Calculate mole fractions of water in TBP/IP6 solution with dodecane.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"}]},book:{item:{type:"book",id:"7441",leadTitle:null,fullTitle:"Micromachining",title:"Micromachining",subtitle:null,reviewType:"peer-reviewed",abstract:"To present their work in the field of micromachining, researchers from distant parts of the world have joined their efforts and contributed their ideas according to their interest and engagement. Their articles will give you the opportunity to understand the concepts of micromachining of advanced materials. Surface texturing using pico- and femto-second laser micromachining is presented, as well as the silicon-based micromachining process for flexible electronics. You can learn about the CMOS compatible wet bulk micromachining process for MEMS applications and the physical process and plasma parameters in a radio frequency hybrid plasma system for thin-film production with ion assistance. Last but not least, study on the specific coefficient in the micromachining process and multiscale simulation of influence of surface defects on nanoindentation using quasi-continuum method provides us with an insight in modelling and the simulation of micromachining processes. The editors hope that this book will allow both professionals and readers not involved in the immediate field to understand and enjoy the topic.",isbn:"978-1-78923-810-5",printIsbn:"978-1-78923-809-9",pdfIsbn:"978-1-83962-780-4",doi:"10.5772/intechopen.75346",price:119,priceEur:129,priceUsd:155,slug:"micromachining",numberOfPages:172,isOpenForSubmission:!1,isInWos:1,hash:"2084b93f70df82e634ec776962e871fd",bookSignature:"Zdravko Stanimirović and Ivanka Stanimirović",publishedDate:"November 20th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7441.jpg",numberOfDownloads:4104,numberOfWosCitations:8,numberOfCrossrefCitations:9,numberOfDimensionsCitations:14,hasAltmetrics:0,numberOfTotalCitations:31,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 3rd 2018",dateEndSecondStepPublish:"October 22nd 2018",dateEndThirdStepPublish:"December 21st 2018",dateEndFourthStepPublish:"March 11th 2019",dateEndFifthStepPublish:"May 10th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"3421",title:"Dr.",name:"Zdravko",middleName:null,surname:"Stanimirović",slug:"zdravko-stanimirovic",fullName:"Zdravko Stanimirović",profilePictureURL:"https://mts.intechopen.com/storage/users/3421/images/system/3421.jpeg",biography:"Dr. Zdravko Stanimirović has been active in research and development work for more than 20 years. He received his M.S. and Ph.D. degrees in electrical engineering from the Faculty of Electrical Engineering, University of Belgrade, the Republic of Serbia in 1999 and 2007, respectively. Dr. Z. Stanimirović is currently an associate research professor at Telecommunications and Electronics Institute IRITEL a. d. Beograd. He has predominantly worked in the field of thick-film technology, particularly modeling of low-frequency noise in thick-resistive films. Over the years he has published more than 70 scientific manuscripts including 6 book chapters and participated in several scientific projects funded by Ministry of Education, Science and Technological Development of the Republic of Serbia. Dr. Z. Stanimirović is the recipient of the IEEE Transactions on Components & Packaging Technologies best paper award. His current research interests include Micro/Nano Electro-Mechanical Systems and micro- and nano-scale sensors.",institutionString:"Institute for Telecommunications and Electronics IRITEL",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"3420",title:"Dr.",name:"Ivanka",middleName:null,surname:"Stanimirović",slug:"ivanka-stanimirovic",fullName:"Ivanka Stanimirović",profilePictureURL:"https://mts.intechopen.com/storage/users/3420/images/system/3420.jpeg",biography:"Dr. Ivanka Stanimirović has been involved in research and development work for the last 23 years. Currently, she is an associate research professor at Institute for Telecommunications and Electronics IRITEL a.d. Beograd. Dr. I. Stanimirović earned her M.S. and Ph.D. degrees in electrical engineering from the Faculty of Electrical Engineering, University of Belgrade, Republic of Serbia in 1999 and 2007, respectively. She has predominantly worked on various aspects of thick-film technology, especially low-frequency noise investigations in thick-resistive films. Over the years she has worked on several scientific projects funded by Ministry of Education, Science and Technological Development of Republic of Serbia and published more than 70 scientific manuscripts including 6 book chapters. She is the recipient of the IEEE Transactions on Components & Packaging Technologies best paper award. Her current research interests include micro- and nanoscale sensors and reliability issues in Micro/Nano Electro Mechanical Systems.",institutionString:"Institute for Telecommunications and Electronics IRITEL",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"1",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1404",title:"Manufacturing Engineering",slug:"industrial-engineering-and-management-manufacturing-engineering"}],chapters:[{id:"69703",title:"Micromachining of Advanced Materials",doi:"10.5772/intechopen.89432",slug:"micromachining-of-advanced-materials",totalDownloads:525,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Wayne N.P. Hung and Mike Corliss",downloadPdfUrl:"/chapter/pdf-download/69703",previewPdfUrl:"/chapter/pdf-preview/69703",authors:[{id:"281595",title:"Dr.",name:"Wayne",surname:"Hung",slug:"wayne-hung",fullName:"Wayne Hung"},{id:"310090",title:"Mr.",name:"Mike",surname:"Corliss",slug:"mike-corliss",fullName:"Mike Corliss"}],corrections:null},{id:"65209",title:"Pico- and Femtosecond Laser Micromachining for Surface Texturing",doi:"10.5772/intechopen.83741",slug:"pico-and-femtosecond-laser-micromachining-for-surface-texturing",totalDownloads:1232,totalCrossrefCites:7,totalDimensionsCites:12,signatures:"Tatsuhiko Aizawa and Tadahiko Inohara",downloadPdfUrl:"/chapter/pdf-download/65209",previewPdfUrl:"/chapter/pdf-preview/65209",authors:[{id:"251217",title:"Prof.",name:"Tatsuhiko",surname:"Aizawa",slug:"tatsuhiko-aizawa",fullName:"Tatsuhiko Aizawa"},{id:"289331",title:"Mr.",name:"Tadahiko",surname:"Inohara",slug:"tadahiko-inohara",fullName:"Tadahiko Inohara"}],corrections:null},{id:"65065",title:"Silicon-Based Micromachining Process for Flexible Electronics",doi:"10.5772/intechopen.83347",slug:"silicon-based-micromachining-process-for-flexible-electronics",totalDownloads:817,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Jiye Yang and Tao Wu",downloadPdfUrl:"/chapter/pdf-download/65065",previewPdfUrl:"/chapter/pdf-preview/65065",authors:[{id:"275067",title:"Prof.",name:"Tao",surname:"Wu",slug:"tao-wu",fullName:"Tao Wu"}],corrections:null},{id:"68335",title:"CMOS Compatible Wet Bulk Micromachining for MEMS Applications",doi:"10.5772/intechopen.88487",slug:"cmos-compatible-wet-bulk-micromachining-for-mems-applications",totalDownloads:390,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"S. Santosh Kumar and Ravindra Mukhiya",downloadPdfUrl:"/chapter/pdf-download/68335",previewPdfUrl:"/chapter/pdf-preview/68335",authors:[{id:"280699",title:"Dr.",name:"S Santosh",surname:"Kumar",slug:"s-santosh-kumar",fullName:"S Santosh Kumar"},{id:"282545",title:"Dr.",name:"Ravindra",surname:"Mukhiya",slug:"ravindra-mukhiya",fullName:"Ravindra Mukhiya"}],corrections:null},{id:"65029",title:"Physical Processes and Plasma Parameters in a Radio-Frequency Hybrid Plasma System for Thin-Film Production with Ion Assistance",doi:"10.5772/intechopen.82870",slug:"physical-processes-and-plasma-parameters-in-a-radio-frequency-hybrid-plasma-system-for-thin-film-pro",totalDownloads:430,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Elena Kralkina, Andrey Alexandrov, Polina Nekludova, Aleksandr Nikonov, Vladimir Pavlov, Konstantin Vavilin, Vadim Odinokov and Vadim Sologub",downloadPdfUrl:"/chapter/pdf-download/65029",previewPdfUrl:"/chapter/pdf-preview/65029",authors:[{id:"235769",title:"Prof.",name:"Elena",surname:"Kralkina",slug:"elena-kralkina",fullName:"Elena Kralkina"},{id:"286645",title:"Prof.",name:"Andrey",surname:"Alexandrov",slug:"andrey-alexandrov",fullName:"Andrey Alexandrov"},{id:"286646",title:"Dr.",name:"Polina",surname:"Nekludova",slug:"polina-nekludova",fullName:"Polina Nekludova"},{id:"286647",title:"Mr.",name:"Aleksandr",surname:"Nikonov",slug:"aleksandr-nikonov",fullName:"Aleksandr Nikonov"},{id:"286648",title:"Dr.",name:"Vladimir",surname:"Pavlov",slug:"vladimir-pavlov",fullName:"Vladimir Pavlov"},{id:"286649",title:"Dr.",name:"Konstantin",surname:"Vavilin",slug:"konstantin-vavilin",fullName:"Konstantin Vavilin"},{id:"286650",title:"Mr.",name:"Vadim",surname:"Sologub",slug:"vadim-sologub",fullName:"Vadim Sologub"},{id:"286651",title:"Prof.",name:"Vadim",surname:"Odinokov",slug:"vadim-odinokov",fullName:"Vadim Odinokov"}],corrections:null},{id:"64763",title:"Study on Specific Coefficient in Micromachining Process",doi:"10.5772/intechopen.82472",slug:"study-on-specific-coefficient-in-micromachining-process",totalDownloads:285,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Sung-Hua Wu",downloadPdfUrl:"/chapter/pdf-download/64763",previewPdfUrl:"/chapter/pdf-preview/64763",authors:[{id:"279813",title:"Prof.",name:"Sung-Hua",surname:"Wu",slug:"sung-hua-wu",fullName:"Sung-Hua Wu"}],corrections:null},{id:"65671",title:"Multiscale Simulation of Surface Defect Influence in Nanoindentation by a Quasi-Continuum Method",doi:"10.5772/intechopen.84240",slug:"multiscale-simulation-of-surface-defect-influence-in-nanoindentation-by-a-quasi-continuum-method",totalDownloads:434,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Zhongli Zhang, Yushan Ni, Jinming Zhang, Can Wang and Xuedi Ren",downloadPdfUrl:"/chapter/pdf-download/65671",previewPdfUrl:"/chapter/pdf-preview/65671",authors:[{id:"276367",title:"Ph.D. Student",name:"Zhongli",surname:"Zhang",slug:"zhongli-zhang",fullName:"Zhongli Zhang"},{id:"281408",title:"Prof.",name:"Yushan",surname:"Ni",slug:"yushan-ni",fullName:"Yushan Ni"},{id:"281414",title:"Mr.",name:"Jinming",surname:"Zhang",slug:"jinming-zhang",fullName:"Jinming Zhang"},{id:"281415",title:"Mrs.",name:"Can",surname:"Wang",slug:"can-wang",fullName:"Can Wang"},{id:"281416",title:"Prof.",name:"Xuedi",surname:"Ren",slug:"xuedi-ren",fullName:"Xuedi Ren"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5830",title:"Extrusion of Metals, Polymers, and Food Products",subtitle:null,isOpenForSubmission:!1,hash:"a69184f72a3f46dd5e4db6313f248509",slug:"extrusion-of-metals-polymers-and-food-products",bookSignature:"Sayyad Zahid Qamar",coverURL:"https://cdn.intechopen.com/books/images_new/5830.jpg",editedByType:"Edited by",editors:[{id:"21687",title:"Dr.",name:"Sayyad Zahid",surname:"Qamar",slug:"sayyad-zahid-qamar",fullName:"Sayyad Zahid Qamar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66064",slug:"corrigendum-to-textured-bst-thin-film-on-silicon-substrate-preparation-and-its-applications-for-high",title:"Corrigendum to: Textured BST Thin Film on Silicon Substrate: Preparation and Its Applications for High Frequency Tunable Devices",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66064.pdf",downloadPdfUrl:"/chapter/pdf-download/66064",previewPdfUrl:"/chapter/pdf-preview/66064",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66064",risUrl:"/chapter/ris/66064",chapter:{id:"62285",slug:"textured-bst-thin-film-on-silicon-substrate-preparation-and-its-applications-for-high-frequency-tuna",signatures:"Congchun Zhang, Jianze Huang, Chunsheng Yang and Guifu Ding",dateSubmitted:"February 7th 2018",dateReviewed:"June 3rd 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,fullTitle:"Coatings and Thin-Film Technologies",slug:"coatings-and-thin-film-technologies",publishedDate:"January 3rd 2019",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"33329",title:"Prof.",name:"guifu",middleName:null,surname:"Ding",fullName:"guifu Ding",slug:"guifu-ding",email:"gfding@sjtu.edu.cn",position:null,institution:{name:"Shanghai Jiao Tong University",institutionURL:null,country:{name:"China"}}},{id:"244624",title:"Associate Prof.",name:"Congchun",middleName:null,surname:"Zhang",fullName:"Congchun Zhang",slug:"congchun-zhang",email:"zhcc@sjtu.edu.cn",position:null,institution:null},{id:"255541",title:"Mr.",name:"Jianze",middleName:null,surname:"Huang",fullName:"Jianze Huang",slug:"jianze-huang",email:"huangjz420@sjtu.edu.cn",position:null,institution:null},{id:"255547",title:"Mr.",name:"Chunsheng",middleName:null,surname:"Yang",fullName:"Chunsheng Yang",slug:"chunsheng-yang",email:"csyang@sjtu.edu.cn",position:null,institution:null}]}},chapter:{id:"62285",slug:"textured-bst-thin-film-on-silicon-substrate-preparation-and-its-applications-for-high-frequency-tuna",signatures:"Congchun Zhang, Jianze Huang, Chunsheng Yang and Guifu Ding",dateSubmitted:"February 7th 2018",dateReviewed:"June 3rd 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,fullTitle:"Coatings and Thin-Film Technologies",slug:"coatings-and-thin-film-technologies",publishedDate:"January 3rd 2019",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"33329",title:"Prof.",name:"guifu",middleName:null,surname:"Ding",fullName:"guifu Ding",slug:"guifu-ding",email:"gfding@sjtu.edu.cn",position:null,institution:{name:"Shanghai Jiao Tong University",institutionURL:null,country:{name:"China"}}},{id:"244624",title:"Associate Prof.",name:"Congchun",middleName:null,surname:"Zhang",fullName:"Congchun Zhang",slug:"congchun-zhang",email:"zhcc@sjtu.edu.cn",position:null,institution:null},{id:"255541",title:"Mr.",name:"Jianze",middleName:null,surname:"Huang",fullName:"Jianze Huang",slug:"jianze-huang",email:"huangjz420@sjtu.edu.cn",position:null,institution:null},{id:"255547",title:"Mr.",name:"Chunsheng",middleName:null,surname:"Yang",fullName:"Chunsheng Yang",slug:"chunsheng-yang",email:"csyang@sjtu.edu.cn",position:null,institution:null}]},book:{id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,fullTitle:"Coatings and Thin-Film Technologies",slug:"coatings-and-thin-film-technologies",publishedDate:"January 3rd 2019",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9886",leadTitle:null,title:"Fractal Analysis",subtitle:"Selected Examples",reviewType:"peer-reviewed",abstract:"Fractal analysis is becoming more and more common in all walks of life. This includes biomedical engineering, steganography and art. Writing one book on all these topics is a very difficult task. For this reason, this book covers only selected topics. Interested readers will find in this book the topics of image compression, groundwater quality, establishing the downscaling and spatio-temporal scale conversion models of NDVI, modelling and optimization of 3T fractional nonlinear generalized magneto-thermoelastic multi-material, algebraic fractals in steganography, strain induced microstructures in metals and much more. The book will definitely be of interest to scientists dealing with fractal analysis, as well as biomedical engineers or IT engineers. I encourage you to view individual chapters.",isbn:"978-1-83962-483-4",printIsbn:"978-1-83962-482-7",pdfIsbn:"978-1-83962-484-1",doi:"10.5772/intechopen.87695",price:119,priceEur:129,priceUsd:155,slug:"fractal-analysis-selected-examples",numberOfPages:128,isOpenForSubmission:!1,hash:"f0c3d700a69d15b52ff8a59fe7e99062",bookSignature:"Robert Koprowski",publishedDate:"September 9th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9886.jpg",keywords:null,numberOfDownloads:1093,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 1st 2019",dateEndSecondStepPublish:"March 3rd 2020",dateEndThirdStepPublish:"May 2nd 2020",dateEndFourthStepPublish:"July 21st 2020",dateEndFifthStepPublish:"September 19th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://mts.intechopen.com/storage/users/50150/images/system/50150.jpg",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia in Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years he has studied the analysis and processing of biomedical images with particular emphasis on the full automation of measurement for a large inter-individual variability of patients. He is the author of dozens of papers with the impact factor (IF) and more than a hundred other papers, as well as the author or co-author of six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in the field of biomedical engineering.",institutionString:"University of Silesia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1407",title:"Applied Mathematics",slug:"numerical-analysis-and-scientific-computing-applied-mathematics"}],chapters:[{id:"72917",title:"Optimization of Fractal Image Compression",slug:"optimization-of-fractal-image-compression",totalDownloads:190,totalCrossrefCites:0,authors:[null]},{id:"72577",title:"Fractal Analysis for Time Series Datasets: A Case Study of Groundwater Quality",slug:"fractal-analysis-for-time-series-datasets-a-case-study-of-groundwater-quality",totalDownloads:172,totalCrossrefCites:0,authors:[null]},{id:"71255",title:"Establishing the Downscaling and Spatiotemporal Scale Conversion Models of NDVI Based on Fractal Methodology",slug:"establishing-the-downscaling-and-spatiotemporal-scale-conversion-models-of-ndvi-based-on-fractal-met",totalDownloads:207,totalCrossrefCites:0,authors:[null]},{id:"72883",title:"A New BEM for Modeling and Optimization of 3T Fractional Nonlinear Generalized Magneto-Thermoelastic Multi-Material ISMFGA Structures Subjected to Moving Heat Source",slug:"a-new-bem-for-modeling-and-optimization-of-3t-fractional-nonlinear-generalized-magneto-thermoelastic",totalDownloads:154,totalCrossrefCites:0,authors:[{id:"233766",title:"Prof.",name:"Mohamed Abdelsabour",surname:"Fahmy",slug:"mohamed-abdelsabour-fahmy",fullName:"Mohamed Abdelsabour Fahmy"}]},{id:"71839",title:"Using Algebraic Fractals in Steganography",slug:"using-algebraic-fractals-in-steganography",totalDownloads:178,totalCrossrefCites:0,authors:[null]},{id:"71305",title:"Fractal Analysis of Strain-Induced Microstructures in Metals",slug:"fractal-analysis-of-strain-induced-microstructures-in-metals",totalDownloads:195,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,isOpenForSubmission:!1,hash:"e75f234a0fc1988d9816a94e4c724deb",slug:"medical-and-biological-image-analysis",bookSignature:"Robert Koprowski",coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",editedByType:"Edited by",editors:[{id:"50150",title:"Prof.",name:"Robert",surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6138",title:"Time Series Analysis and Applications",subtitle:null,isOpenForSubmission:!1,hash:"d33ee38578b81585416062fea4979bbf",slug:"time-series-analysis-and-applications",bookSignature:"Nawaz Mohamudally",coverURL:"https://cdn.intechopen.com/books/images_new/6138.jpg",editedByType:"Edited by",editors:[{id:"119486",title:"Dr.",name:"Nawaz",surname:"Mohamudally",slug:"nawaz-mohamudally",fullName:"Nawaz Mohamudally"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9966",title:"Dynamic Data Assimilation",subtitle:"Beating the Uncertainties",isOpenForSubmission:!1,hash:"e7fde2a36354a2f5a4282fdf9c743380",slug:"dynamic-data-assimilation-beating-the-uncertainties",bookSignature:"Dinesh G. Harkut",coverURL:"https://cdn.intechopen.com/books/images_new/9966.jpg",editedByType:"Edited by",editors:[{id:"216122",title:"Dr.",name:"Dinesh G.",surname:"Harkut",slug:"dinesh-g.-harkut",fullName:"Dinesh G. Harkut"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editedByType:"Edited by",editors:[{id:"23261",title:"Prof.",name:"Goran",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6230",title:"Topics in Splines and Applications",subtitle:null,isOpenForSubmission:!1,hash:"93059c7907be129c419e4f9960b4e9c3",slug:"topics-in-splines-and-applications",bookSignature:"Young Kinh-Nhue Truong and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/6230.jpg",editedByType:"Edited by",editors:[{id:"207517",title:"Dr.",name:"Young Kinh-Nhue",surname:"Truong",slug:"young-kinh-nhue-truong",fullName:"Young Kinh-Nhue Truong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10062",title:"Forecasting in Mathematics",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"9a3ad05fef0502040d2a238ad22487c0",slug:"forecasting-in-mathematics-recent-advances-new-perspectives-and-applications",bookSignature:"Abdo Abou Jaoude",coverURL:"https://cdn.intechopen.com/books/images_new/10062.jpg",editedByType:"Edited by",editors:[{id:"248271",title:"Dr.",name:"Abdo",surname:"Abou Jaoude",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoude"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8655",title:"Advances in Complex Analysis and Applications",subtitle:null,isOpenForSubmission:!1,hash:"6abcaa5b5cf98a51a769d1bce7e5ebe5",slug:"advances-in-complex-analysis-and-applications",bookSignature:"Francisco Bulnes and Olga Hachay",coverURL:"https://cdn.intechopen.com/books/images_new/8655.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8600",title:"Recent Advances in Integral Equations",subtitle:null,isOpenForSubmission:!1,hash:"55d44e96dac2ef01fb52708933293c71",slug:"recent-advances-in-integral-equations",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/8600.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"59816",title:"Augmented Reality and Virtual Reality: Initial Successes in Diagnostic Radiology",doi:"10.5772/intechopen.74317",slug:"augmented-reality-and-virtual-reality-initial-successes-in-diagnostic-radiology",body:'\nThe purpose of this chapter is to review the applications of augmented reality (AR) and virtual reality (VR) in diagnostic radiology. This introduction section will provide a brief general summary of AR technologies, VR technologies, AR/VR applications in medicine and AR/VR applications diagnostic radiology. The remainder of the paper will discuss state-of-the-art medical imaging systems, current methods of viewing medical images, the imaging processing techniques for generating an AR/VR image, AR/VR imaging results and path forward.
\nAR technologies can be classified into AR systems or mixed reality (MR) systems. In both the AR and MR systems, the user wears a head mounted display (HMD), which provides the simultaneous display of a virtual image and the scene of the real-world surroundings [1]. The differences are that in AR, the virtual image is transparent like a hologram and in MR the virtual image appears solid. Examples of AR systems include the Meta and DAQRI systems. An example of an MR system is the Microsoft HoloLens. In AR systems, the user can view the virtual image and interact with the real-world scene.
\nVR technologies may be classified as fully immersive, semi-immersive or non-immersive [2]. In fully immersive VR systems such as the Oculus Rift and the HTC Vive, the HMD displays a virtual image and the real-world surroundings are completely occluded from the user’s field of view [3]. In semi-immersive VR systems such as the Samsung Gear VR, the HMD displays the virtual image, but the real-world scene is only partially occluded from the user’s field of view [3]. In VR systems, the user can maneuver through the virtual world by head movements via HMD tracking or walking via external camera tracking systems. Additional ways that a user can interact with the virtual environment include voice gestures or through handheld devices with haptic feedback. The HMDs for the AR and VR systems display a unique image to each eye; therefore, stereoscopic imaging and depth perceptions is achieved. Both AR and VR are rapidly growing fields. Worldwide revenues for AR/VR were $5 billion in 2016, but are expected to increase to $162 billion by 2020 [3].
\nIn 2015, the United States spent 17% of its gross domestic product on healthcare. 32% of the healthcare spending was during hospital stays [4]. Nearly half of hospital costs are for surgical care [5]. Therefore, approximately 3% of the gross domestic product includes costs related to surgery. There is a drive to improve efficiency in the operation room to both improve patient care and drive down costs. AR/VR holds promise in accomplishing these goals through improving pre-operative planning and enhancing intra-operative surgical procedures [6].
\nIn the United States, the total cost of diagnostic imaging has been estimated to be $100 billion in 2006 alone [7]. Utilization rates of diagnostic imaging are on the rise [8, 9, 10]. Currently, there is no United States Food and Drug Administration (FDA) approved AR/VR system used in diagnostic radiology [11]. AR/VR provides enhanced viewing including depth perception and improved human machine interface (HMI) [12, 13]. AR/VR HMDs provide unique images to each eye yielding depth perception. AR/VR systems leverage advanced gaming controllers and joysticks to improve HMI. Because of these features of AR/VR and others discussed later in this chapter, we believe there will be increasing applications of AR/VR in diagnostic radiology in the future.
\nDiagnostic radiology plays a major role in medicine as it provides precise anatomic and physiologic information to physicians enabling diagnosis of complex disease and monitoring response to treatment. This section will be organized into three subsections including medical imaging equipment, conventional imaging techniques and the advanced 3D rendering methods.
\nThe field of diagnostic radiology includes a wide variety of imaging equipment including systems that generate inherently 2D images (e.g., chest radiograph) as well as systems that generate volumetric medical imaging datasets (e.g., computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)). In this section, we will focus on the latter.
\nIn order to perform a CT scan (also known as a CAT scan), the patient is placed in the horizontal position on the CT scanner table. See Figure 1. The table is then translated through a donut shaped device containing both an X-ray tube and X-ray detector. Multiple projection images are acquired as the X-ray tube and detector assembly rotate around the patient.
\nPhotograph of a computed tomography (CT) scanner. The patient is being transferred from onto the mobile CT scanner table that will translate through the donut-shaped device during the CT scan and take multiple projection images.
Image reconstruction algorithms, such as filtered back projection, are performed in order to generate cross-sectional images in the axial plane (x-y plane). Since sequential, contiguous axial images can be obtained, coronal plane (x-z) and sagittal plane (y-z) plane images can be reconstructed. Data is stored in digital imaging and communication in medicine (DICOM) files with a typical matrix of a CT scan is 512 × 512 pixels. A pixel in the axial plane is a 2D object with a discrete length in the x-direction and discrete length in the y-direction. A voxel is a 3D object created with a pixel by adding a third dimension to create a volume.
\nEach pixel has an associated gray-scale value called a Hounsfield Unit (HU), which is a function of the density and composition of the tissue. As a reference, water has a HU of 0. Soft tissues (e.g., brain, kidney, muscle, etc.) are slightly denser than water and have a HU of approximately 30–40. Compact bone can have a density of 400. Fat is slightly less dense than water and has a HU of approximately −100. Air is significantly less dense than water and has a HU of −1000.
\nA process called “windowing and leveling” is performed by the radiologist to set the window “level” and window “width.” The window “level” refers to the HU number where mid-gray can represent. The window “width” is the range of shades of gray such that any value more extreme than the range is white (if more dense) or black (if less dense). See Figure 2.
\nAxial CT scan of the head in “bone window” (A), “brain window” (B) and “scalp window” (C) at the same level within the brain. In bone window (A), the window level is set to 400 (to optimize visualization of bone which has a density of approximately 400 HU) and the width is set to 3000. In the brain window (B), the window level is set to 30 (to optimize visualization of brain which as a density of approximately 30 HU) and the width is set to 80. Any pixels that are below −10 (30 (window level) minus 40 (1/2 window width)) will be black. Air with a HU of −1000 is black because it is less than −10. Fat (yellow star) with a HU of −100 is black because it is less than −10. Any pixels that are higher than 70 (30 (window level) plus 40 (1/2 window width)) will be white. In this image, the bone is white. In the scalp window (C), the window level is set to 30 and the window width to 800. Note that fat (blue star) with a HU of −100 is now gray since it falls within the range of the window level of 30 and width of 800, which would be 30±400 or −370 to 430.
Modern CT scans can be perform a total body head-to-toe scan in less than 15 seconds with spatial resolution of less than 1 mm. Thus, CT scans can be invaluable in the setting of trauma since it enables the radiologist to diagnose critical injuries anywhere in the body, such as traumatic brain injury [14]. This provides critical information to the neurosurgeon who can then perform life-saving interventions.
\nIn order to perform an MRI scan, the patient is placed in the horizontal position on the MRI scanner table within a large cylindrical shaped device. A large magnetic field is directed through the long axis of the cylinder. Transmit coils direct a radiofrequency (RF) pulse into the patient’s body and receive coils process the returning electromagnetic signal from the body to create an image. Similar to CT, contiguous planar images can be stacked and axial, sagittal and coronal reformats can be reconstructed. The imaging data for a MRI scan is similar to that of a CT scan in matrix size and the fact that each pixel has a comparable gray scale.
\nUnlike CT scanners, MRI scanners do not employ ionizing radiation and are therefore ideal for young children or pregnant women who are more vulnerable to radiation. Furthermore, MRI scans have the ability to perform exceptional contrast resolution between tissues of similar density and can diagnose certain types of traumatic brain injury that cannot be seen on CT scans [15]. Modern MRI scans require significantly more time to perform than CT scans, nearly one-hour of image acquisition time for a MRI scan of the brain.
\nIn order to perform a PET scan, a radiopharmaceutical (e.g., fludeoxyglucose F-18) is administered to the patient. Then, the patient is placed in the horizontal position on the PET scanner table within a donut shaped device. As the radiopharmaceutical decays, photons are emitted from within the patient and are received by the PET detector crystals. As with CT and MRI, axial images can be stacked and sagittal and coronal images can be reconstructed.
\nA typical matrix of a PET scan is 128 × 128, which is smaller than that of CT or MRI. However, it is similar in that each pixel has an associated numerical value associated with it indicating gray scale. In the case of PET, the gray scale corresponds to the amount of radioactivity emitted from that location. Since the radiopharmaceuticals can target certain structures in the body, it is possible for improved diagnosis of conditions like Alzheimer’s disease compared with MRI [16].
\nIn the previous section, we discussed three types of medical imaging scanners that generate volumetric data. In this section, we will review the current methods of viewing the volumetric data.
\nThe conventional viewing method for reviewing volumetric datasets is a slice-by-slice viewing method for axial, sagittal and coronal imaging planes or on occasion oblique reformats. It is estimated that most radiologists spend more than 95% of their total time on cross-sectional imaging datasets using this conventional slice-by-slice approach [17]. Certain anatomical structures are easier to visualize on particular imaging planes. As an example, some radiologists have a preference for viewing the midline structures in the brain on the sagittal images, as shown in Figure 3.
\nImage of the brain from an MRI scanner. This is of an axial T1-weighted sequence (A) with coronal (B) and sagittal (C) images reconstructed.
Occasionally, the radiologist needs to view an abnormality in another plane, other than the axial, sagittal, coronal imaging planes. In these instances, oblique plane reformats can be used with the images still viewed in a conventional slice-by-slice approach. See Figure 4. Curved planar reformats can also be performed and have been shown to be beneficial [18].
\nCT scan of the chest in lung windows showing oblique reformats (A, B) and coronal reformat (C). Note that the image (A) is the oblique plane image corresponding to the yellow line in (C). Note that the image (B) is the oblique plane image corresponding to the green line in (C). Note that image (C) is the coronal plane image corresponding to the red line in (A) and (B).
A standard viewing method includes a flat screen, high-resolution diagnostic imaging monitor with keyboard and mouse, as shown in Figure 5. Typically, the radiologist will use the wheel on the back of the mouse to scroll through the stacks of images. Note that the radiologist also uses a microphone to dictate the radiology reports.
\nImage of the typical diagnostic radiology workstation displaying images of a breast MRI. Note that four flat-screen monitors are present. Methods for human machine interaction (HMI) to manipulate the images include a mouse and keyboard.
First, is the challenge of information overload. The dramatic improvements in spatial resolution (commonly smaller than 1 mm) of CT and MRI coupled with large portions of the body imaged generate immense datasets and the radiologists face the challenge of information overload. As an example, a CT scan of the chest with an axial matrix of 512 pixels (x-direction) by 512 pixels (y-direction) would have 262,144 pixels on a single slice. Thin-cut imaging of the chest provides 500 axial slices, each containing the 262,144 pixels, or roughly 131 million pixels in the data set.
\nSecond, is the challenge of detecting small lesions. One example of this is the challenge is the identification a small pulmonary nodule, which is a topic of great concern for radiologists and a top cause of litigation [19, 20]. Identifying a tumor at an small size and corresponding early stage is important in order to improve patient survival and reduce cost of treatment. A very deliberate slice-by-slice method takes considerable time.
\nThird, is the challenge of mentally building a 3D image from reviewing slices [21]. Depending on the clinical scenario and body part imaged, the radiologist can be tasked with following certain twisting and turning structures through the body such as following a blood vessel or loops of intestines.
\nMost radiologists spend a small fraction (<5%) of their total time in interpreting their imaging scans with advanced viewing methods [17]. Such non-AR/VR techniques include surface rendering and volume rendering.
\nThe first 3D rendering technique to display the human body’s anatomy was surface rendering (also known as shaded surface display). Through segmentation techniques such as thresholding to display only a prescribed set of pixels, apparent surfaces are displayed within the body. A virtual light source is used to provide surface shading. In surface rendering, only a single surface is used. An advantage of only displaying a single surface is the fact that surface rendering techniques are typically not limited by overlapping tissues within the human body. However, there are a few limitations.
\nOne limitation of only displaying a single surface is the fact that thresholding is used for one tissue type at a time and it can be difficult to understand the anatomic relationship of multiple different organ systems when only a single organ system is displayed. Another limitation is the fact that many organs are of similar density to their surroundings and it can be difficult to segment these structures out. Finally, since surface rendering images have been displayed on flat screen images true depth perception is not achieved. See Figure 6.
\nShaded surface display (SSD) of the bones of the head and neck in three different projections (A, B, C). Note that while the density of the skull is intrinsically the same HU, the gray scale displayed changed due to the apparent light source. Note that true depth perception is not achieved because this figure is displayed on a flat computer screen or paper.
The technique of volume rendering has been researched for many years by the computer graphics industry and has recently been applied to diagnostic radiology [22]. In volume rendering, a transfer function is applied to assign a color and opacity to each intensity value. As an example, voxels that correspond to the density of blood vessel are colored red and voxels that correspond to the density of bone are colored white. This has significantly helped radiologists visualize complex 3D structures [23]. See Figure 7.
\nVolume rendering images of the bones and blood vessels of the head and neck in three different projections (A, B, C). Note that this differs from the shaded surface display since these volume rendering images showed both the bones and the blood vessels and the SSD only displayed the bones. Note that the carotid artery can be seen in (A). Note that in image (C), the shading from the apparent light source has been removed.
One of the key limitations of volume rendering is the overlapping structures [24, 25]. This limitation is significantly worse in settings such as viewing of the vasculature of the brain. See Figure 8.
\nVolume rendering image of an magnetic resonance angiogram (MRA), which is a type of magnetic resonance imaging (MRI) of the brain. Note the extensive areas of overlap, which limits evaluation.
In the first sections of this chapter, we have reviewed the medical imaging equipment, conventional slice-by-slice techniques and the advanced 3D rendering methods including surface rendering and volume rendering. We will now review AR/VR in diagnostic radiology.
\nThe previously discussed limitation of overlapping structures can be minimized through a process called depth-3-dimensional (D3D) imaging by providing unique images to each eye and display on AR/VR HDUs. D3D transforms cross-sectional imaging datasets and displays them on AR/VR head display units (HDUs). In doing so, an overall immersive viewing experience is created. In AR/VR radiology, the radiologist will wear a head display unit, which can be either a VR, AR or MR system. The basic concept is outlined in Figure 9.
\nOverview of the system. Cross-sectional imaging data is sent via the digital recording device to the general purpose processor and then sending a unique image to the left eye and a unique image to the right eye a head display unit (HDU) [
This section of the paper will be organized into three sections. First, we will discuss the process for generating an AR/VR image from a cross-sectional medical imaging dataset. Second, we will include results. Third, we will discuss the path forward and future opportunities of AR/VR in diagnostic radiology.
\nTo optimize visualization, the D3D software suite must provide the capability for visualizing medical imagery rendered in a true 3 dimensional representation [26, 27]. In order to accomplish this, input imagery is converted from 2 dimensional images into a 3 dimensional voxel space, segmented into distinct tissue types; and then filtered. Finally, rendering is then performed wherein the rendering engine computes a left and right view. This allows the operator to visualize the data using the same stereopsis that our eyes and brains have spent a lifetime interpreting and processing.
\nDuring the 3D segmentation process, each image pixel in the input imagery is treated as a voxel, a three dimensional entity with length, width, and height. Each voxel is read into a large 3D array. The 3D array is analyzed for similarity to its neighbors, and for context clues that imply similarity to historical training data.
\nMean and variance statistics largely drive the similarity analysis. Every voxel is compared to all the neighboring voxels in the 3x3 (or 5x5 or larger) nearest neighbor region. The most similar voxels are assigned the same class designation. The 3x3 variance is used to determine the width of the local intensity distribution. The width of the local intensity distribution in turn determines the threshold applied for declaring similarity between voxels. Simple local features on the neighborhood are computed around each voxel to describe the local average intensity or texture surrounding a voxel, which provides a classifier algorithm with measurements that are used to distinguish one class from another, where classes correspond to the different tissue types.
\nHistorical data from numerous similar imaging exams will be collected and “ground truthed” so that a neural network or deep learning classifier can be used to improve classification accuracy. Techniques will be used to first classify the input imagery into categories such as skeletal, fat, normal breast tissue, breast cancer, etc. [26, 27]. The user will need to input the tissue-type selection until an intelligent system will automatically determine the anatomy of the input imagery. User input of the tissue-type selection will be used as historical data to drive the classifier.
\nThe goal of the 3D filtering algorithm is to make the most understandable representation of the imagery to the radiologist [26, 27]. In order to accomplish this goal, it utilizes the image tissue-type from the 3D segmentation algorithm to determine which tissue types should be given highest priorities.
\nCurrent graphic hardware have limitations on how many voxels that can be displayed. Therefore, it is necessary to allocate percentages to the various tissue types based on priority. Those tissue voxels that must be seen from a clinically importance perspective (e.g., tumor) are given the highest percentage. Other tissues that are not as clinically important (e.g., subcutaneous fat) are sparsely sampled. There are two benefits of this process. First of all, this allows the operator to understand the high priority tissue (e.g., tumor) in proper context (e.g., tumor is touching the spine). It can be difficult or impossible to understand exact position of the tumor when all the surrounding tissue has been removed. Second of all, this lower priority tissue needs to be somewhat more transparent so the higher priority tissue can be seen through the lower priority tissue. However, transparency allocated may not necessarily correspond to tissue density. Additionally, thinning the tissue between the viewing perspectives and the area of interest makes it much easier to see the area of interest accurately.
\nUser selected filtering is employed to enable the operator to slice away tissue sections to facilitate viewing of areas of interest. Additional implementation of various geometric volumes and surfaces to temporarily remove sections of the voxel cloud may be beneficial. The operator can also enable or disable display of specific tissue types.
\nThe goal of the 3D rendering is to replicate, insofar as possible, what a radiologist would see if looking with his/her own two eyes through the skin and into the body were possible. A slightly different image would be seen from each eye from its particular vantage point. This difference allows one to see depth. The basic concept is illustrated in Figure 10. The geometry behind the approach is illustrated in Figures 11 and 12.
\nThe 3D volume shows a gray voxel and a black voxel. In volume rendering (A), the gray voxel is hidden behind the black voxel and only the black voxel is displayed on the 2D volume rendering image. In depth-3-dimensional (D3D), both the gray and the black voxels are projected onto the imaging plane; furthermore, the user can distinguish that the gray voxel is farther than the black voxel because the D3D process displayed with AR/VR HDUs provides depth perception.
This is an overview of the depth-3-dimensional (D3D) processing system for the left eye viewing perspective (LEVP). Reprinted from the Douglas et al. [
This is an overview illustrating the fact that the angle from the left eye viewing perspective (LEVP) to voxel (0, 64, 64) is different from the angle from the right eye viewing perspective (REVP) to voxel (0, 64, 64). This voxel (0, 64, 64) will be displayed on a different spot on the left eye display as compared with the right eye display within the HDU.
The Left Eye Viewing Perspective (LEVP) would be at an observer/ radiologist selected point to inspect the volume. The Right Eye Viewing Perspective (REVP) would be the inter-ocular distance to the right of the LEVP and similar math would be applied to generate the slightly different image presented to the right eye display. The rendering engine generates the left and right eye views to provide a true 3D data visualization to be displayed in the AR/VR HDUs [26, 27]. This component relies heavily on the Graphics Processing Units (GPU) built into the graphics card. The rendering engine supports a convergence depth adjustment for fine-tuning the operator’s focal point as shown in Figure 13.
\nFigure illustrates left eye viewing perspective (LEVP) and right eye viewing perspective (REVP). The angles from the LEVP through the volume of interest can converge to a convergence point “c” to enhance visualization of a small volume of interest [
The interocular distance can of course be altered to change stereopsis. The rendering engine allows the operator to comfortably move the viewing position, zoom, and rotate about the pitch, roll or yaw axes. The angular field of view can be changed. The volume of interest (VOI) can be rotated. The viewing perspectives can also be rotated. See Figure 14. And to improve visibility, the operator can select any number of color palettes for different tissue classes. The rendering engine also incorporates a graphical overlay for image markup.
\nFive examples of augmented reality/virtual reality viewing options with the D3D technology. Notes: (A) initial viewing angle into the volume of interest. (B) Illustrates increasing the interocular distance, which provides for increased binocular disparity. (C) Illustrates changing of the angular FOV, so rather than an α FOV of 40°, it changes to an α FOV of 10° and rather than a β FOV of 40°, it changes to a β FOV of 10°. This serves to focus on a particular region within the volume. (D) Illustrates rotation of the VOI, so that the radiologist can have a different viewing perspective. (E) Illustrates rotation of the viewing perspective, which is similar to the radiologist turning the head to see new features of the image, allowing for improved HMI. Note that in (A–E), the center pixels (i.e., α = 0° and β = 0°) for both LEVP and REVP converge at the center of the VOI (i.e., voxel [32, 32, 32]), such that the VOI is optimally presented to the user. Abbreviations: FOV, field of view; HMI, human machine interface; LEVP, left eye viewing perspective; REVP, right eye viewing perspective; VOI, volume of interest. Reprinted from the Douglas et al. [
The field of AR/VR is evolving with new and changing HDUs and gaming control systems coming on the market. In order to illustrate what we have used in our prior research, we illustrate example control systems shown and how various control buttons correspond with basic maneuvers and advanced maneuvers. See Figures 15–17.
\nControl system used by depth-3-dimensional (D3D) technologies. See example buttons and functions.
This figure illustrates a graphical user interface (GUI) used by D3D technologies programmed with basic movements, which are defined as a single controls input at one time.
This figure illustrates a graphical user interface (GUI) used by D3D technologies programmed with complex movements, which are defined as a single controls input at one time.
As previously discussed, there have been numerous applications of AR/VR in surgery to include pre-operative planning, education, and intra-operative assistance [6]. However, AR/VR is not yet FDA approved in diagnostic radiology, but is being actively researched by DXC Technologies/D3D Technologies with an initial focus in breast cancer imaging [11, 12, 13].
\nBreast Cancer is one of the leading causes of death in women [28, 29]. Breast calcifications are extremely common and are present in up to 86% of mammograms [30]. The calcifications are classified by distribution with a linear and branching pattern suspicious for ductal carcinoma in situ (DCIS) [31, 32]. Standard mammographic views may not reveal the true linear and branching pattern due to suboptimal view point and lack of depth perception. Therefore, the D3D AR imaging system was tested on a simulated set of microcalcifications. The radiologist who rated the AR system found that when the microcalcifications appeared as a cluster when viewed from a single perspective, but with rotation and the AR HDU appeared as a linear and branching pattern. See Figure 18.
\nSimulated breast microcalcifications as white dots on a black background viewed using the D3D system. Notes: The microcalcifications are shown in (A), (B), and (C), but in different projections. (A) Initial single projection viewed by the radiologist (EW) was thought to represent a cluster as indicated by the circle. Note that some of the dots are bigger, which is due to the fact that they are closer to the viewing perspective and the calcifications subtend a larger angular resolution from the viewing perspective. (B) The cluster is now rotated and viewed with both an LEVP and an REVP. The top portion (arrows) was thought to represent a linear pattern by the radiologist (EW) with the linear portion indicated by the arrows. (C) Same cluster as (A) and (B), but now rotated once again. The bottom portion (arrows) was thought to represent a branching pattern by the radiologist (EW), where two branches originate at the bottom of the image as indicated by the arrows. In retrospect, the viewing perspective (A) was closest to the top of the microcalcifications as if one were looking down on linear, branching pattern seen from the side view on (B) and (C). Abbreviations: D3D, depth 3-dimensional; LEVP, left eye viewing perspective; REVP, right eye viewing perspective. Reprinted from the, Douglas et al. [
In addition to microcalcifications, breast cancer can also present as a mass on imaging. Characterization of the shape and margins is important in determining whether the breast mass is malignant or benign. Dedicated breast CT provides high spatial resolution of breast masses [33]. Recent data has shown the importance of characterizing tumor morphology [34]. Therefore, the D3D AR system was also tested in viewing of a known breast cancer [13]. Malignant features of spiculations were noted to be more conspicuous on the D3D system than the native CT. See Figure 19.
\n(A) Contrast-enhanced breast CT demonstrates the mass with small spiculations extending from the margins. (B and C) same mass from breast CT exam as seen in (A), but viewed with D3D where (B) represents the left eye viewing perspective (LEVP) and (C) represents the right eye viewing perspective (REVP). The red box illustrates the 3D cursor used. (D&E) represent the same mass from the breast CT, but zoomed in and viewed from a different perspective with (D) representing the LEVP and (E) representing the REVP. Red arrows show spiculations extending from the margins of the mass. The red circle represents a spiculation sticking out toward the user, which was well seen when rotating with the D3D system. Reprinted from the Douglas et al., [
Both the fields of AR/VR and diagnostic radiology are large and rapidly growing. One of the most common reasons for performing diagnostic imaging is for cancer. Early determination of whether a particular therapy regimen is working would be extremely helpful to improve survival and would save costs. We outline a flow chart below as a recommended process for introducing AR/VR evaluating a cancer at multiple time points. See Figure 20.
\nOverview of how D3D AR/VR system could be used to evaluate how a tumor at multiple time points.
It is foreseeable that AR/VR will one day play a major role in diagnostic radiology. Computer aided diagnosis (CAD) will help to identify the abnormalities. The role of the radiologist will include assessing an abnormality in great detail to appreciate subtle changes to diagnose accurately and assess treatment response. Features of AR/VR including depth perception, head tracking, improved GUIs create an overall immersive environment allowing for new opportunities in diagnostic radiology. Radiologists will interact with medical images in ways never before including voice commands, gestures or through handheld devices with haptic feedback.
\nBoth diagnostic radiology and AR/VR are large and rapidly growing fields. In this chapter, we reviewed diagnostic medical imaging equipment, data storage, conventional slice-by-slice analysis and advanced 3D rendering techniques including surface rendering and volume rendering. We then introduced D3D processing of images, so volumetric medical imaging can be displayed in AR/VR HDUs. We showed a variety of GUIs including controllers and joysticks with a variety of functions achieved by various functions. Imaging cases were illustrated with a specific focus on breast cancer. We concluded with a discussion on future techniques in comparing how a tumor changes appearance over multiple time points.
\nAll authors either have direct financial interest or are employees of D3D Technologies or DXC Technologies.
Liquid–liquid extraction ion-exchange (LLE-IE), also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar) [1]. There is a net transfer of one or more species from one liquid into another liquid phase, generally from aqueous to organic. The transfer is driven by chemical potential, i.e., once the transfer is complete, the overall system of chemical components that make up the solutes and the solvents are in a more stable configuration (lower free energy). The solvent that is enriched in solute(s) is called extract. The feed solution that is depleted in solute(s) is called the raffinate. This type of process is commonly performed after a chemical reaction as part of the work-up, often including an acidic work-up [2].
\nFrom a hydrometallurgical perspective, solvent extraction is exclusively used in separation and purification of uranium and plutonium, zirconium and hafnium, separation of cobalt and nickel separation, and purification of rare earth elements etc., its greatest advantage being its ability to selectively separate out even very similar metals. One obtains high-purity single metal streams on ‘stripping’ out the metal value from the ‘loaded’ organic wherein one can precipitate or deposit the metal value.
\nOne of the well-known applications of a LLE in hydrometallurgical techniques is the PUREX (plutonium uranium redox extraction) which is a chemical method used to purify fuel for nuclear reactors or nuclear weapons. PUREX is the de facto standard aqueous nuclear reprocessing method for the recovery of uranium and plutonium from used nuclear fuel (spent nuclear fuel or irradiated nuclear fuel). It is based on liquid–liquid extraction ion-exchange [3].
\nIt is not the intention of this research work to stablish a new PUREX methodology but to study the equilibrium of a LLE-IE based on TBP and IP6. The behavior of TBP and nitric acid (HNO3) in the solvent extraction process has been studied, which has detected good stability, through laboratory tests, pilot tests and plant work.
\nIP6 is a unique natural substance found in plant seeds. It has received considerable attention due to its effects on mineral absorption. Impairs the absorption of iron, zinc and calcium and may promote mineral deficiencies. IP6 is a six-fold dihydrogenphosphate ester of inositol (specifically, of the myo isomer), also called inositol hexakisphosphate or inositol polyphosphate (IP6). At physiological pH, the phosphates are partially ionized, resulting in the phytate anion [4].
\nIP6 has had a high value for the nuclear industry, as it has studied as a complement to the recovery of uranium in seawater [3] and as a bio-recovery option in mine water [5].
\nAs has been said before, in this research just the equilibrium of the TBP/IP6 in nitric acid with n-dodecane is going to be study.
\nThe purpose of this work is to study an LLE-IE system to establish a new PUREX variant. Variants refer to change in some of the original conditions which in this case is adding a new molecule to the system. Original PUREX consist in TBP with HNO3 in a hydrocarbon. The proposed system consists in TBP with IP6 in solution con dodecane.
\nThe IP6 presents 6 phosphates, it is water soluble and lightly soluble in ethanol and has a boiling point of 150 °C. The respective constants for calculations have been obtained from the literature [6].
\nThe full chemical reaction with the purpose LLE-IE system is as present in \nFigure 2\n. It can be observed the interaction between the characteristic’s actinides of a spent nuclear fuel and the TBP-IP6. In this reaction, the radiolitic effects are not considered.
\nInositol polyphosphate (IP6) molecule.
Full extraction reaction presented for the purpose PUREX system.
The study system comprises 30% of TBP and 10% of IP6 (TBP/IP6) in solution with water and n-dodecane.
\nConsidering that the distribution of water in the H2O–TBP/IP6–dodecane system be described using the Equation [7] (1)
\nWhere
\n\nTable 1\n present the value of
\n | \n\n | \n
---|---|
1 | \n0.044578274 | \n
0.9 | \n0.040120447 | \n
0.8 | \n0.035662619 | \n
0.7 | \n0.031204792 | \n
0.6 | \n0.026746965 | \n
0.5 | \n0.022289137 | \n
0.4 | \n0.01783131 | \n
0.3 | \n0.013373482 | \n
0.2 | \n0.008915655 | \n
0.1 | \n0.004457827 | \n
Calculate mole fractions of water in TBP/IP6 solution with dodecane.
From Eq. (1) we can derive an equation for the molar coefficient of the activity of water.
\nThe result of the Eq. (4) is a molar coefficient of
Where the derivatives with respect to the molar concentration
The value
Where
From (9) we determinate the derivative
Now, substituting the Eq. (10) in (7),
\nThe right side of the Eq. (11) does not contain any value dependent on
Where
a1\n | \nm1\n | \nLnf2\n | \nf2\n | \n
---|---|---|---|
1 | \n0.2438 | \n0.05711146 | \n0.94448879 | \n
0.9 | \n0.2190 | \n0.05115063 | \n0.95013554 | \n
0.8 | \n0.1945 | \n0.04529659 | \n0.95571399 | \n
0.7 | \n0.1697 | \n0.03940556 | \n0.96136074 | \n
0.6 | \n0.1449 | \n0.03354904 | \n0.96700749 | \n
0.5 | \n0.1201 | \n0.02772661 | \n0.97265424 | \n
0.4 | \n0.0963 | \n0.02217066 | \n0.9780733 | \n
0.3 | \n0.0721 | \n0.01655281 | \n0.98358344 | \n
0.2 | \n0.0474 | \n0.01085124 | \n0.98920742 | \n
0.1 | \n0.0227 | \n0.005182 | \n0.9948314 | \n
Molalities of water m1 and TBP/IP6 activity coefficient f2 for a solution in n-dodecane.
Molarity | \nα | \nNO3\n−\n | \nHNO3\n | \n
---|---|---|---|
1 | \n0.97898485 | \n0.97898485 | \n0.02101515 | \n
2 | \n0.94780094 | \n1.89560188 | \n0.10439812 | \n
3 | \n0.90793309 | \n2.72379927 | \n0.27620073 | \n
4 | \n0.86080276 | \n3.44321104 | \n0.55678896 | \n
5 | \n0.80776805 | \n4.03884025 | \n0.96115975 | \n
5 | \n0.80776805 | \n4.03884025 | \n0.96115975 | \n
6 | \n0.7501237 | \n4.5007422 | \n1.4992578 | \n
7 | \n0.68910109 | \n4.82370763 | \n2.17629237 | \n
8 | \n0.62586824 | \n5.00694592 | \n2.99305408 | \n
9 | \n0.56152981 | \n5.05376829 | \n3.94623171 | \n
10 | \n0.4971271 | \n4.971271 | \n5.028729 | \n
11 | \n0.43363805 | \n4.77001855 | \n6.22998145 | \n
12 | \n0.37197724 | \n4.46372688 | \n7.53627312 | \n
13 | \n0.31299589 | \n4.06894657 | \n8.93105343 | \n
14 | \n0.25748186 | \n3.60474604 | \n10.39525396 | \n
15 | \n0.20615965 | \n3.09239475 | \n11.90760525 | \n
16 | \n0.1596904 | \n2.5550464 | \n13.4449536 | \n
17 | \n0.11867189 | \n2.01742213 | \n14.98257787 | \n
18 | \n0.08363854 | \n1.50549372 | \n16.49450628 | \n
19 | \n0.05506141 | \n1.04616679 | \n17.95383321 | \n
20 | \n0.0333482 | \n0.666964 | \n19.333036 | \n
21 | \n0.01884325 | \n0.39570825 | \n20.60429175 | \n
22 | \n0.01182754 | \n0.26020588 | \n21.73979412 | \n
23 | \n0.01251869 | \n0.28792987 | \n22.71207013 | \n
24 | \n0.02107096 | \n0.50570304 | \n23.49429696 | \n
25 | \n0.03757525 | \n0.93938125 | \n24.06061875 | \n
26 | \n0.0620591 | \n1.6135366 | \n24.3864634 | \n
27 | \n0.09448669 | \n2.55114063 | \n24.44885937 | \n
28 | \n0.13475884 | \n3.77324752 | \n24.22675248 | \n
29 | \n0.18271301 | \n5.29867729 | \n23.70132271 | \n
30 | \n0.2381233 | \n7.143699 | \n22.856301 | \n
Calculation of values for the dissociation degree of nitric acid with to molarity in the solution.
The deviations from the ideal values are moderate and increase with the activity of water and TBP/IP6 concentration.
\nNitric acid is integral to the reprocessing of irradiated fuel and other LLE, the understandings its behavior is important. Nitric acid undergoes thermal and radiolytic degradation, the products of which include nitrous acid (HNO2) and nitrogen oxide species (NOX).
\n\nEq. 13 shows the generic dissociation reaction of nitric acid.
\nThe equation for calculating the degree of dissociation is as follows:
\nWhere K is the equilibrium constant, AB is the reagent, A+ and B- ions (cation and anion respectively), C acid concentration and α dissociation degree. For alpha calculation purposes, we have an equilibrium constant of K = 2.598.
\nWe will consider the dissociation of nitric acid using the polynomial Eq. (15), which has been adjusted from the data reported by [8]. In Eq. 15, the concentration of nitric acid [C] is in mol/dm3 and α the dissociation degree where
The following calculation describes the concentration of associated and dissociated nitric acid.
\nWhere [HNO3total] is the sum of dissociated and associated nitric acid, [NO3\n−] and [HNO3] are respectively the associated and dissociated acid concentration.
\nIt can be observed that after the 23 M the value increases again: due to the point of saturation of nitric acid and coexistence with non-associated species.
\nIn nitric acid solutions, nitrogen oxide species, including HNO2, NO2 and NO, have been observed. The presence of these species in the absence of other reactants or radiation is attributed to the thermal decomposition of nitric acid. Non-dissociated nitric acid is thermally decomposed to produce NO2• as shown in Eq. 18; notice that this reaction is non-elementary. This thermal decomposition of nitric acid in aqueous solution has been widely reported in the literature for different concentrations, high acidity and at high temperatures.
\nThe calculation method used in this research work is as follow:
The nitric acid and water activities are calculated from the data of [8].
The calculation of equilibrium implies the formation of the non-hydrated HNO3·TBP/IP6 monosolvate and the hydrated HNO3·2TBP/IP6 disolvate and 2HNO3·TBP/IP6 semisolvate of nitric acid, and the equilibrium between them obeys the mass action law.
where aa and
where
The molar fraction of free water (nonbonded with solvates) is calculated by the equation
\nEq. (21) is very similar to Eq. (1). As in (1),
4. Organic phase nonideality is considered using the activity solvate coefficients calculated as
\n5. The molar fraction
where the sum Σ
\n
where cT is the total complex (TBP/IP6) concentration in a solution, i.e., the formation of the monosolvate alone was initially assumed.
\n6. To calculate the molar fraction of free complex
7. The value of
where
The values of
The calculated acid molar concentration
\n\nTable 4\n presents all the principal input parameters. The values presented in the table are the one who has been used to solve the equilibrium equations.
\nParameter | \nValue | \nUnits | \n
---|---|---|
% TBP | \n30.00% | \n% | \n
% Dodecane | \n60.00% | \n% | \n
% IP6 | \n10.00% | \n% | \n
Molarity HNO3 [M] | \n9 | \nmol/L | \n
Water activity [aw] | \n0.6 | \n\n |
Molecular weight HNO3\n | \n63.01 | \ng/mol | \n
Molecular weight Dodecane | \n170.34 | \ng/mol | \n
Molecular weight TBP | \n266.29 | \ng/mol | \n
Molecular weight IP6 | \n660.04 | \ng/mol | \n
ρ HNO3\n | \n1.5129 | \ng/cm3\n | \n
ρ Dodecane [d0] | \n0.73526 | \ng/cm3\n | \n
ρ TBP | \n0.973 | \ng/cm3\n | \n
ρ IP6 | \n1.3 | \ng/cm3\n | \n
Acid concentration [ca] | \n9 | \nmol/dm3\n | \n
Principal input parameters and its values.
The concentration of the acid allowed to know the activity of water in the system, which have a value of 0.6 which represents a large amount of water to form the aqueous phase, since a water activity value equal to 1 would represent that we have the total disposition of water to hydrate.
\n\n\nTable 5\n presents the results of the calculation in the equilibrium.
\nParameter | \nValue | \n
---|---|
d complex TBP/IP6 | \n1.06984 | \n
HNO3 Dissociation degree [α] | \n0.5615298 | \n
Volumetric fraction of complex [ϕ2] | \n0.4 | \n
Volumetric fraction of dodecane [ϕ3] | \n0.6 | \n
Molar fraction of water [x1] | \n0.0257969 | \n
Molar activity coefficient water [ | \n0.9583666 | \n
Solvate molar activity coefficient [ | \n0.4245719 | \n
Complex molar activity coefficient [ | \n0.96700749 | \n
Principal results for the equilibrium calculation with 30% TBP/10% IP6 in.
As first step in the overall objective of the study of the equilibrium in the LLE-IE, the kinetic data and constants values has been investigated to produce an initial dynamic model of the interaction of the TBP/IP6 in aqueous conditions. The effects of water in the activity of the TBP/IP6 has been evaluated. As it can be seen, the deviations from the ideal values of the molar coefficient of the system TBP/IP6
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15913}],offset:12,limit:12,total:119061},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"1175"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:26},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:45},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1021",title:"Hepatology",slug:"gastroenterology-hepatology",parent:{title:"Gastroenterology",slug:"gastroenterology"},numberOfBooks:56,numberOfAuthorsAndEditors:1687,numberOfWosCitations:492,numberOfCrossrefCitations:385,numberOfDimensionsCitations:921,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"gastroenterology-hepatology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7888",title:"Hepatitis A and Other Associated Hepatobiliary Diseases",subtitle:null,isOpenForSubmission:!1,hash:"e027bb08025546d9beb242d55e87c84c",slug:"hepatitis-a-and-other-associated-hepatobiliary-diseases",bookSignature:"Costin Teodor Streba, Cristin Constantin Vere, Ion Rogoveanu, Valeria Tripodi and Silvia Lucangioli",coverURL:"https://cdn.intechopen.com/books/images_new/7888.jpg",editedByType:"Edited by",editors:[{id:"55546",title:"Dr.",name:"Costin Teodor",middleName:"Teodor",surname:"Streba",slug:"costin-teodor-streba",fullName:"Costin Teodor Streba"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,isOpenForSubmission:!1,hash:"8dd6dab483cf505d83caddaeaf497f2c",slug:"hepatitis-b-and-c",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8330",title:"Nonalcoholic Fatty Liver Disease",subtitle:"An Update",isOpenForSubmission:!1,hash:"d0f8ff2a0673b7be22f7e7c531a2e410",slug:"nonalcoholic-fatty-liver-disease-an-update",bookSignature:"Emad Hamdy Gad",coverURL:"https://cdn.intechopen.com/books/images_new/8330.jpg",editedByType:"Edited by",editors:[{id:"222727",title:"Associate Prof.",name:"Emad Hamdy",middleName:null,surname:"Gad",slug:"emad-hamdy-gad",fullName:"Emad Hamdy Gad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8838",title:"Liver Cirrhosis",subtitle:"Debates and Current Challenges",isOpenForSubmission:!1,hash:"17163eb18a082da0fe70ccc20b7fe69a",slug:"liver-cirrhosis-debates-and-current-challenges",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/8838.jpg",editedByType:"Edited by",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6718",title:"Hepatitis C",subtitle:"From Infection to Cure",isOpenForSubmission:!1,hash:"7448805e61bfa52ce552c427ad6f16fc",slug:"hepatitis-c-from-infection-to-cure",bookSignature:"Imran Shahid",coverURL:"https://cdn.intechopen.com/books/images_new/6718.jpg",editedByType:"Edited by",editors:[{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6663",title:"Management of Chronic Liver Diseases",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"833ebcb9a2596f81deff0246ed7c9642",slug:"management-of-chronic-liver-diseases-recent-advances",bookSignature:"Xingshun Qi",coverURL:"https://cdn.intechopen.com/books/images_new/6663.jpg",editedByType:"Edited by",editors:[{id:"197501",title:"Dr.",name:"Xingshun",middleName:null,surname:"Qi",slug:"xingshun-qi",fullName:"Xingshun Qi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6440",title:"Liver Research and Clinical Management",subtitle:null,isOpenForSubmission:!1,hash:"e4bbd66ccead286ab737f23feb053cf8",slug:"liver-research-and-clinical-management",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/6440.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6073",title:"Non-Alcoholic Fatty Liver Disease",subtitle:"Molecular Bases, Prevention and Treatment",isOpenForSubmission:!1,hash:"6141320881651ddc40a3f35893c209e7",slug:"non-alcoholic-fatty-liver-disease-molecular-bases-prevention-and-treatment",bookSignature:"Rodrigo Valenzuela",coverURL:"https://cdn.intechopen.com/books/images_new/6073.jpg",editedByType:"Edited by",editors:[{id:"72355",title:"Prof.",name:"Rodrigo",middleName:null,surname:"Valenzuela Baez",slug:"rodrigo-valenzuela-baez",fullName:"Rodrigo Valenzuela Baez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5931",title:"Stomach Disorders",subtitle:null,isOpenForSubmission:!1,hash:"489f823dd49e3fa397e477a8101ca4ff",slug:"stomach-disorders",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/5931.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5714",title:"Esophageal Abnormalities",subtitle:null,isOpenForSubmission:!1,hash:"132a5e5097b78a76535fde4196596ac9",slug:"esophageal-abnormalities",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/5714.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6061",title:"Ascites",subtitle:"Physiopathology, Treatment, Complications and Prognosis",isOpenForSubmission:!1,hash:"ead9b3e5c36413f9ff2c3129fbc57574",slug:"ascites-physiopathology-treatment-complications-and-prognosis",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/6061.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6014",title:"Update on Hepatitis C",subtitle:null,isOpenForSubmission:!1,hash:"b812442f63938a061f1c84b2338bb187",slug:"update-on-hepatitis-c",bookSignature:"Martina Smolic, Aleksandar Vcev and George Y. Wu",coverURL:"https://cdn.intechopen.com/books/images_new/6014.jpg",editedByType:"Edited by",editors:[{id:"172734",title:"Dr.",name:"Martina",middleName:null,surname:"Smolic",slug:"martina-smolic",fullName:"Martina Smolic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:56,mostCitedChapters:[{id:"46479",doi:"10.5772/57353",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:2046,totalCrossrefCites:85,totalDimensionsCites:196,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]},{id:"22945",doi:"10.5772/17640",title:"Pathophysiology of Gastric Ulcer Development and Healing: Molecular Mechanisms and Novel Therapeutic Options",slug:"pathophysiology-of-gastric-ulcer-development-and-healing-molecular-mechanisms-and-novel-therapeutic-",totalDownloads:11792,totalCrossrefCites:8,totalDimensionsCites:21,book:{slug:"peptic-ulcer-disease",title:"Peptic Ulcer Disease",fullTitle:"Peptic Ulcer Disease"},signatures:"Matteo Fornai, Luca Antonioli, Rocchina Colucci, Marco Tuccori and Corrado Blandizzi",authors:[{id:"28973",title:"Prof.",name:"Corrado",middleName:null,surname:"Blandizzi",slug:"corrado-blandizzi",fullName:"Corrado Blandizzi"},{id:"44227",title:"Dr.",name:"Matteo",middleName:null,surname:"Fornai",slug:"matteo-fornai",fullName:"Matteo Fornai"},{id:"44229",title:"Dr.",name:"Luca",middleName:null,surname:"Antonioli",slug:"luca-antonioli",fullName:"Luca Antonioli"},{id:"44230",title:"Dr.",name:"Rocchina",middleName:null,surname:"Colucci",slug:"rocchina-colucci",fullName:"Rocchina Colucci"},{id:"44231",title:"Dr.",name:"Marco",middleName:null,surname:"Tuccori",slug:"marco-tuccori",fullName:"Marco Tuccori"}]},{id:"35446",doi:"10.5772/47946",title:"Delivery of Probiotic Microorganisms into Gastrointestinal Tract by Food Products",slug:"delivery-of-probiotic-microorganisms-into-gastrointestinal-tract-by-food-products",totalDownloads:5861,totalCrossrefCites:0,totalDimensionsCites:19,book:{slug:"new-advances-in-the-basic-and-clinical-gastroenterology",title:"New Advances in the Basic and Clinical Gastroenterology",fullTitle:"New Advances in the Basic and Clinical Gastroenterology"},signatures:"Amir Mohammad Mortazavian, Reza Mohammadi and Sara Sohrabvandi",authors:[{id:"97458",title:"Dr.",name:"Amir M.",middleName:null,surname:"Mortazavian",slug:"amir-m.-mortazavian",fullName:"Amir M. Mortazavian"},{id:"99974",title:"Dr.",name:"Sarah",middleName:null,surname:"Sohrabvandi",slug:"sarah-sohrabvandi",fullName:"Sarah Sohrabvandi"}]}],mostDownloadedChaptersLast30Days:[{id:"45493",title:"Biliary Dyspepsia: Functional Gallbladder and Sphincter of Oddi Disorders",slug:"biliary-dyspepsia-functional-gallbladder-and-sphincter-of-oddi-disorders",totalDownloads:5553,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"dyspepsia-advances-in-understanding-and-management",title:"Dyspepsia",fullTitle:"Dyspepsia - Advances in Understanding and Management"},signatures:"Meena Mathivanan, Liisa Meddings and Eldon A. Shaffer",authors:[{id:"165693",title:"Dr.",name:"Eldon",middleName:null,surname:"Shaffer",slug:"eldon-shaffer",fullName:"Eldon Shaffer"}]},{id:"56262",title:"Anatomy of Esophagus",slug:"anatomy-of-esophagus",totalDownloads:2872,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Murat Ferhat Ferhatoglu and Taner Kıvılcım",authors:[{id:"200126",title:"M.D.",name:"Murat Ferhat",middleName:null,surname:"Ferhatoglu",slug:"murat-ferhat-ferhatoglu",fullName:"Murat Ferhat Ferhatoglu"},{id:"206240",title:"Dr.",name:"Taner",middleName:null,surname:"Kivilcim",slug:"taner-kivilcim",fullName:"Taner Kivilcim"}]},{id:"56068",title:"Minimally Invasive Esophagectomy",slug:"minimally-invasive-esophagectomy",totalDownloads:924,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Rafael Cholvi Calduch, Isabel Mora Oliver, Fernando Lopez Mozos\nand Roberto Martí Obiol",authors:[{id:"203292",title:"Ph.D.",name:"Fernando",middleName:null,surname:"Lopez",slug:"fernando-lopez",fullName:"Fernando Lopez"},{id:"203687",title:"Dr.",name:"Roberto",middleName:null,surname:"Martí",slug:"roberto-marti",fullName:"Roberto Martí"},{id:"204943",title:"Dr.",name:"Rafael",middleName:null,surname:"Cholvi",slug:"rafael-cholvi",fullName:"Rafael Cholvi"},{id:"204944",title:"Dr.",name:"Isabel",middleName:null,surname:"Mora",slug:"isabel-mora",fullName:"Isabel Mora"}]},{id:"21425",title:"Histopathological Diagnosis of Non-Alcoholic and Alcoholic Fatty Liver Disease",slug:"histopathological-diagnosis-of-non-alcoholic-and-alcoholic-fatty-liver-disease",totalDownloads:2948,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"liver-biopsy-in-modern-medicine",title:"Liver Biopsy in Modern Medicine",fullTitle:"Liver Biopsy in Modern Medicine"},signatures:"Andrea Tannapfel and Berenike Flott-Rahmel",authors:[{id:"34863",title:"Dr.",name:"Andrea",middleName:null,surname:"Tannapfel",slug:"andrea-tannapfel",fullName:"Andrea Tannapfel"},{id:"53108",title:"Prof.",name:"Berenike",middleName:null,surname:"Flott-Rahmel",slug:"berenike-flott-rahmel",fullName:"Berenike Flott-Rahmel"}]},{id:"55879",title:"Portal Hypertensive Gastropathy (PHG)",slug:"portal-hypertensive-gastropathy-phg-",totalDownloads:1115,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"stomach-disorders",title:"Stomach Disorders",fullTitle:"Stomach Disorders"},signatures:"Samia Ali Gamie",authors:[{id:"204157",title:"Prof.",name:"Samia",middleName:null,surname:"Ali Abdo Gamie",slug:"samia-ali-abdo-gamie",fullName:"Samia Ali Abdo Gamie"}]},{id:"57005",title:"Health-Related Quality of Life in Antiviral-Treated Chronic Hepatitis C Patients",slug:"health-related-quality-of-life-in-antiviral-treated-chronic-hepatitis-c-patients",totalDownloads:988,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"update-on-hepatitis-c",title:"Update on Hepatitis C",fullTitle:"Update on Hepatitis C"},signatures:"Aleksandar Včev, Jelena Jakab, Lucija Kuna and Martina Smolić",authors:[{id:"154595",title:"Prof.",name:"Aleksandar",middleName:null,surname:"Vcev",slug:"aleksandar-vcev",fullName:"Aleksandar Vcev"},{id:"172734",title:"Dr.",name:"Martina",middleName:null,surname:"Smolic",slug:"martina-smolic",fullName:"Martina Smolic"},{id:"204953",title:"Ms.",name:"Lucija",middleName:null,surname:"Kuna",slug:"lucija-kuna",fullName:"Lucija Kuna"},{id:"205159",title:"Dr.",name:"Jelena",middleName:null,surname:"Jakab",slug:"jelena-jakab",fullName:"Jelena Jakab"}]},{id:"55818",title:"Tissue Engineering of Esophagus",slug:"tissue-engineering-of-esophagus",totalDownloads:998,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Yabin Zhu, Mi Zhou and Ruixia Hou",authors:[{id:"40618",title:"Prof.",name:"Yabin",middleName:null,surname:"Zhu",slug:"yabin-zhu",fullName:"Yabin Zhu"}]},{id:"55045",title:"Hemodynamic Optimization Strategies in Anesthesia Care for Liver Transplantation",slug:"hemodynamic-optimization-strategies-in-anesthesia-care-for-liver-transplantation",totalDownloads:1298,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"liver-cirrhosis-update-and-current-challenges",title:"Liver Cirrhosis",fullTitle:"Liver Cirrhosis - Update and Current Challenges"},signatures:"Alexander A. Vitin, Dana Tomescu and Leonard Azamfirei",authors:[{id:"201176",title:"Associate Prof.",name:"Alexander",middleName:null,surname:"Vitin",slug:"alexander-vitin",fullName:"Alexander Vitin"},{id:"202442",title:"Dr.",name:"Dana",middleName:null,surname:"Tomescu",slug:"dana-tomescu",fullName:"Dana Tomescu"},{id:"202600",title:"Prof.",name:"Leonard",middleName:null,surname:"Azamfirei",slug:"leonard-azamfirei",fullName:"Leonard Azamfirei"}]},{id:"56177",title:"Nutritional Management of Esophageal Cancer Patients",slug:"nutritional-management-of-esophageal-cancer-patients",totalDownloads:1240,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Dimitrios Schizas, Irene Lidoriki, Demetrios Moris and Theodore\nLiakakos",authors:[{id:"203349",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Schizas",slug:"dimitrios-schizas",fullName:"Dimitrios Schizas"},{id:"204000",title:"MSc.",name:"Irene",middleName:null,surname:"Lidoriki",slug:"irene-lidoriki",fullName:"Irene Lidoriki"},{id:"204001",title:"Dr.",name:"Demetrios",middleName:null,surname:"Moris",slug:"demetrios-moris",fullName:"Demetrios Moris"},{id:"204002",title:"Prof.",name:"Theodore",middleName:null,surname:"Liakakos",slug:"theodore-liakakos",fullName:"Theodore Liakakos"}]},{id:"46479",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:2046,totalCrossrefCites:86,totalDimensionsCites:196,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]}],onlineFirstChaptersFilter:{topicSlug:"gastroenterology-hepatology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/151381/ryszard-s-choras",hash:"",query:{},params:{id:"151381",slug:"ryszard-s-choras"},fullPath:"/profiles/151381/ryszard-s-choras",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()