Fault signature for AEKF SOC estimator based diagnostic scheme.
\r\n\r\n
\r\n\r\nVitamin K2 - Vital for Health and Wellbeing has been produced and distributed through the support from Kappa Bioscience, Norway.\r\n',isbn:"978-953-51-3020-8",printIsbn:"978-953-51-3019-2",pdfIsbn:"978-953-51-4895-1",doi:"10.5772/61430",price:139,priceEur:155,priceUsd:179,slug:"vitamin-k2-vital-for-health-and-wellbeing",numberOfPages:338,isOpenForSubmission:!1,isInWos:1,hash:"b2f9f024939ddc4f5da2a8afa3fcd9c9",bookSignature:"Jan Oxholm Gordeladze",publishedDate:"March 22nd 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5169.jpg",numberOfDownloads:25985,numberOfWosCitations:7,numberOfCrossrefCitations:13,numberOfDimensionsCitations:26,hasAltmetrics:1,numberOfTotalCitations:46,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 6th 2015",dateEndSecondStepPublish:"January 31st 2016",dateEndThirdStepPublish:"March 25th 2016",dateEndFourthStepPublish:"May 30th 2016",dateEndFifthStepPublish:"August 31st 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"36345",title:"Prof.",name:"Jan",middleName:"Oxholm",surname:"Gordeladze",slug:"jan-gordeladze",fullName:"Jan Gordeladze",profilePictureURL:"https://mts.intechopen.com/storage/users/36345/images/3823_n.jpg",biography:"Dr. Jan O. Gordeladze, Ph.D. (born 25th of April, 1950), holds a triple professor competence (Medical Biochemistry, Physiology, and Pharmacology), and is presently working as a Professor Emeritus at the Department of Biochemistry, Institute of Basic Medical Science, University of Oslo, Norway. He has previously been employed as the Medical Director of MSD, Norway, serving two years as a Fulbright scholar at the NIH, Bethesda, Maryland, USA. From 2006-2009 he was employed as Associate Professor at the University of Montpellier, France. He is a member of the Norwegian Stem Cell Center, and his research has over the past 7-10 years been devoted to differentiation of osteochondral cells from stem cells focusing on the impact of transcription factors and microRNA species constituting regulatory loop interactions with functional target genes. He has published more than 120 scientific articles, reviews/book chapters and presented more than 250 abstracts/posters/talks at conferences worldwide. Dr. Gordeladze has served as a Fulbright Scholar at The National Institute of Health, Bethesda, Washington DC during the years 1990-91.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"9",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"379",title:"Vitaminology",slug:"alimentology-vitaminology"}],chapters:[{id:"53889",title:"Introductory Chapter: Vitamin K2",doi:"10.5772/66384",slug:"introductory-chapter-vitamin-k2",totalDownloads:1297,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jan Oxholm Gordeladze",downloadPdfUrl:"/chapter/pdf-download/53889",previewPdfUrl:"/chapter/pdf-preview/53889",authors:[{id:"36345",title:"Prof.",name:"Jan",surname:"Gordeladze",slug:"jan-gordeladze",fullName:"Jan Gordeladze"}],corrections:null},{id:"51057",title:"Vitamin K, SXR, and GGCX",doi:"10.5772/63983",slug:"vitamin-k-sxr-and-ggcx",totalDownloads:1237,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Kotaro Azuma and Satoshi Inoue",downloadPdfUrl:"/chapter/pdf-download/51057",previewPdfUrl:"/chapter/pdf-preview/51057",authors:[{id:"184194",title:"Dr.",name:"Satoshi",surname:"Inoue",slug:"satoshi-inoue",fullName:"Satoshi Inoue"},{id:"189851",title:"Dr.",name:"Kotaro",surname:"Azuma",slug:"kotaro-azuma",fullName:"Kotaro Azuma"}],corrections:null},{id:"51024",title:"Vitamin K2 Rich Food Products",doi:"10.5772/63902",slug:"vitamin-k2-rich-food-products",totalDownloads:1496,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Muhammad Yasin, Masood Sadiq Butt and Aurang Zeb",downloadPdfUrl:"/chapter/pdf-download/51024",previewPdfUrl:"/chapter/pdf-preview/51024",authors:[{id:"178785",title:"Dr.",name:"Muhammad",surname:"Yasin",slug:"muhammad-yasin",fullName:"Muhammad Yasin"},{id:"182656",title:"Prof.",name:"Masood Sadiq",surname:"Butt",slug:"masood-sadiq-butt",fullName:"Masood Sadiq Butt"},{id:"189674",title:"Dr.",name:"Aurang",surname:"Zeb",slug:"aurang-zeb",fullName:"Aurang Zeb"}],corrections:null},{id:"50921",title:"Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet",doi:"10.5772/63712",slug:"menaquinones-bacteria-and-foods-vitamin-k2-in-the-diet",totalDownloads:2631,totalCrossrefCites:6,totalDimensionsCites:12,signatures:"Barbara Walther and Magali Chollet",downloadPdfUrl:"/chapter/pdf-download/50921",previewPdfUrl:"/chapter/pdf-preview/50921",authors:[{id:"184784",title:"Dr.",name:"Barbara",surname:"Walther",slug:"barbara-walther",fullName:"Barbara Walther"},{id:"188194",title:"Mrs.",name:"Magali",surname:"Chollet",slug:"magali-chollet",fullName:"Magali Chollet"}],corrections:null},{id:"54263",title:"The Impact of Vitamin K2 on Energy Metabolism",doi:"10.5772/67152",slug:"the-impact-of-vitamin-k2-on-energy-metabolism",totalDownloads:1345,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mona Møller, Serena Tonstad, Tone Bathen and Jan Oxholm\nGordeladze",downloadPdfUrl:"/chapter/pdf-download/54263",previewPdfUrl:"/chapter/pdf-preview/54263",authors:[{id:"184157",title:"M.Sc.",name:"Mona",surname:"Møller",slug:"mona-moller",fullName:"Mona Møller"}],corrections:null},{id:"52078",title:"Vitamin K2 and Bone Health",doi:"10.5772/64876",slug:"vitamin-k2-and-bone-health",totalDownloads:1571,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Niels Erik Frandsen and Jan Oxholm Gordeladze",downloadPdfUrl:"/chapter/pdf-download/52078",previewPdfUrl:"/chapter/pdf-preview/52078",authors:[{id:"186115",title:"M.D.",name:"Niels Erik",surname:"Frandsen",slug:"niels-erik-frandsen",fullName:"Niels Erik Frandsen"}],corrections:null},{id:"54291",title:"Vitamin K2 and its Impact on Tooth Epigenetics",doi:"10.5772/66383",slug:"vitamin-k2-and-its-impact-on-tooth-epigenetics",totalDownloads:1623,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jan Oxholm Gordeladze, Maria A. Landin, Gaute Floer Johnsen,\nHåvard Jostein Haugen and Harald Osmundsen",downloadPdfUrl:"/chapter/pdf-download/54291",previewPdfUrl:"/chapter/pdf-preview/54291",authors:[{id:"36345",title:"Prof.",name:"Jan",surname:"Gordeladze",slug:"jan-gordeladze",fullName:"Jan Gordeladze"}],corrections:null},{id:"51205",title:"Anti-Inflammatory Actions of Vitamin K",doi:"10.5772/63891",slug:"anti-inflammatory-actions-of-vitamin-k",totalDownloads:1724,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"Stephen J. Hodges, Andrew A. Pitsillides, Lars M. Ytrebø and Robin\nSoper",downloadPdfUrl:"/chapter/pdf-download/51205",previewPdfUrl:"/chapter/pdf-preview/51205",authors:[{id:"184368",title:"Dr.",name:"Stephen",surname:"Hodges",slug:"stephen-hodges",fullName:"Stephen Hodges"},{id:"184370",title:"Dr.",name:"Robin",surname:"Soper",slug:"robin-soper",fullName:"Robin Soper"},{id:"184371",title:"Prof.",name:"Andrew",surname:"Pitsillides",slug:"andrew-pitsillides",fullName:"Andrew Pitsillides"}],corrections:null},{id:"50916",title:"Vitamin K2: Implications for Cardiovascular Health in the Context of Plant-Based Diets, with Applications for Prostate Health",doi:"10.5772/63413",slug:"vitamin-k2-implications-for-cardiovascular-health-in-the-context-of-plant-based-diets-with-applicati",totalDownloads:3109,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Michael S. Donaldson",downloadPdfUrl:"/chapter/pdf-download/50916",previewPdfUrl:"/chapter/pdf-preview/50916",authors:[{id:"180516",title:"Dr.",name:"Michael",surname:"Donaldson",slug:"michael-donaldson",fullName:"Michael Donaldson"}],corrections:null},{id:"50958",title:"Menaquinone‐4 Enhances Steroidogenesis in Testis Derived Tumor Cells Via the Elevation of cAMP Level",doi:"10.5772/63982",slug:"menaquinone-4-enhances-steroidogenesis-in-testis-derived-tumor-cells-via-the-elevation-of-camp-level",totalDownloads:1146,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Hsin‐Jung Ho, Hitoshi Shirakawa and Michio Komai",downloadPdfUrl:"/chapter/pdf-download/50958",previewPdfUrl:"/chapter/pdf-preview/50958",authors:[{id:"180389",title:"Dr.",name:"Hitoshi",surname:"Shirakawa",slug:"hitoshi-shirakawa",fullName:"Hitoshi Shirakawa"},{id:"180489",title:"MSc.",name:"Hsin-Jung",surname:"Ho",slug:"hsin-jung-ho",fullName:"Hsin-Jung Ho"},{id:"180490",title:"Prof.",name:"Michio",surname:"Komai",slug:"michio-komai",fullName:"Michio Komai"}],corrections:null},{id:"54241",title:"Vitamin K2 Facilitating Inter-Organ Cross-Talk",doi:"10.5772/67153",slug:"vitamin-k2-facilitating-inter-organ-cross-talk",totalDownloads:1365,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Jan O. Gordeladze, Håvard J. Haugen, Gaute Floer Johnsen and\nMona Møller",downloadPdfUrl:"/chapter/pdf-download/54241",previewPdfUrl:"/chapter/pdf-preview/54241",authors:[{id:"36345",title:"Prof.",name:"Jan",surname:"Gordeladze",slug:"jan-gordeladze",fullName:"Jan Gordeladze"}],corrections:null},{id:"51126",title:"Vitamin K2 in Animal Health: An Overview",doi:"10.5772/63901",slug:"vitamin-k2-in-animal-health-an-overview",totalDownloads:1333,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Jayde O’Neil, Bethany Scarrott, Ragnhild Aven Svalheim, Jonathan\nElliott and Stephen J. Hodges",downloadPdfUrl:"/chapter/pdf-download/51126",previewPdfUrl:"/chapter/pdf-preview/51126",authors:[{id:"184368",title:"Dr.",name:"Stephen",surname:"Hodges",slug:"stephen-hodges",fullName:"Stephen Hodges"},{id:"184369",title:"Ms.",name:"Jayde",surname:"O'Neil",slug:"jayde-o'neil",fullName:"Jayde O'Neil"},{id:"184748",title:"Ms.",name:"Bethany",surname:"Scarrott",slug:"bethany-scarrott",fullName:"Bethany Scarrott"},{id:"184749",title:"Prof.",name:"Jonathan",surname:"Elliott",slug:"jonathan-elliott",fullName:"Jonathan Elliott"},{id:"184750",title:"Ms.",name:"Ragnhild",surname:"Svalheim",slug:"ragnhild-svalheim",fullName:"Ragnhild Svalheim"}],corrections:null},{id:"50754",title:"Medicinal Chemistry of Vitamin K Derivatives and Metabolites",doi:"10.5772/63511",slug:"medicinal-chemistry-of-vitamin-k-derivatives-and-metabolites",totalDownloads:1190,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Shinya Fujii and Hiroyuki Kagechika",downloadPdfUrl:"/chapter/pdf-download/50754",previewPdfUrl:"/chapter/pdf-preview/50754",authors:[{id:"180528",title:"Prof.",name:"Hiroyuki",surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"},{id:"180529",title:"Dr.",name:"Shinya",surname:"Fujii",slug:"shinya-fujii",fullName:"Shinya Fujii"}],corrections:null},{id:"50681",title:"From Protein Folding to Blood Coagulation: Menaquinone as a Metabolic Link between Bacteria and Mammals",doi:"10.5772/63342",slug:"from-protein-folding-to-blood-coagulation-menaquinone-as-a-metabolic-link-between-bacteria-and-mamma",totalDownloads:1265,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Brian M. Meehan and Jonathan Beckwith",downloadPdfUrl:"/chapter/pdf-download/50681",previewPdfUrl:"/chapter/pdf-preview/50681",authors:[{id:"180269",title:"Dr.",name:"Brian",surname:"Meehan",slug:"brian-meehan",fullName:"Brian Meehan"},{id:"185054",title:"Prof.",name:"Jon",surname:"Beckwith",slug:"jon-beckwith",fullName:"Jon Beckwith"}],corrections:null},{id:"52618",title:"Vitamin K2 Biosynthesis: Drug Targets for New Antibacterials",doi:"10.5772/65487",slug:"vitamin-k2-biosynthesis-drug-targets-for-new-antibacterials",totalDownloads:1433,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Michio Kurosu",downloadPdfUrl:"/chapter/pdf-download/52618",previewPdfUrl:"/chapter/pdf-preview/52618",authors:[{id:"33087",title:"Prof.",name:"Michio",surname:"Kurosu",slug:"michio-kurosu",fullName:"Michio Kurosu"}],corrections:null},{id:"50717",title:"Toxicological and Pharmacological Effects of VKOR Inhibitors",doi:"10.5772/63512",slug:"toxicological-and-pharmacological-effects-of-vkor-inhibitors",totalDownloads:1191,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Yohei Miyamoto",downloadPdfUrl:"/chapter/pdf-download/50717",previewPdfUrl:"/chapter/pdf-preview/50717",authors:[{id:"172105",title:"Ph.D.",name:"Yohei",surname:"Miyamoto",slug:"yohei-miyamoto",fullName:"Yohei Miyamoto"}],corrections:null},{id:"50994",title:"Enhanced Intracellular Delivery and Improved Antitumor Efficacy of Menaquinone-4",doi:"10.5772/63343",slug:"enhanced-intracellular-delivery-and-improved-antitumor-efficacy-of-menaquinone-4",totalDownloads:1029,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Kazuhisa Matsunaga, Munechika Enjoji, Yoshiharu Karube and Jiro\nTakata",downloadPdfUrl:"/chapter/pdf-download/50994",previewPdfUrl:"/chapter/pdf-preview/50994",authors:[{id:"179737",title:"Associate Prof.",name:"Kazuhisa",surname:"Matsunaga",slug:"kazuhisa-matsunaga",fullName:"Kazuhisa Matsunaga"},{id:"179741",title:"Prof.",name:"Munechika",surname:"Enjoji",slug:"munechika-enjoji",fullName:"Munechika Enjoji"},{id:"179742",title:"Prof.",name:"Yoshiharu",surname:"Karube",slug:"yoshiharu-karube",fullName:"Yoshiharu Karube"},{id:"179744",title:"Prof.",name:"Jiro",surname:"Takata",slug:"jiro-takata",fullName:"Jiro Takata"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5483",title:"Adiposity",subtitle:"Epidemiology and Treatment Modalities",isOpenForSubmission:!1,hash:"5f19b6a0755b8a29538e3b2043d4a854",slug:"adiposity-epidemiology-and-treatment-modalities",bookSignature:"Jan Oxholm Gordeladze",coverURL:"https://cdn.intechopen.com/books/images_new/5483.jpg",editedByType:"Edited by",editors:[{id:"36345",title:"Prof.",name:"Jan",surname:"Gordeladze",slug:"jan-gordeladze",fullName:"Jan Gordeladze"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6039",title:"Adiposity",subtitle:"Omics and Molecular Understanding",isOpenForSubmission:!1,hash:"7ef4705430dd255e9105eff55b3b21a8",slug:"adiposity-omics-and-molecular-understanding",bookSignature:"Jan Oxholm Gordeladze",coverURL:"https://cdn.intechopen.com/books/images_new/6039.jpg",editedByType:"Edited by",editors:[{id:"36345",title:"Prof.",name:"Jan",surname:"Gordeladze",slug:"jan-gordeladze",fullName:"Jan Gordeladze"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5940",title:"Vitamin C",subtitle:null,isOpenForSubmission:!1,hash:"e23e79359167bb9d4a53edd78c7b5038",slug:"vitamin-c",bookSignature:"Amal H. Hamza",coverURL:"https://cdn.intechopen.com/books/images_new/5940.jpg",editedByType:"Edited by",editors:[{id:"188326",title:"Associate Prof.",name:"Amal",surname:"Hamza",slug:"amal-hamza",fullName:"Amal Hamza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7263",title:"Vitamin E in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"6bd8e547b4f3ad7f1675a36b8dbde8f2",slug:"vitamin-e-in-health-and-disease",bookSignature:"Jose Antonio Morales-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/7263.jpg",editedByType:"Edited by",editors:[{id:"109774",title:"Dr.",name:"Jose Antonio",surname:"Morales-Gonzalez",slug:"jose-antonio-morales-gonzalez",fullName:"Jose Antonio Morales-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7038",title:"Vitamin D Deficiency",subtitle:null,isOpenForSubmission:!1,hash:"ba24f0913341357b0779ff9529c4bbfc",slug:"vitamin-d-deficiency",bookSignature:"Julia Fedotova",coverURL:"https://cdn.intechopen.com/books/images_new/7038.jpg",editedByType:"Edited by",editors:[{id:"269070",title:"Prof.",name:"Julia",surname:"Fedotova",slug:"julia-fedotova",fullName:"Julia Fedotova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8594",title:"Fads and Facts about Vitamin D",subtitle:null,isOpenForSubmission:!1,hash:"1731029867f0d79c633e3408fc03ebd2",slug:"fads-and-facts-about-vitamin-d",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/8594.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,isOpenForSubmission:!1,hash:"dad04a658ab9e3d851d23705980a688b",slug:"vitamin-a",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",editedByType:"Edited by",editors:[{id:"261969",title:"Dr.",name:"Leila",surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7033",title:"Vitamin C",subtitle:"an Update on Current Uses and Functions",isOpenForSubmission:!1,hash:"719a5742e3271393fe43864e13e996cd",slug:"vitamin-c-an-update-on-current-uses-and-functions",bookSignature:"Jean Guy LeBlanc",coverURL:"https://cdn.intechopen.com/books/images_new/7033.jpg",editedByType:"Edited by",editors:[{id:"67023",title:"Dr.",name:"Jean Guy",surname:"LeBlanc",slug:"jean-guy-leblanc",fullName:"Jean Guy LeBlanc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6709",title:"B Group Vitamins",subtitle:"Current Uses and Perspectives",isOpenForSubmission:!1,hash:"f34959a0fcc33a2c6fb3d03e9ec544bf",slug:"b-group-vitamins-current-uses-and-perspectives",bookSignature:"Jean Guy LeBlanc and Graciela Savoy de Giori",coverURL:"https://cdn.intechopen.com/books/images_new/6709.jpg",editedByType:"Edited by",editors:[{id:"67023",title:"Dr.",name:"Jean Guy",surname:"LeBlanc",slug:"jean-guy-leblanc",fullName:"Jean Guy LeBlanc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65666",slug:"erratum-metrology-organic-solvents-in-the-shoes-industry-to-sfax-city-tunisia",title:"Erratum - Metrology Organic Solvents in the Shoes Industry to Sfax City (Tunisia)",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65666.pdf",downloadPdfUrl:"/chapter/pdf-download/65666",previewPdfUrl:"/chapter/pdf-preview/65666",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65666",risUrl:"/chapter/ris/65666",chapter:{id:"62241",slug:"metrology-organic-solvents-in-the-shoes-industry-to-sfax-city-tunisia-",signatures:"Imed Gargouri and Moncef Khadhraoui",dateSubmitted:"October 10th 2017",dateReviewed:"May 4th 2018",datePrePublished:null,datePublished:"January 30th 2019",book:{id:"6671",title:"Paint and Coatings Industry",subtitle:null,fullTitle:"Paint and Coatings Industry",slug:"paint-and-coatings-industry",publishedDate:"January 30th 2019",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"186371",title:"Associate Prof.",name:"Imed",middleName:null,surname:"Gargouri",fullName:"Imed Gargouri",slug:"imed-gargouri",email:"imed.gargouri@fmsf.rnu.tn",position:null,institution:{name:"University of Sfax",institutionURL:null,country:{name:"Tunisia"}}},{id:"230836",title:"Dr.",name:"Khadhraoui",middleName:null,surname:"Moncef",fullName:"Khadhraoui Moncef",slug:"khadhraoui-moncef",email:"montunisia@yahoo.com",position:null,institution:null}]}},chapter:{id:"62241",slug:"metrology-organic-solvents-in-the-shoes-industry-to-sfax-city-tunisia-",signatures:"Imed Gargouri and Moncef Khadhraoui",dateSubmitted:"October 10th 2017",dateReviewed:"May 4th 2018",datePrePublished:null,datePublished:"January 30th 2019",book:{id:"6671",title:"Paint and Coatings Industry",subtitle:null,fullTitle:"Paint and Coatings Industry",slug:"paint-and-coatings-industry",publishedDate:"January 30th 2019",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"186371",title:"Associate Prof.",name:"Imed",middleName:null,surname:"Gargouri",fullName:"Imed Gargouri",slug:"imed-gargouri",email:"imed.gargouri@fmsf.rnu.tn",position:null,institution:{name:"University of Sfax",institutionURL:null,country:{name:"Tunisia"}}},{id:"230836",title:"Dr.",name:"Khadhraoui",middleName:null,surname:"Moncef",fullName:"Khadhraoui Moncef",slug:"khadhraoui-moncef",email:"montunisia@yahoo.com",position:null,institution:null}]},book:{id:"6671",title:"Paint and Coatings Industry",subtitle:null,fullTitle:"Paint and Coatings Industry",slug:"paint-and-coatings-industry",publishedDate:"January 30th 2019",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10856",leadTitle:null,title:"Crude Oil - New Technologies and Recent Approaches",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tIn spite of extensive efforts to find new renewable sources of energy, crude oil (petroleum) is still the main source of energy. It is also an essential source for numerous raw materials that are being used in our daily life. However, this industry faces several problems, starting from production to utilization. This book is imagined as a comprehensive overview of crude oil with an extended and integrated modern look.
\r\n\r\n\tThe book aims to include, but is not limited to, new topics in ionic liquids in the petroleum industry such as corrosion inhibitors, green demulsifiers, and so on. Moreover, an overview of natural, synthetic and modified green materials applied in different stages of the petroleum industry is encouraged. Additionaly, the book will aim to shed light on recent technologies adapted for petroleum exploration, production, transportation, and refining.
",isbn:"978-1-83969-533-9",printIsbn:"978-1-83969-532-2",pdfIsbn:"978-1-83969-534-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"8d0a7ca35b3de95b295dc4eab39a087e",bookSignature:"Prof. Manar El-Sayed Abdel-Raouf",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",keywords:"Crude Oil, Petroleum, Demulsification, Viscosity Index, Emulsification, Petrochemical Industry, Oil Spill, Ionic Liquid, Oil Rig, Energy Production, Asphaltenes, Asphalt",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 17th 2021",dateEndSecondStepPublish:"March 17th 2021",dateEndThirdStepPublish:"May 16th 2021",dateEndFourthStepPublish:"August 4th 2021",dateEndFifthStepPublish:"October 3rd 2021",remainingDaysToSecondStep:"20 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Acting as a principal investigator of a project funded by the Academy of Scientific Research and Technology, Prof. Abdel-Raouf is a pioneering researcher in polymer chemistry with several publications concerning important environmental issues such as green plastics, wastewater treatment, and petroleum applications.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"102626",title:"Prof.",name:"Manar El-Sayed",middleName:null,surname:"Abdel-Raouf",slug:"manar-el-sayed-abdel-raouf",fullName:"Manar El-Sayed Abdel-Raouf",profilePictureURL:"https://mts.intechopen.com/storage/users/102626/images/system/102626.jpg",biography:"Manar E. Abdel-Raouf is a Professor of polymer science at Egyptian Petroleum Research Institute since 2012. She has supervised 14 M.Sc and Ph.D theses and published 37 research papers in international journals. She also acts as a reviewer in different journals and has attended 12 international conferences. Currently, she is the principle investigator of a project funded from academy of scientific research and technology.",institutionString:"Egyptian Petroleum Research Institute",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Egyptian Petroleum Research Institute",institutionURL:null,country:{name:"Egypt"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Dr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"2288",title:"Crude Oil Emulsions",subtitle:"Composition Stability and Characterization",isOpenForSubmission:!1,hash:"d237bdec7bb1475639149b044fac69f5",slug:"crude-oil-emulsions-composition-stability-and-characterization",bookSignature:"Manar El-Sayed Abdel-Raouf",coverURL:"https://cdn.intechopen.com/books/images_new/2288.jpg",editedByType:"Edited by",editors:[{id:"102626",title:"Prof.",name:"Manar El-Sayed",surname:"Abdel-Raouf",slug:"manar-el-sayed-abdel-raouf",fullName:"Manar El-Sayed Abdel-Raouf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"9761",title:"Model Based Software Production Utilized by Visual Templates",doi:"10.5772/8544",slug:"model-based-software-production-utilized-by-visual-templates",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/9761.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/9761",previewPdfUrl:"/chapter/pdf-preview/9761",totalDownloads:2549,totalViews:91,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"April 1st 2010",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/9761",risUrl:"/chapter/ris/9761",book:{slug:"visual-servoing"},signatures:"Mika Karaila",authors:null,sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"3791",title:"Visual Servoing",subtitle:null,fullTitle:"Visual Servoing",slug:"visual-servoing",publishedDate:"April 1st 2010",bookSignature:"Rong-Fong Fung",coverURL:"https://cdn.intechopen.com/books/images_new/3791.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",editors:[{id:"6571",title:"Prof.",name:"Rong-Fong",middleName:null,surname:"Fung",slug:"rong-fong-fung",fullName:"Rong-Fong Fung"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"9768",title:"A Modeling and Simulation Platform for Robot Kinematics Aiming Visual Servo Control",slug:"a-modeling-and-simulation-platform-for-robot-kinematics-aiming-visual-servo-control",totalDownloads:2992,totalCrossrefCites:0,signatures:"Lelio R. Soares Jr. and Victor H. Casanova Alcalde",authors:[null]},{id:"9767",title:"Models and Control Strategies for Visual Servoing",slug:"models-and-control-strategies-for-visual-servoing",totalDownloads:1982,totalCrossrefCites:0,signatures:"Nils T Siebel, Dennis Peters and Gerald Sommer",authors:[null]},{id:"9766",title:"The Uncalibrated Microscope Visual Servoing for Micromanipulation Robotic System",slug:"the-uncalibrated-microscope-visual-servoing-for-micromanipulation-robotic-system",totalDownloads:1901,totalCrossrefCites:1,signatures:"Xinhan Huang, Xiangjin Zeng and Min Wang",authors:[null]},{id:"9770",title:"Human-in-the-Loop Control for a Broadcast Camera System",slug:"human-in-the-loop-control-for-a-broadcast-camera-system",totalDownloads:1493,totalCrossrefCites:0,signatures:"Rares Stanciu and Paul Oh",authors:[null]},{id:"9764",title:"Vision-Based Control of the Mechatronic System",slug:"vision-based-control-of-the-mechatronic-system",totalDownloads:3055,totalCrossrefCites:0,signatures:"Rong-Fong Fung and Kun-Yung Chen",authors:[null]},{id:"9763",title:"Online 3-D Trajectory Estimation of a Flying Object from a Monocular Image Sequence for Catching",slug:"online-3-d-trajectory-estimation-of-a-flying-object-from-a-monocular-image-sequence-for-catching",totalDownloads:2299,totalCrossrefCites:0,signatures:"Rafael Herrejon Mendoza, Shingo Kagami and Koichi Hashimoto",authors:[null]},{id:"9762",title:"Multi-Camera Visual Servoing of a Micro Helicopter Under Occlusions",slug:"multi-camera-visual-servoing-of-a-micro-helicopter-under-occlusions",totalDownloads:1819,totalCrossrefCites:2,signatures:"Yuta Yoshihata, Kei Watanabe, Yasushi Iwatani and Koichi Hashimoto",authors:[null]},{id:"9761",title:"Model Based Software Production Utilized by Visual Templates",slug:"model-based-software-production-utilized-by-visual-templates",totalDownloads:2549,totalCrossrefCites:0,signatures:"Mika Karaila",authors:[null]},{id:"9765",title:"Visual Servoing for UAVs",slug:"visual-servoing-for-uavs",totalDownloads:2762,totalCrossrefCites:2,signatures:"Pascual Campoy, Ivan F. Mondragon, Miguel A. Olivares-Mendez and Carol Martinez",authors:[null]},{id:"9769",title:"Video Watermarking Technique using Visual Sensibility and Motion Vector",slug:"video-watermarking-technique-using-visual-sensibility-and-motion-vector",totalDownloads:2727,totalCrossrefCites:1,signatures:"Mariko Nakano-Miyatake and Hector Perez-Meana",authors:[null]}]},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"36273",title:"Introduction to Infrared Spectroscopy",slug:"introduction-to-infrared-spectroscopy",signatures:"Theophile Theophanides",authors:[{id:"37194",title:"Dr.",name:"Theophanides",middleName:null,surname:"Theophile",fullName:"Theophanides Theophile",slug:"theophanides-theophile"}]},{id:"36166",title:"Using Infrared Spectroscopy to Identify New Amorphous Phases - A Case Study of Carbonato Complex Formed by Mechanochemical Processing",slug:"using-infrared-spectroscopy-to-identify-new-amorphous-phases-a-case-study-of-carbonato-complexes-fo",signatures:"Tadej Rojac, Primož Šegedin and Marija Kosec",authors:[{id:"25116",title:"Prof.",name:"Marija",middleName:null,surname:"Kosec",fullName:"Marija Kosec",slug:"marija-kosec"},{id:"105876",title:"Dr.",name:"Tadej",middleName:null,surname:"Rojac",fullName:"Tadej Rojac",slug:"tadej-rojac"},{id:"111754",title:"Prof.",name:"Primoz",middleName:null,surname:"Segedin",fullName:"Primoz Segedin",slug:"primoz-segedin"}]},{id:"36167",title:"Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites",slug:"application-of-infrared-spectroscopy-to-analysis-of-chitosan-clay-nanocomposites",signatures:"Suédina M.L. Silva, Carla R.C. Braga, Marcus V.L. Fook, Claudia M.O. Raposo, Laura H. Carvalho and Eduardo L. Canedo",authors:[{id:"104808",title:"Prof.",name:"Suedina Maria",middleName:"De Lima",surname:"Silva",fullName:"Suedina Maria Silva",slug:"suedina-maria-silva"},{id:"111910",title:"Prof.",name:"Carla",middleName:"Lima",surname:"R. C. Braga",fullName:"Carla R. C. Braga",slug:"carla-r.-c.-braga"},{id:"142933",title:"Prof.",name:"Marcus Vinícius",middleName:null,surname:"Lia Fook",fullName:"Marcus Vinícius Lia Fook",slug:"marcus-vinicius-lia-fook"},{id:"142934",title:"Prof.",name:"Claudia Maria",middleName:null,surname:"De Oliveira Raposo",fullName:"Claudia Maria De Oliveira Raposo",slug:"claudia-maria-de-oliveira-raposo"},{id:"142936",title:"Prof.",name:"Laura",middleName:null,surname:"Hecker De Carvalho",fullName:"Laura Hecker De Carvalho",slug:"laura-hecker-de-carvalho"},{id:"142939",title:"Dr.",name:"Eduardo Luis",middleName:null,surname:"Canedo",fullName:"Eduardo Luis Canedo",slug:"eduardo-luis-canedo"}]},{id:"36168",title:"Structural and Optical Behavior of Vanadate-Tellurate Glasses Containing PbO or Sm2O3",slug:"structural-and-optical-behavior-of-vanadate-tellurate-glasses",signatures:"E. Culea, S. Rada, M. Culea and M. Rada",authors:[{id:"114650",title:"Dr",name:"Eugen",middleName:null,surname:"Culea",fullName:"Eugen Culea",slug:"eugen-culea"},{id:"114653",title:"Dr.",name:"Simona",middleName:null,surname:"Rada",fullName:"Simona Rada",slug:"simona-rada"}]},{id:"36169",title:"Water in Rocks and Minerals - Species, Distributions, and Temperature Dependences",slug:"water-in-rocks-and-minerals-species-distributions-and-temperature-dependences",signatures:"Jun-ichi Fukuda",authors:[{id:"105384",title:"Dr.",name:"Jun-Ichi",middleName:null,surname:"Fukuda",fullName:"Jun-Ichi Fukuda",slug:"jun-ichi-fukuda"}]},{id:"36170",title:"Attenuated Total Reflection - Infrared Spectroscopy Applied to the Study of Mineral - Aqueous Electrolyte Solution Interfaces: A General Overview and a Case Study",slug:"attenuated-total-reflection-infrared-spectroscopy-applied-to-the-study-of-mineral-aqueous-el",signatures:"Grégory Lefèvre, Tajana Preočanin and Johannes Lützenkirchen",authors:[{id:"108416",title:"Dr.",name:"Johannes",middleName:null,surname:"Lützenkirchen",fullName:"Johannes Lützenkirchen",slug:"johannes-lutzenkirchen"},{id:"111675",title:"Dr.",name:"Gregory",middleName:null,surname:"Lefevre",fullName:"Gregory Lefevre",slug:"gregory-lefevre"},{id:"111676",title:"Prof.",name:"Tajana",middleName:null,surname:"Preocanin",fullName:"Tajana Preocanin",slug:"tajana-preocanin"}]},{id:"36171",title:"Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy",slug:"research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy",signatures:"Liga Berzina-Cimdina and Natalija Borodajenko",authors:[{id:"110522",title:"Prof.",name:"Liga",middleName:null,surname:"Berzina-Cimdina",fullName:"Liga Berzina-Cimdina",slug:"liga-berzina-cimdina"},{id:"112181",title:"MSc.",name:"Natalija",middleName:null,surname:"Borodajenko",fullName:"Natalija Borodajenko",slug:"natalija-borodajenko"}]},{id:"36172",title:"FTIR Spectroscopy of Adsorbed Probe Molecules for Analyzing the Surface Properties of Supported Pt (Pd) Catalysts",slug:"ftir-spectroscopy-of-adsorbed-probe-molecules-for-analyzing-the-surface-properties-of-supported-pt-p",signatures:"Olga B. Belskaya, Irina G. Danilova, Maxim O. Kazakov, Roman M. Mironenko, Alexander V. Lavrenov and Vladimir A. Likholobov",authors:[{id:"107715",title:"Dr.",name:"Olga",middleName:null,surname:"Belskaya",fullName:"Olga Belskaya",slug:"olga-belskaya"},{id:"140198",title:"Dr.",name:"Irina",middleName:null,surname:"Danilova",fullName:"Irina Danilova",slug:"irina-danilova"},{id:"140200",title:"Dr.",name:"Maxim",middleName:null,surname:"Kazakov",fullName:"Maxim Kazakov",slug:"maxim-kazakov"},{id:"140202",title:"Mr.",name:"Roman",middleName:"Mikhailovich",surname:"Mironenko",fullName:"Roman Mironenko",slug:"roman-mironenko"},{id:"140203",title:"Dr.",name:"Alexander",middleName:null,surname:"Lavrenov",fullName:"Alexander Lavrenov",slug:"alexander-lavrenov"},{id:"140204",title:"Prof.",name:"Vladimir",middleName:null,surname:"Likholobov",fullName:"Vladimir Likholobov",slug:"vladimir-likholobov"}]},{id:"36173",title:"Hydrothermal Treatment of Hokkaido Peat - An Application of FTIR and 13C NMR Spectroscopy on Examining of Artificial Coalification Process and Development",slug:"hydrothermal-treatment-of-hokkaido-peat-an-application-of-ftir-and-13c-nmr-spectroscopy-on-examinin",signatures:"Anggoro Tri Mursito and Tsuyoshi Hirajima",authors:[{id:"104786",title:"Dr.",name:"Anggoro Tri",middleName:null,surname:"Mursito",fullName:"Anggoro Tri Mursito",slug:"anggoro-tri-mursito"},{id:"110978",title:"Prof.",name:"Tsuyoshi",middleName:null,surname:"Hirajima",fullName:"Tsuyoshi Hirajima",slug:"tsuyoshi-hirajima"}]},{id:"36174",title:"FTIR - An Essential Characterization Technique for Polymeric Materials",slug:"ftir-an-essential-characterization-technique-for-polymeric-materials",signatures:"Vladimir A. Escobar Barrios, José R. Rangel Méndez, Nancy V. Pérez Aguilar, Guillermo Andrade Espinosa and José L. Dávila Rodríguez",authors:[{id:"12709",title:"Dr.",name:"Jose Rene",middleName:null,surname:"Rangel-Mendez",fullName:"Jose Rene Rangel-Mendez",slug:"jose-rene-rangel-mendez"},{id:"12711",title:"Dr.",name:"Vladimir Alonso",middleName:null,surname:"Escobar Barrios",fullName:"Vladimir Alonso Escobar Barrios",slug:"vladimir-alonso-escobar-barrios"},{id:"112164",title:"Dr",name:"Guillermo",middleName:null,surname:"Andrade-Espinosa",fullName:"Guillermo Andrade-Espinosa",slug:"guillermo-andrade-espinosa"},{id:"112165",title:"Dr.",name:"José Luis",middleName:null,surname:"Dávila-Rodríguez",fullName:"José Luis Dávila-Rodríguez",slug:"jose-luis-davila-rodriguez"},{id:"112167",title:"Dr.",name:"Nancy Verónica",middleName:null,surname:"Pérez-Aguilar",fullName:"Nancy Verónica Pérez-Aguilar",slug:"nancy-veronica-perez-aguilar"}]},{id:"36175",title:"Preparation and Characterization of PVDF/PMMA/Graphene Polymer Blend Nanocomposites by Using ATR-FTIR Technique",slug:"preparation-and-characterization-of-pvdf-pmma-graphene-polymer-blend-nanocomposites-by-using-ft-ir-t",signatures:"Somayeh Mohamadi",authors:[{id:"108556",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohamadi",fullName:"Somayeh Mohamadi",slug:"somayeh-mohamadi"}]},{id:"36176",title:"Reflectance IR Spectroscopy",slug:"fundamental-of-reflectance-ir-spectroscopy",signatures:"Zahra Monsef Khoshhesab",authors:[{id:"111629",title:"Dr.",name:"Zahra",middleName:null,surname:"Monsef Khoshhesab",fullName:"Zahra Monsef Khoshhesab",slug:"zahra-monsef-khoshhesab"}]},{id:"36177",title:"Evaluation of Graft Copolymerization of Acrylic Monomers Onto Natural Polymers by Means Infrared Spectroscopy",slug:"evaluation-of-graft-copolymerization-of-acrylic-monomers-onto-natural-polymers-by-means-infrared-spe",signatures:"José Luis Rivera-Armenta, Cynthia Graciela Flores-Hernández, Ruth Zurisadai Del Angel-Aldana, Ana María Mendoza-Martínez, Carlos Velasco-Santos and Ana Laura Martínez-Hernández",authors:[{id:"37761",title:"Prof.",name:"Ana Laura",middleName:null,surname:"Martinez-Hernandez",fullName:"Ana Laura Martinez-Hernandez",slug:"ana-laura-martinez-hernandez"},{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",fullName:"Jose Luis Rivera Armenta",slug:"jose-luis-rivera-armenta"},{id:"108894",title:"MSc.",name:"Cynthia Graciela",middleName:null,surname:"Flores-Hernández",fullName:"Cynthia Graciela Flores-Hernández",slug:"cynthia-graciela-flores-hernandez"},{id:"108896",title:"MSc.",name:"Ruth Zurisadai",middleName:null,surname:"Del Angel Aldana",fullName:"Ruth Zurisadai Del Angel Aldana",slug:"ruth-zurisadai-del-angel-aldana"},{id:"108898",title:"Dr.",name:"Carlos",middleName:null,surname:"Velasco-Santos",fullName:"Carlos Velasco-Santos",slug:"carlos-velasco-santos"},{id:"108905",title:"Dr.",name:"Ana Maria",middleName:null,surname:"Mendoza-Martínez",fullName:"Ana Maria Mendoza-Martínez",slug:"ana-maria-mendoza-martinez"}]},{id:"36178",title:"Applications of FTIR on Epoxy Resins - Identification, Monitoring the Curing Process, Phase Separation and Water Uptake",slug:"applications-of-ftir-on-epoxy-resins-identification-monitoring-the-curing-process-phase-separatio",signatures:"María González González, Juan Carlos Cabanelas and Juan Baselga",authors:[{id:"107857",title:"Prof.",name:"Juan",middleName:null,surname:"Baselga",fullName:"Juan Baselga",slug:"juan-baselga"},{id:"138113",title:"Dr.",name:"María",middleName:null,surname:"González",fullName:"María González",slug:"maria-gonzalez"},{id:"138114",title:"Dr.",name:"Juan C.",middleName:null,surname:"Cabanelas",fullName:"Juan C. Cabanelas",slug:"juan-c.-cabanelas"}]},{id:"36179",title:"Use of FTIR Analysis to Control the Self-Healing Functionality of Epoxy Resins",slug:"use-of-ft-ir-analysis-to-control-the-self-healing-functionality-of-epoxy-resins",signatures:"Liberata Guadagno and Marialuigia Raimondo",authors:[{id:"106836",title:"Prof.",name:"Liberata",middleName:null,surname:"Guadagno",fullName:"Liberata Guadagno",slug:"liberata-guadagno"}]},{id:"36180",title:"Infrared Analysis of Electrostatic Layer-By-Layer Polymer Membranes Having Characteristics of Heavy Metal Ion Desalination",slug:"infrared-analysis-of-electrostatic-layer-by-layer-polymer-membranes-having-characteristics-of-heavy",signatures:"Weimin Zhou, Huitan Fu and Takaomi Kobayashi",authors:[{id:"110384",title:"Dr.",name:"Takaomi",middleName:null,surname:"Kobayashi",fullName:"Takaomi Kobayashi",slug:"takaomi-kobayashi"}]},{id:"36181",title:"Infrared Spectroscopy as a Tool to Monitor Radiation Curing",slug:"infrared-spectroscopy-as-a-tool-to-monitor-radiation-curing",signatures:"Marco Sangermano, Patrick Meier and Spiros Tzavalas",authors:[{id:"112286",title:"Dr.",name:"Spiros",middleName:null,surname:"Tzavalas",fullName:"Spiros Tzavalas",slug:"spiros-tzavalas"},{id:"114382",title:"Prof.",name:"Marco",middleName:null,surname:"Sangermano",fullName:"Marco Sangermano",slug:"marco-sangermano"},{id:"114384",title:"Dr",name:"Patrick",middleName:null,surname:"Meier",fullName:"Patrick Meier",slug:"patrick-meier"}]},{id:"36182",title:"Characterization of Compositional Gradient Structure of Polymeric Materials by FTIR Technology",slug:"characterization-of-compositional-gradient-structure-of-polymeric-materials-by-ft-ir-technology",signatures:"Alata Hexig and Bayar Hexig",authors:[{id:"20867",title:"Dr.",name:"Bayar",middleName:null,surname:"Hexig",fullName:"Bayar Hexig",slug:"bayar-hexig"},{id:"111986",title:"Dr.",name:"Alata",middleName:null,surname:"Hexig",fullName:"Alata Hexig",slug:"alata-hexig"}]},{id:"36183",title:"Fourier Transform Infrared Spectroscopy - Useful Analytical Tool for Non-Destructive Analysis",slug:"fourier-trasform-infrared-spectroscopy-useful-analytical-tool-for-non-destructive-analysis",signatures:"Simona-Carmen Litescu, Eugenia D. Teodor, Georgiana-Ileana Truica, Andreia Tache and Gabriel-Lucian Radu",authors:[{id:"24425",title:"Dr.",name:"Simona Carmen",middleName:null,surname:"Litescu",fullName:"Simona Carmen Litescu",slug:"simona-carmen-litescu"},{id:"24429",title:"Prof.",name:"Gabriel-Lucian",middleName:null,surname:"Radu",fullName:"Gabriel-Lucian Radu",slug:"gabriel-lucian-radu"},{id:"108318",title:"Dr.",name:"Eugenia D.",middleName:null,surname:"Teodor",fullName:"Eugenia D. Teodor",slug:"eugenia-d.-teodor"},{id:"108323",title:"Dr.",name:"Georgiana-Ileana",middleName:null,surname:"Badea",fullName:"Georgiana-Ileana Badea",slug:"georgiana-ileana-badea"},{id:"136337",title:"Ms.",name:"Andreia",middleName:null,surname:"Tache",fullName:"Andreia Tache",slug:"andreia-tache"}]},{id:"36184",title:"Infrared Spectroscopy in the Analysis of Building and Construction Materials",slug:"infrared-spectroscopy-of-cementitious-materials",signatures:"Lucia Fernández-Carrasco, D. Torrens-Martín, L.M. Morales and Sagrario Martínez-Ramírez",authors:[{id:"107401",title:"Dr.",name:"Lucia J",middleName:null,surname:"Fernández",fullName:"Lucia J Fernández",slug:"lucia-j-fernandez"}]},{id:"36185",title:"Infrared Spectroscopy Techniques in the Characterization of SOFC Functional Ceramics",slug:"infrared-spectroscopy-techniques-in-the-characterization-of-sofc-functional-ceramics",signatures:"Daniel A. Macedo, Moisés R. Cesário, Graziele L. Souza, Beatriz Cela, Carlos A. Paskocimas, Antonio E. Martinelli, Dulce M. A. Melo and Rubens M. Nascimento",authors:[{id:"102015",title:"MSc.",name:"Daniel",middleName:null,surname:"Macedo",fullName:"Daniel Macedo",slug:"daniel-macedo"},{id:"112309",title:"MSc",name:"Moisés",middleName:"Romolos",surname:"Cesário",fullName:"Moisés Cesário",slug:"moises-cesario"},{id:"112310",title:"Ms.",name:"Graziele",middleName:null,surname:"Souza",fullName:"Graziele Souza",slug:"graziele-souza"},{id:"112311",title:"MSc.",name:"Beatriz",middleName:null,surname:"Cela",fullName:"Beatriz Cela",slug:"beatriz-cela"},{id:"112312",title:"Prof.",name:"Carlos",middleName:null,surname:"Paskocimas",fullName:"Carlos Paskocimas",slug:"carlos-paskocimas"},{id:"112314",title:"Prof.",name:"Antonio",middleName:null,surname:"Martinelli",fullName:"Antonio Martinelli",slug:"antonio-martinelli"},{id:"112315",title:"Prof.",name:"Dulce",middleName:null,surname:"Melo",fullName:"Dulce Melo",slug:"dulce-melo"},{id:"112316",title:"Dr.",name:"Rubens",middleName:"Maribondo Do",surname:"Nascimento",fullName:"Rubens Nascimento",slug:"rubens-nascimento"}]},{id:"36186",title:"Infrared Spectroscopy of Functionalized Magnetic Nanoparticles",slug:"infrared-spectroscopy-of-functionalized-magnetic-nanoparticles",signatures:"Perla E. García Casillas, Claudia A. Rodriguez Gonzalez and Carlos A. Martínez Pérez",authors:[{id:"104636",title:"Dr.",name:"Perla E.",middleName:null,surname:"García Casillas",fullName:"Perla E. García Casillas",slug:"perla-e.-garcia-casillas"},{id:"112440",title:"Dr.",name:"Carlos A.",middleName:null,surname:"Martínez Pérez",fullName:"Carlos A. Martínez Pérez",slug:"carlos-a.-martinez-perez"},{id:"112441",title:"Dr.",name:"Claudia A.",middleName:null,surname:"Rodriguez Gonzalez",fullName:"Claudia A. Rodriguez Gonzalez",slug:"claudia-a.-rodriguez-gonzalez"}]},{id:"36187",title:"Determination of Adsorption Characteristics of Volatile Organic Compounds Using Gas Phase FTIR Spectroscopy Flow Analysis",slug:"determination-of-adsorption-characteristics-of-volatile-organic-compounds-using-gas-phase-ftir-spect",signatures:"Tarik Chafik",authors:[{id:"107310",title:"Prof.",name:"Tarik",middleName:null,surname:"Chafik",fullName:"Tarik Chafik",slug:"tarik-chafik"}]},{id:"36188",title:"Identification of Rocket Motor Characteristics from Infrared Emission Spectra",slug:"identification-of-rocket-motor-characteristics-from-infrared-emission-spectra",signatures:"N. Hamp, J.H. Knoetze, C. Aldrich and C. Marais",authors:[{id:"112229",title:"Prof.",name:"Chris",middleName:null,surname:"Aldrich",fullName:"Chris Aldrich",slug:"chris-aldrich"},{id:"112232",title:"Prof.",name:"Hansie",middleName:null,surname:"Knoetze",fullName:"Hansie Knoetze",slug:"hansie-knoetze"},{id:"135327",title:"Ms.",name:"Corne",middleName:null,surname:"Marais",fullName:"Corne Marais",slug:"corne-marais"}]},{id:"36189",title:"Optical Technologies for Determination of Pesticide Residue",slug:"optical-technology-for-determination-of-pesticide-residue",signatures:"Yankun Peng, Yongyu Li and Jingjing Chen",authors:[{id:"113343",title:"Prof.",name:"Yankun",middleName:null,surname:"Peng",fullName:"Yankun Peng",slug:"yankun-peng"},{id:"116636",title:"Dr.",name:"Yongyu",middleName:null,surname:"Li",fullName:"Yongyu Li",slug:"yongyu-li"},{id:"116637",title:"Dr.",name:"Jingjing",middleName:null,surname:"Chen",fullName:"Jingjing Chen",slug:"jingjing-chen"}]},{id:"36190",title:"High Resolution Far Infrared Spectra of the Semiconductor Alloys Obtained Using the Synchrotron Radiation as Source",slug:"high-resolution-spectra-of-semiconductor-s-alloys-obtained-using-the-far-infrared-synchrotron-radi",signatures:"E.M. Sheregii",authors:[{id:"102655",title:"Prof.",name:"Eugen",middleName:null,surname:"Sheregii",fullName:"Eugen Sheregii",slug:"eugen-sheregii"}]},{id:"36191",title:"Effective Reaction Monitoring of Intermediates by ATR-IR Spectroscopy Utilizing Fibre Optic Probes",slug:"effective-reaction-monitoring-of-intermediates-by-atr-ir-spectroscopy-utilizing-fibre-optic-probes",signatures:"Daniel Lumpi and Christian Braunshier",authors:[{id:"109019",title:"Dr.",name:"Christian",middleName:null,surname:"Braunshier",fullName:"Christian Braunshier",slug:"christian-braunshier"},{id:"111798",title:"MSc.",name:"Daniel",middleName:null,surname:"Lumpi",fullName:"Daniel Lumpi",slug:"daniel-lumpi"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"74031",title:"Fault Detection, Diagnosis, and Isolation Strategy in Li-Ion Battery Management Systems of HEVs Using 1-D Wavelet Signal Analysis",doi:"10.5772/intechopen.94554",slug:"fault-detection-diagnosis-and-isolation-strategy-in-li-ion-battery-management-systems-of-hevs-using-",body:'The most viable way to achieve clean and efficient transport is to boost the automotive industry to be concerned with developing advanced battery technologies, especially lithium-ion (Li-ion), to increase the number of electric and hybrid electric vehicles (EVs/HEVs) to dominate the vehicle market. An essential internal parameter of the Li-ion battery is the state of charge (SOC), defined as the available capacity of the cell that changes according to the current profile of the driving cycle. Due to its crucial role in keeping the battery safe for various operating conditions and significantly extending battery life, SOC is a topic of great interest, as evidenced by an impressive number of research papers published in the literature. In the absence of a measurement sensor, the SOC must be estimated since its calculated value is not accurate enough. The most used model-based Kalman filters can estimate the battery SOC with a high grade of accuracy [1, 2, 3, 4]. The Li-ion battery is an important component integrated into battery management system (BMS) that performs tasks regarding the safe operation and reliability of the battery, protecting battery cells and battery systems against damage, as well as battery efficiency and service life [2, 3, 4]. The BMS “plays a significant role in fault diagnosis because it houses all diagnostic subsystems and algorithms” [2, 3]; thus it monitors the battery system through sensors and state estimation, such that to detect any abnormalities during the battery system operation” [2, 5]. A signal processing-based method using wavelet transforms proved to be a viable alternative to conventional Kalman filter state estimators, for designing and implementation of real-time FDI strategies. The new FDI approach avoids battery modeling difficulties and is more straightforward with better dynamic performance [7]. The drawback of this method is the difficulty experienced in dealing with the early faults and fault isolation. Its application also requires a large amount of calculations compared to the model-based methods. An intelligent fault detection scheme for microgrid based on wavelet transform and deep neural networks is used in [6] to “provide fast fault type, phase, and location information for microgrid protection and service recovery” [6]. Similar, a wavelet-based transient fault detection and analysis is used successfully in [7] for a microgrid connected power. In this research, our motivation of using 1-D wavelet analysis comes from the preliminary results obtained for similar investigations on the impact of nonlinearities and uncertainties of actuators (electro-pneumatic valves), such as hysteresis, dead zone, dead band, on a healthy pH neutralization plant [8]. An example of multisignal 1-D wavelet analysis is found in [9], and a useful tutorial of using wavelet transforms presented in [10]. In [11] is shown a generic Simscape model of Li-ion Cobalt battery model used to build a SOC AEKF estimator robust to three different driving cycles profile tests, such as UDDS, EPA-UDDS and FTP-75, the last one also used in the case study of this research. For FDI techniques based on 1-D wavelet analysis are used specific MATLAB commands provided by MATLAB Wavelet Toolbox [12]. A strong theoretical background on wavelet transform and their applications is provided by the fundamental work [13]. In [14] is presented an interesting fault isolation technique based on wavelet transform, and a detailed data-based FDI techniques for a nonlinear ship propulsion system are developed in [15]. Several multimedia applications of wavelet transform can be found in [16], and a better understanding of wavelet transform analysis, design and implementation of features extraction methods, for filtering, denoising, decomposition and reconstructing signals is given in [17, 18, 19, 20, 21, 22, 23]. From our most recent preliminary results in Li-ion battery field, modeling and SOC estimators disseminated in [11, 24, 25], an interesting state-of-art analysis of similar SOC AEKF estimators performance reported in the literature is done in terms of statistical performance criteria values, such as root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE), standard deviation (std), mean absolute percentage error (MAPE) and R2 (R-squared). Among three SOC Li-ion battery estimators AEKF, adaptive unscented Kalman filter (AUKF) and particle filter SOC estimators the AEKF proved that is the most suitable for HEVs applications.
Let why is used the AEKF SOC estimator of Li-ion battery in the first part of our research for FDI control strategies, excelling by its simplicity, SOC accuracy, real-time implementation capability and robustness. The robustness is tested for four different scenarios, such as to changes in SOC initial values (guess values), from 70–40%, 20%, 90% and 100%, to FTP-75 driving cycle profile test, changes in measurement level noise (from 0.001 to 0.01), to changes in the battery capacity value from 6 Ah to 4.8 Ah due to aging effects, and changes in internal resistance due to temperature effects, and also for simultaneous changes [11, 23]. Based on a rigorous performance analysis of SOC residuals error compared to the similar results reported in the literature with a typically 2% error, in some situations the AEKF estimator SOC residual error reached values smaller than 1%, such as shown in [25]. Since of the lack of data in the literature field for similar situations developed in our research for Li-ion battery, it is not easy to make a state-of-art analysis of the results reported in the literature related to the FDI techniques design and implementation based on 1-D wavelet analysis. The efficiency of 1-D analysis is proved in this paper based on extensive MATLAB simulations to extract the features of input-output signals such as the energy, skewness, kurtosis, and to compute the MSE statistical criteria performance. Finally, the MATLAB simulation results can provide useful information on detection accuracy, computation time, and robustness against measurement uncertainty, thus showing simply the effectiveness of the FDI proposed scheme. The temperature fault is detected without doubt inside the Li-ion battery based on the significant values reached by the details (D1, D2, and D3) and analysis coefficient (A3) of the output terminal battery voltage residual level three decomposition, represented by the following sets of values (4.46, 2.7, 5.349, 87.5) for energy feature, (0.063, −3.92, 13, −1.33) for skewness signal feature, respectively (5.8, 71.4, 389.13, 56) for kurtosis signal feature. Also, the statistic RMSE performance criterion indicates significant values for D1 coefficient in the presence of the of temperature fault for energy feature (4.4654) and skewness and kurtosis features are the same as for current fault. To detect both faults, a multiresolution analysis (MRA) is performed, capable of extracting a smooth trend term, which provides a valuable information to localize transient changes in the fault injection window [500, 1500] seconds [23].
Thus, the presence of the bias current fault and bias temperature fault is detected and localized as a transient significant change in the nonstationary Li-ion output voltage residual signal. For an appropriate choice of the thresholds’ values, both faults can be detected with a high accuracy detection times directly from S8 graph; thus, the presence of the false alarms is completely removed compared to Kalman filter FDI estimation techniques. The fault signature and considering the variation trend in SOC residual and internal resistance of the battery also provides a piece of useful information for fault isolation.
This section briefly presents the Rint equivalent circuit model (Rint ECM) as a case study to investigate the effectiveness of the proposed fault detection and isolation (FDI) strategy, using a conventional EKF SOC estimator, as a support for performance analysis comparison, in the first part [1, 2, 3, 4], and a 1-D wavelet transformation in the second part [8, 9]. For comparison purpose, an improved adaptive extended conventional Kalman (AEKF) filter algorithm [3, 4, 11] is also briefly presented for estimating the state of charge (SOC) of the adopted Li-ion battery, as well as the faults in Appendix A. Residual methodology is useful to detect and isolate faults. Only three failures of the current, voltage and temperature sensors of the HEV battery management system (BMS) used for the case study are analyzed.
The Rint ECM Li-ion battery model is one of the most common models to describe battery dynamics in many real-time implemented HEV applications with an acceptable range of performance. The reason for using these models is their simplicity, low number of parameters to adjust and easy implementation in a friendly MATLAB simulation environment. Therefore, a compromise we need to make between the accuracy of the battery SOC and the complexity of the model related to the choice of Li-ion battery, so that, for simulation purpose and “proof concept”, we adopt a simple Rint ECM Li-ion battery model, as a reasonably simplified version of RC ECM developed in [1], and in [11] for a Li-ion Cobalt battery, as is shown in Figure 1.
ECM Rint Li-ion battery model (see [11]).
The Rint ECM Li-ion battery model is an equivalent Thevenin electrical circuit consisting of an open circuit-controlled voltage (OCV) source and an internal resistance designated by Rin. The OCV source strongly depends on the state of charge (SOC), i.e. a dependency described by an extremely nonlinear function OCV = f (SOC), represented by different combinations of models reported in the literature such as Shepherd, Nernst and Unnewehr universal model [1, 3, 4]. The dynamics complexity and the accuracy of ECM increase by adding an RC polarization cell (first-order RC model), two RC cells (second-order ECM) respectively three RC cells (third ECM order model), as those developed in [1, 2, 3, 11]. The main input-output and intermediate signals in Figure 1 are Ibatt is the input battery instantaneous value of the direct current (DC) flowing through the open circuit controlled-voltage source, and Vbatt denotes the measured output terminal battery instantaneous value DC voltage that are nonlinear dependent of OCV, as intermediate signal. The internal resistance of the battery is affected by several factors. Still, a significant impact has conductor resistance, electrolyte resistance, ion mobility, separator efficiency, reactive electrode rates, polarization, temperature, and aging effects, and SOC changes, as is mentioned in [11]. Since the SOC of the battery is defined as [1, 2, 3, 4, 11]:
with Q denoting the rating battery capacity, in the schematic shown in Figure 1, the controlled voltage source E (open circuit voltage (OCV)) can be modeled by:
The battery terminal voltage Vbatt is related to OCV according to following nonlinear equation:
where
However, for the implementation of the proposed FDI techniques, a high-precision model is not required, because the extraction of ECM parameters is beneficial to monitor the battery SOC, rather than to model the battery performance.
For a discharging current cycle, when
where
where
Because the internal resistance Rin is an essential parameter of the battery that is affected much more by the temperature than other parameters of the cell, it is necessary to attach to the Li-ion battery model a thermal model, described in continuous time by a first order differential equation:
where:
In discrete time the Eq. (7) becomes:
and
The healthy ECM battery model (free faults model) MATLAB simulations to an input driving cycle Federal Test Procedure (FTP-75) for a city, are shown in Figure 2.
The ECM Li-ion battery healthy model: (a) FTP-75 driving cycle current profile; (b) output terminal voltage; ECM battery model SOC; (d) temperature profile for changes in ambient temperature; (e) the effect of temperature profile on battery internal resistance.
In Figure 2(a) is shown the FTP-75 driving cycle test profile, Figure 2(b) depictures the battery terminal voltage, Figure 2(c) reveals the battery SOC, Figure 2(d) discloses the temperature profile of the thermal model initiated by an ambient temperature of 20°C, and Figure 2(e) exposes the effect of the battery temperature on internal resistance Rin.
For Li-ion batteries, the aspects such as accuracy performance of the SOC estimation and the prediction of the terminal voltage are essential to be analyzed, thus ensuring the safe operation of the cell, and thus maintaining a long life. Therefore, a brief presentation of an appropriate estimation technique is of real use. Moreover, for any battery, whether it is a Li-ion battery, SOC cannot be measured accurately, so it is necessary to estimate it. The most popular estimation algorithm reported in the literature is the Kalman filter (KF) with its improved version for models with extremely nonlinear dynamics, such as an extended Kalman filter (EKF) /adaptive extended Kalman filter (AEKF) [1, 2, 3, 4, 11].
Since the preliminary results obtained in [11] convinced us about the efficiency of applying the AEKF SOC estimator for a Simscape model of Li-ion battery, quite well documented in [4], then the same estimator is used in this paper. For the adopted battery model, the SOC estimator adaptation consists in changing the dimensionality of the state space and the values of the adjustment parameters. For good documentation, the reader can see, in Appendix A, a brief presentation of the steps of AEKF estimation algorithm. Furthermore, the choice of using the AEKF for condition monitoring purposes is explained in this subsection. As is mentioned in the first section, the BMS, through its hardware and software components, plays a vital role in an HEV integrated structure for supervision, control and monitoring all the internal battery parameters. In a BMS, time-based monitoring and FDI techniques based on Kalman filter state and parameters estimators are implementing, and the faults in a system are detected only when measured values exceeded their normal limits [5, 26]. Furthermore, since the Li-ion battery SOC is non-measurable and a critical internal parameter of the battery, the use of AEKF SOC estimator for its estimation is wholly justified.
For a healthy Li-ion battery (free faults), the MATLAB simulations result of applying AEKF SOC estimator, whose steps are briefly presenting in Appendix A, is shown in Figure 3. In Figure 3(a) is shown the battery terminal voltage AEKF estimate values versus the Rint ECM Li-ion battery model terminal voltage true values. The MATLAB simulations result reveals an AEKF SOC estimator with an excellent prediction ability for battery terminal voltage. Figure 3(b) depictures the residual battery terminal voltage calculated as a difference between the battery terminal voltage true values and the corresponding estimate values of battery terminal voltage, as in Eq. (12).
AEKF estimator and Li-ion ECM battery model – Healthy system: (a) AEKF output terminal voltage estimate versus ECM terminal voltage true value; output terminal voltage residual; (b) terminal voltage residual (c) AEKF SOC estimate versus ECM SOC true value; (d) SOC residual.
The residues of battery SOC and for internal resistance are calculated by using the Eqs. (13) and (14):
For a healthy battery model, the residual is inside the minimum and maximum values of two thresholds, calculated as [5]:
where
In Figure 3(c) is depicted the battery AEKF SOC estimate values versus the battery model SOC true values, and in Figure 3(d) is showing the battery SOC residual calculated in the same manner as the battery terminal voltage. The MATLAB simulations result reveals an excellent SOC accuracy, and for a clean battery model the SOC residual is inside the band delimited by the minimum respectively maximum values of the SOC threshold calculated by using a similar formula as in Eq. (9). In Figure 4(a) is shown the robustness of AEKF SOC estimator to a change in the initial value of SOC from default value 70% to a SOCini = 40%. A level of the noise in measurements is more realistic in HEVs applications since the initial value of SOC must be guessed, and due to contamination of the measurements with noise. The SOC residual that is showing in Figure 4(b) remains inside the band delimited by the same minimum and maximum values of SOC threshold, and in Figure 4(c) the battery terminal voltage residual also remains inside the band.
Robustness of AEKF SOC to changes in SOC initial value, SOCini =70%: (a) robustness to a decrease of 30% from default value SOCini =70% to a SOCini =40%; (b) SOC residual; (c) battery terminal voltage residual.
The fault injection mechanism based on AEKF fault estimation and residual generation consists of injecting additive bias sensors faults in the input-output Li-ion battery Rint ECM model, as following:
where
First scenario - bias sensor fault injection inside the window (500, 1000) seconds.
At the instance 500 seconds is injected a fault in the Voltage measurement sensor of magnitude 1 V, and after 500 seconds the fault is removed, as shown in Figure 5(a).
First scenario of fault injection: (a) bias fault injection of magnitude 1 V in battery cell terminal voltage measurement sensor; (b) AEKF terminal voltage estimate versus EMC battery model terminal voltage true value; (c) battery terminal voltage residual; (d) AEKF SOC estimate versus EMC battery model SOC true value; (e) SOC residual; (f) the battery internal resistance.
In Figure 5(b) is shown the impact of the injected fault on battery terminal voltage, real and estimated values. The MATLAB simulation result reveals an abnormal behavior of terminal voltage estimate inside the same window of fault injection. The detection of the event is faster at the beginning of the window, persisting only 500 seconds, until the fault is removing. The residual battery terminal voltage is showing in Figure 5(c). It exceeds the band of the clean terminal voltage signal inside the fault window; thus, the same fault is detecting. An abnormal behavior of battery SOC is revealed in Figure 5(d) inside the fault window and persists inside the window until the fault is removed at instance 1000. The SOC residual generated by injecting the bias voltage in the Li-ion cell sensor terminal voltage is shown in Figure 5(e) that also detects the occurrence of the fault inside the same window. After the fault is removed the SOC residual enters inside of the band and indicates a normal SOC behavior. In Figure 5(e) the MATLAB simulations result reveals the fact that the injected fault has not a significant impact on the internal resistance Rin.
Second scenario: bias current sensor fault injection
Between samples 500 and 1000 is injected a fault in the current measurement sensor of magnitude 2A, such is showing in the Figure B1(a) from Annex B. Similar as for the first scenario the battery voltage reacts to the fault injection as is shown in Figure B1(b), and its residual depictured in Figure B1(c) detects the presence of the fault at the beginning of the window injection. In this scenario, compared to the first scenario, the fault persists until the end of the driving cycle; so its evolution after removing the fault is misclassified and can be considered as a false alarm, that is useful for constructing the FDI logic of fault localization (isolation). A similar situation appears for battery SOC shown in Figure B1(d) and for its residual in Figure B1(e). In Figure B1(f) the internal resistance Rin has the same evolution as in the first scenario. These last aspects are beneficial also for creating the FDI logic for isolation.
Third scenario: injection of bias temperature sensor fault
In the temperature sensor, a fault of magnitude 10°C is injected in the same window, similar for first and second scenario, as is shown in Figure B2(a) from Annex B. The MATLAB simulations result from the impact on the temperature profile of the fault injected is showing in a Figure B2(b). Also, the internal battery resistance is showing in the Figure B2(c), and the battery SOC is disclosed in Figure B2(d) together to its residual in Figure B2(e). The battery terminal voltage is showing in Figure B2(f) together to its residual depicted in Figure B2(g). This scenario of point view of fault detection is the same as the first scenario with the fault persistent only inside the window and removed at the end of the same window. Only the internal resistance of the battery withstands a significant impact inside the window, a valuable indication for fault localization.
Residual evaluation supposes to define “proper functions for the generated residue evaluation so that fault occurring in the system can be detected correctly”, as is stated in [5]. Roughly, in the ideal case, “if no fault occurs, the residue will be zero and otherwise, it will be non-zero” [5]. More precisely, in a general formulation, the residue evaluation can be defined as:
where
It is possible that in many cases, “the residue might be non-zero even though no fault has occurred; therefore, the evaluation function of Eq. (18) will not be proper. For this purpose, a statistical evaluation function can be defined as [5]:
otherwise:
for which the values of the parameter
p{
The fault signature for AEKF SOC estimator based diagnostic scheme is shown in Table 1.
Res_y | Res_SOC | Res_Rcell | Fault signature |
---|---|---|---|
1 | 1 (>0) | 0 | Voltage sensor fault |
1 | 1 (<0) | 0 | Current sensor fault, False alarm |
1 | 1 | 1 | Temperature fault sensor |
Fault signature for AEKF SOC estimator based diagnostic scheme.
For the second scenario the isolation of the fault can be done based on the tendency of SOC, i.e. for first scenario the SOC increases (Res_SOC >0) after the fault injection, while for second scenario it decreases (Res_SOC < 0) and persists until the end of driving cycle, generating a false alarm.
This section investigates the use, in a new approach, of 1-D wave signal analysis, a valuable tool for determining the essential characteristics of faults that occur in a Li-ion battery, a useful basic principle for developing a simple detection of their defects. These techniques are based on detecting changes that occur abruptly in the variation of the residual signal due to a faulty current sensor or a defective temperature measurement sensor, such as those developed in the previous section. Therefore, a similar method of residual generation and evaluation is useful to provide a valuable information to use the wavelet transformation ability to extract the essential features (patterns) of the faults from the output voltage residual of the battery. These faults visibly affect the performance of the Li-ion battery, such as the output voltage and SOC. The dynamics of the battery model under investigation is shown in Section 2. Note that SOC plays a critical role in locating faults (isolation).
Over time, Fourier transform (FT) has proven to be a useful tool for analyzing signal frequency components in a wide variety of applications. However, it has a significant disadvantage, because when it covers the entire time axis, it is impossible to see when a frequency increase. Instead, the short-term Fourier transform (STFT) uses a sliding window to find the spectrogram, which provides complete information on both time and frequency. A small impediment when using STFT in applications is due to the length of the window that limits the frequency resolution [10]. In these situations, the wavelet transforms (WT) seems to be a feasible solution, since it can be applied on a small wavelet of limited duration. Specifically, the wavelet provides local frequency information compared to FT, which captures the global features such as the harmonic components of the entire signal. Besides, the scaled wavelets allow to analyze the signal on different scales. The essential functions designate the “wavelets,” which are nothing else than scaled and shifted copies of the same “mother wavelet.” With a proper choice of the mother wavelet, the basis wavelets can be orthonormal, or at least linearly independent. Thus, the wavelets form a complete basis, and the wavelet transforms are designed to be reversible.
A wavelet is a waveform of effectively limited duration that has an average value of zero and nonzero norm, as is stated in [12]. The wavelets compared to sine waves, as the basis of Fourier analysis, “tend to be irregular and asymmetric, while sinusoids are smooth, predictable, and their duration is not limited” [12]. Thus, a wavelet is a wave-like oscillation with an amplitude that starts at zero, increases, and then decreases back to zero. Furthermore, the majority of signals and images of interest “exhibit piecewise smooth behavior punctuated by transients”, and the “signals with sharp changes might analyze with an irregular wavelet than with a smooth sinusoid”, thus an excellent idea for applying it to develop the detection techniques of the faults [12]. A fundamental work recommended to readers to obtain an excellent theoretical background on the wavelets is the reference [13]. Let us consider the wavelet analyzing function, also called “mother wavelet,” and a continuous wavelet transform (CWT). The CWT compares the signal under investigation, denoted by y(t), to shifted and scaling (compressed or stretched) versions of the wavelet function [12]. Since the physical signal y(t), which can be the output of the plant or a residual error, is real-valued, then also the CWT is a real-valued as a function of scale and position. For a scale parameter, a > 0, and location, b, a possible representation of a 1-D CWT can be the same as in [12, 13]:
where
where 1/a denotes the frequency and 1/
Each coefficient of the vector
The higher scales correspond to the “most” stretched wavelets, furthermore “the more stretched the wavelet, the longer the portion of the signal with which is compared, and thus the coarser the signal patterns features measured by the wavelet coefficients.”
The coarser features capture the low frequency components (
The low scale components (
The CWT is computationally inefficient, since it requires to calculate the c(a, b) coefficients at every single scale, so computationally expensive.
An alternative to the CWT is the discrete wavelet transform DWT, much more efficient and of high accuracy, defined in a similar way that CWT in Eq. (24) [14]:
For a parameter (a0, b0) setting to the values: a0 = 2, b0 = 1 is obtained a particular dyadic sampling of the time-frequency plane (a set of coefficients per octave), as is mentioned in [14]. Thus, for this particular sampling, it is possible to obtain for the set
Wavelet function samples: (a) Morlet wavelet function with 10 vanishes moments; (b) Haar wavelet function; (c) Daubechies wavelet function with 4 vanishes moments and its corresponding scaled function.
Finally, according to Eqs. (28) and (29) the original signal can be approximated as,
or simpler,
starting from last stage N toward the first stage in decomposition, and recursively, at stage level k, it can be writing:
In [16] is mentioned the “approximations” of the signals under investigation “provide basic trends and characteristics of the original signals, whereas the details provide the flavor signal”. The result of the applying DWT on the original signal y is the so-called wavelet decomposition around both key coefficient vectors, [A] (“approximation” coefficient vector), and [D] (“detail” coefficient vector). The decomposition is repeating on the approximations in each stage. The multiple stage DWT will break down the original signal into many successively lower resolution components, as is described in [15]. According to [15] “at each stage, the approximation coefficients vector [A] represents the basic trends of the original signal characteristics, while the details coefficients vector [D] provides the flavor of the signal”. The inverse process opposite to decomposition is the signal reconstruction by using an inverse discrete wavelet transform (IDWT). More details about sample wavelet definitions known as Haar, Morlet and Daubechies wavelets, the reader can find in [8, 13, 17]. As is shown in Figure 6, in control systems applications is preferred the Morlet wavelet function for continuous analysis using CWT [13, 14], compared to Haar and the Daubechies wavelet family functions that are very useful for DWT [8, 9, 10]. Using the MATLAB/SIMULINK Wavelet and Processing Toolboxes in real-time, the proposed 1-D wavelet analysis strategy is implementing by following the guidelines from [8, 10, 11, 12].
Signal processing is a well-known tool to deal with fault diagnosis. It is useful to analyze directly the signals measured online, avoiding system modeling compared to Kalman filter techniques that are model-based. A wave transformation offers a new approach to the analysis of transient regimes that vary over time. It has a specific ability to analyze signals simultaneously in both time and frequency domains. Besides, it can automatically adjust the analysis windows according to frequency, namely, shorter windows for higher frequencies and vice versa. Therefore, the wavelet transform is very suitable for identifying the characteristics of the faults that occur in the Li-ion battery under investigation. However, the identification of such wavelet-based features in HEV Li-ion BMS applications is a novelty. Signal features, such as discontinuity or singularity, are easily detectable through a 1-D wavelet transform. Sudden signal transitions lead to wave coefficients with high absolute values. The changes in the evolution of the signal provide valuable information when something fundamental has occurred in the evolution of the signal. These features suggest an excellent idea in our case study on how to detect measurement sensor errors that often occur in a Li-ion battery used in HEV applications.
Step 1. Simulink model diagram of Li-ion battery and fault injection mechanism setup.
At this stage is investigated the capability of using 1-D wavelet analysis to detect some anomalies in a BMS of the Li-ion battery caused by two faults injected in a current, respectively temperature sensor. Figure 7 shows the Simulink diagram of a general model of the Li-ion battery, including the thermal model and fault injection mechanism in both healthy and thermal blocks.
Simulink diagram of Li-ion battery including the thermal model and fault injection mechanism setup.
Step 2. Healthy and faulty models of Li-ion battery setup.
The Simulink diagrams of healthy and defective battery cell models are depictured in Figures 8 and 9. In these figures are visible also the fault injection blocks inside the battery (Figure 8) and thermal (Figure 9) models.
Simulink diagram of thermal model and fault injection mechanism setup.
Simulink diagram of Li-ion battery faulty model setup.
Step 1. Wavelet filter bank decomposition – Biorthogonal wavelet description.
Based on a 1-D DWT signal decomposition, the analysis (decomposition) and synthesis (reconstruction) filters are of more interest than the associated scaling function and wavelet for a 1-D CWT. For example, in Figure 10 are implemented in MATLAB two analysis filters and other two synthesis filters for a B spline biorthogonal wavelet that can reproduce polynomials (vanishing moment property) with three vanishing moments in the reconstruction filter and five vanishing moments in the decomposition filter, very useful to be used in fault detection. More precisely, both phases analysis and synthesis require two low pass filters (LPF) to filtrate low frequencies signals, respectively two high pass filters (HPF), to filtrate the high frequencies signals [8, 12, 18, 19, 20, 21].
Analysis and synthesis low pass and high pass decomposition filters, respectively low pass, and high pass reconstruction filters.
Furthermore, the orthogonal and biorthogonal filters banks are an arrangement of low pass, high pass, and bandpass filters that divide the signals data sets into sub-bands [12, 17, 18, 19, 20, 21]. If the sub-bands are not modified, these filters enable perfect reconstruction of the original data. In most of applications, the data are processed differently in the different sub-bands and then reconstruct a modified version of the original data. Orthogonal filter banks do not have linear phase, compared to biorthogonal filter banks that have linear phase [12, 18, 19, 20]. The wavelet and scaling filters are specifying by the number of the vanishing moments, which allows removing or retaining polynomial behavior in the signals data sets.
In addition, lifting allows designing perfect reconstruction filter banks with specific properties. To obtain and use the most common orthogonal and biorthogonal wavelet filters can be used Wavelet Toolbox™ functions [20]. The design of custom perfect reconstruction filter bank is performing through elementary lifting steps. Besides, can also be added own custom wavelet filters. By using the wavelet filter bank architecture depicted in Figure 11, it is possible to obtain residues that change noticeably in order to offer precious information about the timely detection of the faults and its severity [20, 21]. A sub-band model is suggesting in [18, 19] of the form:
Wavelet filter bank. Three level decomposition using low and high pass filters for down sampling by two.
where s is an integer number, and a, b are real numbers. In [18] is used the ‘db8’ wavelet for wavelet filter bank design of level 3 decomposition for a Single-Input Single-Output (SISO) plant extended in [19] for a multiple inputs and multiple outputs (MIMO) plant. Besides, in same reference is developed a wavelet based-frequency sub-band analytical redundancy scheme to calculate the residuals for different faults that uses for wavelet filter bank synthesis and analysis a level three decomposition, as is shown in Figure 11. The same wavelet filter bank is adopted in our case study, even if the decomposition resolution can increase by increasing the number of levels. Nevertheless, in our case study, the focus is only on the “concept of proof” and to demonstrate the effectiveness of the proposed error detection technique, based on the use of the multi 1-D signal waveform analysis tool. In Figure 11, G(z) and H(z) represent the z-transforms of the low pass filter (LPF) and high pass filter (HPF) respectively. A two-channel critically sampled filters bank play an important role to filtrate the input signal, i.e. the output battery voltage residual, by using a pair of low pass filter (LPF) and high pass filter (HPF) [18, 19, 21]. The subband outputs of the filters are downsampling by two to preserve the overall number of samples. To reconstruct the input, upsampling by two and then interpolate the results using the low pass and high pass synthesis filters. If the filters satisfy specific properties, a perfect reconstruction of the input is achieved [18, 19, 20, 21].
In Figure 12 (a) and (b) are presented the schematic of a Wavelet Filter Bank decomposition on two levels (a), respectively a simple interpretation of the DWT coefficients in frequency domain [14].
DWT coefficients interpretation (snapshot from [14]): (a) wavelet filter bank, the approximations (ak1,ak2) and details (dk1,dk2) DWT coefficients corresponding to a decomposition level 2; (b) frequency domain.
The schematic from Figure 12(a) give us the idea of a recursive numerical algorithm for the DWT coefficients computation based on digital filters at all levels j = 1:N, which take advantage of using a digital signal processor (DSP):
Step 2. Fault injection scenarios presentation:
For simulation and “proof-concept” purpose, only two scenarios for error injection are developed in this section, namely a 2A bias fault injected into the current sensor, and a 10°C bias temperature fault injected into the thermal model of Li-ion BMS. The faults are injected separately, in the same window [500,1500] seconds, and their impact on the battery output voltage is analyzed by using the same Li-ion battery residual generation and evaluation method, like in the previous section.
Step 2.1 Scenario 1: Bias current fault MATLAB implementation.
As first scenario is considered a 2A bias fault injected in the current sensor inside the window (500,1500) seconds.
Step 2.1.1 Li-ion output voltage and MATLAB SOC residual generation-original and reconstructed signals.
The MATLAB simulations results are shown in the Figures 13 and 14 for battery SOC (healthy, faulty and residual), respectively for battery voltage residuals, (healthy and faulty) original and reconstructed, using the analysis (approximation) and details wavelets filters (in reconstruction).
The impact of the injected bias current fault on the Li-ion battery SOC.
Li-ion battery terminal output voltage: (a) healthy signal; (b) faulty signal.
Step 2.1.2. Denoising residual signals methods – MATLAB implementation.
In Figure 15 is used the denoising capability of 1-D wavelet synthesis filters ‘sym4’ to reduce as much as possible the noise level in the healthy and faulty signals. In [22, 23] is showing how to use wavelets to denoise signals and images. Because wavelets localize features in measurement dataset to different scales, an important signal or image features can be preserved while removing noise [22]. The “basic idea behind wavelet denoising, or wavelet thresholding, is that the wavelet transform leads to a sparse representation for many real-world signals and images” [22]. Thus, the wavelet transform concentrates the signal and image features in a few large-magnitude wavelet coefficients [22]. Wavelet coefficients which are small in value are typically noise and can be “diminished” those coefficients or much better can be removed without affecting the signal or image quality. Thresholding operation of the coefficients is followed by the reconstruction of the data using the inverse wavelet transform. The denoising operation of the input-output signals can be performed by using an average moving method [23], or decimated (“wdenoise” MATLAB command) and undecimated (“wden” MATLAB command) wavelet transforms [22]. In Figure 15 is shown the residual between the noisy and denoise signals, where wavelet denoising has removed a considerable amount of the noise while preserving the sharp features in the signal, which is also a challenge for Fourier-based denoising or filtering. The Fourier-based denoising, or filtering, is using a low pass filter (LPF) to remove the noise. However, “when the data has high-frequency features such as spikes in a signal or edges in an image, the low pass filter smooths these out”, as is stated in [22]. Moreover, the wavelets can be used to denoise signals in which the noise is nonuniform [22].
Li-ion battery output voltage residual – Noisy and denoised signals.
Step 2.1.3. Fault detection features:
In Figure 13, it easy to see the impact of the injected fault in the windows (500,1500) seconds, where the SOC change by maximum 10%. The information extracted from SOC residual in Figure 13 and output voltage residual in Figure 15, is valuable to detect the incipient moment of the fault, its duration and severity if a threshold value is chosen. The presence of the fault inside the window [500,1500] is visible since sudden changes in the SOC and output voltage of residual levels is easy to visualize. The fault removal at the end of the injected window is noticeable due to a sudden change of the signals’ levels in the opposite direction at the initiating time instant of the fault injection. In Figure 16(a) and (b) is depicted the output voltage residuals noisy and denoised originals and their perfect reconstruction. An impressive result is showing in Figure 17, where the presence of the fault inside the injected window is without doubt detecting by analyzing the wavelet variance in signal by scale before injected fault, inside the window and after removing the fault, in bar representation. For the proposed fault detection strategy design, a discrete wave transformation is useful to apply on the output voltage signal of the Li-ion battery. It is equivalent to the analysis branch (with downsampling) of the two-channel filter bank (decomposition) using LPFs, and HPFs suggested in [17, 18]. They are used for downsampling the input signal up to level 3, as shown in Figure 18 for all three levels the details of the wave coefficient D1, D2 and D3 and the analysis coefficient A3.
The Li-ion battery terminal output voltage residual - original and reconstructed waveforms using analysis wavelets filters (reconstruction): (a) contaminated with noise; (b) denoised signals.
Li-ion terminal output voltage residual – Wavelet variance in signal by scale before injected fault, inside the window and after removing the fault - bar representation.
Li-ion battery output voltage residual decomposition on three levels.
Step 2.1.4. 1-D wavelet transform analysis used for battery voltage residual three levels decomposition – Approximation coefficient A4, and Details coefficients D1, D2 and D3:
In Figure 18 is presented the MATLAB simulation result of the battery voltage residual decomposition on three level based on the wavelet filter banks shown in Figures 11 and 12.
For decomposition is used a Symlet wavelet transform ‘sym4’ with four vanishing moments. The feature extracted from the wavelet coefficients are summarized in Table 2 and interpreted at the end of this section, in comparison with the second fault.
Details coefficients | Analysis coefficients | ||||
---|---|---|---|---|---|
Extracted features | Faults | D1 | D2 | D3 | A3 |
Energy | Current fault | 1.7821 | 0.8357 | 0.3631 | 97 |
Temperature fault | 4.46 | 2.7 | 5.349 | 87.5 | |
Skewness | Current fault | 0.063 | −0.17 | 0.15 | −4.9 |
Temperature Fault | 0.063 | −3.92 | 13 | −1.33 | |
Kurtosis | Current fault | 5.8 | 11.1 | 23.11 | 27.38 |
Temperature fault | 5.8 | 71.4 | 389.13 | 56 | |
RMSE statistic criterion-performance | D1 coefficient | ||||
Energy | Current fault | 1.7821 | Remark: Temperature fault features shows significant values. | ||
Temperature fault | 4.4654 | ||||
Skewness | Current fault | 0.063 | |||
Temperature fault | 0.063 | ||||
Kurtosis | Current fault | 5.7581 | |||
Temperature fault | 5.7581 |
The main features extracted for faults detection.
Step 2.2. Scenario 2 MATLAB implementation:
As a second fault is investigated a 10°C bias fault injected in the temperature sensor inside the window (500,1500) seconds.
Step 2.2.1 Li-ion output voltage and MATLAB SOC residual generation-original and reconstructed denoised signals:
Like for the first scenario, the same information is extracted from the Figures 19 and 20. In Figure 19(a) is shown the battery SOC with almost a zero impact of the injected temperature fault since we assumed in this research that SOC does not change significantly if the temperature inside the battery changes. This assumption is not realistic, since in “real life” the SOC and internal resistance of Li-ion battery are dependent on temperature. This assumption was adopted to simplify the Li-ion battery model substantially, since a battery model of high complexity is beyond the topic developed in this research work. Moreover, the assumption is also justified by the fact that the fault detection analysis by using a 1-D wavelet analysis tool is performing online. A model is not required, that is a significant advantage of the new approach compared with the model based Kalman filter technique approach developed in the previous section, for which the SOC accuracy of the battery model is critical. Besides, the main objective of this paper is to provide a “proof concept” and to demonstrate the effectiveness of the use of 1-D wavelet analysis of finding the essential features in the output voltage residual variance for MATLAB design and implementation of the investigated fault detection technique. In Figure 19 (b), (c) and (d) are visualized the healthy, faulty and the battery temperature residual (b), the healthy, In faulty and the output voltage residual (c), respectively the use of 1-D wavelet ‘Sym4’ for denoising output voltage residual (d). The residual of denoised battery output voltage and its corresponding constructed wave are presenting in Figure 20(a).
Li-ion battery temperature fault injected: (a) SOC and its residual; (b) healthy, faulty, and residual temperatures; (c) healthy, faulty, and residual battery internal resistance; (d) original (noisy), denoised and residual output voltage signals.
Li-ion battery output voltage residual second scenario: (a) original denoised output voltage residual; (b) the details (D1, D2, D3) and approximation (A3) Symlet4 (four vanishing moments) wavelets coefficients decomposition at level 3.
Step 2.2.2. Fault detection features.
The MATLAB simulation result shown in Figure 19 (b), (c) and (d) reveal that the presence of the temperature fault is noticeable by its effect on the output voltage residual at the beginning, inside and at the end of the injected window. and the coefficients D1, D2, D3 and A3 of the ‘Sym4’ wavelet are shown in Figure 20(b). The features extracted from Figure 20(b) are summarized in Table 2 and analyzed at the end of this section.
A rigorous performance analysis of using 1-D wavelet transform tool for fault detection strategy is accomplished based on the information extracted from the details’ coefficients of output voltage residual decomposition for both scenarios.
From the details coefficients values D1, D2, and D3 can be extracted the wavelet energy, skewness, and kurtosis features. These statistics can identify the types of faults based on their distinct value, as are defined in [14], MATLAB Wavelet Toolbox (for wavelet energy), respectively MATLAB Statistics and Machines Learning Toolbox for skewness and kurtosis).
The wavelet energy is an important indicator that gives a valuable information about the presence of the fault inside a window that has a concentrated large value of the wavelet energy, defined as,
The skewness is a measure of the asymmetry of the data around the sample mean. If skewness is negative, the data spreads out more to the left of the mean than to the right. If skewness is positive, the data spreads out more to the right. It is defined as,
The kurtosis is a measure of whether the distribution is too peaked, i.e. a very narrow distribution with most of the responses in the center, and is defined as,
where
The excess kurtosis and skewness of every coefficient A3, D1, D2 and D3 in the dataset, can be interpreted as follows:
For skewness, if the distribution of responses for a variable stretches toward the right or left tail of the distribution, then the distribution is referred to as skewed. A general guideline for skewness is that if the number is greater than +1 or lower than −1, this is an indication of a substantially skewed distribution.
For kurtosis, if the number is greater than +1, the distribution is too peaked. Otherwise, a kurtosis of less than −1 indicates a distribution is too flat.
When both skewness and kurtosis are zero, the pattern of responses is considered a normal distribution.
Besides, an assessment statistic criterion root mean square error (RMSE) is introduced in Table 2 for a particular analysis of the high frequency detail component D1 dataset.
The MATLAB simulation results analyzed from the perspective of the fault features extracted from Table 2 reveal the fact that the temperature fault shows significant values compared to a possible occurrence of current fault in Li-ion battery.
Figures 21 and 22 show how multiresolution decomposition technique, such as 1-D wavelet analysis, allow us to study signal components in relative isolation on the same time scale as the original data [22]. Multiresolution analysis (MRA) refers to “breaking up a signal into components, which produce the original signal exactly when added back together” [22]. The components ideally decompose the variability of the data into physically meaningful and interpretable parts, as is stated also in [22].
Li-ion output voltage residual signal using a wavelet MRA for scenario 1 of bias current fault on 8 resolutions (levels) decomposition–extracted smooth trend (S8) and localize transient changes.
Synthetic signal using a wavelet MRA on 8 resolutions (levels) decomposition for scenario 2 of bias temperature fault – Extracted smooth trend (S8) and localize transient changes.
The term MRA is often associated with wavelets, and in the “real life” the signals consist of a mixture of different components. Often the interest is focused only in a subset of these components. That is why the MRA allows us to restrict the analysis of the original signal, by separating it into components at different resolutions. Extracting signal components at different resolutions means a decomposition of variations in the data on different time scales, or equivalently in different frequency bands [22]. Consequently, the signal variability at different scales or frequency bands can be seen simultaneously.
In the Figures 21 and 22, using a wavelet MRA, the Li-ion battery output voltage residual signal is analyzed in MATLAB at eight resolutions or levels, following the procedure shown in [22] for both faults isolation.
Both graphs from Figures 21 and 22 starts from the uppermost plot and proceed down until is reached the plot of the original data and is worth noting that the components have become progressively smoother. D2 graph isolates the time-localized high-frequency component, which can be seen and investigated as an essential signal feature practically in isolation. The next two graphs contain the lower frequency oscillation. It is worth to mention that “an important aspect of multiresolution analysis, namely important signal components may not end up isolated in one MRA component, but they are rarely located in more than two” [22]. Finally, from the S8 graph can be extracted a smooth trend term, which provides us a valuable information to localize transient changes, as it can see in the fault injection window [500, 1500] seconds. Thus, the presence of the bias current fault and bias temperature fault is detected and localized as a significant transient change in the nonstationary Li-ion output voltage residual signal. For an appropriate choice of the thresholds’ values, both faults can be detected directly from the S8 graph, removing the presence of the false alarms completely.
Besides, the value of the RMSE statistical criterion of the energy feature extracted from the detail coefficient D1, for both faults, shown in Figures 18 and 20(b), undoubtedly confirms the validation of the results obtained in Table 3, adequate to differentiate between the two faults. However, in Table 3 is shown the Fault signature of 1-D wavelet analysis transform, useful for fault isolation. To distinguish between both faults injected in Li-ion battery, i.e. current sensor bias fault, respectively, temperature bias fault a valuable information is provided by battery SOC and battery internal resistance residuals. It is showing in Table 3, like for based model AEKF FDI strategy developed in Section 2. An exciting piece of information is related to the “border effects of error injection”, clearly visible when the temperature fault is removing, because the healthy signal emerges from the defective one in the window, before the corresponding time tf = 1500 seconds. These “frontier effects” require further investigation in future work.
Res_y | Res_SOC | Res_Rcell | Fault signature |
---|---|---|---|
1 | 1 (<0) | 0 | Current fault, no false alarm |
1 | 0 | 1 | Temperature fault, no false alarm |
Li-ion battery - fault signature 1-D wavelet analysis transform.
In this research paper is opened a new research direction in HEV BMS applications field by performing many investigations on the use of multisignal 1-D wavelet analysis to improve the accuracy, robustness, the design and the implementation in real-time of Fault detection techniques. Among the most relevant contributions of the authors can be highlighted the following:
The selection of a suitable and straightforward Li-ion battery model, accurate enough for data generation, and to design and implement a robust adaptive extended Kalman filter SOC estimator to changes in SOC initial values, in the level of measurement noise that contaminate the input-output dataset, to changes in the battery capacity value due to aging effects, and changes in the internal resistance of the battery due to temperature effects
Representation of the battery model in continuous and discrete time state-space
Develop the most appropriate thermal model of the battery for data generation and to setup the temperature mechanism fault injection
Adaptive Extended Kalman Filter SOC estimator with fading feature and covariance matrices of noises correction—brief presentation and MATLAB design and implementation.
The battery SOC and output voltage residual generation and bias current fault injection mechanism
The fault detection and isolation estimation technique based on AEKF SOC estimator
Wavelets transform analysis of the faults features extraction in a rechargeable Li-ion battery
SOC and output voltage residual generation-original and reconstructed signals
1-D wavelet transform analysis used for battery voltage residual three levels decomposition – Approximation coefficient A4, and Details coefficients D1, D2 and D3
Denoising residual signals methods analysis – MATLAB implementation
Wavelets transform analysis to extract the fault features for their detection. Performance analysis
Extracting signal components at different resolutions by using a multiresolution analysis (MRA) method for fault detection
The use of the fault signature for fault localization (isolation)
These investigations are performed for the case study, principally chosen to evaluate the impact of two bias faults injected in a current and temperature sensor on the output voltage of a BMS Li-ion rechargeable battery used in HEVs applications.
The effectiveness of fault detection strategy is demonstrated through an extensive number of simulations in a MATLAB R2020a software environment. The preliminary simulation results are encouraging, and extensive investigations will be done in future work to extend the applications area. The performance analysis from the last section reveals that 1-D wavelet analysis is a useful tool for signals processing, design and implementation based on wavelet transforms found in a wide range of control systems industrial applications. Compared to AEKF estimation technique described in Section 2, the 1-D wavelet analysis tool has a significant advantage to perform online. Also, it does not require the model of the battery, since it uses directly the input-output signals generated by the battery model. More precisely, it is based only on the measurement input-output dataset collected by a data acquisition (DAQ) system incorporated in BMS of HEVs. Besides, the battery SOC and output voltage signals’ accuracy is not affected by noise as long as is using the signals denoising techniques, such in the case of AEKF fault detection and isolation technique during the noise correction step of the algorithm.
The authors declare no conflict of interest.
Step 1. Rint ECM battery nonlinear model represented in discrete time [3, 4, 11]:
where the process noise
Step 2. Initialization:
Step 3. Model linearization - The Jacobian matrices of the model linearization are given by:
For
Step 4. Prediction phase (forecast or time update from
Step 4.1 Predict the state ahead:
Step 4.2. Predict the covariance error ahead:
Remark. In this phase, the predicted value of the state vector
Step 4.3 Compute the updated value of Kalman filter gain:
Step 5. Correction phase (analysis or measurement update):
In this phase the Li-ion battery SOC estimated state is updated when an output measurement is available in two steps:
Step 5.1 Update the SOC estimated state covariance matrix with a measurement:
Step 5.2 Update the SOC estimated state variable with the measurement:
Step 5.3 Update the estimated output (battery terminal voltage):
Step 6. Adaptive noise covariance matrices correction:
For k > = L, the length of the window’s samples, compute:
Step 6.1. Output variable error and the correction factor:
Step 6.2. Measurement noise correction:
Step 6.3. Process noise correction:
Second scenario of fault injection: (a) bias fault injection of magnitude 2A in a current measurement sensor; (b) battery terminal voltage residual; (c) AEKF SOC estimate versus EMC battery model SOC true value; (d) SOC residual.
Third scenario of fault injection: (a) bias fault injection; (b) temperature profile; (c) temperature effect on battery internal resistance Rin; (d) AEKF SOC estimate versus ECM battery model SOC true value; (e) SOC residual; (f) AEKF terminal voltage estimate versus ECM battery model terminal voltage true value; (g) battery terminal output voltage residual.
EV | electric vehicle |
HEV | hybrid electric vehicle |
BMS | battery management system |
FTP-75 | Federal test procedure at 75 F |
OCV | open-circuit voltage |
SOC | state of charge |
KF | Kalman filter |
EKF | extended Kalman filter |
AEKF | adaptive Kalman filter |
WCT | wavelet continuous transform |
WDT | wavelet discrete transform |
LPF | low pass filter |
HPF | high pass filter |
Sim4 | Simlet wavelet with 4 vanishing moments |
RMSE | root mean square error |
MSE | mean square error |
MAE | mean absolute error |
MAPE | mean absolute percentage error |
std | standard deviation |
R2 | R-squared |
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5763},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10365},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15784}],offset:12,limit:12,total:118187},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:13},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5221},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"690",title:"Biomimetics",slug:"biomimetics",parent:{title:"Biomedical Engineering",slug:"engineering-biomedical-engineering"},numberOfBooks:6,numberOfAuthorsAndEditors:230,numberOfWosCitations:486,numberOfCrossrefCitations:169,numberOfDimensionsCitations:504,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"biomimetics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6875",title:"Bio-Inspired Technology",subtitle:null,isOpenForSubmission:!1,hash:"074fba986c7ba872f1af99c4fb65337e",slug:"bio-inspired-technology",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/6875.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",middleName:null,surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5902",title:"Interdisciplinary Expansions in Engineering and Design With the Power of Biomimicry",subtitle:null,isOpenForSubmission:!1,hash:"074a748d02254c7c5643be52cb70be68",slug:"interdisciplinary-expansions-in-engineering-and-design-with-the-power-of-biomimicry",bookSignature:"Gulden Kokturk and Tutku Didem Akyol Altun",coverURL:"https://cdn.intechopen.com/books/images_new/5902.jpg",editedByType:"Edited by",editors:[{id:"95921",title:"Dr.",name:"Gulden",middleName:null,surname:"Kokturk",slug:"gulden-kokturk",fullName:"Gulden Kokturk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"251",title:"On Biomimetics",subtitle:null,isOpenForSubmission:!1,hash:"b41b2ea8322b21ee4f4423498d3a196e",slug:"on-biomimetics",bookSignature:"Assoc. Lilyana D. Pramatarova",coverURL:"https://cdn.intechopen.com/books/images_new/251.jpg",editedByType:"Edited by",editors:[{id:"48534",title:"Dr.",name:"Lilyana",middleName:"Dimitrova",surname:"Pramatarova",slug:"lilyana-pramatarova",fullName:"Lilyana Pramatarova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1806",title:"Biomimetic Based Applications",subtitle:null,isOpenForSubmission:!1,hash:"6a088e82c9518ba8fca91ac303d66f9b",slug:"biomimetic-based-applications",bookSignature:"Anne George",coverURL:"https://cdn.intechopen.com/books/images_new/1806.jpg",editedByType:"Edited by",editors:[{id:"21288",title:"Prof.",name:"Anne",middleName:null,surname:"George",slug:"anne-george",fullName:"Anne George"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"42",title:"Advances in Biomimetics",subtitle:null,isOpenForSubmission:!1,hash:"65af8330f495764de3acf1bf959143b5",slug:"advances-in-biomimetics",bookSignature:"Anne George",coverURL:"https://cdn.intechopen.com/books/images_new/42.jpg",editedByType:"Edited by",editors:[{id:"21288",title:"Prof.",name:"Anne",middleName:null,surname:"George",slug:"anne-george",fullName:"Anne George"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3587",title:"Biomimetics",subtitle:"Learning from Nature",isOpenForSubmission:!1,hash:"0ab0daea3f9b4d2228b70d2a47e8d362",slug:"biomimetics-learning-from-nature",bookSignature:"Amitava Mukherjee",coverURL:"https://cdn.intechopen.com/books/images_new/3587.jpg",editedByType:"Edited by",editors:[{id:"5759",title:"Prof.",name:"Amitava",middleName:null,surname:"Mukherjee",slug:"amitava-mukherjee",fullName:"Amitava Mukherjee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,mostCitedChapters:[{id:"10040",doi:"10.5772/8787",title:"Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications",slug:"biomimetic-porous-titanium-scaffolds-for-orthopedic-and-dental-applications",totalDownloads:6425,totalCrossrefCites:34,totalDimensionsCites:67,book:{slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Alireza Nouri, Peter D. Hodgson and Cui'e Wen",authors:null},{id:"10029",doi:"10.5772/8776",title:"Biomimetic Synthesis of Nanoparticles: Science, Technology & Applicability",slug:"biomimetic-synthesis-of-nanoparticles-science-technology-amp-applicability",totalDownloads:22010,totalCrossrefCites:15,totalDimensionsCites:54,book:{slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Prathna T.C., Lazar Mathew, N. Chandrasekaran, Ashok M. Raichur and Amitava Mukherjee",authors:null},{id:"15691",doi:"10.5772/14383",title:"Biomimetic Topography: Bioinspired Cell Culture Substrates and Scaffolds",slug:"biomimetic-topography-bioinspired-cell-culture-substrates-and-scaffolds",totalDownloads:3458,totalCrossrefCites:4,totalDimensionsCites:18,book:{slug:"advances-in-biomimetics",title:"Advances in Biomimetics",fullTitle:"Advances in Biomimetics"},signatures:"Lin Wang and Rebecca L. Carrier",authors:[{id:"17652",title:"Dr.",name:"Rebecca",middleName:null,surname:"Carrier",slug:"rebecca-carrier",fullName:"Rebecca Carrier"},{id:"18787",title:"Miss",name:"Lin",middleName:null,surname:"Wang",slug:"lin-wang",fullName:"Lin Wang"}]}],mostDownloadedChaptersLast30Days:[{id:"10042",title:"Superhydrophobicity, Learn from the Lotus Leaf",slug:"superhydrophobicity-learn-from-the-lotus-leaf",totalDownloads:16760,totalCrossrefCites:3,totalDimensionsCites:10,book:{slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Mengnan Qu, Jinmei He and Junyan Zhang",authors:null},{id:"18164",title:"Synthesis of Metallo-Deuteroporphyrin Derivatives and the Study of Their Biomimetic Catalytic Properties",slug:"synthesis-of-metallo-deuteroporphyrin-derivatives-and-the-study-of-their-biomimetic-catalytic-proper",totalDownloads:2444,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"on-biomimetics",title:"On Biomimetics",fullTitle:"On Biomimetics"},signatures:"Bingcheng Hu, Chengguo Sun, Shichao Xu and Weiyou Zhou",authors:[{id:"34332",title:"Prof.",name:"Bingcheng",middleName:null,surname:"Hu",slug:"bingcheng-hu",fullName:"Bingcheng Hu"},{id:"48777",title:"Dr.",name:"Chengguo",middleName:null,surname:"Sun",slug:"chengguo-sun",fullName:"Chengguo Sun"},{id:"48778",title:"Dr.",name:"Shichao",middleName:null,surname:"Xu",slug:"shichao-xu",fullName:"Shichao Xu"},{id:"87152",title:"Dr.",name:"Weiyou",middleName:null,surname:"Zhou",slug:"weiyou-zhou",fullName:"Weiyou Zhou"}]},{id:"59632",title:"Biomimetic Facade Applications for a More Sustainable Future",slug:"biomimetic-facade-applications-for-a-more-sustainable-future",totalDownloads:1902,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"interdisciplinary-expansions-in-engineering-and-design-with-the-power-of-biomimicry",title:"Interdisciplinary Expansions in Engineering and Design With the Power of Biomimicry",fullTitle:"Interdisciplinary Expansions in Engineering and Design With the Power of Biomimicry"},signatures:"Ayça Tokuç, Fatma Feyzal Özkaban and Özge Andiç Çakır",authors:[{id:"200339",title:"Ph.D.",name:"Ayça",middleName:null,surname:"Tokuç",slug:"ayca-tokuc",fullName:"Ayça Tokuç"},{id:"200342",title:"Dr.",name:"Feyzal",middleName:null,surname:"Ozkaban",slug:"feyzal-ozkaban",fullName:"Feyzal Ozkaban"},{id:"200536",title:"Dr.",name:"Özge",middleName:null,surname:"Andiç Çakır",slug:"ozge-andic-cakir",fullName:"Özge Andiç Çakır"}]},{id:"10045",title:"Lipid-based Biomimetics in Drug and Vaccine Delivery",slug:"lipid-based-biomimetics-in-drug-and-vaccine-delivery",totalDownloads:2874,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Ana Maria Carmona-Ribeiro",authors:null},{id:"10048",title:"Dental Tissue Engineering: a New Approach to Dental Tissue Reconstruction",slug:"dental-tissue-engineering-a-new-approach-to-dental-tissue-reconstruction",totalDownloads:4002,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Elisa Battistella, Silvia Mele and Lia Rimondini",authors:null},{id:"18167",title:"Bioinspired Synthesis of Organic/Inorganic Nanocomposite Materials Mediated by Biomolecules",slug:"bioinspired-synthesis-of-organic-inorganic-nanocomposite-materials-mediated-by-biomolecules",totalDownloads:4872,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"on-biomimetics",title:"On Biomimetics",fullTitle:"On Biomimetics"},signatures:"Xunpei Liu and Surya K. Mallapragada",authors:[{id:"31416",title:"Dr.",name:"Surya",middleName:null,surname:"Mallapragada",slug:"surya-mallapragada",fullName:"Surya Mallapragada"},{id:"48013",title:"Ms.",name:"Xunpei",middleName:null,surname:"Liu",slug:"xunpei-liu",fullName:"Xunpei Liu"}]},{id:"18171",title:"Biomimetic Polymers for Chiral Resolution and Antifreeze Applications",slug:"biomimetic-polymers-for-chiral-resolution-and-antifreeze-applications",totalDownloads:2873,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"on-biomimetics",title:"On Biomimetics",fullTitle:"On Biomimetics"},signatures:"Dana D. Medina and Yitzhak Mastai",authors:[{id:"41724",title:"Prof.",name:"Yitzhak",middleName:null,surname:"Mastai",slug:"yitzhak-mastai",fullName:"Yitzhak Mastai"},{id:"50161",title:"Dr.",name:"Dana",middleName:null,surname:"Medina",slug:"dana-medina",fullName:"Dana Medina"}]},{id:"10033",title:"Rapid Assembly Processes of Ordered Inorganic/Organic Nanocomposites",slug:"rapid-assembly-processes-of-ordered-inorganic-organic-nanocomposites",totalDownloads:3209,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Chang-An Wang, Huirong Le and Yong Huang",authors:null},{id:"15774",title:"Monitoring the Intertidal Environment with Biomimetic Devices",slug:"monitoring-the-intertidal-environment-with-biomimetic-devices",totalDownloads:3261,totalCrossrefCites:1,totalDimensionsCites:15,book:{slug:"biomimetic-based-applications",title:"Biomimetic Based Applications",fullTitle:"Biomimetic Based Applications"},signatures:"Fernando P. Lima, Nicholas P. Burnett, Brian Helmuth, Nicole Kish, Kyle Aveni-Deforge and David S. Wethey",authors:[{id:"16987",title:"Dr.",name:"Fernando",middleName:"P.",surname:"Lima",slug:"fernando-lima",fullName:"Fernando Lima"},{id:"19247",title:"Mr.",name:"Nicholas",middleName:null,surname:"Burnett",slug:"nicholas-burnett",fullName:"Nicholas Burnett"},{id:"19248",title:"Dr.",name:"Brian",middleName:null,surname:"Helmuth",slug:"brian-helmuth",fullName:"Brian Helmuth"},{id:"19249",title:"Dr.",name:"David",middleName:null,surname:"Wethey",slug:"david-wethey",fullName:"David Wethey"},{id:"22266",title:"Ms.",name:"Nicole",middleName:null,surname:"Kish",slug:"nicole-kish",fullName:"Nicole Kish"},{id:"22267",title:"Dr.",name:"Kyle",middleName:null,surname:"Aveni-Deforge",slug:"kyle-aveni-deforge",fullName:"Kyle Aveni-Deforge"}]},{id:"10038",title:"Photosynthetic Energy Conversion: Hydrogen Photoproduction by Natural and Biomimetic Means",slug:"photosynthetic-energy-conversion-hydrogen-photoproduction-by-natural-and-biomimetic-means",totalDownloads:4151,totalCrossrefCites:1,totalDimensionsCites:15,book:{slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Suleyman I. Allakhverdiev, Vladimir D. Kreslavski, Velmurugan Thavasi, Sergei K. Zharmukhamedov, Vyacheslav V. Klimov, Seeram Ramakrishna, Hiroshi Nishihara, Mamoru Mimuro, Robert Carpentier and Toshi Nagata",authors:null}],onlineFirstChaptersFilter:{topicSlug:"biomimetics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/149176/joao-emilio-peixoto",hash:"",query:{},params:{id:"149176",slug:"joao-emilio-peixoto"},fullPath:"/profiles/149176/joao-emilio-peixoto",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()