Regression of revenues on previous, current, and future expenses.
\r\n\tIn the book the theory and practice of microwave heating are discussed. The intended scope covers the results of recent research related to the generation, transmission and reception of microwave energy, its application in the field of organic and inorganic chemistry, physics of plasma processes, industrial microwave drying and sintering, as well as in medicine for therapeutic effects on internal organs and tissues of the human body and microbiology. Both theoretical and experimental studies are anticipated.
\r\n\r\n\tThe book aims to be of interest not only for specialists in the field of theory and practice of microwave heating but also for readers of non-specialists in the field of microwave technology and those who want to study in general terms the problem of interaction of the electromagnetic field with objects of living and nonliving nature.
",isbn:"978-1-83968-227-8",printIsbn:"978-1-83968-226-1",pdfIsbn:"978-1-83968-228-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"8f6a41e4f5ce0e9c48628516d7c92050",bookSignature:"Prof. Gennadiy Churyumov",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10089.jpg",keywords:"Electromagnetic Wave, Microwave Energy Application, Electromagnetic Energy Generation, Intelligent Microwave Heating, Microwave Organic Chemistry, Microwave Reactor, Microwave Discharge, Microwave Plasma, Microwave Drying System, Tissue Microwave Heating, Measurement Automation, Industrial Microwave Process",numberOfDownloads:224,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 3rd 2020",dateEndSecondStepPublish:"July 24th 2020",dateEndThirdStepPublish:"September 22nd 2020",dateEndFourthStepPublish:"December 11th 2020",dateEndFifthStepPublish:"February 9th 2021",remainingDaysToSecondStep:"7 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Prof. Gennadiy I. Churyumov is a professor at two universities: Kharkiv National University of Radio Electronics, and Harbin Institute of Technology and a senior IEEE member.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"216155",title:"Prof.",name:"Gennadiy",middleName:null,surname:"Churyumov",slug:"gennadiy-churyumov",fullName:"Gennadiy Churyumov",profilePictureURL:"https://mts.intechopen.com/storage/users/216155/images/system/216155.jfif",biography:"Gennadiy I. Churyumov (M’96–SM’00) received the Dipl.-Ing. degree in Electronics Engineering and his Ph.D. degree from the Kharkiv Institute of Radio Electronics, Kharkiv, Ukraine, in 1974 and 1981, respectively, as well as the D.Sc. degree from the Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine, Kharkiv, Ukraine, in 1997. \n\nHe is a professor at two universities: Kharkiv National University of Radio Electronics, and Harbin Institute of Technology. \n\nHe is currently the Head of a Microwave & Optoelectronics Lab at the Department of Electronics Engineering at the Kharkiv National University of Radio Electronics. \n\nHis general research interests lie in the area of 2-D and 3-D computer modeling of electron-wave processes in vacuum tubes (magnetrons and TWTs), simulation techniques of electromagnetic problems and nonlinear phenomena, as well as high-power microwaves, including electromagnetic compatibility and survivability. \n\nHis current activity concentrates on the practical aspects of the application of microwave technologies.",institutionString:"Kharkiv National University of Radio Electronics (NURE)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"24",title:"Technology",slug:"technology"}],chapters:[{id:"74623",title:"Influence of the Microwaves on the Sol-Gel Syntheses and on the Properties of the Resulting Oxide Nanostructures",slug:"influence-of-the-microwaves-on-the-sol-gel-syntheses-and-on-the-properties-of-the-resulting-oxide-na",totalDownloads:94,totalCrossrefCites:0,authors:[null]},{id:"75284",title:"Microwave-Assisted Extraction of Bioactive Compounds (Review)",slug:"microwave-assisted-extraction-of-bioactive-compounds-review",totalDownloads:12,totalCrossrefCites:0,authors:[null]},{id:"75087",title:"Experimental Investigation on the Effect of Microwave Heating on Rock Cracking and Their Mechanical Properties",slug:"experimental-investigation-on-the-effect-of-microwave-heating-on-rock-cracking-and-their-mechanical-",totalDownloads:28,totalCrossrefCites:0,authors:[null]},{id:"74338",title:"Microwave Synthesized Functional Dyes",slug:"microwave-synthesized-functional-dyes",totalDownloads:21,totalCrossrefCites:0,authors:[null]},{id:"74744",title:"Doping of Semiconductors at Nanoscale with Microwave Heating (Overview)",slug:"doping-of-semiconductors-at-nanoscale-with-microwave-heating-overview",totalDownloads:45,totalCrossrefCites:0,authors:[null]},{id:"74664",title:"Microwave-Assisted Solid Extraction from Natural Matrices",slug:"microwave-assisted-solid-extraction-from-natural-matrices",totalDownloads:25,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6826",title:"The Use of Technology in Sport",subtitle:"Emerging Challenges",isOpenForSubmission:!1,hash:"f17a3f9401ebfd1c9957c1b8f21c245b",slug:"the-use-of-technology-in-sport-emerging-challenges",bookSignature:"Daniel Almeida Marinho and Henrique Pereira Neiva",coverURL:"https://cdn.intechopen.com/books/images_new/6826.jpg",editedByType:"Edited by",editors:[{id:"177359",title:"Dr.",name:"Daniel Almeida",surname:"Marinho",slug:"daniel-almeida-marinho",fullName:"Daniel Almeida Marinho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8494",title:"Gyroscopes",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"cc0e172784cf5e7851b9722f3ecfbd8d",slug:"gyroscopes-principles-and-applications",bookSignature:"Xuye Zhuang and Lianqun Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8494.jpg",editedByType:"Edited by",editors:[{id:"69742",title:"Dr.",name:"Xuye",surname:"Zhuang",slug:"xuye-zhuang",fullName:"Xuye Zhuang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8878",title:"Advances in Microfluidic Technologies for Energy and Environmental Applications",subtitle:null,isOpenForSubmission:!1,hash:"7026c645fea790b8d1ad5b555ded994d",slug:"advances-in-microfluidic-technologies-for-energy-and-environmental-applications",bookSignature:"Yong Ren",coverURL:"https://cdn.intechopen.com/books/images_new/8878.jpg",editedByType:"Edited by",editors:[{id:"177059",title:"Dr.",name:"Yong",surname:"Ren",slug:"yong-ren",fullName:"Yong Ren"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7714",title:"Emerging Micro",subtitle:"and Nanotechnologies",isOpenForSubmission:!1,hash:"5c6ea07211f78aafb0b53a184224d655",slug:"emerging-micro-and-nanotechnologies",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/7714.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10151",title:"Technology, Science and Culture",subtitle:"A Global Vision, Volume II",isOpenForSubmission:!1,hash:"1a9e7327c929421c873317ccfad2b799",slug:"technology-science-and-culture-a-global-vision-volume-ii",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10151.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9336",title:"Technology, Science and Culture",subtitle:"A Global Vision",isOpenForSubmission:!1,hash:"e1895103eeec238cda200b75d6e143c8",slug:"technology-science-and-culture-a-global-vision",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/9336.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6516",title:"Metrology",subtitle:null,isOpenForSubmission:!1,hash:"09e6966a3d9fadcc90b1b723e30d81ca",slug:"metrology",bookSignature:"Anil",coverURL:"https://cdn.intechopen.com/books/images_new/6516.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"61603",title:"A Renewed Interest on the Fundamentals of Accounting: The Impact of the Matching ‘Principle’ on Earning Attributes",doi:"10.5772/intechopen.77266",slug:"a-renewed-interest-on-the-fundamentals-of-accounting-the-impact-of-the-matching-principle-on-earning",body:'\nInformation obtained from the financial reporting activity represent the most relevant data that a firm can disclose to the benefit of a wide group of stakeholders. In fact, the well-known information issue related to the information asymmetry between insiders and capital providers creates a demand for internally generated measures of performance to be reported over finite time intervals [1, 2, 3, 4, 5].
\nSince in the accounting field, sometimes it holds that profit is a point of view, while cash is a reality [6], and the interest of many accounting information users is addressed towards cash. As stated by Lee [7], the cash flow reporting system is based on the periodic recognition of cash inflows and outflows, which are not affected by credit transactions and arbitrary accounting allocations. Therefore, under the cash accounting method, revenues are recognized in the accounting period in which the payment is received, and expenses in the period in which the payment is made. In this case, income is computed as the difference between cash receipts from revenues and cash payments for expenses.
\nHowever, over a finite time interval, the mere recognition of realized cash flows could not be necessarily useful because of the net cash flows’ fluctuations, with cash inflows and outflows that follow the firm’s investment and financing activities as well as the firm’s operating activities. For this reason, it can be assumed that realized cash flows undergo timing and matching problems which cause them to be a ‘noisy’ measure of firm performance [2].
\nDechow [2] starts investigating whether cash flows have time-series properties which could be consistent with the idea that cash flows suffer from matching problems. Specifically, her results highlight that changes in net cash flows and in operating cash flows have an average negative autocorrelation (Figure 1), with the latter being smaller than the former.
\nNegative autocorrelation of OCFs and changes in OCFs. Source: authors.
This suggests that a cash-based performance measure suffers from temporary mismatching between cash inflows and outflows. In other terms, given that cash receipts and disbursements—which are strictly related to a specific activity—could be recognized in different measurement periods, a periodic reporting system based on cash flows does not coincide with the net economic benefits of shareholders in a given accounting period [8].
\nThese issues were analysed and modelled by Dechow [2]1. In particular, she sets up a simplified example based on a firm which has only sales. The starting point of the model is the definition of the cash collected during an accounting period:
\nwhere \n
In such settings, if a steady-state firm is defined as one that is neither growing nor declining, it follows that \n
where \n
As reported in Dechow [2], Eq. (2) highlights that the magnitude of the difference between revenues and cash flows for each period is directly and positively related to the proportion of sales on credit for which cash will be not collected until the next accounting period \n
Even if the model is only focused on revenues from sales, it is readily generalizable to all other accounting features, and suggests that, when firms are not in a steady state, realized cash flows are expected to be a relatively poor measure of firm performance because they suffer from the abovementioned timing and matching problems, and are less able to reflect firm performance. In other terms, cash flows are characterized by a lack of information content about the future as they cannot show inter-period relationships. Given that the interest in a business organization depends on its ability to generate favourable future cash flows, a performance measure exclusively based on realized cash flows (especially during a short period) cannot adequately provide useful information to assess if a firm’s performance is successful.
\nAn alternative to a reporting system based on realized cash flows is the accrual-basis financial reporting system whose primary product is net income, or earnings, as a measure of performance.
\nAccruals are adjustments for earned revenues and incurred expenses that are not recognized in the accounts yet. Income is therefore ‘adjusted net cash flows’ [11]: net cash inflows are still the principal driver of income, but they are temporarily adjusted by the accruals (changes in all non-cash assets and liabilities) because the effective receipts and disbursements of cash may not be the best representation of firms’ performance as it does not show the causal relation between advancing cash to earn more cash. Therefore:
\nThis means that the primary role of accruals is to overcome the abovementioned problems—related to the cash-basis accounting system—in measuring firm’s performance when economic entities are in continuous operation [2]. Therefore, if accruals are used to ‘adjust’ cash flows in order to match positive and negative outcomes associated with the same economic event, changes in accruals will exhibit a negative autocorrelations and accruals will be negatively correlated with changes in cash flows (Figure 2).
\nEarnings incorporating the negative autocorrelation of OCFs and accruals. Source: Authors.
Dechow et al. [12] formally modelled the accrual accounting process, relying on operating cash flows and the process by which operating cash flows’ forecasts are embedded into earnings. In particular, their model not only confirms changes in operating cash flows that have a negative serial correlation, as shown by Dechow [2], but also highlights how earnings incorporate the negative serial correlation of cash flows and accruals to smooth out such correlations and become a better forecast of future operating cash flows than current operating cash flows (Figure 2).
\nAccruals allow business organizations to recognize, in a certain reporting period, revenues and expenses for which they expect to obtain or spend cash, respectively, in a future reporting period. By recognizing economic events, regardless of when cash transactions occur, the accrual accounting method offers a fair review of business transactions.
\nSpecifically, this method requires the recognition of revenues when they are earned—for supplied goods and rendered services—and expenses when they are incurred, regardless of the time of their collection (cash inflows and outflows). The underlying assumption is based on the proper recognition of business operations that should occur by matching revenues and expenses (revenue/expense matching process) when the economic event is completed rather than when payments are made or received. This method allows the correlation between current cash flows and future expected cash receipts and disbursements in order to obtain fairer representation of a firm’s economic and financial conditions.
\nHowever, the usefulness of earnings depends on its quality that, in turn, depends on the quality of its components. Given that the realized cash flows subcomponent of earning is the most reliable element of the financial reporting activity, it goes that the usefulness and the quality of earnings depend on the quality of the accrual subcomponent.
\nThe quality of accruals can be influenced by both firm’s economic fundamentals (the so called ‘innate factors’) and the managerial discretion embedded in their recognition [13]. Nevertheless, besides these exogenous factors, another primary issue concerns the ground rules of the accrual accounting system. Specifically, the endogenous factors that affect the quality of accruals and, in turn, the quality of earnings are represented by the two main processes which guide the production of accounting numbers under the accrual reporting system: the revenue recognition and the matching process.
\nSince the correlation between expenses and revenues is one of the ground rules underpinning accrual accounting, the matching process has been defined as the central purpose of accounting, becoming the basic concept in the determination of periodic income [14].
\nStarting from 1940, Paton and Littleton support the determination of a periodic income based on the of stewardship perspective and, therefore, they advocate the historical cost accounting relying on the assumption according to which the historical cost is a more verifiable and objective evidence. As stated by Paton and Littleton [10] ‘the primary purpose of accounting, […], is the measurement of periodic income by means of a systematic process of matching costs and revenues’. According to the authors, the usefulness of matching principle can be viewed as a necessity for periodic profit and loss calculation in order to obtain a benchmark to assess the efficiency of management. In this sense, the difference between business effort (expenses) and accomplishments (revenue) reflects management efficiency, and this information is critical for investors to assess manager’s stewardship.
\nIn their matching process, revenues are recognized under the realization principle according to which products and services need to be converted into cash, its surrogates, or other valid assets. On the other hand, the recognition of expenses requires three phases: (i) ascertaining and recoding costs as incurred; (ii) tracing and reclassifying costs in terms of operating activity; (iii) assigning costs to revenues. Therefore, the expired expenses are recorded in accounts in order to match them with the relative ‘realized’ revenues. However, it has to be pointed out that ‘matching costs and revenues requires more than careful procedures, [… because …] the revenues of a particular period should be charged with the costs which are reasonably associated with the product represented by such revenues’ ([10], 69).
\nThe revenue/expense (or income statement) approach views the identification of revenues, expenses and earnings as the primary goal of financial reporting. In particular, the main goal is represented by the proper determination of the timing and the amounts of revenues and expenses, while the balance sheet books and values are subordinate and derivative. In such settings, the two major guiding principles are the revenue recognition and the process of matching expenses with revenues. Specifically, the main goal of the traditional matching process is the determination of the proper periodic income, while assets are not determined looking at the existence of future economic benefits, but are considered as suspended revenues that are not properly aligned to the process of matching revenues and expenses. Therefore, the aim of the financial reporting process is to book accruals, which allow to correctly represent the timing of economic benefits (revenues recognition) linking the relative expenses (matching process). Consequently, the balance sheet elements are generally the residual of such a process, with assets and liabilities that are essentially the cumulative effect of periodic accruals. As a result, in order to ensure proper matching and avoid an earnings misrepresentation, the balance sheet not only reports assets and liabilities, but also accrued costs and revenues, and deferred charges and credits [15].
\nIn contrast, the essence of the asset/liability (or balance sheet-based) approach is based on the proper assessment of assets and liabilities as the main goal of financial reporting, with the identification and the evaluation of other accounting numbers that are considered as subsequent and derivative. The main implication of such an approach is that the recognition of income statement values and the determination of earnings are affected by the balance sheet considerations. In fact, the asset/liability approach relies on the assumption according to which the proper determination of assets and liabilities leads the determination of earnings, which are simply viewed as the change in net assets over a certain period (adjusted for distributions and contributions from equity holders)4.
\nAlthough there is an inherent conceptual tension between these two approaches, in practice, financial accounting has always been a pragmatic compromise between them [17]. However, it has to be noted that while the revenue/expense model historically dominated theory, practice, and pedagogy until the mid-1970s, a new era for the accounting process evolution started in 1973, when the FASB became the official standard setter in USA.
\nIn particular, the Board recognized that the revenue/expense model and the asset/liability approach are the two major alternatives for the financial reporting activity. However, in order to ensure conceptual transparency and internal uniformity, the FASB also stated that the two approaches have to be considered as alternative, avoiding a muddled compromise between them. Relaying on such assumptions, in the late 1970s, the FASB stated that the balance sheet approach has to be considered as the only logical and conceptually sound basis of accounting and, therefore, the asset/liability approach should become the cornerstone of standard setting and financial reporting5.
\nAccording to Dichev [17], the FASB’s assumptions derive from the idea, according to which earnings should be considered as a ‘change in value’ and, therefore, it is not possible to determine a ‘change in value’ without defining the concept of value first. Therefore, the identification of assets and liabilities should represent the logical fundamental concepts that overcome the determination of earnings and, consequently, the balance sheet financial reporting approach represents the only consistent accounting system. Moreover, the revenue/expense model is conceptually doubtful, because it is based on ambiguous processes (like matching) and its application generates deferred and accrued items, which should be considered as unreliable assets and liabilities.
\nBuilding on the aforementioned assumptions, the FASB have been developing the asset/liability approach starting from a gradual process of compliance in order to align the older accounting standards to the new Conceptual Framework. Moreover, on the top of that the FASB is even pushing in support of more extreme forms of the balance sheet approach, namely with the idea that should lead to the ‘fair value’ accounting.
\nIn addition to the FASB’s efforts, there has also been a world-wide diffusion of the balance sheet approach that entered the heart of international standard setters too, becoming the dominant financial reporting system. Indeed, when the International Accounting Standards Committee (IASC) was founded (in 1973), it adopted a conceptual framework deeply based on the FASB’s one. Then, in 2001, the IASC was replaced by the International Accounting Standards Board (IASB) that joined the FASB in coordinating their ideas and actions, adopting, in 2002, a formal memorandum known as ‘The Norwalk Agreement’, which details their joint commitment to convergence of US and international accounting standards. Since such process can be implemented only with shared conceptual basis, the two standard setters converge towards the asset/liability approach.
\nHowever, it has to be pointed out that the aforementioned choices of the international standard setters are also coming in for severe criticism. In particular, the critique to the standard setters is effectively summarized by Dichev [17] and is built around the four main themes:
the balance sheet approach is awkward, since it does not reflect how most firms operate, create value, and are managed.
In fact, if an economic entity advances expenses to obtain resources and earns revenues, while assets have a subordinate and subsidiary role, a proper accounting system has to reflect this reality, which implies a natural and logical supremacy of the income statement approach. In such settings, the main issue related to the balance sheet approach is that it does not consider the concept of business model that plays fundamental role in determining the value-creation process and the success of a business organization. Indeed, since the firm should be considered as a process and not a pool of ‘things’, the value of the economic resources originates from their value-in use and not from their value-in-exchange, implying that the revenue/expense model is the natural basis for financial reporting6.
The assumed conceptual supremacy of the balance sheet approach is unclear. If anything, one can argue that the concept of income provides a clearer and stronger foundation for financial reporting.
The accounting standard setters consider the concept of ‘asset’ as the most important and fundamental in accounting, and other concepts as derivative and secondary to it7. Specifically, the FASB and the IASB maintain that asset-oriented accounting is superior to income-oriented accounting because of the need to define earnings after the definition of assets. However, they then continue to define assets in terms of expected earnings8. Therefore, although the standard setters seem to suggest that the two concepts can be divorced and one can be superior to the other, the point is that the concept of asset and income are inextricably connected.
The balance sheet approach is probably one of the main sources of the decline in the forward-looking usefulness of earnings.
The basic idea is that outsiders use earnings as the primary source of information to evaluate existing and future investments. However, the usefulness of earnings for investors is not embedded in the definition of ‘changes in assets’, but is related to the concept of ‘recurring earnings’, which represents the best predictor of the future earnings and cash flows. Therefore, while investors perceive good earnings as a highly persistent value able to predict of future earnings, the balance sheet approach considers assets as a store of values and earnings as ‘changes in net assets’, implying low persistence and predictability of earnings. This means that the balance sheet approach creates earnings which are not aligned to what investors consider ‘good earnings’.
There are considerable issues related to the implementation of the balance sheet reporting system in practice.
Such weaknesses derive from the great managerial discretion for the inputs and, consequently, the probability of large estimation errors and/or manipulation of accounting numbers9. In addition, the asset/liability model (and most of all the most extreme forms of mark-to-market and fair-value accounting) creates a feedback loop between financial markets and the real economy, and may possibly lead to or exacerbate market turmoil.
\nIn response to the criticisms to the choices of the IASB and the FASB, and therefore to the balance sheet view, some scholars highlights that the significance of the matching process is still recognized under the asset/liability approach as well. In fact, according to Kvifte [21], the asset/liability approach has been, and to some extent still is, misunderstood, because even if there are substantial differences between the balance sheet model and the revenue/expense view, there is a trend in attempting to find differences that do not exist [19, 22]. In fact, it has been said that the purpose of the asset/liability view is to downgrade the importance of income and of the income statement by making the balance sheet more important than the income statement [23]. Others have claimed that the intent of the asset/liability model is to supplant accounting based on completed transactions and matching of expenses and revenues with an accounting based on the valuation of assets and liabilities at current or fair values, labelling it as a ‘valuation approach’ [18]. However, according to Healy and Wahlen [24], the leading standard-setters do not ignore the emphasis on performance measures of the primary users of financial reports, and the conflict is rather how to achieve the best performance measures. In fact, given that the FASB states that the issue is how income is manifested (FASB, 2004a), Kvifte [21] concludes that the importance of net income is therefore not a matter of disagreement between the two groups.
\nMoreover, it has to be noted that although the matching process is considered as the basic concept of the income statement approach in the revenues and expenses’ recognition method, according to the IASB and the FASB conceptual frameworks, it may also play a role in the asset/liability approach. However, matching is modified by the definition of asset and liability, given that costs has to be expensed in the same period as the revenues that result from the expenditures, but only to the extent that the relative balance-sheet items meet the asset/liability definitions (IASB, 1989).
\nOverall, whether the spread of the asset/liability approach has sidelined the concept of matching, or it has simply modified its application, the impact of such changes on the quality of accounting numbers is still an empirical matter.
\nAlthough it was a broadly analysed topic until the 1970s, there has been little research effort aimed at matching in the last 20 years [3].
\nAccording to Dichev and Tang [3], one of the reasons related to this lack of research is that in earlier years the dominant paradigm of market efficiency implied that the market fully relays on accounting conventions and practices aimed to measure firms’ performance. In fact, it is only quite recently that there has been a renewed interest into fundamental analysis, that is a research stream related to the study of whether and how the knowledge on accounting yields superior insights into firm performance and security valuation (e.g. [25, 26, 27, 28]; and others)10.
\nAnother reason for the relative lack of research about the matching process is the aforementioned evolution of accounting standards. Indeed, while early standards recognized the importance of matching on both conceptual and practical level, during the last two to three decades the FASB and the IASB have adopted a perspective where the determination of income is viewed more as resulting from revisions of asset and liability values rather than as the residual from revenues and matched expenses [18].
\nIn the spirit of fundamental analysis, it seems that the study of matching, and its determinants and consequences, can be viewed as a further step into enriching the knowledge about the determination and the properties of earnings. In particular, there are three studies that are close to the spirit of this kind of research. Such strand comprises Su [30] and the related studies of Lane and Willet [31] and Gibbins and Willet [32].
\nThe fil rouge of these studies is based on the idea according to which a proper matching of revenues and expenses has a smoothing effect on earnings that is beneficial because it allows for better estimation of long-run economic profitability. Therefore, they conclude that matching, as well as conservatism and other accounting practices, are not merely ad hoc or traditional rules which accountants arbitrarily apply, but have rational bases in the sense that they can allow a better decision-making process [30].
\nRecently, through an historical retrospective on matching, which includes a review of more contemporary research and thought, Zimmerman and Bloom [33] also confirm that matching, as an approach to income measurement, can be helpful in forecasting earning power. Consequently, they conclude that matching should be retained as a long-standing fundamental accounting principle in standard-setting and in practice.
\nMoving from the studies that support matching principle as a desirable practice that allows to obtain more useful and informative accounting numbers, and motivated by the aforementioned relative lack of recent research aimed at matching, some authors have tried to deepen the knowledge about this topic analysing trends, and potential determinants and consequences.
\nThe reference study in this ‘new’ field is the analysis of Dichev and Tang [3], who present a theory of matching and its effects on accounting variables. The principal insight of the theory is that poor matching acts as noise in the economic relation of advancing expenses to earn revenues. Empirically, they concentrate on time-series specifications using a sample composed by the 1000 largest US firms (for 34,785 observations) from 1967 to 2003, and measure matching as the coefficient (\n
Findings reveal a clear and economically substantial declining trend in the contemporaneous correlation between revenues and expenses, and an increase in the non-contemporaneous correlation between revenues and expenses. Therefore Dichev and Tang [3] highlight a decline in matching, such that an increasing amount of expenses is being recognized before and after the period in which it affects revenues (Table 1).
\nSimilar trends in the evolution of matching have been documented by other subsequent studies. Specifically, Donelson et al. [4] selected a sample which consists of 32,645 US firm-year observations between 1967 and 2005, and that is generally consistent with the sample in Dichev and Tang [3]. Next, they estimate a cross-sectional regression which is identical to the regression model reported in Dichev and Tang [3]. As described in such study, Donelson et al. [4] documented a decline in the contemporaneous association of revenue and expense, and an increase in the lag (lead) coefficient (Table 2).
\nMurdoch and Krause [34] also analysed the US market but they began their investigation with 1987 data and, to allow for comparisons with earlier research, extend the analysis period through 2005, including all firms for which pertinent data are available rather than limiting the sample to large firms. In order to assess the degree of matching, Murdoch and Krause [34] observe the correlation between revenues and two expenses measures from the 1987 to 1996 period and compare it to the correlation for the 1997–2005 period, adopting the same methodology of Dichev and Tang [3]. As a result, their findings also highlight a worsening in the degree of matching between revenues and expenses recognized in the same period.
\nStill focusing on US settings, Bushman et al. [35] built a sample that consists of 228,847 firm-year observations from 1964 to 2012 and, still employing the same technique used in Dichev and Tang [3], confirm the declining trend in matching between revenues and expenses as documented in previous studies.
\nFurther, using a sample composed by 189,608 US firm-year observations with valid data from the years 1970 through 2009, Srivastava [5] replicates the model proposed by Dichev and Tang [3] and obtain similar results in terms of declining matching between current revenues and expenses. Moreover, splitting the sample in two groups of firm he shows that for the new-firm segment, the average matching declines from 1.05 to just 0.59, while the average revenue-expense matching of the seasoned-firm segment declines by much less, from 1.05 to 0.94. As a result, he confirms a declining trend in matching current revenues and expenses, but also highlights that, relative to the seasoned-firm segment, the average matching for the new-firm segment’s is 37% lower.
\nIn the same year, Kagaya [36] examine changes in the relation between revenues and expenses over the last 16 years around the world. In particular, the final sample consists of 282,873 firm-year observations for the fiscal years 1991–2008, relative to 30,537 non-financial firms across nine countries (Canada, China, Germany, France, India, Japan, Korea, the UK, and the USA) which, in turn, are clustered in different cultural areas according to the definition of cultural area from Djankov et al. [37]. Referring to the matching measures proposed by Dichev and Tang [3], Kagaya [36] confirms that the correlation between revenue and expense has declined around the world (Figure 3), and shows that such a trend is stronger among the English speaking countries (Figure 4).
\nCoefficients in regression of revenues on past, current, and future expenses. Source: Kagaya [36].
International comparison of the correlation between revenues and current expenses. Source: Kagaya [36].
Along the lines of these studies, He and Shan [38] measure matching by the contemporaneous correlation between revenues and expenses. Relying on a sample that includes 42 countries, they estimate the annual matching coefficient from 1991 to 2010, and find that the decline in matching is not unique to the United States, but a worldwide phenomenon during this period (Figure 5).
\nMatching between current revenues and expenses over time. Source: He and Shan [38].
The only dissenting voice in this strand of research belongs to Jin et al. [39], who examine changes in the matching between contemporaneous revenues and expenses in Australian financial reporting. Specifically, relying on Dichev and Tang [3] their results indicate that the revenue-expense relation has declined in Australia during 2001–2005, but improved in more recent years (Figure 6).
\nCorrelation between current revenues and expenses in Australia. Source: Jin et al. [39].
Overall, looking at these studies focused on the identification of trends in the degree of matching, it seems clear that the major issue is related to a worsening of the relation between current revenues and expenses, which has been documented in different settings with the only exception of the Australian one, examined by Jin et al. [39]. However, the mere detection of these changes could be not fully revealing without a careful analysis of both possible determinants and consequences related to such declining trend in one of the milestones of accrual accounting, such as the process of matching revenues and expenses.
\nAccording to Dichev and Tang [3], the possible determinants of the combined evidence that suggests a worsening of accounting matching over time can be identified in both the accounting system evolution and innate economic factors.
\nThe reason underpinning this idea is due to the behaviour of accounting standard setters that, since the late 1970s, have taken a deliberate and far-reaching turn away from matching as the fundamental concept in the determination of earnings and towards a more balance sheet-based model of the determination of income11. On the other hand, the authors are also aware that changes in the real economy, towards more fixed costs and R&D activities, can also imply a temporal decline in matching success, and that there is little that financial reporting can do about the nature of these changes per se. However, Dichev and Tang [3] suggest that changes in the real economy have played a secondary role in the evolution of the properties of earnings. In addition, the authors state that if the point is ‘what can be done to counter the effect of these changes on the informativeness of earnings’, then the answer and the discretion lie again in the design of the financial reporting system and its relevant bodies.
\nAnyway, besides such theoretical aspects, the conclusions of Dichev and Tang [3] are not merely conjectures, inasmuch they rely on the empirical evidence of their analysis. However, to date, Dichev and Tang [3] remain the only ones who ascribe the declining in matching to the accounting system’s ground rules.
\nIn fact, Donelson et al. [4], using a simple decomposition framework, show that the decline in the relation between current revenues and expenses is attributable primarily to a single income statement line item, namely special items, and not to systematic issues across multiple line items in the income statement. Moreover, since the ‘weight’ of special items as a component of total expenses has increased with the incidence of special items over time, decreasing the relation between current revenues and total current expenses, empirical evidence suggests that changes in the frequency of economic events associated with special items have played a more important and sustained role relative to the role played by the adoption of individual accounting standards (Figure 7).
\nCorrelation between current revenues and expenses in Australia. Source: Donelson et al. [4].
Results from Donelson et al. [4] are then indirectly confirmed by Murdoch and Krause [34], who conclude that recurring earnings (that does not include the effect of special items) are preferred to an earnings number that includes the impact of special items.
\nAn alternative explanation, to the declining in the relation between revenues and expenses, is offered by Srivastava [5]. In particular, he highlights that, in his sample, each new cohort of listed firms exhibits a lower degree of matching than its predecessors, mainly because of higher intangible intensity. Therefore, Srivastava [5] concludes that the trend of decline in matching is due more to changes in the sample of firms than to changes in generally accepted accounting principles or in the quality of matching process of previously listed firms (Table 3).
\nYear | \nCoefficient on past expenses | \nCoefficient on current expenses | \nCoefficient on future expenses | \n
---|---|---|---|
1967 | \n−0.010 | \n1.029 | \n−0.013 | \n
1968 | \n−0.014 | \n1.044 | \n−0.015 | \n
1969 | \n−0.004 | \n1.030 | \n−0.012 | \n
1970 | \n0.002 | \n1.042 | \n−0.033 | \n
1971 | \n0.026 | \n1.003 | \n−0.016 | \n
1972 | \n0.010 | \n1.089 | \n−0.077 | \n
1973 | \n0.063 | \n0.939 | \n0.020 | \n
1974 | \n−0.053 | \n1.106 | \n−0.038 | \n
1975 | \n0.023 | \n1.061 | \n−0.066 | \n
1976 | \n0.028 | \n0.991 | \n0.005 | \n
1977 | \n−0.001 | \n1.015 | \n0.007 | \n
1978 | \n−0.007 | \n1.053 | \n−0.022 | \n
1979 | \n−0.007 | \n1.027 | \n0.006 | \n
1980 | \n−0.021 | \n1.070 | \n−0.028 | \n
1981 | \n0.063 | \n0.965 | \n−0.010 | \n
1982 | \n−0.017 | \n1.054 | \n−0.024 | \n
1983 | \n−0.016 | \n1.087 | \n−0.056 | \n
1984 | \n0.051 | \n0.972 | \n0.003 | \n
1985 | \n0.016 | \n1.013 | \n−0.013 | \n
1986 | \n0.039 | \n0.937 | \n0.038 | \n
1987 | \n0.145 | \n0.762 | \n0.111 | \n
1988 | \n−0.013 | \n1.032 | \n0.007 | \n
1989 | \n0.066 | \n1.003 | \n−0.053 | \n
1990 | \n0.101 | \n0.932 | \n−0.018 | \n
1991 | \n0.176 | \n0.802 | \n0.028 | \n
1992 | \n0.117 | \n0.871 | \n0.029 | \n
1993 | \n0.168 | \n0.691 | \n0.152 | \n
1994 | \n0.033 | \n0.986 | \n0.006 | \n
1995 | \n0.029 | \n0.979 | \n0.018 | \n
1996 | \n0.020 | \n1.000 | \n0.006 | \n
1997 | \n0.093 | \n0.894 | \n0.038 | \n
1998 | \n0.032 | \n0.977 | \n0.016 | \n
1999 | \n0.081 | \n0.952 | \n−0.005 | \n
2000 | \n0.042 | \n1.015 | \n−0.037 | \n
2001 | \n0.464 | \n0.533 | \n−0.012 | \n
2002 | \n0.092 | \n0.715 | \n0.204 | \n
2003 | \n0.132 | \n0.797 | \n0.091 | \n
Mean 1967 to 1985 | \n0.007 | \n1.031 | \n−0.020 | \n
Mean 1986 to 2003 | \n0.101 | \n0.882 | \n0.034 | \n
Difference | \n0.094 | \n−0.149 | \n0.055 | \n
P-Value on Difference | \n<0.001 | \n<0.001 | \n0.002 | \n
Regression of revenues on previous, current, and future expenses.
\n\n
\n\n
\n\n
\n\n
The regression is run on a cross-sectional basis each year.
P-value on the differences is obtained forma two-tailed t-test.
Source: Dichev and Tang [3].
Period | \n\n\n | \n\n\n | \n\n\n | \n
---|---|---|---|
1967–1985 | \n0.002 | \n1.032 | \n−0.030 | \n
1986–2005 | \n0.089 | \n0.895 | \n0.025 | \n
Difference | \n0.087 | \n−0.137 | \n0.055 | \n
P-Value on difference | \n<0.001 | \n<0.001 | \n<0.001 | \n
Relation of revenues to lagged, current, and future expenses.
Year | \nTotal firms | \nSeasoned firms | \nSeasoned firms (%) | \nYear | \nTotal firms | \nSeasoned firms | \nSeasoned firms (%) | \n
---|---|---|---|---|---|---|---|
1970 | \n2470 | \n2304 | \n93.28 | \n1990 | \n4684 | \n944 | \n20.15 | \n
1971 | \n2786 | \n2263 | \n81.23 | \n1991 | \n4868 | \n935 | \n19.21 | \n
1972 | \n2975 | \n2219 | \n74.59 | \n1992 | \n5098 | \n921 | \n18.07 | \n
1973 | \n3121 | \n2169 | \n69.50 | \n1993 | \n5319 | \n905 | \n17.01 | \n
1974 | \n3206 | \n2108 | \n65.75 | \n1994 | \n5713 | \n873 | \n15.28 | \n
1975 | \n3213 | \n2051 | \n63.83 | \n1995 | \n6166 | \n847 | \n13.74 | \n
1976 | \n3214 | \n1977 | \n61.51 | \n1996 | \n6593 | \n813 | \n12.33 | \n
1977 | \n3105 | \n1886 | \n60.74 | \n1997 | \n6578 | \n757 | \n11.51 | \n
1978 | \n3051 | \n1806 | \n59.19 | \n1998 | \n6635 | \n705 | \n10.63 | \n
1979 | \n3247 | \n1731 | \n53.31 | \n1999 | \n6500 | \n651 | \n10.02 | \n
1980 | \n3510 | \n1657 | \n47.21 | \n2000 | \n6347 | \n605 | \n9.53 | \n
1981 | \n3656 | \n1587 | \n43.41 | \n2001 | \n6399 | \n586 | \n9.16 | \n
1982 | \n4109 | \n1533 | \n37.31 | \n2002 | \n6183 | \n561 | \n9.07 | \n
1983 | \n4273 | \n1428 | \n33.42 | \n2003 | \n6076 | \n546 | \n8.99 | \n
1984 | \n4396 | \n1348 | \n30.66 | \n2004 | \n5852 | \n524 | \n8.95 | \n
1985 | \n4526 | \n1257 | \n27.77 | \n2005 | \n5755 | \n510 | \n8.86 | \n
1986 | \n4544 | \n1186 | \n26.10 | \n2006 | \n5597 | \n472 | \n8.43 | \n
1987 | \n4661 | \n1098 | \n23.56 | \n2007 | \n5482 | \n455 | \n8.30 | \n
1988 | \n4629 | \n1024 | \n22.12 | \n2008 | \n5344 | \n443 | \n8.29 | \n
1989 | \n4636 | \n970 | \n20.92 | \n2009 | \n5091 | \n431 | \n8.47 | \n
Number of seasoned firms.
All of the firms with a listing year before 1970 are classified as ‘seasoned firms’.
Source: Srivastava [5].
A totally different position from Dichev and Tang [3] is also assumed by He and Shan [38], who analyse the impact of IFRS adoption on matching and do not find any significant result, excluding that changes in reporting system have a primary role in determining changes in the degree of matching between current revenues and expenses. In addition, they analyse several economic factors as potential determinants of matching, such as the proportion of firms reporting large special items, the national economic growth, the weight of the service industry in a country’s gross domestic product (GDP), and the intensity of R&D activities. Specifically, findings highlight that the degree of matching between contemporaneous revenues and expenses is weaker in countries where many firms report significant special items, GDP growth rates are low, more R&D activities are present, and the service sector accounts for a larger portion of the economy. Therefore, these results support the view that real economic factors are important determinants of matching. Finally, He and Shan [38] also consider whether country-level governance quality affects matching between revenues and expenses, and show that the contemporaneous revenue-expense relation is weaker in countries with common law legal origins and stronger investor protections. However, in these countries, there is a stronger association between past expenses and current revenues, implying that expenses are more likely to be recognized before the associated revenues12.
\nEven more diametrically opposite to Dichev and Tang [3], there is the study of Jin et al. [39]. In fact, as viewed in the previous paragraph, they detect an increasing trend of matching between contemporaneous revenues and expenses for the Australian context, but only after the mandatory adoption of IFRS. Therefore, they suggest that changes in accounting rules have positively affected the matching process effectiveness.
\nOverall, a wide range of determinants has been proposed in order to justify the detected trend of matching and there seems to be no prevailing ideas among them.
\nIn addition to the determinants of changes in matching effectiveness, another fundamental issue is the analysis of the consequences of the modified degree of correlation between revenues and expenses.
\nThe essence of the milestone of this research stream [3], is that mismatched expenses act as noise in the economic relation of advancing expenses to earn revenues, and therefore poor matching decreases the contemporaneous correlation between revenues and expenses. However, Dichev and Tang [3] also documented an increased volatility of earnings, a declining persistence of earnings, and an increased negative autocorrelation in earnings changes (Table 4)13.
\nPeriod | \nEarnings volatility | \nRevenues volatility | \nExpenses volatility | \nCorrelation rev. – exp. | \n
---|---|---|---|---|
Mean 1967 to 1985 | \n0.014 | \n0.101 | \n0.094 | \n0.973 | \n
Mean 1986 to 2003 | \n0.021 | \n0.093 | \n0.088 | \n0.914 | \n
Difference | \n0.007 | \n−0.008 | \n−0.005 | \n−0.059 | \n
P-Value on difference | \n<0.001 | \n0.057 | \n0.140 | \n<0.001 | \n
\n | \n | \n | \n | \n |
Period | \nEarnings persistence | \nAutocorrelation in earnings changes | \n||
Mean 1967 to 1985 | \n0.855 | \n0.019 | \n||
Mean 1986 to 2003 | \n0.705 | \n0.234 | \n||
Difference | \n−0.150 | \n−0.215 | \n||
P-Value on Difference | \n<0.001 | \n<0.001 | \n
Volatility and persistence of earnings, and autocorrelation in earnings changes.
Source: Dichev and Tang [3].
Therefore, looking at the combined evidence of their study, Dichev and Tang [3] suggest that accounting matching has become worse over time and that this trend had a pronounced effect on the properties of resulting earnings. Therefore, since earnings are the most widely used accounting number, these results also suggest that a consideration of degree of matching effectiveness can bring useful insights to financial reporting users.
\nThe same view can be detected in Murdoch and Krause [34], who employ a cash flow prediction criterion to investigate whether the decrease in matching has compromised earnings’ usefulness in forecasting future cash flows. In particular, their results indicate that earnings from earlier periods, in which matching was better, can be used to make more accurate predictions of operating cash flows, relative to earnings from later periods with poorer matching. Therefore, Murdoch and Krause [34] conclude that the documented decline of matching damages the ability of earnings to aid in the prediction of future cash flows, thus being at odds with the primary purpose of financial statements.
\nA different position is assumed by Bushman et al. [35], who examines the timing role of accrual accounting and show that the timing role of accruals has dramatically declined over the past 50 years and has largely disappeared in more recent years. However, in exploring several potential reasons for such observed attenuation, they find that the decline in matching between revenues and expenses is less drastic than the decline in the timing role of accrual accounting. Furthermore, they highlight that the effect of the mismatch on the attenuation of the timing role of accruals is subsumed by the effect of the changes in cash flow volatility14. This means that Bushman et al. [35] do not believe that a worsening in the degree of matching affects one of the basic functions of accrual accounting.
\nSrivastava [5], on his own, analysed some determinants of the deterioration of the quality of earnings, considering matching as one of the of earnings quality components. However, although he confirms that there has been a decline in matching between revenues and expenses, he fails in neglecting the possibility that matching, as a ground rule of accrual accounting, could act as a moderator between the determinant of the documented erosion of earnings quality and the earnings quality measures and attributes. Consequently, the analysis is not able to prove if the downward trend of matching could have had some consequences on the quality of accounting numbers.
\nGoing on, Kagaya [36] investigates the relation between earnings smoothness and matching, and analyses the relation between current accruals, and current and next cash flows from operations. Evidence shows that the degree of matching is positive related to the stability of earnings. Therefore, Kagaya [36] states that matching contributes to the presentation of permanent incomes, controlling for the volatility of earnings. Moreover, his results suggest that the accrual process, supported by matching and accruals, improves earnings smoothing and the signalling ability of future cash flows.
\nOverall, among these studies, that analyse the effects following the declining in matching revenues and expenses, the prevailing idea is that a higher degree of matching is a desirable quality to obtain more informative and useful earnings.
\nDespite the assumption according to which the accrual reporting system provides better performance measures and useful accounting information through earnings, previous literature on this topic has highlighted very mix findings due to the great heterogeneity of analysed settings. Moreover, it has to be noted that the usefulness of accounting numbers depends primary on their quality that in turn can be influenced by both exogenous factors (firms’ economic fundamentals and managerial discretion) and endogenous factors (the reporting system’s ground rules), to be considered as determinants of earnings quality.
\nIn connection with the endogenous factors, a niche strand of research has shown a renewed interest into fundamental analysis and highlights that there has been a considerable downward trend in the effectiveness of the basic rules of accrual accounting: revenue recognition, matching and timing. However, even if there are not so many scholars that joined this topic, the heterogeneity in results and ideas is quite deep, especially with regard to the determinants and the consequences of the detected declining trends. In particular, changes in the accounting systems can be considered as the most compelling and controversial topic, when analysed in connection with the quality of accounting numbers and its fundamentals.
\nIn connection with this, it has to be noted that financial accounting figures have always been the result of a pragmatic compromise between two basic approaches: the ‘revenue/expense’ and the ‘asset/liability’ ones [17]. However, during the last decades, the emphasis of financial reporting standards has been gradually shifting from the former approach to the latter [42].
\nIn particular, the ‘asset/liability’ view is described as the only logical and conceptually sound basis of accounting [18, 19, 43]. In fact, since the late 1970s, a movement towards the ‘asset/liability’ approach has been strongly supported by the Financial Accounting Standards Board and rapidly embraced by many other national standard setters, like Australia, Canada, New Zealand and UK [44]. In this view, the definition of assets and liabilities also represents the fundamental building block in the International Accounting Standards Board’s Conceptual Framework [45]. Therefore, the presence of the ‘revenue/expense’ model has narrowed all over the world, together with the adoption of, or convergence towards, International Financial Reporting Standards [36].
\nIn response to the clear position taken by regulators, national and international standard setters, several scholars have stressed theoretical and empirical drawbacks associated with the ‘asset/liability’ approach. In fact, it seems that the alleged conceptual superiority of the balance sheet is unclear, while it contrasts with how most businesses operate and create value: advancing expenses to generate revenue and earnings [17, 21]. At the same time, according to Dichev and Tang [3], by worsening the revenue-expense matching process, the constant shift towards an ‘asset/liability’ model seems to have lowered the earnings quality of US listed companies over the past 40 years, causing a marked deterioration in the forward-looking informativeness of earnings.
\nHowever, few scholars have challenged the conclusions reached by the aforementioned authors, as they ascribe the prolonged decline in the ‘matching’ between contemporaneous revenues and expenses to changes in the economic environment, rather than to changes in the accounting standards [4, 5].
\nTherefore, given that this topic is still an empirical matter and far from being undisputed, there are many rooms for future studies in order to deepen the consequences of a change in the financial reporting system on the effectiveness of the process of matching expenses with revenues. Further, other important issues to be considered should aim to assess the effect that the possible different degree of matching could have on the quality of accounting numbers, controlling for a set of variables that might affect both matching process and earnings quality.
\nSince the turn of the twentieth century, the air temperature has risen, expected to proceed to rise as a result of climatic variability. These rises in temperatures may trigger high-temperature stress (HTS): serious damage to plants [1, 2]. As a result, food and feed security have become a crucial challenge under current prevailing agro-climatic conditions [3, 4, 5]. Climate modeling has indicated that high temperature during the day and night is threatening global agriculture production system [6]. The result is that maize crop yield is reduced globally [7, 8]. Maize is one of the important crops being cultivated globally with a wide range of uses, and it is an important food crop in the world [9, 10, 11], it has been primarily aimed for increasing yield, quality, and stability under different environments [12, 13, 14, 15]. Maize is an important component of human food, animal feed, and biofuel industries [5]. It ranks top among cereal crops globally and becomes raw material of numerous food and feed industries. Among growth limiting factors, heat stress has a major effect on maize growth and nutrient composition at different developmental stages. Since several abiotic stresses occur simultaneously, such as drought stress and heat stress, the development of improved breeding procedures is essential for increasing the maize productivity and quality [16]. There is a crucial need for further research to develop maize genotypes tolerant to high temperature and drought stress.
Various physiological and biochemical processes govern plant growth and yield. Stomatal conductance, for example, regulates water loss as transpiration as well as an influx of CO2 for its fixation in the Calvin cycle. Several researchers had suggested that the stomatal conductance is an important indirect heat-tolerant selection criterion in crops [17]. Similarly, osmoprotectants and chaperone proteins got an important part in the adaptive reaction of maize to heat stress and combined stresses. Moreover, leaf senescence-related proteins enhance maize tolerance to combined heat and drought stress [18]. Introgression of these traits in locally acclimated maize hybrids through potential donor hybrids helps in developing maize hybrids tolerant to heat and drought stress. Moreover, identification of donor genotypes possessing favorable traits is important in heat stress breeding programs [19]. Therefore, the present review aimed to evaluate the updates on the effect of heat stress on different plant developmental stages, some physiological and biochemical traits, yield and yield traits of maize. Moreover, this review included updates on various strategies used to improve crop tolerance against heat stress including, conventional breeding strategies, management practices, shotgun approaches, and molecular biology-based strategies. Given the critical analysis of success and limitations for improving maize crop productivity under heat stress, future directions for research are also suggested.
Temperature above 350C for a prolonged period is considered unfavorable for crop growth and development and, particularly 400C during flowering and grain filling have severe negative impacts on grain yield [5]. Plants under heat stress exhibited significantly reduced stomatal conductance resulting in a reduced rate of photosynthesis. Excessive heat also causes a reduction in net photosynthesis, leaf area, reduced biomass accumulation and seed weight [20]. However, heat-tolerant maize varieties that produced the highest metabolites are not usually high yielding varieties. The heat-tolerant maize varieties are usually characterized by the reduced plant height, leaves plant−1, and leaf area index ultimately reduced the yield. Therefore, several factors should be put into consideration when selecting for heat tolerance in maize. At the cellular level, HTS triggers the appearance of certain genes and increases the accumulation of certain metabolites that may enhance the heat enduring ability of plants [21]. Generally, remarkable genotypic variations in the stomatal conductance were observed [22, 23]. Stomatal conductance, which is a key trait of the photosynthetic leaf, was significantly influenced by abiotic stresses [24]. Delay canopy senescence due to various light interceptions by green leaf area has been reported to be necessary for high productivity of hybrid maize under normal watering and drought stress [16]. The impinging of high-intensity light to plants can lead to permanent damage to membrane structure [20]. The cell membrane is considered the first physiologically sensitive structure to the high temperature and becomes functionally inactive at heat stress [25]. Membrane function and cell wall stretch have inverse relation [26, 27]. Continuous damage in the biological membrane may downregulate the mobility of water, ions, and soluble organic solid molecules within plant cell membranes; hence carbon of production, transport, and accumulation may be affected by these factors. Membrane stability could be used as an assessment of high-temperature tolerance of plants. It is the most appropriate and convenient test; leakages of electrolytes at a high temperature can be measured by this test [28].
Soil plant analyses development (SPAD) value and grain yield have a significant relationship after anthesis, but no positive association has been noticed during the middle and later grain-filling stages [29, 30]. During HTS, the chlorophyll biosynthesis gene gets downregulated [31]. Experimental observation has suggested that the differences among net photosynthetic ratio after exposure to high temperatures were related to the conversion of the chlorophyll “a” into chlorophyll b ratio; due to low chlorophyll “a” and rapid leaf senescence, the photosynthetic rate is negatively affected [32]. HTS induces several metabolic events at the cellular and subcellular levels. The heat stress influences the production of ROS and oxidative stress as well [33, 34, 35]. The antioxidative defense system includes both enzymatic and nonenzymatic antioxidants that are shown to participate in response to the development of oxidative stress influenced by heat stress [21].
Scientists showed that rather extreme heat intensity could cause serious tissue damage as well as mortality may arise in a matter of minutes and could ultimately be due to a massive collapse of cell organization [36]. Damages can occur just after deep-term exposures at moderate to maximum heat stress. Informal and gradual damages caused by high temperatures include chlorophyll and mitochondrial destruction of enzymatic activity, protein catabolism impairment, protein deterioration, and cell turgidity looseness [37]. As can be seen in studies, with either the introduction of heat-shocked proteins, plants and animals react to high-temperature pressure [38, 39]. These are intended to avoid species from the harmful impacts of heat stress as well as other sources of pressure [40]. A simple reaction to high-temperature stress is a reduction in regular cellular metabolism. This drop is especially marked at 45°C. The fall in the natural production of protein also goes hand in hand with increased expression and transcription of a fresh set of molecules identified as heat-shock proteins (HSPs) [41]. Previous studies demonstrated that in Zea mays, high-temperature stress reduced the protein production and changes the chemical structure of these proteins [42]. Heat stress at the reproduction phase negatively affects the physiology of plants like flower initiation, source-sink relationship, and falling of pods, which ultimately decreases the number of seeds [43]. High-temperature stress is most crucial for the physiological traits of crop plants. High temperature reduced the number of ears, number of kernels, chlorophyll efficiency, firing of leaf, and blasting of the tassel [44]. Climatic stress like high-temperature stress severely reduces the growth and yield of several crops belongs to Leguminosae (Fabaceae). Heat stress severely reduced the physiological growth development and production of Vigna radiata. Heat stress reduced dry matter production and other yield attributes [45].
HTS hampers the plant growth; particularly germination and seedling emergence are more sensitive [46]. Stressful environment severely reduces the germination and early seedling growth in several crop plants [47, 48]. However, seeds of sensitive crops exposed to 24 and 48 h moderate heat stress exhibited a higher germination rate. Such an increase in seed germination rate due to short-term exposure to moderate heat stress was attributed to the altered expression of gibberellin and abscisic acid biosynthesis genes [49]. The seedling stage is generally considered as the most sensitive stage to stress in maize development [50]. However, the detrimental impact of water deficit stress on the initial phase of growth and seedling establishment of maize plants cannot be underestimated [51, 52, 53].
The appropriate sowing date is important for seed germination and seedling establishment to physiological maturity. The heat-tolerant maize varieties germinated earlier than the non-drought tolerant maize varieties under the critical level of watering. During germination, HTS is associated with an impaired emergency, and a reduced plant stand and plant density [54]. Biochemical components such as soluble sugar and proline increased with increased stress, while starch content and relative water content reduced with increased water deficit [55]. Fluctuations in mean daily temperature (either it is maximum or minimum) disturb seed germination ability [56]. High-temperature stress is the main cause of the reduction in plant yield due to poor germination. [57, 58] studied the impact of high temperature on various developmental phases, especially at seedling emergence in various crop genotypes. Critical periods of stress in maize include seedling establishment stages, rapid growth period, pollination and grain-filling stage. It is proven that in the maize plant with the implementation of stress, not only the leaf area is reduced, but also its growth rate is affected and the appearance of each leaf is delayed [59].
HTS at the grain-filling stage in spring maize is the main obstacle [60]. Temperature beyond 40°C, mainly during flowering and grain filling has a severe impact on plant grain productivity [5]. Grain filling is highly sensitive to drought and heat, due to the involvement of the array of diverse enzymes and transporters, located in the leaves and seeds [45]. During HTS, the stability of the thylakoid membrane structure is reduced, resulting in degrading chlorophyll, which reduces light energy absorption, transfer, and photosynthetic carbon assimilation, and ultimately photosynthesis is reduced. Inhibited photosynthesis decreases the supply of photosynthates to the grain, leading to a serious reduction of kernel weight and grain yield [60, 61, 62]. Delay in the development of reproductive organs might be the result of the reduced cell division and cell elongation processes due to reduced supply of photosynthates and carbohydrate metabolism during the active vegetative growth stages [63].
A projection based on the increased daily maximum temperatures concluded that to increase the maize yields by 12% for the period 2016–2035, improved technologies would be needed [64]. Maize plant can face moderate to high temperature, but temperature above 35°C for a long duration is considered unfavorable for crop growth and development, and temperature beyond 40°C, mainly during flowering and grain filling will have a severe impact on plant grain productivity [5]. Meanwhile, early season temperature increases have induced the maize reproductive period to start earlier, developing the risk of water and heat stress. Declines in time to maturation of maize shown of independence of effects to availability of water, the potential of yield which becoming increasingly limited by warming itself [65]. Irrigation regimes were the major determinant of grain yield during the grain-filling stage in maize while significant differences in the number of kernels per row were obtained among irrigation regimes [66]. A large difference in grain yield is caused due to HTS, which is shown in Figure 1. Tissue injuries inversely influence the photosynthetic rate during heat stress, which can cause leaf damaging and increase the rate of leaf senescence that largely results in decreasing photosynthetic efficiency [44]. Reduced chlorophyll content, including grain yields and oxidative damages, possibly had a direct correlation under heat stress [5, 67]. Previous research studies indicate that high temperature has a severe effect on the cob growth rate as well as biomass partitioning [68]. Many factors including duration of pollen viability, increased kernel abortion rate, lower the rate of cell division in storage tissue (endosperm), decrease in starch synthesis, downregulate the sink capacity of developing kernel, increased rate of sugar accumulation, kernel development, and less/higher enzyme activities could be responsible for the reduction in kernel per row under heat stress [44, 67]. Stress environment leads to a severe reduction in yield of crop plants probably by disrupting leaf gas exchange properties, which not only limit the size of the source and sink tissues, but the phloem loading, assimilate translocation, and dry matter partitioning are also impaired [46]. Unsuccessful fertilization reduces the seed size and increases flower abortion rate owing to high temperature and it has negative effects on plant reproductive phase [69, 70]. Temperature range 0–35oC, is considered suitable for leaf growth, the temperature range 35–40oC has an inverse relation with leaf growth. Temperature beyond 35-40oC is responsible for lower net photosynthetic rate, which further leads to protein aggregation, enzyme inactivation, inhibition of protein synthesis leading to the degradation of protein synthesis [69, 71]. Eventually, an increase in temperature beyond its critical value leads to generating a heat stress that harms the morphological growth, grain yield, and yield-related attributes of two maize cultivars “Xida 319” and “Xida 889” [72].
Differences in total leaf collars, cumulative leaf area, and grain yield of three corn hybrids grown under normal Ames, Iowa temperatures and normal +4°C temperatures.
Temperatures higher than 35°C negatively affect maize grain quality. Grain quality, which is governed by factors including the duration and rate of grain filling and the availability of assimilates, is negatively influenced under water deficit conditions. Similar negative effects of stress were reported on the grain weight of wheat [15, 73, 74, 75]. Variations in flour quality in a hard-grained crop could be related to changes in protein composition due to heat stress during the grain-filling stage [76]. As per the findings of Mousavi et al. [77], heat stress at the flowering stage greatly reduced the starch content due to the reduction in the photosynthetic activities leading to an increase in the grain protein ratio. Usually, maize quality properties are affected by genotypes, environmental factors, and their interactions (Figure 2). Therefore, growth and development of maize are dramatically affected by heat stress leading to reduced grain weight with low starch, crude oil, and protein contents [30]. Grain filling is the most environmentally sensitive phase in maize, which strongly affects grain development quantitatively and qualitatively [7, 15]. Oury and Godin [78] reported a negative correlation between protein contents and grain weight in maize under stress conditions. Association analysis revealed that cob length, thousand-grain weight, and protein contents had a significant relationship with grain yield of maize [79].
Quality of maize is influenced by genotype, environment, and their interaction.
In the previous study, the starch content in waxy maize grain was decreased, whereas protein content was increased, resulting in the change of grain quality [80]. However, the activities of enzymes involved in the synthesis of starch and protein are still lacking [81]. The qualitative and quantitative characteristics of grain productivity are mainly influenced by the environmental fluctuation and these changes inversely influence the development and maturing of seed that affect the seed-filling process and deposition of reserves [80]. Generally, high impinging of light affects negatively in plant productivity by causing premature senescence, decreased seed-filling duration, and enhancing remobilization of photosynthates from source to sink [82]. These factors combined, mainly lowers plant biomass and productivity, and finally lowers the assimilate production and mobilization of the reserve to different developing crops [83]. Generally, it is predicted that gene controlling cell division gets downregulated due to water stress, which could be responsible for the decreased cell number in cotyledons along with endosperm. However, further research is required to find out the actual mechanisms controlling these events. Probably due to low enzyme efficiency or high km carbohydrate gene gets downregulated in developing seedling, resulting in limited availability of sucrose, finally producing reduced seed size [45]. The time of seed filling reduced in pea, soybean, and white lupin, resulting in smaller grains [84]. Heat stress during grain filling markedly decreased starch accumulation in wheat [85] and rice [86].
High-temperature stress decreases the protein concentration in the wheat seeds during seed formation stage [76]. Carbon and nitrogen transmission in the seed is improved with the maximum temperature but C transfer is reduced by the daily temperature fluctuations [87]. Temperature variability effects are more visible on the size of seed than seed N contents [87]. Size of seed and protein concentration in the seed are inversely proportional to each other [88]. High-temperature stress reduces seed production, which ultimately declines the seed protein contents [89]. Protein accumulation in the seeds depends upon high-temperature stress [89]. When high-temperature stress occurs at the seed-filling stage it declines the seed protein contents [89]. When wheat crops are exposed to the high-temperature, glutenin protein production is decreased while gliadins protein production remains stable [90]. Seed protein contents of various crops are decreased after imposing the high-temperature stress, but various amino acid concentrations become low [91]. Heat stress damaged the protective layer of seed and food storage tissues of seed, which is why the quality of seed was deteriorated (Figure 3).
Quality of maize is deteriorated due to heat stress.
Enhancement of the antioxidant defense system is an important strategy to scavenge ROS by antioxidant enzymes [92]. Similar to antioxidant defense, phytohormones such as auxin (indole acetic acid, IAA), cytokinins (CKs), abscisic acid (ABA), ethylene (ET), gibberellins (GAs), salicylic acid (SA), brassinosteroids (BRs), and jasmonates (JAs) have key roles in coordinating various signal transduction pathways during the abiotic-stress response [93]. Many studies have shown that altering cultural practices, such as planting rate [94], planting date [95, 96], the phenological variation of crop cultivars [60, 95] soil management [97], nutrient management [60], and irrigation [60] can positively or negatively modify maize yield response to climate change.
Advancing or delaying the sowing date may be a potent, farmer-friendly and biologically viable strategy to avoid HTS. Earlier findings reported that earlier sowing dates and longer season varieties have overcome the negative effects of climate warming on spring maize yield [95]. Similarly, other findings reported by [98] showed that by changing sowing date from late April to late May, the mean daily temperature decreased 1.7 and 4.3°C whereas the diurnal temperature increased 4.3 and 3.1°C during grain-filling middle stage (16-45 days after silking) and grain-filling late stage (45 days after silking to maturity), respectively.
High air temperatures during the crop growing season can reduce harvestable yields. However, crop varieties with improved heat tolerance traits as well as crop management strategies at the farm scale are thus needed for climate change mitigation. Therefore, to mitigate the negative impact of increased growing season temperatures on crop growth and yield, especially in low latitude regions, heat-tolerant crop varieties, as well as modified farm management practices are needed, especially in the areas when irrigation is needed for crop production and irrigation water depends on the underground aquifers [99]. They also observed that applied irrigation at nighttime through subsurface drip reduced the root-zone soil temperature, which helped plant for improving plant growth and yield of corn. Optimizing irrigation has the potential to improve the water use efficiency of maize leading to enhanced heat tolerance [60]. Soil drought stress and atmospheric high temperature in the vegetative growth period could delay the process of growth of spring maize and shorten the reproductive stage, but those get improved when the soil moisture content in the maize field is maintained 65% field capacity by drip irrigation [100].
Plant growth hormones and exogenous chemicals (e.g., ABA and CaCl2) play important roles in strengthening heat tolerance in maize under HTS [60]. Exogenous ABA induces maize to produce HSPs, strengthening PSII heat tolerance [101]. An exogenous CaCl2 increases the maize cell membrane antioxidant capacity to improve heat tolerance [102]. Phytohormones such as auxin (IAA), cytokinins (CKs), abscisic acid (ABA), ethylene (ET), gibberellins (GAs), salicylic acid (SA), brassinosteroids (BRs), and jasmonates (JAs) have key roles in coordinating various signal transduction pathways during the abiotic-stress response [93].
Auxin or indole-3-acetic acid (Aux/IAA) acts as a chemical messenger to communicate cell activities when crops face different environmental stresses, including salinity, drought, waterlogging, extreme temperatures (heat, chilling, and freezing), heavy metals, light (intense and weak), and radiation (UV-A/B) [92, 103, 104]. Cytokinin (CK) is one of them, which functions solely and or with other hormones to mediate different mechanisms within plants in response to environmental fluctuations. During heat stress, protein denaturation and metabolic imbalance are occurred due to the excessive production of ROS. While to survive against heat stress, plants stimulate heat-shock proteins as a protective measure to prevent protein denaturation [105]. For example, the upregulation of heat-shock proteins in tobacco and bentgrass was recorded due to the enhancement of the antioxidant activity as a result of higher CK in plant cells [106]. Besides this, external application of CK inhibits the damage in photosynthesis under heat stress in maize, rice, and passion fruit [107, 108]. Salicylic acid (SA) is a naturally occurring phenolic compound [109] which plays a crucial part in the regulation of growth and development of the plants, and also a defensive mechanism to survive against abiotic stresses [110]. Similar to SA, abscisic acid (ABA) plays a vital role in plants’ physiological adjustments such as against abiotic stresses [111, 112] along with increasing seedling growth, endogenous levels of ABA, and reduced oxidative damage to plants due to heat stress. Similarly, Hasanuzzaman et al. [21] observed that ABA is a signaling molecule and also enhance the number of other signaling molecules such as nitric oxide for thermos-tolerance. Similar to other phytohormones, gibberellic acid (GAs) also interacts with other phytohormones in numerous developmental and stimulus-response processes in plants. GAs have been reported to alleviate the adverse effects of abiotic stress in plants, including rice as reported by Yamaguchi [113]. Brassinosteroids (BRs) is a new group of phytohormones, present in almost every part of the plants [114]. Similar to other phytohormones, BRs have shown tremendous potential against the abiotic stress-induced oxidative stress [103] including high temperature [115].
Inadequate and imbalanced nutrients and impaired soil fertility are associated with mineral-nutrient deficiencies and toxicities [116, 117, 118]. Adequate nutrition is essential for the integrity of plant structure and key physiological processes. For example, nitrogen (N) and magnesium are a structural part of chlorophyll and these are needed for photosynthesis. Nitrogen plays a very crucial role in temperature stress tolerance. At higher temperatures, the intensity of light is also very high. So, high light intensity, as a function of high temperature, which affects the uptake of mineral nutrients, ultimately influences the plant growth negatively. Since N plays a major role in the utilization of absorbed light energy and photosynthetic carbon metabolism [119, 120]. Whereas phosphorus is needed for energy production and storage; it is a structural part of nucleic acids and potassium is needed for osmotic regulation and activation of enzymes [117, 118]. Maize physiological function decreases under abiotic stress but can be compensated by nutritional management, for example, adequate potassium fertilizer improves cell membrane stability, turgor pressure, water potential in maize under water-deficit conditions [60]. Thus, a strategy to improve heat tolerance in maize at the grain-filling stage is to regulate nutrition.
Selection criteria have been proposed in traditional breeding to facilitate the detection of heat-tolerant maize variety. As different varieties respond differently to HTS, breeding heat-tolerant varieties is an effective strategy to improve heat tolerance at the spring maize grain-filling stage [60]. Screening of various cultivars was done to screen the warmness of the plant canopy, stomata behavior of upper most leaf (flag leaf), and photosynthesizing efficiency that are closely related to each other for the production maximum grain production under high-temperature stress conditions [121, 122, 123].
Under HT conditions, plants exhibit various mechanisms for surviving, which include long-term evolutionary phenological and morphological adaptations and short-term avoidance or acclimation mechanisms such as changing the leaf orientation, transpirational cooling, or alteration of membrane lipid compositions [92]. Also, high-temperature stress can be avoided by crop management practices such as selecting proper sowing methods, choice of sowing date, cultivars, irrigation methods, etc. It was discussed that combined hotter and drier climate change scenarios cause a greater maize yield reduction than hotter only scenarios. The incorporating drought and heat tolerance into maize germplasm has the potential to offset predicted yield losses and sustain maize productivity under climate change [19].
Tao and Zhao [60] reported that superoxide dismutase (SOD) increased and malonic dialdehyde (MDA) decreased in maize ear leaf for enhancing the stability of cell membrane, which helps to improve photosynthesis for good grain-filling characteristics (long quickly increase period and high mean rate of grain filling). It also produced high kernel weight under HTS [124, 125] leading to reporting of new origins of genetic engineering which exhibited leakage of electrolytes and MSI are the two basic parameters to screen the temperature stress-tolerant cultivars of various crops [126]. Electrical ions were gathered from the affected plants and were washed out with pure water to measure the membrane stability index MSI [127]. Seed production ability and stability index of the membrane were closely related to each other [3]. Mitochondrial tetrazolium is a very useful indicator of HTS sensitivity. Leaves’ tissues were dipped in triphenyl tetrazolium chloride chemical mixture during HTS. The spectrographic technique was used to quantify the related rates of triphenyl tetrazolium chloride reduction to formazan and tissues viability [128]. Heat tolerance (HT) of the crop is generally defined as the ability of the plant to grow and produce an economic yield under HS. This is a highly specific trait, and closely related to the species, even different organs and tissues of the same plant, may vary significantly in this respect. Plants have evolved various mechanisms for thriving under higher prevailing temperatures. They include short-term avoidance/acclimation mechanism or long-term evolutionary adaptations [92]. Many alternative traits related to heat resistance in Zea mays have been identified, including leaf kinetics, net photosynthesis rate (Pn), leaf anatomy at seedling stage [129] anther emergence [130], pollen grain viability [131], etc. However, the utility of those traits in stress breeding is not well established to date. Furthermore, most of the research focused on the heat stress on temperate maize, whereas only limited information is available on tropical maize [42].
One of the ways to deal with the adverse effects of heat stress may involve exploring some molecules that have the potential to protect the plants from the harmful effects of HT. In recent decades, exogenous application of protectants such as osmoprotectants, phytohormones, signaling molecules, trace elements, etc., have shown a beneficial effect on plants grown under HTS and these protectants have growth-promoting and antioxidant capacity [21, 92]. Exogenous applications of several phytohormones were found to be effective in mitigating heat stress in plants. Accumulation of osmolytes such as proline (Pro), glycine betaine (GB), and trehalose (Tre) is a well-known adaptive mechanism in plants against abiotic stress conditions including HT [92]. Supplementation with Pro and GB considerably reduced the H2O2 production, improved the accumulation of soluble sugars, and protected the developing tissues from heat stress effects. At the field level, managing or manipulating cultural practices, such as the timing and methods for sowing, irrigation management, and selection of cultivars and species, can also considerably decrease the adverse effects of HT stress. In recent decades, exogenous applications of protectants such as osmoprotectants, phytohormones, signaling molecules, trace elements, etc., have shown beneficial effects on plants growing under HT, due to the growth-promoting and antioxidant activities of these compounds [21, 92].
The genetic analytical study depends upon the genetic markers. Information about genetic reproduction aids to identify potential gene markers [132]. To mitigate the harmful effects of high-temperature several gene markers like a random polymorphic amplifier, AFLP (amplifier fragmentation length polymorphism), as well as sequenced simple repeats SSR, were used to increase the crop production under heat-stress [133, 134]. During genetic breeding, the SNP marker was used because of its genetic sequence in legumes to identify resistant genotypes against heat stress [135]. QTL chromosome numbers and their origin were very useful to mitigate the effects of heat stress [132]. Different molecular markers are studied in population genomics across the environment in many individuals to find out novel variation patterns and help to find if the genes have functions in significant ecological traits. Genome-wide association study (GWAS) is a powerful tool for understanding the complete set of genetic variants in different crop cultivars to recognize allelic variant linked with any specific [136]. GWASs generally highlight linkage among SNPs single nucleotide polymorphism marker and traits and based on GWAS design, genotyping tools, statistical models for examination, and results in interpretation [137].
Heat stress disturbed the crop metabolic activities by changing tissue balance. Heat stress directly produced toxic substances in plant tissues call ROS due to which plant suffers from oxidative stress. Moreover, to reduce oxidative damage resulting from heat-induced oxidative stress, plants have developed different adaptive mechanisms, via the biosynthesis of enzymatic and non-enzymatic antioxidants and the sequestering of other materials in crop tissues. Enhancement of antioxidant defense system is an important strategy to scavenge ROS by antioxidant enzymes such as ascorbate peroxidase (APX), ascorbate reductase (AR), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPX), and superoxide dismutase (SOD) and with non-enzymatic antioxidants such as ascorbate (AsA), glutathione (GSH), carotenoids, flavanones, and anthocyanins [92]. Furthermore, adaptation to temperature changes, at the molecular level, was accompanied by the degradation of the normal proteins and the synthesis of HSPs involved in the mechanism of defense in plants. Seed germination is the most critical growth stage of the whole plant life cycle because it is the first step to carry out whole-plant growth and development, but heat stress is the main reducing factor of seedling emergence in semiarid areas [138, 139].
Heat stress and unprecedented climate changes have become a major challenge for sustainable crop production globally. Plant growth, development, and productivity get compromised due to heat stress. Elucidating maize hybrid for temperature tolerance could be an indispensable step toward a balanced yield. Tolerance and avoidance of stress could be an easy way to boost crop production under a changing climate; for example photosynthetic rate can be improved by targeting candidate traits and candidate genes involved in photosynthesis at a molecular level. It could lead to high assimilates production, more transportation of sugar to grain; finally, it decreases grain-filling rate, improves kernel size, and could be very useful to improve plant productivity. Heat-insensitive maize hybrids can be developed by gene editing CRISPER-CAS9 system through targeting a gene that is responsible for heat sensitivity. The base of further research should be focused on spring maize crops. Field experiments regarding the sowing date are essential by analyzing the impact of meteorological factors on maize growth and grain yield. Application of osmoprotectants, nanotechnology, and the use of sustainable agriculture agents have become necessary for further research. Further, interdisciplinary studies that include agronomy, animal sciences, and climate modeling are warranted to assess the impact of the feeding of both the HTS-tolerant maize varieties and those grown under heat stress on animal health and production. This review could encourage such interdisciplinary approaches to develop maize hybrids with high nutritional values and are not prone to drastic yield reductions owing to fluctuations in agro-climatic factors (especially temperature) and the outcome may lead to sustainable maize production in the tropics under changing climate.
The authors declare no conflicts of interest.
We hereby declare that the book chapter does not have any material which has been accepted to publish any journal or publisher, and also has no copy of any material in previously published, except where due permission and reference is made in the text.
License
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
\n\n',metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"Formats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Formats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:6},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:1},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:3},{group:"topic",caption:"Engineering",value:11,count:4},{group:"topic",caption:"Environmental Sciences",value:12,count:4},{group:"topic",caption:"Immunology and Microbiology",value:13,count:2},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"115",title:"Control Engineering",slug:"engineering-control-engineering",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:47,numberOfAuthorsAndEditors:1132,numberOfWosCitations:1255,numberOfCrossrefCitations:811,numberOfDimensionsCitations:1458,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"engineering-control-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9287",title:"Control Theory in Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7c584de5f40193b636833aa812dab9d5",slug:"control-theory-in-engineering",bookSignature:"Constantin Volosencu, Ali Saghafinia, Xian Du and Sohom Chakrabarty",coverURL:"https://cdn.intechopen.com/books/images_new/9287.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7485",title:"Applied Modern Control",subtitle:null,isOpenForSubmission:!1,hash:"c7a7be73f7232e08867ed81bdf9850c6",slug:"applied-modern-control",bookSignature:"Le Anh Tuan",coverURL:"https://cdn.intechopen.com/books/images_new/7485.jpg",editedByType:"Edited by",editors:[{id:"180550",title:"Dr.",name:"Le",middleName:null,surname:"Anh Tuan",slug:"le-anh-tuan",fullName:"Le Anh Tuan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6806",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"fedf4479b910cbcee3025e391f073417",slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",bookSignature:"Ali Sadollah",coverURL:"https://cdn.intechopen.com/books/images_new/6806.jpg",editedByType:"Edited by",editors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6323",title:"PID Control for Industrial Processes",subtitle:null,isOpenForSubmission:!1,hash:"3994459e0812cf44a04b3f6c3e28e9c1",slug:"pid-control-for-industrial-processes",bookSignature:"Mohammad Shamsuzzoha",coverURL:"https://cdn.intechopen.com/books/images_new/6323.jpg",editedByType:"Edited by",editors:[{id:"87344",title:"Dr.",name:"Mohammad",middleName:null,surname:"Shamsuzzoha",slug:"mohammad-shamsuzzoha",fullName:"Mohammad Shamsuzzoha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6101",title:"Advances in Some Hypersonic Vehicles Technologies",subtitle:null,isOpenForSubmission:!1,hash:"5ecc3136420d6f6cc0de2da29f9d749c",slug:"advances-in-some-hypersonic-vehicles-technologies",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/6101.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6240",title:"Adaptive Robust Control Systems",subtitle:null,isOpenForSubmission:!1,hash:"19601f78e28ac1956912e5eeb6b834ac",slug:"adaptive-robust-control-systems",bookSignature:"Le Anh Tuan",coverURL:"https://cdn.intechopen.com/books/images_new/6240.jpg",editedByType:"Edited by",editors:[{id:"180551",title:"Prof.",name:"Anh Tuan",middleName:null,surname:"Le",slug:"anh-tuan-le",fullName:"Anh Tuan Le"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5823",title:"Recent Developments in Sliding Mode Control",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"1075a2f87196085bae2babfac6bc3d52",slug:"recent-developments-in-sliding-mode-control-theory-and-applications",bookSignature:"Andrzej Bartoszewicz",coverURL:"https://cdn.intechopen.com/books/images_new/5823.jpg",editedByType:"Edited by",editors:[{id:"18337",title:"Prof.",name:"Andrzej",middleName:null,surname:"Bartoszewicz",slug:"andrzej-bartoszewicz",fullName:"Andrzej Bartoszewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5496",title:"Fault Diagnosis and Detection",subtitle:null,isOpenForSubmission:!1,hash:"9d27af6f557a4c54b28af7072dc3fcb6",slug:"fault-diagnosis-and-detection",bookSignature:"Mustafa Demetgul and Muhammet Ünal",coverURL:"https://cdn.intechopen.com/books/images_new/5496.jpg",editedByType:"Edited by",editors:[{id:"19106",title:"Dr.",name:"Mustafa",middleName:null,surname:"Demetgul",slug:"mustafa-demetgul",fullName:"Mustafa Demetgul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5486",title:"Quality Control and Assurance",subtitle:"An Ancient Greek Term Re-Mastered",isOpenForSubmission:!1,hash:"549fefebffcb2f610fb669f6eb86c785",slug:"quality-control-and-assurance-an-ancient-greek-term-re-mastered",bookSignature:"Leo D. Kounis",coverURL:"https://cdn.intechopen.com/books/images_new/5486.jpg",editedByType:"Edited by",editors:[{id:"111582",title:"Dr.",name:"Leo",middleName:"Dimitrios",surname:"Kounis",slug:"leo-kounis",fullName:"Leo Kounis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5379",title:"Computer-aided Technologies",subtitle:"Applications in Engineering and Medicine",isOpenForSubmission:!1,hash:"f33a3bdb537f32114b4c1ca6ed3be8dd",slug:"computer-aided-technologies-applications-in-engineering-and-medicine",bookSignature:"Razvan Udroiu",coverURL:"https://cdn.intechopen.com/books/images_new/5379.jpg",editedByType:"Edited by",editors:[{id:"13146",title:"Prof.",name:"Razvan",middleName:null,surname:"Udroiu",slug:"razvan-udroiu",fullName:"Razvan Udroiu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4521",title:"Fuzzy Logic",subtitle:"Tool for Getting Accurate Solutions",isOpenForSubmission:!1,hash:"37b90572d58c2c01bd61c23e908649e2",slug:"fuzzy-logic-tool-for-getting-accurate-solutions",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/4521.jpg",editedByType:"Edited by",editors:[{id:"111683",title:"Prof.",name:"Elmer",middleName:null,surname:"Dadios",slug:"elmer-dadios",fullName:"Elmer Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:47,mostCitedChapters:[{id:"29691",doi:"10.5772/37638",title:"A Real-Time Gradient Method for Nonlinear Model Predictive Control",slug:"a-real-time-gradient-method-for-nonlinear-model-predictive-control",totalDownloads:2157,totalCrossrefCites:47,totalDimensionsCites:60,book:{slug:"frontiers-of-model-predictive-control",title:"Frontiers of Model Predictive Control",fullTitle:"Frontiers of Model Predictive Control"},signatures:"Knut Graichen and Bartosz Käpernick",authors:[{id:"113632",title:"Prof.",name:"Knut",middleName:null,surname:"Graichen",slug:"knut-graichen",fullName:"Knut Graichen"},{id:"139321",title:"MSc.",name:"Bartosz",middleName:null,surname:"Kaepernick",slug:"bartosz-kaepernick",fullName:"Bartosz Kaepernick"}]},{id:"34221",doi:"10.5772/36321",title:"A Mamdani Type Fuzzy Logic Controller",slug:"a-mamdani-type-fuzzy-logic-controller",totalDownloads:11960,totalCrossrefCites:30,totalDimensionsCites:48,book:{slug:"fuzzy-logic-controls-concepts-theories-and-applications",title:"Fuzzy Logic",fullTitle:"Fuzzy Logic - Controls, Concepts, Theories and Applications"},signatures:"Ion Iancu",authors:[{id:"107854",title:"Prof.",name:"Ion",middleName:null,surname:"Iancu",slug:"ion-iancu",fullName:"Ion Iancu"}]},{id:"4579",doi:"10.5772/5812",title:"Cumulative Vehicle Routing Problems",slug:"cumulative_vehicle_routing_problems",totalDownloads:3064,totalCrossrefCites:18,totalDimensionsCites:30,book:{slug:"vehicle_routing_problem",title:"Vehicle Routing Problem",fullTitle:"Vehicle Routing Problem"},signatures:"İmdat Kara, Bahar Yetiş Kara and M. Kadri Yetiş",authors:null}],mostDownloadedChaptersLast30Days:[{id:"62915",title:"Advanced Methods of PID Controller Tuning for Specified Performance",slug:"advanced-methods-of-pid-controller-tuning-for-specified-performance",totalDownloads:2414,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"pid-control-for-industrial-processes",title:"PID Control for Industrial Processes",fullTitle:"PID Control for Industrial Processes"},signatures:"Štefan Bucz and Alena Kozáková",authors:[{id:"21933",title:"Ms.",name:"Alena",middleName:null,surname:"Kozakova",slug:"alena-kozakova",fullName:"Alena Kozakova"},{id:"213658",title:"Dr.",name:"Štefan",middleName:null,surname:"Bucz",slug:"stefan-bucz",fullName:"Štefan Bucz"}]},{id:"62600",title:"Introductory Chapter: Which Membership Function is Appropriate in Fuzzy System?",slug:"introductory-chapter-which-membership-function-is-appropriate-in-fuzzy-system-",totalDownloads:1155,totalCrossrefCites:8,totalDimensionsCites:16,book:{slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"Ali Sadollah",authors:[{id:"147215",title:"Dr.",name:"Ali",middleName:null,surname:"Sadollah",slug:"ali-sadollah",fullName:"Ali Sadollah"}]},{id:"53946",title:"The Evolution of Quality Concepts and the Related Quality Management",slug:"the-evolution-of-quality-concepts-and-the-related-quality-management",totalDownloads:3219,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"quality-control-and-assurance-an-ancient-greek-term-re-mastered",title:"Quality Control and Assurance",fullTitle:"Quality Control and Assurance - An Ancient Greek Term Re-Mastered"},signatures:"Ching-Chow Yang",authors:[{id:"11862",title:"Prof.",name:"Ching-Chow",middleName:null,surname:"Yang",slug:"ching-chow-yang",fullName:"Ching-Chow Yang"}]},{id:"16112",title:"Applications of Adaptive Filtering",slug:"applications-of-adaptive-filtering",totalDownloads:10609,totalCrossrefCites:2,totalDimensionsCites:8,book:{slug:"adaptive-filtering-applications",title:"Adaptive Filtering Applications",fullTitle:"Adaptive Filtering Applications"},signatures:"J. Gerardo Avalos, Juan C. Sanchez and Jose Velazquez",authors:[{id:"26570",title:"MSc",name:"Juan",middleName:"Gerardo",surname:"Avalos",slug:"juan-avalos",fullName:"Juan Avalos"},{id:"67182",title:"Dr.",name:"Juan",middleName:null,surname:"Sanchez",slug:"juan-sanchez",fullName:"Juan Sanchez"},{id:"67184",title:"Dr.",name:"Jose",middleName:null,surname:"Velazquez",slug:"jose-velazquez",fullName:"Jose Velazquez"}]},{id:"53024",title:"Key Aspects for Implementing ISO/IEC 17025 Quality Management Systems at Materials Science Laboratories",slug:"key-aspects-for-implementing-iso-iec-17025-quality-management-systems-at-materials-science-laborator",totalDownloads:1957,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"quality-control-and-assurance-an-ancient-greek-term-re-mastered",title:"Quality Control and Assurance",fullTitle:"Quality Control and Assurance - An Ancient Greek Term Re-Mastered"},signatures:"Rodrigo S. Neves, Daniel P. Da Silva, Carlos E. C. Galhardo, Erlon H.\nM. Ferreira, Rafael M. Trommer and Jailton C. Damasceno",authors:[{id:"20571",title:"Prof.",name:"Erlon H.",middleName:null,surname:"Martins Ferreira",slug:"erlon-h.-martins-ferreira",fullName:"Erlon H. Martins Ferreira"},{id:"145815",title:"Dr.",name:"Rodrigo",middleName:null,surname:"De Santis Neves",slug:"rodrigo-de-santis-neves",fullName:"Rodrigo De Santis Neves"},{id:"145816",title:"Dr.",name:"Carlos",middleName:null,surname:"Eduardo Cardoso Galhardo",slug:"carlos-eduardo-cardoso-galhardo",fullName:"Carlos Eduardo Cardoso Galhardo"},{id:"159056",title:"Dr.",name:"Jailton",middleName:null,surname:"Damasceno",slug:"jailton-damasceno",fullName:"Jailton Damasceno"},{id:"191863",title:"Dr.",name:"Daniel",middleName:"Pereira Da Silva",surname:"Fernandes",slug:"daniel-fernandes",fullName:"Daniel Fernandes"},{id:"191865",title:"Dr.",name:"Rafael",middleName:null,surname:"Mello Trommer",slug:"rafael-mello-trommer",fullName:"Rafael Mello Trommer"}]},{id:"63072",title:"Fuzzy Controller-Based MPPT of PV Power System",slug:"fuzzy-controller-based-mppt-of-pv-power-system",totalDownloads:1225,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"fuzzy-logic-based-in-optimization-methods-and-control-systems-and-its-applications",title:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications",fullTitle:"Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications"},signatures:"M. Venkateshkumar",authors:[{id:"243101",title:"Dr.",name:"M",middleName:null,surname:"Mven",slug:"m-mven",fullName:"M Mven"}]},{id:"19188",title:"High-Speed and High-Precision Position Control Using a Nonlinear Compensator",slug:"high-speed-and-high-precision-position-control-using-a-nonlinear-compensator",totalDownloads:2409,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"advances-in-pid-control",title:"Advances in PID Control",fullTitle:"Advances in PID Control"},signatures:"Kazuhiro Tsuruta, Kazuya Sato and Takashi Fujimoto",authors:[{id:"31823",title:"Prof.",name:"Kazuhiro",middleName:null,surname:"Tsuruta",slug:"kazuhiro-tsuruta",fullName:"Kazuhiro Tsuruta"},{id:"45823",title:"Prof.",name:"Kazuya",middleName:null,surname:"Sato",slug:"kazuya-sato",fullName:"Kazuya Sato"},{id:"45824",title:"Prof.",name:"Takashi",middleName:null,surname:"Fujimoto",slug:"takashi-fujimoto",fullName:"Takashi Fujimoto"}]},{id:"19194",title:"PID Controller Using FPGA Technology",slug:"pid-controller-using-fpga-technology",totalDownloads:15242,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"advances-in-pid-control",title:"Advances in PID Control",fullTitle:"Advances in PID Control"},signatures:"Abdesselem Trimeche, Anis Sakly, Abdelatif Mtibaa and Mohamed Benrejeb",authors:[{id:"19211",title:"Prof.",name:"Mohamed",middleName:null,surname:"Benrejeb",slug:"mohamed-benrejeb",fullName:"Mohamed Benrejeb"},{id:"31012",title:"Mr.",name:"Trimeche",middleName:null,surname:"Abdesselem",slug:"trimeche-abdesselem",fullName:"Trimeche Abdesselem"},{id:"57991",title:"Mr",name:"Anis",middleName:null,surname:"Sakly",slug:"anis-sakly",fullName:"Anis Sakly"},{id:"57993",title:"Mr",name:"Abdelatif",middleName:null,surname:"Mtibaa",slug:"abdelatif-mtibaa",fullName:"Abdelatif Mtibaa"}]},{id:"37990",title:"Automation in aviation",slug:"automation-in-aviation",totalDownloads:5933,totalCrossrefCites:11,totalDimensionsCites:13,book:{slug:"automation",title:"Automation",fullTitle:"Automation"},signatures:"Antonio Chialastri",authors:[{id:"116690",title:"Dr.",name:"Antonio",middleName:null,surname:"Chialastri",slug:"antonio-chialastri",fullName:"Antonio Chialastri"}]},{id:"58282",title:"Matlab-Simulink-Based Compound Model Reference Adaptive Control for DC Motor",slug:"matlab-simulink-based-compound-model-reference-adaptive-control-for-dc-motor",totalDownloads:1524,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"adaptive-robust-control-systems",title:"Adaptive Robust Control Systems",fullTitle:"Adaptive Robust Control Systems"},signatures:"Marian Găiceanu",authors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Gaiceanu",slug:"marian-gaiceanu",fullName:"Marian Gaiceanu"}]}],onlineFirstChaptersFilter:{topicSlug:"engineering-control-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/151857/francesco-beritelli",hash:"",query:{},params:{id:"151857",slug:"francesco-beritelli"},fullPath:"/profiles/151857/francesco-beritelli",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()