NEP and chemical OTV design parameters.
\r\n\tLiterature showed the presence of ACE2 receptors on the membrane of erythrocyte or red blood cell (RBC), indicating that erythrocyte (RBC) can be considered as a peripheral biomarker for SARS-C0V2 infection.
\r\n\r\n\tIncreased levels of glycolysis and fragmentation of RBC membrane proteins were observed in the SARS-C0V2 infected patients, demonstrating that not only RBC’s metabolism and proteome but its membrane lipidome could be influenced by SARS-C0V2 infection changing the homeostasis of the infected erythrocyte. This altered RBC may result in the clot and thrombus formation; the major signs of critically ill Covid-19 patients.
\r\n\r\n\tThis book is going to be a succinct source of knowledge not only for the specialists, researchers, academics and the students in this area but for the general public who are concern about the present situation and are interested in knowing about simple non-invasive measures for identifying viral and bacterial infections through their red blood cells.
",isbn:"978-1-83969-121-8",printIsbn:"978-1-83969-120-1",pdfIsbn:"978-1-83969-122-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"fa5f4b6ef59e28b6e7c1a739c57c5d2f",bookSignature:"Prof. Kaneez Fatima Shad",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10494.jpg",keywords:"Spike Protein, Hemoglobin, Proteins for Oxygen Transport, Altered Protein Structures, RBC ACE Receptors, RBC ACE-2 Receptors, Carboxypeptidase, Mas Receptor, Metabolomics, Gas Transport, Glucose-6-Phosphate, Phosphoglycerate",numberOfDownloads:44,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 15th 2020",dateEndSecondStepPublish:"November 30th 2020",dateEndThirdStepPublish:"January 29th 2021",dateEndFourthStepPublish:"April 19th 2021",dateEndFifthStepPublish:"June 18th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Shad is a governing body member and mentor of Women in World Neuroscience (WWN), a division of the International Brain Research Organization (IBRO). She is also a member of IBRO-APRC Global Advocacy responsible for brain research funding distribution in this region.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"31988",title:"Prof.",name:"Kaneez",middleName:null,surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad",profilePictureURL:"https://mts.intechopen.com/storage/users/31988/images/system/31988.jpg",biography:"Professor Kaneez Fatima Shad, a neuroscientist with a medical background, received Ph.D. in 1994 from the Faculty of Medicine, UNSW, Australia, followed by a post-doc at the Allegheny University of Health Sciences, Philadelphia, USA. She taught Medical and Biological Sciences in various universities in Australia, the USA, UAE, Bahrain, Pakistan, and Brunei. During this period, she was also engaged in doing research by getting local and international grants (total of over 3.3 million USD) and translating them into products such as a rapid diagnostic test for stroke and other vascular disorders. She published over 60 articles in refereed journals, edited 8 books, and wrote 7 book chapters, presented at 97 international conferences, mentored 34 postgraduate students. Set up a company Shad Diagnostics for the development of cerebrovascular handheld diagnostic tool Stroke meter into a wearable.",institutionString:"University of Technology Sydney",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"University of Technology Sydney",institutionURL:null,country:{name:"Australia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"75447",title:"Detection of Benzo[a]Pyrene Diol Epoxide-DNA Adducts in White Blood Cells of Asphalt Plant Workers in Syria",slug:"detection-of-benzo-a-pyrene-diol-epoxide-dna-adducts-in-white-blood-cells-of-asphalt-plant-workers-i",totalDownloads:23,totalCrossrefCites:0,authors:[null]},{id:"75206",title:"The Study of Some Possible Risk Factors for Arterial Thrombosis in the Example of Georgian Patients",slug:"the-study-of-some-possible-risk-factors-for-arterial-thrombosis-in-the-example-of-georgian-patients",totalDownloads:22,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1624",title:"Patch Clamp Technique",subtitle:null,isOpenForSubmission:!1,hash:"24164a2299d5f9b1a2ef1c2169689465",slug:"patch-clamp-technique",bookSignature:"Fatima Shad Kaneez",coverURL:"https://cdn.intechopen.com/books/images_new/1624.jpg",editedByType:"Edited by",editors:[{id:"31988",title:"Prof.",name:"Kaneez",surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1359",title:"Underlying Mechanisms of Epilepsy",subtitle:null,isOpenForSubmission:!1,hash:"85f9b8dac56ce4be16a9177c366e6fa1",slug:"underlying-mechanisms-of-epilepsy",bookSignature:"Fatima Shad Kaneez",coverURL:"https://cdn.intechopen.com/books/images_new/1359.jpg",editedByType:"Edited by",editors:[{id:"31988",title:"Prof.",name:"Kaneez",surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5780",title:"Serotonin",subtitle:"A Chemical Messenger Between All Types of Living Cells",isOpenForSubmission:!1,hash:"5fe2c461c95b4ee2d886e30b89d71723",slug:"serotonin-a-chemical-messenger-between-all-types-of-living-cells",bookSignature:"Kaneez Fatima Shad",coverURL:"https://cdn.intechopen.com/books/images_new/5780.jpg",editedByType:"Edited by",editors:[{id:"31988",title:"Prof.",name:"Kaneez",surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6683",title:"Ion Channels in Health and Sickness",subtitle:null,isOpenForSubmission:!1,hash:"8b02f45497488912833ba5b8e7cdaae8",slug:"ion-channels-in-health-and-sickness",bookSignature:"Kaneez Fatima Shad",coverURL:"https://cdn.intechopen.com/books/images_new/6683.jpg",editedByType:"Edited by",editors:[{id:"31988",title:"Prof.",name:"Kaneez",surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7842",title:"Basic and Clinical Understanding of Microcirculation",subtitle:null,isOpenForSubmission:!1,hash:"a57d5a701b51d9c8e17b1c80bc0d52e5",slug:"basic-and-clinical-understanding-of-microcirculation",bookSignature:"Kaneez Fatima Shad, Seyed Soheil Saeedi Saravi and Nazar Luqman Bilgrami",coverURL:"https://cdn.intechopen.com/books/images_new/7842.jpg",editedByType:"Edited by",editors:[{id:"31988",title:"Prof.",name:"Kaneez",surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9489",title:"Neurological and Mental Disorders",subtitle:null,isOpenForSubmission:!1,hash:"3c29557d356441eccf59b262c0980d81",slug:"neurological-and-mental-disorders",bookSignature:"Kaneez Fatima Shad and Kamil Hakan Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/9489.jpg",editedByType:"Edited by",editors:[{id:"31988",title:"Prof.",name:"Kaneez",surname:"Fatima Shad",slug:"kaneez-fatima-shad",fullName:"Kaneez Fatima Shad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"65534",title:"Solar System Exploration Augmented by In Situ Resource Utilization: Lunar Base Issues",doi:"10.5772/intechopen.84284",slug:"solar-system-exploration-augmented-by-in-situ-resource-utilization-lunar-base-issues",body:'\nHuman and robotic missions have helped humankind see and understand the many resources of the solar system. The resources have been analyzed, and numerous lunar benefits and industries have been suggested [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The lunar regolith contains many oxides from which oxygen can be extracted. Water ice in permanently shadowed regions (PSRs) and craters may provide the critical resources for a successful lunar base and lunar cities. The new abilities developed on the Moon can be applied to future human and robotic missions to inner planets, the asteroids, and the outer planets. Mission design studies have shown the great benefits of ISRU in increasing the sample return capability of future planetary missions and vastly extending the reach of exploration. For future large-scale human missions, the possibilities of ISRU for of human exploration and finally settlement offer the best opportunities for sustainability and success.
\nSince the 1950s, numerous mission studies have identified many effective methods of planetary exploration [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Robotic exploration has employed the methods of orbital mechanics, systems engineering, and propulsion. Human exploration of the Moon has been conducted, but humans have not yet ventured to Mercury, Mars, and the outer planets. While future human lunar and Mars missions are in the planning stages, the costs of these missions have prevented their implementation. Extensive mission analyses have identified new strategies for human planetary exploration [16, 17, 18, 19, 20]. Cost reductions using advanced propulsion are very critical. In almost every propulsion scenario, ISRU will allow more effective robotic missions and human visits to these planetary targets.
\nThe Moon is the first stepping stone to the rest of the solar system. Since the 1950s, lunar mission planning has yielded many scenarios for exploration, base development, resource mining and use, and industrialization. Many visions of human lunar exploration have been developed, and they all address different possibilities for using in situ resources. A few of the past mission scenarios are summarized here for technology comparisons and insights into new technology infusions.
\nMany recent studies of the Moon and the use of its resources have been completed [21, 22, 23, 24, 25]. While lunar oxygen has been the focus of many of the study teams, water ice in permanently shadowed regions (PSRs) has been analyzed in great detail [26, 27]. Both the oxygen and water ice are critical resources for a more self-sustaining lunar base and a lunar economy. In addition, metals from the oxides in the lunar regolith can provide for construction materials, and lunar regolith can be used for effective radiation shielding from galactic cosmic rays and solar flares.
\nLarge-scale and aggressive lunar base construction was studied by Koelle and his teams [18]. With the advent of the Apollo program, it was deemed reasonable to plan for large lunar operations. His teams at NASA created lunar base construction scenarios using Saturn V class rockets. (Figures 1 and 2) illustrates the potential cost per person and the number of base personnel [18]. Since the time of its publication, many of the model cost assumptions are no longer valid. However, the example is illustrative of the elements that must be included in future cost estimates. While chemical propulsion was used for the flights from low lunar orbit (LLO) to the surface (called the shuttles), nuclear thermal propulsion (NTP) ferries were used for the round trips from Earth to LLO. Also, the assumption of ten flights for either the NTP ferry or the chemical propulsion shuttle was included. The NTP ferries carried 20 people with 36.3 metric tons (MT) (80,000 pounds mass (lbm)) of cargo for 6 months of base operations [18].
\nLunar base cost assumption [
Lunar base cost and personnel [
Later studies by Koelle [19] made more detailed estimates of the lunar base mass and ISRU lunar oxygen production capabilities (Figure 3). Over a 10-year period, the lunar base was to be constructed and required approximately 794 MT on the lunar surface. After 10 years, the base would accommodate 52 people and be producing 370 MT of lunar propellants in the tenth year.
\nLunar base mass, personnel, and propellant produced (derived from [
In 1984, a study was conducted of lunar base construction and the additional accommodation that might be needed at the planned Earth-orbiting space station [20]. Large masses for the lunar base buildup were transported by oxygen/hydrogen orbital transfer vehicle (OTVs) and landers. The OTVs were two-stage vehicles, while the landers were both one-way cargo landers and two-stage human return landers. In this study, 1645 metric tons (MT) of payload was delivered to LLO low lunar orbit. The base would be constructed over a 19-year period. All of the launch vehicles from Earth were space shuttle or space shuttle-derived vehicles.
\nA more modest lunar base scenario has been proposed [26, 27]. In their studies, a more sustainable lunar base was planned. Also, public-private partnerships (PPP) were essential for the success of the lunar base and its ISRU activities. Lunar water ice mining in permanently shadowed regions (PSRs) has been suggested [22]. Mining in the permanently shadowed craters (PSCs) will be challenging. [27] (Commercial Lunar Propellant study, 2018) suggests several solutions to these challenges, which include heliostats to provide lighting in the dark shadowed craters.
\nMany techniques have been suggested for reducing the cost of space transportation [28, 29, 30, 31]. A recent development is the propulsive landing and reuse of launch vehicle booster stages [28, 29]. While reuse of these launch vehicle stages is a relatively new development, future designs are planned for larger-scale lunar flights [28]. Additional options for lunar exploration and exploitation include a lunar orbital platform or gateway [30, 31]. A gateway may become a central point for propellant storage and distribution to several markets in the Earth-Moon system. These markets included LEO, GEO, LLO, and Earth-Moon libration points [27]. Many study results have identified the potential benefits of these markets, in which the commercial revenue may be many billions of dollars [27].
\nSeveral advanced propulsion options for lunar base construction and industrialization were investigated. They include nuclear electric propulsion options, lunar base design options, propellant industrialization, and outer planet mining with associated outer planet moon bases. Chemical propulsion and nuclear electric propulsion (NEP) for Earth-Moon orbital transfer vehicles (OTVs) were assessed. Design parameters, vehicle mass scaling equations, and summaries of these analyses are presented.
\nIn sizing the chemical propulsion OTVs, a vehicle mass scaling equation is used [16, 32]:
\nMdry,stage (kg) = Mdry,coefficient • Mp (kg).
\nwhere.
\nMdry,stage = the stage dry mass, including residual propellant (kg).
\nMdry,coefficient = the B mass coefficient (kg of tank mass/kg of usable propellant mass).
\nMp = usable propellant mass (kg).
\nThe chemical propulsion OTVs had a B coefficient of 0.2. The Earth-Moon OTVs were two-stage vehicles (Table 1).
\nNEP and chemical OTV design parameters.
The NEP OTV mass and trip time were estimated based on the power system and the propulsion system design [32]. The following dry mass scaling equation was used [32]:
\nMdry,stage (kg) = reactor specific mass (kg/kW) • P (kWe) + 0.05 • Mp (kg) + fixed mass (kg).
\nThe OTV sizing was conducted for a wide range of power levels: 0.5 MWe to 30 MWe. Three nuclear reactor specific masses were used: 10, 20, and 40 kg/kWe (kilograms per kilowatt, electric). The OTV propulsion fixed mass, apart from and in addition to the reactor mass, was 20 MT, and the propellant tankage mass was 5% of the mass of the required propellant.
\nThe Isp and efficiency of the electric propulsion systems were 5000 seconds with thruster efficiencies of 50% for each design. These design points are typical of advanced designs of either magnetoplasmadynamic (MPD) or pulse inductive thrusters (PIT). While hydrogen is suggested for both propulsion system thrusters, the possibilities of the higher Isp option using inert gases (xenon, krypton, etc.) are also viable. The low thrust OTV delta-V value was 16 km/s for the round trip Earth-Moon missions.
\nFigure 4 shows the propellant masses needed a lunar base scenario; four different propulsion technologies are compared. There is the all-chemical propulsion option and three NEP options with 1, 2, and 5 MWe (megawatts, electric) power levels.
\nChemical propulsion and NEP option comparison (for 1645 MT delivered to LLO).
The all-chemical option includes 47 flights of a 35 MT round trip payloads. Each of these OTVs has an initial mass of 155.44 MT. The initial mass of the smaller 6 MT cargo OTV is 26.7 MT. The total propellant loading for the two-stage vehicle is 17.2 MT. To accommodate the 47 human crew flights in each of the NEP options, an 808 MT O2/H2 propellant mass is included.
\nIn all of the NEP options, there are 47 flights of 29 MT payloads. The payloads are carried on the full round trip missions. Once a 29 MT payload is delivered to lunar orbit, it is reasonable to say that a 29 MT payload will be returned to Earth orbit. This payload may be lunar ISRU propellants; lunar landers that may require recycling, updates, or repair; and other finished materials from the Moon.
\nWith advanced nuclear electric propulsion systems, the effectiveness of the lunar base development is enhanced. Using NEP at a reactor alpha of 20 kg/kWe and a 1 MWe power level, over a 19-year assembly period, the propellant mass needed for base transportation can be reduced from 4700 MT to less than 2100 MT. Using NEP at a reactor alpha of 20 kg/kWe and a 1 MWe power level, over a 19-year assembly period, the propellant mass needed for base transportation can be reduced from 4700 MT to less than 2100 MT. Lunar ISRU may allow even further propellant mass reductions. While the NEP trip times are longer for the lower power levels, the overall mass savings is quite significant (Figure 4).
\nFigures 5
NEP OTV initial mass versus power level: 0.5–30 MWe.
NEP OTV propellant mass versus power level: 0.5–30 MWe.
NEP OTV trip time versus power level: 0.5–30 MWe.
NEP OTV trip time versus power level: 0.5–5 MWe.
The lander’s mission is to deliver lunar propellants or crew or both to the lunar OTV and return to the Moon with cargo from Earth. The round trip delta-V values are provided in Table 2. The lander was designed with an oxygen /hydrogen main propulsion system. Lunar lander sizing was conducted for a variety of payload delivery missions, rocket engine-specific impulses (Isp), and mission delta-V values. The payload masses were 10, 20, and 50 MT. The rocket engine Isp values ranged from 450 to 480 seconds. Three overall mission delta-V values were selected: 2, 4, and 6 km/s. The 2 km/s delta-V represents a one-way mission from the LLO to the lunar surface. The 6 km/s delta-V represents a lander that can attain near escape velocity conditions about the Moon. Thus, nearly any mission in a wide range of lunar orbits is possible.
\nLunar lander mission parameters.
Figures 9
Two-way lander flight profile with no ISRU.
Two-way lander flight profile with ISRU on the surface.
One-way lander flight profile with ISRU-produced propellants stored on orbit.
Once a significant ISRU propellant capability is available, a combination of two-way and one-way landers can be used. The one-way lander would have only the propellant capacity to perform a one-way trip, either from orbit to the surface or from the surface to orbit. Figure 11 illustrates the one-way lander flights. Additionally, a two-way lander can be used to depart from the surface, deliver a payload to orbit, and then return to the surface. A new ISRU-produced propellant load would be available for a subsequent two-way flight.
\nThe lunar landers are sized with the same mass scaling equations used for the chemical propulsion OTVs. All of the landers were single-stage vehicles. For the lunar landers with 2 and 4 km/s delta-V values, the B coefficient was 0.4; in the high delta-V cases for 6 km/s, the B coefficient was 0.2. A 0.2 B coefficient was used as the lander design will not close with a 0.4 B coefficient. As the propellant load is quite high with the 6 km/s lander, and based on historical designs, the 0.2 B coefficient is justified.
\nFigures 12
Lunar lander masses versus specific impulse: 2 km/s delta-V capability.
Lunar lander masses versus specific impulse: 4 km/s delta-V capability.
Lunar lander masses versus specific impulse: 6 km/s delta-V capability.
The 4 km/s delta-V lander is sized for a round trip with its full payload mass of 10–50 MT. The 4 km/s lander, with a 470-s Isp, and a 10 MT payload, has a mass of 53.2 MT. This delta-V capability offers a propellant load for an abort scenario. If the lander were descending to the Moon, and it were to experience issues during the descent, it would have the full delta-V capability to descend to the surface and then immediately return to orbit without refueling (Table 2).
\nUsing nuclear thermal propulsion for lunar missions was proposed in the 1960s. Investments and programs to prove the technical feasibility were successful, but these propulsion systems were never flown in space. Since the 1990s, many extensive analyses and experiments have been conducted for nuclear thermal propulsion for lunar and interplanetary missions and demonstrated important payload and trip time benefits [33, 34, 35].
\nA lunar NTP architecture can be refueled with lunar hydrogen, and a specialized design using a liquid oxygen afterburner can increase the thrust level of the lunar NTP shuttle, allowing a shortened 24 hour lunar flight [33].
\nThe lunar surface has a wide range of elements available for extraction and use. Lunar water would be most important in sustaining the base. While the Moon has many potential resources available in the regolith, the potential for mining water ice at the lunar poles is strong but challenging. Mining the water will require vehicles that can operate at cryogenic temperatures in the craters. Not only will the robots or other vehicle have to operate in the craters, the light levels will be very low, perhaps requiring operation with light sources fixed at the crater’s rim. Onboard power for the robots may have to be provided with nuclear reactors or remotely from a central power recharging station.
\nBase locations or sites for gathering the water ice must be addressed. The bases in the PSC will be located near the edge of the ice deposit. Locating the base or mining sites at the top (near the crater lip but in the shadow) or the left and right sides of the water ice deposit (and not at the bottom of the crater) were suggested [27]. These sites would provide access to the water ice and remain in the permanently shadowed part of the crater. Potential methods for extracting the water ice are discussed in Refs. [21, 22]. A tent for capturing the water would have a heat source to melt the frozen water ice. A layout for a lunar base is presented in Figure 15 [36]. The photovoltaic array would be placed outside of the shadowed area, allowing for solar power to support the base and ISRU operations.
\nLunar base site for mining water ice from a PSC [
Based on recent measurements and simulations of the lunar radiation environment, long-term occupancy of the lunar surface may be detrimental to human beings. In addition to the long-term exposure to natural radiation sources (galactic cosmic rays, solar flares, etc.), there is additional scattered radiation on the lunar surface [28]. Therefore, living and working underground on the Moon may be necessary. Using small of large nuclear devices on the Moon may provide an option for creating large habitable underground spaces. Project Plowshare [37, 38, 39, 40, 41, 42, 43, 44, 45] addressed issues with using nuclear devices to complete large-scale civil engineering projects.
\nPast Earth-based nuclear testing was done underground due to the Nuclear Test Ban Treaty of 1963. The tests often left sizable craters on the surface. When a nuclear device is sufficiently deeply buried, the explosive force can be completely contained underground [39, 40, 41, 42]. The blast vaporizes some of the surrounding rocky material which then expands and creates an underground cavity [39, 40, 41, 42]. The rocky debris in the cavity undergoes compaction after the explosion, but the initial amount of void space created by the blast just after detonation is distributed in broken rocky debris. Small robotic mining systems would be used for debris removal. Based on historical data, such a space can also be spherical if the blast size is sufficiently small. After the radiation has fallen to acceptable levels, people could potentially create comfortable living spaces.
\nIn Ref. [7], this technique was proposed for not only living spaces but for large-scale ISRU. Ref. [7] illustrates four different ISRU processes using nuclear detonations. There are two chambers: one for the nuclear explosion and one for the reaction product capturing. This processing would essentially chemically reacting oxygen, hydrogen, or other species. The processes range from creating oxygen and metal oxides to producing water and metal carbides.
\nIn an attempt to reduce the propellant mass needed for lunar landing, the lunar slide lander was conceived. The lander uses friction between a descending tubular spacecraft and a prepared runway of lunar regolith. The operations of the slide lander are in eight phases Ref. [8]:
Elliptical orbital descent
Perilune pre-landing retro-maneuver
Approach to touchdown (begin (vertical) thrust at the end of Phase 3)
Touchdown of tail brake
Touchdown of side brakes
Main drag slide phase with support thrust
Main drag slide phase without support thrust
Final braking with brief retro-thrust
The slide lander was an attempt to reduce the total propellant load required for lunar landings. While the approach velocity of the lander is over 1.5 km/s, the long slide process may reduce the total delta-V required to 0.2–0.45 km/s; this is a significant delta-V reduction over the 2.0 km/s used for a traditional lunar landing [46]. Using this technique has several drawbacks. The length of the landing strip area is approximately 80 km. Also, the dust from the initial phase of the slide landing may attain an attitude of 1300 of km [8]. Thus, while the landing methods may save landing propellant, the implications of the dust on other orbital operations may be unwieldy.
\nUsing nuclear devices for propulsion is another option provided by engineering and physics community [47, 48, 49, 50]. The nuclear pulse propulsion (NPP) systems were considered for fast transportation throughout the solar system. Small nuclear devices (physics packages, or PPacks) would be detonated behind a large piloted spacecraft, and the detonation would provide the primary vehicle propulsion. Thousands of nuclear pulses were required for Mars and outer planet missions. The predicted specific impulse for these vehicles is between 1800 and 6000 seconds [47]. The NPP vehicles were considered a logical precursor to the pulsed fusion propulsion systems, noted in many of the atmospheric mining in the outer solar system (AMOSS, [51, 52] studies.
\nAtmospheric mining of the outer solar system (AMOSS) is one of the options for creating nuclear fusion fuels, such as 3He and deuterium [32, 51, 52]. Uranus’ and Neptune’s atmospheres would be the primary mining sites. While preliminary estimates of the masses of the mining vehicles have been created [32, 51, 52], supporting OTV and lander vehicles are needed to complete the mining scenarios. Storing the mined gases at automated bases on cryogenic outer planet moons is needed, and lunar base designs for operation in cryogenic environments will be critically important for these outer planet moon base designs.
\nAerospacecraft cruisers have been identified as a “best” solution for atmospheric mining [32, 51, 52]. The main cruiser propellant is atmospheric hydrogen gas, which would be liquefied and used as rocket propellant for the cruise phase and the ascent to orbit. A nuclear gas core rocket is a likely candidate. Deuterium and helium 3 (3He) would be separated from the atmospheric hydrogen, and helium (4He) captured, liquefied, and stored is the primary payload that would be returned to orbit. On each cruiser round trip, a 500 kg payload of deuterium or 3He is captured during the mining time. Table 3 provides the amount of 3He in the outer planet atmospheres.
\nFraction of helium 3 in outer planet atmospheres.
Several steps are needed to store the nuclear fuels. An aerospacecraft (ASC) must mine the gases from the planet’s atmosphere. After mining, the ASC ascends to low orbit and then rendezvous with an orbital transfer vehicle. The OTV and ASC rendezvous at an altitude of at 800 km. After the rendezvous, the OTV accepts the mined cryogenic gases from the ASC, and, the OTV begins a low thrust spiral trajectory to the storage point, an outer planet moon. However, an alternative storage point is an in-space base with artificial gravity; the in-space base would be in orbit about the target Moon. At the Moon, the OTV and outer planet moon lander will rendezvous in high orbit about the outer planet moon. The OTV will deliver the mined fluids to the lander. The lander will refuel the OTV from hydrogen mined on the Moon. The OTV will return to low orbit about Uranus or Neptune to await the next ASC delivery. The lander will return to the Moon with the mined fluids. On the Moon, the lander propulsion system will be refueled with oxygen and hydrogen from the water ice from the Moon. Refs. [23, 42, 43] provide many options for nuclear power and nuclear propulsion to support these mining operations.
\nKrafft Ehricke envisioned a poly-global civilization, with branches of humanity in many far-flung places in our solar system [1]. His vision was uniquely expressed in Ref. [48]. Here is a short excerpt from that work:
\nThese helionaut flights would be the precursors of human outposts and then colonies all through the solar system. Multiple systems employing planetary ISRU could enable all of these ideas and concepts. The poly-global civilization was considered a natural expansion of the human experience, pioneering new frontiers and using technology in the best interests of all humanity.
\nThe Moon represents a critical location for the expansion of humanity into the solar system. In an optimistic future, lunar exploration will lead to a base and perhaps extensive lunar industries. The industries include raw material processing, oxygen and other propellant production, nuclear and solar power, and the creation of completely new space vehicles. For protection against radiation, lunar bases may include underground habitats. Using explosive forming of underground cavities may lead to an attractive lunar base or colony. In addition, large-scale mining of lunar raw materials and gas production and capture from underground nuclear processing have been suggested.
\nWith advanced propulsion systems, the effectiveness of the lunar base development is enhanced. Using NEP at a reactor alpha of 20 kg/kWe and a 1 MWe power level, over a 17-year assembly period, the propellant mass needed for base transportation can be reduced from 4700 MT to less than 2100 MT. Lunar ISRU can allow even further propellant mass reductions. With NTP, the payload mass delivered to lunar orbit can be doubled over oxygen/hydrogen chemical propulsion. Further benefits of water mining ISRU can allow refueling of the NTP from lunar hydrogen. Using the option of the liquid oxygen afterburner, the NTP system can allow a 24 hour lunar flight. The added liquid oxygen reduces the NTP Isp but allows a higher thrust level and therefore a shorter flight time. Both the NTP hydrogen and oxygen can be derived from lunar water ice.
\nAtmospheric mining in the outer solar system can produce nuclear fusion fuels such as 3He which are rare on Earth. In addition, while extracting the small fraction of 3He in the gas giant atmospheres, each day enormous amounts of hydrogen and helium are produced. These amounts can far outstrip the need for propellants to return the mining aerospacecraft (ASC) to orbit. These added propellants may be captured and used for other chemical or nuclear propulsion applications.
\nSolar system exploration using in situ resource utilization can allow larger and more effective research and sample return missions. Faster missions are possible by using the local planetary resources to return to Earth. Truly impressive interplanetary missions can be within our reach with focused lunar base investments.
\n\n Helium 3 Helium (or helium 4) atmospheric mining in the outer solar system aerospacecraft closed cycle change in velocity (km/s) Earth-Moon libration point 1, 2 gas core rocket gross takeoff weight Hydrogen Helium 4 in situ resource utilization Specific impulse (s) Kelvin Kilowatts of electric power low earth orbit low lunar orbit lunar surface metric tons Megawatt electric (power level) nuclear electric propulsion nuclear pulse propulsion nuclear thermal propulsion nuclear thermal rocket open cycle Oxygen parts per billion permanently shadowed craters permanently shadowed regions
The surface area and porosity of the nanosilica are large and can be commonly used in products such as fillers [1], pharmaceuticals [2], catalysts [3], and chromatography [4]. Industrial silica production uses sodium silicate as the main ingredient of silicone. Nevertheless, a large amount of energy is required to produce sodium silicate via melting the quartz sand and sodium carbonate at 1300°C [5]. In the future, fossil fuel energy may not be viable. Thus, it is also fascinating to create a technique for producing nanosilica from a silicon-containing biomass content that will be economically feasible. Biomass is a significant resource for renewable energy and represents 15% of the worldwide power supply [6]. Rice husk (RH) is one type of biomass, which is effective heat deliver and lignocellulose rich for biological oils [7]. The global annual product of RH is about 100 million tons [8]. RH is rich in silica content (~20 wt%) and abundant in rice milling as waste. RH is not widely known due to lack of commercial utilization. Nanosilica precursor is an exciting future application for the preparation of advanced materials, such as carbon/silica composites [9], photocatalysts [10], hydrogen production as well as CO2 capture materials [11, 12], and metal ion removal adsorbents [13]. Nanosilica with porous RH composition can be prepared by various methods [14, 15, 16]. Kalapathy et al. [17] explored sodium hydroxide dissolved xerogel formation utilizing RH as raw resources. They discovered that combining the rice husk ash (RHA) acid with xerogel’s washing step can efficiently improve nanosilica sample purity. Following a pre-treatment with acid, Zhang et al. [18] utilized RH as a forerunner to acquire superfine 30–200 nm diameter nanosilica the pretreated sample. In the latest studies, biotransformed nanosilica with
Meanwhile, nanofluid is comprised of nanometer-sized particles (nanoparticles) and fluids. Water, engine oil, ethylene glycol, and so on are usually used for base fluids in many industries including transport, power supply, manufacturing, and electronics [22]. Conventional base fluids suffer from low heat transfer performance, which limits its application [23]. In order to overcome the drawbacks, nanosized particles suspended in the base fluid can improve the transfer of heat and rheological properties, acting as property enhancer [24]. Moreover, most of the nanofluid studies underline the nanoparticle preparation methodology. A research from Rao et al. [25] found that nanofluids have greater thermal conductivity than conventional fluids, strongly nonlinear temperature dependence on effective thermal conductivity, improve or decrease heat transfer in single-phase flow, improve or decrease nucleate pool boiling heat transfer, and yield higher critical heat flows under pool boiling conditions. To the best of our knowledge, RH-derived nanosilica has not been reported elsewhere. In this context, the method of preparing nanosilica will be deliberated. Moreover, the method of nanofluid preparation from nanoparticle and the potential applications of nanofluids will be discussed.
Thermal and chemical methods are the two major methods that have been widely adopted for silica production from biomass. Figure 1 illustrated the methods used for producing nanosilica from biomass/agricultural waste.
Various treatments used to produce nanosilica from agricultural waste.
Thermal methods involve the utilization of furnace muffles, fixed bed furnace, fluidized bed reactor, and other thermal methods that consist of inclined step-grate furnace, cyclone furnace, and rotary kiln. The thermal technology does have a number of disadvantages such as required more time for reaction, hot spot formation, the absence of free-flowing air for full carbon oxidation, and many others [26].
Nanosilica is extracted from agricultural waste in a laboratory scale by electric/muffle furnace. The biggest disadvantage in using this technology is the long reaction time and a lower production rate. Patil et al. [27] investigated the biggest RH nanosilica extraction, consisting in thermal treatment with electric oven for 6 hours at 700°C at different temperatures. XRD and FTIR were used to characterize the sample. XRD information showed that the nanosilica acquired was amorphous in nature. About 95.55% pure nanosilica obtained from RHA with acid leaching preceded by the treatment of thermal heating with muffle oven at 600°C [28]. According to Bogeshwaran et al. [29], silica extracted from RH is highly pozzolanic when burned in the muffle furnace. By thermal treatment, Chen et al. [30] utilized wheat straw to effectively produce nanosilica products. The combustion of wheat straw ash was kept at 500°C for 8 hours. The collected sample was washed with distilled water after the combustion and followed by calcination at the temperature from 400 to 700°C in a muffle furnace. Nano-amorphous silica was characterized by using XRD, TEM, EDX, FTIR, and BET. Ahmad Alyosef et al. [31] investigated the use of thermo-chemical treatment for meso/macroporous biogenic silica (3–1500 nm) from biomass such as miscanthus, wheat straw, and cereal remnant pellets. The biomass (wheat straw) was leached by concentrated H2SO4 (5 M). The wheat straw proportion of H2SO4 was controlled at 1:10 (gmL−1). The treatment was performed under continuous stirring (1000 rpm) at 353 K for 24 hours. The ash of silica generated at various temperatures and times after heating by furnace. The combustion and acid leaching therapy of RH obtained pure amorphous silica. HCl, H2SO4, and HNO3 leached the husk with different concentrations. The wheat-husk ash samples were positioned inside the muffle furnace at the temperature from 300 to 700°C for 24 hour after leaching treatment. The research proves that hydrochloric acid leaching treatment was more effective than any other acid to remove metal ions. Pure amorphous silica from acid-treated wheat husk ash was obtained at 500–700°C [32]. Yalcin and Sevinc [33] manufactured amorphous silica RH successfully at 600°C in a tubular stainless steel reactor for 4 hours in an electronic laboratory muffle furnace. In particular, electric/muffle furnace can increase the purity of silica contents obtained from incineration. Except that, amorphous silica structure can be obtained by incineration up to 425°C for 90 minutes. The structure of silica varies on the incineration temperature and time required [34].
The manufacturing of RH silica was also carried out using a fixed bed furnace. By using fixed bed furnace, Yang et al. [35] obtained amorphous silica in burst nano size. In this process, RH treated with raw and acid was conducted in fixed bed furnace for pyrolysis at 600–1200°C. The amorphous silica transforms into crystalline at 1000°C. Hamad [36] discovered RHA silica successfully using the 500–1150°C muffle furnace and fixed bed reactor.
The advantages of fluidized bed reactor are the distribution of uniform temperature, fast reaction time, efficiency of carbon conversion, low temperature operating range, high intensity of combustion, elevated reaction of gas-solid mixtures, and outstanding mixing characteristics [37, 38]. Huang et al. [39] manufactured RH silica white by utilizing fluidized bed reactor. RH amorphous silica can be obtained by using fluidized bed bubbling pilot plants at different temperatures and at different speeds [40]. Genieva et al. [41] obtained RH silica material that is produced by the rice-milling phase, and it is a large agricultural waste product by using and characterizing the fluidized bed reactor throughout the nitrogen atmosphere. Luan and Chou [42] found RH silica in a modified fluidized bed reactor throughout the existence of pilot flame. Therefore, outcome revealed that the high-activity silica product was acquired.
Inclined step-grate furnace is commonly used in the manufacturing of RHA. It consists of feeding component, chamber of combustion, and chamber of ash precipitation. The disadvantage of using this RHA manufacturing methodology is low yield quality and elevated unburnt carbon content. RH was provided from the upper part of the reactor as air flows from the lower part [43]. Moreover, cyclonic furnace was developed by Singh et al. [44]. In this furnace, the air kept the husk spinning and accelerated the combustion in the chamber. The benefit of using cyclone furnace to make husk ash is that the product has less carbon content. Subsequently, rotating kiln is a pyro-processing tool used in the ongoing process to increase calcination materials. Sugita [45] patented active RHA generated from rotary kiln. In this process, RH has been carbonized by an upstream rotary kiln that is heated at 300–400°C by electric heaters, burners, or other heat sources. Carbonized RH is supplied into rotating oven and burnt at 600°C after carbonization. These techniques effectively produced the husk ash. The disadvantage of using this technique was the need for additional fuel to avoid ash from being crystallized, longer reaction time, and high energy required.
Thermal method is one of the initial initiatives to obtain silica nanoparticle derived from RH biomass (Table 1). Muffle furnace helps in incineration of RHA to form nanosilica. The crystalline of nanosilica is dependent on the temperature and before incineration process takes place. Utilizing temperature around 500–700°C will form amorphous nanosilica. Alternatively, crystalline structure of nanosilica obtains above temperature of 900°C [46]. Chemical pre-treatment is vital to avoid any unburned material that leads to reduce the nanosilica’s purity. Fixed bed furnace has an ideal temperature of 600–700°C to obtain white RHA. Complete combustion of carbon content is the major benefit of this furnace. However, the heat loss during the process could affect the temperature, which leads to unstable production of silica structure [36]. Fluidized bed reactor has many benefits such as high combustion intensity, lower operating temperature range, simple operation and quick start-up, and easier ash removal. However, it appears hard to fluidize RH and husk char or otherwise blended with sand, mold, and ash to produce a multi-structure [47, 48, 49]. Inclined step grate furnace is simple in construction and process, but it is inefficient in combustion and separation of ash resulted smoke and spark partially drawing into the dryer plenum [43]. The rotary kiln carbonizes RH first by burning without flaming and transforms the carbonized RH into ash. This method easily produces white RHA, which has excellent chemical reactivity [45]. This furnace requires new improvement to the capacity part due to low production along the process. Soponronnarit et al. [50] prove that cyclone furnace able to increase the furnace efficiency by 16% rises the air by 90%. Observation made proves that the height of ash on the grate does not affect the efficiency of the furnace. However, incomplete combustion may occur because of too high airflow rate in tertiary duct that did not support combustion since the burning RH fell quickly from the grate. Among them, fluidized bed reactor suites the best requirement for producing silica due to its better purity (92–96%) and operating at optimum temperature (800–950°C), which is also in agreement with Soltani et al. [38].
Electric/muffle furnace | ||||||||
---|---|---|---|---|---|---|---|---|
No | Method | Material | Time | Temperature (after getting silica gel) | Size | Purity | Yield | References |
1 | Furnace in which the subject material is isolated from the fuel and all of the products of combustion, including gases and flying ash | RH | 700°C | 6 hours | — | 95.55% | — | Patil et al. [27] |
2 | RH | 500°C | 8 hours | — | — | — | Chen et al. [30] | |
3 | RH | 80 | 24 hours | 3–1500 nm | Ahmad Alyosef et al. [31] | |||
1 | Material is heaped onto a grate, and preheated primary air (called under fire air) is blown from under the bed to burn the fixed carbon | RH | 600–1200°C | — | 1–10 nm | — | — | Yang et al. [35] |
RH | 500–1150°C | — | — | — | — | Hamad [36] | ||
1 | A simple fluidized reactor consists of a room, which is assisted by a distributor plate, and contains a bed of inert particles like sand | RH | 800–950°C | 4–8 hours | — | 92–96% | — | Pitt [37] and Soltani et al. [38] |
2 | RH | 100°C | 4 hours | 20 nm | — | — | Genieva et al. [41] | |
3 | RH | 60–860°C | 4 hours | — | — | — | Luan and Chou [42] |
List of thermal method and its parameters.
Chemical techniques include techniques of alkaline extraction used to achieve pure and high silica quantities. However, this method is costly due to a slightly longer reaction time (24–48 hours) and involves different measures with the use of different sorts of chemicals. Usually, RH will go through thermal process (incineration) to obtain RHA before proceeding to any chemical process involvement.
Alkaline extraction and acid neutralization are an effective and easy technique of extracting amorphous silica from agricultural waste. Zulkifli et al. [51] utilized alkali extraction technique from RH to extract silica particles in order to remove metallic impurities. In a water bath, RHA was initially treated with HCl for 4 hours at 75°C. The filtration took place by constantly washing using distilled water until neutral state was reached and dried at 110°C for 12 hours. The NaOH was used to prepare a constantly stirring solution of sodium silicate for 1 hours at 90°C. The silicate sodium solution was then reacted to ethanol, and a steady 10-minute water mix was added. The whole mixture has been titrated 3 M H3PO4 until gel formation is carried out. The product after centrifugation of yellowish gel was washed with distilled water to clear away residual sodium silicate and phosphate, followed by calcination to produce silica nanoparticles. Hassan et al. [52] prepared nanosilica from rice husk in high surface area using the NaOH (alkaline extraction method). In their study, analyses of characterization of nanosilica were investigated by using FTIR, XRD, SEM, and TEM. The impact from their study states that more than 95% of nanosilica obtained. Liou and Yang [53] investigated various variables of silica derived from RHA processing via the alkali-extracted method. Acid and alkaline concentrations, gelation pH, aging time, and temperature have been optimized to prepare SiO2 nanoparticles from RHA. The effects on the surface area from various acids and silica particle size have also been assessed. Rehman et al. [54] synthesized nanosilica using silica source from RHA. Silica nanoparticles were obtained from RH through the use of NaOH alkaline sol-gel method. The application of H2SO4/water/butanol to pH 4 precipitated the silica. Thuc and Thuc’s [55] technique was used to obtain nanosilica particles with high-specific surface area. Their study continues to prepare zeolite Y in sodium form (NaY) derived from nanosilica. Awizar et al. [56] produced and used nanosilica as a green corrosion inhibitor by alkaline extraction. Haq et al. [57] obtained RHA silica with reflux condition for a varying period of time by NaOH solution. The RHA reaction mechanism mixed with NaOH was given as follows:
SiO2 | + | 2 NaOH | → | Na2SiO3 | + | H2O |
(white ash) | (sodium hydroxide) | (sodium silicate) | (water) |
Silica was precipitated by sodium silicate acid neutralization [55].
Na2SiO3 | + | HCl | → | SiO2 | + | NaCl | + | H2O |
(sodium silicate) | (hydrochloric acid) | (silica gel form) | (sodium chloride) | (water) |
Low surface microsphere silica can be achieved by alkaline and acid precipitation from wheat husk ash. Nano amorphous silica with a specific surface area of 8.23 m2/g was achieved after alkaline extraction with NaOH [58]. Masnar and Coorey [59] prepared silica nanoparticles by following the same step as Liou and Yang [53]. Silica nanoparticles obtained at 80°C for 48 hours after solids have been dried.
Selvakumar et al. [60] prepared silica from RHA by adopting pre-treatment process (acid process). Pre-treatment of acid was used to enhance the silica purity with the effective removal of the majority of metallic impurities and to produce silica (white color). From their study, RHA was pre-treatment by various acids (pH 1, 3, 5, or 7 using 6 N hydrochloric acid, nitric acid, and sulfuric acid). RHA amorphous nanostructured silica was produced using alkaline extraction technique with NaOH solutions (2.0–3.0 N). Their research showed that treatment with 2.5 N NaOH produced RHA containing 90.44% silica. Rungrodnimitchai, Phokhanusai, and Sungkhaho [61] prepared RHA silicate materials using 2.0 M of sodium hydroxide with the help of microwave (800 W) for 10 minutes. Zhang et al. [62] synthesized silica nanoparticles from RHA by involving acid pre-treatment. Na2CO3 solution was added after the pre-treatment to obtain nanosilica slurry. The precipitation was then cleaned with distilled water and dried for 24 hours in the vacuum oven at 120°C. Adam et al. [63] obtained spherical nano size silica from RH by using nitric acid (65%) and sodium hydroxide. No calcination for ash formation was required in this treatment.
Faizul et al. [64] prepared amorphous nanosilica with the size of 181.2 nm with mild acid solution (citric acid, acetic acid, and phosphoric acid) obtained from rice husk. Carmona et al. [65] used acid leaching to synthesize nanosilica of two kinds of rice husk, namely the agulhinha and the catetus. They believe that their method can be efficient in removing impurities (Zn, MN, Ca, K, Mg, Cu, and Al). Mahmud et al. [66] used hydrochloric acid for acid leaching to obtain high purity and high surface area of nanosilica. Rafiee and Shahebrahimi [67] prepared nanosilica from rice husk with high surface area by acid leaching treatment. The average size of nanosilica is 6–7 nm supported by the catalyst. Bakar et al. [68] prepared high purity silica by acid treatment followed by combustion. Pre-combustion rice husk was leached with hydrochloric acid and sulfuric acid to achieve pure silica. Thus, XRF confirmed the purity of amorphous silica over 99%.
Many chemical treatments exist for the production of silica from bio-waste. Faizul et al. [69] obtained amorphous silica and activated carbon by three effective procedures by using toluene/ethanol, NaClO2, and KOH. The method of calcination was used in the production of nano amorphous silica (100–120 nm). The manufacturing of amorphous silica was carried out using organic acid leaching instead of strong acid [70]. Ionic liquid was also used in the manufacturing of silica from agricultural waste by Kumar et al. [71].
Chemical method is advisable to obtain high purity of amorphous nanosilica due to its effective chemical reaction (Tables 2 and 3). Basically, there are two types of extraction methods (alkaline extraction and acid extraction). In this review, alkaline extraction method is predominantly compared to acid extraction method in terms of nanosilica properties obtained. Hassan et al. [52] produced the preparation of silica nanoparticle by alkali treatment and obtained more than 95% purity of nanosilica. Furthermore, Liou and Yang [53] prepared nanosilica and obtained 99.48% of silica content throughout alkali treatment. For further improvement, Selvakumar et al. [60] used pre-treatment and result in high purity (85%) of silica contents. Similarly, Adam et al. [63] also reported acid pre-treatment before conventional alkaline method, where ~95% purity of nanosilica was obtained. As for pre-treatment is use to enhance silica purity and remove metallic impurities. Meanwhile, Rungrodnimitchai et al. [61] used 2.0 M sodium hydroxide assisted by microwave (800 W) to obtain high purity of nanosilica from RHA. The modification could enhance the properties of the nanosilica obtained from the conventional method in terms of morphology, size, and purities as presented in Table 2. Furthermore, acid leaching method has been presented in Table 3. It was found that acid leaching method produced high purity of nanosilica as reported by Bakar et al. [68], where 99% purity of nanosilica was obtained with 500–700 nm. Similarly, Mahmud et al. [66] also reported that acid leaching method produced 99% high purity of nanosilica using HCl. Referring to above, acid leaching improves the other metal removal and increases the purity of nanosilica. It is noticed that single method like alkaline extraction and acid leaching method required high temperature thermal process to acquire nanosized silica. While combination of acid leaching and alkaline method could provide high purity of nanosilica without high temperature thermal process, in another words, mild condition, as reported by Adam et al. [63] and Selvakumar et al. [60].
Alkaline extraction method | ||||||||
---|---|---|---|---|---|---|---|---|
No | Method | Material | Time | Temperature (after getting silica gel) | Size | Purity | Yield | References |
1 | Using alkali solution and followed by acid neutralization and undergo thermal process (calcination) | RH | 30 minutes | 550°C | 98–272 nm | — | — | Zulkifli et al. [51] |
2 | RH | 4 hours | 700°C | 20–25 nm | >95% | — | Hassan et al. [52] | |
3 | RH | 48 hours | 80°C | 20–30 nm | 99.48% | 91.91% @pH 3 | Liou and Yang [53] | |
4 | RH | 24 hours | 50°C | 10–20 nm | — | — | Awizar et al. [56] | |
6 | RHA | 24 hours | 60°C | — | — | 80% (NaOH concentration of 1.0 mol dm−3) | Haq et al. [57] | |
7 | Wheat husk ash | 1 hour | 550°C | 227 nm | — | — | Cui et al. [58] | |
8 | RHA | 48 hours | 80°C | — | 50.15% | — | Masnar and Coorey [59] | |
1 | Acid pre-treatment before conventional alkaline extraction | RHA | 1 hour | 130°C | — | 85% (1.0 N NaOH) | — | Selvakumar et al. [60] |
3 | RHA | 24 hours | 120°C | 47 nm | 69–73% (250 ml Na2CO3 solution) | Zhang et al. [62] | ||
5 | RH | overnight | 110°C | 15–91 nm | ~95.5% | — | Adam et al. [63] | |
2 | Separating rice husk ash silica gel from microwave heating | RHA | 48 hours | 150°C | — | — | — | Rungrodnimitchai et al. [61] |
List of alkaline technique based on its parameters.
Acid leaching method | ||||||||
---|---|---|---|---|---|---|---|---|
No | Method | Material | Time (h) | Temperature (after getting silica gel) | Size | Purity | Yield | References |
1 | Raw material undergoes acid leaching at mild condition and followed by thermal process (calcination) | Palm ash | 30 minutes | 800°C | — | 92% (6% citric acid) | — | Faizul et al. [64] |
2 | RH | 1 hour | 650°C | 181.2–294.7 nm | — | — | Carmona et al. [65] | |
3 | RH | 2 hour | 700°C | 53–55 nm | 99.761% (HCl), 99.760% (citric acid) | — | Mahmud et al. [66] | |
4 | RH | 48 hours | 50°C | 6 nm | 98.801% | — | Rafiee and Shahebrahimi [67] | |
5 | RH | 2 hours | 600°C | 500–700 nm | >99% | — | Bakar et al. [68] |
List of acid leaching method based on its parameters.
As mentioned above, two major methods that have been widely adopted by researcher in nanosilica production are thermal and chemical methods. Fluidized bed reactor could produce high purity of nanosilica at 92–96% using thermal process at 800–950°C for 4–8 h [38]. While chemical method modified alkaline method showed promising properties, produced 95% purity nanosilica with 110°C (mild condition) [63]. It is noticed that thermal method used a lot of energy (high temperature and long reaction time) to acquire nanosilica, whereas chemical method required high usage of chemicals (acid and alkaline solution), which resulted in cost intensive. Moreover, high thermal and chemical methods also contributed some bad impact on environment due to releasing of nonfriendly gases and waste materials produced, respectively. Thus, low cost and environmental friendly method is required to idealize for industrial application. In recent year, Mor et al. [72] reported a low-cost method in preparing nanosilica using green technology. Initially, the RHA was dissolved in NaOH and placed to autoclave at 100°C for 2 h to obtain the mixture slurry and followed dilution with distilled water for phase separation. The supernatant proceeds for silica extraction with filtration process. The filtrate precipitated with HCl and followed by washing and oven dried at 50°C where high purity of nanosilica (99%) was obtained.
There are two main methods for preparing nanofluids, which are one-step and two-step methods. One-step method combines between synthesis and dispersion of nanoparticles into base fluid in one step. Several differences exist in these methods. In one of the conventional techniques called the one-step method of direct evaporation, the nanofluid is obtained inside the base fluid by solidifying the nanoparticles that are originally in the gaseous phase. Akoh et al. [73] created the one-step direct evaporation method and are referred to vacuum evaporation on the method of running oil substrates. The concept of this method was originally developed the nanoparticles in order to obtain dry nanoparticles. Particles are difficult to differentiate from liquids. The technique of laser ablation to obtain alumina nanofluids is another one-step technique [74]. Zhu et al. [75] used one-step technique to prepare copper nanoparticles in the medium of ethylene glycol.
The two-step method is widely utilized for nanofluid preparation, and most of the cases used nano powders (solid) during the preparation. The technique first produces nanoparticles; thereafter, the nanoparticles will be dispersed into the base fluids. Jena et al. [76] used hydrogen reduction techniques to prepare nanoparticles from the chemical precursor and dispersed them into fluid via two-step methods. The use of ultrasonic technique to disperse the nanoparticles into deionized water, which containing sodium lauryl sulfate (SLS) during nanofluid preparation, is also one of the widely adopted technique [77].
Wei and Wang [78] synthesized copper nanofluids by using a constant flow microfluidic microreactor. Through this technique, the microstructure copper nanofluids can be synthesized continually by changing parameters such as additive and flow rate and reactant concentration. Using a new precursor conversion technique, ultrasonic and microwave irradiation can be used to synthesize CuO nanofluids with a better solid volume fraction (~10 vol%) [79]. Under microwave irradiation, the Cu(OH)2 precursor will entirely converted into CuO nanoparticles in H2O. The ammonium citrate stops nanoparticles from growing and aggregating, resulted in stable CuO nanofluid with a better heat conductivity than the ones produced by using other dispersive techniques. The easier way to acquire colloids of monodisperse noble metal is by using the technique of phase transfer [80]. The two-phase cyclohexane system, aqueous formaldehyde, is transmitted to cyclohexane in water through the dodecyl amine response to cyclohexane as an intermediate form reduction. Cyclohexane solution intermediates can reduce Ag or Au ions in aqueous solution to form dodecyl amine-protected Ag and Au nanoparticles at room temperature. Feng et al. [81] used phase transfer method in preparing Au, Ag, and Pt nanoparticles based on a reduction in solubility of PVP in water at increased temperature. The technique of phase transfer is also used to prepare stable Fe3O4 nanofluids based on kerosene. Oleic acid is effectively grafted in chemisorbed fashion on the surface of Fe3O4 nanoparticles, enabling Fe3O4 nanoparticles to be well compatible with kerosene [82]. The phase-transfer technique prepared Fe3O4 nanofluids not showing “time reliance of the characteristic of heat conductivity” as reported previously. The main problem is the production of nanofluids with a controllable microstructure. It is well recognized that nanofluid characteristics are highly dependent on nanomaterial structure and shape. Recent study demonstrates the improvement in conductivity and the stability of nanofluids when synthesized using chemical solution compared to other techniques [83]. This technique is differentiated by its controllability from others. The microstructure of nanofluids can be differed and manipulated by regulating the factors of synthesis, including acidity, radiation from the microwave and ultrasonic, temperature, acidity, concentrations, and types of reactor and the order of additives added to the solution.
Silica is widely used as both precursor and material for ceramic product manufactures. Silica has high abrasion resistance, high thermal stability, and electrical insulation [84]. Fazeli et al. [85] dispersed nanosilica into the distilled water, and the suspension was sonicated for at least 90 min in an ultrasonic bath. They discovered that silica nanofluids remained stable without visible settlement for 72 hours. Pang et al. [86] used ultrasonic to mix SiO2-pure methanol by ultrasonic (750 W, 20 kHz) and Al2O3-pure methanol to break the agglomeration through vibration during 2 hours. They examined the impact of the zeta potential and pH of methanol-based nanofluids in nanoparticles. They proved that the zeta potential is closely connected with the pH of the suspension. Al2O3 nanofluids have zeta potential >60 mV; meanwhile, SiO2 nanofluids have zeta potential >30 mV, which indicated that both nanofluids were well stable. The visualization and Tyndall effect (light dispersion study in nanoparticles) images show that nanofluids based on methanol are well dispersed. Bolukbasi and Ciloglu [87] have been using magnetic stirrer to prepare SiO2 nanofluids. The suspensions were continuously sonicated for 2 hours into an ultrasonic vibrator (600 W and 40 kHz). The researcher confirmed that no sedimentation was traced throughout the experimental period. Darzi et al. [88] applied distilled water to the specified quantity of SiO2 nanoparticles and mixed for half an hour with a magnetic stirrer. Afterward, the ultrasonic vibrator was dispersed for 2 hours to have the stable suspension. During the synthesis method, no surfactant/dispersant additives were added, otherwise affecting the thermophysical characteristics of nanofluid. Silica nanoparticles were used to function through grafting silanes directly on the silica nanoparticles surfaced by Yang and Liu [89]. For the functioning method, silane of (3-glycidoxylproyl) trimethyoxysilane has been used as the reacting silane and silica nanoparticles with a mass ratio of 0.115. Nanoparticles were successfully dispersed into water. Meanwhile, the solution was stored at 50°C for 12 hours of ambient temperature. Functional nanoparticles were discovered to continue to disperse even when the nanofluid remained at a mass concentration of 10% for 12 months. In addition, no sedimentation has been reported. They prepared traditional nanoparticles by dispersing and oscillating them to water. Powder of silica nanoparticles was first dissipated into deionized water and then oscillated in an ultrasound bath for 12 hours. Sedimentation was found after a few days. Anoop et al. [90] dispersed SiO2 nanoparticles with an ultrasound bath in deionized water for 30 minutes. In addition, the application of a sonicator type probe to the nanofluids intensified this colloidal suspension. The suspension was provided by cyclic ultrasonic pulses for around 15 minutes in order to obtain maximum particle de-agglomeration. By adding nitric acid reagent grade from the isoelectric pH value, the pH value of the suspension was kept at 4.5. Nanofluids have been indicated to show excellent stability over period. Qu and Wu [91] developed nanofluids Al2O3 and SiO2 water. The pH value of the nanofluids was modified as a first step to a value that was far from the respective isoelectric point (IEP) of silica (with pH ~ 3) or alumina (with pH ~ 9), then added to the water nanoparticles (with pH ~ 9) and with pH ~9. The dispersion solution was vibrated in an ultrasonic bath for about 4 hours afterward. Alumina nanoparticles have been discovered to be better dispersed. Hwang et al. [92] generated CuO, MWCNT, and SiO2 nanofluids by using an ultrasonic disruptor. For SiO2 and CuO nanoparticles, they acquired stable suspensions. Nevertheless, sodium dodecyl sulfate (SDS) has been used as a surfactant to produce MWCNT nanofluids as the MWCNTs are entangled and aggregated into aqueous suspension.
Nanofluids have been proved in experiment and theory in enhancing heat transport and energy efficiency for various manufacturing purposes such as mechanical applications, electronic cooling, transportation, and many more in a range of thermal exchange technologies. In all applications, nanofluid performs a key position in creating the next device generation for various medical and engineering applications. Some of the following applications are discussed below.
The temporal difference between energy supply and energy requires rendered storage system design. Stocking of thermal electricity as in solar thermal installations as sensitive and latent heat, with an emphasis on an effective use as well as preservation of wastewater and solar energy in buildings and manufacturing, has become an significant element in energy planning [93]. Compared to the basic material, the PCMs contained extremely high thermal conductivity. Liu et al. [94] synthesized a new type of nanofluid phase change material (PCM) with a tiny portion of TiO2 nanoparticles suspended in aqueous saturated BaCl2 solution. The PCM nanofluids had relatively better thermal conductivity compared to base material. The cool storage/supply rate and the cool storage/supply capability have risen significantly compared with aqueous solution of BaCl2 without the need of additional nanoparticles. The greater thermal characteristics of PCMs show that in cool storage applications, they have the ability to replace standard PCMs. Copper nanoparticles are the additives that are efficient to enhance PCM cooling and heating levels. Shin and Banerjee [95] recorded an anomalous increase in nanofluid-specific heat capacity of high temperature. The researcher discovered that 1 wt% SiO2 nanoparticle-doped alkali metal chloride salt eutectic improves the specific thermal capacity of nanofluid by ~15% to be used in solar thermal energy storage facilities. One of the methods used to store solar energy is the use of PCMs. Paraffin is the most appropriate of many accessible PCMs because of its attractive features, including large latent heat capacity, insignificant super cooling, and low cost. The intrinsic low thermal conductivity (0.21–0.24 W/mK), however, avoids possible applications [96]. Wu et al. [96] numerically researched Cu/paraffin nanofluid PCM melting procedures. Their findings showed that the melting time with 1 wt% Cu/paraffin is saved by 13.1%. The study found that the addition of nanoparticles is an effective way for increasing the heat transfer of latent heat energy storage system.
Solar energy is an important factor in energy use because of a shortage of electricity generation. Lack of fossil fuel and environmental factors will limit future use of fossil fuels. Researchers are encouraged to discover alternative energy sources. This became even more widespread as fossil fuel prices continue to increase. In latest years, solar energy has had a notable advantage. In just 1 hour, the earth gets more sun energy than the world consumes for a year [97, 98].
Solar collectors are specific types of heat exchangers that convert solar energy to transport medium internal energy. This equipment absorbs incoming sunlight, which is converted into heat and transmitted the heat to a fluid that flows through the collector (generally oil, air, and water). The energy is collected directly from the working fluid to the hot water or space conditioning or thermal energy storage tank, for night or on cloudy days [99].
Taylor et al. [100] found that the use of the graphite/therminol VP-1 nanofluid with volume fractions around 0.001% or less could be of benefit for 10–100 MWe energy crops. In combination with a solar thermal power tower with 100 MWe of capacity in a solar resource such as Tucson, Arizona, the researchers estimated that $3.5 million more could be achieved each year. The supply of fresh water is more crucial arid distant areas of the globe. Solar desalination technologies are possible to overcome portion of the issue in these areas, where solar energy is accessible. The absence and untrustworthy drinking water is a main issue in developing countries. Global dryness and desertification are estimated to make drinking water a major problem in the world [101].
Greenhouse gas emission from fresh water production can be prevented by solar stills [102]. Many experts have researched solar stills and used different techniques to enhance their productivity. Gnanadason et al. [103] found that the productivity of solar system was influenced by nanofluids. The implications of putting carbon nanotubes (CNTs) to the water in a single solar basin were investigated. The findings have shown the addition of nanofluids that will enhance the efficiency by 50%. However, the quantity of nanofluid added to the water inside the solar was not yet mentioned. In addition to solar nanofluids, the economic growth should be perceived. Certain works in the literature disclosed the addition of dyes to solar stills could increase the efficiency. Nijmeh et al. [104] investigated that adding violet color to the solar water still improves the efficiency significantly by 29%. Furthermore, nanofluids (especially the CNTs) are more expensive, and this might therefore be a difficult task for the use of nanofluids in solar stills because the nanofluids in solar stills do not flow in a closed loop in order to recover them.
Adding nanotubes and nanoparticles to the conventional engine coolants (ethylene glycol and water mixture), nanofluid lubricants can boost their thermal conductivity and enhance heat change rates and fuel economy [105]. Tzeng et al. [106] have studied the impacts of nanofluids on automatic transmission cooling. They spread CuO and Al2O3 nanoparticles and antifoams into the transmission fluid and then used four-wheel automatic transmission on a real-time basis. The findings indicate that CuO nanofluid has the lowest temperature distribution and the highest heat transfer impact on the rotating speeds [107]. CuO and nanofluids based on aluminum oxides were developed with the arc-submerged nanoparticle synthesis system along with the plasma charging arc system [108, 109]. Both types of nanofluids have increased the characteristics, including a greater boiling point, a greater viscosity, and a greater conductivity than conventional brake fluid. With greater viscosity, conductivity, and boiling point, the brake oil nanofluids reduce the vapor lock from occurring and offer greater safety in driving condition [110].
As IC (embedded circuit) and microelectronic parts decrease in size, the energy dissipation has risen dramatically. Better thermal management and cooling liquids are necessary for secure operation, with enhanced heat transport characteristics. Nanofluids were regarded as working liquids for electronic cooling applications in heat pipes. Tsai et al. [111] used water-based nanofluid as the operating channel for circular heat pipe. It was intended as a heat diffuser and applied in CPU of notebook or desktop PC. The findings exhibited that the nanofluid heat pipes have considerably lower thermal resistance than deionized water. The findings showed that the thermal strength of a vertical meshed heat tube differs respectively with nanoparticle size. Ma et al. [112] examined the impact of nanofluids toward oscillating heat pipe transport capability. The experimental results reveal that the temperature difference between the evaporator and the condenser decreased from 40.9 to 24.3°C at an input energy of 80 W by 1 vol% nanoparticles. Lin et al. [113] examined nanofluids using silver nanoparticles in heat pulsating pipes and found supportive outcomes. The silver nanofluid enhanced the thermal transfer properties of the heat pipes. Vafaei et al. [114] found that nanofluids are efficient in engineering surface wettability and potentially surface tension. With a goniometer, the presence of a very small bismuth telluride nanofluid concentration significantly affected the wetting features of the surface. Concentrations as low as 3 × 10−6 improved the contact angle to more than 40°, showing clearly nanoparticles affect the force balance triple line vicinity. Experimental, numerical, and theoretical studies on nanofluid prove numerous prospective applications of nanofluids are present such as electronic cooling, displays, micro devices, cameras, thermal exchangers, military, spacecraft equipment, boats, medicine, atomic reactors, fuel cell and sensor applications. The stability of nanofluids is a major challenge for nanofluid commercialization. By solving the problems, significant developments are anticipated in many applications. Further study should be conducted on numerous heat and fluid applications.
Some special types of nanoparticles possess antibacterial activity or drug delivery properties, so that nanofluids that contain these nanoparticles have certain relevant properties [110]. Organic antibacterial products, especially at high temperatures or pressures, are often less stable. Consequently, inorganic materials such as metal oxides and metal have received considerable attention in the previous decade because they are able to resist severe process circumstances. ZnO nanofluid antibacterial behavior indicates that ZnO nanofluids are bacteriostatic to
It was found that nanoparticles added to the base fluid improve the characteristics of fluids such as structure, thermal conductivity, viscosity, convective heat transfer, density, and specific heat. In our review, we have narrowed down the application of nanofluids such as solar, automobile, electronic cooling, and biomedical application. It is noticed that the physical properties of nanoparticles such as size and crystallinity are influencing the nanofluid performance during its application. For instance, Micali et al. [119] explored the possibility to reduce temperature up to 13.6% on the exhaust valve seat and up to 4.1% on the exhaust valve spindle by 2.5% volume concentration on the cylinder head and the spindle of the exhaust valve. Al-Jethelah et al. [120] discovered improvements of solar thermal applications in terms of melting process through numerical and experimental by adding nanofluids into PCM. Said et al. [121] prepared 0.3% volume fraction of Al2O3 nanofluids and dispersed into distilled water and ethylene glycol as base fluid (ratio of 50:50) and discovered that it enhances the thermal performance by 24.21%. We believe that RH-derived nanosilica will provide similar performance compared to other semiconductor nanoparticles as mentioned above. Akilu et al. [122] attained ~27% thermal conductivity enrichment at 21.1% disparagement of specific heat by using hybrid nanofluids, and SiO2-CuO (0.5–2 vol%) dispersed into base fluid (Glycerol/EG). Yao et al. [123] did the research on the boiling efficiency of Al2O3, SiO2, and their mixture with water at the ratio of 1:1. The significance of their study was its impact of pressure on the performance of boiling nanofluids. Based on the outcomes, nanofluid efficiency increased the pressure reduction. Authors also regarded the effects of nanoparticle size on the heat flux posed tiny rise while raising the nanoparticle size between 30 and 50 nm.
This book chapter collectively reviews the preparation method of rice husk nanosilica, its application as nanofluids, and nanofluid application in the industry. There are two main methods in preparing nanosilica, namely thermal and chemical methods. It is noticed that chemical method is more preferable than thermal method in terms of nanosilica purity, which is critical. The popular chemical methods widely used by the researcher are alkaline extraction and acid leaching method. It has found that utilizing solely single chemical method must follow high thermal treatment and high operating cost, which is not feasible. Thus, a combination or modification of the chemical method is required to improve the purity of nanosilica. Pre-acid treatment followed by conventional alkaline extraction presented better purity of nanosilica. The purity of nanosilica is a crucial property in nanofluid preparation, which will affect the performance of the nanofluids. There are one-step and two-step methods, which are widely adopted by the researcher in preparing nanofluids. One-step technique combines the production of nanoparticles and dispersion of nanoparticles into the base fluid with a single step. Meanwhile, in two-step method, nanoparticles are first produced and then dispersed into the base fluids. However, two-step method is preferable for rice husk nanosilica-based nanofluid preparation, which involves ultrasonic method. The application of the nanofluids has been explored such as solar application, automobile application, electronic cooling application, and biomedical application. It was found that nanofluids could improve the base fluid performance due to the additional of the nanoparticles. Even though the review focused on semiconductor-based nanofluids, we believe that rice husk nanosilica-based nanofluids could also have the similar trends of performance. Gradually, the awareness on the usage of “green” material in the product is rising, and rice husk nanosilica could be an ideal candidate as nanoparticle and nanofluid application.
Unsubscribe unsuccessful, no matching records found in our database.
",metaTitle:"Unsubscribe Unsuccessful",metaDescription:"Unsubscribe unsuccessful, no matching records found in our database.",metaKeywords:null,canonicalURL:"/page/unsubscribe-unsuccessful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15913}],offset:12,limit:12,total:119061},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndSecondStepPublish"},books:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10689",title:"Risk Management in Construction",subtitle:null,isOpenForSubmission:!0,hash:"e3805b3d2fceb9d33e1fa805687cd296",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10689.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Calorimetry - New Advances",subtitle:null,isOpenForSubmission:!0,hash:"bb239599406f0b731bbfd62c1c8dbf3f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10712",title:"Thrombectomy",subtitle:null,isOpenForSubmission:!0,hash:"853e71d74c3dd5007277d3770e639d47",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10712.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10715",title:"Brain MRI",subtitle:null,isOpenForSubmission:!0,hash:"6d56c88c53776966959f41f8b75daafd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10715.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10730",title:"Extracorporeal Membrane Oxygenation",subtitle:null,isOpenForSubmission:!0,hash:"2ac3ed12d9db14ee4bc66d7808c82295",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:26},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:45},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:214},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1021",title:"Hepatology",slug:"gastroenterology-hepatology",parent:{title:"Gastroenterology",slug:"gastroenterology"},numberOfBooks:56,numberOfAuthorsAndEditors:1687,numberOfWosCitations:492,numberOfCrossrefCitations:385,numberOfDimensionsCitations:921,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"gastroenterology-hepatology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7888",title:"Hepatitis A and Other Associated Hepatobiliary Diseases",subtitle:null,isOpenForSubmission:!1,hash:"e027bb08025546d9beb242d55e87c84c",slug:"hepatitis-a-and-other-associated-hepatobiliary-diseases",bookSignature:"Costin Teodor Streba, Cristin Constantin Vere, Ion Rogoveanu, Valeria Tripodi and Silvia Lucangioli",coverURL:"https://cdn.intechopen.com/books/images_new/7888.jpg",editedByType:"Edited by",editors:[{id:"55546",title:"Dr.",name:"Costin Teodor",middleName:"Teodor",surname:"Streba",slug:"costin-teodor-streba",fullName:"Costin Teodor Streba"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,isOpenForSubmission:!1,hash:"8dd6dab483cf505d83caddaeaf497f2c",slug:"hepatitis-b-and-c",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8330",title:"Nonalcoholic Fatty Liver Disease",subtitle:"An Update",isOpenForSubmission:!1,hash:"d0f8ff2a0673b7be22f7e7c531a2e410",slug:"nonalcoholic-fatty-liver-disease-an-update",bookSignature:"Emad Hamdy Gad",coverURL:"https://cdn.intechopen.com/books/images_new/8330.jpg",editedByType:"Edited by",editors:[{id:"222727",title:"Associate Prof.",name:"Emad Hamdy",middleName:null,surname:"Gad",slug:"emad-hamdy-gad",fullName:"Emad Hamdy Gad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8838",title:"Liver Cirrhosis",subtitle:"Debates and Current Challenges",isOpenForSubmission:!1,hash:"17163eb18a082da0fe70ccc20b7fe69a",slug:"liver-cirrhosis-debates-and-current-challenges",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/8838.jpg",editedByType:"Edited by",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6718",title:"Hepatitis C",subtitle:"From Infection to Cure",isOpenForSubmission:!1,hash:"7448805e61bfa52ce552c427ad6f16fc",slug:"hepatitis-c-from-infection-to-cure",bookSignature:"Imran Shahid",coverURL:"https://cdn.intechopen.com/books/images_new/6718.jpg",editedByType:"Edited by",editors:[{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6663",title:"Management of Chronic Liver Diseases",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"833ebcb9a2596f81deff0246ed7c9642",slug:"management-of-chronic-liver-diseases-recent-advances",bookSignature:"Xingshun Qi",coverURL:"https://cdn.intechopen.com/books/images_new/6663.jpg",editedByType:"Edited by",editors:[{id:"197501",title:"Dr.",name:"Xingshun",middleName:null,surname:"Qi",slug:"xingshun-qi",fullName:"Xingshun Qi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6440",title:"Liver Research and Clinical Management",subtitle:null,isOpenForSubmission:!1,hash:"e4bbd66ccead286ab737f23feb053cf8",slug:"liver-research-and-clinical-management",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/6440.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6073",title:"Non-Alcoholic Fatty Liver Disease",subtitle:"Molecular Bases, Prevention and Treatment",isOpenForSubmission:!1,hash:"6141320881651ddc40a3f35893c209e7",slug:"non-alcoholic-fatty-liver-disease-molecular-bases-prevention-and-treatment",bookSignature:"Rodrigo Valenzuela",coverURL:"https://cdn.intechopen.com/books/images_new/6073.jpg",editedByType:"Edited by",editors:[{id:"72355",title:"Prof.",name:"Rodrigo",middleName:null,surname:"Valenzuela Baez",slug:"rodrigo-valenzuela-baez",fullName:"Rodrigo Valenzuela Baez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5931",title:"Stomach Disorders",subtitle:null,isOpenForSubmission:!1,hash:"489f823dd49e3fa397e477a8101ca4ff",slug:"stomach-disorders",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/5931.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5714",title:"Esophageal Abnormalities",subtitle:null,isOpenForSubmission:!1,hash:"132a5e5097b78a76535fde4196596ac9",slug:"esophageal-abnormalities",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/5714.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6061",title:"Ascites",subtitle:"Physiopathology, Treatment, Complications and Prognosis",isOpenForSubmission:!1,hash:"ead9b3e5c36413f9ff2c3129fbc57574",slug:"ascites-physiopathology-treatment-complications-and-prognosis",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/6061.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6014",title:"Update on Hepatitis C",subtitle:null,isOpenForSubmission:!1,hash:"b812442f63938a061f1c84b2338bb187",slug:"update-on-hepatitis-c",bookSignature:"Martina Smolic, Aleksandar Vcev and George Y. Wu",coverURL:"https://cdn.intechopen.com/books/images_new/6014.jpg",editedByType:"Edited by",editors:[{id:"172734",title:"Dr.",name:"Martina",middleName:null,surname:"Smolic",slug:"martina-smolic",fullName:"Martina Smolic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:56,mostCitedChapters:[{id:"46479",doi:"10.5772/57353",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:2046,totalCrossrefCites:85,totalDimensionsCites:196,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]},{id:"22945",doi:"10.5772/17640",title:"Pathophysiology of Gastric Ulcer Development and Healing: Molecular Mechanisms and Novel Therapeutic Options",slug:"pathophysiology-of-gastric-ulcer-development-and-healing-molecular-mechanisms-and-novel-therapeutic-",totalDownloads:11792,totalCrossrefCites:8,totalDimensionsCites:21,book:{slug:"peptic-ulcer-disease",title:"Peptic Ulcer Disease",fullTitle:"Peptic Ulcer Disease"},signatures:"Matteo Fornai, Luca Antonioli, Rocchina Colucci, Marco Tuccori and Corrado Blandizzi",authors:[{id:"28973",title:"Prof.",name:"Corrado",middleName:null,surname:"Blandizzi",slug:"corrado-blandizzi",fullName:"Corrado Blandizzi"},{id:"44227",title:"Dr.",name:"Matteo",middleName:null,surname:"Fornai",slug:"matteo-fornai",fullName:"Matteo Fornai"},{id:"44229",title:"Dr.",name:"Luca",middleName:null,surname:"Antonioli",slug:"luca-antonioli",fullName:"Luca Antonioli"},{id:"44230",title:"Dr.",name:"Rocchina",middleName:null,surname:"Colucci",slug:"rocchina-colucci",fullName:"Rocchina Colucci"},{id:"44231",title:"Dr.",name:"Marco",middleName:null,surname:"Tuccori",slug:"marco-tuccori",fullName:"Marco Tuccori"}]},{id:"35446",doi:"10.5772/47946",title:"Delivery of Probiotic Microorganisms into Gastrointestinal Tract by Food Products",slug:"delivery-of-probiotic-microorganisms-into-gastrointestinal-tract-by-food-products",totalDownloads:5861,totalCrossrefCites:0,totalDimensionsCites:19,book:{slug:"new-advances-in-the-basic-and-clinical-gastroenterology",title:"New Advances in the Basic and Clinical Gastroenterology",fullTitle:"New Advances in the Basic and Clinical Gastroenterology"},signatures:"Amir Mohammad Mortazavian, Reza Mohammadi and Sara Sohrabvandi",authors:[{id:"97458",title:"Dr.",name:"Amir M.",middleName:null,surname:"Mortazavian",slug:"amir-m.-mortazavian",fullName:"Amir M. Mortazavian"},{id:"99974",title:"Dr.",name:"Sarah",middleName:null,surname:"Sohrabvandi",slug:"sarah-sohrabvandi",fullName:"Sarah Sohrabvandi"}]}],mostDownloadedChaptersLast30Days:[{id:"45493",title:"Biliary Dyspepsia: Functional Gallbladder and Sphincter of Oddi Disorders",slug:"biliary-dyspepsia-functional-gallbladder-and-sphincter-of-oddi-disorders",totalDownloads:5553,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"dyspepsia-advances-in-understanding-and-management",title:"Dyspepsia",fullTitle:"Dyspepsia - Advances in Understanding and Management"},signatures:"Meena Mathivanan, Liisa Meddings and Eldon A. Shaffer",authors:[{id:"165693",title:"Dr.",name:"Eldon",middleName:null,surname:"Shaffer",slug:"eldon-shaffer",fullName:"Eldon Shaffer"}]},{id:"56262",title:"Anatomy of Esophagus",slug:"anatomy-of-esophagus",totalDownloads:2872,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Murat Ferhat Ferhatoglu and Taner Kıvılcım",authors:[{id:"200126",title:"M.D.",name:"Murat Ferhat",middleName:null,surname:"Ferhatoglu",slug:"murat-ferhat-ferhatoglu",fullName:"Murat Ferhat Ferhatoglu"},{id:"206240",title:"Dr.",name:"Taner",middleName:null,surname:"Kivilcim",slug:"taner-kivilcim",fullName:"Taner Kivilcim"}]},{id:"56068",title:"Minimally Invasive Esophagectomy",slug:"minimally-invasive-esophagectomy",totalDownloads:924,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Rafael Cholvi Calduch, Isabel Mora Oliver, Fernando Lopez Mozos\nand Roberto Martí Obiol",authors:[{id:"203292",title:"Ph.D.",name:"Fernando",middleName:null,surname:"Lopez",slug:"fernando-lopez",fullName:"Fernando Lopez"},{id:"203687",title:"Dr.",name:"Roberto",middleName:null,surname:"Martí",slug:"roberto-marti",fullName:"Roberto Martí"},{id:"204943",title:"Dr.",name:"Rafael",middleName:null,surname:"Cholvi",slug:"rafael-cholvi",fullName:"Rafael Cholvi"},{id:"204944",title:"Dr.",name:"Isabel",middleName:null,surname:"Mora",slug:"isabel-mora",fullName:"Isabel Mora"}]},{id:"21425",title:"Histopathological Diagnosis of Non-Alcoholic and Alcoholic Fatty Liver Disease",slug:"histopathological-diagnosis-of-non-alcoholic-and-alcoholic-fatty-liver-disease",totalDownloads:2948,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"liver-biopsy-in-modern-medicine",title:"Liver Biopsy in Modern Medicine",fullTitle:"Liver Biopsy in Modern Medicine"},signatures:"Andrea Tannapfel and Berenike Flott-Rahmel",authors:[{id:"34863",title:"Dr.",name:"Andrea",middleName:null,surname:"Tannapfel",slug:"andrea-tannapfel",fullName:"Andrea Tannapfel"},{id:"53108",title:"Prof.",name:"Berenike",middleName:null,surname:"Flott-Rahmel",slug:"berenike-flott-rahmel",fullName:"Berenike Flott-Rahmel"}]},{id:"55879",title:"Portal Hypertensive Gastropathy (PHG)",slug:"portal-hypertensive-gastropathy-phg-",totalDownloads:1115,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"stomach-disorders",title:"Stomach Disorders",fullTitle:"Stomach Disorders"},signatures:"Samia Ali Gamie",authors:[{id:"204157",title:"Prof.",name:"Samia",middleName:null,surname:"Ali Abdo Gamie",slug:"samia-ali-abdo-gamie",fullName:"Samia Ali Abdo Gamie"}]},{id:"57005",title:"Health-Related Quality of Life in Antiviral-Treated Chronic Hepatitis C Patients",slug:"health-related-quality-of-life-in-antiviral-treated-chronic-hepatitis-c-patients",totalDownloads:988,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"update-on-hepatitis-c",title:"Update on Hepatitis C",fullTitle:"Update on Hepatitis C"},signatures:"Aleksandar Včev, Jelena Jakab, Lucija Kuna and Martina Smolić",authors:[{id:"154595",title:"Prof.",name:"Aleksandar",middleName:null,surname:"Vcev",slug:"aleksandar-vcev",fullName:"Aleksandar Vcev"},{id:"172734",title:"Dr.",name:"Martina",middleName:null,surname:"Smolic",slug:"martina-smolic",fullName:"Martina Smolic"},{id:"204953",title:"Ms.",name:"Lucija",middleName:null,surname:"Kuna",slug:"lucija-kuna",fullName:"Lucija Kuna"},{id:"205159",title:"Dr.",name:"Jelena",middleName:null,surname:"Jakab",slug:"jelena-jakab",fullName:"Jelena Jakab"}]},{id:"55818",title:"Tissue Engineering of Esophagus",slug:"tissue-engineering-of-esophagus",totalDownloads:998,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Yabin Zhu, Mi Zhou and Ruixia Hou",authors:[{id:"40618",title:"Prof.",name:"Yabin",middleName:null,surname:"Zhu",slug:"yabin-zhu",fullName:"Yabin Zhu"}]},{id:"55045",title:"Hemodynamic Optimization Strategies in Anesthesia Care for Liver Transplantation",slug:"hemodynamic-optimization-strategies-in-anesthesia-care-for-liver-transplantation",totalDownloads:1298,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"liver-cirrhosis-update-and-current-challenges",title:"Liver Cirrhosis",fullTitle:"Liver Cirrhosis - Update and Current Challenges"},signatures:"Alexander A. Vitin, Dana Tomescu and Leonard Azamfirei",authors:[{id:"201176",title:"Associate Prof.",name:"Alexander",middleName:null,surname:"Vitin",slug:"alexander-vitin",fullName:"Alexander Vitin"},{id:"202442",title:"Dr.",name:"Dana",middleName:null,surname:"Tomescu",slug:"dana-tomescu",fullName:"Dana Tomescu"},{id:"202600",title:"Prof.",name:"Leonard",middleName:null,surname:"Azamfirei",slug:"leonard-azamfirei",fullName:"Leonard Azamfirei"}]},{id:"56177",title:"Nutritional Management of Esophageal Cancer Patients",slug:"nutritional-management-of-esophageal-cancer-patients",totalDownloads:1240,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Dimitrios Schizas, Irene Lidoriki, Demetrios Moris and Theodore\nLiakakos",authors:[{id:"203349",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Schizas",slug:"dimitrios-schizas",fullName:"Dimitrios Schizas"},{id:"204000",title:"MSc.",name:"Irene",middleName:null,surname:"Lidoriki",slug:"irene-lidoriki",fullName:"Irene Lidoriki"},{id:"204001",title:"Dr.",name:"Demetrios",middleName:null,surname:"Moris",slug:"demetrios-moris",fullName:"Demetrios Moris"},{id:"204002",title:"Prof.",name:"Theodore",middleName:null,surname:"Liakakos",slug:"theodore-liakakos",fullName:"Theodore Liakakos"}]},{id:"46479",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:2046,totalCrossrefCites:86,totalDimensionsCites:196,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]}],onlineFirstChaptersFilter:{topicSlug:"gastroenterology-hepatology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/149745/hoda-kattan",hash:"",query:{},params:{id:"149745",slug:"hoda-kattan"},fullPath:"/profiles/149745/hoda-kattan",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()