown in Figure 3, in which the powder is made as the product of extractive processes that produce primary metal powder. This process is capable of producing commercially pure titanium (Ti) powder by the reduction of titanium tetrachloride (TiCl4) and other metal halides using sodium (Na). This process produces powder particles with a unique properties and low bulk density. To improve powder properties such as the particle size distribution and the tap density, additional post processing activities such as dry and wet ball milling are applied. The narrowed particle size distributions are necessary for typical powder metallurgical processes. In addition, the resultant powder’s morphology produced by the Armstrong process provide for excellent compressibility and compaction properties that result in dense compacts with increased green strength than those produced by the irregular powders. For this reason, the powders can even be consolidated by traditional powder metallurgy techniques such as uniaxial compaction and cold isostatic pressing. Figure 4 illustration the scanning electron microscope images of the titanium powders of the Armstrong process. As seen in the figure, the powder has an irregular morphology made of granular agglomerates of smaller particles.
\nIllustration of the Armstrong process [5].
SEM micrographs of CP-Ti produced by Armstrong process [5].
The hydride-dehydride (HDH) process, illustrated in Figure 5, is used to produce titanium powder using titanium sponge, titanium, mill products, or titanium scrap as the raw material. The hydrogenation process is achieved using a batch furnace that is usually operated in vacuum and/or hydrogen atmospheric conditions. The conditions necessary for hydrogenation of titanium are pressure of one atmospheric and temperatures of utmost 800°C. This process results in forming of titanium hydride and alloy hydrides that are usually brittle in nature. These metal hydrides are milled and screened to produce fine powders. The powder is resized using a variety of powder-crushing and milling techniques may be used including: a jaw crusher, ball milling, or jet milling. After the titanium hydride powders are crushed and classified, they are placed back in the batch furnace to dehydrogenate and remove the interstitial hydrogen under vacuum or argon atmosphere and produce metal powder. These powders are irregular and angular in morphology and can also be magnetically screened and acid washed to remove any ferromagnetic contamination. Finer particle sizes can be obtained, but rarely used because oxygen content increases rapidly when the powder is finer than −325 mesh. Powder finer than −325 mesh also possess more safety challenges [5]. The powder can be passivated upon completion of both the hydrogenating and dehydrogenating cycles to minimize exothermic heat generated when exposed to air.
\nHydride-dehydride process for obtaining of titanium powders [6].
The hydride-dehydride process is relatively inexpensive because the hydrogenation and dehydrogenation processes contribute small amount of cost to that of input material. The additional benefit of this process is the fact that the purity of the powder can be very high, as long as the raw material’s impurities are reduced. The oxygen content of final powder has a strong dependence on the input material, the handling processes and the specific surface area of the powder. Therefore, the main disadvantages of hydride-dehydride powder include: the powder morphology is irregular, and the process is not suitable for making virgin alloyed powders or modification of alloy compositions if the raw material is from scrap alloys (Figure 6) [5].
\nSEM micrographs of CP-Ti produced by HDH [5].
Conventional sintering, shown in Figure 7, is one of the widely applied powder metallurgy (PM) based method for manufacturing titanium alloys. In this method, the feedstock titanium powder is mixed thoroughly with alloying elements mentioned in Section 2 using a suitable powder blender, followed by compaction of the mixture under high pressure, and finally sintered. The sintering operation is carried out at high temperature and pressure treatment process that causes the powder particles to bond to each other with minor change to the particle shape, which also allows porosity formation in the product when the temperature is well regulated. This method can produce high performance and low cost titanium alloy parts. The titanium alloy parts produced by powder metallurgy have several advantages such as comparable mechanical properties, near-net-shape, low cost, full dense material, minimal inner defect, nearly homogenous microstructure, good particle-to-particle bonding, and low internal stress compared with those titanium parts produced by other conventional processes [7].
\nPowder metallurgy process [7].
Self-propagating high temperature synthesis (SHS), shown in Figure 8, is another PM based process used to produce titanium alloys. The steps in this process include: mixing of reagents, cold compaction, and finally ignition to initiate a spontaneous self-sustaining exothermic reaction to create the titanium alloy [7].
\nSHS process [7].
Although the above PM processes are mature technologies for fabrication of bone implants they have difficulties of fabricating porous coatings on surfaces that are delicate or with complex geometries. In addition, these processes tend to produce brittle products because of cracks and oxides formed inside the materials. Further, the high costs and poor workability associated with these PM processes restrict their application in commercial production of bone implants. Consequently, new methods, based on additive manufacturing principles were developed [7].
\nThe definitions of advanced methods of production is the use of technological method to improve the quality of the products and/or processes, with the relevant technology being described as “advanced,” “innovative,“ or “cutting edge.” These technologies evolved from conventional processes some of which have been developed to achieve various components of titanium base alloys and aluminides. Atomisation processes are among the most widely used cutting edge methods for production of titanium alloys [5].
\nAtomisation processes are used to make alloyed titanium powders. In these processes, the feedstock material is generally titanium, and the alloy powders produced are further processed typically to manufacture components using processes such as hot isostatic pressing (hip). As mentioned previously, it is generally believed that alloyed powders are not suitable for cold compaction using conventional uniaxial die pressing methods. Moreover, the inherent strength of the alloyed powders is too high, making it difficult to deform the particles in order to achieve desired green density. The atomisation processes produce relatively spherically shaped titanium alloy powders that are most suitable for additive manufacturing using techniques such as selective laser melting or electron beam melting. These spherical powders are also required for manufacturing titanium components using metal injection molding techniques. Typically, additive manufacturing and metal injection molding processes require particle sizes of powders to be in the range of 100 μm to ensure good flowability of the powder during operations. However, the challenge of the atomisation processes usually is that powders produced tend to have a wide particle size distribution, from a few to hundreds of micrometers. Examples of atomisation processes are gas atomisation and plasma atomisation processes described below [5].
\nIn the gas atomisation process, shown in Figure 9, the metal is usually melted using gas and the molten metal is atomised using an inert gas jets. The resultant fine metal droplets are then cooled down during their fall in the atomisation tower. The metal powders obtained by gas-atomization offer a perfectly spherical shape combined with a high cleanliness level. However, even though gas atomisation is, generally, a mature technology, its application need to be widened after addressing a few issues worth noting such as considerable interactions between droplets while they cool during flight in the cooling chamber, causing the formation of satellite particles. Also, due to the erosion of atomising nozzle by the liquid metal, the possibility for contamination by ceramic particles is high. Usually, there may also be argon gas entrapment in the powder that creates unwanted voids [5].
\nSchematic diagrams of gas atomisation process [5].
Plasma atomisation, shown in Figure 10, uses a titanium wire alloy as the feed material which is a significant cost contributing factor. The titanium alloy wire, fed via a spool, is melted in a plasma torch, and a high velocity plasma flow breaks up the liquid into droplets which cool rapidly, with a typical cooling rate in the range of 100–1000°C/s. Plasma atomisation produces powders with particle sizes ranging from 25 to 250 μm. In general, the yield of particles under 45 μm using the plasma wire atomisation technique is significantly higher than that of conventional gas atomisation processes [5].
\nSchematic diagrams of plasma atomisation process [5].
The future methods for production of titanium alloys depend on the demand of these products and to what extend nature will be able to provide them. The demand for titanium alloys shall also influence the number and type of technological breakthroughs, the extent of automation, robotics’ application, the number of discoveries for new titanium alloys, their methods of manufacturing, and new areas of application. Automation is an important aspect of the industry’s future and already a large percentage of the manufacturing processes are fully automated. In addition, automation enables a high level of accuracy and productivity beyond human ability—even in hazardous environments. And while automation eliminates some of the most tedious manufacturing jobs, it is also creating new jobs for a re-trained workforce. The new generation of robotics is not only much easier to program, but also easier to use due to extra capabilities such as voice and image recognition during operations, they are capable of doing precisely what you ask them to do. The discovery of new titanium alloys, or innovative uses of existing ones, is essential for making progress in many of the technological challenges we face. This discovery can result in new synthesis methods of new alloy compounds and design of super alloys, theoretical modeling and even the computational prediction of titanium alloys. This discovery requires that new methods of manufacturing are developed. In light of this, “additive manufacturing” is being developed and this is viewed as a groundbreaking development in manufacturing advancement that offers manufacturers powerful solutions for making any number of products cost-effectively and with little waste. Examples of additive manufacturing technologies are cold spray, 3-D printing, electron beam melting, and selective laser melting. To fabricate alloy surfaces using these technologies, alloying elements are mixed thoroughly in the feedstock powder and the fabrication processes proceed as described in the following paragraphs [7, 8].
\nCold spray (CS) process, schematically shown in Figures 11 and 12 can deposit metals or metal alloys or composite powders on a metallic or dielectric substrate using a high velocity (300–1200 m/s) jet of small (5–50 μm) particles injected in a stream of preheated and compressed gas passing through a specially designed nozzle. The main components of a generic CS system include the source of compressed gas, gas heater, powder feeder, spray nozzle assembly, and sensors for gas pressure and temperature. The source of compressed gas acquires the gas from an external reservoir, compresses it to desired pressure and delivers it into the gas heater. Then, the gas heater preheats the compressed gas in order to increase its enthalpy energy. The preheated gas is delivered into the spray nozzle assembly whose convergent/divergent geometry not only converts the enthalpy energy of the gas into kinetic energy but also mixes the metal powders with the gas proportionately. The powder feeder meters and injects the powder in the spray nozzle assembly. The sensors for the gas pressure and temperature are responsible for regulating the preset pressure and temperature of the gas stream. The powder injection point in the spray nozzle assembly, the gas pressure, and gas temperature distinguish the low pressure-CS system (LP-CS) from the high pressure CS (HP-CS). In the LP-CS system, the feedstock powder is injected in the downstream side of the convergent section of the nozzle assembly, while in the HP-CS system; the powder is injected in the upstream side of the convergent/diverging section of the nozzle assembly as illustrated in Figures 11 and 12. Several other parameters which contribute towards the distinguishing of the CS systems are summarized in Table 1 [8].
\nLow pressure CS process configuration [8].
High pressure CS process configuration [8].
Operation parameters for CS systems [8].
3-D printing is an additive manufacturing method that applies the principle of adding material to create structures using computer aided design (CAD), part modeling, and layer-by-layer deposition of feedstock material. This cutting-edge technology is also called stereolithography, and is illustrated in Figure 13 [8].
\n3D-printing process [8].
In this technology, the pattern is transferred from a digital 3D model, stored in the CAD file, to the object using a laser beam scanned through a reactive liquid polymer which hardened to create a thin layer of the solid. In this manner, the structure is fabricated on the desired surface. This method was proved in the laboratory setup is still being integrated in commercial set-up because 3-D printing is the most widely recognized version of additive manufacturing. For this reason, the inventors and engineers for this process have for years used machines costing anywhere from a few thousand dollars to hundreds of thousands for rapid prototyping of new products. It can be noted that all of the additive-manufacturing processes follow this same basic layer-by-layer deposition principle but with slightly different ways such as using powdered or liquid polymers, metals, metal-alloys or other materials to produce a desired product [8].
\nElectron beam melting (EBM), shown in Figure 14, is one of the additive manufacturing processes which fabricated titanium coatings by melting and deposition of metal powders, layer-by-layer, using a magnetically directed electron beam. Though this method was proved to be successful, it has high set-up costs due to the requirement of high vacuum atmosphere [7].
\nElectron beam melting method [1].
Selective laser melting (SLM), shown in Figure 15 is the second additive manufacturing method for titanium alloy coatings which completely melt the powder using a high-power laser beam. Similarly, this method is costly because it requires advanced high rate cooling systems. Moreover, the fluctuations of temperatures during processing negatively affect the quality of the products [1].
\nSelective laser melting method [1].
This chapter described the titanium as a metal that exists naturally with two crystalline forms. The chapter highlighted the properties of titanium metal that influence its application. The fact that titanium has advantageously unique properties that can be improved by alloying with other elements makes it to be preferred engineering material for future application in such areas as biomedical implants, aerospace, marine structures, and many others. The chapter discussed the traditional, current and future methods necessary to produce structures using titanium and titanium alloys. Further, the chapter suggested “additive manufacturing methods” as advanced methods for future manufacturing because they offer powerful solutions for making any type and number of products cost-effectively and with little waste. The examples of these methods are cold spray, 3-D printing, electron beam melting, and selective laser melting. Finally, the various processes used during fabrication of alloys using these methods were also presented.
\nAuthors are listed below with their open access chapters linked via author name:
",metaTitle:"IntechOpen authors on the Global Highly Cited Researchers 2018 list",metaDescription:null,metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"New for 2018 (alphabetically by surname).
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJocelyn Chanussot (chapter to be published soon...)
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYuekun Lai
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPrevious years (alphabetically by surname)
\\n\\nAbdul Latif Ahmad 2016-18
\\n\\nKhalil Amine 2017, 2018
\\n\\nEwan Birney 2015-18
\\n\\nFrede Blaabjerg 2015-18
\\n\\nGang Chen 2016-18
\\n\\nJunhong Chen 2017, 2018
\\n\\nZhigang Chen 2016, 2018
\\n\\nMyung-Haing Cho 2016, 2018
\\n\\nMark Connors 2015-18
\\n\\nCyrus Cooper 2017, 2018
\\n\\nLiming Dai 2015-18
\\n\\nWeihua Deng 2017, 2018
\\n\\nVincenzo Fogliano 2017, 2018
\\n\\nRon de Graaf 2014-18
\\n\\nHarald Haas 2017, 2018
\\n\\nFrancisco Herrera 2017, 2018
\\n\\nJaakko Kangasjärvi 2015-18
\\n\\nHamid Reza Karimi 2016-18
\\n\\nJunji Kido 2014-18
\\n\\nJose Luiszamorano 2015-18
\\n\\nYiqi Luo 2016-18
\\n\\nJoachim Maier 2014-18
\\n\\nAndrea Natale 2017, 2018
\\n\\nAlberto Mantovani 2014-18
\\n\\nMarjan Mernik 2017, 2018
\\n\\nSandra Orchard 2014, 2016-18
\\n\\nMohamed Oukka 2016-18
\\n\\nBiswajeet Pradhan 2016-18
\\n\\nDirk Raes 2017, 2018
\\n\\nUlrike Ravens-Sieberer 2016-18
\\n\\nYexiang Tong 2017, 2018
\\n\\nJim Van Os 2015-18
\\n\\nLong Wang 2017, 2018
\\n\\nFei Wei 2016-18
\\n\\nIoannis Xenarios 2017, 2018
\\n\\nQi Xie 2016-18
\\n\\nXin-She Yang 2017, 2018
\\n\\nYulong Yin 2015, 2017, 2018
\\n"}]'},components:[{type:"htmlEditorComponent",content:'New for 2018 (alphabetically by surname).
\n\n\n\n\n\n\n\n\n\nJocelyn Chanussot (chapter to be published soon...)
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nYuekun Lai
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPrevious years (alphabetically by surname)
\n\nAbdul Latif Ahmad 2016-18
\n\nKhalil Amine 2017, 2018
\n\nEwan Birney 2015-18
\n\nFrede Blaabjerg 2015-18
\n\nGang Chen 2016-18
\n\nJunhong Chen 2017, 2018
\n\nZhigang Chen 2016, 2018
\n\nMyung-Haing Cho 2016, 2018
\n\nMark Connors 2015-18
\n\nCyrus Cooper 2017, 2018
\n\nLiming Dai 2015-18
\n\nWeihua Deng 2017, 2018
\n\nVincenzo Fogliano 2017, 2018
\n\nRon de Graaf 2014-18
\n\nHarald Haas 2017, 2018
\n\nFrancisco Herrera 2017, 2018
\n\nJaakko Kangasjärvi 2015-18
\n\nHamid Reza Karimi 2016-18
\n\nJunji Kido 2014-18
\n\nJose Luiszamorano 2015-18
\n\nYiqi Luo 2016-18
\n\nJoachim Maier 2014-18
\n\nAndrea Natale 2017, 2018
\n\nAlberto Mantovani 2014-18
\n\nMarjan Mernik 2017, 2018
\n\nSandra Orchard 2014, 2016-18
\n\nMohamed Oukka 2016-18
\n\nBiswajeet Pradhan 2016-18
\n\nDirk Raes 2017, 2018
\n\nUlrike Ravens-Sieberer 2016-18
\n\nYexiang Tong 2017, 2018
\n\nJim Van Os 2015-18
\n\nLong Wang 2017, 2018
\n\nFei Wei 2016-18
\n\nIoannis Xenarios 2017, 2018
\n\nQi Xie 2016-18
\n\nXin-She Yang 2017, 2018
\n\nYulong Yin 2015, 2017, 2018
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"289905",title:"Dr.",name:null,middleName:null,surname:"Inamuddin",slug:"inamuddin",fullName:"Inamuddin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289905/images/system/289905.jpeg",biography:"Dr. Inamuddin is currently working as an assistant professor in the Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, and more specifically, renewable energy and the environment. He has published 127 research articles in international journals of repute and 18 book chapters in knowledge-based book editions published by renowned international publishers. He has published 39 edited books with Springer, United Kingdom, Elsevier, Nova Science Publishers, Inc. USA, CRC Press Taylor & Francis, Asia Pacific, Trans Tech Publications Ltd., Switzerland, and Materials Science Forum, USA. He is a member of various editorial boards serving as associate editor for journals such as Environmental Chemistry Letter, Applied Water Science, Euro-Mediterranean Journal for Environmental Integration, Springer-Nature, Scientific Reports-Nature, and the editor of Eurasian Journal of Analytical Chemistry.",institutionString:"King Abdulaziz University",institution:{name:"King Abdulaziz University",country:{name:"Saudi Arabia"}}},{id:"99002",title:"Dr.",name:null,middleName:null,surname:"Koontongkaew",slug:"koontongkaew",fullName:"Koontongkaew",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Thammasat University",country:{name:"Thailand"}}},{id:"156647",title:"Dr.",name:"A K M Mamunur",middleName:null,surname:"Rashid",slug:"a-k-m-mamunur-rashid",fullName:"A K M Mamunur Rashid",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"MBBS, DCH, MD(Paed.), Grad. Cert. P. Rheum.(UWA, Australia), FRCP(Edin.)",institutionString:null,institution:{name:"Khulna Medical College",country:{name:"Bangladesh"}}},{id:"234696",title:"Prof.",name:"A K M Mominul",middleName:null,surname:"Islam",slug:"a-k-m-mominul-islam",fullName:"A K M Mominul Islam",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/a043Y00000cA8dpQAC/Co2_Profile_Picture-1588761796759",biography:"Prof. Dr. A. K. M. Mominul Islam received both of his bachelor's and Master’s degree from Bangladesh Agricultural University. After that, he joined as Lecturer of Agronomy at Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh, and became Professor in the same department of the university. Dr. Islam did his second Master’s in Physical Land Resources from Ghent University, Belgium. He is currently serving as a postdoctoral researcher at the Department of Horticulture & Landscape Architecture at Purdue University, USA. Dr. Islam has obtained his Ph.D. degree in Plant Allelopathy from The United Graduate School of Agricultural Sciences, Ehime University, Japan. The dissertation title of Dr. Islam was “Allelopathy of five Lamiaceae medicinal plant species”. Dr. Islam is the author of 38 articles published in nationally and internationally reputed journals, 1 book chapter, and 3 books. He is a member of the editorial board and referee of several national and international journals. He is supervising the research of MS and Ph.D. students in areas of Agronomy. Prof. Islam is conducting research on crop management, bio-herbicides, and allelopathy.",institutionString:"Bangladesh Agricultural University",institution:{name:"Bangladesh Agricultural University",country:{name:"Bangladesh"}}},{id:"214531",title:"Mr.",name:"A T M Sakiur",middleName:null,surname:"Rahman",slug:"a-t-m-sakiur-rahman",fullName:"A T M Sakiur Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Rajshahi",country:{name:"Bangladesh"}}},{id:"66545",title:"Dr.",name:"A. F.",middleName:null,surname:"Omar",slug:"a.-f.-omar",fullName:"A. F. Omar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. A. F. Omar obtained\nhis Bachelor degree in electrical and\nelectronics engineering from Universiti\nSains Malaysia in 2002, Master of Science in electronics\nengineering from Open University\nMalaysia in 2008 and PhD in optical physics from Universiti\nSains Malaysia in 2012. His research mainly\nfocuses on the development of optical\nand electronics systems for spectroscopy\napplication in environmental monitoring,\nagriculture and dermatology. He has\nmore than 10 years of teaching\nexperience in subjects related to\nelectronics, mathematics and applied optics for\nuniversity students and industrial engineers.",institutionString:null,institution:{name:"Universiti Sains Malaysia",country:{name:"Malaysia"}}},{id:"191072",title:"Prof.",name:"A. K. M. Aminul",middleName:null,surname:"Islam",slug:"a.-k.-m.-aminul-islam",fullName:"A. K. M. Aminul Islam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191072/images/system/191072.jpg",biography:"Prof. Dr. A. K. M. Aminul Islam received both of his bachelor and Master’s degree from Bangladesh Agricultural University. After that he joined as Lecturer of Genetics and Plant Breeding at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh and became Professor in the same department of the university. He is currently serving as Director (Research) of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh. Dr. Islam has obtained his Ph D degree in Chemical and Process Engineering from Universiti Kebangsaan Malaysia. The dissertation title of Dr. Islam was “Improvement of Biodiesel Production through Genetic Studies of Jatropha (Jatropha curcas L.)”. Dr. Islam is the author of 98 articles published in nationally and internationally reputed journals, 11 book chapters and 3 books. He is a member of editorial board and referee of several national and international journals. He is also serving as the General Secretary of Plant Breeding and Genetics Society of Bangladesh, Seminar and research Secretary of JICA Alumni Association of Bangladesh and member of several professional societies. Prof. Islam acted as Principal Breeder in the releasing system of BU Hybrid Lau 1, BU Lau 1, BU Capsicum 1, BU Lalshak 1, BU Baromashi Seem 1, BU Sheem 1, BU Sheem 2, BU Sheem 3 and BU Sheem 4. He supervised 50 MS and 3 Ph D students. Prof. Islam currently supervising research of 5 MS and 3 Ph D students in areas Plant Breeding & Seed Technologies. Conducting research on development of hybrid vegetables, hybrid Brassica napus using CMS system, renewable energy research with Jatropha curcas.",institutionString:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",institution:{name:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",country:{name:"Bangladesh"}}},{id:"322225",title:"Dr.",name:"A. K. M. Aminul",middleName:null,surname:"Islam",slug:"a.-k.-m.-aminul-islam",fullName:"A. K. M. Aminul Islam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:"Prof. Dr. A. K. M. Aminul Islam received both of his bachelor's and Master’s degree from Bangladesh Agricultural University. After that he joined as Lecturer of Genetics and Plant Breeding at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh, and became Professor in the same department of the university. He is currently serving as Director (Research) of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh. Dr. Islam has obtained his Ph.D. degree in Chemical and Process Engineering from Universiti Kebangsaan Malaysia. The dissertation title of Dr. Islam was 'Improvement of Biodiesel Production through Genetic Studies of Jatropha (Jatropha curcas L.)”. Dr. Islam is the author of 99 articles published in nationally and internationally reputed journals, 11 book chapters, 3 books, and 20 proceedings and conference paper. He is a member of the editorial board and referee of several national and international journals. He is also serving as the General Secretary of Plant Breeding and Genetics Society of Bangladesh, Seminar, and research Secretary of JICA Alumni Association of Bangladesh and a member of several professional societies. Prof. Islam acted as Principal Breeder in the releasing system of BU Hybrid Lau 1, BU Lau 1, BU Capsicum 1, BU Lalshak 1, BU Baromashi Seem 1, BU Sheem 1, BU Sheem 2, BU Sheem 3 and BU Sheem 4. He supervised 50 MS and 3 PhD students. Prof. Islam currently supervising the research of 5 MS and 3 PhD students in areas Plant Breeding & Seed Technologies. Conducting research on the development of hybrid vegetables, hybrid Brassica napus using CMS system, renewable energy research with Jatropha curcas.",institutionString:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",institution:{name:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",country:{name:"Bangladesh"}}},{id:"91977",title:"Dr.",name:"A.B.M. Sharif",middleName:null,surname:"Hossain",slug:"a.b.m.-sharif-hossain",fullName:"A.B.M. Sharif Hossain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"97123",title:"Prof.",name:"A.M.M.",middleName:null,surname:"Sharif Ullah",slug:"a.m.m.-sharif-ullah",fullName:"A.M.M. Sharif Ullah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/97123/images/4209_n.jpg",biography:"AMM Sharif Ullah is currently an Associate Professor of Design and Manufacturing in Department of Mechanical Engineering at Kitami Institute of Technology, Japan. He received the Bachelor of Science Degree in Mechanical Engineering in 1992 from the Bangladesh University of Engineering and Technology, Dhaka, Bangladesh. In 1993, he moved to Japan for graduate studies. He received the Master of Engineering degree in 1996 from the Kansai University Graduate School of Engineering in Mechanical Engineering (Major: Manufacturing Engineering). He also received the Doctor of Engineering degree from the same institute in the same field in 1999. He began his academic career in 2000 as an Assistant Professor in the Industrial Systems Engineering Program at the Asian Institute of Technology, Thailand, as an Assistant Professor in the Industrial Systems Engineering Program. In 2002, he took up the position of Assistant Professor in the Department of Mechanical Engineering at the United Arab Emirates (UAE) University. He was promoted to Associate Professor in 2006 at the UAE University. He moved to his current employer in 2009. His research field is product realization engineering (design, manufacturing, operations, and sustainability). He teaches design and manufacturing related courses at undergraduate and graduate degree programs. He has been mentoring a large number of students for their senior design projects and theses. He has published more than 90 papers in refereed journals, edited books, and international conference proceedings. He made more than 35 oral presentations. Since 2005, he directs the advanced manufacturing engineering research laboratory at Kitami Institute of Technology.",institutionString:null,institution:{name:"Kitami Institute of Technology",country:{name:"Japan"}}},{id:"213441",title:"Dr.",name:"A.R.Kavitha",middleName:null,surname:"Balaji",slug:"a.r.kavitha-balaji",fullName:"A.R.Kavitha Balaji",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Anna University, Chennai",country:{name:"India"}}},{id:"172688",title:"Prof.",name:"A.V.",middleName:null,surname:"Salker",slug:"a.v.-salker",fullName:"A.V. Salker",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Goa University",country:{name:"India"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5684},{group:"region",caption:"Middle and South America",value:2,count:5166},{group:"region",caption:"Africa",value:3,count:1682},{group:"region",caption:"Asia",value:4,count:10211},{group:"region",caption:"Australia and Oceania",value:5,count:887},{group:"region",caption:"Europe",value:6,count:15616}],offset:12,limit:12,total:10241},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"15"},books:[{type:"book",id:"10471",title:"Advances in Dynamical Systems Theory, Models, Algorithms and Applications",subtitle:null,isOpenForSubmission:!0,hash:"689fdf3cdc78ade03f0c43a245dcf818",slug:null,bookSignature:"Dr. Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/10471.jpg",editedByType:null,editors:[{id:"92921",title:"Dr.",name:"Bruno",surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5131},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1254",title:"Mobile Robot",slug:"android-science-mobile-robot",parent:{title:"Android Science",slug:"android-science"},numberOfBooks:1,numberOfAuthorsAndEditors:59,numberOfWosCitations:48,numberOfCrossrefCitations:29,numberOfDimensionsCitations:52,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"android-science-mobile-robot",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1881",title:"Mobile Robots",subtitle:"Current Trends",isOpenForSubmission:!1,hash:"6f1ee45d3e50f6d5295a1d8c190b646c",slug:"mobile-robots-current-trends",bookSignature:"Zoran Gacovski",coverURL:"https://cdn.intechopen.com/books/images_new/1881.jpg",editedByType:"Edited by",editors:[{id:"89211",title:"Dr.",name:"Zoran",middleName:null,surname:"Gacovski",slug:"zoran-gacovski",fullName:"Zoran Gacovski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"22300",doi:"10.5772/26512",title:"Influence of the Size Factor of a Mobile Robot Moving Toward a Human on Subjective Acceptable Distance",slug:"influence-of-the-size-factor-of-a-mobile-robot-moving-toward-a-human-on-subjective-acceptable-distan",totalDownloads:1626,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Yutaka Hiroi and Akinori Ito",authors:[{id:"66916",title:"Dr.",name:"Yutaka",middleName:null,surname:"Hiroi",slug:"yutaka-hiroi",fullName:"Yutaka Hiroi"},{id:"71987",title:"Prof.",name:"Akinori",middleName:null,surname:"Ito",slug:"akinori-ito",fullName:"Akinori Ito"}]},{id:"22305",doi:"10.5772/25497",title:"Dynamic Modeling and Power Modeling of Robotic Skid-Steered Wheeled Vehicles",slug:"dynamic-modeling-and-power-modeling-of-robotic-skid-steered-wheeled-vehicles",totalDownloads:3951,totalCrossrefCites:6,totalDimensionsCites:7,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Wei Yu, Emmanuel Collins and Oscar Chuy",authors:[{id:"29474",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Collins",slug:"emmanuel-collins",fullName:"Emmanuel Collins"},{id:"39957",title:"Dr.",name:"Oscar",middleName:null,surname:"Chuy",slug:"oscar-chuy",fullName:"Oscar Chuy"},{id:"63522",title:"Dr.",name:"Wei",middleName:null,surname:"Yu",slug:"wei-yu",fullName:"Wei Yu"}]},{id:"22308",doi:"10.5772/25936",title:"Design and Prototyping of Autonomous Ball Wheel Mobile Robots",slug:"design-and-prototyping-of-autonomous-ball-wheel-mobile-robots",totalDownloads:2415,totalCrossrefCites:6,totalDimensionsCites:7,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"H. Ghariblu, A. Moharrami and B. Ghalamchi",authors:[{id:"65019",title:"Dr.",name:"Hashem",middleName:null,surname:"Ghariblu",slug:"hashem-ghariblu",fullName:"Hashem Ghariblu"},{id:"72044",title:"Ms.",name:"Ali",middleName:null,surname:"Moharrami",slug:"ali-moharrami",fullName:"Ali Moharrami"},{id:"72048",title:"Ms.",name:"Behnam",middleName:null,surname:"Ghalamchi",slug:"behnam-ghalamchi",fullName:"Behnam Ghalamchi"}]}],mostDownloadedChaptersLast30Days:[{id:"22298",title:"Mobile Platform with Leg-Wheel Mechanism for Practical Use",slug:"mobile-platform-with-leg-wheel-mechanism-for-practical-use",totalDownloads:3178,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Shuro Nakajima",authors:[{id:"63562",title:"Prof.",name:"Shuro",middleName:null,surname:"Nakajima",slug:"shuro-nakajima",fullName:"Shuro Nakajima"}]},{id:"22292",title:"Autonomous Mobile Robot Emmy III",slug:"autonomous-mobile-robot-emmy-iii",totalDownloads:2069,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Cláudio Rodrigo Torres, Jair Minoro Abe, Germano Lambert-Torres and João Inácio da Silva Filho",authors:[{id:"65919",title:"Dr.",name:"Claudio",middleName:"Rodrigo",surname:"Torres",slug:"claudio-torres",fullName:"Claudio Torres"},{id:"112971",title:"Prof.",name:"Germano",middleName:null,surname:"Lambert-Torres",slug:"germano-lambert-torres",fullName:"Germano Lambert-Torres"},{id:"137199",title:"Dr.",name:"Jair Minoro",middleName:null,surname:"Abe",slug:"jair-minoro-abe",fullName:"Jair Minoro Abe"},{id:"137200",title:"Dr.",name:"João Inácio",middleName:null,surname:"da Silva Filho",slug:"joao-inacio-da-silva-filho",fullName:"João Inácio da Silva Filho"}]},{id:"22293",title:"Mobile Robotics in Education and Research",slug:"mobile-robotics-in-education-and-research",totalDownloads:5113,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Georgios A. Demetriou",authors:[{id:"66153",title:"Dr.",name:"Georgios A.",middleName:null,surname:"Demetriou",slug:"georgios-a.-demetriou",fullName:"Georgios A. Demetriou"}]},{id:"22300",title:"Influence of the Size Factor of a Mobile Robot Moving Toward a Human on Subjective Acceptable Distance",slug:"influence-of-the-size-factor-of-a-mobile-robot-moving-toward-a-human-on-subjective-acceptable-distan",totalDownloads:1626,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Yutaka Hiroi and Akinori Ito",authors:[{id:"66916",title:"Dr.",name:"Yutaka",middleName:null,surname:"Hiroi",slug:"yutaka-hiroi",fullName:"Yutaka Hiroi"},{id:"71987",title:"Prof.",name:"Akinori",middleName:null,surname:"Ito",slug:"akinori-ito",fullName:"Akinori Ito"}]},{id:"22294",title:"The KCLBOT: A Framework of the Nonholonomic Mobile Robot Platform Using Double Compass Self-Localisation",slug:"the-kclbot-a-framework-of-the-nonholonomic-mobile-robot-platform-using-double-compass-self-localisat",totalDownloads:1861,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Evangelos Georgiou, Jian Dai and Michael Luck",authors:[{id:"63454",title:"MSc.",name:"Evangelos",middleName:null,surname:"Georgiou",slug:"evangelos-georgiou",fullName:"Evangelos Georgiou"},{id:"68156",title:"Prof.",name:"Jian",middleName:null,surname:"Dai",slug:"jian-dai",fullName:"Jian Dai"},{id:"68157",title:"Prof.",name:"Michael",middleName:null,surname:"Luck",slug:"michael-luck",fullName:"Michael Luck"}]},{id:"22307",title:"The Development of the Omnidirectional Mobile Home Care Robot",slug:"the-development-of-the-omnidirectional-mobile-home-care-robot",totalDownloads:1994,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Jie-Tong Zou",authors:[{id:"67765",title:"Prof.",name:"Jie-Tong",middleName:"Tong",surname:"Zou",slug:"jie-tong-zou",fullName:"Jie-Tong Zou"}]},{id:"22299",title:"A Micro Mobile Robot with Suction Cups in the Abdominal Cavity for NOTES",slug:"a-micro-mobile-robot-with-suction-cups-in-the-abdominal-cavity-for-notes",totalDownloads:1890,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Chika Hiroki and Wenwei Yu",authors:[{id:"48648",title:"Prof.",name:"Wenwei",middleName:null,surname:"Yu",slug:"wenwei-yu",fullName:"Wenwei Yu"},{id:"71018",title:"Ms.",name:"Chika",middleName:null,surname:"Hiroki",slug:"chika-hiroki",fullName:"Chika Hiroki"}]},{id:"22301",title:"Development of Mobile Robot Based on I2C Bus System",slug:"development-of-mobile-robot-based-on-i2c-bus-system",totalDownloads:3123,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Surachai Panich",authors:[{id:"5704",title:"Dr.",name:"Surachai",middleName:null,surname:"Panich",slug:"surachai-panich",fullName:"Surachai Panich"}]},{id:"22305",title:"Dynamic Modeling and Power Modeling of Robotic Skid-Steered Wheeled Vehicles",slug:"dynamic-modeling-and-power-modeling-of-robotic-skid-steered-wheeled-vehicles",totalDownloads:3951,totalCrossrefCites:6,totalDimensionsCites:7,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Wei Yu, Emmanuel Collins and Oscar Chuy",authors:[{id:"29474",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Collins",slug:"emmanuel-collins",fullName:"Emmanuel Collins"},{id:"39957",title:"Dr.",name:"Oscar",middleName:null,surname:"Chuy",slug:"oscar-chuy",fullName:"Oscar Chuy"},{id:"63522",title:"Dr.",name:"Wei",middleName:null,surname:"Yu",slug:"wei-yu",fullName:"Wei Yu"}]},{id:"22295",title:"Gaining Control Knowledge Through an Applied Mobile Robotics Course",slug:"gaining-control-knowledge-through-an-applied-mobile-robotics-course",totalDownloads:1938,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Lluís Pacheco, Ningsu Luo, Inès Ferrer, Xavier Cufí and Roger Arbuse",authors:[{id:"30281",title:"Dr.",name:"Lluís",middleName:null,surname:"Pacheco",slug:"lluis-pacheco",fullName:"Lluís Pacheco"},{id:"32046",title:"Dr.",name:"Ningsu",middleName:null,surname:"Luo",slug:"ningsu-luo",fullName:"Ningsu Luo"},{id:"118672",title:"Dr.",name:"Xavier",middleName:null,surname:"Cufí",slug:"xavier-cufi",fullName:"Xavier Cufí"},{id:"137380",title:"Dr.",name:"Inès",middleName:null,surname:"Ferrer",slug:"ines-ferrer",fullName:"Inès Ferrer"},{id:"137381",title:"Mr.",name:"Roger",middleName:null,surname:"Arbuse",slug:"roger-arbuse",fullName:"Roger Arbuse"}]}],onlineFirstChaptersFilter:{topicSlug:"android-science-mobile-robot",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/154555/zoran-nikolic",hash:"",query:{},params:{id:"154555",slug:"zoran-nikolic"},fullPath:"/profiles/154555/zoran-nikolic",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()