Fluid properties
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"7760",leadTitle:null,fullTitle:"Structure Processing Properties Relationships in Stoichiometric and Nonstoichiometric Oxides",title:"Structure Processing Properties Relationships in Stoichiometric and Nonstoichiometric Oxides",subtitle:null,reviewType:"peer-reviewed",abstract:"The interrelation among composition, microstructure, and properties of stoichiometric and nonstoichiometric compounds is a major field of research for both scientific and technological reasons. As such, this book focuses on metal oxides, which present a large diversity of electrical, magnetic, optical, optoelectronic, thermal, electrochemical, and catalytic properties, making them suitable for a wide range of applications. By bringing together scientific contributions with special emphasis on the interrelations between materials chemistry, processing, microstructures, and properties of stoichiometric and nonstoichiometric metal oxides, this book highlights the importance of tightly integrating high-throughput experiments (including both synthesis and characterization) and efficient and robust theory for the design of advanced materials.",isbn:"978-1-78985-452-7",printIsbn:"978-1-78985-451-0",pdfIsbn:"978-1-83969-130-0",doi:"10.5772/intechopen.77573",price:119,priceEur:129,priceUsd:155,slug:"structure-processing-properties-relationships-in-stoichiometric-and-nonstoichiometric-oxides",numberOfPages:102,isOpenForSubmission:!1,isInWos:null,hash:"e41f9a3546e36dbf70a36974f74e9845",bookSignature:"Speranta Tanasescu",publishedDate:"November 4th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/7760.jpg",numberOfDownloads:1363,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,hasAltmetrics:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 28th 2019",dateEndSecondStepPublish:"March 14th 2019",dateEndThirdStepPublish:"May 13th 2019",dateEndFourthStepPublish:"August 1st 2019",dateEndFifthStepPublish:"September 30th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"24934",title:"Dr.",name:"Speranta",middleName:null,surname:"Tanasescu",slug:"speranta-tanasescu",fullName:"Speranta Tanasescu",profilePictureURL:"https://mts.intechopen.com/storage/users/24934/images/system/24934.jpg",biography:"Speranta Tanasescu, PhD, is Senior Researcher I and head of the Laboratory of Chemical Thermodynamics in the “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Bucharest. Dr. Tanasescu obtained a PhD in Physical Chemistry from the Romanian Academy in 1979 and has served as a supervisor in chemistry since 2002. She received the “Gh. Spacu” Award from the Romanian Academy in 1972. Her thematic research focuses on activities with impact in the following domains: materials science, nanoscience and nanotechnologies, new sources of energies, nanosafety, and nanomedicine. Her research is significant for understanding processing-structure relationships as well as for finding key parameters in relation to bio-reactivity of the nanomaterials with impact in both nanosafety and nanomedicine research.",institutionString:"Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Romanian Academy",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"492",title:"Solid-State Chemistry",slug:"chemistry-inorganic-chemistry-solid-state-chemistry"}],chapters:[{id:"72732",title:"Introductory Chapter: Structure-Processing-Properties Relationships in Stoichiometric and Nonstoichiometric Oxides",doi:"10.5772/intechopen.92861",slug:"introductory-chapter-structure-processing-properties-relationships-in-stoichiometric-and-nonstoichio",totalDownloads:208,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Speranta Tanasescu",downloadPdfUrl:"/chapter/pdf-download/72732",previewPdfUrl:"/chapter/pdf-preview/72732",authors:[{id:"24934",title:"Dr.",name:"Speranta",surname:"Tanasescu",slug:"speranta-tanasescu",fullName:"Speranta Tanasescu"}],corrections:null},{id:"70119",title:"Role of Neutron Diffraction in Identifying Stoichiometry and Nonstoichiometry in the Compounds",doi:"10.5772/intechopen.89461",slug:"role-of-neutron-diffraction-in-identifying-stoichiometry-and-nonstoichiometry-in-the-compounds",totalDownloads:162,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Som Datta Kaushik and Anil Kumar Singh",downloadPdfUrl:"/chapter/pdf-download/70119",previewPdfUrl:"/chapter/pdf-preview/70119",authors:[{id:"298294",title:"Dr.",name:"S D",surname:"Kaushik",slug:"s-d-kaushik",fullName:"S D Kaushik"},{id:"313769",title:"Dr.",name:"A. K.",surname:"Singh",slug:"a.-k.-singh",fullName:"A. K. Singh"}],corrections:null},{id:"69391",title:"On Application of Hyperfree Energy for the Description of Thermodynamics of Mobile Components in Nonstoichiometric Partially Open Ceramic Systems",doi:"10.5772/intechopen.89584",slug:"on-application-of-hyperfree-energy-for-the-description-of-thermodynamics-of-mobile-components-in-non",totalDownloads:189,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jaroslav Šesták",downloadPdfUrl:"/chapter/pdf-download/69391",previewPdfUrl:"/chapter/pdf-preview/69391",authors:[{id:"302126",title:"Emeritus Prof.",name:"Jaroslav",surname:"Sestak",slug:"jaroslav-sestak",fullName:"Jaroslav Sestak"}],corrections:null},{id:"69496",title:"Nonstoichiometry Role on the Properties of Quantum-Paraelectric Ceramics",doi:"10.5772/intechopen.89499",slug:"nonstoichiometry-role-on-the-properties-of-quantum-paraelectric-ceramics",totalDownloads:206,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Alexander Tkach and Paula M. Vilarinho",downloadPdfUrl:"/chapter/pdf-download/69496",previewPdfUrl:"/chapter/pdf-preview/69496",authors:[{id:"24957",title:"Prof.",name:"Paula",surname:"Vilarinho",slug:"paula-vilarinho",fullName:"Paula Vilarinho"}],corrections:null},{id:"73533",title:"Thermodynamic Stability and Microscopic Behavior of BaxSr1-xCo1-yFeyO3-δ Perovskites",doi:"10.5772/intechopen.94028",slug:"thermodynamic-stability-and-microscopic-behavior-of-ba-sub-x-sub-sr-sub-1-x-sub-co-sub-1-y-sub-fe-su",totalDownloads:132,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Florentina Maxim, Alina Botea-Petcu, Florina Teodorescu, Ludwig J. Gauckler and Speranta Tanasescu",downloadPdfUrl:"/chapter/pdf-download/73533",previewPdfUrl:"/chapter/pdf-preview/73533",authors:[{id:"24934",title:"Dr.",name:"Speranta",surname:"Tanasescu",slug:"speranta-tanasescu",fullName:"Speranta Tanasescu"},{id:"321069",title:"Dr.",name:"Florina",surname:"Teodorescu",slug:"florina-teodorescu",fullName:"Florina Teodorescu"},{id:"323964",title:"Dr.",name:"Florentina",surname:"Maxim",slug:"florentina-maxim",fullName:"Florentina Maxim"},{id:"323965",title:"Dr.",name:"Alina",surname:"Botea-Petcu",slug:"alina-botea-petcu",fullName:"Alina Botea-Petcu"},{id:"323968",title:"Prof.",name:"Ludwig J.",surname:"Gauckler",slug:"ludwig-j.-gauckler",fullName:"Ludwig J. Gauckler"}],corrections:null},{id:"70161",title:"Stoichiometric and Nonstoichiometric Compounds",doi:"10.5772/intechopen.89402",slug:"stoichiometric-and-nonstoichiometric-compounds",totalDownloads:466,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Paras Dubey and Netram Kaurav",downloadPdfUrl:"/chapter/pdf-download/70161",previewPdfUrl:"/chapter/pdf-preview/70161",authors:[{id:"277555",title:"Dr.",name:"Netram",surname:"Kaurav",slug:"netram-kaurav",fullName:"Netram Kaurav"},{id:"299545",title:"Mr.",name:"Paras",surname:"Dubey",slug:"paras-dubey",fullName:"Paras Dubey"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"2283",title:"Advances in Crystallization Processes",subtitle:null,isOpenForSubmission:!1,hash:"fbac03612cea22d52fd05bd8ebace89c",slug:"advances-in-crystallization-processes",bookSignature:"Yitzhak Mastai",coverURL:"https://cdn.intechopen.com/books/images_new/2283.jpg",editedByType:"Edited by",editors:[{id:"41724",title:"Prof.",name:"Yitzhak",surname:"Mastai",slug:"yitzhak-mastai",fullName:"Yitzhak Mastai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1980",title:"Crystallization",subtitle:"Science and Technology",isOpenForSubmission:!1,hash:"b512238b6bad61510871f4871c41dafe",slug:"crystallization-science-and-technology",bookSignature:"Marcello Rubens Barsi Andreeta",coverURL:"https://cdn.intechopen.com/books/images_new/1980.jpg",editedByType:"Edited by",editors:[{id:"114928",title:"Dr.",name:"Marcello",surname:"Andreeta",slug:"marcello-andreeta",fullName:"Marcello Andreeta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"914",title:"Current Trends in X-Ray Crystallography",subtitle:null,isOpenForSubmission:!1,hash:"3affdb143c8dd481536ecb0531969cc0",slug:"current-trends-in-x-ray-crystallography",bookSignature:"Annamalai Chandrasekaran",coverURL:"https://cdn.intechopen.com/books/images_new/914.jpg",editedByType:"Edited by",editors:[{id:"72043",title:"Dr.",name:"Annamalai",surname:"Chandrasekaran",slug:"annamalai-chandrasekaran",fullName:"Annamalai Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6407",title:"Application of Titanium Dioxide",subtitle:null,isOpenForSubmission:!1,hash:"fdb4aecdbffe5d2f4415d8b36d71143d",slug:"application-of-titanium-dioxide",bookSignature:"Magdalena Janus",coverURL:"https://cdn.intechopen.com/books/images_new/6407.jpg",editedByType:"Edited by",editors:[{id:"199458",title:"Dr.",name:"Magdalena",surname:"Janus",slug:"magdalena-janus",fullName:"Magdalena Janus"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5211",title:"Chemical Vapor Deposition",subtitle:"Recent Advances and Applications in Optical, Solar Cells and Solid State Devices",isOpenForSubmission:!1,hash:"dc03fdc6ad1c27ebfcb54e337cbf03ce",slug:"chemical-vapor-deposition-recent-advances-and-applications-in-optical-solar-cells-and-solid-state-devices",bookSignature:"Sudheer Neralla",coverURL:"https://cdn.intechopen.com/books/images_new/5211.jpg",editedByType:"Edited by",editors:[{id:"128532",title:null,name:"Sudheer",surname:"Neralla",slug:"sudheer-neralla",fullName:"Sudheer Neralla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4531",title:"Advanced Topics in Crystallization",subtitle:null,isOpenForSubmission:!1,hash:"c1b75a72987c71a8eb02ddb014b99882",slug:"advanced-topics-in-crystallization",bookSignature:"Yitzhak Mastai",coverURL:"https://cdn.intechopen.com/books/images_new/4531.jpg",editedByType:"Edited by",editors:[{id:"41724",title:"Prof.",name:"Yitzhak",surname:"Mastai",slug:"yitzhak-mastai",fullName:"Yitzhak Mastai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1509",title:"Supercooling",subtitle:null,isOpenForSubmission:!1,hash:"10935f2552a4b6f2c3045da88ebcb199",slug:"supercooling",bookSignature:"Peter Wilson",coverURL:"https://cdn.intechopen.com/books/images_new/1509.jpg",editedByType:"Edited by",editors:[{id:"92584",title:"Prof.",name:"Peter",surname:"Wilson",slug:"peter-wilson",fullName:"Peter Wilson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5985",title:"Titanium Dioxide",subtitle:null,isOpenForSubmission:!1,hash:"5d5a07758249f9e02ca1b83ee1f8efef",slug:"titanium-dioxide",bookSignature:"Magdalena Janus",coverURL:"https://cdn.intechopen.com/books/images_new/5985.jpg",editedByType:"Edited by",editors:[{id:"199458",title:"Dr.",name:"Magdalena",surname:"Janus",slug:"magdalena-janus",fullName:"Magdalena Janus"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4783",title:"Apatites and their Synthetic Analogues",subtitle:"Synthesis, Structure, Properties and Applications",isOpenForSubmission:!1,hash:"d435b3984fa4d5d2d6921679511fe384",slug:"apatites-and-their-synthetic-analogues-synthesis-structure-properties-and-applications",bookSignature:"Petr Ptacek",coverURL:"https://cdn.intechopen.com/books/images_new/4783.jpg",editedByType:"Authored by",editors:[{id:"76186",title:"Associate Prof.",name:"Petr",surname:"Ptáček",slug:"petr-ptacek",fullName:"Petr Ptáček"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"2779",title:"Tungsten Carbide",subtitle:"Processing and Applications",isOpenForSubmission:!1,hash:"f0be5d1ab810ad901c2866bc030a903f",slug:"tungsten-carbide-processing-and-applications",bookSignature:"Kui Liu",coverURL:"https://cdn.intechopen.com/books/images_new/2779.jpg",editedByType:"Edited by",editors:[{id:"137537",title:"Dr.",name:"Kui",surname:"Liu",slug:"kui-liu",fullName:"Kui Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66066",slug:"erratum-microbial-responses-to-different-operating-practices-for-biogas-production-systems",title:"Erratum - Microbial Responses to Different Operating Practices for Biogas Production Systems",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66066.pdf",downloadPdfUrl:"/chapter/pdf-download/66066",previewPdfUrl:"/chapter/pdf-preview/66066",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66066",risUrl:"/chapter/ris/66066",chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]}},chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]},book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9858",leadTitle:null,title:"Climate and Ecology of Holocene",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"e4f2d361bf0521f27d50aab719db5045",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9858.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 6th 2019",dateEndSecondStepPublish:"June 27th 2019",dateEndThirdStepPublish:"August 26th 2019",dateEndFourthStepPublish:"November 14th 2019",dateEndFifthStepPublish:"January 13th 2020",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40621",title:"Conjugate Heat Transfer in Ribbed Cylindrical Channels",doi:"10.5772/49942",slug:"conjugate-heat-transfer-in-ribbed-cylindrical-channels",body:'In the last years, many technological advances have emerged in the turbo machinery industry, mainly in the area of power generation using gas turbines [1]. The main target in this science field consists on designing and building more efficient machines with a higher life-time by means of applied research. However, in order to achieve this, it is necessary that the gas turbine operates at high compression pressure ratios as well as high turbine inlet temperatures (TIT), but these operating conditions generate thermal consequences or degradations in the gas turbine components that are exposed to the high temperatures, like blades and vanes of the first stage. For this reason, it is necessary to have an internal cooling system in gas turbines to avoid the reduction of the useful life of their hot components, since the useful life of turbine blades is reduced to half with every 10 – 15 ºC rise in metal temperature [2]. Nowadays basic methods exist, which improve the gas turbines operating conditions, having as a result improvements of the external cooling [3], where the use of micro-jets with smaller diameters enhanced the overall heat transfer coefficient, or internal cooling where square ribbed channels are employed to study the thermal behaviour of the flow inside the channel [4], turbulence promoters with different geometries to study the temperature distribution in the gas turbine blades [5]. Also, it is possible using serpentine passages inside the turbine blade to improve internal convective cooling [6], ribs in the internal surface of the cooling passages where the rib-to-rib pitch and angle of attack that yield a maximum heat transfer and maximum thermal performance are determined [7] or ribs as turbulence promoters to increase the rate of heat transfer [8]. To increase the heat transfer with minimal friction in compact heat exchangers, the internal surfaces are ribbed with protuberances that have convex and concave forms [9]. To study the heat transfer characteristics of laminar flow in parallel-plate dimpled channels are used [10] or square-channel fitted with baffles [11]. However, a common way to increase the internal cooling efficiency in gas turbines is to add ribs, this method offers a better mixed fluid near to the hot internal surface of the channel thus increasing the thermal heat transfer. The present study shows a numerical analysis of the first stage blades in a gas turbine with internal cooling system (model MS7001E) applying the conjugated heat transfer. This method considers the direct coupling of fluid flow and solid body using the same mesh distribution and numerical principles for both domains. This coupling is achieved by using boundary conditions called double-side wall.
The numerical analysis of a gas turbine at first stage blade with internal cooling system considers the solution of the conjugate heat transfer in steady state between the hot combustion gases flowing around the blade and the coolant flowing inside the cooling channels of gas turbine blades. The following assumptions are made to model the conjugate heat transfer problem:
Newtonian fluid,
Compressible and turbulent flow
Rotational frame with relative velocity formulation
Fluid is considered as an ideal gas.
The applied governing equations are the 3D Reynolds-averaged Navier-Stokes equations [12], which were solved by commercial Computational Fluid Dynamics software [13]. The governing equations solved by the model are:
Continuity equation
Momentum equation
where Fi is the source term which includes contributions due to the body force. Assuming constant rotational velocity with relative velocity formulation, the source terms due to rotation are:
The term ij is the stress tensor, which is expressed as:
Energy equations
The energy equation for the fluid domain is given by
where\n\t\t\t\t\t is the viscous heating dissipation and
where λsolid is the thermal conductivity. Equations (5) and (6) are solved simultaneously by a conjugate heat transfer analysis. This permits to yield a fully coupled conduction-convection heat transfer prediction.
Turbulence model
Since the behaviour of the flow in the gas turbine is very chaotic, it is necessary to incorporate a turbulence model in the numerical analysis to determine the Reynolds stresses. The Standard k-ε model was used, which relates the Reynolds stresses to the mean velocity by the Boussinesq hypothesis [13]:
The eddy turbulent viscosity, µt, is calculated by the combination of the turbulent kinetic energy (k) and the dissipation ratio (ε), as shown by equation (8).
where C is a constant. This model offers a reasonable accuracy for a wide range of turbulent flows in practical engineering problems, in which the turbulent kinetic energy, k, and its dissipation ratio, ε, are obtained from the following transport equations:
In these equations, Gk represents the generation of turbulent kinetic energy due to the mean velocity gradients, Gb is the generation of turbulent kinetic energy due to buoyancy, and the quantities σk and σε are the turbulent Prandtl numbers for k and ε, respectively. The empirical constants appearing in the above equations take the following values: C = 0.09, C1ε = 1.44, C2ε = 1.92, σk = 1.0 and σε = 1.3 [13].
Equation of state
The density variation in both fluids, the hot combustion gases and cooling air, is assumed according to the gas ideal law:
where R is the gas constant. This equation of state provides the linkage between the energy equation on one side, and the mass conservation and moment equations on the other. This linkage emerges from the density variations.
The computational model and mesh were generated in the pre-processor GAMBIT [14]. In order to avoid many simplifications in the computational model, such as the use of boundary conditions at surfaces and outlets of the cooling channels, the computational model was generated using the total blade geometry, which includes the plenum, gap in the tip, gaps between the seal and the plenum and the ribbed cooling channels. Figure 1 shows the rotor blade geometry at the first stage of the gas turbine MS7001E.
In this Figure the internal cooling system can be seen. This system has 13 cylindrical channels inside the blade. The ribs were placed on the inner surface of the cooling channels in order to increase the heat transfer from the solid body to the cooling air. Also, in Figure 1 can be seen that the ribs were only placed in the middle blade zone inside the cooling channels; because in this zone the largest temperature gradient is present [15], causing failure such as cracks in the blade structure [16].
Three different geometries of rib configurations are studied, which are square, triangular and semi-circular forms. The ribs are placed perpendicularly to the air flow. Figure 2 shows a sketch of the different rib parameters used in the square cross-section ribs. These parameters are used for the other two geometries (triangular and semi-circular). Moreover, these configurations are applied for both arrangements (full and half-ribs). Figure 3 shows the form and parameters of the ribs cross-section.
Blade geometry with plenum and its internal features (ribbed cooling channels)
Sketch of different arrays to study the effect of the ribs
Cross-section of the ribs
Due to complexity of the geometry, different computational grid sizes are required. These grids are not uniform in all directions and were structured by mixing different types of cells (hexahedral and prismatic elements). For the grid used in the blade computational model with smooth cooling channels, the mesh density is high in the near-wall region of the blade body. The first wall-adjacent cells height in the vicinity of regions corresponding to the leading and trailing edge as well as in the suction and pressure side of the blade is 0.0012 mm, while in the region corresponding to the internal cooling channels, the wall-adjacent cell height is 0.0035 mm. This is developed in order to get a better solution into the boundary layer, obtaining y+ values closer to unity along the surfaces (ranging from 1 to 5.5). An analysis to evaluate the grid independence of the numerical solution was developed. The computational grid has a total of 3809734 mixed cells, 80% of this total corresponding to fluid (33% air and 47% hot gases) and 20% to solid. Figure 4 shows the grid used in this case. It can be observed, that the hot combustion gases domain presents a high quantity of hexahedral elements.
Computational grid for hot combustion gas (red), blade (gray) and cooling air (blue) domains
For the blade models with ribbed cooling channels, the same grid distribution was used at the region of hot combustion gases and the external blade surface. The height of the first wall-adjacent cells in the vicinity of regions corresponding to ribbed cooling channels was of 0.002 mm, obtaining y+ values less than 5 for all the analyzed rib configurations. The computational grid used ranges from 6.5 to 7.5 million of mixed cells. Figure 5 shows the grids used in the internal cooling channels with full-ribs having an aspect ratio of P/e = 10.
Computational grid for cooling channels domain with full-ribs with P/e = 10. (a) channels and surfaces, (b) cooling air and (c) ribs
For the models with half-ribs, it was used the same grid distribution showed in the Figure 5, having a small variation in the ribs domains, defining one half of the domain as fluid and the other half as solid. Figure 6 shows the grid used in the internal cooling channels with half-ribs having an aspect ratio of P/e = 10.
Computational grid for cooling channels domain with half-ribs with P/e = 10
The boundary conditions used for the computational model with smooth cooling channels are defined according to approximate values of the gas turbine operating conditions in steady state. Figure 7 shows the boundary conditions used in the computational model.
Boundary conditions in the model of a gas turbine blade
In the hot combustion gases inlet, the operational conditions are: mass flow of 2.47 kg/s, static pressure of 508700 Pa and total temperature profile is a function of the radial coordinate. This total temperature profile is described by the next equation [17]:
This total temperature profile is imposed in order to match the oxidation mark of hot combustion gases over the airfoil of the blade, which has been operating until the end of its useful life [18], and because this profile is similar to the one obtained in the radial edge direction of the exit of the transition piece. Figure 8 shows the oxidation marks on the blade.
The units for the independent variables of Equation 12 are: (m) for the rotational radius and (K) for the total temperature. The turbulence quantities at the inlet of the model are defined using a turbulence intensity of 5% and 0.006 m for turbulent length scale.
A mass flow of 0.0048 kg/s of air, a static pressure of 897300 Pa, and a total temperature of 853.15 K were specified for each inlet zones of the thirteen cooling channels. Also, turbulence parameters are defined using a turbulence intensity of 5% and a hydraulic diameter of 0.004 m for these boundaries. At the left and right sides of the plenum inlets of cooling air were adjusted with a mass flow of 0.152 kg/s and 0.025 kg/s, respectively. As well, a turbulence intensity of 5% and turbulent length scale of 0.005 m was set. In the remaining inlet section of the cooling plenum, boundary conditions were adjusted to the same conditions used at the inlets of the cooling channels for the parameters of pressure and temperature. At the exit of the gas-air mixture a static pressure of 473170 Pa, and a backflow total temperature of 1226 K were specified.
Oxidation (corrosion) marks on the blade [18].
For the solid surfaces the conditions were imposed as no-slip condition, while for the thermal condition were imposed as coupled. With these considerations it is possible to solve simultaneously the solid-fluid interfaces. At the interfaces, the temperature and heat flux could be continuous. These conditions are developed by the use of the boundary conditions denominated as two-side wall, which can be expressed as:
Rotational periodic boundary conditions are defined for the suction and pressure side of the computational model and a nominal angular velocity vector were prescribed.
The flow and heat transfer analysis were performed under the assumption that the fluid behaviour is compressible and viscous. For the case of the air properties, these are temperature dependant, while the thermo-physical properties of the solid domain were assumed to behave like Inconel 738LC alloy. The thermo-physical properties of the fluid and solid domains are showed in Table 1 [19] and Table 2 [18], respectively.
T [K] | Cp [kJ/kg·K] | λ·103 [W/m·K] | (·106 [N·s/m2] |
200 | 1.007 | 18.1 | 13.25 |
300 | 1.007 | 26.3 | 18.46 |
400 | 1.014 | 33.8 | 23.01 |
500 | 1.030 | 40.7 | 27.01 |
600 | 1.051 | 46.9 | 30.58 |
700 | 1.075 | 52.4 | 33.88 |
800 | 1.099 | 57.3 | 36.98 |
900 | 1.121 | 62.0 | 39.81 |
1000 | 1.141 | 66.7 | 42.44 |
1100 | 1.159 | 71.5 | 44.90 |
1200 | 1.175 | 76.3 | 47.30 |
1300 | 1.189 | 82 | 49.6 |
1400 | 1.207 | 91 | 53.0 |
Fluid properties
T [K] | Cp [J/kg·K] | λ [W/m·K] | ρ [kg/m3] |
294.260 | 420.100 | 11.83 | 8110 |
366.480 | 462.110 | 11.83 | 8110 |
477.590 | 504.120 | 11.83 | 8110 |
588.700 | 525.120 | 13.70 | 8110 |
699.810 | 546.130 | 15.58 | 8110 |
810.920 | 567.130 | 17.74 | 8110 |
922.030 | 588.140 | 19.76 | 8110 |
1033.150 | 630.150 | 21.50 | 8110 |
1144.260 | 672.160 | 23.37 | 8110 |
1255.370 | 714.170 | 25.39 | 8110 |
1366.480 | 714.170 | 27.27 | 8110 |
Properties of Inconel 738LC alloy
Fluid flow and turbulent heat transfer analysis of the first stage gas turbine blade (MS7001E) with different ribs configurations placed in the internal cooling channels were realized using commercial Computational Fluid Dynamic software (FLUENT®). This code allows to solve the Reynolds averaged Navier-Stokes and the transport equations of the turbulent quantities for the compressible viscous flow. This CFD code solves the equations using the finite volume technique [20] to discretize the governing equations inside the computational domains. The Standard k- ε model [21] was used for all numerical simulations. This model is a semi-empirical linear eddy viscosity model based on the transport equations for the turbulent kinetic energy (k) and dissipation rate (ε). The model transport equation for k is derived from the exact equation, while the model transport equation for ε is obtained using physical reasoning and little resemblance to its mathematically exact counterpart. The SIMPLE algorithm was used to link the velocity field and pressure distribution inside the computational model. This algorithm uses a relation between the velocity and pressure in order to satisfy the mass conservation, getting a velocity field. The SIMPLE algorithm along with the implicit time treatment of the flow variables allow to obtain a steady solution or use rather time steps for unsteady flow computations [13].
The governing equations were solved simultaneously by the approach of the pressure-based solver. The pressure-based approach is recommended in the literature [13] to be used for flows with moderate compressibility, since it offers a better convergence. Due to the fact that the governing equations are non-linear and coupled, several iterations were needed to reach a converged solution. The Gauss-Seidel linear algorithm was used to solve the set of algebraic equations obtained by the discretization in FLUENT®. The convergence was reached when the residuals of the velocity components in the Reynolds averaged Navier-Stokes equations, continuity and turbulent quantities were smaller than 10-5, while for the energy conservation equation the residuals were smaller than 10-6.
Six computational equipments were used to solve the model. Each computer has a 3 GHz processor and 2 GB in RAM. These equipments were connected in a scheme of parallel processing. Figure 9 shows a sketch of the parallel processing equipment using a basic LAN topology.
Sketch of parallel processing.
In the first part, a comparison between the results obtained experimentally by Kwak [22] and numerically for the external flow is presented. Also, a comparison between results obtained from semi-empirical correlations derived from the law of the wall [23] and the numerical results of the internal flow are presented. In the second part the effects on internal flow through the internal cooling channels are presented. Finally, the temperature distribution inside the blade body and the surface temperature distribution in the blade body with and without ribs are showed.
In order to validate the external flow around the blade a qualitative comparison between the pressure distribution obtained numerically and experimentally [22], has been performed. In [22] the pressure distribution on the gas turbine blade of GE-E3 was measured. Figure 10 shows the comparison between the numerical and experimental pressure distribution at the middle of the blade. Several turbulence models were used. The turbulence models used in the comparison were Standard k-ε, RNG k-ε and SST k-ω models, which are known as two-equation eddy viscosity models (EVMs). The total inlet pressure and local static pressure around the blade (p0/ps) are plotted as a function of x/Cx, where x is the axial length measured from the leading edge (LE) of the blade, considered as the characteristic length.
Pressure distribution around the blade
In Figure 10 can be seen that the pressure distribution, p0/ps, corresponding to numerical solution on the pressure side (PS) of the blade, agrees with the experimental data. While some differences for the pressure distribution, p0/ps, on the suction side (SS) of the blade, are observed.
For comparison purposes of the internal flow in the cooling channels, the pressure drop given by the section with square full-ribs having an aspect ratio of P/e = 10 for the central cooling channel was determined. This pressure drop was calculated by the friction factor for ribbed tubes, using semi-empirical correlations derived from the law of wall. Nikuradse [23] developed a friction factor correlation to be used in geometries with sand-grain roughness. His results were excellent for a wide range of roughness sizes. This correlation is expressed by Equation (15).
The term e+ = eu*/v is the roughness Reynolds number and Dh is the hydraulic diameter which can be expressed as:
where A is the cross section area and Pw is the wetted perimeter of the cooling channel. Webb [24] used Equation (15) to calculate frictional data for turbulent flows in ribbed tubes with circular cross-section, obtaining excellent results. They found that the roughness function could be correlated as Equation (17).
This equation is valid in the range e+ > 35. By solving Equations (15) and (17) the friction factor can be found from the geometrical parameters of the internal structure of the ribbed channels. Equation (18) shows the result obtained.
Equation (18) is valid for channels with ribs placed 90º to the flow direction and an aspect ratio of P/e = 10. Table 3 shows the pressure drop calculated by the Equation (18) and the numerical results obtained in this work.
Correlation Eq. (18) | Numeric | |
Δp (kPa) | 3893.90 | 3917.20 |
Pressure drop comparison between analytical and numerical results
The pressure drop calculated numerically presents a good approximation, having an absolute difference of 3.25%.
In order to determine the effects generated by the ribs, a line along the central cooling channel was created. This centerline is dimensionless with a range from 0 to 1, where y is the dimensionless distance of the axial length of the internal cooling channel, measured from the base of the blade until the outlet of the cooling channel. This centerline was used to obtain data of the flow parameters, such as temperature, velocity, Mach number and pressure loss.
Temperature distribution
Figure 11 shows the temperature distributions of the coolant flow along the centerline of the central cooling channels. Figures 11a and 11c show the results for different types of full-ribs, and Figures 11b, and 11d show the results for the half-ribs studies, having a ratio of P/e = 10 and P/e = 20, respectively. The higher and smaller temperatures are presented for the configurations of full-ribs in the ribbed section (Figs. 11a and 11c.), reaching temperatures from 937 K to 741 K, respectively. While the half-ribs configurations offer a smaller difference of temperature in this section. This range is between temperature values of 927 K and 791 K. As can be seen in Figure 11, the temperature presents a moderate increase at the smooth inlet section. In the ribbed section, the temperature presents a periodic variation, due to the acceleration and deceleration of the flow inside the cooling channels caused by the presence of the ribs. At the end of the ribbed section, the temperature strongly decreases. This effect is similar to compressible flow with heat transfer (Rayleigh curve) [25], where the temperature decreases to reach a Mach number larger than one. In the smooth outlet section, the temperature increases at the beginning of the section, due to the decrement in the Mach number. The temperature suffers a decrement while the flow gets closer to the outlet channel.
The temperature contours along the central cooling channel at a longitudinal plane are shown in Figure 12. Figures 12a, 12c and 12e show the results for different types of full-ribs, and Figures 12b, 12d and 12f show results for the half-ribs, both models have a ratio of P/e = 10. The fluid temperature increases while it goes along the channel for all cases (arrow indicates the direction of flow). The surface temperature of the channels is higher in the cases with half-ribs. Thus, the flow is heated at surface near the ribs. For the cases with full-ribs, the surface temperature is lower, showing a more uniform temperature distribution near to the wall.
The triangular ribs configuration presents the lowest temperatures, because this configuration offers the best cooling design inside the blade body. These effects are similar to the configurations with ribs whose P/e = 20.
Velocity and mach number distribution
Figure 13 shows the comparison between velocity magnitude and Mach number distributions obtained for the cases of blades with smooth and ribbed channels.
In the ribbed channel corresponding to the configuration of square full-ribs with an aspect ratio of P/e = 10, the highest Mach number and velocity are obtained, whose values are 1.45 and 823 m/s, respectively. The smooth channel presents a continuous acceleration of the flow through the channels. In the case of the ribbed channel, the flow is moderately accelerated in the smooth inlet section. The flow becomes unstable in the ribbed section; experiencing acceleration and deceleration continuously. At the end of this section, in the last rib, the flow is strongly accelerated as can be seen in Figure 13. High velocities decrease at the beginning of smooth outlet section, and then accelerate again towards the outlet of the smooth channel. This effect is due to the rotational force.
Temperature distribution at the centerline inside of the central cooling channel
Temperature Contours [K] along the central cooling channel for the different types of ribs with P/e = 10
Velocity magnitude [m/s] and Mach number distributions along the centreline inside of the central cooling channels.
In order to have a better description of the effects caused by the acceleration and deceleration of the flow mentioned above, Figure 14 shows the contours of the axial velocity through the central cooling channel at a longitudinal plane. Figures 14a, 14c and 14e show the results for the different types of full-ribs. Figures 14b, 14d and 14f show the results for the half-ribs, both models have a ratio of P/e = 10. As it can be observed, the flow is strongly accelerated every time that it passes between the rib tips, which provoke that the fluid increases its velocity due to area reduction. Then, the area increases again to decelerate the fluid flow. These fluctuations of acceleration are presented periodically in the cooling channel, generating variations in the flow parameters. This effect is more noticeable in the cases of half-ribs, having the higher bulk velocity in the channel at each rib. Also, the higher velocity is extended downstream of the ribs tip, where the flow follows a wavy path in the bulk section of the channel. Also, it is observed that in the half-rib cases, the flow is forced towards the surface of the opposite rib.
On the other hand, the square and semi-circular ribs produce recirculation zones as well as stagnation points over the upstream and downstream rib surfaces, respectively. The triangular ribs only produce recirculation zones in the downstream surfaces. These effects are similar to configurations with a ratio of P/e = 20.
Contours of axial velocity [m/s] along to central cooling channel for the different types of ribs with P/e = 10
Pressure loss
The local static pressure is presented in terms of the normalized pressure difference, calculated by the equation (19)
where p is the local static pressure, pexit is the pressure at the outlet of the cooling channel, where the cooling air is mixed with the hot combustion gases and the average velocity u is calculated by the channels mass flow rate. Figures 15 and 16 show the local normalized static pressure distribution for the different rib configurations with an aspect ratio, P/e, of 10 and 20, respectively.
Static pressure distribution along the central cooling channel for different types of ribs with P/e = 10
In Figures 15 and 16 can be observed that the slope of pressure drop in the smooth inlet section decreases due to a gradual reduction of channel cross-section. This area reduction is localized in the joint between the plenum and the blade. After this section, the pressure increases while the channel distance increases to the ribbed section. This is produced by the stagnation point when the flow shocks with the first ribs. In the ribbed section, the slope of the pressure drop becomes unstable, presenting periodical increments and decrements due to the cross-section variation, producing accelerations and decelerations of the flow. At the smooth outlet section, the slope of the pressure drop is relatively higher than that in the smooth inlet section. This is due to the increase of the flow velocity at this zone due to the rotational force, ejecting the flow inside the hot gases stream in the tip of the blade.
Static pressure distribution along the central cooling channel for different types of ribs with P/e = 20
Figure 17 shows the temperature contours at a transversal plane of the blade body right in the middle of the blade for the cases with smooth and full-rib channels with a P/e = 10. Comparing the results obtained, it is possible to observe an improvement in the blade internal cooling, allowing a decrement in the internal surface temperature of the cooling channels. Thus, the heat removed by the coolant is increased.
As can be seen in Figure 17, the maximum temperature decreases, approximately about 10 to 20 degrees and is reached close to the internal surfaces for the cases of blade with ribbed channels (Figures 17b, 17c and 17d), noticing that the cooling zone covers the major part of the internal cooling channels, propagating to the leading and trailing edge. In the cases of the blade with smooth channels, it is only present a smaller cooling zone at the three central cooling channels (Figure 17a).
Models with square and triangular cross-section full-ribs show a similar temperature distribution and major heat dissipation compared with the semi-circular full-ribs.
Mazur [16] performed an analysis of a gas turbine bucket failure made of Inconel 738LC super alloy. This bucket operated for 24,000 hours. Mazur et al. [16] found that the maximum stresses are present in the blade cooling channels, producing cracks. Figure 18 shows that kind of cracks. These start in the coating of the cooling channels, propagating and following intergranular trajectories, reaching a depth up to 0.4 mm.
Temperature contours [K] in the metal, a) smooth, b) square full-ribs, c) triangular full-ribs and d) semi-circular full-ribs, cooling channels
Cracks in the central cooling channels [16]
In this way, the effect generated by increasing the internal cooling zone produces an increment in the useful life of the blade, since the useful life of gas turbine blades is reduced to half with every 10-15 °C rise in metal temperature [2]. On the other hand, the use of ribs increases the heat transfer, generating an increase in thermal gradients at internal surface of cooling channels. In the leading edge another interesting effect is presented. There is a minor penetration of the blade body temperature (Figures 17b to 17d) caused by the use of the ribs. However, it cannot be adequate due to the fact that the thermal gradients at the leading edge are increasing. Due to these thermal effects, these zones must be taken into account to be protected by means of the film cooling method.
Figure 19 shows the blade profile right in the middle along the blade height. In this section, a perpendicular line to the blade chord is created to obtain the temperature distribution inside the solid body as well as in the cooling air through the central cooling channel. The distance is a dimensionless parameter, taking values between 0 and 1, starting in the suction side and ending in the pressure side, respectively.
Perpendicular line to the blade chord where data is obtained
In Figures 20a and 20b the temperature distributions for the cases with full and half-ribs are presented, respectively. Both models have an aspect ratio between pitch and height of the ribs (P/e) of 10. Figure 20a shows that the cases of ribbed channels present a significant decrement in the temperatures inside the solid body in comparison with smooth channels. The triangular full-ribs model presents a higher temperature decrement, reaching a temperature decrement up to 20 K closer to the channel surface and 10 K in the pressure and suction sides. Figure 20b shows that square and semi-circular half-ribs do not offer a considerable decrement in the temperature inside the blade body, since the temperature distributions are very similar to the case with smooth cooling channels. The case with triangular half-ribs presents a smaller temperature decrement than the case with triangular full-ribs (Figure 20a). The decrement of temperature achieved by this configuration is between 10 K near to the channel surface and 4 K in the pressure and suction sides. In the fluid section, the temperature is bigger in all the ribbed cases than in the smooth case, obtaining improved heat dissipation to the cooling air.
Temperature distributions in the blade with ribbed cooling channels with P/e = 10
Figures 21a and 21b show the temperature distributions for the cases of cooling channels with full and half-ribs with an aspect ratio of P/e = 20. Figure 21a shows that the temperature distributions in the solid body are similar for the three ribbed cases, having the lowest temperature in the square ribs model. With these configurations a higher penetration of the cooling blade using any rib geometry is achieved. These configurations present a similar behaviour, in comparison with the results presented in Figure 20a. These cases present a temperature reduction up to 22 K in regions close to the channel surface and up to 10 K in the pressure and suction sides. In Figure 21b can be observed a uniform behaviour of the temperature distribution for the three types of ribs. This behaviour is basically the same for all the cases. However, the blade cooling is affected due to the temperature distributions obtained for all the cases with different tendency to be similar for the smooth case, having a smaller improvement on the blade temperature when compared with the temperature profiles shown in Figure 20b.
Temperature distributions in the blade with ribbed cooling channels with P/e = 20
The temperature distributions of cooling air presented in Figures 20 and 21 have a symmetrical parabolic behaviour due to mixing flow. This is generated by placing ribs, while the profile related with the smooth channel has an asymmetrical behaviour. In this case the profile presents a tendency to attach to the pressure side due to the blade rotational force.
The effect of having a symmetric profile improves the heat transfer from the internal surface of the cooling channels to the air, due to the turbulence generated in the flow which is increased because of the ribs removing a high quantity of heat.
Surface temperature distributions [K] on the blade with a) smooth cooling channel and b) ribbed cooling channels with P/e = 10
Figure 22 shows a comparison between the surface temperature distribution on the pressure side and the suction side of the blade for the cases of models with smooth and ribbed cooling channels. The temperature distributions of the blade with ribbed internal cooling channels correspond to the configuration with square full-ribs with a ratio P/e = 10. As can be seen in Figure 22, internal cooling generated by ribs has an effect on the blade surface temperature, since it presented a substantial decrease in surface temperature on the pressure and suction sides of the blade. Also, it is observed a reduction of the spot of maximum temperature on the leading and trailing edges of the blade generated by the parabolic temperature profile at the inlet of the hot combustion gases. Another effect which can be seen is the stain of cooling at the root of the blade on the suction side, which is generated by the flow of air entering the vane platform.
In the present work, a numerical study was performed, with the aim to assess the effect generated by the ribs in the temperature distributions inside the blade body as well as the pressure drop through the cooling channels with different types of ribs. The main conclusions are:
The validation of the numerical model by comparing the internal and external flow with experimental [22] and semi-empirical [23, 24] data was developed. The pressure drop in the internal flow obtained through the numerical solution and semi-empirical [23, 24] data, offers a close enough agreement, with an absolute difference of 3.25%.
The higher and smaller temperatures of the internal flow are presented for the configurations of full-ribs in the ribbed section, reaching temperatures from 937 K to 741 K, respectively, while the half-ribs configurations offer a smaller difference of temperature in this section. This range is between temperature of 927 K and 791 K. The configurations of full-ribs have a larger contact area than configurations of half-ribs. Due to this reason, the configurations of full-ribs remove more thermal energy from the blade body.
The configuration with full-ribs with P/e = 20, offers the best cooling with any rib type. This could be due to the fact that the flow has a high recirculation zone between the ribs, generating a hydrodynamic perturbation to provoke a separation of the boundary layer.
The acceleration and deceleration effects, which are presented in the ribbed section, play an important role in the flow behaviour of the compressible fluid, since the high velocity of the flow shows a strong influence on the variations of temperature in the flow field. The highest Mach number and velocity are obtained with the ribbed channel, whose values are 1.45 and 823 m/s, respectively, while that smooth channel presents a continuous acceleration of the flow along the channels.
The ratio between the required inlet pressure in the cooling channels and the outlet pressure increases from 4 to 4.5 times approximately for the cases with full-ribs with aspect ratios (P/e) of 10 and 20, respectively. For the half-ribs, this ratio is between 3 to 4 times, approximately. These values are higher than the values obtained in smooth cooling channels.
The ribbed cooling channels present different pressure drops, ordered from higher to lower pressure drops, they are triangular, square and semi-circular ribs, respectively. The triangular ribs offer the highest cooling effects of the analyzed cases; however, this configuration presents the highest pressure drop when compared with any other case.
The turbulence promoters allow to obtain a maximum temperature decrease, approximately about 10 to 20 degrees, close to the internal surfaces of the blade body. This allows reducing damages by fatigue and thermal stresses.
According to Tannahill [1], health promotion is an umbrella term covering overlapping fields of health education, prevention and attempts to protect public health through social engineering, legislations, fiscal measures and institutional policies which entail the combination of the best in terms of both theory and practice from a wide range of expert groups (educationists, behavioral scientists, medical practitioners) and non-professionals including the communities involved. For him, health promotion stems largely from a new focus for health services that recognize some basic facts: many contemporary health problems are preventable or avoidable through lifestyle change; modern technology is a bundle of mixed blessings bringing both benefits and risks to health; medical technology is at the phase of diminishing returns (losing efficacy and connection to ordinary people); such non-medical factors as better nutrition, improved living conditions and public health measures have contributed to both health and longevity even more than medical measures; that doctors can cause as well as cure disease; and increasing public desire to attain better or improved quality of life and at the same time demystifying and demedicalising the attainment (achievement) of good health [1].
For the World Health Organization (WHO), health promotion is essentially about engendering a context in which the health and well-being of whole populations or groups are owned mainly by the people concerned, i.e., enabling citizens of local communities to achieve political control and determination of their health [2, 3]. Therefore, health promotion goes beyond mere healthcare but puts health on the policymaking agenda in all sectors and at all levels, directing policymakers to be cognisant or conscious of the health consequences of their decisions and accept responsibilities for health.
Health promotion can be seen as the whole process of enabling or empowering people to increase control over and improve their overall health. It focuses on creating awareness of health issues, engendering behaviour modification consistent with prevention and attitudes to ill health and motivating increased usage of available health facilities. In the pursuit of good health (physical, mental and social well-being), individuals and groups through health promotion are enabled to identify and realize aspirations, satisfy needs and change or cope with the environment in manners consistent with complete good health.
Health promotion is expected to contribute to programme impact by enabling prevention of disease, reduction of the risk factors or behaviors associated with given diseases, promoting and fostering lifestyles and conditions that are conducive to good health and enabling increasing use of available health facilities. Therefore, health promotion creates both the awareness and conscientisation that leads to disease prevention, control of health situations and usage of health services and facilities. It implies individual and collective control and participation in health focusing on behavioral change, socio-economic lifestyles and the physical environment.
Without doubt the WHO’s Ottawa Charter definition of health promotion is very comprehensive and encompasses the core values and guiding objectives of health promotions [3]. It summarily sees health promotion as the process of enabling people to increase control over and improve their health. In line with the above definition, Macdonald and Davies [4] contend that it calls attention to the critical role of the concepts of process and control as the real essence of health promotion. For them, “the key concepts in this definition are ‘process’ and ‘control’, and therefore effectiveness and quality assurance in health promotion must focus on enablement and empowerment. If the activity under consideration is not enabling and empowering it is not health promotion” [4], p. 6.
As the burgeoning literature on health promotion over the years indicate it is a community-driven (inspired), multifaceted and multidisciplinary area of concern that also involves critical sociopolitical, economic and environmental elements and dynamics (see [4, 5, 6, 7, 8, 9, 10]).
It is important to also understand that even though one can make a distinction between public health and health promotion, in reality both are interconnected and hardly practically separable. In other words, public health is built on health promotion and health promotion is imperative for public health delivery. As has been argued, public health “is synonymous with health promotion in that it aims to implement co-ordinated community action to produce a healthier society” [11], p. 315.
There is no gainsaying the fact that health promotion nowadays has an overwhelming sociopolitical component that is really definitive. In fact, as has been posited, “health promotion activities are by their nature inherently politically based and driven, thus making it impossible to divorce them from the political arena” [11], p. 314. Health promotion becomes a dynamic area of interface between public policy institutions (the state and its agencies), the public (community/people) and the professionals (ranging from the media professionals, public health advocates, social workers to medical practitioners).
The chapter depended on the desk review of extant literature and documents for its information. The main exclusionary criteria in this regard were materials not related to health promotion and materials published before 1984, which were considered extreme-dated. The inclusive criteria were determined by such concepts as public health, public health in Africa, health promotion, health education and awareness and theories and models in health promotion. Such prominent Internet information sites like the WHO, American Public Health Association (APHA), Health Resources and Services Administration (HRSA) and the Universitats Bibliothek Leipzig (UBL) Online Resources were utilized in gathering materials for the chapter.
There is no gainsaying the fact that effective and result-oriented health promotion practice depends on sound theory [12]. In other words, theory becomes very informative of health promotion practice and activities. In recognition of the above, one would examine briefly the main theories that have implicated health promotion globally. It is important, however, to state here that the choice of a theory or model to guide health promotion should be determined largely by the specific nature of the health issue being addressed, the community or population in view and the sociopolitical context in question. This is because theories and models are simply used in practice in order to plan health programmes, explain and understand health behaviour as well as underpin the identification of appropriate intervention and implement such intervention in ways that are both effective and sustainable.
Despite a plethora of theories and models utilized in health promotion, I will only focus on five of the most popular and commonly used. These are ecological models of health promotion, the Health Belief Model (HBM), Stages of Change Model or the Trans-theoretical Model, Theory of Reasoned Action or Planned Behaviour and the Social Cognitive Theory.
As the name implies, these models focus on the interaction of people with their physical and sociocultural environments. The approach thus recognizes that there are multiple levels of influence on health and health behaviour especially the health seeking behaviour and choices that people make. The ecological models are anchored on five overriding influences which determine and guide health behaviour and response to health issues [13, 14, 15, 16]. These influences are intrapersonal or individual factors (these impact on individual behaviour, e.g., beliefs, knowledge, attitude, etc.); interpersonal factors (these are produced through living with and interacting with other people, e.g., family, friends and social groups/networks; these other people can function as both the source of solidarity and support as well as sources of barriers and constraints to health-promoting behaviour of the individual, e.g., dwelling among chronic smokers or having intense interaction with them may expose one to the dangers of either smoking or the influence of second-hand smoke); community factors (these make reference to social norms that are shared by groups or communities, and such norms whether formal or informal can influence health behaviour and health seeking behaviour of the individual and group members, e.g., relationship between institutions, groups and organizations); institutional factors (policies, rules, regulations and institutional structures that may constrain or even promote healthy behaviour in a given society, e.g., the workplace and voluntary organizations to which the individual belongs are prime examples); public policy factors (policies at different level of governance that regulate, structure or support actions and practices targeted at health outcomes like disease prevention policies and structures enabling early detection, control or response and management of health crisis in the society; these stem from the position of the government and are critical in achieving the goals of public health delivery) (Figure 1).
Ecological models of health promotion (simplified).
As the above pyramid, suggests the individual, interpersonal and community factors are at the base. These factors therefore exert more influence and pressure over the individual’s health behaviour than the institutional and public policy factors as these are more important. In other words, the institutional and public policy factors are literally far from the individual and do not exert as much pressure on his behaviour as those factors that are very close to him both spatially and otherwise. In an age of increasing pessimism in government, people are much driven by interpersonal and community factors than what comes from a typical further off entity.
Given the above, it is obvious that the ecological approach is very pertinent in the understanding of the range of factors that influence people’s health. Its main strength is that it can provide what is called a complete perspective on factors that affect health behaviour and response to health issues especially the role of social and cultural factors or normative patterns on health in the society. It is perhaps very well suited to health intervention and practice in developing societies with an overbearing influence of sociocultural factors on behaviour, attitudes and practice of the people.
This is a theoretical model that has been found useful in guiding both health promotion and strategies for disease prevention. As the name suggests, it focuses on individual beliefs about specific health conditions which predict or direct individual health behaviour [17, 18]. The specific components of this belief that influence health behaviour include perceived susceptibility to the disease; perceived severity of the disease in question; perceived benefits of action (positive benefits of such action) as well as cues to action (awareness of factors that engender action); self-efficacy (belief that action would lead to success); and perceived barriers or obstacles to action (especially if such obstacles are seen as daunting or insurmountable or otherwise).
In the utilization of the HBM in health promotion, there are five main action-related segments that would help in identifying key decision-making points and thus facilitate the utilization of knowledge in guiding health intervention. These are: collection of information (through needs assessments; rapid rural appraisal, etc. in order to determine those at risk of the disease or affliction and specify which population or component of the population to be targeted in the intervention); conveying in unambiguous and clear terms the likely consequences of the health issue in question and its associated risk behaviors in order to facilitate a clear apprehension of its severity; communication (getting information to the target population on the recommended steps to take and the perceived or likely benefits of the recommended action); provision of needed assistance (help the people in both the identification of and reduction of barriers or constraints to action); and demonstration (actions and activities that enable skill development and support aimed at enhancing self-efficacy and increased chances of successful behaviour modification targeted at the health issue in question) (Figure 2).
Health belief model (HBM).
In Africa, the HBM has been very useful in understanding people’s response and behaviour to HIV/AIDS and other chronic diseases. Being a society very flushed with beliefs, the degree of responsiveness to a health situation is often the direct product of a set of beliefs held by the individual and/or by his immediate community.
This model is focused on examining and explaining the individual’s readiness to change his behaviour and sees such change as occurring or happening in successive stages. It therefore adopts a quasi-evolutionary framing of behaviour change in which behaviour change, sustenance and termination are encompassed in six stages. These stages are pre-contemplation (existence of no intention to take any action by the individual); contemplation (thinking about taking action and ruminating on plans to do this soon); preparation (signifies intention to take action and includes the possibility that some steps or preliminary steps to action have been taken already); action (discernible change in behaviour for a brief period of time); maintenance (sustenance of the action taken; behaviour change that is maintained in the long run or long-term behaviour change); and termination (the expressed and discernible desire never to return to prior negative behaviour by the individual concerned).
The above stages are very important in planning behaviour change or modification and recognize that behaviour change is both gradual and takes time. What is needed from the health promoter is that at each of these stages specific interventions or programmes are devised to help the individual progress to the next stage. Also, the recognition that the model may in reality be cyclical rather than lineal, i.e., individuals may progress to the next stage or even regress to previous or lower stages, is important in planning health promotion interventions utilizing this model. It also calls attention to understanding that there are individual differences in the adoption of change, i.e., some people may be swift in behaviour modification, while others may take longer time; but each needs support in order to pull through.
The main contention of this theory is that an individual’s health behaviour is usually determined by his intention to exhibit or display a given behaviour. Therefore, the intention to exhibit a given behaviour (or behaviour intention) is predicated upon or predicted by two main factors, viz. personal attitude to the behaviour in question and subjective or personal norms (an individual’s social and environmental context and the perception the individual has over that behaviour) related to that behaviour.
The basic assumption here is that both positive attitudes and positive subjective norms will generate greater perceived control of behaviour and increase the chances of intentions towards changes in behaviour. The theory generally provides information that can be used in predicting people’s health behaviour and thus in planning and driving through health interventions. It anchors in recognizing the predictors of behaviour-oriented action and the need for supportive social and environmental contexts that facilitate and sustain desirable health behaviour.
This theory combines both the cognition of the individual and the social context of the individual in offering explanation and understanding of health behaviour and response. It seeks to describe the influence of the experience of the individual, his perception of the actions of other people near him and the factors in the person’s immediate environment on health behaviour of the individual. It moves from this general perspective to provide opportunities for social support (defined as conducive to healthy behaviour) and reinforcements that generate behaviour change or modification. In this sense, the SCT depends on the idea of reciprocal determinism which denotes the continuing or uninterrupted interaction among the person’s characteristics, his behaviour and the social context or environment in which the behaviour takes place.
However, the best way to appreciate the SCT is to examine the main components the theory isolates as related to behaviour change at the individual level. These are self-efficacy (belief in one’s ability to control and execute behaviour within a given context); behaviour capability (thorough comprehension of behaviour and the ability to exhibit or perform it); expectations (outcomes or outputs of the behaviour change in question); expectancies (the assignation of value to the above outcome of behaviour and which is important in sustaining the behaviour); self- control (the regulation and monitoring of behaviour of the individual); observational learning (the act of watching others performing the desired behaviour and the outcomes therein as well as modeling that behaviour in question); and reinforcements (incentives and rewards seen as eliciting, encouraging and sustaining behaviour change in the individual) [19].
The three components as the above diagram shows reinforce each other and in the process condition and determine behaviour of the individual even in the context of health as well as choices made therein (Figure 3). The SCT is very pertinent in contexts where desirable health outcomes can be achieved by behaviour modification or change. For instance, certain chronic diseases or health conditions can be tackled through healthy lifestyles and dieting that reduce risk factors and chances of individuals succumbing to such conditions. Therefore, the theory can help frame intervention programmes in this area that focus on changing people’s behaviour and in the process achieve desirable health outcomes.
Illustration of the social cognitive theory (SCT).
Theories and perspectives or models as already indicated are critical in providing explanations of a problem or issue (broadening our understanding and perspective as it were) and also very important in the effort to tackle a given problem or issue in the society especially by way of developing and implementing programmes and interventions. Perhaps, the above underscores why some scholars [20, 21, 22] would highlight the difference between the so-called theories of the problem and theories of action, meaning that while the former aids our apprehension of a given issue or social reality, the latter is important in terms of taking actions or evolving activities to tackle the issue in question.
Health promotion generally implicates a huge element of politics and power dynamics in the sense that only political will and cognition can build discernible changes in health. Lobbying and advocacy are critical tools of health promotion and function within the political arena. The sociopolitical contexts and influences are especially recognizable in the public health sector in the developing world where political will and doggedness are often necessary to drive through even the most salutary change or innovation in the health sector. Also, political forces are equally dominant in the provision of crucial health infrastructure and facilities as well as the reasonable funding demanded by any effective public health system. As Harrison opines health promotion “requires concerted, sophisticated and integrated political action to bring about change and requires professionals concerned with public health to engage with the politics of systems and organizations” [5], 165.
Therefore, health promotion seeks to empower and transform communities by getting them involved in activities that influence public health especially through agenda setting, lobbying and advocacy, consciousness raising and social education [11, 22]. All these are accomplished on terms that are either defined or strictly affected by the socio-economic realities of the people themselves. By its emphasis on the community, health promotion has a heavy sociological frame that prioritizes the values of society as well as mobilization and solidarity in the quest for good and sustainable health. It thus makes assumption that individual members of the society would give equal weight to their own health and the health of their neighbors. In other words, it is often anchored on the uncanny assumption that the health of the individual member of a given society is intertwined with the health of the community as a collective. This means the reference point of health promotion is that one’s health is as good as the health of the members of the community or society as a whole, i.e., common health destiny. Therefore, such things as community empowerment, community competence and overwhelming sense of community are all apprehended as contributing to the health of the communities [23].
Traditionally there are five approaches utilized in health promotion. These are medical (the focus here is to make people free from medically defined diseases and afflictions; it is mainly anchored on prevention strategies and the role of the medical practitioner or expert in ensuring that the patients comply with recommendations); behavioural change (behaviour modification approach that recognizes that people’s behaviour and lifestyles can be changed in order to enable them attain good health, i.e., facilitate adoption of healthy lifestyle); educational (provision of information and knowledge that enable understanding of health issues and build awareness for informed decision-making and choice among people); client-centred (in this situation health practitioners work with clients in order to identify what they know about a given disease and take appropriate action; emphasis on perceiving the client as equal and building the clients self-empowerment that enable them make good choices and control their health outcomes); and societal change (the focus here is on the society or community rather than the individual and seeks to change or modify both the physical and social environments in order to make them consistent with or conducive to good health).
The conventional health promotion methods (modes of operationalizing health promotion and achieving its goals) include health education (the conscious and systematic effort at providing education or knowledge to people on particular and general aspects of health; it is about enabling people through proper and right knowledge on what to do and how to do it; it is empowering and improving people’s capacity to act with regard to their health issues and conditions), information, communication (the above three are often captured in the popular acronym IEC), social mobilization, mediation, community theater and advocacy and lobbying. However, while these methods are okay in differing contexts, a decision on the specific medium to use should be guided by both environment (community conditions) and the nature of the health issue involved. The use of more than one method in any given case is highly recommended especially in Africa where there are broad inequalities in access to social goods and the media. The increasing use of social media especially among young Africans calls attention to their deployment equally in core health promotion. Social media platforms like WhatsApp and blogs can be very potent in this regard.
There is an undeniable need to give high priority to health promotion research in Africa. Such research should aim at enabling a realistic and focused achievement of the goals of health promotion. Broadly, health promotion aims inter alia at:
The prevention of communicable and non-communicable diseases
The reduction of risk factors associated with diseases
The fostering of lifestyles and conditions in the general population that are consistent with overall well-being or good health
The effective/maximal utilization of existing health services and stimulating demand for others where/when necessary
According to the WHO [24] Health Promotion Strategy for the African Region, the contributions of health promotion to the achievement of health objectives include increasing individual knowledge and skills especially through IEC; strengthening community action through the use of social mobilization; enabling the emergence of environments supportive and protective of health by making optimal use of mediation and negotiation; enabling the development of public policies, legislation and fiscal controls which enhance and support health and overall development using advocacy and lobbying; and making prevention and consumer needs the core focus of health services delivery. All these can be positively influenced by research and studies which evaluate the effectiveness of what has been done as well as explore new strategies suitable to the socio-environmental context in question.
However, while research is very critical to achieving the goals of health promotion, it should be concise and focus essentially on the priority health programmes which have been identified by the WHO for the continent. Some of such programmes include the Global Fund for Malaria, HIV/AIDS and Tuberculosis, Immunization, Mental Health, the Tobacco Free Initiative and Reproductive Health as well as the fight against recurrent scourge of Ebola, etc. Such research should focus on identifying effective health promotion approaches and communication media to embody and convey the outcomes to communities through community participation; the extent or effectiveness of these means and seeking to still improve overall programme effectiveness and sustainability. Therefore, health promotion research should focus on ascertaining goals/outcomes of health promotion (to guide policy), provide reliable conditions associated with these outcomes or goals, precisely define the changes intended and delineate reliable mechanisms and indicators of M and E of health promotion strategies in specific country/community contexts.
The importance of research is essentially derived from the fact that it calls attention to the need for verification and evidence-based activities in health promotion. These are without doubt the ways of knowing if real empowerment and enabling has been achieved in the process. Thus,
Health promotion is about enabling people to improve their health; and secondly, evidence relevant to health promotion should bear directly on factors that support or prevent enablement and empowerment (determinants of health) activities that support enablement and empowerment (health promotion) and assessing whether these activities have been successful (evaluation of health promotion). [25], p. 357
The above clearly suggest that health promotion should be anchored on evidence or should rest on experience and reality regarding what works or what is possible and effective in any context. In this manner, “evidence-based health promotion involves explicit application of quality research evidence when making decisions” [26], p. 126. Research is even more foundational in health promotion since health promotion efforts need to be anchored on agreed definitions and values of health promotion. As Seedhouse contends the failure to be explicit about definitions and values generates conceptual confusion in research as well as sloppy practice [27].
The evaluation of health promotion which should be a core research activity may be based on the three main forms of evidence/knowledge associated with health promotion [28]: instrumental (controlling social and physical environments), interactive (understanding of diseases/health issues; lived experiences; solidarity) and critical (reflection and action; raising consciousness regarding causes and means of overcoming them). These three evidences are anchored on the given scientific/philosophical traditions, viz. instrumental (positivism, quantitative, experimental, scientific knowledge), interactive (constructivist, naturalistic, ethnographic/qualitative knowledge) and critical (materialist, structural and feminist theory).
There is also an overwhelming need for health promotion research to be aware of the difference between health promotion outcomes and health outcomes. Health outcomes crudely imply the consequences or benefits of healthcare delivery (e.g., reduction of mortality rate) related to a disease (which may be the case in spite of an increment in number of those affected by the disease). But health promotion outcomes signify the form of control and attitudinal re-orientation groups and individuals adopt in facing a given disease which may impact on the number of people affected by the disease and improve attitudes and behaviour towards those affected by the disease. Health promotion outcomes can be seen directly through community members’ perception and interpretations of a given health issue which makes the achievement of control possible.
Health promotion research should utilize both quantitative and qualitative methods. In addition to complementing quantitative methods in health promotion research, qualitative research enables the researcher reach the heart of issues in engagement with community members. In Africa, where a good percentage of the population are still domiciled in the rural areas, qualitative approach offers the possibility of profound insights into the why and how of health behaviors which may not be possible or easily achieved with the quantitative or traditional biomedical approaches. As a result, “the increasing popularity of qualitative methods is as a result of perceived failure of traditional methods to provide insights into the determinants – both structural and personal – of whether people pursue or do not pursue health-promoting actions” [25], p. 359.
It is important to recognize that in spite of apparent good intentions, health promotion can actually generate negative or counterproductive effects when not well managed. Thus, “negative outcomes occur where professionally paternalistic and disempowering health policy decisions force health-related outcomes that are irrelevant to sustained community development and are not based on or resourced according to the social reality of the community” [11], p. 315. The above sentiments caution one against embarking on health promotion activities and initiatives that are not anchored on the health realities of the community concerned. Often, overzealous health professionals unintentionally betray the health priorities of communities by assuming knowledge of all there is to know about the health situations and needs of the people.
Perhaps a critical shortfall of some health promotion activities and processes is the adoption of what can be termed the pathogenic paradigm which over-relies on risk instead of emphasizing protective mechanisms. This essentially entails a focus on the failure of communities and individuals to avoid disease or their apparent susceptibility to diseases instead of seeking to unleash their potential and capacity to engender and sustain good health and development. It is an approach that relies too much on health practitioners and experts and hardly gives voice to the people and their own knowledge cum realities.
Generally health promotion in Africa suffers from some of the debilitating challenges which confront the practice of health promotion broadly in many countries in the continent. These challenges, among others, include:
Poor definition and rudimentary elaboration of expected health outcomes
Ambiguous elaboration of factors and conditions to be targeted in health promotions
Ambiguity of health promotion policies and guidelines
Lack of capacity (or inadequate capacity) to develop, implement and evaluate health promotion programmes
A general context of inadequate investment in health promotion
Underdeveloped sectoral collaboration
Low political will and commitment to health promotion programmes as well as institutional corruption and resource mismanagement
The above challenges have implications for research in health promotions in the continent. There is no gainsaying the need for health promotion to be evidence based because essentially it is the only way to make it responsive to the health needs and interests of the people.
Health promotion combines varied but complementary indicators like legislation, health finance including fiscal measures and taxation, gender inclusiveness, mapping of priorities and organizational change. In spite of their differences, these issues are in reality intertwined or systematically connected in the sense that, for the public health system to function well and optimally, there should be a synergy between these indicators. Briefly:
This revolves around having the political will to make and drive through policies and laws that improve and sustain healthcare delivery. It also involves public health sector governance and leadership which aim at ensuring that only competent and qualified people lead the sector and that activities are governed by a democratic and free process which place emphasis on human rights, dignity and self-worth of all stakeholders.
Without doubt efficient health promotion and by implication the entire health delivery system cannot function without finance. In fact, the extent and impact of health promotion depend to a significant extent on the availability of funds. The problem of finance is especially critical in developing nations in Africa where political corruption and competing needs whittle down whatever gets to health from the yearly appropriation of government. However, there is a need to understand that a lot needs to be done in terms of the fiscal policies in these nations in order to achieve the desire for good health and improved life expectancy. In other words, the process of fiscal policymaking and budgetary allocation should prioritize health promotion and health delivery in these countries.
There is no gainsaying the fact that the health system as a whole is dynamic especially so in Africa where apart from battling known ailments new ones (or novel presentation of the old ailments) spring up now and then. The above entails that the health system calls for dynamic organizational setting that is robust enough to deal with changes while making improvements in the system. There is apparently no denying the fact that health promotion as a critical component of health delivery would benefit from organizational change. This is particularly so in the face of the reality that health promotion in most of the continent is still below the expectation. This is not to deny that health promotion has worked well in specific instances like the HIV/AID scourge and maternal health. However, such grab and slash system which focuses on only one of such delimited issues in the system cannot be seen as either robust or effective in the long run.
There is an obvious need to ‘en-gender’ health promotion as a very critical issue in Africa. This would entail ensuring that those involved in health promotion ensure that in all key phases of health promotion (planning, implementation and evaluation) women and men should be equal partners and collaborators. Gender, in this case, while calling attention to the needs of women, should also ensure that the men are not left behind even in approaching health issues traditionally seen as the concerns of women. Typical example here is in the area of family planning or reproductive health which demands the active collaboration or participation of both men and women to achieve desired results.
For the WHO [24], the priority interventions in Africa in respect of health promotions include capacity building, development of plans, incorporation of health promotion components in non-health sectors and strengthening of priority programmes using health promotion interventions. These essentially mean pursuing health promotion through capacity building, action planning, advocacy and multisectoral orientation. They are also in tune with relating to the determinants of health promotion in the continent. These include socio-economic conditions and physical (environment), biological, and behavioral lifestyles which impact on health in Africa. Countries can be encouraged to map out their priorities taking into consideration such factors as disease and financial burdens, threats, intervention tools and agencies, acuity, management capabilities, persistent challenges, etc.
Generally, there is a need for stepping up health promotion research in Africa in the areas of family and reproductive health targeting such issues as VVF, antenatal care, diabetes, cardiovascular issues, new disease forms/resurgence of old diseases (including Ebola), etc. especially in terms of communicating with those who are marginal to the formal sector of the society or who are less privileged by virtue of education, economic opportunities or physical/mental challenges, etc. in both urban and rural contexts. Health promotion can profit from an acute awareness of the fact that what works in one socio-geographical setting may not work in another since no two societies are exactly the same. This would entail designing programmes that even where the general principles or goals remain the same embody recognition of the socio-geographical peculiarities of the society/community concerned.
Given the usual paucity of funds in the continent, it makes sense that to minimize cost and save time, there should be incorporation of both needs assessment and evaluation into ongoing health promotion activities. This approach offers a smart way of pursuing health promotion goals without elaborate budget.
In spite of country differences and specific structural challenges, there is a need to build a culture of sharing and documenting outcomes and evidences of health promotion between different countries and organizations. This is a step towards achieving the desirable goal of multinational coordination especially for infectious diseases and epidemics. Equally, African nations need to invest more in capacity building for media and theater practitioners in both private and public sectors on health promotion. There is no gainsaying the media’s crucial role in health information dissemination. Actually, health promotion is largely media driven and should be programmed as such.
In addition to media practitioners, there should be health programme or intervention specific to health promotion capacity building for different cadres of public sector workers. Such capacity building or training should be anchored on acute awareness of current research trends and best practices globally. There should also be increased attention to the need for specific health promotion for under-represented health issues and priority to non-communicable diseases should be targeted. It should also improve capacity on how to incorporate methods of targeting members of the society marginal or vulnerable within each country context.
.
",metaTitle:"Order Print Copies - Terms",metaDescription:".",metaKeywords:null,canonicalURL:"page/order-print-copies-terms/",contentRaw:'[{"type":"htmlEditorComponent","content":"Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nMy order has not arrived, what do I do?
\\n\\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nMy order has not arrived, what do I do?
\n\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118374},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5247},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"403",title:"Microbial Genetics",slug:"karyology-microbial-genetics",parent:{title:"Karyology",slug:"karyology"},numberOfBooks:5,numberOfAuthorsAndEditors:169,numberOfWosCitations:69,numberOfCrossrefCitations:34,numberOfDimensionsCitations:80,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"karyology-microbial-genetics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5085",title:"Telomere",subtitle:"A Complex End of a Chromosome",isOpenForSubmission:!1,hash:"2a8f40859d7bc312dea327fd9b058a20",slug:"telomere-a-complex-end-of-a-chromosome",bookSignature:"Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/5085.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4720",title:"Flow Cytometry",subtitle:"Select Topics",isOpenForSubmission:!1,hash:"5a842a00d86bc7f956a5fd1fe6d62b8a",slug:"flow-cytometry-select-topics",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/4720.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3536",title:"Chromatin Remodelling",subtitle:null,isOpenForSubmission:!1,hash:"31abe97fe35989e4547bab854b38e03a",slug:"chromatin-remodelling",bookSignature:"Danuta Radzioch",coverURL:"https://cdn.intechopen.com/books/images_new/3536.jpg",editedByType:"Edited by",editors:[{id:"165250",title:"Dr.",name:"Danuta",middleName:null,surname:"Radzioch",slug:"danuta-radzioch",fullName:"Danuta Radzioch"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1578",title:"Flow Cytometry",subtitle:"Recent Perspectives",isOpenForSubmission:!1,hash:"fccad401cbcf998ea4de62d524abf82d",slug:"flow-cytometry-recent-perspectives",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/1578.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2291",title:"Clinical Flow Cytometry",subtitle:"Emerging Applications",isOpenForSubmission:!1,hash:"a5414617aafe62d7c6ec8205028f6967",slug:"clinical-flow-cytometry-emerging-applications",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/2291.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"44225",doi:"10.5772/55370",title:"Role of Enhancer of Zeste Homolog 2 Polycomb Protein and Its Significance in Tumor Progression and Cell Differentiation",slug:"role-of-enhancer-of-zeste-homolog-2-polycomb-protein-and-its-significance-in-tumor-progression-and-c",totalDownloads:3389,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"chromatin-remodelling",title:"Chromatin Remodelling",fullTitle:"Chromatin Remodelling"},signatures:"Irene Marchesi and Luigi Bagella",authors:[{id:"91878",title:"Prof.",name:"Luigi",middleName:null,surname:"Bagella",slug:"luigi-bagella",fullName:"Luigi Bagella"},{id:"164852",title:"Dr.",name:"Irene",middleName:null,surname:"Marchesi",slug:"irene-marchesi",fullName:"Irene Marchesi"}]},{id:"52461",doi:"10.5772/65353",title:"Molecular Diagnosis and Precision Therapeutic Approaches for Telomere Biology Disorders",slug:"molecular-diagnosis-and-precision-therapeutic-approaches-for-telomere-biology-disorders",totalDownloads:1213,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"telomere-a-complex-end-of-a-chromosome",title:"Telomere",fullTitle:"Telomere - A Complex End of a Chromosome"},signatures:"Rosario Perona, Laura Iarriccio, Laura Pintado-Berninches, Javier\nRodriguez-Centeno, Cristina Manguan-Garcia, Elena Garcia, Blanca\nLopez-Ayllón and Leandro Sastre",authors:[{id:"179373",title:"Dr.",name:"Leandro",middleName:null,surname:"Sastre",slug:"leandro-sastre",fullName:"Leandro Sastre"},{id:"184869",title:"Dr.",name:"Rosario",middleName:null,surname:"Perona",slug:"rosario-perona",fullName:"Rosario Perona"},{id:"184870",title:"Dr.",name:"Laura",middleName:null,surname:"Iarriccio",slug:"laura-iarriccio",fullName:"Laura Iarriccio"},{id:"184871",title:"MSc.",name:"Laura",middleName:null,surname:"Pintado-Berninches",slug:"laura-pintado-berninches",fullName:"Laura Pintado-Berninches"},{id:"184872",title:"MSc.",name:"Javier",middleName:null,surname:"Rodriguez-Centeno",slug:"javier-rodriguez-centeno",fullName:"Javier Rodriguez-Centeno"},{id:"184873",title:"Ms.",name:"Cristina",middleName:null,surname:"Manguan-Garcia",slug:"cristina-manguan-garcia",fullName:"Cristina Manguan-Garcia"},{id:"184874",title:"Dr.",name:"Elena",middleName:null,surname:"Garcia",slug:"elena-garcia",fullName:"Elena Garcia"},{id:"184875",title:"Dr.",name:"Blanca",middleName:null,surname:"Lopez-Ayllon",slug:"blanca-lopez-ayllon",fullName:"Blanca Lopez-Ayllon"}]},{id:"37421",doi:"10.5772/38616",title:"What Flow Cytometry can Tell Us About Marine Micro-Organisms – Current Status and Future Applications",slug:"what-flow-cytometry-can-tell-about-marine-microrganisms-current-status-and-future-applications",totalDownloads:2396,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"flow-cytometry-recent-perspectives",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Recent Perspectives"},signatures:"A. Manti, S. Papa and P. Boi",authors:[{id:"118302",title:"Dr.",name:"Anita",middleName:null,surname:"Manti",slug:"anita-manti",fullName:"Anita Manti"}]}],mostDownloadedChaptersLast30Days:[{id:"49878",title:"Immunophenotyping of Acute Leukemias – From Biology to Clinical Application",slug:"immunophenotyping-of-acute-leukemias-from-biology-to-clinical-application",totalDownloads:2485,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-select-topics",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Select Topics"},signatures:"Francesco Mannelli",authors:[{id:"178848",title:"M.D.",name:"Francesco",middleName:null,surname:"Mannelli",slug:"francesco-mannelli",fullName:"Francesco Mannelli"}]},{id:"50878",title:"Detection of Anti-HLA Antibodies by Flow Cytometer",slug:"detection-of-anti-hla-antibodies-by-flow-cytometer",totalDownloads:2351,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-select-topics",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Select Topics"},signatures:"Tülay Kılıçaslan Ayna and Aslı Özkızılcık Koçyiğit",authors:[{id:"178265",title:"Dr.",name:"Tulay",middleName:null,surname:"Kilicaslan Ayna",slug:"tulay-kilicaslan-ayna",fullName:"Tulay Kilicaslan Ayna"}]},{id:"37054",title:"Effect of Monocyte Locomotion Inhibitory Factor (MLIF) on the Activation and Production of Intracellular Cytokine and Chemokine Receptors in Human T CD4+ Lymphocytes Measured by Flow Cytometry",slug:"effect-of-monocyte-inhibitory-locomotion-factor-mlif-on-the-activation-and-production-of-intracellul",totalDownloads:1566,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"clinical-flow-cytometry-emerging-applications",title:"Clinical Flow Cytometry",fullTitle:"Clinical Flow Cytometry - Emerging Applications"},signatures:"Sara Rojas-Dotor",authors:[{id:"109461",title:"Dr.",name:"Sara",middleName:null,surname:"Rojas-Dotor",slug:"sara-rojas-dotor",fullName:"Sara Rojas-Dotor"}]},{id:"50807",title:"The Role of Cytometry for Male Fertility Assessment in Toxicology",slug:"the-role-of-cytometry-for-male-fertility-assessment-in-toxicology",totalDownloads:1268,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-select-topics",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Select Topics"},signatures:"Maria de Lourdes Pereira, Helena Oliveira, Henrique M.A.C.\nFonseca, Fernando Garcia e Costa and Conceição Santos",authors:[{id:"79715",title:"Prof.",name:"Maria De Lourdes",middleName:null,surname:"Pereira",slug:"maria-de-lourdes-pereira",fullName:"Maria De Lourdes Pereira"},{id:"174419",title:"Prof.",name:"Fernando",middleName:null,surname:"Garcia E Costa",slug:"fernando-garcia-e-costa",fullName:"Fernando Garcia E Costa"},{id:"185982",title:"Prof.",name:"Helena",middleName:null,surname:"Oliveira",slug:"helena-oliveira",fullName:"Helena Oliveira"},{id:"185983",title:"Prof.",name:"Henrique M.A.C.",middleName:null,surname:"Fonseca",slug:"henrique-m.a.c.-fonseca",fullName:"Henrique M.A.C. Fonseca"},{id:"185984",title:"Prof.",name:"Conceição",middleName:null,surname:"Santos",slug:"conceicao-santos",fullName:"Conceição Santos"}]},{id:"37421",title:"What Flow Cytometry can Tell Us About Marine Micro-Organisms – Current Status and Future Applications",slug:"what-flow-cytometry-can-tell-about-marine-microrganisms-current-status-and-future-applications",totalDownloads:2393,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"flow-cytometry-recent-perspectives",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Recent Perspectives"},signatures:"A. Manti, S. Papa and P. Boi",authors:[{id:"118302",title:"Dr.",name:"Anita",middleName:null,surname:"Manti",slug:"anita-manti",fullName:"Anita Manti"}]},{id:"37445",title:"Retracted: Applications of Quantum Dots in Flow Cytometry",slug:"applications-of-quantum-dots-in-flow-cytometry",totalDownloads:1852,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-recent-perspectives",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Recent Perspectives"},signatures:"Dimitrios Kirmizis, Fani Chatzopoulou, Eleni Gavriilaki and Dimitrios Chatzidimitriou",authors:[{id:"45414",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kirmizis",slug:"dimitrios-kirmizis",fullName:"Dimitrios Kirmizis"},{id:"122229",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Chatzidimitriou",slug:"dimitrios-chatzidimitriou",fullName:"Dimitrios Chatzidimitriou"},{id:"134576",title:"BSc.",name:"Fani",middleName:null,surname:"Chatzopoulou",slug:"fani-chatzopoulou",fullName:"Fani Chatzopoulou"},{id:"134577",title:"Dr.",name:"Helen",middleName:null,surname:"Gavriilaki",slug:"helen-gavriilaki",fullName:"Helen Gavriilaki"}]},{id:"51979",title:"Telomeres and Cellular Senescence in Metabolic and Endocrine Diseases",slug:"telomeres-and-cellular-senescence-in-metabolic-and-endocrine-diseases",totalDownloads:1188,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"telomere-a-complex-end-of-a-chromosome",title:"Telomere",fullTitle:"Telomere - A Complex End of a Chromosome"},signatures:"Ryusaku Matsumoto and Yutaka Takahashi",authors:[{id:"187040",title:"Dr.",name:"Yutaka",middleName:null,surname:"Takahashi",slug:"yutaka-takahashi",fullName:"Yutaka Takahashi"}]},{id:"52461",title:"Molecular Diagnosis and Precision Therapeutic Approaches for Telomere Biology Disorders",slug:"molecular-diagnosis-and-precision-therapeutic-approaches-for-telomere-biology-disorders",totalDownloads:1213,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"telomere-a-complex-end-of-a-chromosome",title:"Telomere",fullTitle:"Telomere - A Complex End of a Chromosome"},signatures:"Rosario Perona, Laura Iarriccio, Laura Pintado-Berninches, Javier\nRodriguez-Centeno, Cristina Manguan-Garcia, Elena Garcia, Blanca\nLopez-Ayllón and Leandro Sastre",authors:[{id:"179373",title:"Dr.",name:"Leandro",middleName:null,surname:"Sastre",slug:"leandro-sastre",fullName:"Leandro Sastre"},{id:"184869",title:"Dr.",name:"Rosario",middleName:null,surname:"Perona",slug:"rosario-perona",fullName:"Rosario Perona"},{id:"184870",title:"Dr.",name:"Laura",middleName:null,surname:"Iarriccio",slug:"laura-iarriccio",fullName:"Laura Iarriccio"},{id:"184871",title:"MSc.",name:"Laura",middleName:null,surname:"Pintado-Berninches",slug:"laura-pintado-berninches",fullName:"Laura Pintado-Berninches"},{id:"184872",title:"MSc.",name:"Javier",middleName:null,surname:"Rodriguez-Centeno",slug:"javier-rodriguez-centeno",fullName:"Javier Rodriguez-Centeno"},{id:"184873",title:"Ms.",name:"Cristina",middleName:null,surname:"Manguan-Garcia",slug:"cristina-manguan-garcia",fullName:"Cristina Manguan-Garcia"},{id:"184874",title:"Dr.",name:"Elena",middleName:null,surname:"Garcia",slug:"elena-garcia",fullName:"Elena Garcia"},{id:"184875",title:"Dr.",name:"Blanca",middleName:null,surname:"Lopez-Ayllon",slug:"blanca-lopez-ayllon",fullName:"Blanca Lopez-Ayllon"}]},{id:"44220",title:"Condensins, Chromatin Remodeling and Gene Transcription",slug:"condensins-chromatin-remodeling-and-gene-transcription",totalDownloads:2090,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"chromatin-remodelling",title:"Chromatin Remodelling",fullTitle:"Chromatin Remodelling"},signatures:"Laurence O. W. Wilson and Aude M. Fahrer",authors:[{id:"164464",title:"Mr.",name:"Laurence",middleName:null,surname:"Wilson",slug:"laurence-wilson",fullName:"Laurence Wilson"},{id:"164788",title:"Dr.",name:"Aude",middleName:null,surname:"Fahrer",slug:"aude-fahrer",fullName:"Aude Fahrer"}]},{id:"44225",title:"Role of Enhancer of Zeste Homolog 2 Polycomb Protein and Its Significance in Tumor Progression and Cell Differentiation",slug:"role-of-enhancer-of-zeste-homolog-2-polycomb-protein-and-its-significance-in-tumor-progression-and-c",totalDownloads:3388,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"chromatin-remodelling",title:"Chromatin Remodelling",fullTitle:"Chromatin Remodelling"},signatures:"Irene Marchesi and Luigi Bagella",authors:[{id:"91878",title:"Prof.",name:"Luigi",middleName:null,surname:"Bagella",slug:"luigi-bagella",fullName:"Luigi Bagella"},{id:"164852",title:"Dr.",name:"Irene",middleName:null,surname:"Marchesi",slug:"irene-marchesi",fullName:"Irene Marchesi"}]}],onlineFirstChaptersFilter:{topicSlug:"karyology-microbial-genetics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/149228/vladimir-pereverzev-a",hash:"",query:{},params:{id:"149228",slug:"vladimir-pereverzev-a"},fullPath:"/profiles/149228/vladimir-pereverzev-a",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()