Toxic substances that can trigger seizures and their exerting mechanism.
\r\n\tAn update on clinical manifestations, their assessment, monitoring, and imagiology, including peripheral arthritis, enthesopathy, and extra-articular findings, and, the differential diagnosis with other diseases which evolves with axial and peripheral calcifications will be provided.
\r\n\r\n\t
\r\n\tAn important component of this book must be dedicated to the more recent treatments namely with biologic therapies but focusing also on new small molecule inhibitors and experimental therapies.
The concept of toxicity refers to any substance capable of producing harm on livings organism. Hence, this chapter emphasizes on those compounds that harm the nervous system, particularly those capable of generating seizures. Within the pathophysiology of epilepsy, multiple mechanisms favor epileptogenesis, one of which is neurotoxicity. These excitotoxic mechanisms can exert their action through the glutamate receptors N-methyl-D-aspartate (NMDA); 𝜶-amino-2-3-dihydro-5-methyl-3-oxo-4-isoxazolepropionic acid (AMPA) and kainate, opening ionic channels permeable to calcium (Ca2+), sodium ions (Na+), that participate significantly in the neuronal damage derived from the excitotoxic effects. Though there are spontaneous inducers of epilepsy, different models that replicate seizures have been created to better understand the mechanisms underlying epileptic seizures. These models promote neurotoxicity in the brain and are triggered by certain substances, primarily agonists or antagonists of neurotransmitters involved in epileptic activity. In this review we aim to illustrate the neurotoxic potency of numerous agents administered in the brain with neurotoxic qualities, including medications used in clinical practice that can generate neurotoxicity.
Epileptic seizures, according to the World Health Organization, are defined as a neurological, chronic, recurrent, and repetitive condition of paroxysmal phenomena caused by an excessive abnormal discharge of groups of neurons, which can occur in different parts of the brain [1]. It is the result of synchronous electrical discharge from a group of hyper-excitable neurons, that when repeated consequently leads to neurotoxicity This hyperexcitability is due to an imbalance between the inhibitory processes given mainly by gamma-aminobutyric acid (GABA) and the excitatory ones of glutamate, which consequently modifies the function of ion channels regulated by Ca2+, Na+, and potassium (K+) mainly, which finally play a crucial role between the timing and propagation of abnormal discharges, contributing to the epileptic process [2]. Glutamate release activates NMDA ionotropic receptors, causing a rapid entry of Na+ and a slow entry of Ca2+. In epileptic seizures, with this massive entry of Ca2+, there is an increase of mitochondrial Ca2+ producing, among other effects an excitotoxic effect, in addition to free radicals production, proteases activation, and synthesis of nitric oxide which, by acting as a retrograde messenger, enhances the excitotoxic effect on the cell by also increasing glutamate release from the presynaptic terminals [3]. This glutamate release also activates the AMPA receptors associated with non-voltage-dependent channels, responsible for depolarizing currents, due to the Na+ input. AMPA receptor antagonists are known to have been shown to markedly reduce or decrease epileptic activity [4].
Kainic acid (KA) glutamate agonist acts on glutamatergic receptors with a high affinity for KA which is associated with a Na+ ion channel, this depolarization in turn causes Na+ channels opening, which leads to Ca2+ channels aperture that further increases neuron excitability. Na+ channels’ participation in epileptogenesis and their mutations in many epileptic disorders has been long studied. The Na
Activation of AMPA receptors, particularly NMDA receptors, triggers intracellular Ca2+ cascades. Ca2+ permeability studies indicate that there is also a low permeability of this ion through kainate receptors [10, 11]. Excessive Ca2+ intake, derived from a pathological condition such as epilepsy, contributes to an excitotoxic effect and subsequent neuronal death [12].
In epileptic seizures, glutamate elevation and GABA release are observed from the presynaptic terminals within the synaptic cleft. Astrocytes recapture these abnormally released neurotransmitters during the seizure, protecting neurons from excitotoxicity and eliminating excess glutamate. It is known that, derived from the epileptic processes, there is hypertrophy and significant changes in the ramifications and volume of the astrocyte soma. These changes undoubtedly impact the reuptake of neurotransmitters such as glutamate, allowing an excess of this in the synaptic space [13, 14].
It is worth noting that epilepsy research is so broad that despite not managing to control the neuropathology, some authors have claimed that studying the disease has allowed neuroscience to investigate more than just seizure disorders, but the brain regions not directly implicated in epilepsy, as well. This chapter, however, will concentrate only on epilepsy-related neurotoxicity.
When Ca2+ enters, it produces hyperexcitability in the excitable neuron through voltage-dependent Ca2+ channels (VDCCs). Intracellular processes are initiated when Ca2+ enters the cell, such as membrane excitability regulation, which permits neurotransmitters to be released. The biophysical and pharmacological properties of six types of Ca2+ channels (T, L, N, P, Q, and R) have been characterized. Low-threshold channels have been classed as T-type channels, while the rest have been classified as high-threshold channels. The number of depolarizations required for their activation has led to this classification. All channels have four subunits referred to as I through IV, each of which is made up of six transmembrane segments referred to as S1, S2, S3, S4, S5, and S6. The N, P and Q type channels are particularly crucial in controlling the release of neurotransmitters like glutamate and GABA, which, as previously stated, play a key role in epilepsy. The fact that a decrease in extracellular Ca2+ concentration can cause hyperexcitability in neurons is evidence that VDCCs play a major role in the epileptic activity [15]. In epilepsy, this correlates with paroxysmal depolarizations. Which correlates with paroxysmal depolarizations in epilepsy. This phenomenon has been observed in the hippocampus’s neurons and dendrites, particularly in the CA1 and CA3 neuroanatomical, critical regions in epileptic seizures. Ca2+ currents have been demonstrated to promote the development of epileptic seizures; this is thought to be due to an increase in postsynaptic responses triggered by excessive excitement, which then initiates an epileptic seizure. However, this type of activity also leads to neuronal death.
Epileptic activity can also be triggered by the input of extracellular Ca2+ into the neuron, which promotes neuronal membrane depolarization and action potential production, resulting in abnormal discharges and seizures. The rise in intracellular Ca2+ in the postsynaptic neuron has been linked to various factors that produce epileptogenesis, including persistent depolarization, inducing neurotoxicity. Animal models in mice (tottering, du-du, or stargazer) in which genes coding for Ca2+ channel subunits formation have been altered and made it possible to illustrate the role of Ca2+ in epileptogenesis, implying that channelopathies may be part of the substrate for abnormal activity. Because Ca2+ plays such a role in abnormal epileptic activity, drugs like ethosuximide have been developed to block T-type Ca2+ channels by reducing Ca2+ entry. Hence, neurotransmitter release is implicated in neuronal excitability [16, 17, 18, 19].
This chapter proposes several molecular signaling pathways that are involved in epileptogenesis. We described the most representative pathways in the epileptogenesis study. Until now, the complicated epileptogenesis pathophysiology and molecular processes that lead to seizures have remained a mystery. However, various anatomical pathways mechanisms, pathological pathways, and molecular interactions are known and have been explored based on the research available. Inhibitory and excitatory neurotransmission abnormalities have a big impact on neuron stability. Neuroinflammation and oxidative stress, for example, encourage the emergence of epileptic seizures and can potentially intensify them [20].
It has been claimed that the inflammatory state, and the elevation of its mediators, including IL-1ß, IL-6, high mobility group box TNF-α8, and cyclooxygenase-2. TNF-α produces endocytosis of GABA receptors through AMPA. Therefore, hyperexcitability in the hippocampus is boosted, resulting in seizures. Several studies have linked neuroinflammation to oxidative stress at the same time. The involvement of oxidative stress as a seizure generator is owing to an imbalance in the generation of reactive oxygen and nitrogen species, resulting in a deficiency in antioxidant mechanisms. The mitochondria are the body’s principal generator of oxygen radicals [21]. Other free radicals, including nicotinamide adenine dinucleotide phosphate oxidase and xanthine oxidase, have been shown to act through glutamate receptors. The activation of the NMDA receptor is linked to epileptic activity [22].
Another pathway described in the study of epileptogenesis is the
Notoginsenoside R1 (NGR1, was recently discovered to upregulate mRNA levels of the proteins β-catenin, Dvl, and Fzd, as well as promote the proliferation of cultured cortical neurons. NGR1 has also been discovered to reduce persistent K+ currents in hippocampus neurons, resulting in a reduced peak threshold. Treatment with a Wnt3a ligand, which activates the FZD receptor, caused K+ channel internalization and enhanced β-catenin expression, according to a recent study. GSK-3β inhibition caused by
In a previous study, a significant increase in β-catenin signaling in the cerebellar cortex of rats after kindling-induced generalized seizures was observed. β-catenin activation induces apoptosis through the expression of cMyc upregulation, a protein that negatively regulates anti-apoptotic proteins such as Bcl-2. This leads to a loss of mitochondria, membrane potential, releasing cytochrome-c and promoting activation of caspases 3 and 9, leading to neuronal death. The
Exposure to toxins can trigger seizures due to their damaging effect on the nervous system through different mechanisms (Table 1). The ability of organophosphate insecticides to induce epileptic seizures is known through the inhibition of acetylcholinesterase due to its chemical structure that contain the groups carbamoyl and thiocarbamoyl, due to its capacity to phosphorylate and inactivate acetylcholinesterase and in addition to stimulating cholinergic receptors, these pesticides include parathion, chlorpyrifos, aldicarb, and carbaryl. Certain toxins present a dual mechanism for epileptic seizures production through the facilitation of the activation and the inhibition of voltage-gated Na
Toxic substance | Mechanism |
---|---|
Parathion, chlorpyrifos, aldicarb, and carbaryl | Inhibiting acetylcholinesterase and hyperstimulation of cholinergic receptors |
Sarin, soman, scorpion venom and ciguatoxin | Modulating ion flow through voltage-gated sodium channels |
Anatoxin | Nicotinic receptor activation |
Kainic acid and domoic acid | Activation of glutamate receptors |
Lindane, picrotoxin and strychnine | GABA receptor inhibition |
Toxic substances that can trigger seizures and their exerting mechanism.
The administration of different drugs used therapeutically can predispose to epileptic seizures presence either by lowering the epileptogenic threshold, intoxication, or overdose of these. The main groups of antimicrobials that can cause seizures are beta-lactams, anti-tuberculous, and antimalarials. The pro epileptogenic effect of beta-lactams is related to high doses or their toxicity. Seizures related to drugs used to treat tuberculosis are mainly due to vitamin B6 deficiency. Mefloquine and chloroquine are reported antimalarial drugs that can lead to seizures. The proconvulsive effect of methylxanthines is thought to be due to A1 adenosine receptor inhibition. Paradoxically, it is known that carbamazepine can worsen generalized-onset seizures. As well as the withdrawal effect of benzodiazepines, which in some cases can lower the seizure threshold [30, 31, 32, 33, 34]. Table 2 summarizes the main drugs associated with seizures. The following part reviews some of the toxic effects of the main antiepileptic drugs used in clinical practice.
Category | Drugs associated with seizures |
---|---|
Sympathomimetics | Phenylephrine, pseudoephedrine, and anorexiants |
Analgesics | Opioids |
Anticancer drugs | Interferon alfa, methotrexate, mitoxantrone, nelarabine, platinum-based, cisplatin, vinblastine, vincristine, busulfan, chlorambucil, cytarabine, doxorubicin, etoposide, and fluorouracil |
Antimicrobials | Carbapenems, cephalosporins, fluoroquinolones, isoniazid, and penicillin |
Hypoglycemics | Any antidiabetic that causes hypoglycemia |
Immunosuppressants | Cyclosporine, mycophenolate, tacrolimus, and azathioprine |
Psychopharmaceuticals | Monoamine oxidase inhibitors, selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, serotonin modulators, tricyclic antidepressants, antipsychotics, atomoxetine, bupropion, buspirone, and lithium |
Stimulants | Amphetamines and methylphenidate |
Xanthine | Aminophylline and theophylline |
Antiepileptics | Carbamazepine and benzodiazepines |
Main drugs associated with drugs.
Since 1978, valproic acid or Na+ valproate has been characterized as an antiepileptic drug that suppresses the neuronal excitation of different types of epilepsy, such as partial seizures and generalized seizures [35]. It appears that valproic acid exerts its inhibition by blocking the reuptake of the neurotransmitter GABA, the main inhibitory neurotransmitter. It also lowers glutamate levels and modifies K+ conductance [36], exerting an inhibition through the voltage-dependent Na+ channels. In this way, it reduces the excitement caused by epileptic seizures [37]. Once this drug reaches the central nervous system (CNS), it binds to plasma proteins and is distributed throughout the extracellular space [38]. It is metabolized in the liver and discharged through the urine. Although it is also eliminated with expirations in the form of CO2 [39]. However, this drug is known to have frequent toxic effects derived from the therapeutic dose in patients with toxic plasma levels greater than 120 μg/ml [40]. After an overdose, the patient may be lethargic and coma, most likely due to inhibition produced in the CNS [41]. Another adverse situation that derives from the consumption of this antiepileptic drug is cerebral edema, probably caused by the overstimulation of the stimulation of NMDA receptors [42]. Cardiovascular alterations such as hypotension with tachycardia, gastric alterations such as pancreatitis, and hepatotoxicity have manifested with elevated transaminases, jaundice, and abdominal pain with inflammation, among others, may also occur [43].
Phenobarbital belongs to the family of barbiturates. These are characterized by providing the central nervous system with a depressant effect depending on the administered dose [44]. Its anticonvulsant mechanism is based on increasing the inhibitory activity of GABA, binding to the GABA receptor, and facilitating even more inhibitory neurotransmission. This inhibition reduces ATP levels, which causes the opening of Ca2+ channels associated with the NMDA receptor, coupled with the fact that a prolonged opening of these Ca2+ would lead to excitotoxic neuronal death [45]. The anticonvulsant dose ranges between 10 and 40 μg/ml. The administration of these doses and higher ones generates toxicity that is generally due to the increase in Ca2+ entry into the neuron [46]. Mitochondria are an intracellular target of barbiturates since they depolarize the mitochondrial membrane by inhibiting complex one of the electron transports chains and, furthermore, they could have an uncoupling effect on oxidative phosphorylation [47]. Its absorption of phenobarbital is gastric, which generates a decrease in peristaltic tone. Although it is metabolized in the liver and discharged through the kidneys and urine, it has a great fat solubility that crosses cell membranes, producing several alterations [48].
Carbamazepine is a mainly antiepileptic psychotropic drug whose mechanism of action is based on reducing glutamate release, reducing the permeability of neuronal membranes to Na+ and K+ ions, stabilizing neuronal membranes, and depressing dopamine and norepinephrine turnover, though an inhibitory effect on muscarinic and nicotinic receptors is also known [49]. When its therapeutic plasma concentrations are higher than 10 μg/ml, it produces toxic effects initially characterized by tachycardia, hypotension and hypertension, lethargy, ataxia, dysarthria, and nystagmus can occur, there are also gastric alterations such as vomiting and nausea. When intoxication is severe, it could even cause a coma [50]. Carbamazepine absorption is digestive, metabolized in the liver where it can cause liver dysfunction and, as its elimination is via the kidneys, adverse effects can also occur in this way [51].
Phenytoin has been the most commonly used antiepileptic drug for patients with focal and generalized epilepsies since 1938 [52]. Its mechanism of action is exerted by inactivating voltage-gated Na+ channels. It also acts by inhibiting the flow of Ca2+ through neuronal membranes, such as it is to be expected at the cardiac level, it also inhibits Na+ channels, which is why it has toxic effects on the myocardium [53]. Phenytoin is bound to plasma proteins, such as albumin, which is metabolized in the liver, so it can cause liver diseases. Toxic effects are present even if the patient has adequate therapeutic levels, like at concentrations lower than 20 mg/Kg [54, 55]. Among the clinical toxic effects, patients may present nystagmus, ataxia, and numbness [56]. With more severe intoxications, in addition to the above: dysarthria, ataxia, the patient might not be able to walk, and may present hyperreflexia, besides consciousness usually being inhibited [57]. With higher doses, patients may even display a coma [58].
Lamotrigine is an antiepileptic drug principally used for generalized and partial seizures; it is also used in the adjunctive treatment of refractory crises [59]. Its action mechanism at the cellular level is based on blocking excitatory neurotransmitters, especially glutamate, through its NMDA receptors, as well as inhibiting voltage-dependent Na+ currents [60]. The toxic effects on patients who take this drug above 600 mg are characterized primarily at the CNS level by difficulty in concentration, showing dysarthria, nystagmus, and blurred or double vision. Patients may even present a loss of balance or coordination [61]. Its absorption is intestinal, its elimination in the urine, metabolized in the liver. Thus, there is idiosyncratic hepatotoxicity that commonly requires liver transplantation [62].
Oxcarbazepine is a derivative of carbamazepine, approved as an antiepileptic drug in America in 2000 [63]. This drug is used in the treatment of any type of epileptic seizure. The cellular mechanism by which it exerts its antiepileptic effects is based on the fact that it blocks voltage-gated Na+ channels, modulates the activity of Ca2+ channels, and increases K+ conductance, which consequently produces a stabilization of hyperexcited neuronal membranes for epileptic seizures [64]. Oxcarbazepine is a drug that is metabolized like other antiepileptic drugs by the liver and excreted by the kidney [65]. Toxic effects when daily doses are above 30 mg/kg are basically characterized by gastric alterations: mainly nausea and vomiting. The alterations in the CNS are identified by headache, fatigue, drowsiness, and ataxia. It has also been reported that some patients may have vertigo and hyponatremia [66].
Ethosuximide is an anticonvulsant used to reduce the frequency of absence-type seizures. It exerts its mechanism by reducing Ca2+ currents antagonized by the T-type Ca2+ channels. Furthermore, linked to this drug, modulation of the function of voltage-activated Na+ channels and Na+/K+ dendritic hyperpolarization-activated cyclic nucleotide-gated channel 1 channels has been suggested. It also reduces neuronal excitability by inhibiting the Na+/K+ pump [67]. However, ethosuximide is almost entirely absorbed in the digestive tract and metabolized in the liver, which can cause liver disease. The toxic effects of patients who consume above 25 mg/kg comprise gastric issues, nausea, vomiting, constipation, a state of sedation, headache, decreased alertness, drowsiness, and even comas have been reported at the CNS level [68]. Other adverse effects may include weight loss, as well as leukopenia [69].
Gabapentin acts mainly by inhibiting partial and generalized seizures. Its mechanism of action is based on enhancing the inhibitory action of GABA [70]. A dose above 1,500 mg of gabapentin can cause hepatotoxicity, additionally, coupling various toxic effects like headaches, diplopia, nystagmus, diplopia, even involuntary movements have been described at the CNS level [71].
Topiramate is a drug used as an antiepileptic drug that acts by inhibiting partial and generalized seizures. Its action mechanism is exerted by blocking Na+ channels. As an AMPA receptor antagonist, it reduces excitatory neurotransmission, in addition to enhancing the inhibitory action of GABA [72]. Topiramate taken at a dose above 50 mg produces toxic effects, including dizziness. At the CNS level, patients have headaches, drowsiness, decreased concentration, and even confusion. Nevertheless, other anomalies have also been reported [73].
As noted, before the development of epilepsy, experimental models have been crucial in the further research of a neurological disorder affecting approximately 1% of the worldwide population. Some drugs cause structural and metabolic alterations in the nervous system as demonstrated by experimental epileptic models, culminating in seizure generation [74]. Antiepileptic drugs that are conventionally used in clinical practice have been successfully tested in many of these models, even though certain models have neurotoxic consequences, as we will discuss below.
With the aluminum model, focal seizures are studied by directly applying the substance to the cerebral cortex of the animal under study, where it has been observed that this substance generates dendritic loss, gliosis, loss of GABAergic neurons, and a decrease in glutamate decarboxylase [75, 76]. This model has been used to study antiepileptic drugs including diphenylhydantoin and pentobarbital, both of which have shown positive outcomes in reducing epileptic seizures frequency [77].
Focal seizures have been researched using cobalt powder, which has been applied to the research animal’s cortex or thalamus for epileptogenesis as part of the model development. This has reported GABA and glutamate decarboxylase enzyme production decreased, whereas neuronal death has been observed in the hippocampus. This cobalt model has also been suggested to interfere with Ca2+ signaling at NMDA glutamate receptors [78, 79, 80].
Similarly, using Zinc as an epilepsy model has been associated to neuronal death in the hippocampus, interference with GABAA receptors, and changes in the synapses of mossy fibers when there is a high concentration of this metal. It has also been observed to interfere with the responses of various receptors, including GABA, NMDA, and AMPA [81, 82]. While kainic acid, as an epileptic model, functions similarly to glutamate. The hippocampus is the most sensitive structure to this agent, with the highest number of receptors reported in the CA3 layer. This epilepsy model is used to examine focal seizures, with the hippocampus being the most sensitive structure to this substance. Changes in neuropeptide Y levels, hippocampus mossy fiber formation and a decrease in GABAB receptors are reported [83, 84, 85].
Pentylenetetrazol is used as an epileptic model to research generalized seizures. Shifts in the CA3 layer of the hippocampus, increased voltage in voltage-responsive K+ receptors, and interactions with GABAA and NMDA receptors have all been documented [86, 87]. The model has been shown to be suppressed by phenytoin and pentobarbital [88, 89]. Flurothyl gas, on the other hand, can cause status epilepticus in laboratory animals. Although this gas has long been utilized to investigate generalized seizures, the exact mechanism through which it causes seizures is yet uncertain. However, alterations in the lipidic membranes of hippocampus, amygdala, and cerebral cortex cells have been reported. A decrease in GABA synthesis and activation of the c-Fos gene have also been reported [90, 91, 92].
On the other hand, penicillin, like cobalt, has been utilized as a model for focal seizures in epilepsy research, causing myoclonic seizures. The loss of GABAergic neurons, neuronal death, and an increase in mossy fibers in the hippocampus are the key abnormalities seen in this model [93, 94, 95]. While bicuculline is classified as a GABA antagonist, it causes generalized seizures when used. Edema has been found in the astrocytes of the cerebral cortex, where it interacts with Ca2+ and K+ channels [96, 97]. Tetanus toxin has also been employed as a model of epilepsy because of its effect on seizure induction. There are interactions with inhibitory neurotransmission, synapse formation, exocytosis blocking, and a decrease in GABAergic signaling threshold with this substance [98, 99].
Additionally, pilocarpine affects the muscarinic acetylcholine receptors. The increase in activation of these receptors in the hippocampus characterizes its epileptogenic effect. In experimental animals, it can even cause status epilepticus. Significant damage to nervous system structures has been observed, particularly the entorhinal and piriform cortex, olfactory bulb, amygdala, hippocampus, and thalamus, as well as abnormalities in the function of Na+/K+ ATPase and NMDA receptors [100, 101, 102, 103].
The described above has enabled us to identify the excitotoxic effect induced by epileptic seizures, whether clinical or experimental. Likewise, it illustrated some of the toxic effects of antiepileptic drugs. From what has been illustrated, it is necessary to conduct research that allows offering other therapeutic alternatives to reduce the toxic effects of seizures and pharmacological therapy. The proposal of alternative treatments to treat seizures is essential to boost anti-toxic defense mechanisms. It can be suggested to propose therapies that minimize neuronal death or treatments with substances that activate antiepileptic protein activity, such as the extrinsic and intrinsic Glutamate receptors N-methyl-D-aspartate 𝜶-amino-2-3-dihydro-5-methyl-3-oxo-4-isoxazolepropionic acid Gamma-aminobutyric acid Calcium Sodium ions Potassium Central nervous system T-cell factor / lymphoid enhancing factor pathway Adenomatous polyposis coli protein Casein kinase 1 Glycogen synthase kinase 3 β Notoginsenoside R1 Notoginsenoside R1Appendices and nomenclature
The concept of toxicity refers to any substance capable of producing harm on livings organism. Hence, this chapter emphasizes on those compounds that harm the nervous system, particularly those capable of generating seizures. Within the pathophysiology of epilepsy, multiple mechanisms favor epileptogenesis, one of which is neurotoxicity. These excitotoxic mechanisms can exert their action through the glutamate receptors N-methyl-D-aspartate (NMDA); 𝜶-amino-2-3-dihydro-5-methyl-3-oxo-4-isoxazolepropionic acid (AMPA) and kainate, opening ionic channels permeable to calcium (Ca2+), sodium ions (Na+), that participate significantly in the neuronal damage derived from the excitotoxic effects. Though there are spontaneous inducers of epilepsy, different models that replicate seizures have been created to better understand the mechanisms underlying epileptic seizures. These models promote neurotoxicity in the brain and are triggered by certain substances, primarily agonists or antagonists of neurotransmitters involved in epileptic activity. In this review we aim to illustrate the neurotoxic potency of numerous agents administered in the brain with neurotoxic qualities, including medications used in clinical practice that can generate neurotoxicity.
Epileptic seizures, according to the World Health Organization, are defined as a neurological, chronic, recurrent, and repetitive condition of paroxysmal phenomena caused by an excessive abnormal discharge of groups of neurons, which can occur in different parts of the brain [1]. It is the result of synchronous electrical discharge from a group of hyper-excitable neurons, that when repeated consequently leads to neurotoxicity This hyperexcitability is due to an imbalance between the inhibitory processes given mainly by gamma-aminobutyric acid (GABA) and the excitatory ones of glutamate, which consequently modifies the function of ion channels regulated by Ca2+, Na+, and potassium (K+) mainly, which finally play a crucial role between the timing and propagation of abnormal discharges, contributing to the epileptic process [2]. Glutamate release activates NMDA ionotropic receptors, causing a rapid entry of Na+ and a slow entry of Ca2+. In epileptic seizures, with this massive entry of Ca2+, there is an increase of mitochondrial Ca2+ producing, among other effects an excitotoxic effect, in addition to free radicals production, proteases activation, and synthesis of nitric oxide which, by acting as a retrograde messenger, enhances the excitotoxic effect on the cell by also increasing glutamate release from the presynaptic terminals [3]. This glutamate release also activates the AMPA receptors associated with non-voltage-dependent channels, responsible for depolarizing currents, due to the Na+ input. AMPA receptor antagonists are known to have been shown to markedly reduce or decrease epileptic activity [4].
Kainic acid (KA) glutamate agonist acts on glutamatergic receptors with a high affinity for KA which is associated with a Na+ ion channel, this depolarization in turn causes Na+ channels opening, which leads to Ca2+ channels aperture that further increases neuron excitability. Na+ channels’ participation in epileptogenesis and their mutations in many epileptic disorders has been long studied. The Na
Activation of AMPA receptors, particularly NMDA receptors, triggers intracellular Ca2+ cascades. Ca2+ permeability studies indicate that there is also a low permeability of this ion through kainate receptors [10, 11]. Excessive Ca2+ intake, derived from a pathological condition such as epilepsy, contributes to an excitotoxic effect and subsequent neuronal death [12].
In epileptic seizures, glutamate elevation and GABA release are observed from the presynaptic terminals within the synaptic cleft. Astrocytes recapture these abnormally released neurotransmitters during the seizure, protecting neurons from excitotoxicity and eliminating excess glutamate. It is known that, derived from the epileptic processes, there is hypertrophy and significant changes in the ramifications and volume of the astrocyte soma. These changes undoubtedly impact the reuptake of neurotransmitters such as glutamate, allowing an excess of this in the synaptic space [13, 14].
It is worth noting that epilepsy research is so broad that despite not managing to control the neuropathology, some authors have claimed that studying the disease has allowed neuroscience to investigate more than just seizure disorders, but the brain regions not directly implicated in epilepsy, as well. This chapter, however, will concentrate only on epilepsy-related neurotoxicity.
When Ca2+ enters, it produces hyperexcitability in the excitable neuron through voltage-dependent Ca2+ channels (VDCCs). Intracellular processes are initiated when Ca2+ enters the cell, such as membrane excitability regulation, which permits neurotransmitters to be released. The biophysical and pharmacological properties of six types of Ca2+ channels (T, L, N, P, Q, and R) have been characterized. Low-threshold channels have been classed as T-type channels, while the rest have been classified as high-threshold channels. The number of depolarizations required for their activation has led to this classification. All channels have four subunits referred to as I through IV, each of which is made up of six transmembrane segments referred to as S1, S2, S3, S4, S5, and S6. The N, P and Q type channels are particularly crucial in controlling the release of neurotransmitters like glutamate and GABA, which, as previously stated, play a key role in epilepsy. The fact that a decrease in extracellular Ca2+ concentration can cause hyperexcitability in neurons is evidence that VDCCs play a major role in the epileptic activity [15]. In epilepsy, this correlates with paroxysmal depolarizations. Which correlates with paroxysmal depolarizations in epilepsy. This phenomenon has been observed in the hippocampus’s neurons and dendrites, particularly in the CA1 and CA3 neuroanatomical, critical regions in epileptic seizures. Ca2+ currents have been demonstrated to promote the development of epileptic seizures; this is thought to be due to an increase in postsynaptic responses triggered by excessive excitement, which then initiates an epileptic seizure. However, this type of activity also leads to neuronal death.
Epileptic activity can also be triggered by the input of extracellular Ca2+ into the neuron, which promotes neuronal membrane depolarization and action potential production, resulting in abnormal discharges and seizures. The rise in intracellular Ca2+ in the postsynaptic neuron has been linked to various factors that produce epileptogenesis, including persistent depolarization, inducing neurotoxicity. Animal models in mice (tottering, du-du, or stargazer) in which genes coding for Ca2+ channel subunits formation have been altered and made it possible to illustrate the role of Ca2+ in epileptogenesis, implying that channelopathies may be part of the substrate for abnormal activity. Because Ca2+ plays such a role in abnormal epileptic activity, drugs like ethosuximide have been developed to block T-type Ca2+ channels by reducing Ca2+ entry. Hence, neurotransmitter release is implicated in neuronal excitability [16, 17, 18, 19].
This chapter proposes several molecular signaling pathways that are involved in epileptogenesis. We described the most representative pathways in the epileptogenesis study. Until now, the complicated epileptogenesis pathophysiology and molecular processes that lead to seizures have remained a mystery. However, various anatomical pathways mechanisms, pathological pathways, and molecular interactions are known and have been explored based on the research available. Inhibitory and excitatory neurotransmission abnormalities have a big impact on neuron stability. Neuroinflammation and oxidative stress, for example, encourage the emergence of epileptic seizures and can potentially intensify them [20].
It has been claimed that the inflammatory state, and the elevation of its mediators, including IL-1ß, IL-6, high mobility group box TNF-α8, and cyclooxygenase-2. TNF-α produces endocytosis of GABA receptors through AMPA. Therefore, hyperexcitability in the hippocampus is boosted, resulting in seizures. Several studies have linked neuroinflammation to oxidative stress at the same time. The involvement of oxidative stress as a seizure generator is owing to an imbalance in the generation of reactive oxygen and nitrogen species, resulting in a deficiency in antioxidant mechanisms. The mitochondria are the body’s principal generator of oxygen radicals [21]. Other free radicals, including nicotinamide adenine dinucleotide phosphate oxidase and xanthine oxidase, have been shown to act through glutamate receptors. The activation of the NMDA receptor is linked to epileptic activity [22].
Another pathway described in the study of epileptogenesis is the
Notoginsenoside R1 (NGR1, was recently discovered to upregulate mRNA levels of the proteins β-catenin, Dvl, and Fzd, as well as promote the proliferation of cultured cortical neurons. NGR1 has also been discovered to reduce persistent K+ currents in hippocampus neurons, resulting in a reduced peak threshold. Treatment with a Wnt3a ligand, which activates the FZD receptor, caused K+ channel internalization and enhanced β-catenin expression, according to a recent study. GSK-3β inhibition caused by
In a previous study, a significant increase in β-catenin signaling in the cerebellar cortex of rats after kindling-induced generalized seizures was observed. β-catenin activation induces apoptosis through the expression of cMyc upregulation, a protein that negatively regulates anti-apoptotic proteins such as Bcl-2. This leads to a loss of mitochondria, membrane potential, releasing cytochrome-c and promoting activation of caspases 3 and 9, leading to neuronal death. The
Exposure to toxins can trigger seizures due to their damaging effect on the nervous system through different mechanisms (Table 1). The ability of organophosphate insecticides to induce epileptic seizures is known through the inhibition of acetylcholinesterase due to its chemical structure that contain the groups carbamoyl and thiocarbamoyl, due to its capacity to phosphorylate and inactivate acetylcholinesterase and in addition to stimulating cholinergic receptors, these pesticides include parathion, chlorpyrifos, aldicarb, and carbaryl. Certain toxins present a dual mechanism for epileptic seizures production through the facilitation of the activation and the inhibition of voltage-gated Na
Toxic substance | Mechanism |
---|---|
Parathion, chlorpyrifos, aldicarb, and carbaryl | Inhibiting acetylcholinesterase and hyperstimulation of cholinergic receptors |
Sarin, soman, scorpion venom and ciguatoxin | Modulating ion flow through voltage-gated sodium channels |
Anatoxin | Nicotinic receptor activation |
Kainic acid and domoic acid | Activation of glutamate receptors |
Lindane, picrotoxin and strychnine | GABA receptor inhibition |
Toxic substances that can trigger seizures and their exerting mechanism.
The administration of different drugs used therapeutically can predispose to epileptic seizures presence either by lowering the epileptogenic threshold, intoxication, or overdose of these. The main groups of antimicrobials that can cause seizures are beta-lactams, anti-tuberculous, and antimalarials. The pro epileptogenic effect of beta-lactams is related to high doses or their toxicity. Seizures related to drugs used to treat tuberculosis are mainly due to vitamin B6 deficiency. Mefloquine and chloroquine are reported antimalarial drugs that can lead to seizures. The proconvulsive effect of methylxanthines is thought to be due to A1 adenosine receptor inhibition. Paradoxically, it is known that carbamazepine can worsen generalized-onset seizures. As well as the withdrawal effect of benzodiazepines, which in some cases can lower the seizure threshold [30, 31, 32, 33, 34]. Table 2 summarizes the main drugs associated with seizures. The following part reviews some of the toxic effects of the main antiepileptic drugs used in clinical practice.
Category | Drugs associated with seizures |
---|---|
Sympathomimetics | Phenylephrine, pseudoephedrine, and anorexiants |
Analgesics | Opioids |
Anticancer drugs | Interferon alfa, methotrexate, mitoxantrone, nelarabine, platinum-based, cisplatin, vinblastine, vincristine, busulfan, chlorambucil, cytarabine, doxorubicin, etoposide, and fluorouracil |
Antimicrobials | Carbapenems, cephalosporins, fluoroquinolones, isoniazid, and penicillin |
Hypoglycemics | Any antidiabetic that causes hypoglycemia |
Immunosuppressants | Cyclosporine, mycophenolate, tacrolimus, and azathioprine |
Psychopharmaceuticals | Monoamine oxidase inhibitors, selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, serotonin modulators, tricyclic antidepressants, antipsychotics, atomoxetine, bupropion, buspirone, and lithium |
Stimulants | Amphetamines and methylphenidate |
Xanthine | Aminophylline and theophylline |
Antiepileptics | Carbamazepine and benzodiazepines |
Main drugs associated with drugs.
Since 1978, valproic acid or Na+ valproate has been characterized as an antiepileptic drug that suppresses the neuronal excitation of different types of epilepsy, such as partial seizures and generalized seizures [35]. It appears that valproic acid exerts its inhibition by blocking the reuptake of the neurotransmitter GABA, the main inhibitory neurotransmitter. It also lowers glutamate levels and modifies K+ conductance [36], exerting an inhibition through the voltage-dependent Na+ channels. In this way, it reduces the excitement caused by epileptic seizures [37]. Once this drug reaches the central nervous system (CNS), it binds to plasma proteins and is distributed throughout the extracellular space [38]. It is metabolized in the liver and discharged through the urine. Although it is also eliminated with expirations in the form of CO2 [39]. However, this drug is known to have frequent toxic effects derived from the therapeutic dose in patients with toxic plasma levels greater than 120 μg/ml [40]. After an overdose, the patient may be lethargic and coma, most likely due to inhibition produced in the CNS [41]. Another adverse situation that derives from the consumption of this antiepileptic drug is cerebral edema, probably caused by the overstimulation of the stimulation of NMDA receptors [42]. Cardiovascular alterations such as hypotension with tachycardia, gastric alterations such as pancreatitis, and hepatotoxicity have manifested with elevated transaminases, jaundice, and abdominal pain with inflammation, among others, may also occur [43].
Phenobarbital belongs to the family of barbiturates. These are characterized by providing the central nervous system with a depressant effect depending on the administered dose [44]. Its anticonvulsant mechanism is based on increasing the inhibitory activity of GABA, binding to the GABA receptor, and facilitating even more inhibitory neurotransmission. This inhibition reduces ATP levels, which causes the opening of Ca2+ channels associated with the NMDA receptor, coupled with the fact that a prolonged opening of these Ca2+ would lead to excitotoxic neuronal death [45]. The anticonvulsant dose ranges between 10 and 40 μg/ml. The administration of these doses and higher ones generates toxicity that is generally due to the increase in Ca2+ entry into the neuron [46]. Mitochondria are an intracellular target of barbiturates since they depolarize the mitochondrial membrane by inhibiting complex one of the electron transports chains and, furthermore, they could have an uncoupling effect on oxidative phosphorylation [47]. Its absorption of phenobarbital is gastric, which generates a decrease in peristaltic tone. Although it is metabolized in the liver and discharged through the kidneys and urine, it has a great fat solubility that crosses cell membranes, producing several alterations [48].
Carbamazepine is a mainly antiepileptic psychotropic drug whose mechanism of action is based on reducing glutamate release, reducing the permeability of neuronal membranes to Na+ and K+ ions, stabilizing neuronal membranes, and depressing dopamine and norepinephrine turnover, though an inhibitory effect on muscarinic and nicotinic receptors is also known [49]. When its therapeutic plasma concentrations are higher than 10 μg/ml, it produces toxic effects initially characterized by tachycardia, hypotension and hypertension, lethargy, ataxia, dysarthria, and nystagmus can occur, there are also gastric alterations such as vomiting and nausea. When intoxication is severe, it could even cause a coma [50]. Carbamazepine absorption is digestive, metabolized in the liver where it can cause liver dysfunction and, as its elimination is via the kidneys, adverse effects can also occur in this way [51].
Phenytoin has been the most commonly used antiepileptic drug for patients with focal and generalized epilepsies since 1938 [52]. Its mechanism of action is exerted by inactivating voltage-gated Na+ channels. It also acts by inhibiting the flow of Ca2+ through neuronal membranes, such as it is to be expected at the cardiac level, it also inhibits Na+ channels, which is why it has toxic effects on the myocardium [53]. Phenytoin is bound to plasma proteins, such as albumin, which is metabolized in the liver, so it can cause liver diseases. Toxic effects are present even if the patient has adequate therapeutic levels, like at concentrations lower than 20 mg/Kg [54, 55]. Among the clinical toxic effects, patients may present nystagmus, ataxia, and numbness [56]. With more severe intoxications, in addition to the above: dysarthria, ataxia, the patient might not be able to walk, and may present hyperreflexia, besides consciousness usually being inhibited [57]. With higher doses, patients may even display a coma [58].
Lamotrigine is an antiepileptic drug principally used for generalized and partial seizures; it is also used in the adjunctive treatment of refractory crises [59]. Its action mechanism at the cellular level is based on blocking excitatory neurotransmitters, especially glutamate, through its NMDA receptors, as well as inhibiting voltage-dependent Na+ currents [60]. The toxic effects on patients who take this drug above 600 mg are characterized primarily at the CNS level by difficulty in concentration, showing dysarthria, nystagmus, and blurred or double vision. Patients may even present a loss of balance or coordination [61]. Its absorption is intestinal, its elimination in the urine, metabolized in the liver. Thus, there is idiosyncratic hepatotoxicity that commonly requires liver transplantation [62].
Oxcarbazepine is a derivative of carbamazepine, approved as an antiepileptic drug in America in 2000 [63]. This drug is used in the treatment of any type of epileptic seizure. The cellular mechanism by which it exerts its antiepileptic effects is based on the fact that it blocks voltage-gated Na+ channels, modulates the activity of Ca2+ channels, and increases K+ conductance, which consequently produces a stabilization of hyperexcited neuronal membranes for epileptic seizures [64]. Oxcarbazepine is a drug that is metabolized like other antiepileptic drugs by the liver and excreted by the kidney [65]. Toxic effects when daily doses are above 30 mg/kg are basically characterized by gastric alterations: mainly nausea and vomiting. The alterations in the CNS are identified by headache, fatigue, drowsiness, and ataxia. It has also been reported that some patients may have vertigo and hyponatremia [66].
Ethosuximide is an anticonvulsant used to reduce the frequency of absence-type seizures. It exerts its mechanism by reducing Ca2+ currents antagonized by the T-type Ca2+ channels. Furthermore, linked to this drug, modulation of the function of voltage-activated Na+ channels and Na+/K+ dendritic hyperpolarization-activated cyclic nucleotide-gated channel 1 channels has been suggested. It also reduces neuronal excitability by inhibiting the Na+/K+ pump [67]. However, ethosuximide is almost entirely absorbed in the digestive tract and metabolized in the liver, which can cause liver disease. The toxic effects of patients who consume above 25 mg/kg comprise gastric issues, nausea, vomiting, constipation, a state of sedation, headache, decreased alertness, drowsiness, and even comas have been reported at the CNS level [68]. Other adverse effects may include weight loss, as well as leukopenia [69].
Gabapentin acts mainly by inhibiting partial and generalized seizures. Its mechanism of action is based on enhancing the inhibitory action of GABA [70]. A dose above 1,500 mg of gabapentin can cause hepatotoxicity, additionally, coupling various toxic effects like headaches, diplopia, nystagmus, diplopia, even involuntary movements have been described at the CNS level [71].
Topiramate is a drug used as an antiepileptic drug that acts by inhibiting partial and generalized seizures. Its action mechanism is exerted by blocking Na+ channels. As an AMPA receptor antagonist, it reduces excitatory neurotransmission, in addition to enhancing the inhibitory action of GABA [72]. Topiramate taken at a dose above 50 mg produces toxic effects, including dizziness. At the CNS level, patients have headaches, drowsiness, decreased concentration, and even confusion. Nevertheless, other anomalies have also been reported [73].
As noted, before the development of epilepsy, experimental models have been crucial in the further research of a neurological disorder affecting approximately 1% of the worldwide population. Some drugs cause structural and metabolic alterations in the nervous system as demonstrated by experimental epileptic models, culminating in seizure generation [74]. Antiepileptic drugs that are conventionally used in clinical practice have been successfully tested in many of these models, even though certain models have neurotoxic consequences, as we will discuss below.
With the aluminum model, focal seizures are studied by directly applying the substance to the cerebral cortex of the animal under study, where it has been observed that this substance generates dendritic loss, gliosis, loss of GABAergic neurons, and a decrease in glutamate decarboxylase [75, 76]. This model has been used to study antiepileptic drugs including diphenylhydantoin and pentobarbital, both of which have shown positive outcomes in reducing epileptic seizures frequency [77].
Focal seizures have been researched using cobalt powder, which has been applied to the research animal’s cortex or thalamus for epileptogenesis as part of the model development. This has reported GABA and glutamate decarboxylase enzyme production decreased, whereas neuronal death has been observed in the hippocampus. This cobalt model has also been suggested to interfere with Ca2+ signaling at NMDA glutamate receptors [78, 79, 80].
Similarly, using Zinc as an epilepsy model has been associated to neuronal death in the hippocampus, interference with GABAA receptors, and changes in the synapses of mossy fibers when there is a high concentration of this metal. It has also been observed to interfere with the responses of various receptors, including GABA, NMDA, and AMPA [81, 82]. While kainic acid, as an epileptic model, functions similarly to glutamate. The hippocampus is the most sensitive structure to this agent, with the highest number of receptors reported in the CA3 layer. This epilepsy model is used to examine focal seizures, with the hippocampus being the most sensitive structure to this substance. Changes in neuropeptide Y levels, hippocampus mossy fiber formation and a decrease in GABAB receptors are reported [83, 84, 85].
Pentylenetetrazol is used as an epileptic model to research generalized seizures. Shifts in the CA3 layer of the hippocampus, increased voltage in voltage-responsive K+ receptors, and interactions with GABAA and NMDA receptors have all been documented [86, 87]. The model has been shown to be suppressed by phenytoin and pentobarbital [88, 89]. Flurothyl gas, on the other hand, can cause status epilepticus in laboratory animals. Although this gas has long been utilized to investigate generalized seizures, the exact mechanism through which it causes seizures is yet uncertain. However, alterations in the lipidic membranes of hippocampus, amygdala, and cerebral cortex cells have been reported. A decrease in GABA synthesis and activation of the c-Fos gene have also been reported [90, 91, 92].
On the other hand, penicillin, like cobalt, has been utilized as a model for focal seizures in epilepsy research, causing myoclonic seizures. The loss of GABAergic neurons, neuronal death, and an increase in mossy fibers in the hippocampus are the key abnormalities seen in this model [93, 94, 95]. While bicuculline is classified as a GABA antagonist, it causes generalized seizures when used. Edema has been found in the astrocytes of the cerebral cortex, where it interacts with Ca2+ and K+ channels [96, 97]. Tetanus toxin has also been employed as a model of epilepsy because of its effect on seizure induction. There are interactions with inhibitory neurotransmission, synapse formation, exocytosis blocking, and a decrease in GABAergic signaling threshold with this substance [98, 99].
Additionally, pilocarpine affects the muscarinic acetylcholine receptors. The increase in activation of these receptors in the hippocampus characterizes its epileptogenic effect. In experimental animals, it can even cause status epilepticus. Significant damage to nervous system structures has been observed, particularly the entorhinal and piriform cortex, olfactory bulb, amygdala, hippocampus, and thalamus, as well as abnormalities in the function of Na+/K+ ATPase and NMDA receptors [100, 101, 102, 103].
The described above has enabled us to identify the excitotoxic effect induced by epileptic seizures, whether clinical or experimental. Likewise, it illustrated some of the toxic effects of antiepileptic drugs. From what has been illustrated, it is necessary to conduct research that allows offering other therapeutic alternatives to reduce the toxic effects of seizures and pharmacological therapy. The proposal of alternative treatments to treat seizures is essential to boost anti-toxic defense mechanisms. It can be suggested to propose therapies that minimize neuronal death or treatments with substances that activate antiepileptic protein activity, such as the extrinsic and intrinsic Glutamate receptors N-methyl-D-aspartate 𝜶-amino-2-3-dihydro-5-methyl-3-oxo-4-isoxazolepropionic acid Gamma-aminobutyric acid Calcium Sodium ions Potassium Central nervous system T-cell factor / lymphoid enhancing factor pathway Adenomatous polyposis coli protein Casein kinase 1 Glycogen synthase kinase 3 β Notoginsenoside R1 Notoginsenoside R1Appendices and nomenclature
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}},{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6495/images/1947_n.jpg",biography:"Daniel Eberli MD. Ph.D. is a scientific physician working in the translational field of urologic tissue engineering. He has a medical degree from the Medical School in Zurich, Switzerland, and a Ph.D. in Molecular Medicine from Wake Forest University, Winston Salem, NC. He currently has a faculty position at the Department of Urology at the University Hospital Zurich, where he devotes half of his time to patient care. He is a lecturer at the Medical School of Zurich and the Swiss Federal Institute of Technology. Together with his research team, he is working on novel biomaterials for bladder reconstruction, improving autonomic innervation, cellular treatment of incontinence and tracking of stem cells.",institutionString:null,institution:{name:"University Hospital of Zurich",country:{name:"Switzerland"}}},{id:"122240",title:"Prof.",name:"Frede",middleName:null,surname:"Blaabjerg",slug:"frede-blaabjerg",fullName:"Frede Blaabjerg",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Aalborg University",country:{name:"Denmark"}}},{id:"50823",title:"Prof.",name:"Hamid Reza",middleName:null,surname:"Karimi",slug:"hamid-reza-karimi",fullName:"Hamid Reza Karimi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Milan",country:{name:"Italy"}}},{id:"22128",title:"Dr.",name:"Harald",middleName:null,surname:"Haas",slug:"harald-haas",fullName:"Harald Haas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Edinburgh",country:{name:"United Kingdom"}}},{id:"80399",title:"Dr.",name:"Huosheng",middleName:null,surname:"Hu",slug:"huosheng-hu",fullName:"Huosheng Hu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Essex",country:{name:"United Kingdom"}}},{id:"135796",title:"Prof.",name:"Jim",middleName:null,surname:"Van Os",slug:"jim-van-os",fullName:"Jim Van Os",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Utrecht University",country:{name:"Netherlands"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:17575},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"6,18"},books:[{type:"book",id:"12217",title:"Protein Interactions",subtitle:null,isOpenForSubmission:!0,hash:"8514f8e3d3dd0e22e87b0c4c84a6cc3a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12217.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12218",title:"Phytochemicals",subtitle:null,isOpenForSubmission:!0,hash:"8cb2e6bb3d9c717bb8dc44e35ed774c2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12218.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12165",title:"Mild Cognitive Impairment",subtitle:null,isOpenForSubmission:!0,hash:"53705d28ee50f077d865170f6dbb769c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12165.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12166",title:"New Topics on Electroencephalography",subtitle:null,isOpenForSubmission:!0,hash:"e6eae5162ca3ec5be1a1f2b85f007b2d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12166.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12167",title:"Neuroprotection",subtitle:null,isOpenForSubmission:!0,hash:"5b16c09a6266c3be63796aefa6828df2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12167.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12168",title:"Neuroglial Research",subtitle:null,isOpenForSubmission:!0,hash:"ce5fb5312ae2e8239b9ba2710fe3c0fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12168.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12169",title:"Olfactory and Gustatory Systems",subtitle:null,isOpenForSubmission:!0,hash:"d5a1c1b017ee33f8028a4de153f5762c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12169.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12170",title:"Hydrocephalus",subtitle:null,isOpenForSubmission:!0,hash:"2a0f7f54e5e93c674dd19336fa859f50",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12170.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12174",title:"Genetic Polymorphisms",subtitle:null,isOpenForSubmission:!0,hash:"5922df051a2033c98d2edfb31dd84f8c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12174.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12177",title:"Epigenetics",subtitle:null,isOpenForSubmission:!0,hash:"185b00910074e8beeedd2276900a911a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12177.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12214",title:"Phagocytosis",subtitle:null,isOpenForSubmission:!0,hash:"79d7747d6e3aa6a3623ab710a7634588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12214.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12216",title:"Cell Proliferation",subtitle:null,isOpenForSubmission:!0,hash:"d5e37e8c90c4c6cb33c25d4445574ac0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12216.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:10},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:15},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:10},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:96},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:17},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"678",title:"Soil Physics",slug:"soil-physics",parent:{id:"108",title:"Soil Science",slug:"earth-and-planetary-sciences-soil-science"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:49,numberOfWosCitations:81,numberOfCrossrefCitations:26,numberOfDimensionsCitations:79,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"678",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"220",title:"Hydraulic Conductivity",subtitle:"Issues, Determination and Applications",isOpenForSubmission:!1,hash:"77f359622d92baeaf977c1632585e1b4",slug:"hydraulic-conductivity-issues-determination-and-applications",bookSignature:"Lakshmanan Elango",coverURL:"https://cdn.intechopen.com/books/images_new/220.jpg",editedByType:"Edited by",editors:[{id:"47726",title:"Prof.",name:"Lakshmanan",middleName:null,surname:"Elango",slug:"lakshmanan-elango",fullName:"Lakshmanan Elango"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"23447",doi:"10.5772/20872",title:"Impacts of Wildfire Severity on Hydraulic Conductivity in Forest, Woodland, and Grassland Soils",slug:"impacts-of-wildfire-severity-on-hydraulic-conductivity-in-forest-woodland-and-grassland-soils",totalDownloads:2736,totalCrossrefCites:0,totalDimensionsCites:13,abstract:null,book:{id:"220",slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Daniel G. Neary",authors:[{id:"40845",title:"Dr.",name:"Daniel",middleName:"George",surname:"Neary",slug:"daniel-neary",fullName:"Daniel Neary"}]},{id:"23446",doi:"10.5772/18580",title:"Plant Hydraulic Conductivity: The Aquaporins Contribution",slug:"plant-hydraulic-conductivity-the-aquaporins-contribution",totalDownloads:5198,totalCrossrefCites:4,totalDimensionsCites:12,abstract:null,book:{id:"220",slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"María del Carmen Martínez-Ballesta, María del Carmen Rodríguez-Hernández, Carlos Alcaraz-López, César Mota-Cadenas, Beatriz Muries and Micaela Carvajal",authors:[{id:"31917",title:"Dr.",name:"Micaela",middleName:null,surname:"Carvajal",slug:"micaela-carvajal",fullName:"Micaela Carvajal"},{id:"44881",title:"Dr.",name:"MCarmen",middleName:null,surname:"Martínez-Ballesta",slug:"mcarmen-martinez-ballesta",fullName:"MCarmen Martínez-Ballesta"},{id:"44891",title:"Dr.",name:"Carlos",middleName:null,surname:"Alcaraz-López",slug:"carlos-alcaraz-lopez",fullName:"Carlos Alcaraz-López"},{id:"44892",title:"Mrs",name:"Beatriz",middleName:null,surname:"Muries",slug:"beatriz-muries",fullName:"Beatriz Muries"},{id:"44893",title:"Mrs",name:"MCarmen",middleName:null,surname:"Rodríguez-Hernández",slug:"mcarmen-rodriguez-hernandez",fullName:"MCarmen Rodríguez-Hernández"},{id:"44894",title:"Mr",name:"Cesar",middleName:null,surname:"Mota-Cádenas",slug:"cesar-mota-cadenas",fullName:"Cesar Mota-Cádenas"}]},{id:"23448",doi:"10.5772/22753",title:"Estimating Hydraulic Conductivity Using Pedotransfer Functions",slug:"estimating-hydraulic-conductivity-using-pedotransfer-functions",totalDownloads:5544,totalCrossrefCites:5,totalDimensionsCites:10,abstract:null,book:{id:"220",slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Ali Rasoulzadeh",authors:[{id:"49062",title:"Dr.",name:"Ali",middleName:null,surname:"Rasoulzadeh",slug:"ali-rasoulzadeh",fullName:"Ali Rasoulzadeh"}]},{id:"23456",doi:"10.5772/17599",title:"Electrokinetic Techniques for the Determination of Hydraulic Conductivity",slug:"electrokinetic-techniques-for-the-determination-of-hydraulic-conductivity",totalDownloads:2497,totalCrossrefCites:4,totalDimensionsCites:8,abstract:null,book:{id:"220",slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Laurence Jouniaux",authors:[{id:"28840",title:"Dr.",name:"Laurence",middleName:null,surname:"Jouniaux",slug:"laurence-jouniaux",fullName:"Laurence Jouniaux"}]},{id:"23449",doi:"10.5772/20369",title:"Determination of Hydraulic Conductivity Based on (Soil) - Moisture Content of Fine Grained Soils",slug:"determination-of-hydraulic-conductivity-based-on-soil-moisture-content-of-fine-grained-soils",totalDownloads:9573,totalCrossrefCites:4,totalDimensionsCites:8,abstract:null,book:{id:"220",slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Rainer Schuhmann, Franz Königer, Katja Emmerich, Eduard Stefanescu and Markus Stacheder",authors:[{id:"38615",title:"Dr.",name:"Rainer",middleName:null,surname:"Schuhmann",slug:"rainer-schuhmann",fullName:"Rainer Schuhmann"},{id:"46537",title:"Dr.",name:"Katja",middleName:null,surname:"Emmerich",slug:"katja-emmerich",fullName:"Katja Emmerich"},{id:"46538",title:"Mr",name:"Franz",middleName:null,surname:"Königer",slug:"franz-koniger",fullName:"Franz Königer"},{id:"95063",title:"Mr.",name:"Eduard",middleName:null,surname:"Stefanescu",slug:"eduard-stefanescu",fullName:"Eduard Stefanescu"},{id:"95065",title:"Dr.",name:"Markus",middleName:null,surname:"Stacheder",slug:"markus-stacheder",fullName:"Markus Stacheder"}]}],mostDownloadedChaptersLast30Days:[{id:"23457",title:"Contribution of Seismic and Acoustic Methods to Reservoir Model Building",slug:"contribution-of-seismic-and-acoustic-methods-to-reservoir-model-building",totalDownloads:4190,totalCrossrefCites:1,totalDimensionsCites:4,abstract:null,book:{id:"220",slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Jean Luc Mari and Frederick Delay",authors:[{id:"46025",title:"Prof.",name:"Jean Luc",middleName:"Olivier",surname:"Mari",slug:"jean-luc-mari",fullName:"Jean Luc Mari"},{id:"105115",title:"Prof.",name:"Frederick",middleName:null,surname:"Delay",slug:"frederick-delay",fullName:"Frederick Delay"}]},{id:"23449",title:"Determination of Hydraulic Conductivity Based on (Soil) - Moisture Content of Fine Grained Soils",slug:"determination-of-hydraulic-conductivity-based-on-soil-moisture-content-of-fine-grained-soils",totalDownloads:9573,totalCrossrefCites:4,totalDimensionsCites:8,abstract:null,book:{id:"220",slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Rainer Schuhmann, Franz Königer, Katja Emmerich, Eduard Stefanescu and Markus Stacheder",authors:[{id:"38615",title:"Dr.",name:"Rainer",middleName:null,surname:"Schuhmann",slug:"rainer-schuhmann",fullName:"Rainer Schuhmann"},{id:"46537",title:"Dr.",name:"Katja",middleName:null,surname:"Emmerich",slug:"katja-emmerich",fullName:"Katja Emmerich"},{id:"46538",title:"Mr",name:"Franz",middleName:null,surname:"Königer",slug:"franz-koniger",fullName:"Franz Königer"},{id:"95063",title:"Mr.",name:"Eduard",middleName:null,surname:"Stefanescu",slug:"eduard-stefanescu",fullName:"Eduard Stefanescu"},{id:"95065",title:"Dr.",name:"Markus",middleName:null,surname:"Stacheder",slug:"markus-stacheder",fullName:"Markus Stacheder"}]},{id:"23443",title:"Variation in Hydraulic Conductivity by the Mobility of Heavy Metals in a Compacted Residual Soil",slug:"variation-in-hydraulic-conductivity-by-the-mobility-of-heavy-metals-in-a-compacted-residual-soil",totalDownloads:2840,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"220",slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Rejane Nascentes, Izabel Christina Duarte de Azevedo and Ernani Lopes Possato",authors:[{id:"31493",title:"Prof.",name:"Rejane",middleName:null,surname:"Nascentes",slug:"rejane-nascentes",fullName:"Rejane Nascentes"},{id:"44566",title:"MSc.",name:"Ernani",middleName:null,surname:"Possato",slug:"ernani-possato",fullName:"Ernani Possato"},{id:"89053",title:"Prof.",name:"Izabel",middleName:null,surname:"Azevedo",slug:"izabel-azevedo",fullName:"Izabel Azevedo"}]},{id:"23452",title:"Instrumentation for Measurement of Laboratory and In-Situ Soil Hydraulic Conductivity Properties",slug:"instrumentation-for-measurement-of-laboratory-and-in-situ-soil-hydraulic-conductivity-properties",totalDownloads:5411,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"220",slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Jose Antonio Gutierrez Gnecchi, Alberto Gómez-Tagle (Jr), Philippe Lobit, Adriana Téllez Anguiano, Arturo Méndez Patiño, Gerardo Marx Chávez Campos and Fernando Landeros Paramo",authors:[{id:"21831",title:"Prof.",name:"Alberto",middleName:null,surname:"Gomez-Tagle, Jr.",slug:"alberto-gomez-tagle-jr.",fullName:"Alberto Gomez-Tagle, Jr."},{id:"36591",title:"Prof.",name:"Jose Antonio",middleName:null,surname:"Gutierrez Gnecchi",slug:"jose-antonio-gutierrez-gnecchi",fullName:"Jose Antonio Gutierrez Gnecchi"},{id:"46889",title:"Prof.",name:"Philippe",middleName:null,surname:"Lobit",slug:"philippe-lobit",fullName:"Philippe Lobit"},{id:"46890",title:"Prof.",name:"Adriana",middleName:null,surname:"Tellez Anguiano",slug:"adriana-tellez-anguiano",fullName:"Adriana Tellez Anguiano"},{id:"46891",title:"MSc",name:"Gerardo",middleName:null,surname:"Chavez Campos",slug:"gerardo-chavez-campos",fullName:"Gerardo Chavez Campos"},{id:"46892",title:"BSc",name:"Fernando",middleName:null,surname:"Landeros Paramo",slug:"fernando-landeros-paramo",fullName:"Fernando Landeros Paramo"},{id:"89136",title:"Prof.",name:"Arturo",middleName:null,surname:"Mendez Patiño",slug:"arturo-mendez-patino",fullName:"Arturo Mendez Patiño"}]},{id:"23441",title:"Role of Hydraulic Conductivity on Surface and Groundwater Interaction in Wetlands",slug:"role-of-hydraulic-conductivity-on-surface-and-groundwater-interaction-in-wetlands",totalDownloads:4395,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"220",slug:"hydraulic-conductivity-issues-determination-and-applications",title:"Hydraulic Conductivity",fullTitle:"Hydraulic Conductivity - Issues, Determination and Applications"},signatures:"Cevza Melek Kazezyılmaz-Alhan",authors:[{id:"62359",title:"Dr.",name:"Cevza",middleName:"Melek",surname:"Kazezyilmaz-Alhan",slug:"cevza-kazezyilmaz-alhan",fullName:"Cevza Kazezyilmaz-Alhan"}]}],onlineFirstChaptersFilter:{topicId:"678",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:18,paginationItems:[{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:52,paginationItems:[{id:"80761",title:"Extractions Methods and Biological Applications of Essential Oils",doi:"10.5772/intechopen.102955",signatures:"Sonu Kumar Mahawer, Himani, Sushila Arya, Ravendra Kumar and Om Prakash",slug:"extractions-methods-and-biological-applications-of-essential-oils",totalDownloads:1,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:10,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:21,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"26",type:"subseries",title:"Machine Learning and Data Mining",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}}]},publishedBooks:{paginationCount:6,paginationItems:[{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7004",title:"Metabolomics",subtitle:"New Insights into Biology and Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/7004.jpg",slug:"metabolomics-new-insights-into-biology-and-medicine",publishedDate:"July 1st 2020",editedByType:"Edited by",bookSignature:"Wael N. Hozzein",hash:"35a30d8241442b716a4aab830b6de28f",volumeInSeries:16,fullTitle:"Metabolomics - New Insights into Biology and Medicine",editors:[{id:"189233",title:"Prof.",name:"Wael N.",middleName:"Nabil",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein",profilePictureURL:"https://mts.intechopen.com/storage/users/189233/images/system/189233.jpeg",institutionString:"Beni-Suef University",institution:{name:"Beni-Suef University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6967",title:"Prebiotics and Probiotics",subtitle:"Potential Benefits in Nutrition and Health",coverURL:"https://cdn.intechopen.com/books/images_new/6967.jpg",slug:"prebiotics-and-probiotics-potential-benefits-in-nutrition-and-health",publishedDate:"March 4th 2020",editedByType:"Edited by",bookSignature:"Elena Franco-Robles and Joel Ramírez-Emiliano",hash:"11781d6b1c070edcf204518e632033be",volumeInSeries:8,fullTitle:"Prebiotics and Probiotics - Potential Benefits in Nutrition and Health",editors:[{id:"219102",title:"Dr.",name:"Elena",middleName:null,surname:"Franco-Robles",slug:"elena-franco-robles",fullName:"Elena Franco-Robles",profilePictureURL:"https://mts.intechopen.com/storage/users/219102/images/system/219102.jpg",institutionString:"Universidad de Guanajuato",institution:{name:"Universidad de Guanajuato",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8292",title:"Oral Health by Using Probiotic Products",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",slug:"oral-health-by-using-probiotic-products",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Razzagh Mahmoudi",hash:"327e750e83634800ace02fe62607c21e",volumeInSeries:5,fullTitle:"Oral Health by Using Probiotic Products",editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi",profilePictureURL:"https://mts.intechopen.com/storage/users/245925/images/system/245925.jpg",institutionString:"Qazvin University of Medical Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:289,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/147851",hash:"",query:{},params:{id:"147851"},fullPath:"/profiles/147851",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()