The most common food additives and ingredients.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"2108",leadTitle:null,fullTitle:"A Roadmap of Biomedical Engineers and Milestones",title:"A Roadmap of Biomedical Engineers and Milestones",subtitle:null,reviewType:"peer-reviewed",abstract:"This book is devoted to different sides of Biomedical Engineering and its applications in science and Industry. The covered topics include the Patient safety in medical technology management, Biomedical Optics and Lasers, Biomaterials, Rehabilitat, Ion Technologies, Therapeutic Lasers & Skin Welding Applications, Biomedical Instrument Aopplication and Biosensor and their principles.",isbn:null,printIsbn:"978-953-51-0609-8",pdfIsbn:"978-953-51-6215-5",doi:"10.5772/2494",price:119,priceEur:129,priceUsd:155,slug:"a-roadmap-of-biomedical-engineers-and-milestones",numberOfPages:242,isOpenForSubmission:!1,isInWos:1,hash:"a5b9e96c0e4817f0f7b4d0ff7e8f8bd4",bookSignature:"Sadik Kara",publishedDate:"June 5th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/2108.jpg",numberOfDownloads:43626,numberOfWosCitations:47,numberOfCrossrefCitations:28,numberOfDimensionsCitations:55,hasAltmetrics:0,numberOfTotalCitations:130,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 16th 2011",dateEndSecondStepPublish:"January 6th 2012",dateEndThirdStepPublish:"February 17th 2012",dateEndFourthStepPublish:"March 2nd 2012",dateEndFifthStepPublish:"April 20th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"63995",title:"Prof.",name:"Sadik",middleName:null,surname:"Kara",slug:"sadik-kara",fullName:"Sadik Kara",profilePictureURL:"https://mts.intechopen.com/storage/users/63995/images/1801_n.jpg",biography:"Professor Sadık Kara is a Professor of Electrical and Electronics Engineering Department and Director of the Institute of Biomedical Engineering at Fatih University, Istanbul, Turkey. He received his Diploma in Electrical Engineering and his Doctorate in Biomedical Engineering Science, in 1991 and 1995, respectively. He worked as an engineer at Turkish Electricity Association, Textile Factory, and Military Maintenance Centre. From 1995-2008 he was a researcher and lecturer at Department of Electrical and Electronics Engineering, Erciyes University. Since 2008 he has been at Fatih University. He was also the Editor in Chief for the Turkish Journal of Electrical Engineering & Computer Sciences. He is a recipient of the Outstanding Research Award of several foundations and an author of over 200 publications, including 60 research papers in international refereed journals, conferences, workshop proceedings and printed books. His research interests include Electrical Devices, Electronics, Medical Electronics, Biomedical Instrumentation and Measurements, Biomedical Signal and Image Processing, Neuropsychiatric and Musical Measurements.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Fatih University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"687",title:"Biomechatronics",slug:"biomechatronics"}],chapters:[{id:"37342",title:"Rehabilitation Technologies: Biomechatronics Point of View",doi:"10.5772/38963",slug:"rehabilitation-technologies-biomechatronics-point-of-view",totalDownloads:4274,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Erhan Akdoğan and M. Hakan Demir",downloadPdfUrl:"/chapter/pdf-download/37342",previewPdfUrl:"/chapter/pdf-preview/37342",authors:[{id:"125512",title:"Dr.",name:"Erhan",surname:"Akdoğan",slug:"erhan-akdogan",fullName:"Erhan Akdoğan"},{id:"151390",title:"Ph.D.",name:"Mehmet",surname:"Demir",slug:"mehmet-demir",fullName:"Mehmet Demir"}],corrections:null},{id:"37343",title:"Biomedical Instrument Application: Medical Waste Treatment Technologies",doi:"10.5772/39276",slug:"biomedical-instrument-application-medical-waste-treatment-technologies",totalDownloads:2708,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Muhammed Gulyurt",downloadPdfUrl:"/chapter/pdf-download/37343",previewPdfUrl:"/chapter/pdf-preview/37343",authors:[{id:"149445",title:"Mr.",name:"Muhammed",surname:"Gulyurt",slug:"muhammed-gulyurt",fullName:"Muhammed Gulyurt"}],corrections:null},{id:"37344",title:"Biomaterials",doi:"10.5772/48057",slug:"biomaterials",totalDownloads:6556,totalCrossrefCites:2,totalDimensionsCites:12,signatures:"A. Binnaz Hazar Yoruç and B. Cem Şener",downloadPdfUrl:"/chapter/pdf-download/37344",previewPdfUrl:"/chapter/pdf-preview/37344",authors:[{id:"117700",title:"Prof.",name:"B.Cem",surname:"Sener",slug:"b.cem-sener",fullName:"B.Cem Sener"},{id:"118710",title:"Dr.",name:"Afife Binnaz",surname:"Hazar Yoruç",slug:"afife-binnaz-hazar-yoruc",fullName:"Afife Binnaz Hazar Yoruç"}],corrections:null},{id:"37345",title:"Biosensors and Their Principles",doi:"10.5772/48824",slug:"biosensors-and-their-principles",totalDownloads:22484,totalCrossrefCites:19,totalDimensionsCites:31,signatures:"Ahmet Koyun, Esma Ahlatcıoğlu and Yeliz Koca İpek",downloadPdfUrl:"/chapter/pdf-download/37345",previewPdfUrl:"/chapter/pdf-preview/37345",authors:[{id:"151643",title:"Prof.",name:"Ahmet",surname:"Koyun",slug:"ahmet-koyun",fullName:"Ahmet Koyun"}],corrections:null},{id:"37346",title:"Biomedical Optics and Lasers",doi:"10.5772/48048",slug:"biomedical-optics-and-lasers",totalDownloads:3306,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"B. Cem Sener",downloadPdfUrl:"/chapter/pdf-download/37346",previewPdfUrl:"/chapter/pdf-preview/37346",authors:[{id:"117700",title:"Prof.",name:"B.Cem",surname:"Sener",slug:"b.cem-sener",fullName:"B.Cem Sener"}],corrections:null},{id:"37347",title:"Medical Technology Management and Patient Safety",doi:"10.5772/35926",slug:"medical-technology-management-and-patient-safety",totalDownloads:1957,totalCrossrefCites:4,totalDimensionsCites:6,signatures:"Mana Sezdi",downloadPdfUrl:"/chapter/pdf-download/37347",previewPdfUrl:"/chapter/pdf-preview/37347",authors:[{id:"42666",title:"Dr.",name:"Mana",surname:"Sezdi",slug:"mana-sezdi",fullName:"Mana Sezdi"}],corrections:null},{id:"37348",title:"Therapeutic Lasers and Skin Welding Applications",doi:"10.5772/48742",slug:"therapeutic-lasers-and-skin-welding-applications",totalDownloads:2342,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Haşim Özgür Tabakoğlu and Ayşen Gürkan Özer",downloadPdfUrl:"/chapter/pdf-download/37348",previewPdfUrl:"/chapter/pdf-preview/37348",authors:[{id:"148753",title:"PhD.",name:"Haşim Özgür",surname:"Tabakoğlu",slug:"hasim-ozgur-tabakoglu",fullName:"Haşim Özgür Tabakoğlu"},{id:"151426",title:"MSc.",name:"Ayşen",surname:"Gürkan Özer",slug:"aysen-gurkan-ozer",fullName:"Ayşen Gürkan Özer"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1648",title:"Electromotive Force and Measurement in Several Systems",subtitle:null,isOpenForSubmission:!1,hash:"a8720934b325d51e7f4fdcef34be5a9a",slug:"electromotive-force-and-measurement-in-several-systems",bookSignature:"Sadik Kara",coverURL:"https://cdn.intechopen.com/books/images_new/1648.jpg",editedByType:"Edited by",editors:[{id:"63995",title:"Prof.",name:"Sadik",surname:"Kara",slug:"sadik-kara",fullName:"Sadik Kara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3740",title:"Micro-Nano Mechatronics",subtitle:"New Trends in Material, Measurement, Control, Manufacturing and Their Applications in Biomedical Engineering",isOpenForSubmission:!1,hash:"4c4d9bcf3fcabbf90f5fd91e54af8cc1",slug:"micro-nano-mechatronics-new-trends-in-material-measurement-control-manufacturing-and-their-applications-in-biomedical-engineering",bookSignature:"Toshio Fukuda, Tomohide Niimi and Goro Obinata",coverURL:"https://cdn.intechopen.com/books/images_new/3740.jpg",editedByType:"Edited by",editors:[{id:"168330",title:"Dr.",name:"Chikara",surname:"Nagai",slug:"chikara-nagai",fullName:"Chikara Nagai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"68579",slug:"corrigendum-to-industrial-heat-exchanger-operation-and-maintenance-to-minimize-fouling-and-corrosion",title:"Corrigendum to: Industrial Heat Exchanger: Operation and Maintenance to Minimize Fouling and Corrosion",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68579.pdf",downloadPdfUrl:"/chapter/pdf-download/68579",previewPdfUrl:"/chapter/pdf-preview/68579",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68579",risUrl:"/chapter/ris/68579",chapter:{id:"52929",slug:"industrial-heat-exchanger-operation-and-maintenance-to-minimize-fouling-and-corrosion",signatures:"Teng Kah Hou, Salim Newaz Kazi, Abu Bakar Mahat, Chew Bee Teng,\nAhmed Al-Shamma’a and Andy Shaw",dateSubmitted:"March 23rd 2016",dateReviewed:"October 10th 2016",datePrePublished:null,datePublished:"April 26th 2017",book:{id:"6080",title:"Heat Exchangers",subtitle:"Advanced Features and Applications",fullTitle:"Heat Exchangers - Advanced Features and Applications",slug:"heat-exchangers-advanced-features-and-applications",publishedDate:"April 26th 2017",bookSignature:"S M Sohel Murshed and Manuel Matos Lopes",coverURL:"https://cdn.intechopen.com/books/images_new/6080.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"93483",title:"Dr.",name:"Salim Newaz",middleName:null,surname:"Kazi",fullName:"Salim Newaz Kazi",slug:"salim-newaz-kazi",email:"salimnewaz@um.edu.my",position:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},{id:"187135",title:"Ph.D.",name:"Kah Hou",middleName:null,surname:"Teng",fullName:"Kah Hou Teng",slug:"kah-hou-teng",email:"alex_teng1989@hotmail.com",position:null,institution:{name:"Liverpool John Moores University",institutionURL:null,country:{name:"United Kingdom"}}},{id:"194347",title:"Prof.",name:"Abu Bakar",middleName:null,surname:"Mahat",fullName:"Abu Bakar Mahat",slug:"abu-bakar-mahat",email:"ir_abakar@um.edu.my",position:null,institution:null},{id:"194348",title:"Dr.",name:"Bee Teng",middleName:null,surname:"Chew",fullName:"Bee Teng Chew",slug:"bee-teng-chew",email:"chewbeeteng@um.edu.my",position:null,institution:null},{id:"194349",title:"Prof.",name:"Ahmed",middleName:null,surname:"Al-Shamma'A",fullName:"Ahmed Al-Shamma'A",slug:"ahmed-al-shamma'a",email:"A.Al-Shamma'a@ljmu.ac.uk",position:null,institution:null},{id:"194350",title:"Prof.",name:"Andy",middleName:null,surname:"Shaw",fullName:"Andy Shaw",slug:"andy-shaw",email:"A.Shaw@ljmu.ac.uk",position:null,institution:null}]}},chapter:{id:"52929",slug:"industrial-heat-exchanger-operation-and-maintenance-to-minimize-fouling-and-corrosion",signatures:"Teng Kah Hou, Salim Newaz Kazi, Abu Bakar Mahat, Chew Bee Teng,\nAhmed Al-Shamma’a and Andy Shaw",dateSubmitted:"March 23rd 2016",dateReviewed:"October 10th 2016",datePrePublished:null,datePublished:"April 26th 2017",book:{id:"6080",title:"Heat Exchangers",subtitle:"Advanced Features and Applications",fullTitle:"Heat Exchangers - Advanced Features and Applications",slug:"heat-exchangers-advanced-features-and-applications",publishedDate:"April 26th 2017",bookSignature:"S M Sohel Murshed and Manuel Matos Lopes",coverURL:"https://cdn.intechopen.com/books/images_new/6080.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"93483",title:"Dr.",name:"Salim Newaz",middleName:null,surname:"Kazi",fullName:"Salim Newaz Kazi",slug:"salim-newaz-kazi",email:"salimnewaz@um.edu.my",position:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},{id:"187135",title:"Ph.D.",name:"Kah Hou",middleName:null,surname:"Teng",fullName:"Kah Hou Teng",slug:"kah-hou-teng",email:"alex_teng1989@hotmail.com",position:null,institution:{name:"Liverpool John Moores University",institutionURL:null,country:{name:"United Kingdom"}}},{id:"194347",title:"Prof.",name:"Abu Bakar",middleName:null,surname:"Mahat",fullName:"Abu Bakar Mahat",slug:"abu-bakar-mahat",email:"ir_abakar@um.edu.my",position:null,institution:null},{id:"194348",title:"Dr.",name:"Bee Teng",middleName:null,surname:"Chew",fullName:"Bee Teng Chew",slug:"bee-teng-chew",email:"chewbeeteng@um.edu.my",position:null,institution:null},{id:"194349",title:"Prof.",name:"Ahmed",middleName:null,surname:"Al-Shamma'A",fullName:"Ahmed Al-Shamma'A",slug:"ahmed-al-shamma'a",email:"A.Al-Shamma'a@ljmu.ac.uk",position:null,institution:null},{id:"194350",title:"Prof.",name:"Andy",middleName:null,surname:"Shaw",fullName:"Andy Shaw",slug:"andy-shaw",email:"A.Shaw@ljmu.ac.uk",position:null,institution:null}]},book:{id:"6080",title:"Heat Exchangers",subtitle:"Advanced Features and Applications",fullTitle:"Heat Exchangers - Advanced Features and Applications",slug:"heat-exchangers-advanced-features-and-applications",publishedDate:"April 26th 2017",bookSignature:"S M Sohel Murshed and Manuel Matos Lopes",coverURL:"https://cdn.intechopen.com/books/images_new/6080.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10457",leadTitle:null,title:"Entropy and Exergy in Renewable Energy",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tJoule and Kelvin’s introduction of the concept of energy in the middle of the 19th century set the stage for the Second Industrial Revolution. The Revolution has been powered by fossil fuels, a form of stock energy that is rich in potential for entropy growth. The same richness in potential that makes it so useful, however, is cause for prodigious heat and CO_2 production, the unchecked accumulation of which, today, poses existential threat to mankind on Earth. Cognizant of this fact, the worldwide communities have come to embrace the imperative for a 21st century transition from stock energy to renewable energy. This book aims to provide a scientific foundation/understanding on the necessity and benefits of energy transition as well as a platform for scientists/engineers for disseminating their original research findings and their scholarship on literature review on energy/entropy/exergy.
\r\n\r\n\tA few preliminary words on energy and exergy: Exergy, also known as available energy (one form of which is Gibbs free energy), is a concept derived from energy and entropy. Thermodynamically speaking, usefulness of energy can only be understood in terms of its exergy content: energies of low exergetic content are of little value. One cannot talk about energy without the language of exergy.
\r\n\r\n\tThe theme of the book is that one cannot talk about energy’s impact on our physical world without the language of both exergy and entropy, including the dual nature of the latter, and that understanding this dual nature is the key to sustainable order creation in the renewable energy era. The dual nature of entropy was demonstrated in a book (A Treatise of Heat and Energy, ISSN 0941-5122) in terms of the entropy principle as entropy growth selection principle and entropy growth potential principle. This has bearing on one of the great scientific mysteries: how could life and civilizations (forms of sustainable orders) have evolved if the alleged tendency of the Universe is to increase entropy until universal heat-death (Schrödinger’s paradox)? A recent paper, "Progress in entropy principle, as disclosed by nine Schools of thermodynamics, and its ecological implication" (FODA-D-20-00110; also, EnerarXiv-preprint), argues the dialectic case that whereas entropy principle as selection principle has been conventionally associate with inevitable increase of disorder, the principle as potential principle offers the explanatory framework for the emergence of orders of both technological kinds and biological kinds.
\r\n\r\n\t
\r\n\r\n\tAs the architect James Wines wrote in 2008 Britannica Book of the Year, “The ultimate success of green architecture is likely to require that advocates achieve a broad-based philosophical accord and provide the same kind of persuasive catalyst for change that the Industrial Revolution offered in the 19th century.” The same can be said about green energy and an “ecological revolution.” Contributors to the book are invited to participate in such scientific debates on how we should think about energy, exergy, entropy, renewable energy, and a new, exergy-entropy-based, scientific/metaphysical accord that are required for bringing about an Ecological Revolution: chapters regarding research proposals and research ideas will be welcome; as well as review article-chapters on entropy and exergy and article-chapters that inform reader how to apply exergy analysis and energy analysis to renewable energy systems.
",isbn:"978-1-83968-663-4",printIsbn:"978-1-83968-662-7",pdfIsbn:"978-1-83968-664-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"b0b25f4e04d94678a4b850c46ecf0ef6",bookSignature:"Prof. Lin-Shu Wang",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10457.jpg",keywords:"Solar Farms, Wind Farms, Entropy-Growth and Energy-Degradation, Universal Entropy Growth, Exergy Definition, Exergy Analysis, Exergy Balance Equation, Exergy and Carnot-Formula, Dual-Nature of Entropy, MEPP Induced Orders, Smart Grid, Process Ecology",numberOfDownloads:42,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 2nd 2020",dateEndSecondStepPublish:"September 30th 2020",dateEndThirdStepPublish:"November 29th 2020",dateEndFourthStepPublish:"February 17th 2021",dateEndFifthStepPublish:"April 18th 2021",remainingDaysToSecondStep:"5 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"A researcher and thinker in the theory of engineering thermodynamics, who has put forth the idea of the dual nature of entropy as selection principle and potential principle - the latter principle provides a framework for explaining technological and biological orders.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"223830",title:"Prof.",name:"Lin-Shu",middleName:null,surname:"Wang",slug:"lin-shu-wang",fullName:"Lin-Shu Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/223830/images/system/223830.jpg",biography:'Dr. Wang is an Associate Professor Emeritus of Mechanical Engineering at Stony Brook University. His research activities focus around thermodynamics, grid-integrated HVAC equipment with thermal storage. His most latest and important work is titled "A Treatise of Heat and Energy" published in 2019. He also has several patents including intercooled gas turbine, turbocharged internal combustion engine, and low-grade-heat management in buildings.',institutionString:"Stony Brook University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Stony Brook University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"20",title:"Physics",slug:"physics"}],chapters:[{id:"74447",title:"Scale Invariant Turbulence and Gibbs Free Energy in the Atmosphere",slug:"scale-invariant-turbulence-and-gibbs-free-energy-in-the-atmosphere",totalDownloads:42,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8356",title:"Metastable, Spintronics Materials and Mechanics of Deformable Bodies",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"1550f1986ce9bcc0db87d407a8b47078",slug:"solid-state-physics-metastable-spintronics-materials-and-mechanics-of-deformable-bodies-recent-progress",bookSignature:"Subbarayan Sivasankaran, Pramoda Kumar Nayak and Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/8356.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"60424",title:"Characteristics of Hearing in Elderly People",doi:"10.5772/intechopen.75435",slug:"characteristics-of-hearing-in-elderly-people",body:'Presbycusis is a range of hearing disorders caused by an aging process (from Greek presbus “aged” and akousis “hearing”). It is one of the most common conditions affecting older and elderly adults. Zwaardemaker was the first who has used the term “presbycusis” in 1893. Different authors sometimes interpret this term differently. Some researchers meant (imply under this term) age-related hearing disorders caused by involutional changes only in the cochlea, and others meant that changes involve all parts of the auditory system [1, 2]. Presbycusis is considered to be one of the forms of progressive SNHL, which is associated with age-related involutional changes of different parts of the hearing system and is presented by symmetric pure tone audiogram with flat loss toward high-frequency range (less steep than 20 dB/oct) [3]. Numerous studies are dedicated to anatomical and functional risk factors of the presbycusis [4, 5, 6, 7, 8, 9]. The significance of the presbycusis problem is determined by its social importance, lack of data about its etiology, and need for clinical practice to accurately determine an impaired area of auditory system and to identify the presbycusis genesis.
Presbycusis is a rather common disorder. According to the World Health Organization (WHO), more than 5% of global population (about 328 millions of adults) suffers from any degree of hearing loss, while among people older than 65 years of age, the prevalence of hearing loss exceeds 30% [10].
Its prevalence increases every year that may be due to the general trend of increased life duration—much more adults reach aged (from 60 to 74 years old according to the WHO classification) and senile (75 years old and more) periods. The world population is rapidly aging. At the period between 2000 and 2050, the proportion of the world\'s population over 60 years will double from about 11 to 22%. The absolute number of people aged 60 years and over is expected to increase from 605 million to 2 billion over the same period. The number of people aged 80 years or older will have almost quadrupled between 2000 and 2050 to 395 million [11]. Approximately one in three people in the United States between the age of 65 and 74 has hearing loss, and nearly half of those older than 75 have difficulties in hearing. Having trouble hearing can make it hard to understand and follow a doctor\'s advice, respond to warnings, and hear phones, doorbells, and smoke alarms. Hearing loss can also make it hard to enjoy talking with family and friends, leading to feelings of isolation.
There are many causes of age-related hearing loss. Most commonly, it not only arises from changes in the inner ear as we age but can also result from changes in the middle ear, or from multiple changes that occur along the nerve pathways directed toward the brain from the inner ear. Associated medical conditions and some medications may also exert an influence. Many factors can contribute to hearing loss as you get older. It can be difficult to distinguish age-related hearing loss and hearing impairment caused by other reasons, for example, noise-induced hearing loss. Noise-induced hearing loss is caused by long-term exposure to sounds that are either too loud or last too long. This kind of noise exposure can damage the sensory hair cells of the inner ear and is responsible for hearing loss. Once these hair cells are damaged, they do not grow back, and the ability to hear is diminished.
Conditions that are more common in older people, such as high blood pressure or diabetes, can contribute to hearing loss. Medications that are toxic to the sensory cells in our ears (e.g., some chemotherapy drugs) can also cause hearing loss. Aged and senile persons have a lot of biological and social risk factors of hearing disorder development. According to some authors [3], age-related hearing loss results from biological aging process of tissue elements in the auditory system and prolonged noise exposure. SNHL is considered to be a polyetiological process with partly unidentified factors of pathogenesis. There are more than 100 causes of SNHL: infections, intoxications, acoustic trauma, genetic factors, unfounded use of aminoglycoside antibiotics, irrational treatment of acute and chronic middle ear disorders, autoimmune diseases, and so on.
Genetic determinacy of the presbycusis cannot be excluded, and diseases acquired throughout the lifetime, hemorheological changes, and other factors can trigger or exacerbate age-related hearing loss. It is difficult to define that whether or not presbycusis depends on genetic factors because other factors potentially contributing to a hearing loss development are closely associated with an aging process. Nevertheless, some epidemiological studies argue in favor of genetic influence on age-related hearing loss development, especially in the case of metabolic type of the presbycusis, according to Schuknecht [12], which is caused by the atrophy of the stria vascularis [13, 5]. Genetic factor in the presbycusis origin is acknowledged by many authors [3, 14, 15]. This fact is confirmed in our study as well. Hearing heredity is revealed to be presented more often in patients with presbycusis. Identification of genes, underlying this pathology, could be extremely helpful for many people in our aging society.
Numerous genes are responsible for functioning of the auditory system, and some of them can contribute to the presbycusis development and determine a degree and time of onset of age-related hearing loss. However, neither of them is known to be the gene responsible for the presbycusis [4, 5]. The gene of age-related hearing loss was identified in mice. This gene encodes cadherin 23 (Cdh23) and is supposed to predispose an early onset of age-related hearing loss in mice [16]. A mutation of a similar gene in human Cdh23 can incline a susceptibility to the presbycusis [17]. However, genes of monogenic deafness detected in mice are doubtfully to be the same in human.
The last gene that was considered to be a cause of the presbycusis development in human was revealed in wide genome study of age-related hearing loss, which was conducted in the House Ear Institute, Gonda Research Center for Cell and Molecular Biology, USA. Specialists from Los Angeles collaborated with Translational Genomics Research Institute and University of Antwerp (Belgium). Friedman et al. [18] studied 3434 twins aged between 53 and 67 years old—patients of eight medical centers from six European countries. After hearing assessment using routine methods, 846 pairs with one normal hearing and one hearing impaired brother or sister have been selected. Family genomes were marked by numerous genetic markers, and the comparative analysis was performed. Scientists looked for spots with different nucleotides in the same genes. And a number of such genes were revealed. After applying an excluding method, only one potential gene was left in result. It was the gene GRM7 (metabotropic glutamate receptor type 7), which takes a part in a glutamate metabolism—it encodes one of the receptors of this amino acid. Glutamate (or glutamic acid) is one of the most important excitatory neurotransmitters of the mammal’s neural system. It is involved in the functioning of different brain areas and provides neurotransmission. Studies performed on mice and humans showed that gene GRM7 is highly active in the hair cells and the spiral ganglion cells of the inner ear. The glutamate is very toxic in high concentration. Its overexciting results in neuron disruption. The excess amount of the glutamate is suspected to cause a hearing loss in twins as the study authors considered. Genetic analysis showed that after getting “protein casts” with certain variations in a gene GRM7 improperly operating glutamate receptor was obtained. It can result in the amino acid storage in the synaptic fissure and damage of the outer and the inner hair cells in the cochlea [18].
Of the genetic point of view, presbycusis is the complex pathology. In the case of monogenic disease, a simple mutation is enough to cause a clinical onset/presentation. This type of disease is easy to determine. Meanwhile, in the case of complex genetic disorder, the interaction between genetic and environmental factors is obligatory, and the only factor is not enough for disease manifestation. In the case of genetic predisposition, a degree of hearing loss and a duration of hearing impairment depend on the summary of ototoxic factors, environmental noise during lifetime, as well as acquired diseases, changes of the blood quilts, and other factors contributing to hearing loss progression [19]. These studies are considered to define various factors that influence on the presbycusis development and to determine a degree of hearing disorder in aged and senile periods. They are still significant and must result in developing standards for prognosticating and preventing this pathology.
Thus, all abovementioned endo- and exogenous factors that are presented throughout the lifetime are considered to contribute to hearing disorder development in aged and senile periods. Nevertheless, hearing impairment does not occur in everyone and is affected by harmful factors.
The role of the atherosclerosis in the age-related hearing loss development has been studied since the middle of the last century. Does the severity of the atherosclerosis and the cochlear dysfunction correlate? Some authors confirm the presence of this correlation between these pathologies [20, 21]. A close interrelation between hearing loss and high serum cholesterol levels is shown in several studies, and the dependence of hearing function on some other atherogenic lipid levels in the blood is found. Inverse correlation of high significance between high-density lipoproteins (HDL) level of the peripheral blood and hearing acuity at the frequency of 4 kHz was revealed [22]. Morphological and functional damages of the cochlea and their correlations with hyperlipidemia, atherosclerosis, and endothelial dysfunction in mice are described in studies of Guo et al. [23].
Increased blood viscosity is known to influence a SNHL development. Hildesheimer et al. examined a group of 33 patients with SNHL with unknown cause; a high-blood viscosity was revealed in many of them, which was interpreted by the authors as a possible etiologic factor of SNHL [24]. Other authors also suggest that rheological properties of the blood and characteristics of the red blood cells can be considered to be a SNHL development risk factor in all patients [25].
In the majority of countries, women are registered to have longer lifespan than men that is explained by the biological distinguishing features of the female organism and differences of the atherosclerosis development process in people of different sex [26]. This mismatch has to be taken into account in the study of presbycusis problem. Efimova performed a complex clinical and audiological examination of women of different ages: 28 elderly women with presbycusis (the main group) and 28 elderly women with normal hearing (the control group). The mean age of menopause onset was less in patients of the main group than in the control one by 3.2 ± 1.0 years, which argues in favor of the earlier aging of a whole organism including the auditory system in patients with presbycusis. The comparison of biochemical and clinical blood profiles of the main and control groups did not reveal any significant differences. The essential role of hyperlipidemia in the hearing loss progression was revealed by analysis of correlation between the lipid profile and hearing thresholds in the patients of the main group: the worse the lipid profile, the worse the hearing thresholds have been revealed [27].
Some authors mention that variable professions are not statistically associated with presbycusis [19]. However, Lopotko et al. noted that intellectuals in aged and senile periods have better hearing than people of the same age with diminished intellectual activity [3].
In the middle of the last century, Schuknecht described four forms of the presbycusis: (1) sensory (caused by gradual degeneration of sensorineural elements of the inner ear); (2) neural (determined by the cell reduction in the spiral ganglion, auditory nerve fibers, and central auditory pathways); (3) metabolic (associated with atrophic changes in the stria vascularis); and (4) cochlear conductive or mechanical (associated with the process of the basal membrane thickening and loss of its elasticity). According to the author, all these forms manifest in increased tonal thresholds, and the neural one also manifests in the impaired speech intelligibility [12]. CAPD is shown to join the peripheral disorders with the aging process, so they also contribute to the presbycusis [28]. One of the keys of solving presbycusis problem is to define the proportion of peripheral and central disorders. Currently, potential role of disorders at all levels of the auditory system is taken into account, and it is realized as an integrated functional system and taken into consideration while understanding the age-related involutional hearing loss pathogenesis [29].
To diagnose an age-related hearing loss and to determine all risk factors of rapid hearing loss progression complete examination is necessary to begin with history taking (anamnesis), complex audiologic examination using instrumental methods in order to identify a level of a disorder, and finally, biochemical blood tests and general practitioner and neurologist consultations. All these examinations should be performed in the morning in kindly calm and comfortable conditions. The total duration of the audiological examination should not exceed 60 minutes to avoid the fatigue of a patient and loss of his attention.
While collecting a medical history, the absence of any reasons of hearing loss except of the age is noted. These patients do not have any serious somatic illnesses, middle ear pathology, professional noisy environment, or other determined reasons of the impaired hearing. Genetic factors and hearing loss duration should be taken into account while analyzing an anamnesis. Patients with presbycusis commonly cannot determine exactly the onset time of hearing loss due to its gradual progression. The early periods of hearing impairment often remain unnoticed for a patient; meanwhile, in this period, we expect the maximal effectiveness of a therapy. That is why annual prophylactic audiologic examinations of people older than 60 years of age seem to be rational.
The first step of audiological examination is the peripheral part of the auditory system functioning evaluation. Subjective examination (pure tone audiometry for auditory threshold assessment, speech audiometry, and psychoacoustic tests for recruitment identification) and objective examination (tympanometry and acoustic reflex testing) must be listed as the main methods.
Symmetric binaural pure tone audiogram with flat loss toward high frequencies is typical for patients with presbycusis. Finding out the patient’s age, we are able to suggest a degree of hearing loss properly for “normal” age-related hearing loss. Commonly, hearing in women with physiologic presbycusis gradually impairs and reaches the borderline with the mild hearing loss toward 60 years old [3, 27]. The mild hearing loss was detected in 67.9% of women with presbycusis from 60 to 74 years old. The loudness recruitment phenomenon is usually presented in the case of peripheral forms of SNHL. It is the sign of damaged neuroepithelial structures of the cochlea, especially the outer hair cells. Recruitment results in exaggeration of sound perception. Even though there is only a small increase in the noise level, sound may seem to be much louder, can be distorted, and cause a severe discomfort. The measurement of an uncomfortable loudness level is one of the simplest and most informative methods to detect recruitment [30, 31].
Speech audiometry is an issue of high significance among subjective methods of aged people examination. In cases of peripheral SNHL, especially with steeply sloping audiograms or the recruitment presence, the intelligibility usually does not exceed 70–80%. If monaural intelligibility in patient with mild or moderate hearing loss is less than 50%, CAPD can be suspected. It is due to the fact that pathology of central auditory pathways is responsible for the conversion, encoding, processing, and recognizing the speech signals. CAPD leads to the appearance of additional distortions caused by impaired binaural interaction, threshold and loudness adaptation, temporal analysis, and so on. Significantly reduced intelligibility with comparatively good tonal thresholds is defined as of tonal and speech hearing dissociation (phonemic regression); age-related hearing loss often manifests this way [27, 28, 31, 32].
Impedancemetry has to be included into the list of obligatory objective methods using patient’s examination. Tympanometry evaluates the middle ear condition. Age-related alterations can be observed in both the sound conductive and receptive parts of the auditory system. Sometimes the external auditory canal narrows in the isthmus area and collapses, and the epithelial migration decreases. The eardrum in aged people thickens and dims. Lipid deposits appear around the handle of the malleus and the fibrous tympanic ring. In some cases, the eardrum does not thicken but on the contrary atrophies. Age-related changes of the middle ear matter a lot and manifest in ankylosis of the joints of auditory ossicles with the development of adhesions among the eardrum, auditory ossicles and promontorium, ossification of the circular ligament, and so on [3, 33]. However, as far as in the middle of the last century, an age-related hearing loss was already considered to be the primary consequence of degenerative alterations in sound perceptive part of the ear. The main disorders are suggested to take place in the cochlear membranes, which become rigid, thicken, and lose their form as aging progresses [29].
Changes of the spiral organ neuroepithelial elements play a leading role in the age-related hearing loss development. But according to some authors, isolated hair cell damage cannot be the only reason of selective high frequencies affected impairment in older age [34]. Involutional and dystrophic changes in the cochlea can be primary or secondary, and it is associated with blood vessel dysfunctions [35]. The reduced number of bipolar cells of the spiral ganglion can be named the steadiest morphologic manifestation of the cochlear aging in humans and animals. Changes of the auditory nerve also play a certain role in the presbycusis development [36].
CAPD occurs very often in elderly or senile persons, reaching up to 80% and contributing to the age-related hearing loss [28]. Stach et al. revealed CAPD symptoms in 70% of adults older than 60 years of age, and its occurrence increases with aging: adults of 50–54 years old had CAPD in 17% of cases; meanwhile, adults older than 80 years old had CAPD in 95% of cases [37]. According to Golovanova et al., 31% of elderly patients with normal hearing thresholds complained of hearing impairment, which was explained by the authors as impaired speech intelligibility caused by central auditory pathway dysfunction [38]. Australian investigators, Golding et al., also confirm the increase of CAPD occurrence associated with aging and note the prevalence of men with this pathology [39]. The difficulties of the occurrence of CAPD assessment are associated either with similarity of its symptoms with other pathologies (cognitive disorders, attention deficit, memory impairments, etc.) or with the absence of any standards of this disorder diagnostics.
Audiologic methods of evaluation of the central auditory pathway functioning are divided into behavioral (subjective) and objective. Subjective methods are subdivided into verbal and nonverbal methods. Advantages of speech tests are associated with their social significance, the ability to use them both for identifying a level of hearing pathology and for hearing aid fitting. The following speech tests are advised to use by the American work group on CAPD: (1) monaural low redundant; (2) dichotic; and (3) tests of binaural interaction [40]. The first group of tests is believed to be sensitive to auditory cortical disorders, the second is sensitive to dysfunctions of interhemisherical connections, the third is sensitive to the dysfunctions of higher auditory centers or, according to some authors, to brain stem damages [41].
Monaural low redundant speech tests evaluate the ability of the auditory system for auditory closure. There are tests with speech signals passed through filters with different cutoff frequencies, signals with distorted temporal characteristics, and tests with speech in background noise. In the tests mentioned above, the auditory closure (the ability to understand a whole word or phrase when a part of them is missing) or the ability to recognize signals in background noise are assessed [28, 32]. While testing with speech in background noise, a speech signal is presented simultaneously with a masker (different types of noise or speech signals). For Russian language, Prof. Lopotko [30] created the Russian speech audiometric express test, during which polysyllable words are presented in the background of different noises (white noise, noise of transport, etc.). In the last year, the matrix sentence test has become rather popular, aimed to evaluate phrases intelligibility in background noise, and approbated for many European languages including Russian (Russian matrix sentence test—RuMatrix) [42]. In the presence of CAPD, intelligibility of distorted speech or speech in background noise is very poor [28].
In the dichotic tests, different speech signals, for example, monosyllable words, are presented through headphones to each ear simultaneously. In these tests, binaural integration (when a patient is instructed to repeat all signals presented to both ears) and binaural separation (when a patient is instructed to repeat signals presented only to one ear) are assessed. Numerous studies proved that in conditions of competition between right and left auditory channels, an ear that is contralateral to a dominant in the processing of presented signal hemisphere dominates. The majority of people are right-handed, and the speech center is located mainly in the left hemisphere, so the right auditory channel is dominant. This phenomenon is called “the right ear effect.” However, the right ear dominance occurs only in 80% of right-handed, while the speech center is located in the left hemisphere in 95% of right-handed people. The dominance of ipsilateral auditory pathways in some people may be the cause of this fact. A large number of dichotic test modifications were suggested as follows: dichotic digit test [43], dichotic sentence identification [44], and so on. Currently, dichotic tests are among the most popular methods to examine interhemispherical asymmetry in healthy people of different ages and in patients with central neural disorders [28, 30, 32].
In tests of binaural interaction, information is presented to each ear not simultaneously but consecutively: one part of a word/phrase is presented to one ear and the other part is presented to another. The ability of a listener to integrate signals and repeat correctly the whole income information is evaluated [41]. An example of the group tests is the audiometry with binaural alternating speech [45]. For English language, the following examples are CVC Fusion Test, during which consonants are presented to one ear, and vowels are presented to another; Spondee Binaural Fusion Test; and so on. [28].
Results of nonverbal CAPD tests are less influenced by linguistic knowledge of a patient, which is their advantage, but to perform many of them special not commercially manufactured equipment is often required [46]. One of the crucial methods of temporal processing evaluation is the Random Gap Detection Test (RGDT). It is sensitive to cortical pathologies, especially of the left hemisphere. During this test, signals (pure tones and broadband noise) with inserted pauses are presented through headphones at a comfortable loudness level [28, 47]. In the last year, indications to use subjective test diagnosing CAPD are expanded. Impaired speech intelligibility because of CAPD is proved to be one of the predictors of Alzheimer’s disease and dementia. To detect at-risk groups, some authors suggest a number of behavioral tests with high sensitivity to subclinical cognitive deficit comparing to screening cognitive tests [48, 49, 50].
Electrophysiologic (objective) audiological tests include auditory evoked potentials (AEPs), which are divided into several types by localization of generators and time of onset: cochlear potentials (are registered during cochleography), short latency (brainstem) auditory evoked potentials, middle latency AEP, long latency (cortical) AEP, cognitive potentials, and mismatch negativity. At the moment, the unique criteria to include any type of AEP in the test battery for revealing CAPD do not exist.
Concluding the aforementioned, audiological methods for CAPD diagnosing can be divided into the following ways: speech tests (monaural low redundant, dichotic, and binaural interaction); tests assessing temporal processing; and electrophysiologic tests. Tests to perform should be chosen individually based on patient’s complaints and anamnesis. Both verbal and nonverbal tests should be included. The mentioned division of the tests does not mean that tests from all groups must be used. The minimally necessary number of tests is recommended. The use of electrophysiologic tests is determined by the lack of possibility to use behavioral tests or the lack of their accuracy [40, 51]. Thus, the audiologic examination of a patient with presbycusis includes the following steps: (1) collection of complaints, anamnesis, and ENT examination; (2) pure tonal threshold audiometry in silence; (3) impedancemetry; and (4) CAPD tests.
A constant increase in number of elderly and senile people, greater demands on the quality of life in contemporary society, along with extended possibilities of audiological examination dictates a necessity to seek new approaches to the problem of age-related hearing loss. Identification of a pathology level in the auditory system with presbycusis matters a lot while choosing a further tactics of treatment and hearing aid fitting.
Hearing aid fitting is the only possibility to compensate hearing loss in elderly people in the majority of cases. With the technical progress, hearing aids (HAs) become more complex devices satisfying users’ needs, but often HAs do not meet high expectations placed upon it. There are data that only from 6 to 40% of patients with hearing loss use a HA [52, 53]. A number of patients completely satisfied by HA fitting results are about 20%; in elderly people, this percent is even lower, which is associated with several distinguishing features of this group [31, 54, 55]. Memory disorders, impaired ability to capture new information, cognitive disorders, impaired vision, degraded fine motor skills, and the presence of co-morbidities along with specific alterations of auditory perception are among these features [56]. Meanwhile, the refuse of patients with hearing loss to use HA is known to disturb socialization significantly, to lead to social isolation, to intensify cognitive disorders, to reduce the safety of vital activity, and to cause the essential deterioration of quality of life [57]. To evaluate the effectiveness of HA, the speech audiometry in free field is commonly used in adults along with questionnaires [58]. Together with medical parameters, social criteria (ability to practice their profession, to communicate in family without any difficulties, to lead an active social life, etc.) are evaluated. Despite high prevalence of hearing loss, few studies dedicated to the problem of HA effectiveness exist up to the moment [59].
Low effectiveness of HA fitting in elderly and senile patients was shown in our study by results of speech audiometry in 26 (21%) of 125 patients (percent of polysyllabic words intelligibility in quiet with HA was less than 70%). The analysis of results of an audiological examination allowed to conclude that the main factor reducing the effectiveness of HA use in elderly patients was the presence and a degree of CAPD. Studies of other authors confirm this fact [28, 60]. With alterations of the retrocochlear structures, which are often associated with presbycusis, a person’s ability to process and differentiate temporal and spectral properties of acoustic signals is violated, especially in conditions of perceiving speech in background noise [60].
Modern HAs are known to solve the problems of peripheral hearing loss but often not the ones of impaired speech intelligibility. Besides, HAs providing enough loudness of speech signal do not always improve signal-to-noise ratio [61], which disturb good intelligibility. Up-to-date technologies, for example, systems of noise reduction and differentiation between speech and noise, directional microphones, and the presence of various listening programs in one HA, allow a user to increase speech intelligibility with HA [62]. According to our study to increase the effectiveness of HA use by elderly patients, a complex of measures is needed including special audiological examination, therapy aimed at correction of CAPD, and HA fitting with consideration of individual features of a patient’s auditory system.
Revealing CAPD before HA fitting allows an audiologist to prescribe adequate treatment, to warn a patient and his relatives about possible difficulties with HA use, to avoid excessive expectations from HA use, and to plan rehabilitation after HA fitting. To diagnose CAPD, all tests mentioned above are not necessary to perform, although all of them are performed with the use of standard equipment and do not require a lot of time. A percent of monosyllabic words intelligibility in quiet at a comfortable loudness level could serve as an express criterion to prognosticate an effectiveness of HA. Our study showed that with this percent being less than 60%, the risk of poor results from HA fitting significantly increases. A long adaptation to HA, involving not only an audiologist but also a speech therapist and a psychologist, is often required. The aim of such work is the successful use of a HA, so that in older hearing impaired patients social contacts expand, communication skills improve, and self-esteem and overall quality of life increase [59, 60].
At the moment the designed pharmacological treatment of impaired speech intelligibility associated with CAPD does not exist, this problem is being actively studied [27, 63, 64]. Despite the absence of significant success in creation of drugs for restoring speech intelligibility, improving speech signal processing in central auditory pathways is possible, thanks to the auditory training that helps to correct CAPD.
The auditory training is the complex of acoustic settings and tasks created to activate the auditory and related systems and to cause positive changes of neuronal activity and related auditory behavior. Two types of the auditory training are distinguished: (1) “bottom-up” approach (from the periphery to central parts, due to incoming sound signal) includes the improved audibility and sound quality through the use of hearing aids, FM systems and optimization of room acoustics, as well as sessions with a speech therapist to correct temporal and frequency processing, sensitivity to changes of loudness, and so on [65] and (2) “top-down” approach (from central parts to periphery involving higher functions of central nervous system) combines linguistic, cognitive, and metacognitive strategies of learning and includes special complexes to train the auditory attention, memory, linguistic and cognitive functions, musical education, and learning foreign languages.
Generally, these two approaches complement each other and must be applied together to reach maximum positive results, to improve speech intelligibility, and to compensate a residuary deficit [65]. Concrete rehabilitation plan must be worked out individually depending on deficit profile of a patient, his lifestyle, social and communicative needs, presence of co-morbidities,and so on. The concept of the auditory training as acoustic stimulation has been known a few centuries. At the end of 1990, first confirmations of the influence of auditory deprivation on the auditory system and proofs of plasticity inherent to the brain appeared, so the principles of the auditory training regained its development [65].
Results of last studies definitively proved that plasticity was inherent to the brain, that is, the ability of the cortex and lower levels to reorganize, and these modifications were manifested in behavioral changes [66, 67]. Although the plasticity of the brain is maximum in childhood, the ability to reorganize in the response to education persists in the mature CNS as well [68]. The auditory training leads to the reorganization of the cortex and brainstem and the increase in effectiveness of the synaptic transmission and in density of the neural tissue [66, 67, 69, 70]. Even rather peripheral processes such as determination of signal pitch can be altered during the training [71]. Cortical changes stimulated by the auditory training invade rather broad areas and remain for a long time [65]. They include four types of cortical reorganization: (1) expansion of maps, that is, areas responsible for a trained function; (2) a compensatory transmission of performing a trained function into another cortical area; (3) cross modal reorganization with involvement of cortical areas receiving an input signal from other sensory modalities; and (4) adaptation of homologous regions, that is, activation in areas in homologous regions of the contralateral hemisphere [72].
Studies on animal models proved that auditory stimulation induces alterations of inherent neural substrate. For example, tonotopic reorganization of the auditory cortex was revealed in monkeys after intensive frequency discrimination tasks. The cortical representation, the sharpness of tuning, and the latency of the response were greater for the behaviorally relevant frequencies of trained monkeys when compared to the same frequencies of control monkeys [65]. Experiences with rats showed that training-induced improvements occurred in the auditory cortex even if a damage (an impact of noise in the experiences) was done in childhood. This proves the possibility of improvement, or maybe restoration, of auditory function in adult rats even after a long time after the initial damage to the auditory cortex [73]. Another study on rats showed that the age-related deficit in distinguishing sound characteristics could also be restored by the intensive auditory training, and not only functional but also structural changes in the auditory cortex resulted from the training [74]. The human auditory system is assumed to undergo similar changes in conditions of sound stimulation.
Before studying patients with hearing loss, the auditory training was approbated in patients with normal hearing. Positive results of the training in persons with normal functioning of the auditory system (both peripheral and central) were shown: the improved results of behavioral and electrophysiological tests were observed after the auditory training to distinguish sound stimuli consonant-vowel [75, 76]. Significant improvement of speech intelligibility was observed in young persons with normal hearing after the auditory training with multiple tasks (speech in noise and accelerated speech) for 8 weeks. The improved results of behavioral tests were confirmed by the increased sharpness of frequency tuning, especially fundamental frequency and the second harmonic [77]. Thus, the auditory training causes the changes in neural activity and improves the neural impulses, which provide coding speech signals [78]. Positive changes of mismatch negativity and increased amplitudes of P1, N1, and P2 were revealed after the training. N1-P2 potential is considered to reflect early cortical processes associated with stimulus decoding and speech detection. Mismatch negativity reflects later processes including distinguishing of speech stimuli changes. The activity of the superior temporal gyrus and planum polare of the right hemisphere on fMRI had decreased in patients after the auditory training, which reflected the enhanced effectiveness of functioning of these areas and improved ability of auditory perception [79]. Some authors consider these improvements to occur only for the trained sound stimulus, and others consider to spread on other stimuli [80]. Neurons of the auditory cortex, which are selectively tuned to some frequencies or amplitudes, were found to be able to change their selectivity after the behavioral auditory training [81].
It can be said that we form our brain as we form our muscles. These data open up new possibilities for rehabilitation, particularly the possibility to train patients’ own central resources. Although the compensation of the peripheral deficit (the increased intensity of input signal) dominates in rehabilitation of elderly patients, the role of deficit-specific, intensive auditory training should not be underestimated.
In case of concurrent attention, deficits or intellectual disorder cognitive trainings are also used [65]. Compensatory training belongs to “top-down” approach designed to minimize the impact of auditory processing deficit that persists after the modification of acoustic environment and the auditory training. Compensatory training includes providing information on strategies of communication aimed at strengthening the use of central cognitive resources (linguistic strategies, memory, ability to problem solving, exercises on vocabulary expansion, development of active listening, and training of concentration). General recommendations on lifestyle such as preservation of intellectual activity, maintaining physical activity, minimizing chronic stress, and healthy nutrition are helpful to reduce a risk of development of cognitive deficit [28]. The effectiveness of the auditory training is explained by the fact that neuroplasticity is not completely lost with the aging process, though gradually decreases [60]. The central auditory system in elderly persons preserves its ability for training-induced alterations, which entails the possibility to improve speech intelligibility, especially in noisy environment [65].
In the laboratory of hearing and speech (Saint-Petersburg, Russia), a program of the auditory training with the use of two approaches “bottom-up” and “top-down” was evaluated. The aim of the study was to design an optimal algorithm of the auditory training for adults with SNHL and poor speech intelligibility in noise. Twenty-nine patients, HA users with moderate to moderately severe SNHL and symptoms of CAPD, including poor speech intelligibility in noise, underwent this auditory training: 12 young patients (from 19 to 22 years old) and 17 elderly and senile patients (from 60 to 83 years old). An examination before the training included the pure tonal audiometry, tests evaluating central auditory pathway functioning, and speech audiometry in free field by means of the Russian Matrix sentence test (RUMatrix). The auditory training was conducted individually by a speech therapist and included a distinction between nonverbal and verbal stimuli of varying complexity, as well as tasks to improve memory (e.g., memorizing poetry).
Nonverbal training included the following tasks: (1) to distinguish stimuli by pitch with sets of 18 musical sounds of different pitches. Increase of the stimulation complexity—from the set “1 instrument—1 pause” to the set “3 instruments—2 pauses”; (2) to detect silent pause between two sound signals—three variants (tonal signal, noise signal, and vowel); and (3) to evaluate rhythmic pattern of three signals (long or short).
Verbal training included the following tasks: (1) to distinguish a rhythmical pattern of 15 sequences of three syllables/phonemes (vowel “A,” syllables “MA,” and “PA”) of different duration or intensity; (2) to perceive acoustically similar words and syllables with a choice of the correct word from 6 to 12 homonyms (“dom-tom” and “gora-kora”); (3) to distinguish syllables with a choice from two syllables (“ba-va” and “ga-da”), in more complex variants—from four to eight syllables; and (4) to perceive speech in background speech noise with identifying all vowels presented (eight variants in the set) or words (20 in the set), in the complex variant—to identify the predetermined signal by a speaker’s voice (vowels or words spoken by male or female voice) in background speech of another speaker.
Classes lasted for 60 minutes and were carried out twice a week. The course of the auditory training took 8–10 weeks. A percent of correct answers and time of reaction were compared in the beginning and at the end of the training when analyzing the results. After the training, the significantly improved (p < 0.01) perception of verbal and nonverbal signals was revealed both in young and elderly HA users (a percent of correct answers increased by 24.4 ± 5.2% and 15.3 ± 6.4% accordingly; decrease of time of reaction in the range from 0.4 tо 1.6 seconds). Besides, RuMatrix in quiet and noise, performed with hearing aids in free field before and after the training, was used to assess the effectiveness of the training. Signals were presented from a loudspeaker located at an angle of 0° relatively to a patient’s head (frontally) on 1 m distance. The effectiveness of the training was evaluated by calculating the difference between first and last results. Significantly improved speech intelligibility (p < 0.05) both in quiet and in noise was revealed after the training. According to the results of the RuMatrix in quiet, the intensity, at which 50% sentence intelligibility level was achieved, was 44.5 ± 11.4 dB SPL before the training and 43.5 ± 12.5 dB SPL after the training. The difference of the results is significant (р < 0.05). According to the results of the RuMatrix in noise, signal-to-noise ratio, at which 50% sentence intelligibility level was achieved, was 1.5 ± 5.5 dB SNR before the training and −0.33 ± 5.5 dB SNR after the training. The difference between the results is also significant (р < 0.05).
Based on the study, improved functioning of the central auditory pathway was shown after the auditory training, so it is appropriate to include it in the rehabilitation of HA users with low speech intelligibility in noise. The following algorithm of the auditory training was designed: (1) the distinction between nonverbal signals with changes in their duration, frequency, and intensity; (2) recognition of speech stimuli of varying complexity, including speech in background noise; and (3) tasks to improve memory. An important aspect of training was a gradual complication of tasks in the process of each session and from lesson to lesson [82].
Improvement of speech intelligibility in elderly patients with SNHL proves that plasticity of the auditory regions of the brain remains possible throughout the life. Stimulation-induced plastic changes in the central auditory pathways were proved by other researchers too [28]. According to some researchers, the decreased latency time and decreased variability between peaks of auditory evoked potentials were revealed in elderly after the course of the auditory training and accompanied by improved speech intelligibility in noise and short-term memory [28]. As shown by our study, improvement of neuronal functioning can be proven by the results of behavioral tests, which were also noted by a number of foreign authors [77].
Neuronal changes depend on the activity of training and amount of stimulation, and the sooner the stimulation begins after the detection of impaired intelligibility, the best results can be expected, however, to start training is never too late [65].
One of the basic principles of the auditory training must be concordance between the used material and age and linguistic skills of a patient. If the materials and tasks exceed the cognitive and linguistic skills of a patient, he/she will have no interest in the training, and there will be no progress. In contrast, material for adult training should not be childish and too simplistic. Motivation is also one of decisive factors in the training success. To increase the motivation, patients should understand the principles and the theory of action of the auditory training.
The use of a various tasks, the variation of a stimulus in the auditory training helps to maintain a patient’s attention, increases motivation and makes the training more efficient. The complexity of tasks during the training can vary automatically: as soon as a patient reaches the predetermined level, the task becomes more difficult. Careful monitoring of a patient’s progress is important. For each patient, an individual profile of functional deficit, which reflects the processing of information in the central auditory pathways, cognitive and language skills, should be developed, and an emphasis on training deficit skills should be done while planning the rehabilitation.
At the moment, the presbycusis is irreversible; therefore, the prevention of age-related hearing loss must be paid attention to. First of all, it is necessary to educate the population about harmful factors affecting hearing throughout the life, such as ototoxic drugs, noise exposure, vibrations, and others. Audiological care in case of SNHL should be aimed at the enhancement of nonspecific resistance of excitable structures of the auditory analyzer to general pathological damaging factors—tissue hypoxia, oxidative stress, and extinction of the action of endogenous neurotrophic factors [30, 83].
Due to the fact that with age-related hearing loss, it is impossible to obtain gains in tonal hearing, and special emphasis is done on means of improving the auditory attention (the functions of the central auditory pathways), which allows to compensate for the lack of auditory acuity and enhance the efficacy of the hearing aid. If CAPD causing poor speech intelligibility is detected, the auditory training is appropriate.
Constantly growing number of aged and senile people, increasing demands to the quality of life in modern conditions, as well as enhancing of audiological examination opportunities requires the necessity of searching the new approaches to the problem of age-related hearing impairment.
Presbycusis does not develop in all people. Genetic mechanisms are considered to be the crucial cause of age-related hearing loss development. Different diseases acquired throughout the lifetime and other factors can contribute to hearing loss progression in the case of hereditary predisposition to presbycusis.
Assessment of pathology level in the auditory system in patients with presbycusis is essential during the choice of further treatment and hearing rehabilitation. Therefore, it is necessary to use various audiologic methods during elderly people examination, including tests to evaluate the central auditory pathways. Elderly patients often suffer from impaired speech intelligibility, especially in background noise. This is one of the central auditory processing disorder symptoms. Currently, there are no data about significant achievements in development of drugs, improving speech intelligibility. According to research on brain neuroplasticity, specially designed auditory training programs have been shown to be able to refine speech signals’ processing in central auditory pathways even in aged people. Auditory training designed with consideration of the individual features of auditory deficit should be included into rehabilitation programs of aged people with speech intelligibility disorders.
There are no conflicts of interests.
The history of food additives goes back to ancient times. As great civilisations developed, populations grew and so did the demand for food. In ancient Egypt, where the climate was not conducive to food storage, especially due to the heat, people started looking for ways to extend the usability life of products. Common practices included the addition of salt, drying in the sun, curing/corning, meat and fish smoking, pickling, and burning sulphur during vegetable preservation. The earliest preservatives included sulphur dioxide (E220), acetic acid (E260), and sodium nitrite (E250), while turmeric (E100) and carmine (E120) were among the first colours. Food preservation was also of immense importance during numerous armed conflicts. Both during the Napoleonic wars in Europe and during the American Civil War, seafarers and soldiers needed food. Limited access to fresh food at the front motivated the armed forces to transport their food with them. This is when cans were introduced for food preservation purposes. In the subsequent centuries, ammonium bicarbonate (E503ii), also known as salt of hartshorn, used as a rising agent for baked goods, and sodium hydroxide solution (E524), used in the production of salty sticks, rose to prominence [1, 2].
\nThe nineteenth century saw considerable advancements in the fields of chemistry, biology, and medicine. A name that needs to be mentioned here is Louis Pasteur, a French scientist, who studied microbiology, among other things. He was the first to prove that microorganisms were responsible for food spoilage. At the same time, new chemical compounds were discovered that were able to inhibit the growth of microbes. Some substances, such as picric acid, hydrofluoric acid, and their salts, often had disastrous consequences when added to food. Insufficient knowledge of toxicology resulted in consumer poisonings and even deaths [1, 3]. At that time, food preservation was the number one priority, which was achieved, for instance, by using salicylic acid, formic acid (E236), benzoic acid (E210), boric acid (E284), propionic acid (E280), sorbic acid (E200) and its potassium salt (E202), and esters of p-hydroxybenzoic acid. Later, food concerns also focused on improving the organoleptic properties of their products and started to enhance food with colours, flavours, and sweeteners, without first researching their effects on human health. For example, such practices involved the use of synthetic colours used in fabric dyeing. This desire to make money on beautiful-looking products led to adulterating food with copper and iron salts, which have a negative impact on the human body. It was as late as in 1907 that the United States studied 90 of the synthetic colours used at that time for food dyeing and found only 7 to be acceptable for further use. Detailed studies and strict regulations on the use of food additives were created almost a century later [1, 4].
\nGlobally, food safety is ensured by the World Health Organization (WHO) and the Food and Agriculture Organization (FAO). In 1962, these organisations established a special agenda—the Codex Alimentarius Commission. The Commission has prepared and updated the Codex Alimentarius, which is not a legal Act per se, but provides a reference for standards on raw materials and food products, acceptable contamination levels, hygienic processing, research methods, and food additives for almost all countries worldwide [5]. In the European Union, the body responsible for improving human health protection and food safety risk mitigation, as well as for taking care of purchaser interests, is the European Food Safety Authority (EFSA). It is a scientific agency established in 2002 pursuant to the Regulation of the European Parliament and of the Council of 28 January 2002. European legislation is based on the Codex Alimentarius but conducts its own complementary research. Therefore, the list of food additives permitted by the European Union is different from the American one [5].
\nThe primary legal Act governing food in Poland is the Food and Nutrition Safety Act of 25 August 2006 (as amended). It specifies the requirements applicable to food and nutrition, concerning product labelling, hygienic conditions throughout the production process, and product replacement rules, as well as requirements concerning the use of food additives. The key document that pertains specifically to food additives is the Regulation of the European Parliament and of the Council of 16 December 2008 on food additives. The EU-approved list of food additives is presented in the Commission Regulation (EU) of 11 November 2011 [4, 5].
\nA food additive (additional substance) is any substance that is not a food in itself or an ingredient in food, but when added to a product for processing purposes, it becomes part of the food [5]. The following are not considered to be food additives: ingredients in food or chemicals to be used in other products, i.e. in particular sweeteners, such as monosaccharides, disaccharides, and oligosaccharides; substances with flavouring, dyeing, and sapid properties (such as dried fruit); glazing and coating substances, which are not intended to be consumed; and chewing gum bases, dextrin, modified starch, ammonium chloride, edible gelatine, milk protein and gluten, blood plasma, casein, and inulin. The law forbids the use of food additives in unprocessed food, honey, non-emulsified oils and fats of an animal or vegetable origin, butter, milk, fermented milk products (unflavoured, with living bacteria cultures), natural mineral and spring water, unflavoured leaf tea, coffee, sugar, dry pasta, and unflavoured buttermilk [5]. Any marketed additive must comply with the requirements of the European Food Safety Authority, i.e. it has to be technologically justified. It must not put consumers’ life or health at risk; its use should not mislead the purchaser; its acceptable daily intake (ADI), or quantum satis, the smallest amount which is needed to achieve a specific processing objective for the substance, must be calculable; and, last but not least, such an additive must not adulterate the product it is to be added to. Producers are also required to include information on any food additives on product labelling [6, 7].
\nEU legislation has approved approximately 330 food additives for use. The primary objectives behind the use of additives are to extend the shelf life and freshness of products, prevent product quality impairment, make the product more attractive to customers, achieve the desired texture, ensure specific product functionality, facilitate production processes, reduce production costs, and enrich the nutritional value of products. In order to harmonise, effectively identify any additives, and ensure smooth exchange of goods, each food additive has its own, standardised, code. This code is consistent with the International Numbering System (INS) and comprises the letter “E” and three or four digits. There are several food additive classifications. One is based on the regulation and differentiates between colours (approx. 40), sweeteners (approx. 16), and other additives (approx. 277) [8, 9].
\nAdditional substances can also be categorised on the basis of code numbers:
Colours—E100–E199
Preservatives and acidity regulators—E200–E299
Antioxidants and synergists—E300–E399
Stabilising, thickening, emulsifying, coating, and bulking substances—E400–E499
Other substances—E500 and above
Food additives can also be divided into four major groups, based on their processing purpose. These are substances that prevent food spoilage, those which improve sensory features, firming additives and excipients. The most numerous group among additives that slow down food spoilage are preservatives. These are either natural or synthetic chemical compounds added to food to restrict as much as possible the biological processes that take place in the product, e.g. the development of microflora and pathogenic microbes, and the effects of enzymes that affect food freshness and quality. In food products, preservatives change the permeability of cytoplasmic membranes or cell walls, damage the genetic system, and deactivate some enzymes. Food is preserved using antiseptics or antibiotics. The former are synthetically produced simple compounds that often have natural correlates, and they make up no more than 0.2% of the product. Antibiotics, or substances produced by microorganisms, are used in very small, yet effective, doses. The effectiveness of preservatives depends primarily on their effect on a specific type of microorganism, which is why it is vital to select the appropriate preservative based on the microbes found in the product (bacteria, mould, or yeast). Other factors that determine the effectiveness of preservatives include the pH value (a low pH is desirable), temperature, the addition of other substances, and the chemical composition of the product. Preservatives constitute an alternative to physical and biological product freshness stabilisation methods, such as drying, pickling, sterilising, freezing, cooling, and thickening. Consumer objections concerning the widespread use of chemical preservatives and their effects on human health have motivated producers to develop new food preservation procedures. These include radiation, packaging, and storing products in a modified atmosphere, using aseptic technology. Products that are most commonly preserved include ready-made dishes and sauces, meat and fish products, fizzy drinks, and ready-made deserts [9, 10].
\nOther substances used as preservatives are acids and acidity regulators. These substances lower the pH level and slow down the growth of enzymes, which hampers the development of microbes. They are used mainly in the production of marinades. For a specific acid or acidity regulator to fulfil its role as a preservative, it needs to be added in highly concentrated form, but acetic acid, for instance, can irritate mucous membranes when its concentration exceeds 3%. Acids and acidity regulators are also used to enhance flavour (usually in fruit or vegetable products, or beverages, to bring out their sour taste) or to facilitate gelatinisation and frothing during food processing [11, 12].
\nNot only microorganisms but also oxygen is responsible for food spoilage. Products such as oils, fats, and dry goods (flour, semolina) oxidise when they come into contact with atmospheric oxygen. Fat oxidisation (rancidification) occurs in oils, lard, flour, and milk powder. The browning of fruit, vegetables, and meat, on the other hand, is the result of non-fat substance oxidisation. These oxidisation processes can be slowed down or eliminated completely using antioxidants. There are natural and synthetic antioxidants and synergists. Synthetic antioxidants are primarily esters (BHA, BHT, propyl gallate). These are used to stabilise fats used to fry, e.g. crisps and chips. The most common natural antioxidants are tocopherols, i.e. vitamin E. Other antioxidants include phenolic compounds, such as flavonoids and phenolic acids. Synthetic antioxidants are more potent and resistant to processing. Synergists are substances that support and extend the functioning of antioxidants. They can form complexes with heavy metal ions, which retard the oxidisation process. The most frequently used synergists are EDTA, citric acid, and ascorbic acid. Antioxidants do not pose a risk to human health. In fact, they can be beneficial. Antioxidants prevent unfavourable interactions between free radicals and tissue and slow down ageing processes and the development of some diseases [12, 13].
\nIn order to extend the freshness of consumer goods, products are also packaged in a modified atmosphere. As part of this process, the oxygen content inside the packaging is reduced and replaced with other gases, such as nitrogen, argon, helium, and hydrogen. Furthermore, products in the form of aerosol sprays, such as whipped cream, have nitrous oxide, butane, or propane added to them. All these gases are also food additives with their own E codes [5, 11].
\nThe organoleptic properties of consumer goods are very important to consumers. Visual appeal is considered to be as important as taste or smell. This is where food colours come into play. These are used to add colour to transparent products (e.g. some beverages), intensify or bring out product colour (beverages, sweets), preserve or reproduce colours that have faded as a result of processing, ensure that all product batches have a specific colour, and provide the products that are diluted after purchase with strong colour. In order to add colour to a product, manufacturers use natural, nature-identical, synthetic, and inorganic colours. Natural colours are produced from edible plant parts (fruits, flowers, roots, leaves) and from animal raw materials, such as blood, chitinous exoskeletons of insects, and muscle tissue. New technologies have also made it possible to obtain colours from algae, fungi, and mould. Natural colouring substances include carotenoids that provide a spectrum of yellow and orange colours (carrot, citrus fruit skin), flavonoids that give products blue and navy-blue colours (grapes, currants, chokeberry, elder), betalains that give products a red colour (beetroot, capsicum), and chlorophyll that lends green colours (salad, parsley), as well as riboflavin (vitamin B2), curcumin, and caramel. Natural colours are desirable for consumers, as they do not show any negative effects on health. However, a significant drawback to using natural colours is that they are very sensitive to environmental factors, such as pH, ambient temperature, oxygen content, or sun exposure, which is why they are not durable when it comes to processing and storage. Moreover, the cost of obtaining such colouring substances is rather high. The list of additives contains 17 natural colours, and their market share in 2012 was approx. 31% and was subject to an upward trend [6, 8].
\nSynthetic food colours are very competitive compared to natural ones. They offer a wide spectrum of colours, including those that are not available in nature, provide strong colouring, and are resistant to environmental factors, so they do not fade during processing. Furthermore, they are not expensive to produce, which contributes to low end-product prices. Synthetic colours can be divided into organic and inorganic, with organic constituting the considerable majority in terms of food colouring. In the past, chemical colours were made of coal, while now crude oil is used for this purpose. EU law approves 15 synthetic colours, including the so-called Southampton colours. A study conducted in 2007 in the United Kingdom (in Southampton, hence the name) showed the particularly negative effects of six colours on children’s health [10]. Specifically, tartrazine (E102), quinoline yellow (E104), sunset yellow (E110), azorubine (E122), cochineal red (E124), and Allura red AC (E129) were found to cause hyperactivity. As a result, since 2010, manufacturers which add at least one of their products have been required to provide label information about their negative effects on concentration and brain functioning in children. Acceptable daily doses of these colours have also been reassessed and updated. Moreover, research conducted on lab animals has shown that the long-term use of synthetic colours, and especially the three that account for 90% of the use of all synthetic colours (Allura red, tartrazine, and sunset yellow), can cause cancer, allergies, and chromosome mutations. Products that are most often synthetically coloured include candy, wine gums, ready-made desserts, and refreshing beverages [8, 10].
\nDuring consumption, one can experience product taste, smell, and consistency. These three sensations are referred to as palatability and are caused by flavours. Taste is experienced by taste buds located in the tongue. Adult individuals have approximately 10,000 such receptors. There are four primary tastes, namely, salty, sweet, bitter, and sour. There is also an additional type, referred to as umami, which is Japanese for “savoury, meaty”. This taste experience is provided by monosodium glutamate. Smell is experienced through volatile compounds that go directly through the nasal or oral cavity and throat to smell receptors. Taste and smell provide a ready source of information on whether the product is fresh, whether it has specific characteristics, and whether it has been adulterated. Flavours are mixtures of many compounds, in which the specific characteristic smell is produced by a single compound or several indispensable compounds. These are added to enhance the taste or smell of the product or to give something the flavour or aroma that has been lost during product processing [6, 7, 11]. There are natural, nature-identical, and synthetic flavours. Natural flavours are obtained from parts of fruits and vegetables, spices, and their flavouring compounds, such as lactones (found in fruits and nuts), terpenes (in essential oils, found in almost every plant), and carbonyl compounds (fermented dairy products). Nature-identical flavours are compounds originally found in a given raw material that can be recreated in the lab. Synthetic flavours are compounds that have been chemically created and produced and do not have their equivalent in nature. Similarly to natural colours, natural flavours are easily degraded during processing, and their extraction is costly, which is why the food industry generally uses synthetic substances to provide products with specific taste and odour. Moreover, synthetic compounds are capable of giving products much stronger flavours than natural ones [6, 7, 13].
\nA separate group that enhances the sensory properties of food are sweeteners. Formerly, in order to make products sweet, manufacturers used sucrose, commonly known just as sugar, obtained from sugar beet or sugarcane. Now large-scale methods are commonly used, such as chemical production and the extraction of intensively sweetening substances, known as sweeteners, from specific plants. What is characteristic about such substances is that they are much more potent as sweeteners compared to sucrose, and, at the same time, their calorific value is close to zero. Natural sweeteners include glucose-fructose syrup (or syrup based on one of those sugars), thaumatin, neohesperidin DC, stevia, and xylitol. Synthetic sweeteners include acesulfame K, aspartame (and the salts of these two compounds), sucralose, cyclamates, saccharin, and neotame. Sweeteners are used in the production of beverages, juices, dairy products, spirits, sweets, marmalade, and chewing gum [14, 15]. In contrast to sucrose, the majority of synthetic sweeteners do not increase blood sugar level and do not cause tooth decay. These substances are attractive for producers because the cost of their production is low, and even small amounts of such compounds are able to ensure the desired sweetness of the product, so these are economical to use. In addition, most sweetener additives remain functional during processing, although some compounds are not resistant to high temperatures. A study conducted in 2010 on lab animals raises some concerns when it comes to sweetener safety in relation to human health [20]. Its findings showed that regular consumption of sweeteners in large quantities caused obesity and neoplasms in animals. Sweetener additives in consumer goods have been considered safe for humans [10]. Each such additive has a specific ADI value and amount (in milligrammes) that can be added to 1 kg (or 1 dm3) of product [13, 14, 15].
\nThe additives that are vital in terms of processing are firming additives. They create or stabilise the desirable product structure and consistency. Firming agents include gelling, thickening, emulsifying, bulking, binding, and rising agents, humectants, and modified starches. The highest status among these substances is enjoyed by hydrocolloids. Hydrocolloids, known as gums, are polysaccharides of plant, animal, or microbiological origin. There are natural (guar gum, agar, curdlan), chemically and physically modified (modified starches), and synthetic gums. With their macromolecular structure, they are able to bind water, improve solution viscosity, and create gels and spongiform masses. Hydrocolloids are used as gelling (e.g. in the production of jelly, desserts, pudding, and fruit-flavoured starch jelly), thickening (ready-made sauces, vegetable products), water-binding (powdered products to be consumed with water, frozen food), and emulsifying agents (to create oil-in-water-type emulsions). They also act as emulsion stabilisers. Hydrocolloids are considered safe for human health, although some of them can cause allergies. Consumed in large quantities, they can have laxative effects [12].
\nWhat is also important in creating product structure are emulsifiers and the emulsification method. Emulsifiers are compounds which facilitate emulsification. There are water-in-oil (margarine) and oil-in-water (mayonnaise) type of emulsions. Emulsifiers position themselves at the interface between two different phases to stabilise the emulsion. There are natural emulgents, with lecithin as the most common, and synthetic emulgents (glycerol and its esters) [1]. Product consistency and texture are also adjusted using modified starches. Such starches are usually obtained from potatoes or corn (also genetically modified one) with chemically altered composition. Similarly to hydrocolloids, such substances can bind water and produce gels and are also resistant to high temperatures [11, 12]. Modified starches are added to ready-made sauces and dishes (such as frozen pizza), frozen goods, bread, and desserts (also powdered) to thicken and maintain product consistency after thermal processing. In order to enhance starch properties, phosphates are often added during starch modification. The human body needs phosphorus, but its excess can negatively affect the bones, kidneys, and the circulatory system [7, 11, 12].
\nNowadays, consumer goods are widely available, and consumers are provided with a broad range of products to choose from. The continuously growing number of world population (approximately 7 billion in 2011) has made supply on the food market exceed demand. This situation is characteristic of countries with a high GDP. Food producers examine consumer behaviour patterns to see what encourages them to make a purchase, and also the purchase itself and its consequences, and then analyse these processes to launch a new product or a substitute for an already existing one. To sum up, the market has provided more food products than consumers are able to purchase, which results in unimaginable food wastage. Each year, approximately 100 million tonnes of food goes to waste in Europe. This quantity does not include agricultural and food waste or fish discards [13].
\nThe methodology of this study was based on the information contained on the labels. The chemical composition of the investigated food products was presented. Interview with the store’s seller concerned the popularity and frequency of sales listed in the product tables. It should be noted that the examined store is representative when it comes to this type of stores in the majority of small towns in south-eastern Poland.
\nThis study was based on data on the most frequently chosen consumer goods in a store in a small town in Poland. The town is located in a commune that has 5300 residents. Data were obtained by monitoring the sales over the course of 12 months. These products are presented in Tables 2, 3, 4, 5, 6 and classified into the following categories: (i) meat and fish; (ii) beverages; (iii) condiments; (iv) ready-made sauces, soups, and dishes; and (v) sweets and desserts. The main classification criterion was segregation into primary food groups. The chemical composition of each product, as listed on the packaging, was included in a table and then assessed against the presence of any food additives. Sixteen most common additives were selected in all the investigated products; only chemical compounds that were found in at least four food products were taken into consideration. The most common food additives were highlighted in Holt in the “product composition” column and presented in Table 1, together with their E codes. Then, based on the literature, the study described the most common additional substances.
\nName | \nSymbol | \nNumber of products | \n
---|---|---|
Citric acid | \nE330 | \n15 | \n
Monosodium glutamate | \nE621 | \n10 | \n
Guar gum | \nE412 | \n8 | \n
Sodium nitrite | \nE250 | \n7 | \n
Disodium 5′-ribonucleotides | \nE635 | \n6 | \n
Sodium erythorbate | \nE316 | \n5 | \n
Glucose-fructose syrup | \nNot considered an additive | \n5 | \n
Soy lecithin | \nNot considered an additive | \n5 | \n
Maltodextrin | \nNot considered an additive | \n5 | \n
Triphosphates | \nE451 | \n4 | \n
Xanthan gum | \nE415 | \n4 | \n
Carrageenan | \nE407 | \n4 | \n
Tocopherols | \nE306 | \n4 | \n
Glucose syrup | \nNot considered an additive | \n4 | \n
Sodium benzoate | \nE211 | \n4 | \n
Ammonia caramel | \nE150c | \n4 | \n
The most common food additives and ingredients.
Table 1 shows 16 of the most popular substances found in food. The majority of these substances are food additives; four other substances are not considered in the European Union as food additives. The additives that are the most frequently found in the food products examined in this study are citric acid (E330), monosodium glutamate (E621), and guar gum (E412). In Ref. [16] it is reported that the most popular preservatives found in food are the mixture of sodium benzoate and potassium sorbate, or potassium sorbate (E202) and sodium benzoate (E211) used separately, and also ulphur dioxide (E220). Data presented in Table 1 shows that, compared to citric acid, another preservative, sodium benzoate, is used rarer. No potassium sorbate was found in any of the products examined in this study. In Ref. [13] it can be concluded that the most commonly used preservatives and antioxidants are sorbic acid and its salts (E200-203), benzoic acid and its salts (E210-213), sulfur dioxide (E220), sodium nitrite (E250), lactic acid (E270), citric acid (E330) and tocopherols (E306). The majority of the additives listed in Ref. [13] can be found in Table 1.
\nTable 2 shows 10 meat and fish products and their composition, as specified on the label. Each of the investigated items contained at least 1 of the 16 most common food additives (Table 1). As much as 50% of meat and fish products contained four or more of such additives. The highest number of additives (seven) was found in “Z doliny Karol” mortadella. “Masarnia u Józefa” crispy ham and “Lipsko” Śląska sausage contained six different food additives. Seventy percent of the examined products had had sodium nitrite (E250) added. This means that this preservative is frequently added to meat products, as confirmed in Ref. [9]. Other widespread preservatives mentioned in Ref. [9] include lactic acid (E270), sodium benzoate (E211), sorbic acid (E200), and sulphur dioxide (E220). In Ref. [9] it also mentions other additives frequently added to meat and fish products; these include carrageenan, gum arabic, and xanthan gum. In this study, 50% of the examined items contain one or two gums, and carrageenan is present in only three in ten products. A study in Ref. [17] demonstrates that fish products are the second leading food (after edible fats) in terms of preservative content.
\nProduct | \nIngredients | \nProduct | \nIngredients | \n
---|---|---|---|
Szynka krucha (ham) Masarnia u Józefa | \nPork ham, salt, pork protein, carrageenan, potassium acetate, potassium lactate, smoke flavouring, monosodium glutamate, diphosphates, triphosphates, flavourings, sodium erythorbate, tocopherols, sodium nitrite | \nPasztet podlaski (pâté) 155 g Drosed | \nWater, mechanically separated chicken meat, rapeseed oil, chicken liver and skin, cream of wheat, salt, soy protein, potato starch, dried vegetables, spices, powdered milk, (milk) whey, sugar, maltodextrin, plant protein hydrolysate, yeast extract | \n
Kiełbasa śląska (sausage) Lipsko | \nPork 60%, pig fat 17%, water, mechanically deboned chicken meat, fibre, pork skin emulsion, potato starch, milk proteins, triphosphates, tara gum, xanthan gum, sodium erythorbate, aluminium ammonium sulphate, salt, glucose, flavourings, carmine, spice extracts, maltodextrin, monosodium glutamate, soy protein, sodium nitrite | \nŁuków przysmak kanapkowy (tinned meat) 300 g | \nPork meat 30%, water, beef meat 18%, pig fat, soy protein, salt, beef fat, triphosphates, spices, pork gelatine, flavouring, sodium nitrite, tinned high-yield luncheon meat | \n
Mortadela doliny (mortadella) Karol | \nWater, pork 20%, mechanically separated chicken meat 15%, pig fat, pork connective tissue, cream of wheat, acetylated starch, polyphosphates, triphosphates, diphosphates, sodium citrate, calcium lactate, sodium lactate, salt, soy protein concentrate, pork protein, wheat fibre, spices (including mustard seeds, corn, and legumes), spice extracts, yeast extract, flavourings, glucose syrup, glucose, vinegar, sodium erythorbate, ascorbic acid, guar gum, disodium 5′-ribonucleotides, monosodium glutamate, sodium nitrite | \nAgrovit duże porcje konserwa tyrolska (tinned meat) 400 g | \nWater, mechanically separated chicken meat 23%, pork raw materials 23%, modified (corn) starch, wheat fibre, pea fibre, salt, carrageenan, processed Eucheuma seaweed, spices, spice extracts, monosodium glutamate, sodium erythorbate, sodium nitrite | \n
Mięso mielone wieprzowe (ground pork) Adrian | \nPork meat 65%, pig fat 34%, salt, xanthan gum, carrageenan, konjac, starch, sodium nitrite | \nEuro Fish szprot w sosie pomidorowym (sprat in tomato sauce) 170 g | \nFish—sprat without heads—tomato sauce, water, tomato concentrate, sugar, rapeseed oil, salt, modified starch, dried onion, guar gum, xanthan gum, spice extracts, acetic acid | \n
Parówki (frankfurters) Indykpol | \nChicken meat 25.9%, mechanically separated turkey meat 17%, mechanically separated chicken meat 17.3%, water, poultry fat, pork, corn flour, chicken skins, pig fat, pork skins, potato starch, soy protein, salt, spices, spice extracts, flavourings, monosodium glutamate, acetylated distarch adipate, guar gum, potassium acetate, potassium lactate, diphosphates, ascorbic acid, sodium erythorbate, sodium nitrite | \nGraal Flet z makreli w sosie pomidorowym (mackerel fillet in tomato sauce) 170 g | \nMackerel fillets 60%, tomato sauce, water, tomato concentrate, sugar, rapeseed oil, modified starch, spirit vinegar, salt, powdered tomatoes, dried onion, spice extract, spices, guar gum, xanthan gum, pepper extract, maltodextrin | \n
Food additives and ingredients in the studied meat and fish products.
Table 3 shows ten non-alcoholic beverages, six of which contain at least one common food additive (Table 1). Foreign substances that are most frequently found in this food group are citric acid (E330), sodium benzoate (E211), and glucose-fructose syrup. A study in Refs. [18, 19] shows that the most popular sweeteners in non-alcoholic beverages are glucose, fructose, and glucose-fructose syrups. As shown on product label, 100% juice by brands such as “Hortex” and “Tymbark”, as well as “Cisowianka” and “Kubuś” mineral waters, is additive free. Pursuant to the Regulation of the European Parliament and of the Council (EC) of 16 December 2008, no food additives may be used in mineral and spring bottled water. The beverage to contain the largest number of additive substances was white orangeade by “Hellena”.
\nProduct | \nIngredients | \nProduct | \nIngredients | \n
---|---|---|---|
Woda mineralna gazowana (carbonated mineral water) Cisownianka 1.5 L | \nNatural mineral water, unsaturated with carbon dioxide, moderately mineralised | \nWoda mineralna niegazowana (non-carbonated mineral water) Kubuś water 0.5 L | \nWater, cane sugar, apple juice from concentrated apple juice, lemon juice from concentrated lemon juice, flavouring | \n
Sok jabłko (apple juice) 100% 1 L Hortex | \n100% apple juice from concentrated apple juice | \nCoca cola 1.5 L | \nWater, sugar, carbon dioxide, sulphite ammonia caramel, phosphoric acid, natural flavourings, including caffeine | \n
Sok multiwitamina (multivitamin juice) 100% 1 L Tymbark | \nJuices from concentrated apple juice 60% and orange juice 22%, carrot juice from concentrated juice 12%, purées from banana 3%, peach, guava, papaya, juices from concentrated pineapple juice 2%, mango juice 0.5%, passion fruit juice 0.1%, lychee juice 0.05%, cactus fig juice, kiwi fruit juice and lime juice, vitamins A, C, E, B6, and B12, thiamine, riboflavin, niacin, biotin, folic acid, pantothenic acid | \nTymbark 2 L jabłko-pomarańcza (apple-orange) | \nWater, orange juice from concentrated juice 19%, glucose-fructose syrup, sugar, peach juice from concentrated juice 1%, lemon concentrate, flavourings, ascorbic acid, carotenes | \n
Volcano 2 L cola | \nSpring water, carbon dioxide, sulphite ammonia caramel, phosphoric acid, citric acid, sodium citrates, flavourings (including caffeine), gum arabic, aspartame, saccharin, sodium benzoate, potassium sorbate | \nVolcano 2 L pomarańcza (orange) | \nSpring water, carbon dioxide, orange juice 0.3% from concentrated orange juice, citric acid, gum arabic, glycerol and plant resin esters, flavouring, cyclamates, saccharin, aspartame, acesulfame K, sodium benzoate, potassium sorbate, ascorbic acid, carotenes, beta-apo-8′-carotenal | \n
Hellena 1.25 L oranżada biała (white orangeade) | \nSugar, water, glucose-fructose syrup, carbon dioxide, citric acid, flavouring, sodium benzoate | \nKubuś marchew, jabłko, pomarańcza, sok (carrot, apple, and orange juice) 330 mL | \nPurées and juices (59%), water, glucose-fructose syrup, citric acid, vitamin C, flavouring | \n
Food ingredients in the studied non-alcoholic beverages.
Table 4 shows 12 food items, such as ketchup, mustard, herbs and spices, and tomato concentrates, together with their composition. Only four products in this group contain a food additive, of which three are preserved using citric acid (E330). In this group of products, the products to contain the most common additive substances were the ketchup and the Kucharek seasoning by “Prymat”. Pursuant to the Regulation of the European Parliament and of the Council (EC) of 16 December 2008, tomato products (such as concentrates) must not contain food colours. They may, however, contain other additives. The ketchup has no colours, but contains other food additives. Studies in Ref. [17] demonstrate that mayonnaises and mustards are the fourth most often preserved product group, with ready-made concentrates ranking seventh. One of the two mustards examined in this paper contained a preservative, and two of the presented tomato concentrates had not had any food additives added to them.
\nProduct | \nIngredients | \nProduct | \nIngredients | \n
---|---|---|---|
Koncentrat pomidorowy (tomato concentrate) Aro 190 g | \n30% tomato concentrate | \nKoncentrat pomidorowy (tomato concentrate) Pudliszki | \n30% tomato concentrate | \n
Ketchup łagodny (mild ketchup) 470 g | \n37% tomato concentrate, water, sugar, vinegar, modified starch, salt, citric acid, sodium benzoate, thyme, oregano, savoury, sage, coriander, flavouring | \nKetchup Pudliszki łgodny (mild ketchup) 480 g | \nTomatoes, sugar, vinegar, salt, modified starch, natural flavouring | \n
Musztarda Parczew kremska (Krems mustard) 180 g | \nWater, mustard seeds, vinegar, sugar, salt, spices | \nMusztarda Roleski stołowa (table mustard) | \nWater, mustard seeds, sugar, spirit vinegar, salt, spices, turmeric extract, citric acid, natural flavouring | \n
Zioła prowansalskie (Herbes de Provence) Prymat | \nBasil, marjoram, rosemary, savoury, sage, thyme, oregano, mint | \nPrzyprawa do kurczaka (chicken seasoning) Goleo | \nSalt, garlic, white mustard seeds, sweet pepper, carrot, coriander, fenugreek, caraway, chilli, turmeric, cinnamon | \n
Przyprawa Tzatziki (tzatziki seasoning) Prymat | \nGarlic, salt, sugar, onion, citric acid, onion extract, dill extract, dill leaves, pepper extract, black pepper | \nKucharek Prymat 250 g | \nSalt, died vegetables, monosodium glutamate, disodium 5′-ribonucleotides, sugar, starch, black pepper, riboflavin | \n
Food ingredients in the studied condiments.
Table 5 shows 12 products categorised into ready-made dishes, soups and sauces, and their chemical composition. Each of these products contains at least one common additive. Citric acid (E330) was added to nearly 67% of the products in this category. Only five in twelve items (including four instant soups and stock cubes) contain the three most popular food additive substances (Table 1). A study in Ref. [13] shows that the most common additives in ready-made dishes are citric acid (E330), sunset yellow (E110), guar gum (E412), disodium guanylate (E627), disodium inosinate (E631), and monosodium glutamate (E621).
\nProduct | \nIngredients | \nProduct | \nIngredients | \n
---|---|---|---|
Rosół drobiowy kucharek (chicken soup) 60 g | \nSalt, palm fat, partially hydrogenated, starch, monosodium glutamate, disodium 5′-ribonucleotides, rapeseed oil, dried vegetables, sugar, flavourings, chicken fat, turmeric, citric acid, dried chicken meat | \nRosół drobiowy Winiary (chicken soup) 60 g | \nSalt, monosodium glutamate, disodium 5′-ribonucleotides, starch, fully hydrogenated palm fat, flavourings, sugar, chicken fat, spices, dried vegetables, citric acid, dried chicken meat | \n
Vifon kurczak Carry (curry chicken) | \nNoodles (92.1%), wheat flour, plant fat, tapioca, modified starch, acetylated starch, sugar, stabilisers (pentasodium triphosphate, guar gum, rising substances: sodium carbonate, potassium carbonate, turmeric), flavouring additives (7.9%) (refined palm oil, salt, sugar), flavour enhancers (monosodium glutamate, disodium guanylate, disodium inosinate, dried vegetables (carrot, green onion, coriander), powdered curry (flavour additive content 6%), turmeric, aniseed, clove, coriander seed, cinnamon, pepper, garlic, chilli, lemongrass, flavouring), colour (beta-carotene, antioxidant tocopherols) | \nAmino zupa błyskawiczna gulaszowa (instant goulash soup) | \nNoodles (85%), wheat flour, palm fat, modified starch, salt, rapeseed oil, tocopherols, fatty acid and ascorbic acid esters; flavouring mix: salt, starch, paprika, monosodium glutamate, disodium guanylate and disodium inosinate, tomato concentrate, onion, flavourings, palm fat, Cayenne pepper, garlic, caraway, hydrolysed plant protein, dried pork, parsley, ammonia caramel | \n
Sos Winiary Italia boloński (Bolognese sauce) | \nDried vegetables, modified starch, sugar, salt, spices, flavourings, sunflower oil, citric acid, spices, beetroot juice concentrate, olive oil | \nSos Winiary pieczeniowy ciemny (dark roasting sauce) | \nPotato starch, modified starch, salt, dried vegetables, flavourings, sugar, yeast extracts, fully hydrogenated palm fat, palm oil, rice flour, ammonia caramel, wheat protein hydrolysate, spices, citric acid | \n
Sos Winiary borowikowy (bolete sauce) | \nCorn starch, wheat flour, powdered cream, palm oil, sunflower oil, maltodextrin, dried mushroom, salt, flavourings, lactose, yeast extract, sugar, dried fried onion, dried onion, milk proteins, spices, wheat protein hydrolysate, ammonia caramel, bolete extract | \nZupa Winiary barszcz biały (white borscht) | \nWheat flour, skimmed powdered milk, salt, potato starch, sugar, smoked pig fat, citric acid, dried vegetables, yeast extract, herbs, spices, smoke flavour | \n
Zupa Winiary jak u mamy pieczarkowa (champignon soup) | \nCorn starch, skimmed powdered milk, wheat flour, powdered cream, dried champignons, yeast extracts, salt, potato starch, dried vegetables, flavourings, sunflower oil, wheat protein hydrolysate, parsley, black pepper, citric acid | \nŁowicz sos boloński (Bolognese sauce) 350 g | \nTomatoes, water, vegetables, glucose-fructose syrup, apple purée, modified corn starch, salt, sugar, guar gum, citric acid, rapeseed oil, spices, herbs, flavourings, ground dried parsley, garlic and paprika, leek and carrot extracts | \n
Danie gotowe Flaczki (ready-made tripe) Pamapol | \nWater, beef rumen 305, wheat flour, carrot, parsley, celeriac, tomato concentrate, onion, salt, pork gelatine, sugar, soy protein hydrolysate, dried vegetables, yeast extract, spices, disodium 5′-ribonucleotides, ammonia caramel, flavourings, partially hydrogenated palm and rapeseed fats | \nPomysł na soczystą karkówkę z ziemniakami (pork shoulder with potatoes seasoning) Winiary | \nWheat flour, vegetables, salt, modified starch, yeast extract, herbs, maltodextrin, plant oil, spices, flavourings, wheat protein hydrolysate, citric acid | \n
Food ingredients and additives in the studied ready-made dishes, soups, and sauces.
Table 6 shows 10 food items classified as sweets and desserts. As many as nine products in this group contained at least one of the most common food additives (Table 1). Glucose-fructose or glucose syrups were found in six of the examined items. A study in Ref. [19] shows that sweets often include the so-called Southampton colours, such as quinoline yellow and tartrazine. However, the study reports that the amounts of these substances added to sweets are much lower than the maximum values allowed by the applicable law.
\nProduct | \nIngredients | \nProduct | \nIngredients | \n
---|---|---|---|
Lód Top milker (ice cream) Koral | \nSkimmed reconstituted milk, sugar, cocoa oil, glucose syrup, skimmed powdered milk, mono- and diglycerides of fatty acids, locust bean flour, guar gum, powdered cream, natural vanilla, flavourings | \nBaton 3bit (candy bar) | \nSugar, biscuit 14% [wheat flour, sugar, plant fat, powdered whey, glucose-fructose syrup, whole powdered milk, salt, rising agents (sodium bicarbonate, ammonium bicarbonate), acidity regulator (citric acid), skimmed powdered milk (13. 5% in filling), plant fat, cocoa fat, cocoa paste, powdered whey, plant oil, milk fat, emulsifiers (soy lecithin, polyglycerol polyricinoleate), flavourings, salt. Cocoa mass in chocolate—minimum 30% | \n
7 days | \nWheat flour, cocoa filling 25% [(sugar, partially hydrogenated plant fats, water, low-fat powdered cocoa 7%, skimmed powdered milk, ethyl alcohol, emulsifier (lactic acid esters of mono- and diglycerides of fatty acids), vanilla flavouring, gelling agent (sodium alginate), preservative (potassium sorbate 0.1%)], margarine [partially hydrogenated plant fats, water, salt, emulsifier (mono- and diglycerides of fatty acids), acidity regulator, flavouring, preservative (potassium sorbate 0.1%)], sugar, stabiliser (mono- and diglycerides of fatty acids), glucose-fructose syrup, yeast, skimmed powdered milk, salt, vanilla flavouring, preservative (calcium propionate 0.1%), soy flour, emulsifier (soy lecithin) | \nLód rożek truskawkowy (ice cream cone) Koral | \nSkimmed reconstituted milk, cornet 14% [wheat flour, sugar, palm fat, potato starch, emulsifier (soy lecithin, wheat fibre, salt), colour (sulphite ammonia caramel], sugar, coconut oil, strawberry sauce 7% [strawberries 42%, sugar, glucose syrup, water, thickening agent (hydroxypropyl distarch glycerol), acidity regulator (citric acid, flavouring], coating for cornet waterproofing [sugar, coconut and palm fats, reduced-fat powdered cocoa (10–12%), emulsifier (soy lecithin)], water, glucose syrup, strawberry purée 1%, emulsifier (mono- and diglycerides of fatty acids), stabilisers (Guar gum, cellulose gum, carrageenan, locust bean flour), acidity regulator (citric acid), colours (betanin, annatto, flavourings) | \n
Baton Milky way (candy bar) | \nSugar, glucose syrup, skimmed powdered milk, cocoa fat, palm fat, cocoa mass, milk fat, lactose, powdered (milk) whey, barley malt extract, salt, emulsifier (soy lecithin), powdered egg white, hydrolysed milk protein, natural vanilla extract | \nMlekołaki Lubella muszelki (cereal) 250 g | \nWholemeal wheat, wheat, and corn flours, sugar, glucose, reduced-fat cocoa, cocoa, barley malt extract, milk chocolate, palm fat, salt, soy lecithin, flavourings, vitamin C, niacin, pantothenic acid, vitamin B, riboflavin, thiamine, folic acid, vitamin B12, calcium, iron | \n
Nestlé Corn Flakes 600 g | \nCorn grits, sugar, salt, glucose, brown sugar, invert sugar syrup, cane sugar molasses, sodium phosphates, niacin, pantothenic acid, riboflavin, vitamin B6, folic acid | \nNestlé Frutina 250 g | \nWheat flakes (wholemeal wheat, sugar, wheat bran, barley malt extract, invert sugar syrup, salt, cane sugar molasses, glucose syrup, sodium phosphates, tocopherols), raisins, cut dried apples, sodium metabisulphite, niacin, pantothenic acid, vitamin B6, riboflavin, folic acid, calcium, iron | \n
Lays zielona cebulka (crisps) 150 g | \nPotatoes, palm oil, sunflower oil, flavouring, powdered onion, powdered milk whey, powdered milk lactose, sugar, powdered milk, monosodium glutamate, disodium 5′-ribonucleotides, flavourings, powdered milk cheese, citric acid, malic acid, annatto, pepper extract, powdered garlic, maltodextrin, salt | \nStar chips paprika (crisps) 170 g | \nPotatoes, palm fat, flavourings, wheat breadcrumbs, glucose, sugar, monosodium glutamate, pepper extract, citric acid, salt | \n
Food additives and ingredients in the studied sweets.
Citric acid (E330) is a natural compound found in citrus fruits. It is also the by-product of digestive processes in the human body. However, on the industrial scale, the substance is produced using the Aspergillus niger mould. Citric acid is used in food as an acidity regulator, preservative, and flavour enhancer. Outside the food industry, the acid is added to cleaning agents and acts as a decalcifying agent. Citric acid in food is a safe additive and is added to food on the quantum satis basis; nevertheless its widespread use constitutes a risk. This substance is found in many food products, such as beverages, juices, lemonades, sweets, ice creams, canned goods, and even bread, so customers consume it in large quantities everyday [20]. When consumed frequently in excess, citric acid can lead to enamel degradation and teeth deterioration. This additive also supports the absorption of heavy metals, which, in turn, might lead to brain impairment. It can also affect the kidneys and liver [13, 15].
\nMonosodium glutamate (E621) is the most widespread flavour enhancer. It is even considered to be one of the five basic tastes (umami). Glutamic acid and its (magnesium, potassium, and calcium) salts lend a meaty flavour to products. The substance was first extracted from algae by a Japanese scientist, but now it is generally produced by biotechnological means using microorganisms that can be genetically modified [6]. Another commonly used flavour enhancer is chemically produced disodium 5′-ribonucleotides (E635). These additives can be found in ready-made dishes, sauces, meat and fish products, instant soups, crisps, and cakes. These flavour enhancers are the not inert in relation to the neurological system [16]. This can affect brain cells and lead to headaches, heart palpitations, excessive sweating, listlessness, nausea, and skin lesions. Such anomalies, which could have been caused by the excessive consumption of products rich in glutamates, are referred to as the Chinese restaurant syndrome [20]. Flavour enhancers can also serve a positive function by increasing appetite in the sick or the elderly [20]. Other additional substances commonly found in foodstuffs are polysaccharides:
\nGuar gum (E412) and xanthan gum (E415). These are referred to as hydrocolloids, i.e. substances that bind water, are easily soluble in both cold and warm water, and improve mixture viscosity. Guar gum is a polysaccharide obtained from guar, a leguminous plant grown in India and Pakistan [14]. Xanthan gum is a polysaccharide of microbiological origin. On the industrial scale, it is obtained as a result of Xanthomonas campestris bacteria fermenting the sugar contained in corn (often genetically modified). Both these additives are approved for use in all food products as thickening, firming, and stabilising agents, on the quantum satis basis. Guar gum and xanthan gum can be found mainly in bread, cakes, ready-made sauces and dishes, and powdered food, where they ensure the appropriate consistency. Moreover, they prevent the crystallisation of water in ice cream and frozen food and the separation of fluids in dairy products and juices. The human body is not capable of digesting, breaking down, or absorbing these gums. These substances swell in the intestines, which can cause flatulence and stomach ache. In addition, guar gum can cause allergies [13, 14, 15].
\nA commonly found preservative is sodium nitrite (E250). It is a salty and white or yellowish crystalline powder, obtained by the chemical processing of nitric acid or some lyes and gases [9]. This additive is generally used in the meat industry to inhibit botulinum toxin and Staphylococcus aureus bacteria, slow down fat rancidification, maintain the pink red colour of meat, and provide meat with a specific flavour. It does not, however, prevent the growth of yeast or mould. Sodium nitrite is toxic, oxidising, and dangerous to the environment, so it must not be added to food in its pure form. This additive is used in very small doses (0.5–0.6%) in the form of a mixture with domestic salt [9] in amounts up to 150 mL per L or mg kg−1. When consumed in large quantities, nitrites can cause cyanosis, whose symptoms include blue coloration of the skin, lips, and mucous membranes. During digestion, nitrites are transformed into carcinogenic nitrosamines. Moreover, they are particularly dangerous for children, since they stop erythrocytes from binding oxygen, which can lead to death by suffocation [11].
\nA common ingredient in food is maltodextrin, which in the European Union is not considered as a food additive, but as an ingredient. Therefore, within the community, maltodextrin has no E code, while in Sweden it is considered an additive and identified as E1400 [18]. Maltodextrin is a disaccharide obtained from corn starch, but it is not sweet in taste. Nevertheless, it provides greater sweetness than normal sugar or grape sugar (the glycaemic index of maltodextrin is 120, that of normal sugar is 70, and that of grape sugar is 100). It is used as a thickening agent, stabiliser, bulking agent, and even as a fat substitute in low-calorie products. It is added to products for athletes and children, to instant soups, sweets, and meat products [10]. Maltodextrin does not affect the natural product taste or flavour, while it provides human body with carbohydrates and energy. Due to the fact that glucose particles in maltodextrin are broken down only in the intestines, it can also support metabolism. A negative aspect of its use is tooth decay [10, 18].
\nWhat frequently occurs in consumer goods is glucose-fructose syrup. Similarly to maltodextrin, it is not considered to be a food additive, but, due to its widespread application, it is important to mention it here. Glucose-fructose syrup, also known as high-fructose corn syrup (HFCS), replaces traditional sugar in many products, such as beverages, sweets, jams, fruit products, and liqueurs, and in the United States and Canada is the dominant sweetener [19]. Sucrose is a disaccharide composed of glucose and fructose, which are joined with alpha-1,4-glycosidic bond, and HFCS contains free fructose and free glucose in specific proportions. The name of this substance depends on the proportion of its ingredients. When the syrup contains more fructose, it is referred to as fructose-glucose syrup [12]. It is obtained mainly from corn starch as a result of acid or enzymatic hydrolysis. Glucose-fructose syrup is much sweeter and cheaper than traditional sugar, it does not crystallise, and it has a liquid form, which makes it functional during processing. Nevertheless, there are some disturbing aspects of using this substance. During the consumption of products with glucose-fructose syrup, the body receives unnatural amounts of fructose, which is broken down in the liver in a manner similar to alcohol. Therefore, its excessive amounts can cause fatty liver and overburden this organ. This has even been named “non-alcoholic fatty liver disease”. In addition, heavy consumption of monosaccharides has been found to contribute to obesity, which, in turn, can cause high blood pressure and diabetes. Fructose affects the lipid metabolism and disrupts the perception of hunger and satiety. Labels do not provide the exact HFCS content, but it is estimated that the consumption of a single product with this substance satisfies the acceptable daily monosaccharide intake [5, 6, 11, 13].
\nAnother frequently added substance is sodium erythorbate (E316). This synthetic compound is used as an antioxidant and stabiliser in meat and fish products and is useful for ham and sausage pickling [13]. It has similar properties to ascorbic acid, but it is not effective as vitamin C. Sodium erythorbate is considered to be noninvasive in the human body [12, 13].
\nThe most widespread natural emulsifier is soy lecithin. Etymologically, the word “lecithin” can be traced back to lekythos, Greek for egg yolk, but this compound is actually found in any plant or animal cell. Lecithin is produced from eggs, sunflower and rapeseed oils, and soybeans [11, 12, 13]. This additive is identified as E322 and is used for the production of mayonnaise, ice creams, margarine, ready-made desserts, sauces, and instant soups. Products with added lecithin dissolve in water more easily. EU law does not impose any limits on the use of E322. Only in products for children, lecithin content must not exceed 1 g per L.
\nTriphosphates (E451), as well as diphosphates and polyphosphates, are used as preservatives, flavour enhancers, stabilisers, and rising and water-binding agents. Triphosphates are produced chemically and have a broad application. They are added to sauces, meats and meat products, desserts, bread, pâtés, fish products, ice creams, and non-alcoholic beverages [21]. The human body needs phosphorus in specific amounts, but the widespread use of phosphoric acids and phosphates in food makes people likely to consume this element in excess. When consumed regularly, increased doses of phosphates can lead to osteoporosis or contribute to kidney dysfunction and affect the circulatory system [13, 21]. A popular hydrocolloid found in food is carrageenan (E407). This substance is extracted from Eucheuma, a tribe of red algae. Carrageenan is highly soluble in water and is used as a bulking agent in dietary products, and it is also added to beverages, ice creams, sauces, marmalades, and powdered milk [6, 7]. Carrageenan can be used on the quantum satis basis. Usually, it is combined with other hydrocolloids. This additive is not digestible by the human body. There are certain objections concerning the consumption of carrageenan, e.g. it can cause intestinal cancer and stomach ulcers [11, 12, 13].
\nTocopherols (E306) are commonly known as vitamin E, insoluble in water and soluble in fats. It is used as a preservative, stabiliser, and potent antioxidant in such products as oils, margarines, desserts, meat products, and alcoholic beverages. Tocopherols are produced synthetically or obtained from plant oils, but natural vitamin E is twice as easily absorbed by the human body [21].
\nCommon preservatives include benzoic acid and its salts, of which the most frequently used is sodium benzoate (E211). Negligible amounts of these substances are naturally found in berries, mushrooms, and fermented milk-based drinks. On an industrial scale, it is produced synthetically from toluene obtained from crude oil [3, 12]. What is characteristic of sodium benzoate is that it slows down the growth of mould and yeast, but does not prevent the growth of bacteria, which is why it is often used with other preservatives, such as sulphur dioxide (E220). It is commonly used in products with acidic pH, such as marinades, fruit juices, and products with mayonnaise, such as vegetable salads. Sodium benzoate can cause allergies [6, 13]. Our own study (see “Results and discussion”) showed that ammonia caramel (E150c) and sulphite ammonia caramel (E150d) are fairly common colours. It adds brown to black colours to products. Under natural conditions, this substance is created when sugar is heated. As a food additive, it is produced chemically using ammonia, as well as phosphates, sulphates, and sulphites (sulphite ammonia caramel is produced) [19]. This substance is approved for use under EU law [5]; however, there are studies that have confirmed that it negatively affects human health. It has been proven that this colour can cause hyperactivity and liver, thyroid, and lung neoplasms and also impair immunity. Ammonia caramel is used to dye non-alcoholic beverages, such as cola and marmalades [10, 11].
\nThe external aspect that is most crucial for buyers when it comes to food selection is its freshness. Buyers assess the best before date against the possibility of consuming the food quickly or storing it for future use. Another determinant is the value of the item. Any consumer will pay attention to the price of the product they buy. Another factor is the product ingredients specified on the packaging. Buyers have been observed to have developed a habit of reading labels before buying anything. Some customers also pay attention to the country of origin or brand [22]. Men and women who are determined to stay fit will also consider nutritional value. The factors that are not considered that are relevant include net product weight, information about any genetically modified raw material content, and notices about any implemented quality management systems. Moreover, consumers are likely to be affected by marketing devices, such as advertisements or special offers, used by producers. A temporary reduction in price, or the opportunity to buy two items for the price of one, encourages customers to make a purchase [3, 4]. What is also vital is whether the food is functional. Many people live at a fast pace, work a lot, or get stuck in traffic jams, and the lack of free time pushes them to buy ready-made dishes to be heated up at home or food that can be prepared in an instant [4, 13, 22].
\nNowadays, food additives are very widespread in the everyday human diet, but not all of them are synthetic and invasive to human health. Products which must not contain foreign substances do not contain food additives. The explorations undertaken by this and other studies confirm the widespread use of the investigated additives, except for citric acid, which is less popular an additive than sodium benzoate and potassium sorbate. This study shows that when adopting a healthy lifestyle, consumers can choose from a range of food and pharmaceutical products that either contain a limited amount of unconventional substances or do not contain such substances at all.
\n"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"16"},books:[{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:null,isOpenForSubmission:!0,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:null,bookSignature:"Prof. Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:null,editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10633",title:"Biotechnology to Combat COVID-19",subtitle:null,isOpenForSubmission:!0,hash:"d834c746c5b159a201a9cdadfc473486",slug:null,bookSignature:"Dr. Megha Agrawal and Dr. Shyamasri Biswas",coverURL:"https://cdn.intechopen.com/books/images_new/10633.jpg",editedByType:null,editors:[{id:"193723",title:"Dr.",name:"Megha",surname:"Agrawal",slug:"megha-agrawal",fullName:"Megha Agrawal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10634",title:"Minimally Invasive Spinal Fusion",subtitle:null,isOpenForSubmission:!0,hash:"b6658fda99691e4942e550fb04dc3f8d",slug:null,bookSignature:"Prof. Mick Perez-Cruet",coverURL:"https://cdn.intechopen.com/books/images_new/10634.jpg",editedByType:null,editors:[{id:"62623",title:"Prof.",name:"Mick",surname:"Perez-Cruet",slug:"mick-perez-cruet",fullName:"Mick Perez-Cruet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10704",title:"Cardiac Arrhythmias - Translational Approach from Pathophysiology to Advanced Care",subtitle:null,isOpenForSubmission:!0,hash:"0e5d67464d929fda6d8c83ec20c4138a",slug:null,bookSignature:"Dr. Endre Zima",coverURL:"https://cdn.intechopen.com/books/images_new/10704.jpg",editedByType:null,editors:[{id:"201263",title:"Dr.",name:"Endre",surname:"Zima",slug:"endre-zima",fullName:"Endre Zima"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10705",title:"Healthcare Access",subtitle:null,isOpenForSubmission:!0,hash:"e8e9561a91e5f7771932aa5d49c3b687",slug:null,bookSignature:"Prof. Amit Agrawal and Dr. Srinivas Kosgi",coverURL:"https://cdn.intechopen.com/books/images_new/10705.jpg",editedByType:null,editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10706",title:"Fighting the COVID-19 Pandemic",subtitle:null,isOpenForSubmission:!0,hash:"1a5246f0b6ba4f0e9ad1fbfa4134c598",slug:null,bookSignature:"Dr. Manal Mohammad Baddour",coverURL:"https://cdn.intechopen.com/books/images_new/10706.jpg",editedByType:null,editors:[{id:"174598",title:"Dr.",name:"Manal Mohammad",surname:"Baddour",slug:"manal-mohammad-baddour",fullName:"Manal Mohammad Baddour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10707",title:"Primary Care",subtitle:null,isOpenForSubmission:!0,hash:"bdb1aeb61b1eb116c1bdb09d25593686",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10707.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10708",title:"Topics in Regional Anesthesia",subtitle:null,isOpenForSubmission:!0,hash:"264f7f37033b4867cace7912287fccaa",slug:null,bookSignature:"Prof. Víctor M. Whizar-Lugo and Dr. José Ramón Saucillo-Osuna",coverURL:"https://cdn.intechopen.com/books/images_new/10708.jpg",editedByType:null,editors:[{id:"169249",title:"Prof.",name:"Víctor M.",surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10709",title:"Heart Valve Surgery",subtitle:null,isOpenForSubmission:!0,hash:"cb3479fd272d968ee7eee95ae09ea9db",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10709.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10710",title:"Recent Advances in the Treatment of Orofacial Clefts",subtitle:null,isOpenForSubmission:!0,hash:"ec438b5e4be44dc63870c1ace6a56ed2",slug:null,bookSignature:"Dr. Marcos Roberto Tovani Palone",coverURL:"https://cdn.intechopen.com/books/images_new/10710.jpg",editedByType:null,editors:[{id:"221178",title:"Dr.",name:"Marcos Roberto",surname:"Tovani Palone",slug:"marcos-roberto-tovani-palone",fullName:"Marcos Roberto Tovani Palone"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:53},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology",parent:null,numberOfBooks:2450,numberOfAuthorsAndEditors:52904,numberOfWosCitations:87825,numberOfCrossrefCitations:44908,numberOfDimensionsCitations:99038,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"physical-sciences-engineering-and-technology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editedByType:"Edited by",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editedByType:"Edited by",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9423",title:"AI and Learning Systems",subtitle:"Industrial Applications and Future Directions",isOpenForSubmission:!1,hash:"10ac8fb0bdbf61044395963028653d21",slug:"ai-and-learning-systems-industrial-applications-and-future-directions",bookSignature:"Konstantinos Kyprianidis and Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:"Edited by",editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,isOpenForSubmission:!1,hash:"c730560dd2e3837a03407b3a86b0ef2a",slug:"biometric-systems",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",editedByType:"Edited by",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editedByType:"Edited by",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10028",title:"Structural Integrity and Failure",subtitle:null,isOpenForSubmission:!1,hash:"3bf0a0d2767ca9f748ec686d2725ba0e",slug:"structural-integrity-and-failure",bookSignature:"Resat Oyguc and Faham Tahmasebinia",coverURL:"https://cdn.intechopen.com/books/images_new/10028.jpg",editedByType:"Edited by",editors:[{id:"239239",title:"Associate Prof.",name:"Resat",middleName:null,surname:"Oyguc",slug:"resat-oyguc",fullName:"Resat Oyguc"}],equalEditorOne:{id:"211659",title:"Dr.",name:"Faham",middleName:null,surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia",profilePictureURL:"https://mts.intechopen.com/storage/users/211659/images/system/211659.jpg",biography:"Faham Tahmasebinia holds ME and ME-Research degrees in Civil/Structural Engineering from the University of Wollongong – Australia. He has also completed two Ph.D. degrees in the field of Structural Engineering at the University of Sydney and in the field of Rock Mechanics at the University of New South Wales – Sydney. Currently, he is an academic at the University of Sydney – Australia. His research areas are numerical and analytical simulations in both ductile and brittle materials.",institutionString:"The University of Sydney",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"UNSW Sydney",institutionURL:null,country:{name:"Australia"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9865",title:"Tribology in Materials and Manufacturing",subtitle:"Wear, Friction and Lubrication",isOpenForSubmission:!1,hash:"45fdde7e24f08a4734017cfa4948ba94",slug:"tribology-in-materials-and-manufacturing-wear-friction-and-lubrication",bookSignature:"Amar Patnaik, Tej Singh and Vikas Kukshal",coverURL:"https://cdn.intechopen.com/books/images_new/9865.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",middleName:null,surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2450,mostCitedChapters:[{id:"37067",doi:"10.5772/35482",title:"Fourier Transform Infrared Spectroscopy for Natural Fibres",slug:"fourier-transform-infrared-spectroscopy-for-natural-fibres",totalDownloads:8293,totalCrossrefCites:119,totalDimensionsCites:287,book:{slug:"fourier-transform-materials-analysis",title:"Fourier Transform",fullTitle:"Fourier Transform - Materials Analysis"},signatures:"Mizi Fan, Dasong Dai and Biao Huang",authors:[{id:"104647",title:"Prof.",name:"Mizi",middleName:null,surname:"Fan",slug:"mizi-fan",fullName:"Mizi Fan"}]},{id:"36171",doi:"10.5772/36942",title:"Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy",slug:"research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy",totalDownloads:8511,totalCrossrefCites:100,totalDimensionsCites:276,book:{slug:"infrared-spectroscopy-materials-science-engineering-and-technology",title:"Infrared Spectroscopy",fullTitle:"Infrared Spectroscopy - Materials Science, Engineering and Technology"},signatures:"Liga Berzina-Cimdina and Natalija Borodajenko",authors:[{id:"110522",title:"Prof.",name:"Liga",middleName:null,surname:"Berzina-Cimdina",slug:"liga-berzina-cimdina",fullName:"Liga Berzina-Cimdina"},{id:"112181",title:"MSc.",name:"Natalija",middleName:null,surname:"Borodajenko",slug:"natalija-borodajenko",fullName:"Natalija Borodajenko"}]},{id:"17237",doi:"10.5772/24553",title:"Hydrogels: Methods of Preparation, Characterisation and Applications",slug:"hydrogels-methods-of-preparation-characterisation-and-applications",totalDownloads:64286,totalCrossrefCites:61,totalDimensionsCites:214,book:{slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Syed K. H. Gulrez, Saphwan Al-Assaf and Glyn O Phillips",authors:[{id:"58120",title:"Prof.",name:"Saphwan",middleName:null,surname:"Al-Assaf",slug:"saphwan-al-assaf",fullName:"Saphwan Al-Assaf"}]}],mostDownloadedChaptersLast30Days:[{id:"68505",title:"Research Design and Methodology",slug:"research-design-and-methodology",totalDownloads:17348,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Kassu Jilcha Sileyew",authors:null},{id:"64746",title:"HyStem®: A Unique Clinical Grade Hydrogel for Present and Future Medical Applications",slug:"hystem-a-unique-clinical-grade-hydrogel-for-present-and-future-medical-applications",totalDownloads:2601,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"hydrogels-smart-materials-for-biomedical-applications",title:"Hydrogels",fullTitle:"Hydrogels - Smart Materials for Biomedical Applications"},signatures:"Thomas I. Zarembinski and Aleksander Skardal",authors:[{id:"262573",title:"Dr.",name:"Thomas",middleName:null,surname:"Zarembinski",slug:"thomas-zarembinski",fullName:"Thomas Zarembinski"},{id:"270426",title:"Dr.",name:"Aleksander",middleName:null,surname:"Skardal",slug:"aleksander-skardal",fullName:"Aleksander Skardal"}]},{id:"6704",title:"Knowledge Based Expert Systems in Bioinformatics",slug:"knowledge-based-expert-systems-in-bioinformatics",totalDownloads:5501,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"expert-systems",title:"Expert Systems",fullTitle:"Expert Systems"},signatures:"Mohamed Radhouene Aniba and Julie D. Thompson",authors:[{id:"8312",title:"Mr.",name:"Mohamed Radhouene",middleName:null,surname:"Aniba",slug:"mohamed-radhouene-aniba",fullName:"Mohamed Radhouene Aniba"},{id:"134571",title:"Prof.",name:"Julie",middleName:null,surname:"Thompson",slug:"julie-thompson",fullName:"Julie Thompson"}]},{id:"55500",title:"Interpretation of Mass Spectra",slug:"interpretation-of-mass-spectra",totalDownloads:8962,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"mass-spectrometry",title:"Mass Spectrometry",fullTitle:"Mass Spectrometry"},signatures:"Teodor Octavian Nicolescu",authors:[{id:"196775",title:"Dr.",name:"Teodor Octavian",middleName:"Octavian",surname:"Nicolescu",slug:"teodor-octavian-nicolescu",fullName:"Teodor Octavian Nicolescu"}]},{id:"60680",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:12286,totalCrossrefCites:66,totalDimensionsCites:115,book:{slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]},{id:"497",title:"Artificial Bee Colony Algorithm and Its Application to Generalized Assignment Problem",slug:"artificial_bee_colony_algorithm_and_its_application_to_generalized_assignment_problem",totalDownloads:22406,totalCrossrefCites:63,totalDimensionsCites:145,book:{slug:"swarm_intelligence_focus_on_ant_and_particle_swarm_optimization",title:"Swarm Intelligence",fullTitle:"Swarm Intelligence, Focus on Ant and Particle Swarm Optimization"},signatures:"Adil Baykasoğlu, Lale Özbakır and Pınar Tapkan",authors:null},{id:"49024",title:"Biological and Chemical Wastewater Treatment Processes",slug:"biological-and-chemical-wastewater-treatment-processes",totalDownloads:24901,totalCrossrefCites:21,totalDimensionsCites:34,book:{slug:"wastewater-treatment-engineering",title:"Wastewater Treatment Engineering",fullTitle:"Wastewater Treatment Engineering"},signatures:"Mohamed Samer",authors:[{id:"175050",title:"Prof.",name:"Mohamed",middleName:null,surname:"Samer",slug:"mohamed-samer",fullName:"Mohamed Samer"}]},{id:"67558",title:"Polymerase Chain Reaction (PCR): Principle and Applications",slug:"polymerase-chain-reaction-pcr-principle-and-applications",totalDownloads:5774,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"synthetic-biology-new-interdisciplinary-science",title:"Synthetic Biology",fullTitle:"Synthetic Biology - New Interdisciplinary Science"},signatures:"Karim Kadri",authors:[{id:"290766",title:"Dr.",name:"Kadri",middleName:null,surname:"Karim",slug:"kadri-karim",fullName:"Kadri Karim"}]},{id:"70027",title:"The Somma-Vesuvius Activity with a Focus to the AD 79 Eruption: Hazard and Risk",slug:"the-somma-vesuvius-activity-with-a-focus-to-the-ad-79-eruption-hazard-and-risk",totalDownloads:429,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"forecasting-volcanic-eruptions",title:"Forecasting Volcanic Eruptions",fullTitle:"Forecasting Volcanic Eruptions"},signatures:"Angelo Paone",authors:[{id:"182871",title:"Prof.",name:"Angelo",middleName:null,surname:"Paone",slug:"angelo-paone",fullName:"Angelo Paone"}]},{id:"63164",title:"Introduction to Kalman Filter and Its Applications",slug:"introduction-to-kalman-filter-and-its-applications",totalDownloads:7270,totalCrossrefCites:3,totalDimensionsCites:12,book:{slug:"introduction-and-implementations-of-the-kalman-filter",title:"Introduction and Implementations of the Kalman Filter",fullTitle:"Introduction and Implementations of the Kalman Filter"},signatures:"Youngjoo Kim and Hyochoong Bang",authors:null}],onlineFirstChaptersFilter:{topicSlug:"physical-sciences-engineering-and-technology",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"75470",title:"Group of Uniform Materials Based on Organic Salts (GUMBOS): A Review of Their Solid State Properties and Applications",slug:"group-of-uniform-materials-based-on-organic-salts-gumbos-a-review-of-their-solid-state-properties-an",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96417",book:{title:"Ionic Liquids - Thermophysical Properties and Applications"},signatures:"Rocío L. Pérez, Caitlan E. Ayala and Isiah M. Warner"},{id:"75196",title:"The Application of Artificial Neural Network to Predicting the Drainage from Waste Rock Storages",slug:"the-application-of-artificial-neural-network-to-predicting-the-drainage-from-waste-rock-storages",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96162",book:{title:"Artificial Neural Networks and Deep Learning - Applications and Perspective"},signatures:"Liang Ma, Cheng Huang and Zhong-Sheng Liu"},{id:"75067",title:"Very Low Voltage and High Efficiency Motorisation for Electric Vehicles",slug:"very-low-voltage-and-high-efficiency-motorisation-for-electric-vehicles",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.95832",book:{title:"Emerging Electric Machines - Advances, Perspectives and Applications"},signatures:"Daniel Matt and Nadhem Boubaker"}],onlineFirstChaptersTotal:727},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/144624/elnatan-ferreira",hash:"",query:{},params:{id:"144624",slug:"elnatan-ferreira"},fullPath:"/profiles/144624/elnatan-ferreira",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()