Synthesis of TiO2 NPs by using plant extracts.
\r\n\t[2] J. V. Moloney, A. C. Newell. Nonlinear Optics. Westview Press, Oxford, 2004.
\r\n\t[3] M. Kauranen, A. V. Zayats. Nonlinear Plasmonics. Nature Photonics, vol. 6, 2012, pp. 737-748.
\r\n\t[4] P. Dombi, Z. Pápa, J. Vogelsang et al. Strong-field nano-optics. Reviews of Modern Physics, vol. 92, 2020, pp. 025003-1 – 025003-66.
\r\n\t[5] N. C. Panoiu, W. E. I. Sha, D.Y. Lei, G.-C. Li. Nonlinear optics in plasmonic nanostructures. Journal of Optics, 20, 2018, pp. 1-36.
\r\n\t[6] A. Krasnok, A. Alu. Active nanophotonics. Proceedings of IEEE, vol. 108, 2020, pp. 628-654.
\r\n\t[7] M. Lapine, I.V. Shadrivov, Yu. S. Kivshar. Colloquium: Nonlinear metamaterials. Reviews of Modern Physics, vol. 86, 2014, pp. 1093-1123.
\r\n\t[8] Iam Choon Khoo. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Progress in Quantum Electronics, vol. 38, 2014, pp. 77- 117.
\r\n\t
The incidence of microbial attack in different sectors such as food, textiles, medicine, water disinfection, and food packaging leads to a constant trend in the search for new antimicrobial substances. The increased resistance of some bacteria to some antibiotics and the toxicity to the human body of some organic antimicrobial substances has increased the interest in the development of inorganic antimicrobial substances. Among these compounds, metal and metal oxide compounds have attracted significant attention due to their broad-spectrum antibacterial activities. On the other hand, nanoscale materials are well known thanks to their increased properties due to their high surface area-to-volume ratio. Antimicrobial NPs have shown excellent and different activities from their bulk properties [1, 2].
\nDuring last decades, metal oxide nanoparticles, such as zinc oxide (ZnO), manganese oxide (MgO), titanium dioxide (TiO2), and iron oxide (Fe2O3), have been extensively applicable thanks to their unique physiochemical properties in biological applications. Among metal oxide antimicrobial agents, TiO2 is a valuable semiconducting transition metal oxide material and shows special features, such as easy control, reduced cost, non-toxicity, and good resistance to chemical erosion, that allow its application in optics, solar cells, chemical sensors, electronics, antibacterial and antifungal agents [3]. In general, TiO2 nanoparticles (TiO2 NPs) present large surface area, excellent surface morphology, and non-toxicity in nature. Several authors have reported that TiO2 NPs have been one of the most studied NPs thanks to their photocatalytic antimicrobial activity, exerting excellent bio-related activity against bacterial contamination [4, 5, 6, 7].
\nAntimicrobial activity of nanoparticles is highly influenced by several intrinsic factors such as their morphology, size, chemistry, source, and nanostructure [8, 9, 10, 11]. Specifically, antimicrobial activity of TiO2 NPs is greatly dependent on photocatalytic performance of TiO2, which depends strongly on its morphological, structural, and textural properties [12]. Several TiO2 NPs have been developed through different methods of synthesis. Specifically, in this chapter, eco-friendly synthesis based on biological sources, such as natural plant extracts and metabolites from microorganisms, which have resulted in TiO2 NPs with different size, shape, morphology, and crystalline structures will be presented. Titanium dioxide produces amorphous and crystalline forms and primarily can occur in three crystalline polymorphous: anatase, rutile, and brookite. Studies on synthesis have stated that the crystalline structure and morphology of TiO2 NPs is influenced by process parameters such as hydrothermal temperatures, starting concentration of acids, etc. [13]. The crystal structures and the shape of TiO2 NPs are both the most important properties that affect their physicochemical properties, and therefore their antimicrobial properties [14]. Regarding the crystal structures, anatase presents the highest photocatalytic and antimicrobial activity. Some works have shown that anatase structure can produce OH˙ radicals in a photocatalytic reaction, and as it will be clearly explained below, bacteria wall and membranes can be deadly affected [15, 16].
\nThe potential health impact and toxicity to the environment of NPs is currently an important matter to be addressed. Several works have confirmed that metal oxide NPs conventionally synthesized using chemical methods, such as sol–gel synthesis and chemical vapor deposition, have shown different levels of toxicity to test organisms [17, 18, 19, 20]. In recent years, researchers have emphasized on the development of nanoparticles promoted through environmental sustainability and processes characterized by an ecological view, mild reaction conditions, and non-toxic precursors. Due to this growing sensitivity toward green chemistry and biological processes, ecological processes are currently being investigated for the synthesis of non-toxic nanoparticles.
\nThese biological methods are considered safe, cost-effective, biocompatible, non-toxic, sustainable, and environmentally friendly processes [20]. Furthermore, it has been described that chemically synthesized NPs have exhibited less stability and added agglomeration, resulting in biologically synthesized NPs that are more dispersible, stable in size, and the processes consuming less energy [21].
\nThese biosynthetic methods, also called “green synthesis,” use various biological resources available in nature, including live plant [22], plant products, plant extracts, algae, fungi, yeasts [23], bacteria [24], and virus for the synthesis of NPs. Among these methods, the processes that use plant-based materials are considered the most suitable for large-scale green synthesis of NPs with respect to their ease and safety [25]. On the other hand, the reduction rate of metal ions in the presence of the plant extract is much faster compared to microorganisms, and provides stable particles [26]. Plants contain biomolecules that have been highly studied by researchers like phenols, nitrogen compounds, terpenoids, and other metabolites. It is well known that the hydroxyl and carboxylic groups present in these biocompounds act as stabilizers and reducing agents due to their high antioxidant activity [12]. Thus, plant extracts have been studied as one of the best green alternatives for metal oxide nanoparticles synthesis [27]. In recent years, TiO2 nanoparticles have been obtained by using different plant extracts, but not all of them have been studied for their antimicrobial activity. Table 1 presents a compilation of synthesized TiO2 nanoparticles from green synthesis by using plant extracts that were tested against different microorganisms.
\nSource | \nTitanium precursor | \nSize (nm) | \nShape/crystal structure | \nTarget microorganism (method) | \n
---|---|---|---|---|
\nAzadirachta indica leaves extract [28] | \nTiO2\n | \n25–87 (SEM) | \nSpherical/anatase-rutile | \n\nS. typhi, E. coli, and K. pneumoniae (broth micro dilution method) | \n
\nPsidium guajava leaves extract [29] | \nTiO(OH)2\n | \n32.58 (FESEM) | \nSpherical shape and clusters/anatase-rutile | \n\nS. aureus and E. coli (agar diffusion) | \n
\nVitex negundo Linn leaves extract [30] | \nTi{OCH(CH3)2}4\n | \n26–15 (TEM) | \nSpherical and rod shaped/tetragonal phase anatase | \n\nS. aureus and E. coli (agar diffusion) | \n
\nMorinda citrifolia leaves extract [31] | \nTiCl4\n | \n15–19 (SEM) | \nQuasi-spherical shape/rutile | \n\nS. aureus, B. subtilis, E. coli, P. aeruginosa, C. albicans, A. niger (agar diffusion) | \n
\nTrigonella foenum-graecum leaf extract [21] | \nTiOSO4\n | \n20–90 (HR-SEM) | \nSpherical/anatase | \n\nE. faecalis, S. aureus, S. faecalis, B. subtilis., Y. enterocolitica, P. vulgaris, E. coli, P. aeruginosa, K. pneumoniae, and C. albicans (agar diffusion) | \n
Orange peel extract [32] | \nTiCl4\n | \n20–50 (SEM) | \nIrregular and angular structure with high porous net/anatase | \n\nS. aureus, E. coli, and P. aeruginosa (agar diffusion) | \n
\nGlycyrrhiza glabra root extracts [33] | \nTiO2\n | \n60–140 (FESEM) | \nSpherical shape/anatase | \n\nS. aureus and K. pneumoniae (agar diffusion) | \n
Synthesis of TiO2 NPs by using plant extracts.
Different factors need to be evaluated in this research field in order to obtain TiO2 NPs with better properties and to maintain their biocompatibility. It has been shown that nanoparticles obtained from green synthesis can have a better morphology and size translated into better antimicrobial activity. Mobeen and Sundaram have obtained TiO2 NPs from titanium tetrachloride precursor through a chemical and a green synthesis method. Sulfuric acid and ammonium hydroxide were used in the chemical-based method and, in the green synthesis, those chemical reagents were replaced by an orange peel extract [32]. The nanoparticles obtained by using the natural extract presented a well-defined and smaller crystalline nature (approx. 17.30 nm) compared to the nanoparticles synthesized through the chemical method (21.61 nm). Both methods resulted in anatase crystalline structures, and, when evaluating the antimicrobial activity, the more eco-friendly NPs revealed higher bactericidal activity against Gram-positive and Gram-negative bacteria compared to the chemically synthesized nanoparticles.
\nBavanilatha et al. have also detailed TiO2 NPs green synthesis with Glycyrrhiza glabra root extract. Antibacterial activity against Staphylococcus aureus and Klebsiella pneumonia were investigated and in vivo toxicity tests using the zebrafish embryonic model (Danio rerio) were also carried out [33]. Results have demonstrated their biocompatibility because healthy embryos of adult fish to different variations of NP and no distinctive malformations were observed at every embryonic stage with respect to embryonic controls.
\nSubhapriya and Gomathipriya have biosynthesized TiO2 NPs by using a Trigonella foenum-graecum leaf extract, obtaining spherical NPs and their size varied between 20 and 90 nm, and their antimicrobial activity was evaluated through the standard method of disc diffusion [21]. The NPs showed significant antimicrobial activity against Yersinia enterocolitica (10.6 mm), Escherichia coli (10.8 mm), Staphylococcus aureus (11.2 mm), Enterococcus faecalis (11.4 mm), and Streptococcus faecalis (11.6 mm). Results confirmed developed TiO2 NPs as an effective antimicrobial drug that can lead to the progression of new antimicrobial drugs.
\nSpherical TiO2 NPs were synthesized from plants, in particular by applying a Morinda citrifolia leaf extract, and through advanced hydrothermal method [31]. Developed TiO2 NPs showed a size between 15 and 19 nm in an excellent quasispherical shape. In addition, their antimicrobial activity was tested against human pathogens, such as Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger. TiO2 NPs exhibited interesting antimicrobial activity, principally against Gram-positive bacteria.
\nIn addition to plants, other organisms can produce inorganic compounds at an intra or extracellular level. The synthesis of TiO2 NPs through microorganisms, including bacteria, fungi, and yeasts, also meets the requirements and the exponentially growing technological demand toward eco-friendly strategies, by avoiding the use of toxic chemicals in the synthesis and protocols [34]. The metabolites generated by microorganism present bioreducing, capping, and stabilizing properties that improve the NPs synthesis performance. Jayaseelan et al. have stated glycyl-L-proline, one of the most abundant metabolite from Aeromonas hydrophilia bacteria, as the main compound that acted as a capping and stabilizing agent during TiO2 NPs green synthesis [35]. Moreover, the interest in fungi in green synthesis of metal oxide nanoparticles has increased over last years. Fungi enzymes and/or metabolites also present intrinsically the potential to obtain elemental or ionic state metals from their corresponding salts [34, 36]. Different works based on the green synthesis of TiO2 NPs from bacteria and fungus are presented in Table 2. Some of them have been synthesized with antimicrobial and antifungal purposes, and their target microorganisms are also declared.
\nMicroorganism | \nTitanium precursor | \nSize (nm) | \nShape/crystal structure | \nTarget microorganisms (method) | \n
---|---|---|---|---|
\nAeromonas hydrophilia [46] | \nTiO(OH)2\n | \n28–54 (SEM) ~ 40.5 (XRD) | \nSpherical/uneven | \n\nS. aureus, S. pyogenes (agar diffusion) | \n
\nAspergillus flavus [34] | \nTiO2\n | \n62–74 (TEM) | \nSpherical/anatase and rutile | \n\nE. coli, P. aeruginosa, K. pneumoniae, B. subtilis (agar diffusion and MIC) | \n
\nBacillus mycoides [37] | \nTitanyl hydroxide | \n40–60 (TEM) | \nSpherical/anatase | \n\nE. coli (toxicity) | \n
\nBacillus subtilis [38] | \nK2TiF6\n | \n11–32 (TEM) | \nSpherical | \nAquatic biofilm | \n
\nFusarium oxysporum [36] | \nK2TiF6\n | \n6–13 (TEM) | \nSpherical/brookite | \n— | \n
\nLactobacillus sp. [51] | \nTiO(OH)2\n | \n~ 24.6 (TEM) | \nSpherical/anatase-rutile | \n— | \n
\nPlanomicrobium sp. [39] | \nTiO2\n | \n100–500 (SEM) | \nIrregular/pure crystalline | \n\nB. subtilis, K. planticola, Aspergillus niger (agar diffusion) | \n
\nPropionibacterium jensenii [52] | \nTiO(OH)2, 300°C | \n15–80 (FESEM) | \nSpherical | \n— | \n
\nSaccharomyces cerevisiae [51] | \nTiO(OH)2\n | \n~ 12.6 (TEM) | \nSpherical/anatase-rutile | \n\n—\n | \n
Examples of TiO2 NPs synthesis through microorganisms, both bacteria and fungus strains.
Two important factors that affect NPs synthesis are the type of microorganisms and their source. Some microorganisms widely used in the food industry are Lactobacillus, a bacterium used in dairy products and as a probiotic supplement, and Saccharomyces cerevisiae, a yeast commonly used in bakery. Jha et al. have investigated the effectiveness of both microorganisms to synthesize TiO2 NPs. A comparison between synthesis through Lactobacillus from yogurt and probiotic tablets resulted in different NP sizes: a particle size of 15–70 nm for yogurt, and 10–25 nm for tablets. This difference was due to the purity of the bacteria [40]. In general, TiO2 NP synthesis through microorganisms has not provided stable sizes, being not industrially scalable compared to the synthesis of nanoparticles from plants.
\nHarmful bacteria, such as Staphylococcus aureus, Burkholderia cepacia, Pseudomonas aeruginosa, Clostridium difficile, Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, Mycobacterium tuberculosis, and Neisseria gonorrhoeae, are responsible for bacterial infections that can cause serious diseases in humans year after year [40]. The principal solution is the use of antibiotics, antimicrobial and antifungal agents. Nevertheless, in recent years there has been an increase in the resistance of several bacterial strains to these substances, and therefore there is currently a great interest in the search for new antimicrobial substances. The antimicrobial nanoparticles have been studied due to their high activity, specifically the metal oxide nanoparticles [41, 42, 43]. In this sense, titanium dioxide nanoparticles are one of the antimicrobial NPs whose study has gained interest during last years.
\nTiO2 is a thermally stable and biocompatible chemical compound with high photocatalytic activity and has presented good results against bacterial contamination [44]. Table 3 presents some research including the antimicrobial capacity of TiO2 NPs.
\nMicroorganism | \nNPs | \nResults | \n
---|---|---|
Methicillin-resistant Staphylococcus aureus [45] | \nFe3O4-TiO2 core/shell magnetic NPs | \nThe survival ratio [%] of bacteria decreased from 82.40 to 7.13%. | \n
\nStaphylococcus saprophyticus [45] | \nFe3O4-TiO2 core/shell magnetic NPs | \nThe survival ratio [%] of bacteria decreased from 79.15 to 0.51%. | \n
\nStreptococcus pyogenes[57] | \nFe3O4-TiO2 core/shell magnetic NPs | \nThe survival ratio [%] of bacteria decreased from 82.87 to 4.45%. | \n
\nEscherichia coli [46] | \nTiO2 nanotubes ~ 20 nm | \n97.53% of reduction | \n
\nStaphylococcus aureus [46] | \nTiO2 nanotubes ~ 20 nm | \n99.94% of reduction | \n
\nBacillus subtilis [47] | \nTiO2 NPs co-doped with silver (19–39 nm) | \n1% Ag-N-TiO2 had the highest antibacterial activity with antibacterial diameter reduction of 22.8 mm | \n
\nMycobacterium smegmatis [48] | \nCu-doped TiO2NPs ~20 nm | \nThe percentage of inhibition was around 47% | \n
\nPseudomonas aeruginosa [49] | \nTiO2 NPs 10–25 nm | \nAlthough it was not completely euthanized, their survival was significantly inhibited. | \n
\nShewanella oneidensis MR-1 [48] | \nCu-doped TiO2 NPs ~20 nm | \nThe percentage of inhibition was around 11% | \n
TiO2 nanoparticles against different microorganisms and their antimicrobial activities.
The principal factors differentiating the antimicrobial activity between TiO2 NPs were their morphology, crystal nature, and size. According to López de Dicastillo et al. [11], hollow TiO2 nanotubes presented interesting antimicrobial reduction thanks to the enhancement of specific surface area. This fact can be explained by the nature of titanium dioxide, and one of the main mechanisms of its action is through the generation of reactive oxygen species (ROS) on its surface during the process of photocatalysis when it exposed to light at an appropriate wavelength. It is important to highlight that some research works have evidenced antimicrobial activity of TiO2 NPs increased when they were irradiated with UV-A light due to the photocatalytic nature of this oxide. The time of irradiation varied between 20 min [45] and 3 hours [50].
\nTitanium dioxide nanoparticles (TiO2 NPs) are one of the most studied materials in the area of antimicrobial applications due to its particular abilities, such as bactericidal photocatalytic activity, safety, and self-cleaning properties. The mechanism referred to the antimicrobial action of TiO2 is commonly associated to reactive oxygen species (ROS) with high oxidative potentials produced under band-gap irradiation photo-induces charge in the presence of O2 [51]. ROS affect bacterial cells by different mechanisms leading to their death. Antimicrobial substances with broad spectrum activity against microorganisms (Gram-negative and Gram-positive bacteria and fungi) are of particular importance to overcome the MDR (multidrug resistance) generated by traditional antibiotic site-specific.
\nThe main photocatalytic characteristic of TiO2 is a wide band gap of 3.2 eV, which can trigger the generation of high-energy electron–hole pair under UV-A light with wavelength of 385 nm or lower [52]. As mentioned above for bulk powder, TiO2 NPs have the same mechanism based on the ROS generation with the advantage of being at nanoscale. This nanoscale nature implies an important increase of surface area-to-volume ratio that provides maximum contact with environment water and oxygen [53] and a minimal size, which can easily penetrate the cell wall and cell membrane, enabling the increase of the intracellular oxidative damage.
\nBacteria have enzymatic antioxidant defense systems like catalases and superoxide dismutase, in addition to natural antioxidants like ascorbic acid, carotene, and tocopherol, which inhibit lipid peroxidation or O-singlet and the effects of ROS radicals such as OH2˙− and OH˙. When those systems are exceeded, a set of redox reactions can lead to the death cell by the alteration of different essential structures (cell wall, cell membrane, DNA, etc.) and metabolism routes [54]. In the following sections, several ways that cellular structures were affected in the presence of TiO2 NPs will be described. In order to understand the genome responses of bacteria to TiO2-photocatalysis, some biological approaches related to expression of genes encoding to defense and repair mechanism of microorganism will explained below. Different mechanisms and processes of antimicrobial activity of TiO2 NPs are represented as a global scheme in Figure 1.
\nScheme of main antimicrobial activity-based processes.
ROS are responsible for the damage by oxidation of many organic structures of microorganisms. One of them is the cell wall, which is the first defense barrier against any injury from the environment, thus being the first affected by oxidative damage. Depending on the type of microorganism, the cell wall will have different composition; that is, in fungi and yeast, cell walls are mainly composed of chitin and polysaccharides [55], Gram-positive bacteria contain many layers of peptidoglycan and teichoic acid, and Gram-negative bacteria present a thin layer of peptidoglycan surrounded by a secondary lipid membrane reinforced with transmembrane lipopolysaccharides and lipoproteins [56]. Thus, the effect of TiO2 NPs will be slightly different depending type of microorganism.
\nIt has been studied that the composition of the cell wall in Pichia pastoris (yeast) changed in the presence of TiO2, increasing the chitin content in response to the ROS effects [57]. The cell wall of Escherichia coli (Gram-negative) composed of lipo-polysaccharide, phosphatidyl-ethanolamine, and peptidoglycan has been reported to be sensitive to the peroxidation caused by TiO2 [58]. The damage can be quantified by assessing the production of malondialdehyde (MDA), which is a biomarker of lipid peroxidation, or through ATR-FTIR of the supernatant of cell culture, which evidenced the way that porins and proteins on the outer membrane were affected, probably as a result of greater exposure to the surface of TiO2 [59]. In fungi, the release of OH˙ captured hydrogen atoms from sugar subunits of polysaccharides, which composed the cell wall, leading to the cleavage of polysaccharide chain and the exposition of cell membrane [60].
\nIn terms of genetic issues, there is evidence that the bacteria change the level expression of certain genes encoding for proteins involved in lipopolysaccharide and peptidoglycan metabolism, pilus biosynthesis, and protein insertion related to the cell wall which values were lower-expressed after exposition to TiO2 NPs [61].
\nThe second usual cellular target of most of antibiotics is the cell membrane mainly composed by phospholipids, which grant the cell a non-rigid cover, permeability, and protection. Most of the studies with TiO2 NPs have been focused to the loss of membrane integrity caused by oxidation of phospholipids due to ROS such hydroxyl radicals and hydrogen peroxide [62, 63], which led to an increase in the membrane fluidity, leakage of cellular content, and eventually cell lysis.
\nGram-positive bacteria present only one membrane protected by many layers of peptidoglycan, whereas Gram-negative bacteria are composed by two membranes, inner and outer, and a thin layer of peptidoglycan between them. The outer membrane is exposed, thus, more liable to mechanical breakage due to the lack of peptidoglycan protective cover, like in Gram-positive bacteria [64]. Some studies have demonstrated a better antimicrobial performance of TiO2 NPs against Gram-positive bacteria [65] while others reported that Gram-negative bacteria were more resistant [66, 67]. It can be concluded that the bacterial inactivation effectiveness depends mainly on the resistant capacity of cell wall structures and the damage level of ROS generation [68].
\nIn contrast with the lower expression of genes related to the cell wall seen before, the level expression of genes encoding for enzymes involved in metabolism of lipid essential for the cell membrane structure, are over-expressed [61]. It would be concluded that cells compensate the initial cell wall damage by reinforcing the second defense barrier, the cell membrane, in a way to provide support against the oxidation produced by ROS.
\nIn fungi, the biocidal effect is not quite different. In the presence of TiO2 NPs and UV light, hydroxyl radicals, hydrogen peroxide, and superoxide anions initially promote oxidation of the membrane, leading to an unbalance in the cell permeability, even decomposition of cell walls [69]. This oxidation can inhibit cell respiration by affecting intracellular membranes in mitochondria. Studies have demonstrated biocidal effects on Penicillium expansum [70], but there is still research on other strains.
\nBeyond the relatively well-studied initial lipoperoxidation attack of TiO2 NPs on the outer/inner cell membrane of the microorganism, specific mechanisms are still aimed of being solved.
\nAs the oxidative damage generates lipoperoxidation of cell membranes due to their lipid nature, the respiratory chain, which takes place in the double-membrane mitochondria, is also affected. This organelle is a natural source of ROS in aerobic metabolism because superoxide anions are produced in the electron transfer respiratory chain process. Mitochondria can control this fact by converting them into H2O2 by superoxide dismutase (SOD), and finally into water by glutathione peroxidase and catalase [71]. The presence of TiO2 NPs increases the production of ROS at levels that this enzymatic defense mechanism cannot attenuate the damage, even a dysregulation in electron transfer through the mitochondrial respiratory chain implies an increase in ROS generation [72].
\nThe genetic approaches have indicated that changes in level expression in genes related to the energy production in mitochondria prioritize the most efficient pathway to uptake oxygen, which is through ubiquinol coenzyme [61]. This coenzyme presented a higher capacity to exchange electrons, while the coenzyme-independent oxygen uptake pathways were expressed at lower level.
\nDamage at molecular level in DNA affects all regulatory microorganism metabolism, replication, transcription, and cell division. DNA is particularly sensitive to oxidative damage because oxygen radicals, specially OH˙ produced by Fenton reaction [73], may attack the sugar-phosphate or the nucleobases and cause saccharide fragmentation aimed to the strand break [74].
\nDNA strand modifications are more lethal than base modifications (punctual mutation). Mitochondrial DNA is more vulnerable to oxidative damage than nuclear DNA because it is closer to a major cellular ROS source [75].
\nBesides the enzymatic detoxification system (SOD, glutathione and catalase), DNA injuries are covered by a set of structures related to post-translational modification, protein turnover, chaperones (related to folding), DNA replication and repair, which are significantly over-expressed in the presence of TiO2 NPs [61].
\nIron is an essential ion for cell growth and survival, but it can turn potentially toxic if some malfunction in homeostatic regulation occurs (i.e., Fenton reaction that produces ROS). Bacteria are able to regulate iron concentration in order to maintain it in a physiological range [76]. This regulation involves directly siderophores to active transport of iron in cell [77], whose coding genes related to siderophore synthesis and iron transport protein are significantly lower-expressed in the presence of TiO2 NPs, decreasing the ability to assimilate and transport it, leading to cell death [61]. The loss of homeostasis regulation was confirmed by ICP-MS analysis, which revealed that the presence of TiO2 NPs significantly reduced the cellular iron level in Pseudomonas brassicacearum, directly proportional to the cell viability [78].
\nRegarding the functions related to Pi group (PO4\n3−) uptake, major differences were found in the expression of set of genes contained in Pho regulon, which were significantly lower when compared to the control [61]. The Pho regulon is a regulatory network in bacteria, yeast, plants, and animals, related to assimilation of inorganic phosphate, merely available in nature, and essential to nutritional cross-talk, secondary metabolite production, and pathogenesis [79].
\nThis suggested that the microorganisms were highly deficient in phosphorus uptake and metabolism in the presence of TiO2 NPs. It should be also noted that the Pho regulon has been reported to regulate biofilm synthesis capacity and pathogenicity [80].
\nTiO2 NPs can directly oxidize components of cell signaling pathways and even change the gene expression by interfering with transcription factors [81]. There is evidence to confirm the interference of TiO2 NPs in biosynthesis pathways of signaling molecules that bind lipopolysaccharide, stabilize and protect the cell wall against oxidative damage [82]. Moreover, a significant decrease in the synthesis of quorum-sensing signal molecule related to functions like pathogenesis and biofilm development was observed. This was corroborated through Scanning Electron Microscopy (SEM) images of bacteria (P. aeruginosa) growth in the presence of TiO2 NPs without UV irradiation. Cells appeared mainly non-aggregated and dispersed in the substratum, compared with controls without NPs where cells were mainly aggregated by lateral contact. This suggested that TiO2 NPs not only affected microorganisms by oxidative damage, but also bacteria aggregation and biofilm formation, which directly influenced in pathogenicity [83].
\nIn plants and algae, ROS can act as signaling intermediates in the process of transcription factor controlling stress response by H2O2, which is activated by a GSH peroxidase, and not by peroxides directly. But there is still lack of research in this area [84].
\nThe control of morphology and crystal structure of TiO2 NPs is the most important factor to enhance their antimicrobial activity. The appropriate design based on desirable surface properties given by shaped nanoparticles can improve effectiveness that is also dependent on the type of bacteria. The route of synthesis of TiO2 NPs is also a key factor. Recent works have revealed more eco-friendly synthesis methods, principally based on plant-based compounds and microorganisms, such as bacteria and fungus. Antimicrobial activity of different TiO2 NPs against Gram-positive and Gram-negative bacteria including antibiotic-resistant strains has been confirmed in different works.
\nSpecific studies on antimicrobial mechanisms have evidenced that microorganism exposed to photocatalytic TiO2 NPs exhibited cell inactivation at regulatory network and signaling levels, an important decrease in the activity of respiratory chain, and inhibition in the ability to assimilate and transport iron and phosphorous. These processes with the extensive cell wall and membrane alterations were the main factors that explain the biocidal activity of TiO2 NPs.
\nThe authors acknowledge the financial support of CONICYT through the Project Fondecyt Regular 1170624 and “Programa de Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia” Project FB0807, and CORFO Project 17CONTEC-8367.
\nThe authors declare no conflict of interest.
.
",metaTitle:"Order Print Copies - Terms",metaDescription:".",metaKeywords:null,canonicalURL:"page/order-print-copies-terms/",contentRaw:'[{"type":"htmlEditorComponent","content":"Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nMy order has not arrived, what do I do?
\\n\\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nMy order has not arrived, what do I do?
\n\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118374},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5247},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"804",title:"Process Engineering",slug:"industrial-engineering-and-management-process-engineering",parent:{title:"Industrial Engineering and Management",slug:"industrial-engineering-and-management"},numberOfBooks:2,numberOfAuthorsAndEditors:55,numberOfWosCitations:38,numberOfCrossrefCitations:32,numberOfDimensionsCitations:60,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"industrial-engineering-and-management-process-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5967",title:"Brewing Technology",subtitle:null,isOpenForSubmission:!1,hash:"033658c083403dadc895cf64dee8017a",slug:"brewing-technology",bookSignature:"Makoto Kanauchi",coverURL:"https://cdn.intechopen.com/books/images_new/5967.jpg",editedByType:"Edited by",editors:[{id:"85984",title:"Ph.D.",name:"Makoto",middleName:null,surname:"Kanauchi",slug:"makoto-kanauchi",fullName:"Makoto Kanauchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3205",title:"Design of Experiments",subtitle:"Applications",isOpenForSubmission:!1,hash:"e6e565e76cb1acf4a86290f16c750331",slug:"design-of-experiments-applications",bookSignature:"Messias Borges Silva",coverURL:"https://cdn.intechopen.com/books/images_new/3205.jpg",editedByType:"Edited by",editors:[{id:"136723",title:"Dr.",name:"Messias",middleName:null,surname:"Borges Silva",slug:"messias-borges-silva",fullName:"Messias Borges Silva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"55749",doi:"10.5772/intechopen.69231",title:"Exploitation of Brewing Industry Wastes to Produce Functional Ingredients",slug:"exploitation-of-brewing-industry-wastes-to-produce-functional-ingredients",totalDownloads:3105,totalCrossrefCites:7,totalDimensionsCites:16,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"Anca Corina Fărcaş, Sonia Ancuța Socaci, Elena Mudura, Francisc\nVasile Dulf, Dan C. Vodnar, Maria Tofană and Liana Claudia Salanță",authors:[{id:"191241",title:"Ph.D.",name:"Sonia A.",middleName:null,surname:"Socaci",slug:"sonia-a.-socaci",fullName:"Sonia A. Socaci"},{id:"191607",title:"Ph.D.",name:"Anca C.",middleName:null,surname:"Fărcaş",slug:"anca-c.-farcas",fullName:"Anca C. Fărcaş"},{id:"192098",title:"Prof.",name:"Maria",middleName:null,surname:"Tofana",slug:"maria-tofana",fullName:"Maria Tofana"},{id:"192177",title:"Dr.",name:"Dan Cristian",middleName:null,surname:"Vodnar",slug:"dan-cristian-vodnar",fullName:"Dan Cristian Vodnar"},{id:"194168",title:"Dr.",name:"Francisc Vasile",middleName:null,surname:"Dulf",slug:"francisc-vasile-dulf",fullName:"Francisc Vasile Dulf"},{id:"203096",title:"Dr.",name:"Elena",middleName:null,surname:"Mudura",slug:"elena-mudura",fullName:"Elena Mudura"},{id:"203097",title:"Dr.",name:"Liana Claudia",middleName:null,surname:"Salanta",slug:"liana-claudia-salanta",fullName:"Liana Claudia Salanta"}]},{id:"55278",doi:"10.5772/intechopen.68792",title:"Saccharomyces and Non-Saccharomyces Starter Yeasts",slug:"saccharomyces-and-non-saccharomyces-starter-yeasts",totalDownloads:1644,totalCrossrefCites:6,totalDimensionsCites:10,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"Marilena Budroni, Giacomo Zara, Maurizio Ciani and Francesca\nComitini",authors:[{id:"201812",title:"Prof.",name:"Marilena",middleName:null,surname:"Budroni",slug:"marilena-budroni",fullName:"Marilena Budroni"},{id:"202915",title:"Dr.",name:"Giacomo",middleName:null,surname:"Zara",slug:"giacomo-zara",fullName:"Giacomo Zara"},{id:"206674",title:"Prof.",name:"Maurizio",middleName:null,surname:"Ciani",slug:"maurizio-ciani",fullName:"Maurizio Ciani"},{id:"206675",title:"Prof.",name:"Francesca",middleName:null,surname:"Comitini",slug:"francesca-comitini",fullName:"Francesca Comitini"}]},{id:"55582",doi:"10.5772/intechopen.68793",title:"Use of Non-Saccharomyces Yeasts in Bottle Fermentation of Aged Beers",slug:"use-of-non-saccharomyces-yeasts-in-bottle-fermentation-of-aged-beers",totalDownloads:1829,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"María Jesús Callejo, Carmen González and Antonio Morata",authors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"},{id:"201383",title:"Prof.",name:"María Jesús",middleName:null,surname:"Callejo",slug:"maria-jesus-callejo",fullName:"María Jesús Callejo"},{id:"201384",title:"Prof.",name:"Carmen",middleName:null,surname:"González",slug:"carmen-gonzalez",fullName:"Carmen González"}]}],mostDownloadedChaptersLast30Days:[{id:"55749",title:"Exploitation of Brewing Industry Wastes to Produce Functional Ingredients",slug:"exploitation-of-brewing-industry-wastes-to-produce-functional-ingredients",totalDownloads:3101,totalCrossrefCites:7,totalDimensionsCites:16,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"Anca Corina Fărcaş, Sonia Ancuța Socaci, Elena Mudura, Francisc\nVasile Dulf, Dan C. Vodnar, Maria Tofană and Liana Claudia Salanță",authors:[{id:"191241",title:"Ph.D.",name:"Sonia A.",middleName:null,surname:"Socaci",slug:"sonia-a.-socaci",fullName:"Sonia A. Socaci"},{id:"191607",title:"Ph.D.",name:"Anca C.",middleName:null,surname:"Fărcaş",slug:"anca-c.-farcas",fullName:"Anca C. Fărcaş"},{id:"192098",title:"Prof.",name:"Maria",middleName:null,surname:"Tofana",slug:"maria-tofana",fullName:"Maria Tofana"},{id:"192177",title:"Dr.",name:"Dan Cristian",middleName:null,surname:"Vodnar",slug:"dan-cristian-vodnar",fullName:"Dan Cristian Vodnar"},{id:"194168",title:"Dr.",name:"Francisc Vasile",middleName:null,surname:"Dulf",slug:"francisc-vasile-dulf",fullName:"Francisc Vasile Dulf"},{id:"203096",title:"Dr.",name:"Elena",middleName:null,surname:"Mudura",slug:"elena-mudura",fullName:"Elena Mudura"},{id:"203097",title:"Dr.",name:"Liana Claudia",middleName:null,surname:"Salanta",slug:"liana-claudia-salanta",fullName:"Liana Claudia Salanta"}]},{id:"55278",title:"Saccharomyces and Non-Saccharomyces Starter Yeasts",slug:"saccharomyces-and-non-saccharomyces-starter-yeasts",totalDownloads:1644,totalCrossrefCites:6,totalDimensionsCites:10,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"Marilena Budroni, Giacomo Zara, Maurizio Ciani and Francesca\nComitini",authors:[{id:"201812",title:"Prof.",name:"Marilena",middleName:null,surname:"Budroni",slug:"marilena-budroni",fullName:"Marilena Budroni"},{id:"202915",title:"Dr.",name:"Giacomo",middleName:null,surname:"Zara",slug:"giacomo-zara",fullName:"Giacomo Zara"},{id:"206674",title:"Prof.",name:"Maurizio",middleName:null,surname:"Ciani",slug:"maurizio-ciani",fullName:"Maurizio Ciani"},{id:"206675",title:"Prof.",name:"Francesca",middleName:null,surname:"Comitini",slug:"francesca-comitini",fullName:"Francesca Comitini"}]},{id:"55582",title:"Use of Non-Saccharomyces Yeasts in Bottle Fermentation of Aged Beers",slug:"use-of-non-saccharomyces-yeasts-in-bottle-fermentation-of-aged-beers",totalDownloads:1829,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"María Jesús Callejo, Carmen González and Antonio Morata",authors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"},{id:"201383",title:"Prof.",name:"María Jesús",middleName:null,surname:"Callejo",slug:"maria-jesus-callejo",fullName:"María Jesús Callejo"},{id:"201384",title:"Prof.",name:"Carmen",middleName:null,surname:"González",slug:"carmen-gonzalez",fullName:"Carmen González"}]},{id:"55333",title:"Electronic Noses Applications in Beer Technology",slug:"electronic-noses-applications-in-beer-technology",totalDownloads:1472,totalCrossrefCites:4,totalDimensionsCites:9,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"José Pedro Santos, Jesús Lozano and Manuel Aleixandre",authors:[{id:"202750",title:"Dr.",name:"José Pedro",middleName:null,surname:"Santos",slug:"jose-pedro-santos",fullName:"José Pedro Santos"},{id:"202993",title:"Dr.",name:"Jesús",middleName:null,surname:"Lozano",slug:"jesus-lozano",fullName:"Jesús Lozano"},{id:"202994",title:"Dr.",name:"Manuel",middleName:null,surname:"Aleixandre",slug:"manuel-aleixandre",fullName:"Manuel Aleixandre"}]},{id:"56077",title:"Oxidative Enzyme Effects in Malt for Brewing",slug:"oxidative-enzyme-effects-in-malt-for-brewing",totalDownloads:1126,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"Makoto Kanauchi",authors:[{id:"85984",title:"Ph.D.",name:"Makoto",middleName:null,surname:"Kanauchi",slug:"makoto-kanauchi",fullName:"Makoto Kanauchi"}]},{id:"56040",title:"Traditional Processing and Quality Control of the “Red Kapsiki”: A Local Sorghum Beer from Northern Cameroon",slug:"traditional-processing-and-quality-control-of-the-red-kapsiki-a-local-sorghum-beer-from-northern-cam",totalDownloads:1142,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"Bayoï James Ronald and Djoulde Darman Roger",authors:[{id:"151333",title:"Dr.",name:"Djoulde Darman",middleName:null,surname:"Roger",slug:"djoulde-darman-roger",fullName:"Djoulde Darman Roger"},{id:"205707",title:"Dr.",name:"Bayoï",middleName:null,surname:"James Ronald",slug:"bayoi-james-ronald",fullName:"Bayoï James Ronald"}]},{id:"56133",title:"Concept of Nuruk on Brewing Technology",slug:"concept-of-nuruk-on-brewing-technology",totalDownloads:1372,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"Jang-Eun Lee and Jae-Ho Kim",authors:[{id:"201205",title:"Dr.",name:"Jang Eun",middleName:null,surname:"Lee",slug:"jang-eun-lee",fullName:"Jang Eun Lee"},{id:"204620",title:"Dr.",name:"Jae-Ho",middleName:null,surname:"Kim",slug:"jae-ho-kim",fullName:"Jae-Ho Kim"}]},{id:"55288",title:"Narrow Leaf Mutants in the Grass Family",slug:"narrow-leaf-mutants-in-the-grass-family",totalDownloads:1154,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"Takanori Yoshikawa and Shin Taketa",authors:[{id:"202026",title:"Dr.",name:"Takanori",middleName:null,surname:"Yoshikawa",slug:"takanori-yoshikawa",fullName:"Takanori Yoshikawa"},{id:"205913",title:"Prof.",name:"Shin",middleName:null,surname:"Taketa",slug:"shin-taketa",fullName:"Shin Taketa"}]},{id:"44587",title:"On the Effect of Fabrication and Testing Uncertainties in Structural Health Monitoring",slug:"on-the-effect-of-fabrication-and-testing-uncertainties-in-structural-health-monitoring",totalDownloads:1704,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"design-of-experiments-applications",title:"Design of Experiments",fullTitle:"Design of Experiments - Applications"},signatures:"H. Teimouri, A. S. Milani and R. Seethaler",authors:[{id:"28025",title:"Dr.",name:"Abbas",middleName:null,surname:"Milani",slug:"abbas-milani",fullName:"Abbas Milani"},{id:"160323",title:"Dr.",name:"R.",middleName:null,surname:"Seethaler",slug:"r.-seethaler",fullName:"R. Seethaler"},{id:"160324",title:"Mr.",name:"H.",middleName:null,surname:"Teimouri",slug:"h.-teimouri",fullName:"H. Teimouri"}]},{id:"45335",title:"Robust Design and Taguchi Method Application",slug:"robust-design-and-taguchi-method-application",totalDownloads:3243,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"design-of-experiments-applications",title:"Design of Experiments",fullTitle:"Design of Experiments - Applications"},signatures:"Helder Jose Celani de Souza, Messias Borges Silva, Cinthia B.\nMoyses, Fernando Lopes Alberto, Fabrício J. Pontes, Ubirajara R.\nFerreira, Roberto N. Duarte and Carlos Eduardo Sanches da Silva",authors:[{id:"154357",title:"Dr.",name:"Helder",middleName:"Jose Celani De",surname:"Souza",slug:"helder-souza",fullName:"Helder Souza"}]}],onlineFirstChaptersFilter:{topicSlug:"industrial-engineering-and-management-process-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/145162/heike-buecking",hash:"",query:{},params:{id:"145162",slug:"heike-buecking"},fullPath:"/profiles/145162/heike-buecking",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()