In recent years, there has been an increasing interest in measurement systems such as laser trackers (LT) for the verification of large-scale parts in the aeronautic, spatial or naval sectors because of their advantages in terms of portability, flexibility, high speed in data acquisition, accuracy, and reliability. These systems present systematic errors caused by geometrical misalignments, environmental conditions, mechanical wear and tear and other unpredictable variables. Different standards such as the ASME B89.4.19 and the VDI 2617-10 suggest tests to calculate the geometric errors of the LT. In this work, we present an alternative calibration method based on a new errors model. The LT can be considered as an open kinematic chain, so it is possible to shape a kinematic model of the LT. Once the kinematic model has been set, the error model is defined. The model has been validated with synthetic data. Then, experimental tests based on the measurement of a mesh of reflectors placed at suitable places for different locations of the LT have been performed to ensure the reliability of the method proposed. A sensitivity analysis shows the best experimental setup to perform a calibration test. The calibration results have been validated with nominal data.
Part of the book: Kinematics