Chemokines involved in the formation of tertiary lymphoid structures in salivary glands of patients with Sjögren’s syndrome.
\r\n\t2) Human sexual disorders in males and females.
\r\n\t3) Psychological aspects of the human sexual response cycle and its disorders.
\r\n\t4) The therapeutic aspects.
\r\n\tThe human sexual response cycle and human sexual behavior are interrelated. How this inter-relationship and its association to normal sexual health need to be delineated. In a world torn between sex and sexually transmitted disease, clear-cut scientific information in the form of a monograph is required to educate.
\r\n\r\n\tHuman sexuality, gender identity, and sexuo-erotic orientation play great roles in human health and disease. Sex education is the need of the hour and a reflection will be timely.
",isbn:"978-1-80355-151-7",printIsbn:"978-1-80355-150-0",pdfIsbn:"978-1-80355-152-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"13af09c4cf93ae89789a3db597972cf6",bookSignature:"Dr. Dhastagir Sultan Sheriff",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11267.jpg",keywords:"Master and Johnson's Cycle, Sex Education, Premature Ejaculation, Orgasmic Disorders, Sexual Aversion Disorders, Dyspareunia, Vaginismus, Sex Hormones, Sexually Transmitted Diseases, Impotence, Low Libido, Blood Analyses",numberOfDownloads:99,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 18th 2021",dateEndSecondStepPublish:"March 3rd 2022",dateEndThirdStepPublish:"May 2nd 2022",dateEndFourthStepPublish:"July 21st 2022",dateEndFifthStepPublish:"September 19th 2022",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Sheriff is a life counselor, sex educationist, and researcher with over 35 years of teaching experience, five authored books, and editorials written in the British Journal of Sexology and the Journal of Royal Society of Medicine. Dr. Sheriff is a life member of the European Society for Human Reproduction, and Early Human Development, American Association of Clinical Chemistry, Association of Physiologists and Pharmacologists of India, and a member of the National Academy of Medical Sciences.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff",profilePictureURL:"https://mts.intechopen.com/storage/users/167875/images/system/167875.jpg",biography:"Dhastagir Sultan Sheriff is a life member of the European Society for Human Reproduction and Early Human Development, Association of Physiologists and Pharmacologists of India, member of the National Academy of Medical Sciences, New Delhi, and resource person for UNESCO for Medical and Bioethics. Dr. Sheriff has authored five books including a textbook on medical biochemistry with additional interest in human sexology. He had editorials written in the British Journal of Sexology, Journal of Royal Society of Medicine, Postgraduate Medicine, and Scientist. He was a former Rotarian, Citizen Ambassador, and was selected for the Ford Foundation Fellowship.",institutionString:"University of Benghazi",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Benghazi",institutionURL:null,country:{name:"Libya"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:[{id:"81652",title:"Sexual Health Education for Youth with Disabilities: An Unmet Need",slug:"sexual-health-education-for-youth-with-disabilities-an-unmet-need",totalDownloads:20,totalCrossrefCites:0,authors:[null]},{id:"81518",title:"Narrativity in Becoming Sex/Gender",slug:"narrativity-in-becoming-sex-gender",totalDownloads:11,totalCrossrefCites:0,authors:[null]},{id:"80813",title:"The Biological Basis of Gender Incongruence",slug:"the-biological-basis-of-gender-incongruence",totalDownloads:27,totalCrossrefCites:0,authors:[null]},{id:"80771",title:"The Strangeness and Origins of Human Sexuality",slug:"the-strangeness-and-origins-of-human-sexuality",totalDownloads:42,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"440212",firstName:"Elena",lastName:"Vracaric",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/440212/images/20007_n.jpg",email:"elena@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7163",title:"Infertility, Assisted Reproductive Technologies and Hormone Assays",subtitle:null,isOpenForSubmission:!1,hash:"6db6e4ccb7088f17f819121f7eb6424d",slug:"infertility-assisted-reproductive-technologies-and-hormone-assays",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/7163.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde",surname:"Nielsen",slug:"hilde-nielsen",fullName:"Hilde Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"77572",title:"Fibroblasts in Sjögren’s Syndrome",doi:"10.5772/intechopen.98946",slug:"fibroblasts-in-sj-gren-s-syndrome",body:'The Sjögren’s Syndrome (SjS) is a systemic autoimmune disease, most commonly presenting between the fourth and six decades of life. It affects predominantly women, with an estimated female to male ratio of 9:1 [1]. With a prevalence of 0.3 to 1 per 1000 people [1], the SjS represents the second most common rheumatic autoimmune condition after rheumatoid arthritis (RA). The SjS can either occur as single disease, often termed as primary SjS, or is associated with other autoimmune diseases, such as RA, systemic lupus erythematosus (SLE), systemic sclerosis (SSc), or dermatomyositis [2]. Up to now, no disease modifying therapies for SjS have been approved and treatment is mainly symptomatic [3].
The hallmark of SjS is a hypofunction of exocrine glands, in particular salivary and lacrimal glands [3]. Dryness of mouth (xerostomia) and eyes (xerophthalmia), alongside fatigue and pain are the major symptoms affecting more than 80% of patients with SjS [2]. The majority of patients with SjS present with glandular symptoms, which are often present over many years before diagnosis [4]. Whilst often considered as “benign features”, these symptoms underpin great patient-reported disability. Other signs of systemic dryness, with scant information regarding the etiology and affecting patients’ quality of life, involve the skin, the nose, the throat, the trachea and the vagina [5].
A major classification criterion for SjS is the infiltration of salivary glands with lymphocytes (focus score ≥1, in minor labial salivary gland biopsy), a condition called sialadenitis. The second major classification criterion is the presence of anti-SSA/Ro auto-antibodies, which is mandatory in patients with a lack of sialadenitis [3]. In 30 to 40% of patients, systemic epithelial and extra-epithelial manifestations occur that can affect the joints, skin, lungs, kidneys and nervous system [2].
People with SjS have increased morbidity and mortality compared to the general population [4]. Although being a rare event, the risk of B-cell lymphomas is 15 to 20 times higher in patients with SjS as the general population and accounts for the leading cause with an impact on patients’s survival [2, 4]. The most common type of lymphomas in patients with SjS are mucosa-associated lymphoid tissue (MALT) lymphomas. Chronic activation of B cells at the primary sites affected by SjS, such as the salivary glands, was attributed to the development of lymphoma. Several risk factors have been defined for the development of lymphoma in patients with SjS; among them is the presence of ectopic germinal centers in tertiary lymphoid structures (TLS) [2].
The SjS develops in genetically predisposed individuals upon exposure to stress factors. Hormones as well as infectious agents, and in particular viruses, are assumed to play key roles in the pathogenesis of the SjS. Activated epithelial cells in salivary glands are the central cell type in the current concept underlying the pathogenesis. They are on the one hand drivers of the ongoing inflammation and on the other hand, due to the excess of apoptosis of epithelial cells in salivary glands, a source of auto-antigens for infiltrating lymphocytes [6]. Epithelial cells respond to and produce pro-inflammatory cytokines and chemokines and thus, promote inflammation. They produce MHC-II and co-stimulatory molecules, enabling them to directly interact with and activate T-cells. Furthermore, they produce B-cell activating factor (BAFF), inducing the activation and survival of B cells [7]. Many of these characteristics have been previously described for fibroblasts, e.g. in the synovium of rheumatoid arthritis patients, and analogies of synovial fibroblasts with salivary gland-derived fibroblasts have been recognized [7, 8]. However, the ability of salivary gland-derived fibroblasts to exert similar functions is only at the beginning to be characterized in detail.
TLS, or ectopic lymphoid organs (ELS), often develop at sites of inflammation in target tissues. Their formation has been associated with chronic inflammation, autoimmune disease, cancer, and transplant rejection [9]. TLS are sites of ectopic autoantibody production and expansion of potential autoreactive B cell clones [7, 10]. The formation of TLS in salivary glands is an established model for studying TLS formation in autoimmunity in general. The frequency of the presence of TLS varies among different autoimmune diseases, with a high frequency in autoimmune thyroiditis and low presence in systemic lupus erythematosus [10]. Approximately 30–40% of patients with SjS exhibit TLS in their salivary glands, the primary sites of the disease [11, 12]. A similar percentage of TLS is found in patients with rheumatoid arthritis, in which TLS are associated with a lympho-myeloid pathotype that represents a distinct disease entity as the diffuse myeloid and pauci-immune fibroid pathotpyes [13]. Hence, the presence and absence of TLS in salivary glands of patients with SjS might underlie different pathophysiological processes in different, not yet characterized, disease subsets. The formation of TLS is across autoimmune diseases associated with more severe disease and poor prognosis [7].
TLS often share several typical structural characteristics with secondary lymphoid tissues (lymph nodes, tonsils, spleen, Peyer’s patches, mucosa-associated lymphoid tissues), including highly organized lymphocytic aggregates, with T and B cell segregation, the development of high endothelial venules, and follicular dendritic cell networks. In contrast to secondary lymphoid tissues, the lymphocytic aggregates found in TLS can range from a simple aggregates to highly ordered structures with bona fide germinal centers that support the production of autoreactive plasma cells [9, 10]. TLS formation and secondary lymphoid tissue development follow numerous overlapping signaling pathways, however, the cellular sources of signaling molecules differ [10]. In contrast to secondary lymphoid structures whose development is initiated at the embryonic stage, TLS develop postnatally in response to inflammatory signals, where they provide a specialized pro-inflammatory environment that plays a key role in perpetuating disease progression in autoimmune conditions [7, 14]. Podoplanin (pdpn)-expressing fibroblastic reticular cells in secondary lymphoid organs and pdpn+ stromal fibroblasts in TLS provide signals and the scaffold structure that foster the interaction of T cells with dendritic cells, and hence drive innate and adaptive immune responses [15, 16].
The routine histopathological examination of minor salivary gland biopsies carries a substantial prognostic value regarding disease severity and outcome [17]. Higher inflammatory scores, and the presence of germinal center-like structures in particular, in salivary glands of patients with SjS were associated with more severe disease, illustrated by elevated titers of rheumatoid factor, anti-Ro/SSA and anti-Ro/SSB auto-antibodies, enhanced levels of local and systemic pro-inflammatory mediators and a reduced saliva secretion [11, 17, 18]. Germinal center-like structures have been identified in approximately 25% of patients with SjS [17, 19]. Their presence at time of diagnosis, or sole high lymphocytic scores, were shown to account as independent risk factors for the development of Non-Hodgkin’s lymphomas in patients with SjS [17, 19].
Given the pivotal role of TLS in SjS, the identification of factors and pathological mechanisms triggering and regulating their formation and those of germinal center-like structures is of high interest in order to identify potential targets for drug development.
Studying the chronology of TLS formation and associated cell types in animal models, together with complementary evaluation of human salivary gland specimens, provided new insights into pathomechanisms associcated with sialadenitis in SjS, and unraveled the analogy of TLS formation to the development of secondary lymphoid organs. A model that proved to be of particular value for studying salivary gland inflammation in SjS, and the formation of TLS in autoimmune processes in general, is the selective submandibular gland administration of a replication-defective adenovirus 5 (AdV5) through retrograde excretory duct cannulation in wild-type C57/Bl76 mice. These mice were shown to resemble several hallmarks of SjS, including lymphocytic infiltration of salivary glands, TLS formation, anti-nuclear autoantibody (ANA) formation, and reduction in salivary flow indicative of excretory gland dysfunction [20]. Cannulated mice developed SjS-like periductal lymphoid aggregates within two weeks after AdV5 delivery. Within three weeks, the inducible TLS acquired progressively hallmarks of functional germinal centers, with segregated B and T cell areas, high endothelial venules in T-cell rich areas, and follicular dendritic cell networks in up to 70% of the lymphocytic aggregates. Local expression of activation-induced cytidine deaminase (AID), the enzyme required for Ig somatic hypermutation and class-switch recombination, pointed to the functional activation of B cells in TLS [20].
During secondary lymphoid organ development in embryogenesis, mesenchymal precursor cell maturate into intercellular adhesion molecule-1 (ICAM-1)high, vascular cell adhesion molecule-1 (VCAM-1)high organizer cells, in a process that is dependent on lymphoid tissue inducer cells and lymphotoxin β receptor (LTβR) signaling. This leads to a sustained stromal cell production of interleukin 7 (IL7), C-X-C motif chemokine ligand 13 (CXCL13) and to a lesser extent C-C motif chemokine ligand 21 (CCL21) [21]. The subsequent migration of lymphocytes into the anlagen is responsible for the full differentiation of fibroblastic reticular cells within distinct areas of the secondary lymphoid organ [22, 23, 24].
In TLS of salivary glands of patients with SjS, a network of pdpn+ and fibroblast activating protein (FAP)+ fibroblasts were identified that support the formation of TLS [24]. The same markers have been previously identified on fibroblast reticular cells in lymph nodes [15, 25], which provide, by the secretion of CCL19 and CCL21, the key factors for the migration and retention of T cells in secondary lymphoid organs [16, 25, 26]. Among the pdpn+ fibroblasts in TLS, two functionally distinct populations have been identified in human salivary glands that provide the signals for lymphocyte survival and organization within TLS, respectively (Figure 1) [24]. The first cluster of pdpn+ fibroblasts, was characterized by high expression of FAP, ICAM-1, VCAM-1 and CD34 [24]. Pdpn+CD34+ fibroblasts in TLS produced IL7 and BAFF, underlying their function in supporting lymphocyte survival and homeostasis [24]. The second cluster of pdpn+ CD34− fibroblasts was characterized by high expression levels of CXCL13, CCL19 and CCL21. Expansion of a similar network of pdpn+ fibroblasts has been observed upon salivary gland infection of mice with Ad5V. Of note, this expansion occurred before lymphocyte infiltration, suggesting a pivotal, early role for fibroblasts in SjS. Fibroblasts in TLS of cannulated mouse salivary glands expressed CXCL13, CCL19, BAFF, IL7 and LTβR, with an increased expression of lymphoid chemokines specifically in the ICAM-1+ VCAM-1+ subpopulation of pdpn+ fibroblasts [24].
Stromal fibroblast populations contribute to the formation of tertiary lymphoid structures (TLS). Created by
Pdnp+ fibroblasts in human TLS expressed receptors for and responded to stimulation with IL13, IL4, IL22, TNF, and LTα1β2 [24, 27]. Elevated levels of IL13 have been detected in serum of patients with SjS, where they correlated with titers of anti-Ro/SSA auto-antibodies [28], and in Id3 knockout mice, a model for T cell mediated SjS [29, 30]. Also, high levels of IL22 in sera of patients with SjS have been shown to correlate with clinically relevant parameters, such as reduced salivary flow, hypergammaglobulinemia, as well as serum titers of rheumatoid factor, anti-Ro/SSA and anti-Ro/SSB auto-antibodies [31]. Together these data suggested a potential link between increased levels of IL13 and IL22 with the auto-antibody production in SjS.
IL13 stimulation of cultured human salivary gland fibroblasts, in synergy with TNF and LTα1β2, induced the expression of VCAM-1, ICAM-1 and pdpn
Chemokines | Producing cells | Receptor | Function on target cells |
---|---|---|---|
IL13 | Innate lymphoid cells Fibroblasts Epithelial cells | IL4R | Fibroblast priming, induces expression of pdpn, VCAM1-, ICAM-1 |
IL22 | T cells Innate lymphoid cells Natural killer cells | IL22Rα | Proliferation of fibroblasts, expansion of the fibroblast network |
LTα1β2 | Lymphoid tissue inducer cells | LTβR | Final differentiation of fibroblasts in lymphoid structures |
CXCL19 | Fibroblasts | CXCR7 | T cells and dendritic cells chemotaxis |
CXCL21 | Fibroblasts | CXCR7 | Natural killer cells, dendritic cells, T cells chemotaxis |
CXCL12 | Epithelial cells | CXCR4 | Lymphocyte retention inside the lymphoid structures |
CXCL13 | Fibroblasts | CXCR5 | B cells, T cells chemotaxis |
BAFF | Fibroblasts Epithelial cells | BAFFR | B cell activation and survival |
Chemokines involved in the formation of tertiary lymphoid structures in salivary glands of patients with Sjögren’s syndrome.
In contrast to IL13, IL-22 stimulation of cultured human salivary gland fibroblasts induced proliferation but did not induce the expression of pdpn, ICAM-1 and VCAM-1
The asset of single cell RNA sequencing (scRNA-seq) technologies has enabled the identification of different fibroblasts populations associated with chronic inflammation across different diseases and anatomical sites [32, 33, 34, 35, 36, 37, 38, 39]. Given the pro-inflammatory role of fibroblasts and their ability to carry a certain degree of inflammatory memory [40], interfering with fibroblasts has become a new potential therapeutic strategy in chronic inflammatory diseases.
In a recent study, scRNA-seq data sets derived from four different inflammatory diseases, namely rheumatoid arthritis, interstitial lung disease, ulcerative colitis and the SjS were integrated, with the aim to provide a stromal cell atlas to identify pathogenic fibroblast subsets shared across diseases [8]. For each inflamed tissue, non-inflamed control tissues were included in the analysis. With respect to the SjS, biopsies derived from minor salivary gland biopsies of patients with SjS were compared to those from patients with sicca symptoms, characterized as non-autoimmune dryness, and who did not fulfill the classification criteria for SjS. Given the lack of a universal fibroblast marker, fibroblasts in this study were characterized by the expression of collagen (COL) 1A1 and defined as non-epithelial, non-immune, non-endothelial, and non-mural cells based on the respective specific markers for those cell types. By pooling the scRNA-seq data sets from salivary glands, lungs, the synovium and the gut, 14 clusters of fibroblasts have been identified, each of them consisting of genes that were shared across different tissues in addition to tissue-specific genes (Table 2). Among these clusters, two of them expanded across tissues in inflamed versus respective non-inflamed controls.
Cluster | Shared markers | Other markers, localization, and characteristics | Shared function |
---|---|---|---|
0 | n.d. | SG: n.d. Lung: n.d. Synovium: PRG4+ lining SF Gut: WNT5B+ villus-associated GF | n.d. |
1 | n.d. | SG: n.d. Lung: n.d. Synovium: THY1+ sublining Gut: WNT2B+ crypt-associated GF | n.d. |
2 | n.d. | SG: n.d. Lung: n.d. Synovium: THY1+ sublining Gut: WNT2B+ crypt-associated GF | n.d. |
3 | n.d. | SG: n.d. Lung: n.d. Synovium: THY1+ sublining Gut: WNT2B+ crypt-associated GF | n.d. |
4 | SPARC+ COL3A1+ | SG: CD34+ Lung: myofibroblasts Synovium: split between DKK3+ and THY1+ sublining SF, CD90hi NOTCH3-activated, perivascular Gut: split between inflammatory and myofibroblasts | crosstalk with endothelial cells |
5 | FBLN1+ | SG: n.d. Lung: HAS1+PLIN2+ Synovium: CD34+THY1+ Gut: RSPO3+ | n.d. |
6 | n.d. | SG: n.d. Lung: n.d. Synovium: PRG4+ lining SF Gut: WNT5B+ villus-associated GF | n.d. |
7 | n.d. | SG: n.d. Lung: n.d. Synovium: n.d. Gut: n.d. | n.d. |
8 | PTGS2+ SEMA4A+ | SG: n.d. Lung: n.d. Synovium: THY1+ sublining Gut: WNT2B+ crypt-associated GF | n.d. |
9 | CD34+ MFAP5+ | SG: n.d. Lung: HAS1+PLIN2+ Synovium: CD34+THY1+ Gut: RSPO3+ | n.d. |
10 | SG: n.d. Lung: n.d. Synovium: PRG4+ lining SF Gut: WNT5B+ villus-associated GF | n.d. | |
11 | CXCL10+ CCL19+ | SG: CCL19+PDPN+ Lung: n.d. Synovium: THY1+ sublining, HLA-DRAhi SF Gut: RSPO3+, WNT2B+Foshi | interaction with immune cells |
12 | n.d. | SG: n.d. Lung: n.d. Synovium: PRG4+ lining SF Gut: WNT5B+ villus-associated GF | n.d. |
13 | MYH11+ | SG: n.d. Lung: myofibroblasts Synovium: n.d. Gut: myofibroblasts | n.d. |
Shared fibroblasts clusters between salivary gland (SG), lung, synovium, and gut, as defined by Korsynsky et al. [8].
GF, gut fibroblast; n.d., not defined; SF, synovial fibroblast.
The first of these shared clusters is characterized by the marker genes CXCL10 and CCL19. Based on a gene set enrichment and pathway analysis, CXCL10+ CCL19+ fibroblasts were identified as a subset that potentially directly interacts with immune cells. Among the enriched pathways were “lymphocyte chemotaxis”, “antigen presentation”, and “positive regulation of T cell proliferation”. Furthermore, scRNA-seq data suggested that CXCL10+ CCL19+ fibroblasts respond to key pro-inflammatory cytokines, including interferon (IFN) γ and IFNα, TNF, IL1, and IL1. The responsiveness to IFNγ and IFNα was specific to CXCL10+ CCL19+ fibroblasts [8]. This might be of high relevance in the context of the SjS, given the pronounced role of type I and II interferon signatures detected in SjS, and their association with more severe disease [41, 42]. CXCL10+ CCL19+ fibroblasts functionally resembled the pdpn+ CD34− CCL19 expressing fibroblasts that have been described to be involved in the formation of TLS in salivary glands of patients with SjS [24].
The second shared cluster of fibroblasts that was identified to be expanded across inflamed tissues was characterized by the expression of secreted protein acidic and cysteine rich (SPARC) and COL3A1. SPARC+ COL3A1+ fibroblasts resembled a potentially endothelium-driven activated fibroblast state, characterized by the enrichment of pathways associated with extracellular matrix binding and remodeling. In addition, key developmental and morphogen signaling pathways were enriched, including hedgehog, transforming growth factor (TGF) β, WNT, bone morphogenic protein (BMP) and Notch signaling. By comparing these shared human fibroblast clusters to the temporal activation of fibroblast clusters in the mouse model of dextran sulfate sodium (DSS)-induced colitis, the expansion of SPARC+ COL3A1+ fibroblasts was identified as an early event in the inflammatory process, in which vascular remodeling preceded leukocyte infiltration [8].
A key process in gland development is the epithelial-mesenchymal interaction [43]. The stromal-derived extracellular matrix is essential for the growth, morphogenesis and differentiation of salivary gland tissues [44]. Extracellular matrix remodeling and fibrosis are pathological features found in minor salivary gland biopsies of patients with SjS, that are associated with salivary gland inflammation, reduced stimulated salivary flow but not with age [44, 45, 46]. Point mutations in people with hypohidrotic ectodermal dysplasia (HED) lead to a disturbed signaling between the salivary epithelium and mesenchymal fibroblasts, affecting their gland development. Salivary and sweat glands have the same embryonic origin and people with HED present with defects in salivary glands, sweat glands, teeth and hair [47].
Several studies have pointed out that the correlation of salivary flow with the degree of inflammation in salivary glands of patients with SjS is low [48, 49, 50, 51], suggesting that other mechanisms than inflammation underlie hyposalivation in SjS. Salivary gland epithelial cells of patients with SjS are more prone to anoikis, a detachment-induced apoptosis, after activation of Toll-like receptor 3 signaling [52]. In healthy salivary glands, salivary gland stem cells reside in ducts of salivary glands and differentiate into saliva secreting acinar cells to maintain homeostasis. In SjS, salivary gland stem cells are fewer in numbers and exhibit an aged phenotype, with a reduced capacity to self-renew and proliferate [53]. This suggests that saliva production in patients with SjS might not be restored solely be the use of anti-inflammatory drugs. In regenerative medicine approaches, the co-culturing of stem cells together with fibroblasts is essential for engineering secreting salivary epithelial cells [54, 55]. Hence, fibroblasts might also be involved in the disturbed regeneration of salivary gland epithelial cells in SjS and are likely to have functions beyond promoting inflammation.
Extra-glandular manifestations are found in 30–40% of patients with SjS, and can be divided into epithelial and extra-epithelial manifestations that can affect the central and peripheral nervous system, the lungs, lymph nodes, kidneys, joints, the skin and the muscles [2, 4]. A role of fibroblasts in extra-glandular manifestations has not been studied yet, maybe due to limited assess of available tissue samples from affected sites.
Articular manifestations, such as arthralgias and synovitis, are the most common extra-glandular manifestations and affect 30–60% of patients with SjS [2, 56]. Arthritis in patients with SjS is often classified as non-erosive [57]. However, recent more sensitive methods such as ultrasound and magnetic resonance imaging (MRI) have detected erosions in more than one third of SjS patients with joint pain and no previous diagnosis of arthritis [57, 58]. In patients with SjS, arthritis most frequently occurs in proximal interphalangeal (PIP) and metacarpophalangeal (MCP) joints and wrists [57], a pattern that is overlapping with the one found in hands of RA patients [59]. Synovial fibroblasts are the major stroma cells of the joint and play a pivotal role in the pathogenesis of rheumatoid arthritis by promoting the ongoing inflammation and cartilage degradation [60]. The existence of shared fibroblast clusters in salivary glands of SjS patients and synovial tissues of rheumatoid arthritis patients, suggests a role of fibroblasts also in articular manifestations of the SjS. However, this potential role of fibroblasts remains to be proven.
The Sjögren’s syndrome is a chronic inflammatory autoimmune disease with huge unmet needs for patients and clinicians. No therapies for the treatment of the SjS have been approved so far. The pathogenic processes in the exocrine glands have only partially unraveled. Whereas the contribution of salivary gland epithelial cells has been studied in detail, the functional role of fibroblasts in maintaining epithelial cell function, as well as their role in the regulation of the inflammatory process has only recently been recognized. The potential of targeting the fibroblast compartment in salivary glands of patients with SjS has been underscored by studies characterizing their role in the establishment of TLS as well as by scRNA-seq of minor salivary gland tissues. Together these studies pointed to an early, to a large extent lymphocyte-independent, role of fibroblasts in the pathogenesis of the SjS.
Integration of the scRNA-seq data sets across inflamed human tissues, including minor salivary gland tissues from patients with SjS, together with scRNA-seq data sets from mouse models, have suggested a two stage mechanism for fibroblast activation and fibroblast-mediated regulation of inflammation. In this model, the expansion of SPARC+ COL3A1+ vascular-associated fibroblasts initiates vascular remodeling and subsequent leukocyte infiltration and precedes the expansion of CXCL10+ CCL19+ immune-interacting fibroblasts.
CXCL10+ CCL19+ immune-interacting fibroblasts functionally resemble pdpn+ CD34− CCL19 expressing fibroblasts that are critically involved in TLS assembly. Formation of TLS is initiated after experimental salivary gland infection by IL13 and IL22 that prime immunofibroblast progenitors and induce the expansion of the fibroblast network, respectively. This supports the concept of fibroblast-targeting strategies to treat TLS-associated autoimmune diseases such as the SjS.
The author declares no conflict of interest.
The Sjögren’s Syndrome (SjS) is a systemic autoimmune disease, most commonly presenting between the fourth and six decades of life. It affects predominantly women, with an estimated female to male ratio of 9:1 [1]. With a prevalence of 0.3 to 1 per 1000 people [1], the SjS represents the second most common rheumatic autoimmune condition after rheumatoid arthritis (RA). The SjS can either occur as single disease, often termed as primary SjS, or is associated with other autoimmune diseases, such as RA, systemic lupus erythematosus (SLE), systemic sclerosis (SSc), or dermatomyositis [2]. Up to now, no disease modifying therapies for SjS have been approved and treatment is mainly symptomatic [3].
The hallmark of SjS is a hypofunction of exocrine glands, in particular salivary and lacrimal glands [3]. Dryness of mouth (xerostomia) and eyes (xerophthalmia), alongside fatigue and pain are the major symptoms affecting more than 80% of patients with SjS [2]. The majority of patients with SjS present with glandular symptoms, which are often present over many years before diagnosis [4]. Whilst often considered as “benign features”, these symptoms underpin great patient-reported disability. Other signs of systemic dryness, with scant information regarding the etiology and affecting patients’ quality of life, involve the skin, the nose, the throat, the trachea and the vagina [5].
A major classification criterion for SjS is the infiltration of salivary glands with lymphocytes (focus score ≥1, in minor labial salivary gland biopsy), a condition called sialadenitis. The second major classification criterion is the presence of anti-SSA/Ro auto-antibodies, which is mandatory in patients with a lack of sialadenitis [3]. In 30 to 40% of patients, systemic epithelial and extra-epithelial manifestations occur that can affect the joints, skin, lungs, kidneys and nervous system [2].
People with SjS have increased morbidity and mortality compared to the general population [4]. Although being a rare event, the risk of B-cell lymphomas is 15 to 20 times higher in patients with SjS as the general population and accounts for the leading cause with an impact on patients’s survival [2, 4]. The most common type of lymphomas in patients with SjS are mucosa-associated lymphoid tissue (MALT) lymphomas. Chronic activation of B cells at the primary sites affected by SjS, such as the salivary glands, was attributed to the development of lymphoma. Several risk factors have been defined for the development of lymphoma in patients with SjS; among them is the presence of ectopic germinal centers in tertiary lymphoid structures (TLS) [2].
The SjS develops in genetically predisposed individuals upon exposure to stress factors. Hormones as well as infectious agents, and in particular viruses, are assumed to play key roles in the pathogenesis of the SjS. Activated epithelial cells in salivary glands are the central cell type in the current concept underlying the pathogenesis. They are on the one hand drivers of the ongoing inflammation and on the other hand, due to the excess of apoptosis of epithelial cells in salivary glands, a source of auto-antigens for infiltrating lymphocytes [6]. Epithelial cells respond to and produce pro-inflammatory cytokines and chemokines and thus, promote inflammation. They produce MHC-II and co-stimulatory molecules, enabling them to directly interact with and activate T-cells. Furthermore, they produce B-cell activating factor (BAFF), inducing the activation and survival of B cells [7]. Many of these characteristics have been previously described for fibroblasts, e.g. in the synovium of rheumatoid arthritis patients, and analogies of synovial fibroblasts with salivary gland-derived fibroblasts have been recognized [7, 8]. However, the ability of salivary gland-derived fibroblasts to exert similar functions is only at the beginning to be characterized in detail.
TLS, or ectopic lymphoid organs (ELS), often develop at sites of inflammation in target tissues. Their formation has been associated with chronic inflammation, autoimmune disease, cancer, and transplant rejection [9]. TLS are sites of ectopic autoantibody production and expansion of potential autoreactive B cell clones [7, 10]. The formation of TLS in salivary glands is an established model for studying TLS formation in autoimmunity in general. The frequency of the presence of TLS varies among different autoimmune diseases, with a high frequency in autoimmune thyroiditis and low presence in systemic lupus erythematosus [10]. Approximately 30–40% of patients with SjS exhibit TLS in their salivary glands, the primary sites of the disease [11, 12]. A similar percentage of TLS is found in patients with rheumatoid arthritis, in which TLS are associated with a lympho-myeloid pathotype that represents a distinct disease entity as the diffuse myeloid and pauci-immune fibroid pathotpyes [13]. Hence, the presence and absence of TLS in salivary glands of patients with SjS might underlie different pathophysiological processes in different, not yet characterized, disease subsets. The formation of TLS is across autoimmune diseases associated with more severe disease and poor prognosis [7].
TLS often share several typical structural characteristics with secondary lymphoid tissues (lymph nodes, tonsils, spleen, Peyer’s patches, mucosa-associated lymphoid tissues), including highly organized lymphocytic aggregates, with T and B cell segregation, the development of high endothelial venules, and follicular dendritic cell networks. In contrast to secondary lymphoid tissues, the lymphocytic aggregates found in TLS can range from a simple aggregates to highly ordered structures with bona fide germinal centers that support the production of autoreactive plasma cells [9, 10]. TLS formation and secondary lymphoid tissue development follow numerous overlapping signaling pathways, however, the cellular sources of signaling molecules differ [10]. In contrast to secondary lymphoid structures whose development is initiated at the embryonic stage, TLS develop postnatally in response to inflammatory signals, where they provide a specialized pro-inflammatory environment that plays a key role in perpetuating disease progression in autoimmune conditions [7, 14]. Podoplanin (pdpn)-expressing fibroblastic reticular cells in secondary lymphoid organs and pdpn+ stromal fibroblasts in TLS provide signals and the scaffold structure that foster the interaction of T cells with dendritic cells, and hence drive innate and adaptive immune responses [15, 16].
The routine histopathological examination of minor salivary gland biopsies carries a substantial prognostic value regarding disease severity and outcome [17]. Higher inflammatory scores, and the presence of germinal center-like structures in particular, in salivary glands of patients with SjS were associated with more severe disease, illustrated by elevated titers of rheumatoid factor, anti-Ro/SSA and anti-Ro/SSB auto-antibodies, enhanced levels of local and systemic pro-inflammatory mediators and a reduced saliva secretion [11, 17, 18]. Germinal center-like structures have been identified in approximately 25% of patients with SjS [17, 19]. Their presence at time of diagnosis, or sole high lymphocytic scores, were shown to account as independent risk factors for the development of Non-Hodgkin’s lymphomas in patients with SjS [17, 19].
Given the pivotal role of TLS in SjS, the identification of factors and pathological mechanisms triggering and regulating their formation and those of germinal center-like structures is of high interest in order to identify potential targets for drug development.
Studying the chronology of TLS formation and associated cell types in animal models, together with complementary evaluation of human salivary gland specimens, provided new insights into pathomechanisms associcated with sialadenitis in SjS, and unraveled the analogy of TLS formation to the development of secondary lymphoid organs. A model that proved to be of particular value for studying salivary gland inflammation in SjS, and the formation of TLS in autoimmune processes in general, is the selective submandibular gland administration of a replication-defective adenovirus 5 (AdV5) through retrograde excretory duct cannulation in wild-type C57/Bl76 mice. These mice were shown to resemble several hallmarks of SjS, including lymphocytic infiltration of salivary glands, TLS formation, anti-nuclear autoantibody (ANA) formation, and reduction in salivary flow indicative of excretory gland dysfunction [20]. Cannulated mice developed SjS-like periductal lymphoid aggregates within two weeks after AdV5 delivery. Within three weeks, the inducible TLS acquired progressively hallmarks of functional germinal centers, with segregated B and T cell areas, high endothelial venules in T-cell rich areas, and follicular dendritic cell networks in up to 70% of the lymphocytic aggregates. Local expression of activation-induced cytidine deaminase (AID), the enzyme required for Ig somatic hypermutation and class-switch recombination, pointed to the functional activation of B cells in TLS [20].
During secondary lymphoid organ development in embryogenesis, mesenchymal precursor cell maturate into intercellular adhesion molecule-1 (ICAM-1)high, vascular cell adhesion molecule-1 (VCAM-1)high organizer cells, in a process that is dependent on lymphoid tissue inducer cells and lymphotoxin β receptor (LTβR) signaling. This leads to a sustained stromal cell production of interleukin 7 (IL7), C-X-C motif chemokine ligand 13 (CXCL13) and to a lesser extent C-C motif chemokine ligand 21 (CCL21) [21]. The subsequent migration of lymphocytes into the anlagen is responsible for the full differentiation of fibroblastic reticular cells within distinct areas of the secondary lymphoid organ [22, 23, 24].
In TLS of salivary glands of patients with SjS, a network of pdpn+ and fibroblast activating protein (FAP)+ fibroblasts were identified that support the formation of TLS [24]. The same markers have been previously identified on fibroblast reticular cells in lymph nodes [15, 25], which provide, by the secretion of CCL19 and CCL21, the key factors for the migration and retention of T cells in secondary lymphoid organs [16, 25, 26]. Among the pdpn+ fibroblasts in TLS, two functionally distinct populations have been identified in human salivary glands that provide the signals for lymphocyte survival and organization within TLS, respectively (Figure 1) [24]. The first cluster of pdpn+ fibroblasts, was characterized by high expression of FAP, ICAM-1, VCAM-1 and CD34 [24]. Pdpn+CD34+ fibroblasts in TLS produced IL7 and BAFF, underlying their function in supporting lymphocyte survival and homeostasis [24]. The second cluster of pdpn+ CD34− fibroblasts was characterized by high expression levels of CXCL13, CCL19 and CCL21. Expansion of a similar network of pdpn+ fibroblasts has been observed upon salivary gland infection of mice with Ad5V. Of note, this expansion occurred before lymphocyte infiltration, suggesting a pivotal, early role for fibroblasts in SjS. Fibroblasts in TLS of cannulated mouse salivary glands expressed CXCL13, CCL19, BAFF, IL7 and LTβR, with an increased expression of lymphoid chemokines specifically in the ICAM-1+ VCAM-1+ subpopulation of pdpn+ fibroblasts [24].
Stromal fibroblast populations contribute to the formation of tertiary lymphoid structures (TLS). Created by
Pdnp+ fibroblasts in human TLS expressed receptors for and responded to stimulation with IL13, IL4, IL22, TNF, and LTα1β2 [24, 27]. Elevated levels of IL13 have been detected in serum of patients with SjS, where they correlated with titers of anti-Ro/SSA auto-antibodies [28], and in Id3 knockout mice, a model for T cell mediated SjS [29, 30]. Also, high levels of IL22 in sera of patients with SjS have been shown to correlate with clinically relevant parameters, such as reduced salivary flow, hypergammaglobulinemia, as well as serum titers of rheumatoid factor, anti-Ro/SSA and anti-Ro/SSB auto-antibodies [31]. Together these data suggested a potential link between increased levels of IL13 and IL22 with the auto-antibody production in SjS.
IL13 stimulation of cultured human salivary gland fibroblasts, in synergy with TNF and LTα1β2, induced the expression of VCAM-1, ICAM-1 and pdpn
Chemokines | Producing cells | Receptor | Function on target cells |
---|---|---|---|
IL13 | Innate lymphoid cells Fibroblasts Epithelial cells | IL4R | Fibroblast priming, induces expression of pdpn, VCAM1-, ICAM-1 |
IL22 | T cells Innate lymphoid cells Natural killer cells | IL22Rα | Proliferation of fibroblasts, expansion of the fibroblast network |
LTα1β2 | Lymphoid tissue inducer cells | LTβR | Final differentiation of fibroblasts in lymphoid structures |
CXCL19 | Fibroblasts | CXCR7 | T cells and dendritic cells chemotaxis |
CXCL21 | Fibroblasts | CXCR7 | Natural killer cells, dendritic cells, T cells chemotaxis |
CXCL12 | Epithelial cells | CXCR4 | Lymphocyte retention inside the lymphoid structures |
CXCL13 | Fibroblasts | CXCR5 | B cells, T cells chemotaxis |
BAFF | Fibroblasts Epithelial cells | BAFFR | B cell activation and survival |
Chemokines involved in the formation of tertiary lymphoid structures in salivary glands of patients with Sjögren’s syndrome.
In contrast to IL13, IL-22 stimulation of cultured human salivary gland fibroblasts induced proliferation but did not induce the expression of pdpn, ICAM-1 and VCAM-1
The asset of single cell RNA sequencing (scRNA-seq) technologies has enabled the identification of different fibroblasts populations associated with chronic inflammation across different diseases and anatomical sites [32, 33, 34, 35, 36, 37, 38, 39]. Given the pro-inflammatory role of fibroblasts and their ability to carry a certain degree of inflammatory memory [40], interfering with fibroblasts has become a new potential therapeutic strategy in chronic inflammatory diseases.
In a recent study, scRNA-seq data sets derived from four different inflammatory diseases, namely rheumatoid arthritis, interstitial lung disease, ulcerative colitis and the SjS were integrated, with the aim to provide a stromal cell atlas to identify pathogenic fibroblast subsets shared across diseases [8]. For each inflamed tissue, non-inflamed control tissues were included in the analysis. With respect to the SjS, biopsies derived from minor salivary gland biopsies of patients with SjS were compared to those from patients with sicca symptoms, characterized as non-autoimmune dryness, and who did not fulfill the classification criteria for SjS. Given the lack of a universal fibroblast marker, fibroblasts in this study were characterized by the expression of collagen (COL) 1A1 and defined as non-epithelial, non-immune, non-endothelial, and non-mural cells based on the respective specific markers for those cell types. By pooling the scRNA-seq data sets from salivary glands, lungs, the synovium and the gut, 14 clusters of fibroblasts have been identified, each of them consisting of genes that were shared across different tissues in addition to tissue-specific genes (Table 2). Among these clusters, two of them expanded across tissues in inflamed versus respective non-inflamed controls.
Cluster | Shared markers | Other markers, localization, and characteristics | Shared function |
---|---|---|---|
0 | n.d. | SG: n.d. Lung: n.d. Synovium: PRG4+ lining SF Gut: WNT5B+ villus-associated GF | n.d. |
1 | n.d. | SG: n.d. Lung: n.d. Synovium: THY1+ sublining Gut: WNT2B+ crypt-associated GF | n.d. |
2 | n.d. | SG: n.d. Lung: n.d. Synovium: THY1+ sublining Gut: WNT2B+ crypt-associated GF | n.d. |
3 | n.d. | SG: n.d. Lung: n.d. Synovium: THY1+ sublining Gut: WNT2B+ crypt-associated GF | n.d. |
4 | SPARC+ COL3A1+ | SG: CD34+ Lung: myofibroblasts Synovium: split between DKK3+ and THY1+ sublining SF, CD90hi NOTCH3-activated, perivascular Gut: split between inflammatory and myofibroblasts | crosstalk with endothelial cells |
5 | FBLN1+ | SG: n.d. Lung: HAS1+PLIN2+ Synovium: CD34+THY1+ Gut: RSPO3+ | n.d. |
6 | n.d. | SG: n.d. Lung: n.d. Synovium: PRG4+ lining SF Gut: WNT5B+ villus-associated GF | n.d. |
7 | n.d. | SG: n.d. Lung: n.d. Synovium: n.d. Gut: n.d. | n.d. |
8 | PTGS2+ SEMA4A+ | SG: n.d. Lung: n.d. Synovium: THY1+ sublining Gut: WNT2B+ crypt-associated GF | n.d. |
9 | CD34+ MFAP5+ | SG: n.d. Lung: HAS1+PLIN2+ Synovium: CD34+THY1+ Gut: RSPO3+ | n.d. |
10 | SG: n.d. Lung: n.d. Synovium: PRG4+ lining SF Gut: WNT5B+ villus-associated GF | n.d. | |
11 | CXCL10+ CCL19+ | SG: CCL19+PDPN+ Lung: n.d. Synovium: THY1+ sublining, HLA-DRAhi SF Gut: RSPO3+, WNT2B+Foshi | interaction with immune cells |
12 | n.d. | SG: n.d. Lung: n.d. Synovium: PRG4+ lining SF Gut: WNT5B+ villus-associated GF | n.d. |
13 | MYH11+ | SG: n.d. Lung: myofibroblasts Synovium: n.d. Gut: myofibroblasts | n.d. |
Shared fibroblasts clusters between salivary gland (SG), lung, synovium, and gut, as defined by Korsynsky et al. [8].
GF, gut fibroblast; n.d., not defined; SF, synovial fibroblast.
The first of these shared clusters is characterized by the marker genes CXCL10 and CCL19. Based on a gene set enrichment and pathway analysis, CXCL10+ CCL19+ fibroblasts were identified as a subset that potentially directly interacts with immune cells. Among the enriched pathways were “lymphocyte chemotaxis”, “antigen presentation”, and “positive regulation of T cell proliferation”. Furthermore, scRNA-seq data suggested that CXCL10+ CCL19+ fibroblasts respond to key pro-inflammatory cytokines, including interferon (IFN) γ and IFNα, TNF, IL1, and IL1. The responsiveness to IFNγ and IFNα was specific to CXCL10+ CCL19+ fibroblasts [8]. This might be of high relevance in the context of the SjS, given the pronounced role of type I and II interferon signatures detected in SjS, and their association with more severe disease [41, 42]. CXCL10+ CCL19+ fibroblasts functionally resembled the pdpn+ CD34− CCL19 expressing fibroblasts that have been described to be involved in the formation of TLS in salivary glands of patients with SjS [24].
The second shared cluster of fibroblasts that was identified to be expanded across inflamed tissues was characterized by the expression of secreted protein acidic and cysteine rich (SPARC) and COL3A1. SPARC+ COL3A1+ fibroblasts resembled a potentially endothelium-driven activated fibroblast state, characterized by the enrichment of pathways associated with extracellular matrix binding and remodeling. In addition, key developmental and morphogen signaling pathways were enriched, including hedgehog, transforming growth factor (TGF) β, WNT, bone morphogenic protein (BMP) and Notch signaling. By comparing these shared human fibroblast clusters to the temporal activation of fibroblast clusters in the mouse model of dextran sulfate sodium (DSS)-induced colitis, the expansion of SPARC+ COL3A1+ fibroblasts was identified as an early event in the inflammatory process, in which vascular remodeling preceded leukocyte infiltration [8].
A key process in gland development is the epithelial-mesenchymal interaction [43]. The stromal-derived extracellular matrix is essential for the growth, morphogenesis and differentiation of salivary gland tissues [44]. Extracellular matrix remodeling and fibrosis are pathological features found in minor salivary gland biopsies of patients with SjS, that are associated with salivary gland inflammation, reduced stimulated salivary flow but not with age [44, 45, 46]. Point mutations in people with hypohidrotic ectodermal dysplasia (HED) lead to a disturbed signaling between the salivary epithelium and mesenchymal fibroblasts, affecting their gland development. Salivary and sweat glands have the same embryonic origin and people with HED present with defects in salivary glands, sweat glands, teeth and hair [47].
Several studies have pointed out that the correlation of salivary flow with the degree of inflammation in salivary glands of patients with SjS is low [48, 49, 50, 51], suggesting that other mechanisms than inflammation underlie hyposalivation in SjS. Salivary gland epithelial cells of patients with SjS are more prone to anoikis, a detachment-induced apoptosis, after activation of Toll-like receptor 3 signaling [52]. In healthy salivary glands, salivary gland stem cells reside in ducts of salivary glands and differentiate into saliva secreting acinar cells to maintain homeostasis. In SjS, salivary gland stem cells are fewer in numbers and exhibit an aged phenotype, with a reduced capacity to self-renew and proliferate [53]. This suggests that saliva production in patients with SjS might not be restored solely be the use of anti-inflammatory drugs. In regenerative medicine approaches, the co-culturing of stem cells together with fibroblasts is essential for engineering secreting salivary epithelial cells [54, 55]. Hence, fibroblasts might also be involved in the disturbed regeneration of salivary gland epithelial cells in SjS and are likely to have functions beyond promoting inflammation.
Extra-glandular manifestations are found in 30–40% of patients with SjS, and can be divided into epithelial and extra-epithelial manifestations that can affect the central and peripheral nervous system, the lungs, lymph nodes, kidneys, joints, the skin and the muscles [2, 4]. A role of fibroblasts in extra-glandular manifestations has not been studied yet, maybe due to limited assess of available tissue samples from affected sites.
Articular manifestations, such as arthralgias and synovitis, are the most common extra-glandular manifestations and affect 30–60% of patients with SjS [2, 56]. Arthritis in patients with SjS is often classified as non-erosive [57]. However, recent more sensitive methods such as ultrasound and magnetic resonance imaging (MRI) have detected erosions in more than one third of SjS patients with joint pain and no previous diagnosis of arthritis [57, 58]. In patients with SjS, arthritis most frequently occurs in proximal interphalangeal (PIP) and metacarpophalangeal (MCP) joints and wrists [57], a pattern that is overlapping with the one found in hands of RA patients [59]. Synovial fibroblasts are the major stroma cells of the joint and play a pivotal role in the pathogenesis of rheumatoid arthritis by promoting the ongoing inflammation and cartilage degradation [60]. The existence of shared fibroblast clusters in salivary glands of SjS patients and synovial tissues of rheumatoid arthritis patients, suggests a role of fibroblasts also in articular manifestations of the SjS. However, this potential role of fibroblasts remains to be proven.
The Sjögren’s syndrome is a chronic inflammatory autoimmune disease with huge unmet needs for patients and clinicians. No therapies for the treatment of the SjS have been approved so far. The pathogenic processes in the exocrine glands have only partially unraveled. Whereas the contribution of salivary gland epithelial cells has been studied in detail, the functional role of fibroblasts in maintaining epithelial cell function, as well as their role in the regulation of the inflammatory process has only recently been recognized. The potential of targeting the fibroblast compartment in salivary glands of patients with SjS has been underscored by studies characterizing their role in the establishment of TLS as well as by scRNA-seq of minor salivary gland tissues. Together these studies pointed to an early, to a large extent lymphocyte-independent, role of fibroblasts in the pathogenesis of the SjS.
Integration of the scRNA-seq data sets across inflamed human tissues, including minor salivary gland tissues from patients with SjS, together with scRNA-seq data sets from mouse models, have suggested a two stage mechanism for fibroblast activation and fibroblast-mediated regulation of inflammation. In this model, the expansion of SPARC+ COL3A1+ vascular-associated fibroblasts initiates vascular remodeling and subsequent leukocyte infiltration and precedes the expansion of CXCL10+ CCL19+ immune-interacting fibroblasts.
CXCL10+ CCL19+ immune-interacting fibroblasts functionally resemble pdpn+ CD34− CCL19 expressing fibroblasts that are critically involved in TLS assembly. Formation of TLS is initiated after experimental salivary gland infection by IL13 and IL22 that prime immunofibroblast progenitors and induce the expansion of the fibroblast network, respectively. This supports the concept of fibroblast-targeting strategies to treat TLS-associated autoimmune diseases such as the SjS.
The author declares no conflict of interest.
The Internet has irrevocably changed the dynamics of scholarly communication and publishing. Consequently, we find it necessary to indicate, unambiguously, our definition of what we consider to be a published scientific work.
",metaTitle:"Prior Publication Policy",metaDescription:"Prior Publication Policy",metaKeywords:null,canonicalURL:"/page/prior-publication-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"A significant number of working papers, early drafts, and similar work in progress are openly shared online between members of the scientific community. It has become common to announce one’s own research on a personal website or a blog to gather comments and suggestions from other researchers. Such works and online postings are, indeed, published in the sense that they are made publicly available. However, this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\nThe significance of Peer Review cannot be overstated when it comes to defining, in our terms, what constitutes a published scientific work. Peer Review is widely considered to be the cornerstone of modern publishing processes and the key value-adding contribution to a scholarly manuscript that a publisher can make.
\\n\\nOther than the issue of originality, research misconduct is another major issue that all publishers have to address. IntechOpen’s Retraction & Correction Policy and various publication ethics guidelines identify both redundant publication and (self)plagiarism to fall within the definition of research misconduct, thus constituting grounds for rejection or the issue of a Retraction if the work has already been published.
\\n\\nIn order to facilitate the tracking of a manuscript’s publishing history and its development from its earliest draft to the manuscript submitted, we encourage Authors to disclose any instances of a manuscript’s prior publication, whether it be through a conference presentation, a newspaper article, a working paper publicly available in a repository or a blog post.
\\n\\nA note to the Academic Editor containing detailed information about a submitted manuscript’s previous public availability is the preferred means of reporting prior publication. This helps us determine if there are any earlier versions of a manuscript that should be disclosed to our readers or if any of those earlier versions should be cited and listed in a manuscript’s references.
\\n\\nSome basic information about the editorial treatment of different varieties of prior publication is laid out below:
\\n\\n1. CONFERENCE PAPERS & PRESENTATIONS
\\n\\nGiven that conference papers and presentations generally pass through some sort of peer or editorial review, we consider them to be published in the accepted scholarly sense, particularly if they are published as a part of conference proceedings.
\\n\\nAll submitted manuscripts originating from a previously published conference paper must contain at least 50% of new original content to be accepted for review and considered for publication.
\\n\\nAuthors are required to report any links their manuscript might have with their earlier conference papers and presentations in a note to the Academic Editor, as well as in the manuscript itself. Additionally, Authors should obtain any necessary permissions from the publisher of their conference paper if copyright transfer occurred during the publishing process. Failure to do so may prevent Us from publishing an otherwise worthy work.
\\n\\n2. NEWSPAPER & MAGAZINE ARTICLES
\\n\\nNewspaper and magazine articles usually do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense. Articles appearing in newspapers and magazines rarely possess the depth and structure characteristic of scholarly articles.
\\n\\nSubmitted manuscripts stemming from a previous newspaper or magazine article will be accepted for review and considered for publication. However, Authors are strongly advised to report any such publication in an accompanying note to the External Editor.
\\n\\nAs with the conference papers and presentations, Authors should obtain any necessary permissions from the newspaper or magazine that published the work, and indicate that they have done so in a note to the External Editor.
\\n\\n3. GREY LITERATURE
\\n\\nWhite papers, working papers, technical reports and all other forms of papers which fall within the scope of the ‘Luxembourg definition’ of grey literature do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense.
\\n\\nAlthough such papers are regularly made publicly available via personal websites and institutional repositories, their general purpose is to gather comments and feedback from Authors’ colleagues in order to further improve a manuscript intended for future publication.
\\n\\nWhen submitting their work, Authors are required to disclose the existence of any publicly available earlier drafts in a note to the Academic Editor. In cases where earlier drafts of the submitted version of the manuscript are publicly available, any overlap between the versions will generally not be considered an instance of self-plagiarism.
\\n\\n4. SOCIAL MEDIA, BLOG & MESSAGE BOARD POSTINGS
\\n\\nWe feel that social media, blogs and message boards are generally used with the same intention as grey literature, to formulate ideas for a manuscript and gather early feedback from like-minded researchers in order to improve a particular piece of work before submitting it for publication. Therefore, we do not consider such internet postings to be publication in the scholarly sense.
\\n\\nNevertheless, Authors are encouraged to disclose the existence of any internet postings in which they outline and describe their research or posted passages of their manuscripts in a note to the Academic Editor. Please note that we will not strictly enforce this request in the same way that we would instructions we consider to be part of our conditions of acceptance for publication. We understand that it may be difficult to keep track of all one’s internet postings in which the researcher´s current work might be mentioned.
\\n\\nIn cases where there is any overlap between the Author´s submitted manuscript and related internet postings, we will generally not consider it to be an instance of self-plagiarism. This also holds true for any co-Author as well.
\\n\\nFor more information on this policy please contact permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-03-20
\\n"}]'},components:[{type:"htmlEditorComponent",content:'A significant number of working papers, early drafts, and similar work in progress are openly shared online between members of the scientific community. It has become common to announce one’s own research on a personal website or a blog to gather comments and suggestions from other researchers. Such works and online postings are, indeed, published in the sense that they are made publicly available. However, this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\nThe significance of Peer Review cannot be overstated when it comes to defining, in our terms, what constitutes a published scientific work. Peer Review is widely considered to be the cornerstone of modern publishing processes and the key value-adding contribution to a scholarly manuscript that a publisher can make.
\n\nOther than the issue of originality, research misconduct is another major issue that all publishers have to address. IntechOpen’s Retraction & Correction Policy and various publication ethics guidelines identify both redundant publication and (self)plagiarism to fall within the definition of research misconduct, thus constituting grounds for rejection or the issue of a Retraction if the work has already been published.
\n\nIn order to facilitate the tracking of a manuscript’s publishing history and its development from its earliest draft to the manuscript submitted, we encourage Authors to disclose any instances of a manuscript’s prior publication, whether it be through a conference presentation, a newspaper article, a working paper publicly available in a repository or a blog post.
\n\nA note to the Academic Editor containing detailed information about a submitted manuscript’s previous public availability is the preferred means of reporting prior publication. This helps us determine if there are any earlier versions of a manuscript that should be disclosed to our readers or if any of those earlier versions should be cited and listed in a manuscript’s references.
\n\nSome basic information about the editorial treatment of different varieties of prior publication is laid out below:
\n\n1. CONFERENCE PAPERS & PRESENTATIONS
\n\nGiven that conference papers and presentations generally pass through some sort of peer or editorial review, we consider them to be published in the accepted scholarly sense, particularly if they are published as a part of conference proceedings.
\n\nAll submitted manuscripts originating from a previously published conference paper must contain at least 50% of new original content to be accepted for review and considered for publication.
\n\nAuthors are required to report any links their manuscript might have with their earlier conference papers and presentations in a note to the Academic Editor, as well as in the manuscript itself. Additionally, Authors should obtain any necessary permissions from the publisher of their conference paper if copyright transfer occurred during the publishing process. Failure to do so may prevent Us from publishing an otherwise worthy work.
\n\n2. NEWSPAPER & MAGAZINE ARTICLES
\n\nNewspaper and magazine articles usually do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense. Articles appearing in newspapers and magazines rarely possess the depth and structure characteristic of scholarly articles.
\n\nSubmitted manuscripts stemming from a previous newspaper or magazine article will be accepted for review and considered for publication. However, Authors are strongly advised to report any such publication in an accompanying note to the External Editor.
\n\nAs with the conference papers and presentations, Authors should obtain any necessary permissions from the newspaper or magazine that published the work, and indicate that they have done so in a note to the External Editor.
\n\n3. GREY LITERATURE
\n\nWhite papers, working papers, technical reports and all other forms of papers which fall within the scope of the ‘Luxembourg definition’ of grey literature do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense.
\n\nAlthough such papers are regularly made publicly available via personal websites and institutional repositories, their general purpose is to gather comments and feedback from Authors’ colleagues in order to further improve a manuscript intended for future publication.
\n\nWhen submitting their work, Authors are required to disclose the existence of any publicly available earlier drafts in a note to the Academic Editor. In cases where earlier drafts of the submitted version of the manuscript are publicly available, any overlap between the versions will generally not be considered an instance of self-plagiarism.
\n\n4. SOCIAL MEDIA, BLOG & MESSAGE BOARD POSTINGS
\n\nWe feel that social media, blogs and message boards are generally used with the same intention as grey literature, to formulate ideas for a manuscript and gather early feedback from like-minded researchers in order to improve a particular piece of work before submitting it for publication. Therefore, we do not consider such internet postings to be publication in the scholarly sense.
\n\nNevertheless, Authors are encouraged to disclose the existence of any internet postings in which they outline and describe their research or posted passages of their manuscripts in a note to the Academic Editor. Please note that we will not strictly enforce this request in the same way that we would instructions we consider to be part of our conditions of acceptance for publication. We understand that it may be difficult to keep track of all one’s internet postings in which the researcher´s current work might be mentioned.
\n\nIn cases where there is any overlap between the Author´s submitted manuscript and related internet postings, we will generally not consider it to be an instance of self-plagiarism. This also holds true for any co-Author as well.
\n\nFor more information on this policy please contact permissions@intechopen.com.
\n\nPolicy last updated: 2017-03-20
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"12"},books:[{type:"book",id:"11650",title:"Aquifers",subtitle:null,isOpenForSubmission:!0,hash:"2a7acb5c7fbf3f244aefa79513407b5e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12130",title:"Sustainable Built Environment",subtitle:null,isOpenForSubmission:!0,hash:"ed1dbae71b967e06efb049208f0c1068",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12130.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12131",title:"Climate Change and Fires",subtitle:null,isOpenForSubmission:!0,hash:"ea0858f07a3e87aaf9e5eaa75b4b44bd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12131.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12180",title:"Wetlands",subtitle:null,isOpenForSubmission:!0,hash:"8957c5c2baaed32223f911a6d4aa5a03",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12180.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12221",title:"Air Pollution",subtitle:null,isOpenForSubmission:!0,hash:"439a018ee0c4960560cb798601f2a372",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12221.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12222",title:"Microplastics",subtitle:null,isOpenForSubmission:!0,hash:"b9e8b19ba1ae8e03753638b27ff1efdc",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12224",title:"Mangrove Ecosystem",subtitle:null,isOpenForSubmission:!0,hash:"de7cd5453d6177a68cfd1c3bcc073bc7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12224.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:46},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:14},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:107},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:7},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"539",title:"Secure Computing",slug:"secure-computing",parent:{id:"88",title:"Communications and Security",slug:"communications-and-security"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:34,numberOfWosCitations:13,numberOfCrossrefCitations:34,numberOfDimensionsCitations:46,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"539",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9234",title:"Computer Security Threats",subtitle:null,isOpenForSubmission:!1,hash:"23d6de178880e547c39ec4e503777dcd",slug:"computer-security-threats",bookSignature:"Ciza Thomas, Paula Fraga-Lamas and Tiago M. Fernández-Caramés",coverURL:"https://cdn.intechopen.com/books/images_new/9234.jpg",editedByType:"Edited by",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1778",title:"Cryptography and Security in Computing",subtitle:null,isOpenForSubmission:!1,hash:"62c15d873f53e3d996a21ab0821688f3",slug:"cryptography-and-security-in-computing",bookSignature:"Jaydip Sen",coverURL:"https://cdn.intechopen.com/books/images_new/1778.jpg",editedByType:"Edited by",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"67390",doi:"10.5772/intechopen.86530",title:"Deploying Blockchain Technology in the Supply Chain",slug:"deploying-blockchain-technology-in-the-supply-chain",totalDownloads:1576,totalCrossrefCites:10,totalDimensionsCites:15,abstract:"In the rapidly evolving environment of the international supply chain, the traditional network of manufacturers and suppliers has grown into a vast ecosystem made of various products that move through multiple parties and require cooperation among stakeholders. Additionally, the demand for improved product visibility and source-to-store traceability has never been higher. However, traditional data sharing procedures in today’s supply chain are inefficient, costly, and unadaptable as compared to new and innovative technology. Blockchain technology has shown promising results for improving supply chain networks in recent applications and has already impacted our society and lifestyle by reshaping many business and industry processes. In an effort to understand the integration of blockchain technology in the supply chain, this paper systematically summarizes its current status, key characteristics, potential challenges, and pilot applications.",book:{id:"9234",slug:"computer-security-threats",title:"Computer Security Threats",fullTitle:"Computer Security Threats"},signatures:"Jian Zhang",authors:[{id:"292048",title:"Dr.",name:"Jian",middleName:null,surname:"Zhang",slug:"jian-zhang",fullName:"Jian Zhang"}]},{id:"69371",doi:"10.5772/intechopen.88694",title:"Blockchain: From Industry 4.0 to the Machine Economy",slug:"blockchain-from-industry-4-0-to-the-machine-economy",totalDownloads:830,totalCrossrefCites:6,totalDimensionsCites:6,abstract:"The extreme automation of our factories is necessary in order to face the Fourth Industrial Revolution. This new industrial paradigm will force our industries to manufacture much shorter and customized series at increasingly competitive prices, even tackling the manufacture of thousands of different configurations of a single base product. In order to achieve this, our production processes must have a flexibility in their configuration that has never been imagined before. This flexibility and ability to adapt automatically to demand are the essence of the Fourth Industrial Revolution and are part of the Western strategy to recover an industrial sector increasingly threatened by the Eastern production of large series at really competitive prices. Based on our participation in more than a dozen proofs of concept in the automotive, aeronautics, agri-food, or energy sectors, we describe the scenarios in which blockchain technology brings the greatest benefits to Industry 4.0. After finishing different experimentations, we carried out an in-depth analysis of the true added value of blockchain in the industry and contrasted our conclusions through interviews with more than 20 people in charge of innovation from different industries. As a result, we have obtained the principal four values of blockchain technology applied to Industry 4.0.",book:{id:"9234",slug:"computer-security-threats",title:"Computer Security Threats",fullTitle:"Computer Security Threats"},signatures:"Oscar Lage",authors:[{id:"303438",title:"Mr.",name:"Oscar",middleName:null,surname:"Lage",slug:"oscar-lage",fullName:"Oscar Lage"}]},{id:"70087",doi:"10.5772/intechopen.90061",title:"Blockchain Applications in Cybersecurity",slug:"blockchain-applications-in-cybersecurity",totalDownloads:1072,totalCrossrefCites:6,totalDimensionsCites:6,abstract:"Blockchain has been widely known thanks to Bitcoin and the cryptocurrencies. In this chapter, we analyze different aspects that relate to the application of blockchain with techniques commonly used in the field of cybersecurity. Beginning by introducing the use of blockchain technology as a secure infrastructure, the document delves into how blockchain can be useful to achieve several security requirements, common to most applications. The document has been focused on some specific cybersecurity disciplines to maintain simplicity: backup and recovery, threat intelligence and content delivery networks. As illustrated, some projects and initiatives are in the process of joining these two fields to provide solutions to existing problems.",book:{id:"9234",slug:"computer-security-threats",title:"Computer Security Threats",fullTitle:"Computer Security Threats"},signatures:"Oscar Lage, Santiago de Diego, Borja Urkizu, Eneko Gómez and Iván Gutiérrez",authors:[{id:"303438",title:"Mr.",name:"Oscar",middleName:null,surname:"Lage",slug:"oscar-lage",fullName:"Oscar Lage"},{id:"315145",title:"Dr.",name:"Santiago",middleName:null,surname:"de Diego",slug:"santiago-de-diego",fullName:"Santiago de Diego"},{id:"315146",title:"Dr.",name:"Borja",middleName:null,surname:"Urkizu",slug:"borja-urkizu",fullName:"Borja Urkizu"},{id:"315147",title:"Dr.",name:"Eneko",middleName:null,surname:"Gomez",slug:"eneko-gomez",fullName:"Eneko Gomez"},{id:"315148",title:"Dr.",name:"Iván",middleName:null,surname:"Gutierrez",slug:"ivan-gutierrez",fullName:"Iván Gutierrez"}]},{id:"72069",doi:"10.5772/intechopen.92371",title:"Leveraging Blockchain for Sustainability and Open Innovation: A Cyber-Resilient Approach toward EU Green Deal and UN Sustainable Development Goals",slug:"leveraging-blockchain-for-sustainability-and-open-innovation-a-cyber-resilient-approach-toward-eu-gr",totalDownloads:1139,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"In 2015, the United Nations (UN) member states identified 17 Sustainable Development Goals (SDGs) to be fulfilled by 2030. SDGs are an urgent global call for action to provide a blueprint for shared prosperity in a sustainable world. At a European level, in December 2019, the European Green Deal was presented, a roadmap to implement the UN 2030 agenda with a commitment to a growth strategy that will turn environmental challenges into opportunities across all policy areas. To achieve these SDGs, blockchain is one of the key enabling technologies that can help to create sustainable and secure solutions, since it is able to deliver accountability, transparency, traceability, and cyber-resilience, as well as to provide a higher operational efficiency in global partnerships. This chapter overviews the potential of blockchain to face sustainability challenges by describing several relevant applications. Finally, different open challenges and recommendations are enumerated with the aim of guiding all the stakeholders committed to the development of cyber-resilient and high-impact sustainable solutions.",book:{id:"9234",slug:"computer-security-threats",title:"Computer Security Threats",fullTitle:"Computer Security Threats"},signatures:"Paula Fraga-Lamas and Tiago M. Fernández-Caramés",authors:[{id:"186818",title:"Dr.",name:"Tiago M.",middleName:null,surname:"Fernández-Caramés",slug:"tiago-m.-fernandez-carames",fullName:"Tiago M. Fernández-Caramés"},{id:"193724",title:"Dr.",name:"Paula",middleName:null,surname:"Fraga-Lamas",slug:"paula-fraga-lamas",fullName:"Paula Fraga-Lamas"}]},{id:"29702",doi:"10.5772/35326",title:"Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields",slug:"construction-of-orthogonal-arrays-of-index-unity-using-logarithm-tables-for-galois-fields",totalDownloads:3834,totalCrossrefCites:2,totalDimensionsCites:4,abstract:null,book:{id:"1778",slug:"cryptography-and-security-in-computing",title:"Cryptography and Security in Computing",fullTitle:"Cryptography and Security in Computing"},signatures:"Jose Torres-Jimenez, Himer Avila-George, Nelson Rangel-Valdez and Loreto Gonzalez-Hernandez",authors:[{id:"103930",title:"Dr.",name:"Nelson",middleName:null,surname:"Rangel-Valdez",slug:"nelson-rangel-valdez",fullName:"Nelson Rangel-Valdez"},{id:"106782",title:"Dr.",name:"Himer",middleName:null,surname:"Avila-George",slug:"himer-avila-george",fullName:"Himer Avila-George"},{id:"138115",title:"Dr.",name:"Jose",middleName:null,surname:"Torres-Jimenez",slug:"jose-torres-jimenez",fullName:"Jose Torres-Jimenez"},{id:"138117",title:"Dr.",name:"Loreto",middleName:null,surname:"Gonzalez-Hernandez",slug:"loreto-gonzalez-hernandez",fullName:"Loreto Gonzalez-Hernandez"}]}],mostDownloadedChaptersLast30Days:[{id:"72730",title:"Introductory Chapter: Computer Security Threats",slug:"introductory-chapter-computer-security-threats",totalDownloads:964,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"9234",slug:"computer-security-threats",title:"Computer Security Threats",fullTitle:"Computer Security Threats"},signatures:"Ciza Thomas",authors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}]},{id:"29704",title:"Division and Inversion Over Finite Fields",slug:"division-and-inversion-over-finite-fields",totalDownloads:4774,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1778",slug:"cryptography-and-security-in-computing",title:"Cryptography and Security in Computing",fullTitle:"Cryptography and Security in Computing"},signatures:"Abdulah Abdulah Zadeh",authors:[{id:"102795",title:"Dr.",name:"Abdulah",middleName:null,surname:"Abdulah Zadeh",slug:"abdulah-abdulah-zadeh",fullName:"Abdulah Abdulah Zadeh"}]},{id:"72069",title:"Leveraging Blockchain for Sustainability and Open Innovation: A Cyber-Resilient Approach toward EU Green Deal and UN Sustainable Development Goals",slug:"leveraging-blockchain-for-sustainability-and-open-innovation-a-cyber-resilient-approach-toward-eu-gr",totalDownloads:1142,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"In 2015, the United Nations (UN) member states identified 17 Sustainable Development Goals (SDGs) to be fulfilled by 2030. SDGs are an urgent global call for action to provide a blueprint for shared prosperity in a sustainable world. At a European level, in December 2019, the European Green Deal was presented, a roadmap to implement the UN 2030 agenda with a commitment to a growth strategy that will turn environmental challenges into opportunities across all policy areas. To achieve these SDGs, blockchain is one of the key enabling technologies that can help to create sustainable and secure solutions, since it is able to deliver accountability, transparency, traceability, and cyber-resilience, as well as to provide a higher operational efficiency in global partnerships. This chapter overviews the potential of blockchain to face sustainability challenges by describing several relevant applications. Finally, different open challenges and recommendations are enumerated with the aim of guiding all the stakeholders committed to the development of cyber-resilient and high-impact sustainable solutions.",book:{id:"9234",slug:"computer-security-threats",title:"Computer Security Threats",fullTitle:"Computer Security Threats"},signatures:"Paula Fraga-Lamas and Tiago M. Fernández-Caramés",authors:[{id:"186818",title:"Dr.",name:"Tiago M.",middleName:null,surname:"Fernández-Caramés",slug:"tiago-m.-fernandez-carames",fullName:"Tiago M. Fernández-Caramés"},{id:"193724",title:"Dr.",name:"Paula",middleName:null,surname:"Fraga-Lamas",slug:"paula-fraga-lamas",fullName:"Paula Fraga-Lamas"}]},{id:"67390",title:"Deploying Blockchain Technology in the Supply Chain",slug:"deploying-blockchain-technology-in-the-supply-chain",totalDownloads:1578,totalCrossrefCites:10,totalDimensionsCites:15,abstract:"In the rapidly evolving environment of the international supply chain, the traditional network of manufacturers and suppliers has grown into a vast ecosystem made of various products that move through multiple parties and require cooperation among stakeholders. Additionally, the demand for improved product visibility and source-to-store traceability has never been higher. However, traditional data sharing procedures in today’s supply chain are inefficient, costly, and unadaptable as compared to new and innovative technology. Blockchain technology has shown promising results for improving supply chain networks in recent applications and has already impacted our society and lifestyle by reshaping many business and industry processes. In an effort to understand the integration of blockchain technology in the supply chain, this paper systematically summarizes its current status, key characteristics, potential challenges, and pilot applications.",book:{id:"9234",slug:"computer-security-threats",title:"Computer Security Threats",fullTitle:"Computer Security Threats"},signatures:"Jian Zhang",authors:[{id:"292048",title:"Dr.",name:"Jian",middleName:null,surname:"Zhang",slug:"jian-zhang",fullName:"Jian Zhang"}]},{id:"69371",title:"Blockchain: From Industry 4.0 to the Machine Economy",slug:"blockchain-from-industry-4-0-to-the-machine-economy",totalDownloads:832,totalCrossrefCites:6,totalDimensionsCites:6,abstract:"The extreme automation of our factories is necessary in order to face the Fourth Industrial Revolution. This new industrial paradigm will force our industries to manufacture much shorter and customized series at increasingly competitive prices, even tackling the manufacture of thousands of different configurations of a single base product. In order to achieve this, our production processes must have a flexibility in their configuration that has never been imagined before. This flexibility and ability to adapt automatically to demand are the essence of the Fourth Industrial Revolution and are part of the Western strategy to recover an industrial sector increasingly threatened by the Eastern production of large series at really competitive prices. Based on our participation in more than a dozen proofs of concept in the automotive, aeronautics, agri-food, or energy sectors, we describe the scenarios in which blockchain technology brings the greatest benefits to Industry 4.0. After finishing different experimentations, we carried out an in-depth analysis of the true added value of blockchain in the industry and contrasted our conclusions through interviews with more than 20 people in charge of innovation from different industries. As a result, we have obtained the principal four values of blockchain technology applied to Industry 4.0.",book:{id:"9234",slug:"computer-security-threats",title:"Computer Security Threats",fullTitle:"Computer Security Threats"},signatures:"Oscar Lage",authors:[{id:"303438",title:"Mr.",name:"Oscar",middleName:null,surname:"Lage",slug:"oscar-lage",fullName:"Oscar Lage"}]}],onlineFirstChaptersFilter:{topicId:"539",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:47,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:9,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{}},subseries:{item:{id:"27",type:"subseries",title:"Multi-Agent Systems",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",slug:"dinh-hoa-nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",slug:"hongbin-ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",slug:"yasushi-kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:47,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79881",title:"Control of Cytoskeletal Dynamics in Cancer through a Combination of Cytoskeletal Components",doi:"10.5772/intechopen.101624",signatures:"Ban Hussein Alwash, Rawan Asaad Jaber Al-Rubaye, Mustafa Mohammad Alaaraj and Anwar Yahya Ebrahim",slug:"control-of-cytoskeletal-dynamics-in-cancer-through-a-combination-of-cytoskeletal-components",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79580",title:"Dotting the “i” of Interoperability in FAIR Cancer-Registry Data Sets",doi:"10.5772/intechopen.101330",signatures:"Nicholas Nicholson, Francesco Giusti, Luciana Neamtiu, Giorgia Randi, Tadeusz Dyba, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Manuela Flego and Carmen Martos",slug:"dotting-the-i-of-interoperability-in-fair-cancer-registry-data-sets",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79550",title:"Urologic Cancer Molecular Biology",doi:"10.5772/intechopen.101381",signatures:"Pavel Onofrei, Viorel Dragoș Radu, Alina-Alexandra Onofrei, Stoica Laura, Doinita Temelie-Olinici, Ana-Emanuela Botez, Vasile Bogdan Grecu and Elena Carmen Cotrutz",slug:"urologic-cancer-molecular-biology",totalDownloads:96,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79450",title:"Identification of Biomarkers Associated with Cancer Using Integrated Bioinformatic Analysis",doi:"10.5772/intechopen.101432",signatures:"Arpana Parihar, Shivani Malviya and Raju Khan",slug:"identification-of-biomarkers-associated-with-cancer-using-integrated-bioinformatic-analysis",totalDownloads:156,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/150430",hash:"",query:{},params:{id:"150430"},fullPath:"/profiles/150430",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()