Drought and salinity stress-responsive transcriptomic studies in various plant species.
\r\n\t
",isbn:"978-1-83968-924-6",printIsbn:"978-1-83968-923-9",pdfIsbn:"978-1-83968-925-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",bookSignature:"Dr. Hiran Wimal Amarasekera",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",keywords:"Bone Tumors, Oncology, Childhood Tumors, Cancer, Risk Factors, Modern Management, Benign Lesions, Tumor-Like Conditions, Immunology, Histochemistry, Cell Oncology, Tumor Markers",numberOfDownloads:389,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:1,numberOfTotalCitations:2,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 28th 2020",dateEndSecondStepPublish:"October 26th 2020",dateEndThirdStepPublish:"December 25th 2020",dateEndFourthStepPublish:"March 15th 2021",dateEndFifthStepPublish:"May 14th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Consultant Orthopaedic Surgeon from Sri Lanka currently working in University Hospitals of Coventry and Warwickshire, UK, trained at the National Hospital of Sri Lanka, at the Oldchurch Hospital in Essex UK and The Avenue Hospital Melbourne, Australia and University Hospitals of Coventry and Warwickshire, UK, obtained the FRCS from Royal College of Surgeons of Edinburgh, Scotland.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"67634",title:"Dr.",name:"Hiran",middleName:"Wimal",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera",profilePictureURL:"https://mts.intechopen.com/storage/users/67634/images/system/67634.jpg",biography:"Hiran Amarasekera is a Consultant Orthopaedic Surgeon from Sri Lanka currently working in University Hospitals of Coventry and Warwickshire, the UK as a hip preservation fellow. \r\nHis special interests include young adult hip and knee problems, sports injuries, Hip and knee arthroplasty, and complex arthroscopic procedures. \r\nHe completed the MBBS from Kasturba medical college Manipal, India and did his postgraduate in Trauma and Orthopaedics at the Post-graduate Institute of the Medicine University of Colombo obtained the MS. \r\nHe was initially trained at the National Hospital of Sri Lanka and then completed the further training at the Oldchurch Hospital in Essex UK and The Avenue Hospital Melbourne, Australia and University Hospitals of Coventry and Warwickshire, UK.\r\nHe obtained the FRCS from Royal College of Surgeons of Edinburgh in 2003 and was elected a fellow of Sri Lanka College of surgeons (FCSSL) 2012. \r\nHe has a keen interest in academia and research. Working as a clinical research fellow in Warwick Medical School he obtained the MPhil form University of Warwick and was elected for a research fellowship to University of California Los Angeles (UCLA). \r\nHis research interests include blood flow to the hip, failure of hip resurfacing, designing new hip prosthesis, and surgical approaches to the hip. \r\nHe has over 30 international publications and presentations and several book chapter. \r\nHe also works as a reviewer for international orthopedic journals and has reviewed over 35 papers and is a member of the editorial board of Sri Lanka Journal of Surgery.",institutionString:"University of Warwick Science Park",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Warwick Science Park",institutionURL:null,country:{name:"United Kingdom"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"73224",title:"Management of Early Osteoarthritis",slug:"management-of-early-osteoarthritis",totalDownloads:109,totalCrossrefCites:0,authors:[null]},{id:"71336",title:"Non-Surgical Regional Therapy for Osteoarthritis: An Update and Review of the Literature",slug:"non-surgical-regional-therapy-for-osteoarthritis-an-update-and-review-of-the-literature",totalDownloads:165,totalCrossrefCites:0,authors:[{id:"77195",title:"Dr.",name:"Charles",surname:"Mackworth-Young",slug:"charles-mackworth-young",fullName:"Charles Mackworth-Young"}]},{id:"72715",title:"Simultaneous Bilateral Joint Arthroplasties in Treatment of Osteoarthritis",slug:"simultaneous-bilateral-joint-arthroplasties-in-treatment-of-osteoarthritis",totalDownloads:98,totalCrossrefCites:1,authors:[null]},{id:"75062",title:"Bone Cancer Pain, Mechanism and Treatment",slug:"bone-cancer-pain-mechanism-and-treatment",totalDownloads:17,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6755",title:"Recent Advances in Arthroscopic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5c122c5b88bdc03c130d34ad2ac2d722",slug:"recent-advances-in-arthroscopic-surgery",bookSignature:"Hiran Wimal Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/6755.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"63704",title:"Understanding Plant Responses to Drought and Salt Stresses: Advances and Challenges in “Omics” Approaches",doi:"10.5772/intechopen.81041",slug:"understanding-plant-responses-to-drought-and-salt-stresses-advances-and-challenges-in-omics-approach",body:'\nAbiotic stresses, particularly drought, salt and low and high temperatures adversely affect plant growth and productivity and collectively account for more than 50% yield losses in important crop plants worldwide [1]. The resultant adverse changes in plant growth and productivity are orchestrated at the morphological, molecular and physiological levels [2]. The physiological effects of these stress conditions on plant developmental processes are mostly overlapping. Drought and salt stresses, in particular affect plants physiological and developmental processes by imposing osmotic and oxidative stresses. In addition, salt stress causes ionic stress and Na+ toxicity. These stress conditions, in turn, induce cellular damages resulting in the disruption of ionic and osmotic [3]. In response to these stress conditions, plants generate a set of events comprising perception and transduction of stress signals. These changes ultimately result into expression of stress-related genes that induces alterations in metabolic processes [3]. The abiotic stress responses are generally polygenic in nature and are shared in multiple abiotic stresses [4].
\nBeing a polygenic trait, achieving abiotic stress tolerance in crop plants through conventional breeding is a tedious and time-consuming approach. In this respect, comparative genomics has been utilized to explore candidate genes conferring tolerance to salt, drought and extreme temperature stresses in several plants [5, 6]. In recent years, appreciable work has been conducted to identify abiotic stress-related transcriptomes and proteomes in several plant species. The availability of these information in plants have paved the way for dissecting abiotic stress responses at the molecular level that provided a base for transgenic approaches against abiotic stresses. These approaches were utilized to engineer several crop plants in order to enhance their abiotic stress tolerance [4, 7]. However, taking into consideration the polygenic nature of abiotic stress tolerance, detailed transcriptomic and proteomic studies are required across the plant species to fully dissect the stress-response pathway. Such information will add to the current efforts to find suitable genes for plant transformation against abiotic stresses. The current review summarizes the recent findings on abiotic stress tolerance-related transcriptomic and proteomic studies in plant species.
\nAbiotic stress tolerance is a polygenic trait that involves the expression of many sets of genes working in different pathways [8]. Plants have a well-organized system of sensing the environmental signals and responding to them in the form of gene expression [9]. The process of stress perception is comprised of a set of events including stress signaling, stress transduction and gene expression that result in accumulation of transcription factors, stress-related proteins, enzymes and metabolites (Figure 1). In order to fully understand the plants abiotic stress tolerance, and to modify it with the help of transgenic technologies, understanding the process of stress perception at the molecular level is very important. The application of functional genomics technologies has added new dimensions to our understanding of plant responses to environmental stresses [10]. The progress of abiotic stress tolerance in plants through conventional breeding programs has met with limited success, mainly because of the polygenic nature of abiotic stress responses in plants. However, during the last decade, considerable progress was made toward development of functional genomic tools that allowed the functional dissection of the genetic determinants associated with abiotic stress responses. Major breakthroughs included (1) development of molecular markers for gene mapping and the construction of associated maps, (2) the development of expressed sequence tags (ESTs) libraries, (3) the complete sequencing of Arabidopsis, maize and rice genomes, (4) the development of T-DNA tagged mutagenic populations of Arabidopsis and (5) the development of forward genetics tools such as Targeting Induced Local Lesions in genomes (TILLING) technique to assess functional analysis of genes [11].
\nThe process of plant response to abiotic stresses. The plant abiotic stress response pathway involves stress sensing, stress transduction and altered metabolism. Stress tolerance is achieved through expression of a large number of genes that accumulate stress-related transcription factors, chaperon function proteins, ROS scavenging enzymes, primary and secondary metabolites, osmoprotectants and cellular and vacuolar membrane antiporters.
Exploring genome sequences of Arabidopsis and rice and progress toward development of molecular markers and some new techniques has enabled positional cloning of mutated genes and natural alleles. A large number of molecular markers including single nucleotide polymorphisms (SNPs), simple sequence repeats (SSRs) and insertions/deletions (InDels) are available for Arabidopsis and rice plants. Map-based cloning approach that uses these various molecular markers have been used to identify a large number of abiotic stress-related genes such as the salt overly sensitive (SOS1, SOS2, SOS3, SOS4 and SOS5) genes, and other stress-responsive genes [10]. For generation of mutant lines, ethyl methane sulfonate and irradiations have been extensively used so far. In addition, the recent development of new techniques such as stress-associated genes (SAGs) and TILLING have added new dimensions in identifying mutations in stress-related genes and variant alleles [12]. In the near future, these techniques will be available for a number of crop plants such as Arabidopsis, wheat, maize, rice and brassica [13].
\nMap-based cloning strategy has also been exploited to unravel abiotic stress-related QTLs in plants. As abiotic stress tolerance trait is polygenic in nature, the QTLs studies have received immense importance in understanding stress responses [14]. Recently, using map-based cloning, a large number of drought and salt stress-related QTLs have been reported in crop plants. QTLs were mapped in Oryza sativa for abiotic stress tolerance [15, 16], Brassica napus for salt tolerance [17], maize for salt tolerance [18], wheat for drought tolerance [19] and cotton for salt tolerance [20]. Gene stacking approach through marker-assisted selection was successfully used in an elite rice cultivar for stacked QTLs related to biotic and abiotic stresses (submergence and salinity tolerance) [21, 22]. Two out of 10 pyramid lines showed adequate tolerance to all tested stresses including abiotic stresses. Similar studies using abiotic stress tolerance genes/QTLs need to be extended to other crop plants.
\nThe use of mutant populations of plants, developed through insertional mutagenesis is an important tool to dissect the functions of abiotic stress-related genes [23]. Insertional mutagenesis is accomplished through T-DNA or transposable elements. Such mutant populations are available for Arabidopsis and rice plants. These saturation mutant populations of Arabidopsis and rice cover more than 90% of their genes that could be employed for characterization of abiotic stress tolerance genes [24]. Development of high throughput genomic platforms such as serial analysis of gene expression (SAGE), HRM (differential display, high resolution melt) analysis, TILLING, microarray, etc. have made rapid analysis of these mutation events. A large number of abiotic stress-related genes have been identified using Arabidopsis and rice knockout populations. In a 250,000 independent T-DNA insertional Arabidopsis population, more than 200 mutants were found with altered stress responses. Some of these include mutations in genes encoding transcription factors, ABA biosynthetic enzymes and sodium transporter high affinity K+ transporter (HKT1) [25]. Recent progress on the generation of T-DNA insertion lines have been reviewed in several articles [26, 27].
\nAlong with T-DNA and transposable elements based mutant populations; the need for alternative means of studying gene function is growing day by day. This is mainly because of the low number of Arabidopsis and rice tagged genes that code for clear phenotypes [28]. Recently, traps and activation tagging have been focused as the alternative means of gene tagging [29, 30]. Trap and activation techniques have been widely used for generation of tagged populations of Arabidopsis and rice.
\nProgress in transcriptomic analysis tools has revealed massive genomic sequence information in many plants. Identification of the partial or complete cDNAs sequences provide a holistic picture of the transcriptomes. The available ESTs are organized in three main databases, that is, NCBI, TIGR and Sputnik, which organize these ESTs with fully characterized gene sequences. Abiotic stress-related ESTs have contributed a great deal in exploring gene expression profiles of stress tolerance-related traits in in Arabidopsis and rice [31].
\nIn recent years, different functional and molecular tools were used to identify abiotic stress-responsive genes in plants. These included genome wide physical and genetic mapping of chromosomes, isolation and sequencing of genes, ESTs, proteomics techniques and cDNA microarray analysis [32]. Particularly, the cDNA and microarrays were widely used to study gene expression profiles in Arabidopsis, potato, rice, sorghum, maize and wheat under abiotic stresses. The identified genes/proteins include late embryogenesis abundance (LEA) proteins, compatible osmolytes, ROS scavengers and proteins involved in signal transduction.
\nThe genomic approaches related to abiotic stress tolerance in plants are summarized (Table 1). In one study, Oono et al. [33] used a full-length cDNA microarray containing 7000 Arabidopsis full-length cDNAs and identified 152 rehydration-inducible genes. Among the 152 rehydration-inducible genes, 58 genes showed proline- and hypoosmolarity-inducible gene expression. Similar study was conducted in Arabidopsis under drought stress [34]. Transcriptomic analysis of M. sativa and M. esculenta revealed expression of several genes responsive to salt and drought, respectively [35, 36]. In rice plants, the pioneering work came from Rabbani et al. [37]. They used cDNA and gel microarray analysis to identify cold, drought, salinity and ABA inducible genes. They identified 73 stress inducible genes, among which 15 genes were highly responsive to all four treatments. Lan et al. [38] determined and compared the drought and wounding stress-related gene expression profiles. Drought stress regulated many of the pollination/fertilization-related genes. Similarly, the drought stress-related transcriptomic analysis was conducted in some other studies in rice [39]. Using a cDNA microarray, 486 salt responsive ESTs were determined in shoots of rice plants under salt stress [40]. Moreover, Hmida-Sayari et al. [41] used the cDNA amplified fragment length polymorphism (AFLP) technique to investigate the expression profile of potato under salt stress. The expression profile showed 5000 bands, of which 154 were up-regulated, while 120 were down-regulated. Most of these ESTs were found to have a role in biotic and abiotic stresses. Sequence comparison of some of these fragments revealed close homologies with proteins, involved in cell wall structure, stress proteins such as glyceraldehyde dehydrogenase and proteins related to hypersensitive response to pathogens. Approximately 20,000 ESTs were generated from a cDNA library constructed from potato leaves and roots, which were subjected to salt, heat, cold and drought stresses [42, 43]. Some of these ESTs were found to have sequence similarities with abiotic stress-responsive genes in other plant species. Similar transcriptomic studies were conducted in some other plants such as sorghum [44], wheat [45], and maize [46] subjected to drought and salt stresses.
\nSpecies | \nStress type | \nFindings | \nReference | \n
---|---|---|---|
Arabidopsis thaliana | \nDrought | \nTotal of 152 rehydration-inducible genes were identified. | \nOono et al. [33] | \n
A. thaliana | \nDrought | \nTranslational regulation of 2000 genes was evaluated | \nKawaguchi et al. [34] | \n
Medicago sativa | \nSalt | \nExpression of large number of genes including 86 transcription factors was altered significantly | \nPostnikova et al. [35] | \n
Manihot esculenta | \nDrought | \nUp-regulation of 1300 drought-responsive genes | \nUtsumi et al. [36] | \n
Oryza sativa | \nSalt, drought | \n73 stress inducible genes were identified, among which 15 genes were highly responsive to salt, drought and cold stresses | \nRabbani et al. [37] | \n
Oryza sativa | \nDrought | \n53.8% and 21% of the pollination/fertilization-related genes were regulated by dehydration and wounding, respectively | \nLan et al. [38] | \n
Oryza sativa | \nDrought | \n— | \n— | \n
Oryza sativa | \nDrought | \n589 genes were found responsive to drought | \nGorantla et al. [14] | \n
Oryza sativa | \nDrought | \nAbout 55% of genes differentially expressed in roots of rice under drought stress | \nMoumeni et al. [39] | \n
Oryza sativa | \nSalt | \n486 salt responsive ESTs were determined in shoots | \nChao et al. [40] | \n
Oryza sativa | \nDrought, salt | \nDifferential expression of large number of genes encoding transcription factors in stress sensitive and tolerant genotypes | \nShankar et al. [47] | \n
Solanum tuberosum | \nSalt | \nSix ADP-ribosylation factors like proteins were identified. | \nKim et al. [110] | \n
Solanum tuberosum | \nSalt | \nExpression profile showed 5000 ESTs, of which 154 were up-regulated, and 120 were down-regulated | \nHmida-Sayari et al. [41] | \n
Solanum tuberosum | \nSalt, heat, drought | \n1476 stress-related ESTs were found | \nRensink et al. [42] | \n
Solanum tuberosum | \nSalt, heat | \n3314 clones were identified as up- or down regulated | \nRensink et al. [43] | \n
Sorghum bicolor | \nDrought | \n333 genes responded to ABA, NaCl or osmotic stress | \n— | \n
S. bicolor | \nDrought | \n775 genes were found differentially expressed in response to drought stress | \nPratt et al. [44] | \n
S. bicolor | \nDrought | \nDifferential expression of genes involved in photosynthesis, carbon fixation, antioxidants in sensitive and tolerant genotypes | \nFracasso et al. [49] | \n
Triticum aestivum | \nSalt | \nGene expression of 1811 genes was changed in response to salt stress | \n— | \n
Triticum aestivum | \nDrought | \n3831 transcripts showed changes in expression in the drought-tolerant genotype | \nLi et al. [45] | \n
Triticum aestivum | \nDrought | \nLarge number of genes including 309 differentially expressed genes, responsive to drought stress were up-regulated | \nMa et al. [48] | \n
Zea mays | \nWater stress | \n79 genes in placenta and 56 genes in endosperm, were up- and down regulated, simultaneously | \n— | \n
Zea mays | \nDrought | \nDifferential expression levels of cell-wall related and transporter genes were found to contribute to drought tolerance | \nZheng et al. [46] | \n
Zea mays | \nDrought | \nA total of 619 genes and 126 transcripts were identified whose expression was altered by drought stress | \nSong et al. [50] | \n
Drought and salinity stress-responsive transcriptomic studies in various plant species.
Recently, transcriptomic analysis through RNA sequencing has been proved to be a powerful tool for analysis of drought and salt stress-responsive genes. RNA-Seq uses next generation sequencing to reveal quantities of RNA in a given sample in real time. Examples of transcriptomic analysis through RNA-Seq have been reported in several crop plants subjected to drought and salt stresses. Shankar et al. [47] studied comparative transcriptomic analysis in drought sensitive and tolerant rice cultivars. A total of 801 and 507 transcripts were found differentially expressed in drought-tolerant (N22) and salt-tolerant (Pokkali) rice cultivars, respectively, under stress conditions. Overall, the study identified common and cultivar-specific stress-responsive transcripts. Ma et al. [48] conducted RNA-Seq analysis in wheat to study the drought-responsive transcriptomic changes during reproductive stages under field conditions. A total of 115,656 genes were detected and among these, 309 genes were found differentially expressed under drought at various developmental stages. Fracasso et al. [49] conducted transcriptomic analysis to study responses of drought sensitive and tolerant sorghum genotypes subjected to drought stress. Several genes such as those involved in photosynthesis, carbon fixation and antioxidants were found differentially expressed in the two genotypes under drought stress. Correlation in maize flowering time and drought stress was studied through RNA-seq and bioinformatics tools [50]. A total of 619 genes were identified, among which the expression of 126 transcripts was altered by drought stress. Among drought-responsive genes, the important transcripts included zinc finger and NAC domains. The study also identified 20 genes such as transcription factor HY5, PRR37 and CONSTANS involved in flowering times.
\nThe above-mentioned transcriptomic studies revealed that RNA-Seq analysis could be used as a very powerful tool not only to study stress-specific gene expression analysis but also to explore differences between stress sensitive and tolerant genotypes of crop plants.
\nThe study and characterization of the complete set of proteins in a cell, organ or organism at a given time is termed as proteomics [51]. Along transcriptomic studies, proteome analysis has contributed much to our understanding of the expression of stress-related genes in plants under abiotic stress. Proteomic studies on plant responses to salinity and drought stresses are being explored at large scale. Proteomic approaches have been applied at whole plant, organ and at subcellular levels to unravel the stress-response mechanism in plants. The prominent proteomic studies in plant species facing drought and salinity stresses are summarized (Table 2). Proteomic studies on sugar beet under drought stress identified that heat-shock proteins, nucleoside diphosphate kinase, RuBisCO, Cu-Zn superoxide dismutase (SOD) and 2-Cys-peroxiredoxin were highly induced [52]. Kim et al. [53] conducted proteomic analysis of maize subjected to drought stress and identified proteins involved in metabolism, photosynthesis and stress responses. Proteomic analysis of Arabidopsis under drought stress revealed that branched-chain amino acid amino transferase 3 protein and zinc finger transcription factor oxidative stress 2 proteins had a significant role in drought stress responses in the plants that over-expressed ethylene response factor AtERF019 [54].
\nSpecies | \nStress | \nProteomic changes | \nPlant organ/organelle | \nReference | \n
---|---|---|---|---|
Beta Vulgaris | \nDrought | \n79 proteins showed significant changes under drought. Important were RuBisCO and 11 others involved in redox regulation, oxidative stress, signal transduction and chaperone activities | \nLeaf | \nHajheidari et al. [52] | \n
Oryza sativa | \nDrought | \nOut of 12 proteins, 10 were up-regulated and 2 were down-regulated. These were mainly grouped as defense, energy, metabolism, cell structure and signal transduction proteins | \nLeaf sheath | \nAli and Komatsu [116] | \n
Triticum durum | \nDrought | \nOut of 36 significantly changed proteins, 12 were increased in abundance while 24 were decreased. RuBisCO large subunit, triose phosphate isomerase, thiol-specific antioxidant protein, phosphoglycerate kinase were increased | \nLeaf | \nCaruso et al. [58] | \n
Helianthus annuus | \nDrought | \nSix proteins related to stress and carbon metabolism were found significantly up-regulated in leaves of drought stressed sunflower leaves. | \nLeaf | \n— | \n
Glycine max | \nDrought | \n32 proteins changed in root. HSP 70, actin B and methionine synthase were differentially changed in the 3 organs | \nRoot Hypocotyl Leaf | \nMohammadi et al. [59] | \n
Brassica napus | \nDrought | \n35 proteins in sensitive and 32 in tolerant line were differentially expressed. Six proteins in F1 hybrid were common to sensitive and tolerant lines | \nRoot | \nMohammadi et al. [60] | \n
Oryza sativa | \nDrought | \nOut of 900 identified proteins, 38% were changed in abundance compared to non-treated. Pathogenesis-related, chitinases and redox proteins were increased while tubulins and transport-related proteins were decreased. | \nRoot | \nMirzaei et al. [61] | \n
Vitis vinifera | \nDrought | \nEarly responding proteins included photosynthesis, glycolysis, translation, antioxidant defense, while late-responding proteins included transport, photorespiration, antioxidants, amino acid and carbohydrate metabolism | \nShoot | \nCramer et al. [117] | \n
Zea mays | \nDrought | \nIdentified proteins were involved metabolism, stress response, photosynthesis, and protein modification | \nLeaves | \nKim et al. [15] | \n
Glycine max | \nDrought | \n643 proteins were significantly changed in soybean seedlings recovering from drought stress. Majority of these proteins belonged to stress, hormone metabolism, glycolysis and redox categories. | \nRoot including hypocotyl | \nKhan and Komatsu [64] | \n
Zea mays | \nDrought | \nAbundance of 68 proteins was changed. Out of these, 46 proteins were increased while 22 were decreased. Asparagine synthetase, alpha-galactosidase, fatty acid desaturase and plastid proteins were among the highly changed proteins | \nLeaf | \nZhao et al. [118] | \n
Brassica napus | \nDrought | \nAbundance of 138 proteins was differentially changed. Drought-responsive differentially abundant proteins were involved in signal transduction, photosynthesis and glutathione-ascorbate metabolism. | \nLeaf | \nWang et al. [67] | \n
Solanum lycopersicum | \nDrought | \nA total of 31 proteins were differentially changed in abundance under drought and 54 were changed during recovery phase. ABA accumulation pointed activation of chloroplast to nucleus signaling pathway | \nLeaf | \nTamburino et al. [65] | \n
Phaseolus vulgaris | \nDrought | \nAbundance of HSP-70 protein was highly changed. Protein synthesis, proteolysis and folding-related proteins increased in abundance | \nStem | \nZadražnik et al. [66] | \n
Brassica napus | \nDrought | \nAmong the 79 significant identified proteins, nitrogen assimilation, and ATP and redox Homeostasis were up-regulated in water savers cultivars; while photosynthesis, carbohydrate, RNA processing and stress related proteins were increased in water spender cultivars during water stress | \nLeaf | \nUrban et al. [68] | \n
Glycine max | \nSalt | \nUnder 100 mM salt stress, seven proteins were found to be up- or down-regulated. LEA, b-conglycinin, elicitor peptide three precursor, and basic/helix–loop–helix protein were up-regulated. While protease inhibitor, lectin, and stem 31-kDa glycoprotein precursor were down-regulated | \nRoot Hypocotyl | \nAghaei et al. [71] | \n
Hordeum vulgare | \nSalt | \nROS scavenging proteins were up-regulated in the tolerant genotype, while iron uptake proteins were up-regulated in the sensitive one | \nRoot | \nWitzel et al. [73] | \n
Nicotiana tabaccum | \nSalt | \nTotal 18 proteins were differentially expressed under salt stress. Photosynthesis related proteins were up-regulated while defense-related proteins were down-regulated | \nLeaves | \n— | \n
Solanum lycopersicum | \nSalt | \nTotal 23 salt stress-responsive proteins belonging to six functional groups were identified | \nRoot, Hypocotyl | \nChen et al. [119] | \n
Glycine max | \nSalt | \nMetabolism-related proteins were found up- and down-regulated in leaves, hypocotyls and roots under salt stress | \nRoot, Hypocotyl | \nSobhanian et al. [75] | \n
Phoenix dactylifera | \nSalt, drought | \nThe levels of ATP synthase alpha and beta subunits, RuBisCO, photosynthesis and ROS-related proteins were significantly changed under both stresses | \nLeaves | \nEl Rabey et al. [120] | \n
Triticum aestivum | \nSalt, Drought | \nOf the total 124 stress responsive proteins, 26.61% were induced by drought, included chaperonin, cys-peroxiredoxin, ethylene response, and elongation factor; while 23.38% were induced by salinity stress, included bowman-birk type protease inhibitor, calcineurin B-like protein, cyclophilin and RNA binding proteins | \nSeed | \nKamal et al. [121] | \n
Oryza sativa | \nSalt | \nIn the two different cultivars, 104 and 102 proteins were significantly altered. Actin-7, tubulin alpha, V-type proton ATPase, SOD and pyruvate decarboxylase were among the observed salt-induced proteins | \nRoot | \nDamaris et al. [80] | \n
Avena sativa | \nSalt | \nFrom 30 differential protein spots, protein related to calvin cycle, adenosine-triphosphate regulation-related and 50S ribosomal proteins decreased while antioxidant enzymes abundance were increased. | \nLeaf | \nBai et al. [78] | \n
Triticum aestivum | \nSalt | \nOut of total of 121 proteins, ubiquitination-related proteins, transcription factors, pathogen-related proteins and anti-oxidant enzymes were increased for homeostasis | \nRoot | \nJiang et al. [122] | \n
Drought and salinity stress-related proteomic studies in various plant species.
In addition to the above-mentioned studies of proteomic analysis on the whole plant level, some notable studies have also focused the impact of drought and salinity stresses on organ-specific proteomic constituents. The metabolism-related proteins such as the isoflavone reductase, were observed as down-regulated which possibly played an important role in plant defense against various stresses [55]. Leaf-specific protein analysis in other plants identified drought-responsive proteins. These studies were conducted in rice [56], sunflower [57], wheat [58] and soybean [59, 60]. Root-specific proteome analysis was conducted in a number of crops under various drought stress, which identified a wide range of proteins including those involved in pathogenesis, transport and oxidation-reduction reactions. Prominent studies were conducted incanola (Brassica napus) [60], soybean [59] and rice [61]. Similar studies were conducted in rice [62] and wheat [63] subjected to salt stress, which identified changes more prominently in metabolism-related gene expression. Khan and Komatsu [64] performed proteomic analysis of soybean root including hypocotyl during recovery from drought stress and concluded that peroxidase and aldehyde dehydrogenase scavenge toxic reactive oxygen species and reduce the load of harmful aldehydes for helping the plant to recover. In tomato facing drought stress, chloroplast to nucleus signaling pathway in connection to abscisic acid (ABA) signaling network was activated [65]. In common bean stem, heat-shock protein 70 was highly increased in abundance suggesting its role in restoration of normal conformations of proteins for cellular homeostasis [66]. Proteomic analysis of maize leaves under drought stress revealed that ABA regulates the signaling pathways pertaining to oxidative phosphorylation, photosynthesis and glutathione metabolism. Phosphorylation of β carbonic anhydrase 1 imparted adaptation to drought stress in Brassica napus [67]. Proteomic analysis of rapeseeds under drought stress indicated that nitrogen assimilation, oxidative phosphorylation, redox homeostasis, energy, photosynthesis and stress-related proteins were raised in abundance in different cultivars [68].
\nSalinization of arable lands may result in up to 50% land loss by the year 2050 [69]. Proteomic techniques have been employed for analyzing salt stress responses in plants. In salt-tolerant and -sensitive potato cultivars, photosynthesis-related proteins were down-regulated; whereas osmotin-like proteins, heat-shock proteins and protein inhibitors were up-regulated [70, 71]. In soybean, β-conglycinin, elicitor peptide three precursor, late embryogenesis-abundant protein, and basic/helix-loop-helix protein, were up-regulated, suggesting soybean adaptation to salt stress; whereas protease inhibitor, lectin and stem, 31-kDa glycoprotein precursor were down-regulated, suggesting the weakening of plant defense system under the salinity stress [72]. Differentiation of salt stress-related proteins was evaluated in tolerant and sensitive barley genotypes [73]. Another study conducted on barley found expression of germin-like and pathogenesis-related proteins important for salt stress responses [74]. ATP production-related glyceraldehyde-3-phosphate was down-regulated in soybean under salt stress [75]. Cupin domain protein 3.1 was revealed in enhancing seed germination in rice under salt stress [76]. In barley, salt stress increased the abundance of proteins related to anti-oxidation, signal transduction, protein biosynthesis, ATP generation and photosynthesis [77]. Proteomic analysis of oat leaves under salt stress indicated decrease in abundance of calvin cycle-related and adenosine-triphosphate regulation-related proteins; whereas antioxidant enzymes level was increased [78]. Alterations in proteomic profiles were recorded in wheat cultivars under salt stress [63]. Kamal et al. [79] reported a decrease in ATP synthase and V-type proton ATPase subunits; whereas cytochrome b6-f, germin-like-protein, glutamine synthetase, fructose-bisphosphatealdolase, S-adenosylmethionine synthase and carbonic anhydrase were gradually increased. Damaris et al. [80] reported induction of actin-7, tubulin alpha, V-type proton ATPase, SOD and pyruvate decarboxylase in salt-stressed wheat cultivars. Proteomic analysis of wheat roots indicated differential expression of a number of proteins such as transcription factors, proteins related to ubiquitination pathogenesis and antioxidant enzymes under salt stress [81]. All the above discussed studies show the importance of proteomics in unraveling the vital information about the plants responses to abiotic stresses such as drought and salinity stress responses.
\nMetabolomics is one of the most important “Omics” technologies that can be applied to different organisms with little or no modification. The term metabolomics was introduced by Nicholson et al. [82], and since then it has been utilized extensively in agricultural research [83, 84]. The metabolite profiling provides valuable information on the stress tolerance mechanisms and may be applied to bioengineer plants with improved stress tolerance. Metabolomics studies reveal information about compounds involved in acclimation to the stress, those which are by-products as a result of disruption of normal homeostasis and those involved in signal transduction in response to the stresses [85]. Due to involvement of metabolites in important life processes, the field of metabolic profiling could contribute significantly to the study of stress biology in plants. Both primary and secondary metabolites have been shown to play important roles in responses of plants to drought and salinity stresses. Primary metabolites such as sugars, amino acids and intermediates of Krebs cycle were found with important roles in photosynthetic dysfunction and osmotic readjustment. While, the secondary metabolites such as antioxidant scavengers, coenzymes and regulatory molecules responded to specific stress conditions. Both qualitative and quantitative studies of metabolites in response to abiotic stress are helpful in not only determining the phenotypic response of the plant and screening for stress tolerant lines but also reveal the genetic and biochemical mechanisms underlying the stress condition [86].
\nDrought and salt stresses affect the process of photosynthesis, affecting CO2 diffusion leading to photorespiration and hydrogen peroxide production, causing cell damage [87]. Most recently, Rabara et al. [88] analyzed the metabolomics profile of tobacco and soybean roots and leaves facing dehydration stress. The study revealed highest tissue specific accumulation of 4-hydroxy-2-oxoglutaric acid in tobacco roots and coumestrol in soybean roots; indicating 4-hydroxy-2-oxoglutaric acid and coumestrol can be used as markers for drought stress. Metabolomic analysis of intense drought-stressed grapevine leaves was conducted to reveal induction of several metabolites [89]. Metabolomic profiling of Arabidopsis exposed to drought and heat stresses in combination revealed accumulation of sucrose, maltose and glucose [90]. In tolerant and sensitive thyme facing water stress, metabolomics analysis revealed differential changes in carbohydrates, amino acids, fatty acids and organic acids profiles [91]. Metabolites related to the mechanisms of osmotic adjustment, ROS scavenging, cellular components protection and membrane lipid showed significant changes. Metabolomic and proteomic analysis of xylem sap in maize under drought stress revealed a higher abundance of cationic peroxidases, which with the increase in phenylpropanoids may lead to a reduction in lignin biosynthesis in the xylem vessels and could induce cell wall stiffening [92]. Catola et al. [93] reported that trans-2-hexenal showed a significant increase in water-stressed and recovered leaves respect to the well-watered ones in pomegranate plants. This indicated a possible role of the oxylipin pathway in the response to water stress. Metabolites changes in rice grains during water-stressed and recovery indicated involvement in stress signaling pathways such as gamma-amino butyric acid (GABA) biosynthesis, sucrose metabolism and antioxidant defense [94]. Zhang et al. [95] reported that myo-inositol and proline had striking regulatory profiles in Medicago indicating involvement in drought tolerance. Metabolite profiling of hybrid poplar genotypes revealed that amino acids, the antioxidant phenolic compounds catechin and kaempferol, as well as the osmolytes raffinose and galactinol exhibited increased abundance under drought stress, whereas metabolites involved in photorespiration, redox regulation and carbon fixation showed decreased abundance under drought stress [96]. Concentrations of flavonoids, glycosides of kaempferol, quercetin and cyanidin were found in Arabidopsis during drought stress [97].
\nSalinity stress has been investigated at metabolite level to reveal the response mechanism. In salinity-stressed barley plants, cell division and root elongation was found associated with accumulation of amino acids, sugars and organic acids [98]. Chen and Hoehenwarter [99] reported that sucrose, fructose, glycolysis intermediates and amino acids levels were altered in Arabidopsis under salinity stress. Further, metabolite changes were found positively correlated with growth potential and salt tolerance in rice genotypes for allantoin and glutamine [100]. Meulebroek et al. [101] carried out metabolomic profiling of tomato carotenoid content under salt stress. The results revealed that metabolites had several roles at the fruit level in salinity response; however, 46 metabolites had ascribed a noticeable role in carotenoid metabolism as well. In barley, concentrations of most amino acids such as 4-hydroxy-proline, arginine, citrulline, glutamine, phenylalanine, proline and amines increased significantly in roots facing salinity stress [102]. Behr et al. [103] carried out metabolomics analysis in Suaeda maritima exposed to salinity stress. Results revealed increase in metabolites associated with osmotic stress and photorespiration; furthermore, alanine fermentation was enhanced. Oxidative stress produced by salinity in roots of Salicornia herbacea induced defense metabolites such as shikimic acid, vitamin K1 and indole-3-carboxylic acid that are generated as a result of defense mechanisms, to protect against ROS [104]. Metabolomic profiling studies revealed that sugars, sugar alcohols, proline, TCA cycle intermediates, histidine, glutathione and GABA were accumulated in Arabidopsis thaliana under salt stress [105, 106]. Production of signaling molecules such as serotonin and gentisic acid increased in salt-tolerant varieties indicating their importance as biomarker. Ferulic acid and vanillic acid were also produced in high levels. In the salt sensitive varieties, elevated levels of 4-hydroxycinnamic acid and 4-hydroxybenzoic acid were found in the leaves [19]. Epidermal bladder cells help in salt dumping, improved potassium retention in leaf mesophyll and space provision for storage of metabolites [107]. The above discussion revealed that metabolomics is very important tool in investigating abiotic stress-response mechanisms such as those observed in drought and salt stresses.
\nRNA-Seq and genome sequencing and proteomic techniques/technologies (2D, iTRAQ, MALDI, gel-free, label-free, LC-MS/MS-based technologies) have widened the dimensions of analyzing plant responses to abiotic stresses such as drought and salinity. Recent advances in the omics technologies have contributed considerably to our understanding of the plant abiotic stress-responsive mechanisms. In addition to advancing research in other related areas, emphasis has been on the proteomic analysis specific to whole plants, individual organs, tissues and cells [55]. These technologies are helping to characterize individual proteins specific to different organs, tissues and cells subjected to various abiotic stresses. Advanced proteomic information, coupled with other omics approaches would further strengthen the efforts to develop breeding programs based on identification of novel proteins/genes and their integration through marker-assisted selection. However, further efforts are required to focus on individual target points associated with “Omics” technologies and their application to dissect stress-responsive mechanisms. Research needs to be focused on several fronts such as more studies that target post translational modifications (PTMs), cell type-specific proteome analysis, advanced mapping populations in crop plants and comparative proteomic studies. PTMs of proteins may change their stability, subcellular localization, interactions with other proteins and ultimately proteins functioning. A number of studies revealed the important role of PTMs in protein functioning. Studies have been conducted to analyses protein phosphorylation in maize [108, 109], phosphorylation and ubiquitination in Arabidopsis [110, 111] and glycosylation in soybean [112] under various abiotic stresses. In addition to improved methodologies, identification of more PTMs would unravel functional characterization of important proteins involved in stress-responsive mechanisms and plant adaptation to various abiotic stresses.
\nIndividual proteins characterization and quantification is essential to fully explore the stress-responsive mechanisms in organs, tissues and cells. However, problems may arise due to the conventional methodologies such as protein detection on 2-DE gels [55]. Improved extraction methodologies may overcome such problems. Poor proteome coverage may be the result while detecting leaf proteome with abundance of RuBisCO that constitutes almost half of the total leaf proteins. However, proteome coverage may be improved with the recently adopted fractionation of crude protein extract. Similarly, quantification of stress responsive low abundance target proteins may be improved through selected reaction monitoring (SRM) technique [113, 114]. Such improved techniques would also help unravel commonly expressed proteins in different organs under multiple abiotic stresses. These advanced techniques coupled with improved bioinformatics approaches may help shed further light on plant responses to abiotic stresses. Recently, transgenic plants conferring abiotic stress tolerance have entered vigorous evaluations under greenhouse and filed conditions. Comparative proteomic studies of these transgenic plants may be helpful to characterize key stress-responsive factors among large number of commonly expressed proteins. Identification of major stress-responsive proteins coupled with advances in transcriptomics, metabolomics and bioinformatics tools would help unravel the complex interactions among stress-responsive signaling pathways. Moreover, omics approaches such as proteomics can be extremely helpful in analyzing post-stress recovery responses in the plants, revealing the key proteins/genes involved in the recovery stage [115].
\nDifferent omics tools have been exploited to unravel plant responses to drought and salt stresses. However, further studies should be conducted to integrate multiple omics approaches including phenomics coupled with RNA-Seq and state-of-the-art proteomic technologies. These future developments will provide further impetus to the ongoing efforts of developing drought- and salt-tolerant plants with comparatively improved growth and yield potential under realistic field conditions.
\nChildren’s experiences with digital technologies actually involve an increasing quote of young users (also defined as “digital natives”) who are born and are developing in environments in which new digital technologies are widely available [1]. This currently occurs from early infancy, due to the rapid diffusion of touchscreen devices among younger children (or “touch generation”; [2, 3]). Children aged 2–4 years actually are able to use touchscreen devices, such as tablets or smartphones, to play or watch movies, and often parents themselves introduce kids to use them in boring social situations (i.e., in the pediatrician’s waiting rooms or in the restaurant; [4]). On the basis of the most recent report on worldwide diffusion of the Internet among young people [1], one in three users is estimated to be a child or teenager (under 18). Generally children use digital technologies in their home, particularly younger children, with intense and prolonged activities especially on weekends. Children often use their digital technologies at school at least a day a week (almost 30% among 9–11 years), although it is prohibited in many countries by school regulations. The access to digital technologies is expanding among young generations, even if many inequalities of resources remain between developed or developing countries [1]: for example, it has been estimated that in Africa (Ghana) children mainly use 0.9 mobile devices to connect to the Internet, against 2.9 in South America (Chile) or 2.6 in Europe (Italy). Similarly, only 12% of children in Africa (Ghana), 21% in the Philippines, and 26% in Albania can connect to the Internet at school, against 63–54% of children in other South America or European countries, such as Argentina, Uruguay, or Bulgaria. This reality raises several questions on how to guarantee the young generations the opportunities offered by new technologies (for studying, enhancing skills, socializing, etc.), protecting them from potential dangers of digitalized world (i.e., contacts with unknown people, exposure to violent/pornographic contents, etc.). In fact, although children grow in a reality permeated by new media, they are not automatically “digitally literate,” that is, able to juggle the digital world and to reflect on it. Studies show that not only young users, but also teenager users “have difficulties in finding, managing and evaluating information, managing their privacy online and ensuring their online personal safety […]and may thus vary in their digital skills” ([5], p. 186).
Together with their children, parents themselves are largely exposed to media experiences in many fields of their life. Digital technologies have quickly changed the way in which family members communicate, enjoy themselves, acquire information, and solve daily problems. Parents are also the first mediators of children’s experiences with digital tools: they have the task of integrating their use into ordinary routines (play, entertainment, learning, mealtime, etc.), promoting constructive and safety uses. Digital parenting describes parental efforts and practices for comprehending, supporting, and regulating children’s activities in digital environments. A growing research on digital parenting identified the main approaches that can allow parents to “mediate” children’s activities with digital technologies [6, 7, 8]. According to Vygotsky’s theory of child development and his concept of proximal development zone [9], parental mediation can be considered a key aspect in facilitating the interactions between children and new media. The proximal development zone is an intermediate area between what the child is able to do alone and what he/she can learn thanks to the guidance of others. In the course of a shared activity, the support and the help are adapted so that the child can improve his/her skills and gradually assume responsibility for acting alone. However, the activities that take place in the virtual environments of the web, unlike the experiences in the real environments, can reverse the relationship between the competent person (the adult) and the learner (the child). Today’s children have an early, almost “intuitive” approach to digital technologies, so in some cases they can become active agents towards their parents. When children’s knowledge and digital competence (e.g., functions/benefits of a new app) overcome that of parents, many shared experiences can be child-initiated, and children can also perform some forms of support and digital teaching to parents. This reverse socialization [10] seems to be a peculiar feature of digital experiences, and it poses new challenges to parental role. Reverse socialization describes all situations where children possess a better understanding or more advanced skills than adults. This gap between generations is more marked in low-income families or low-educated parents who possess limited resources and access to digital technologies [11]. However, over the past years, many parents have developed adequate knowledge and technical skills to share digital experiences with their children [3, 12]; they appreciate benefits of the web and strive to comprehend its complexity.
A common difficulty that parents actually encounter derives from the diffusion of “portable” devices (smartphone and tablet) that children start to use in early infancy (under the age of 2; [13]). Later, due to unlimited Wi-Fi access and enhanced connectivity, children insert activities with mobile devices into many daily routines, for example, during mealtime, school homework, conversations with parents, or before sleeping [14]. Particularly, parents worry about the “pervasiveness” (or ubiquitous) of mobile technologies in daily activities [15], and they fear that an effective guidance and control over them may decrease. Studies with large samples of young digital users (9–16 years old) in many European countries have compared parents’ opinions before (2010 Eu Kids Online Survey; [12]) and after (Net Children Go Mobile; [3]) the diffusion of mobile devices. After 4 years, many parents declare that they know less about their children’s online activities and have more difficulties to closely monitor children’s usage (e.g., time spent connected). Interestingly, parents now are more aware of the risks of using the web [16], and they prefer to talk to children about Internet security (e.g., do not leave personal data online or block unknown people) rather than limiting or prohibiting Internet use [17]. Parents can encourage or limit the use of digital technologies to children according to the opportunities or danger they attribute to them. Since parents themselves are regular, sometimes enthusiastic, users of digital media, their digital skills and confidence and daily frequency of usage (or overuse; [18]), together with beliefs about digital world [3], are all crucial factors that researchers have begun to explore systematically.
Each parent has beliefs, that is, convictions and personal opinions, regarding the usage of media by children, such as their usefulness or damage, or the age at which children should use them. Beliefs are the cognitive dimension of attitudes, guiding individual’s behavior and choices. When parents raise their children, they act and make choices for them following their own perceptions of what is desirable or what they positively value for their child’s development [19]. Although parents are not always aware of their beliefs, these influence parent-child interaction and the child’s opportunity to learn, do experiences [20], and develop digital skills [5]. Parental beliefs are important aspects of parenting and family microsystem, together with factors such as parent’s history and education, socioeconomic status, and culture.
Parents possess personal ideas about modern technologies: they can be considered a source of entertainment/relaxation or a learning tool [21, 22]; conversely, for other people, PC, tablet, and smartphone can be harmful to children’s health (such as sleep problems, obesity, etc.; [23]), for social risks (such as contacts with unfamiliar or social isolation; [24]), or because they interfere with parent-child activities and time spent together [25].
A qualitative study [26] shows that parents have more pessimistic (70.55%) than optimistic opinions (29.45%) on the Internet use by primary school children: for example, parents worry about the excessive time spent online, the interference in face-to-face conversation, or that children lack of skills and maturity in dealing with some contents suitable for older children (such as violence, sex, or drug-related contents). Other worries concern negative consequences on learning and academic performance (i.e., reduced attention span), physical development (i.e., prolonged sedentary activities), social skills and peer interactions (i.e., fewer opportunities to “learn to play together”), and child’s well-being (i.e., using smartphone to overcome boredom). Interestingly, many parents fear losing control over their children’s online behaviors. Conversely, the positive beliefs concern positive effects of digital technologies on child’s entertainment, communication and learning, access to information, and enhancing of child’s skills (such as brain functioning, self-regulation, autonomy, critical attitude, etc.).
Other researchers [27] explored parent’s perceptions about positive (i.e., they are shared by generations) or negative impact (i.e., they expose family privacy to risks) of social media—such as Facebook or WhatsApp—on family open communication. Teenagers are intensely involved in social media use, but adults also are regular users. On the one hand, parents use social networks to communicate; on the other hand, they fear that they negatively impact family relationships, for example, through the phubbing phenomenon (i.e., ignoring someone or interrupting a conversation or mealtime to check the smartphone). Authors found that parents’ perceptions are a meditational variable between the collective family efficacy (i.e., the perceived efficacy to manage family relationships, to support each other, etc.) and the openness of communication: “it is not only the actual impact of social media on family systems that matters but also parents’ perceptions about it and how much they feel able to manage their children’s social media use without damaging their family relationships” (p. 1).
Parental beliefs may influence the degree to which parents give opportunities or restrict their children’s media use, but beliefs should not be considered the “cause” of behavior towards children. Researches show that parents’ positive beliefs (e.g., “the tablet improves reading skills”) are associated with favorable attitudes, co-using approach, communication, or suggestions to enhance their child’s appropriate use of the Internet [28]. For example, when parents think that smartphones are useful tools (i.e., they promote child’s intelligence and knowledge), they more often allow their preschool children to use them (i.e., at the restaurant), and children become regular users, spending more time (at least 2 h a day) with smartphone activities [29]. Conversely, parents who attribute negative effects to digital media tend to limit activities to children (i.e., put time limits or react for smartphone overuse); in turn, these restrictive behaviors can influence how much the children use these devices [28]. Therefore, the influences of parental beliefs on child’s behaviors are not directed, but they are mediated by parental practices and other factors such as parental education or involvement with mobile device (“attachment”; see, e.g., [30]) that can intervene.
Parental beliefs include also self-efficacy [31, 32], that is, parent’s sense of competence in their own digital skills and in managing their children’s technology usage. An example of parental self-referent estimation of competence is “I won’t bother setting parental controls or passwords because my kids will “hack” around them” (cfr. [33]). In many studies, parental self-efficacy is positively associated with active parental practices: when parents feel confident about their Internet skills, they more often are involved in or monitor their children’s media activities [6]. Recently Shin [34] distinguishes general self-efficacy (the confidence to be a good parent; [35]) from two self-efficacy domains assessing parental beliefs more strictly related to digital tasks: parental “media competency” in using media technology (such as sending/receiving email with a smartphone) and “perceived control over mediation strategies” (the degree to which the parent feels to be able to guide or modify their children’s behaviors on smartphone). All these domains of parenting self-efficacy are associated with each other [34], suggesting that perceived competence on their own digital skills can positively influence parents’ involvement with children (e.g., discussing about smartphone use).
Sanders et al. [33] found that when parents are confident to have adequate digital skills, they more often intervene (i.e., with rules and reinforcement strategies) with their children. Parental self-efficacy also influences parental opinions about technologies and how they talk about them with children [33]. Moreover, parental perception of influence in managing technologies decreased with preadolescents that generally are seen as more self-regulated and reluctant to the parental control than younger children. These findings suggest the importance to recognize the influence of child characteristics (such as age, technology usage, perceived competence, etc.) on digital parenting.
Initially studies on parental engagement in children’s activities with media assumed as theoretical basis the traditional parenting styles [36, 37]. According to Darling and Steinberg [38], parenting styles are defined as the context (or emotive climate) in which parents raise and socialize their children, and they are distinct from practices, that is, the distinct actions contingent to the child’s behavior (e.g., scolding when the child uses the smartphone during mealtime). As it is well known, two main dimensions of the parent’s behaviors, and their natural variations along a continuum, describe the styles: responsiveness/warmth (involvement, acceptance, and affect that the parent expresses towards the child’s needs) and demandingness/control (rules, control, and maturity expectations for the child’s socialization). Parenting styles derive from the combination of these variable dimensions: authoritative parenting (high warmth and high control, e.g., parents listen to the child’s wishes, but they put clear limits to the child’s behaviors); laissez-faire parenting (low warmth and low control; the parents are detached from the needs expressed by the child; they did not give rules or limits to child’s behavior); authoritarian parenting (low warmth and high control; parents expect the child to obey; they neither discuss nor listen to the child’s opinions and can react with harsh discipline); and permissive parenting (high warmth and low control; parents are very affectionate, but they lack in guidance through rules and give few limits to the child’s behavior).
Studies that applied these “classic” parenting styles to children’s behaviors with new communication media did not provide convincing results [39]. As an alternative to the “broad” parenting styles, a description of specific media-related practices is more useful in empirical studies for exploring the link between parental behaviors and child outcomes (e.g., time spent online). Therefore, researchers strove to identify the key dimensions of parental warmth/control more strictly referred to children’s behaviors on the Internet or new media (Table 1). These Internet parenting styles are more strictly linked to children’s actual use of digital technologies, for example, low parental control predicted more time of Internet usage by school-aged children [8].
Style dimensions | Item (examples) |
---|---|
Parental control | Supervision: “I’m around when my child surfs on the Internet” |
Stopping internet usage: “I stop my child when he/she visits a less suitable website” | |
Internet usage rules: “I limit the time my child is allowed in the Internet (e.g., only 1 h a day)” | |
Parental warmth | Communication: “I talk with my child about the dangers related to the Internet (costs, addiction to games, computer viruses, privacy violation, etc.)” |
Support: “I show my child “child friendly” websites (library, songs, crafts, school website, etc.)” |
Dimensions of the internet parenting style (adapted from [8], p. 89).
Parenting style dimensions seem influenced by parents’ individual characteristics such as gender, instruction, beliefs, or prior experiences with digital technologies. For example, in Valcke et al. [8] study, mothers are more controlling but also warmer than fathers, both dimensions associated with an authoritative style. In other studies, younger fathers and those who use the Internet more frequently with their teenagers are higher in control [40]. Parental instruction and experiences with digital technologies are other important variables: higher educated parents are more involved and high in control, probably because higher instructional levels also correspond to greater parents’ competence with the Internet [8].
The first studies explored parenting styles related to Internet usage at home, but more recently other authors explored the influence of digital parenting styles on children’s usage of mobile devices (tablet and smartphone). Konok et al. [30] found that children (3–7 years old) who use the devices for more time every day have parents who are more permissive (e.g., they talk with children about applications on devices, but have low levels of demandingness), more authoritative (e.g., they give time limits, but they do not block the use because they expect the child to regulate himself), and less authoritarian (i.e., the parent restricts and prohibits mobile use). Interestingly, these parenting styles are also associated with parental beliefs about positive/negative consequences of early media usage: parents who have higher permissive or authoritative digital style declared more beneficial (i.e., skill improvement, entertainment, and early learning of digital skills) than negative effects (i.e., reduced time for other activities, developmental problems, and danger/addiction) for children’s mobile usage.
Digital parenting styles change also according to children’s characteristics, such as age [41], self-esteem [42], emotion regulation [43], or behavioral problems [44] that can intervene, mediating the link between parenting and children’s actual behavior with digital technologies. Particularly, styles vary and accommodate with children’s age: authoritative parents during infancy become more permissive with older children [41]. Overall, these findings reappraise the idea that there is a linear, cause-effect relationship between parenting and child outcomes on digital behaviors, but bidirectional and transactional parent-child influences [45] should be considered.
Alternatively to digital parenting styles, many researchers adopted parental mediation as perspective for exploring parental influences on children’s digital behaviors. Parental mediation refers to “the diverse practices through which parents try to manage and regulate their children’s experiences with the media” ([7], p. 7). Parental mediation strategies were initially introduced in empirical studies as a potential factor influencing children’s use of television [46] and videogames [47]. These studies, exploring how parents can effectively reduce excessive exposure or enhance children’s self-regulated behaviors, inspired the following researches on digital technologies. Actually in literature two broad mediation approaches are distinct: enabling (or instructive) mediation and restrictive mediation [16]. These strategies are only partially similar to those parents who adopt “traditional” media: for example, co-viewing is a mediation strategy generally applied to television use [48], but it is difficult to apply it to portable media (particularly, smartphone and tablet) that children often use alone or outside the home environment. As a consequence, parents can feel worried because they cannot effectively control their children’s media use and involvement in digital life [11, 49].
The (a) enabling mediation is also defined as “active” or “instructive mediation” in that parents engage different activities with the aim to enhance their child’s appropriate use of the digital technologies: for example, they explain to him/her how to use a media device, talk about the contents of new app/websites, or play a videogame together (co-use mediation). Nevertheless, in many empirical studies, (b) co-use (or co-viewing mediation) does not imply parent-child conversations, but the parent is present when the child displays the activity with the media without discussing the content [13]. The (c) restrictive mediation is characterized by a strict attention to rules and control to the child’s digital activities: for example, parents decide when the child can have his/her tablet, pose time restrictions, or react when the child uses the smartphone too long. The (d) technical restriction is a particular kind of restrictive approach adopting software applications or other technical tools to control the child’s activities (e.g., installing filters on PC for children’s safety). Nevertheless, parents rarely use them and declare they prefer child-directed strategies, such as giving explanations or sharing the device [6].
Active mediation is the most frequent approach adopted in European families with 9–16 years old children, whereas restrictive mediation strategies are more common with younger children [16]. Interestingly, when children are interviewed about the mediation approach adopted in the family, they agree with their parents’ responses [12].
All mediation strategies are linked with changes in children’s digital behaviors, for example, less time exposure with online activities [12], or reduction of negative outcomes (i.e., aggressive behaviors, overuse, etc.; see [50]), but their efficacy is relative and it changes as a function of the child’s development (i.e., age and digital skills) and his/her actual activity with media. Active mediation is linked with positive outcomes (such as social and cognitive skills), particularly with younger children (0–3 ages): for example, during video/movie watching, parents stimulate attention, comment, or pose questions to children, giving them occasions for language exposure and cognitive and digital learning [51]. Nevertheless, we cannot link children’s outcomes uniquely to a distinct mediation strategy, since parent-child interactions are complex and many contextual or individual factors can intervene. Parents often use a combination of mediation strategies, and they change the mediation approach according to the activity the child is doing (e.g., using the tablet for school homework or for visiting Facebook; [11]).
Other authors explored the influence of family sociocultural factors. For mediation to be effective to guide children’s experiences in the web, parents need to have themselves knowledge and skills of the new digital media (see Section 4 in this chapter). Particularly in conditions of sociocultural disadvantage, parents may lack basic digital skills [52], or they may not be able to explain to children how digital reality works and rapidly changes [53]. Unlike the traditional media (such as television or video game console), parents can give a difficult task to assure a help or guide children with the ever-changing technologies. Recently, Nikken and Opree [11] found that mostly low-educated, low-income, and single parents are likely to experience low competence and greater insecurity with new devices (such as electronic screen), declaring that it is difficult to apply co-use or active mediation strategies with their young children (1–9 ages). In addition, Warren and Aloia [49] found that when parents perceive high stress levels, the restrictive mediation and the discussions with children about contents and the use of media increase.
Parental mediation strategies may change according to their child’s age and his/her digital skills, but longitudinal studies are scarce in literature. Developmental changes have been observed from childhood to adolescence: active mediation strategies more often are adopted with younger children, whereas restrictive mediation fades with older and adolescents [17]. Parents generally expect greater autonomy and self-regulation skills from adolescents, and the influence of some parental strategies decrease over time: for example, the efficacy of restrictive strategies (i.e., rules for time or negative consequences for overuse) in reducing screen time decreases with older children [33]. From a developmental perspective, particularly the effects of restrictive approach are unclear. Some studies evidence that restrictive strategies (such as limiting access to media) are effective with younger children [6], but not with older kids. Adolescents can perceive parental control/limitations as a violation of their needs (i.e., self-determination, privacy, peer relationships, etc.) and react with increased online activities [54].
After all, parents wish their children can develop self-regulation, critical view, and awareness of opportunities or risks of digital technologies. In many studies, parental active mediation—for example, discussing with children issues such as cyberbullying, sexting, and online frauds—is more effective than restrictive mediation in reducing risks [16, 55]. Conversely, the efficacy of restrictive mediation must be considered relatively, since in literature both positive and negative associations with online risks emerge [56]. Mascheroni et al. [57] comment, “While restrictive mediation can be effective in reducing children’s exposure to online risks, it has numerous side-effects, because it limits children’s opportunities to develop digital literacy and build resilience and discourages children’s agency within the child-parent relationship. Enabling mediation, instead, encompasses a set of mediation practices (including co-use, active mediation of internet safety, monitoring and technical restrictions such as parental controls) that are aimed at empowering children and supporting their active engagement with online media. The question is, then, how to ensure children’s access to online opportunities while protecting them from potential harmful effects.”
Interestingly, parents adopt their approach according to their child’s competence in digital technology use (digital literacy). In line with a bidirectional model of parent-child influences [45], not only parenting influences child’s behaviors, but also the child’s actual behavior or perceived digital competence influences parental behaviors. Generally, restrictive mediation strategies are more often adopted with less digitally skilled children, but this approach could be counterproductive: limiting online activities for protecting the child from risks, in turn, can deprive him/her to opportunities for developing adequate digital skills [5]. Conversely, parents more often use active mediation strategies (e.g., they share experiences or talk about media) with skilled children than with children who have scarce competencies [58].
The predominance of online activities in the life of many children often worries parents, who observe that spending much time online removes children from face-to-face relationships and social activities. Empirical studies confirm the negative effects of Internet unsuitable use on social participation, since high levels of online activities are associated with few friends, reduced offline relationships [59], and increased loneliness [60]. Particularly loneliness, that is, social isolation and lack of intimacy with close friends, was found to be strongly associated with Internet excessive use [61]. However, causal relationship between Internet excessive use and loneliness is still under investigation [62], in an attempt to understand if loneliness can be the antecedent or the consequence of the individual’s excessive involvement with Internet activities. Two alternative hypotheses have been proposed to explain the link between poor social involvement, feeling lonely, and the development of problematic Internet use in children. According to the first hypothesis, loneliness is one of the main antecedents of excessive online activities, together with low self-esteem, poor social skills, social anxiety, and frequent conflict with parents. Some authors (e.g., [63]) hypothesized that adolescents who feel lonely or experience high anxiety in face-to-face social situations may use social networks and online exchanges more frequently than non-lonely adolescents. According to this “compensation hypothesis,” they are increasingly involved in Internet activities that provide alternative experiences for social life. The second hypothesis assumes that time spent online causes loneliness and social withdrawal, isolating and depriving people of real social experiences. Therefore, loneliness can be considered as a possible outcome of Internet overuse [64], like when prolonged activities online reduce time spent with family and friends. Finally, there are studies that did not confirm the link between loneliness and Internet problematic use [65] or that evidence some positive consequences on individual socioemotional well-being. For example, contradicting the assumption that using the web impoverishes social life and increases isolation, in some studies higher levels of Internet activities are positively associated with social connection and perceived support. Unfortunately studies with children and adolescents are still lacking, but the attention among researchers is growing [60, 66].
Given the paucity of research with adolescents, we conducted an unpublished study1 to explore the relationships among excessive Internet use, preferred online activities, and adolescent’s perceived loneliness. In addition, we hypothesized that among adolescents better parent-child communication and higher parental emotional availability were positively related with less time spent online and less frequent online activities. In fact, studies indicate that parent-child communication and parental involvement play a protective role to excessive online activities [67]. A community sample of 177 high school students (66% females), aged 16–22 years old (M = 18, DS = 1.01), completed a questionnaire measuring the sense of loneliness (UCLA Loneliness Scale; [68]) and the Compulsive Internet Use2 Scale (CIUS, [69]) for assessing problematic involvement in Internet activities. Daily frequency of favorite online activities (chatting, e-mailing, visiting social networking sites, listening to music, watching videos, playing online games, etc.) was also measured. Regarding parenting factors, adolescents filled out (a) the Lum Emotional Availability of Parents questionnaire (LEAP; [71]) assessing adolescent’s perception of parental responsiveness, sensitivity, and emotional involvement and (b) two scales (derived from [70]) measuring the frequency of communication (how often the adolescent communicates with parents about his/her online activities) and the quality of parent-child communication (the adolescent feels understood, or comforted, or taking seriously from parents when he/she talks about Internet activities). In our study loneliness was not associated with Internet compulsive use (CIUS scores), but with specific online activities. Adolescents with higher loneliness levels reported higher frequency of music listening, but they declared less access to social networks (such as Facebook). This result contradicts the hypothesis of social compensation assuming that the teenagers use online exchanges to replace the sense of loneliness in real life [61]. An alternative explanation, proposed by others [72] is that a process downward with a “spiral pattern” is activated: loneliness leads to a decrease in social involvement which in turn increases the sense of isolation. Interestingly, those who spent more time online and were problematic users (higher CIUS scores) were more frequently involved in solitary activities, such as watching videos, listening to music, playing games offline, and visiting social networking sites. Perceived emotional availability from the father (but not from the mother) was negatively related with time that adolescents spent online. Teenagers who perceived greater emotional availability from both parents used the Internet more often for working on school projects and homework or doing search. A better quality of communication with parents is associated with less use of the Internet for gambling and online games. Overall these results confirm a virtuous relationship between quality of family communication, emotional availability of parents, and productive use of the web.
An interesting evidence emerging from empirical literature is the protective role of parent-child communication for preventing Internet unsuitable use in children [73]. Conversely, Internet excessive use is associated with low quality of communication in the family [74]. Particularly with teenagers, the open and effective parent-child communication is a key dimension of family relationships and climate. Assuming a bidirectional perspective of adolescent-child influences, some authors focus on the role of youths’ self-disclosure and spontaneous communication on parenting. Stattin and Kerr [75] claim that parental efforts to monitor adolescent’s activities or to discuss about them are ineffective if teenagers do not trust their parents and if they are not willing to open up spontaneously. Parental monitoring on children’s activities can be less effective when it is parent-driven (e.g., the parent tries to follow the child’s activities on Facebook) than when it is child-driven, that is, activated by children’s self-disclosure and open communication. Conversely, when parents try to control teenagers’ online communication (e.g., the friends on Facebook, the photos posted on Instagram, etc.), parent-child conflicts increase, and adolescents can perceive parental behaviors as an obstacle to their autonomy or an intrusion to privacy [76].
Van den Eijnden et al. [70] identify two key dimensions of parent-child communication about children’s digital behaviors. The first parenting practice refers to the frequency of communication about Internet usage (e.g., “How often do you and your parents talk about who you have Internet contact with?”), whereas the quality of communication about Internet use measures adolescent’s perception of mutual respect and acceptance during conversation (“When my parents and I talk about my Internet use, I feel taken seriously”). Authors explore how these parental behaviors, together with other Internet-specific parental practices (rules about time online, rules about contents, reactions to excessive use), link to compulsive Internet use (CIU) in adolescents. Findings from their longitudinal study are particularly interesting, showing a protective effect of the quality of communication, but not of frequency of communication, on the risk of developing CIU. In other words, a good quality of parent-child communication about the use of Internet decreased the risk of CIU (6 months later), whereas this relationship was not observed for the frequency of parent-child exchanges about adolescent’s online activities. Authors discuss these findings by highlighting the bidirectional nature of parent-child influences. When adolescents show compulsive Internet behaviors, the frequency of parent-child communication decreases. Probably gradually parents get discouraged and give up the idea of achieving a positive change in their child’s problematic behaviors through frequent conversations.
Regarding the parental rules about online activities, studies evidence some mixed results. When parents give their children rules about the content of the Internet, the compulsive use of web decreases; conversely, strict rules about time allowed for online activities seem to be counterproductive, linking to compulsive Internet behaviors in children [70]. Moreover, considering the child’s influences on parent’s behaviors, it is possible that when the child remains connected online without time limits, her/his behavior in turn stimulates stricter rules by parents. Other studies evidence that parental rules about Internet use are less influential on their children’s behaviors than their parents’ behaviors. Liu et al. [77] found that when parental behaviors are consistent with parental rules regarding digital technologies and the Internet (e.g., the smartphone must not be used during mealtime, personal data cannot be given online, etc.), the rules negatively predict Internet problematic use in adolescents. This result reminds us the importance of educational consistency (i.e., rule-behavior agreement) from parents. Conversely, when parental rules and parental behaviors do not agree, only the parents’ behaviors are positively predictive of children’s excessive Internet use. According to social learning theory [78], a parental modeling process intervenes, that is, an observational learning in which the parent’s behavior acts as antecedent for similar behavior in the child. Therefore, parents act as a role model for their children’s digital behaviors, and young children learn how and under what circumstances to use a mobile, for example, the smartphone, observing parents’ activities with that device. Interestingly, studies show that the time parents spend with computers positively relates with time spent by their children [79]. Similarly, parental involvement in favorite Internet activities (visiting social networking sites, video streaming, etc.) is positively associated with the same activities engaged by children. In addition, as some researchers remind us “it is not only overt parental behavior (i.e., digital device use) but also attitudes and emotions that can be modelled for children to imitate” ([30], p. 4). Taken together, these findings suggest that parents’ agreement and modeling of adequate behaviors are crucial factors for promoting self-regulation and safety use of digital technologies in young children.
Today’s reality is widely digitized, and it offers people of all ages opportunities for socialization, amusement, learning, job, and knowledge that were unthinkable until a few decades ago. Precisely in the weeks in which the authors were engaged in the revision of this chapter, COVID-19 pandemic was involving more than 130 countries in the world. The lockdown and restrictions at home quickly changed daily activities of children and parents, transferring to the screen of the devices many activities previously carried outdoor (school lessons, play with peers, etc.). It is still too early to know what impact the epidemic will have on children’s physical and mental health, but the attention of professionals and researchers is not lacking [80]. Surely during COVID-19 screen time has increased exponentially in the families: in some ways for the parents it was a relief, because through the Internet children continued their school courses and contact with peers. In addition, children avoided boredom through videogames or website dedicated to music, creativity, etc. On the other hand, the intensive online activities have renewed parents’ concerns about the well-known risks [23, 81], such as increased sedentary and physical inactivity, prolonged use at night, sleep disorders, isolation, and escape in digital world by teenagers.
Following social distancing and the temporary closure of schools for limiting COVID-19 infection, the Ministries of Education in many developed countries quickly activated online courses and other websites for distance learning. These online solutions have the aim to guarantee children’s right of instruction but also to mitigate the negative effects of home confinement [82]. However, online courses shift the teaching from school to home and make the parents a resource for support and effective learning. The question is: what can be the role of parental mediation and digital competence? As the authors know, there are no empirical studies on this topic, but previous studies with primary school children showed negative associations between parental control, interference in homework, and children’s learning [83]. Currently, in many cases teachers expect parents to ensure that their children connect on time and follow the video lessons, so parental support could be useful, but tensions and parent-child conflicts can also occur. There is also the risk that parents may help children, interfering with digital learning or impeding them from carrying out the assigned activities independently. Close attention and research effort are needed for comprehending how this aspect of digital parenting works, supporting parents in their efforts and ensuring a good home learning to children.
In line with the available studies before COVID-19 [4], we believe that during lockdown the digital activities satisfy children’s basic psychological needs, such as socialization and emotional support by the family (grandparents and cousins) and other significant people (teachers and peers). Social media facilitate the expression of emotions (such as fear and sadness), self-disclosure, and the keeping of romantic relationships by adolescents particularly [84]. Video calling and regular contacts through smartphone have been recommended as an important source of reassurance in the cases of isolation of the caregiver or family due to prevention of COVID-19 infection or recovery [85].
What probably becomes necessary in the time of COVID-19 is a renegotiation of family routines, that is, a balance between screen time and other moments of family life. In this regard, the WHO [85] recommends that parents maintain regular routines for children (school/learning, free time/relaxing, bedtime, etc.) and also to create new opportunities for joint activities (such as co-use for creative, amusing, or physical activity in front of the screen). With young children, many shared activities offer also a context to express and communicate their feelings (both fears and wishes) in a supportive parental relationship. Even in actual COVID-19 circumstances, we believe that parental behaviors (such as self-limiting screen time for smart working, chatting, or gaming) are more influential than restrictive mediation or limitations imposed to children.
Having the digital knowledge and the skills to move in the digital world, without suffering the dangers, is not a matter of age, but of education and learning, that is, digital literacy. It is a serious responsibility towards the new generations and a complex challenge for which the adults (parents, teachers, psychologists, or educators) do not feel prepared. As Martin ([86], p. 135) reminds us: “Digital literacy is the awareness, attitude and ability of individuals to appropriately use digital tools and facilities to identify, access, manage, integrate, evaluate, analyze and synthesize digital resources, construct new knowledge, create media expressions, and communicate with others, in the context of specific life situations, in order to enable constructive social action; and to reflect upon this process.” Currently, parents’ difficulties stem from the fact that they—as digital users—have different levels of involvement, technical skills, and beliefs that influence mediation practices towards their children. If parents feel less skilled or worry about unknown dangers of the web, they could activate more restrictive practices, but rarely they will be able to critically discuss with their children in a constructive manner. In addition, parents believe not to be up to their children in juggling in the digital world, in pursuing technological innovations, or in protecting children from danger or media abuse. Sometimes parents consult the websites for suggestions on how to effectively manage kids in their digital activities, but information disseminated through the websites is not always scientifically founded (fake news). The researcher Danah Boyd [87], in describing the complexity (“It’s complicated”) of teenagers’ life on the web, claims that the media magnify the virtues (the “superpowers”) of digital natives, but at the same time they trigger parental fears talking about serious dangers such as Internet addiction, sexual enticement, or incitement to suicide. Conversely, rarely parents turn to professionals for advice. A study [28] conducted with families of very young children (under 7 years) shows that parents choose the type of help (professionals such as pediatricians, or friends and family) based on the child’s problems and his/her digital activities. The professionals are consulted if the child is an only son or he/she uses the media too long. Parental sense of competence in managing the child’s activities increases if parents are confident of the usefulness of the media (e.g., educational games for learning) and if there are more kids in the family. Parents turn to friends and family for advice when they have a negative view of the effects of the media. This result makes us reflect, but unfortunately there are not many similar studies.
A correct parental mediation of children’s digital activity must build on the information and recommendations that come from the scientific community. The American Academy of Pediatrics [2] has taken a clear stance for prudent and moderate use of the web in infancy (0–5 years) and has prohibited touchscreen device use under the age of 2. The careful use of these devices at such an early age is crucial for the infants’ brain and social development. However, in contrast to these professional recommendations, often parents themselves introduce babies to media use during infancy (e.g., to “take calm” the kid, or to stop whims and cry; [30]). Young children spent daily an amount of time with screen media (iPod, smartphone, video game player, etc.) that grows during infancy (42 min under 2 years and 2 h/39 min at 2–4 years, respectively; [88]). The risks for excessive screen exposure are extensively confirmed in literature and particularly the negative consequences for early users who may present physical problems (such as obesity), developmental difficulties (i.e., language or learning), and unhealthy routines (low sleep quality) (Figure 1).
Developmental risks associated with excessive media exposure (from [88]).
The recommendations for effective parental mediation on children’s digital activities are unequivocal [2]: (a) avoid the use of digital devices before 18–24 months with the exception of video chatting in the presence of the parent; (b) do not allow the child (18–24 months older) to use the devices alone and for more than 1 h a day; (c) do not press for an early use, the child will spontaneously approach the media when ready; (d) help the child apply what he/she learns from using the device to the real world; (e) know that in infancy, direct experiences, manipulation, and unstructured play are crucial for the child’s brain and for social, cognitive, and linguistic development; (f) void the vision of fast programs, with too many distracting elements, or violent contents that the child is unable to understand; (g) avoid using devices to calm the baby, an hour before bedtime; and (h) constantly monitor the media contents to which the child is exposed. Finally, the experts (pediatricians and psychologists) turn also to the industry that produces media devices, so that it adopts a scientifically founded and more ethical approach, for example, installing apps (such as connection stop or automatic shutdown during night hours) that can protect very young children from the risks of overuse.
Therefore, parent education interventions are necessary both to disseminate scientific knowledge on the influence of new technologies on children’s health and development and to help parents to cope with the challenges of digital reality. Parent education cannot be reduced to merely correcting ineffective parenting practices or to a list of instructions on what the parent should do. In fact, all studies indicate that the effectiveness of mediation strategies (restrictive or active approach) is relative, because parental practices interact with the characteristics of both adults (digital skills, beliefs, and activities on the media) and children (age, development, digital literacy skills, etc.). Instead, professionals should help parents to improve and adjust their guidance according to children’s age and developing skills. This is possible to be realized if parents also increase their knowledge and digital skills (media literacy programs), given the importance of these factors in parenting. Less skilled parents, or those who fear the unknown pitfalls of the web, are more likely to intervene only on restricting or prohibiting children’s activities. Conversely, “it is likely that more skilled children and parents are more free to explore and benefit from online opportunities, while also building up resilience against harm by meeting a degree of online risk” ([16], p. 19).
Digital parenting is a very complex and “complicated” task not only because the digital technologies rapidly change, but also because they offer children multiple experiences (learning, communication, socialization, entertainment, etc.) that influence their development, but which are not entirely overlapping to the experiences that take place in the real environment [89]. Particularly, digital natives have the opportunity to know the reality and themselves, developing their own identity [76], with a multiplicity of means and without the supervision of the traditional agents of socialization, primarily the parents (or the teachers). With the awareness of how difficult it is to give definitive answers about the advantages or dangers of digital technologies, more effort is needed from researchers. More evidence-based studies are needed, to understand how technological progress is changing the psychological (neurocognitive, emotional, and social) development of young digital users. However, despite the growing diffusion of digital tools in infancy, studies with very young children are still lacking. Particularly, future research could benefit from longitudinal studies to which to explore the relationships between parenting and children’s experiences in digital environments, their opportunities, or risks.
.
",metaTitle:"Order Print Copies - Terms",metaDescription:".",metaKeywords:null,canonicalURL:"page/order-print-copies-terms/",contentRaw:'[{"type":"htmlEditorComponent","content":"Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nMy order has not arrived, what do I do?
\\n\\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nMy order has not arrived, what do I do?
\n\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15790}],offset:12,limit:12,total:118189},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"15"},books:[{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10960",title:"Number Theory",subtitle:null,isOpenForSubmission:!0,hash:"28b625521801dd5c0b36bca22a505c9e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10960.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Graph Theory",subtitle:null,isOpenForSubmission:!0,hash:"900c60742d224080732bd16bd25ccba8",slug:null,bookSignature:"Dr. Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:null,editors:[{id:"146092",title:"Dr.",name:"Harun",surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:4},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1106",title:"Hebiatrics",slug:"hebiatrics",parent:{title:"Pediatrics",slug:"pediatrics"},numberOfBooks:1,numberOfAuthorsAndEditors:15,numberOfWosCitations:6,numberOfCrossrefCitations:3,numberOfDimensionsCitations:21,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"hebiatrics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"765",title:"Perinatal Mortality",subtitle:null,isOpenForSubmission:!1,hash:"998fe57b7407963d0e7a0bbec3082c1b",slug:"perinatal-mortality",bookSignature:"Oliver C. Ezechi and Karen Odberg‐Petterson",coverURL:"https://cdn.intechopen.com/books/images_new/765.jpg",editedByType:"Edited by",editors:[{id:"74807",title:"Dr.",name:"Oliver",middleName:"Chukwujekwu",surname:"Ezechi",slug:"oliver-ezechi",fullName:"Oliver Ezechi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"37453",doi:"10.5772/45749",title:"Neonatal Mortality: Incidence, Correlates and Improvement Strategies",slug:"neonatal-mortality",totalDownloads:4402,totalCrossrefCites:2,totalDimensionsCites:10,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Sajjad ur Rahman and Walid El Ansari",authors:[{id:"84941",title:"Prof.",name:"Sajjad",middleName:"Ur",surname:"Rahman",slug:"sajjad-rahman",fullName:"Sajjad Rahman"}]},{id:"37450",doi:"10.5772/50039",title:"Overview of Global Perinatal Mortality",slug:"overview-of-global-perinatal-mortality",totalDownloads:3871,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Oliver C. Ezechi and Agatha N. David",authors:[{id:"74807",title:"Dr.",name:"Oliver",middleName:"Chukwujekwu",surname:"Ezechi",slug:"oliver-ezechi",fullName:"Oliver Ezechi"}]},{id:"37454",doi:"10.5772/32441",title:"Perinatal Mortality in Multiple Pregnancy",slug:"perinatal-twin-mortality",totalDownloads:6256,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Patricia Steenhaut and Corinne Hubinont",authors:[{id:"91534",title:"Prof.",name:"Corinne",middleName:null,surname:"Hubinont",slug:"corinne-hubinont",fullName:"Corinne Hubinont"},{id:"96293",title:"Dr",name:"Patricia",middleName:null,surname:"Steenhaut",slug:"patricia-steenhaut",fullName:"Patricia Steenhaut"}]}],mostDownloadedChaptersLast30Days:[{id:"37453",title:"Neonatal Mortality: Incidence, Correlates and Improvement Strategies",slug:"neonatal-mortality",totalDownloads:4403,totalCrossrefCites:2,totalDimensionsCites:10,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Sajjad ur Rahman and Walid El Ansari",authors:[{id:"84941",title:"Prof.",name:"Sajjad",middleName:"Ur",surname:"Rahman",slug:"sajjad-rahman",fullName:"Sajjad Rahman"}]},{id:"37455",title:"Helicopter Transportation for Perinatal and Maternal Emergency Care in Japan",slug:"helicopter-transportation-for-perinatal-medicine-in-japan",totalDownloads:2087,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Ryuzo Higuchi and Sawako Minami",authors:[{id:"88047",title:"Dr.",name:"Ryuzo",middleName:null,surname:"Higuchi",slug:"ryuzo-higuchi",fullName:"Ryuzo Higuchi"},{id:"95440",title:"Dr.",name:"Sawako",middleName:null,surname:"Minami",slug:"sawako-minami",fullName:"Sawako Minami"}]},{id:"37457",title:"A Survey of Late Fetal Deaths in a Japanese Prefecture",slug:"the-survey-of-late-fetal-deaths-in-a-japanese-prefecture",totalDownloads:1459,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Ryuzo Higuchi and Sawako Minami",authors:[{id:"88047",title:"Dr.",name:"Ryuzo",middleName:null,surname:"Higuchi",slug:"ryuzo-higuchi",fullName:"Ryuzo Higuchi"},{id:"95440",title:"Dr.",name:"Sawako",middleName:null,surname:"Minami",slug:"sawako-minami",fullName:"Sawako Minami"}]},{id:"37451",title:"The Effect of Intrauterine Development and Nutritional Status on Perinatal, Intrauterine and Neonatal Mortality: The MDN System",slug:"the-effect-of-intrauterine-development-and-nutritional-status-on-intrauterine-neonatal-and-perin",totalDownloads:1582,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Péter Berkő and Kálmán Joubert",authors:[{id:"91133",title:"Dr.",name:"Péter",middleName:null,surname:"Berkő",slug:"peter-berko",fullName:"Péter Berkő"}]},{id:"37450",title:"Overview of Global Perinatal Mortality",slug:"overview-of-global-perinatal-mortality",totalDownloads:3872,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Oliver C. Ezechi and Agatha N. David",authors:[{id:"74807",title:"Dr.",name:"Oliver",middleName:"Chukwujekwu",surname:"Ezechi",slug:"oliver-ezechi",fullName:"Oliver Ezechi"}]},{id:"37452",title:"Current Trends in Perinatal Mortality in Developing Countries: Nigeria as a Case Study",slug:"current-trends-in-perinatal-mortality-in-developing-countries-nigeria-as-a-case-study",totalDownloads:2365,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Uchenna Onwudiegwu and Ibraheem Awowole",authors:[{id:"91034",title:"Prof.",name:"Uchenna",middleName:null,surname:"Onwudiegwu",slug:"uchenna-onwudiegwu",fullName:"Uchenna Onwudiegwu"},{id:"127218",title:"Dr.",name:"Ibraheem",middleName:"Olayemi",surname:"Awowole",slug:"ibraheem-awowole",fullName:"Ibraheem Awowole"}]},{id:"37458",title:"Super Eyes and Hands for Future Fetal Intervention",slug:"super-eyes-and-hands-for-future-fetal-intervention",totalDownloads:1870,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Hiromasa Yamashita, Takashi Kakimoto, Wenji Yuan and Toshio Chiba",authors:[{id:"91662",title:"Dr.",name:"Hiromasa",middleName:null,surname:"Yamashita",slug:"hiromasa-yamashita",fullName:"Hiromasa Yamashita"},{id:"93134",title:"Dr.",name:"Toshio",middleName:null,surname:"Chiba",slug:"toshio-chiba",fullName:"Toshio Chiba"},{id:"126979",title:"Dr.",name:"Takashi",middleName:null,surname:"Kakimoto",slug:"takashi-kakimoto",fullName:"Takashi Kakimoto"},{id:"126983",title:"Dr.",name:"Wenji",middleName:null,surname:"Yuan",slug:"wenji-yuan",fullName:"Wenji Yuan"}]},{id:"37454",title:"Perinatal Mortality in Multiple Pregnancy",slug:"perinatal-twin-mortality",totalDownloads:6258,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Patricia Steenhaut and Corinne Hubinont",authors:[{id:"91534",title:"Prof.",name:"Corinne",middleName:null,surname:"Hubinont",slug:"corinne-hubinont",fullName:"Corinne Hubinont"},{id:"96293",title:"Dr",name:"Patricia",middleName:null,surname:"Steenhaut",slug:"patricia-steenhaut",fullName:"Patricia Steenhaut"}]},{id:"37456",title:"The Contribution of Severe Pre-Eclampsia and Eclampsia to Perinatal Mortality in a Nigerian Teaching Hospital",slug:"the-contribution-of-severe-pre-eclampsia-eclampsia-to-perinatal-mortality-in-a-nigerian-teaching",totalDownloads:1813,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"perinatal-mortality",title:"Perinatal Mortality",fullTitle:"Perinatal Mortality"},signatures:"Olufemiwa Niyi Makinde",authors:[{id:"88142",title:"Dr.",name:"Olufemiwa",middleName:"Niyi",surname:"Makinde",slug:"olufemiwa-makinde",fullName:"Olufemiwa Makinde"}]}],onlineFirstChaptersFilter:{topicSlug:"hebiatrics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/145866/jennifer-manilay",hash:"",query:{},params:{id:"145866",slug:"jennifer-manilay"},fullPath:"/profiles/145866/jennifer-manilay",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()