\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"9020",leadTitle:null,fullTitle:"Food Processing",title:"Food Processing",subtitle:null,reviewType:"peer-reviewed",abstract:"In view of the continuous evolution that is taking place in the field of food processing, this book aims to devise the most comprehensive presentation of up-to-date information in the specialized literature to improve existing knowledge. The chapters in this book have been divided into four sections. Section 1—Food Technologies in Food Processing—presents current technological processes used in food processing. Section 2—Quality of Raw Materials in Food Processing—presents the importance of the quality of raw materials used in food processing. Section 3—Treatments Used in Food Processing—presents the latest trends in treatments used in food processing. Section 4—Factors That Influence Food Processing—presents current information on the factors that influence food processing from the raw material to the packaging used.",isbn:"978-1-78985-894-5",printIsbn:"978-1-78985-893-8",pdfIsbn:"978-1-83880-375-9",doi:"10.5772/intechopen.82985",price:119,priceEur:129,priceUsd:155,slug:"food-processing",numberOfPages:218,isOpenForSubmission:!1,isInWos:1,hash:"4ec2cdd3d6127695e24ca587a854e6a9",bookSignature:"Romina Alina Marc, Antonio Valero Díaz and Guiomar Denisse Posada Izquierdo",publishedDate:"May 6th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9020.jpg",numberOfDownloads:3784,numberOfWosCitations:1,numberOfCrossrefCitations:2,numberOfDimensionsCitations:2,hasAltmetrics:0,numberOfTotalCitations:5,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 3rd 2019",dateEndSecondStepPublish:"September 4th 2019",dateEndThirdStepPublish:"November 3rd 2019",dateEndFourthStepPublish:"January 22nd 2020",dateEndFifthStepPublish:"March 22nd 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"275077",title:"Dr.Ing.",name:"Romina Alina",middleName:null,surname:"Marc",slug:"romina-alina-marc",fullName:"Romina Alina Marc",profilePictureURL:"https://mts.intechopen.com/storage/users/275077/images/system/275077.jpeg",biography:'Romina Alina Marc has completed her Ph.D. (Agronomy) in 2015 at the University of Agricultural Sciences and Veterinary Medicine (UASVM) of Cluj-Napoca, Romania. She is PhD Eng., Lecturer and she is responsible for the research activity in the Vegetable food quality control, Rheology in the food industry, Quality management systems and Food safety of the Faculty of Food Science and Technology, UASVM Cluj-Napoca. She has published 40 research articles on the development of innovative food products, food safety and bioactive compound traceability during processing in reputed journals, 36 international conferences, 9 patent applications, 3 chapters in international books, and 1 scientific book. She was responsible for 7 research projects, member in 7 research projects, won 2 national awards and 70 international awards. He is the publisher of an international book "Food Processing", 2020, IntechOpen Publishing House, ISBN 978-1-78985-894-5. Member in professional associations: Slow Food International; Association of Food Industry Specialists in Romania (ASIAR), from education, research and production; Association of Specialists in Milling and Baking in Romania.',institutionString:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"232871",title:"Dr.",name:"Antonio",middleName:null,surname:"Valero Díaz",slug:"antonio-valero-diaz",fullName:"Antonio Valero Díaz",profilePictureURL:"https://mts.intechopen.com/storage/users/232871/images/system/232871.jpg",biography:"Prof. Antonio Valero has obtained a Degree in Biology and PhD in Food Science and Technology at the University of Cordoba. He has currently more than 10 years experienced managing projects, training courses, academic teaching and events in food and related sectors. He has participated in different national and international research projects related to predictive modelling and risk assessment. His research activity is widely shown as he has published over 70 peer reviewed papers and book chapters mainly related to application of predictive models in foods, microbial risk assessment and management and derivation of microbiological criteria in selected foods. Additionally, he has presented more than 100 communications in different congresses and symposia since 2003.",institutionString:"University of Cordoba",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},coeditorTwo:{id:"176615",title:"Prof.",name:"Guiomar Denisse",middleName:null,surname:"Posada Izquierdo",slug:"guiomar-denisse-posada-izquierdo",fullName:"Guiomar Denisse Posada Izquierdo",profilePictureURL:"https://mts.intechopen.com/storage/users/176615/images/system/176615.jpg",biography:"Prof. Guiomar Denisse Posada Izquierdo completed her degree in Agronomic Engineering in 2006, her agrifood master in 2007, and received her PhD in Food Science and Technology from the University of Córdoba, Spain, in 2013, where she currently works in the Department of Food Science and Technology. She has more than 12 years’ experience participating in the food quality and safety field together with training courses, academic teaching, and participation in food-related events. Guiomar Denisse Posada has been involved in different national and international research projects related to predictive modeling and risk assessment (development of a common structure for microbiological risk assessment and management in minimally processed and ready-to-eat foods: application in vegetables products, and selection of fit-for-purpose sampling procedures for specific foods and risks, BASELINE, COST Action 920). She has been trained and specializes in disinfection treatments and processing control of vegetable foods thanks to different pre- and post-doctoral stays at prestigious institutions such as the Department of Food Science and Human Nutrition, Michigan State University (USA), University of Ghent (Belgium), and the Spanish Research Council (CEBAS-CSIC and IG-CSIC). Her publications include more than 30 peer-reviewed papers and book chapters related to the application of predictive models in foods, microbial risk assessment and management, decontamination technologies in vegetables, and food shelf-life. Additionally, she has presented more than 50 communications in different conferences and symposia since 2006. She participated in the organizing committee of the last ICPMF10 conference held in Córdoba (September 2017). Currently, Guiomar Denisse Posada holds a position at the Department of Food Science and Technology (University of Córdoba). She has wide experience (8+ years) in academic teaching within the food science and technology and veterinary degrees.",institutionString:"University of Cordoba",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"334",title:"Food Engineering",slug:"food-science-food-engineering"}],chapters:[{id:"71728",title:"Introductory Chapter: A Global Presentation on Trends in Food Processing",doi:"10.5772/intechopen.91947",slug:"introductory-chapter-a-global-presentation-on-trends-in-food-processing",totalDownloads:355,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Romina Alina Marc",downloadPdfUrl:"/chapter/pdf-download/71728",previewPdfUrl:"/chapter/pdf-preview/71728",authors:[{id:"275077",title:"Dr.Ing.",name:"Romina Alina",surname:"Marc",slug:"romina-alina-marc",fullName:"Romina Alina Marc"}],corrections:null},{id:"70263",title:"Olive Processing: Influence of Some Crucial Phases on the Final Quality of Olive Oil",doi:"10.5772/intechopen.88888",slug:"olive-processing-influence-of-some-crucial-phases-on-the-final-quality-of-olive-oil",totalDownloads:231,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Lucia Morrone, Annalisa Rotondi, Francesca Rapparini and Gianpaolo Bertazza",downloadPdfUrl:"/chapter/pdf-download/70263",previewPdfUrl:"/chapter/pdf-preview/70263",authors:[{id:"155937",title:"Dr.",name:"Rotondi",surname:"Annalisa",slug:"rotondi-annalisa",fullName:"Rotondi Annalisa"},{id:"309969",title:"Dr.",name:"Lucia",surname:"Morrone",slug:"lucia-morrone",fullName:"Lucia Morrone"},{id:"309970",title:"Dr.",name:"Francesca",surname:"Rapparini",slug:"francesca-rapparini",fullName:"Francesca Rapparini"},{id:"309971",title:"Dr.",name:"Gianpaolo",surname:"Bertazza",slug:"gianpaolo-bertazza",fullName:"Gianpaolo Bertazza"}],corrections:null},{id:"70909",title:"Powder Technology",doi:"10.5772/intechopen.90715",slug:"powder-technology",totalDownloads:320,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Suzana Caetano da Silva Lannes and Maria Elena Del Dolores Bernal Gómez",downloadPdfUrl:"/chapter/pdf-download/70909",previewPdfUrl:"/chapter/pdf-preview/70909",authors:[{id:"160554",title:"Dr.",name:"Suzana",surname:"Lannes",slug:"suzana-lannes",fullName:"Suzana Lannes"},{id:"315472",title:"Dr.",name:"Maria Elena",surname:"Bernal Gómez",slug:"maria-elena-bernal-gomez",fullName:"Maria Elena Bernal Gómez"}],corrections:null},{id:"71519",title:"Valorization of the Seeds (Almonds and Oil) of the Spontaneous Argan of Tindouf and the Other Experimental Domesticated Argan of Mostaganem in Algeria",doi:"10.5772/intechopen.91655",slug:"valorization-of-the-seeds-almonds-and-oil-of-the-spontaneous-argan-of-tindouf-and-the-other-experime",totalDownloads:202,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Benaouf Zohra, Djorf Oussama, Jaradat Chawkat and Kechairi Reda",downloadPdfUrl:"/chapter/pdf-download/71519",previewPdfUrl:"/chapter/pdf-preview/71519",authors:[{id:"214556",title:"Dr.",name:"Zohra",surname:"Benaouf",slug:"zohra-benaouf",fullName:"Zohra Benaouf"}],corrections:null},{id:"68361",title:"Microbiological Quality of Chicken Meat Fed with Olive Leaves (Olea europaea L.)",doi:"10.5772/intechopen.88336",slug:"microbiological-quality-of-chicken-meat-fed-with-olive-leaves-em-olea-europaea-em-l-",totalDownloads:247,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Cristiane Marangoni, Alexandre José Cichoski and Juliano Smanioto Barin",downloadPdfUrl:"/chapter/pdf-download/68361",previewPdfUrl:"/chapter/pdf-preview/68361",authors:[{id:"303164",title:"Dr.",name:"Cristiane",surname:"Marangoni",slug:"cristiane-marangoni",fullName:"Cristiane Marangoni"},{id:"303762",title:"Dr.",name:"Alexandre",surname:"Cichoski",slug:"alexandre-cichoski",fullName:"Alexandre Cichoski"},{id:"303763",title:"Dr.",name:"Juliano",surname:"Barin",slug:"juliano-barin",fullName:"Juliano Barin"}],corrections:null},{id:"68834",title:"Autochthonous Breeds of Republic of Serbia and Valuation in Food Industry: Opportunities and Challenges",doi:"10.5772/intechopen.88900",slug:"autochthonous-breeds-of-republic-of-serbia-and-valuation-in-food-industry-opportunities-and-challeng",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Čedomir Radović, Milica Petrović, Marija Gogić, Dragan Radojković, Vladimir Živković, Nenad Stoiljković and Radomir Savić",downloadPdfUrl:"/chapter/pdf-download/68834",previewPdfUrl:"/chapter/pdf-preview/68834",authors:[{id:"290251",title:"Dr.",name:"Cedomir",surname:"Radovic",slug:"cedomir-radovic",fullName:"Cedomir Radovic"},{id:"290252",title:"Dr.",name:"Radomir",surname:"Savic",slug:"radomir-savic",fullName:"Radomir Savic"},{id:"309843",title:"Prof.",name:"Milica",surname:"Petrović",slug:"milica-petrovic",fullName:"Milica Petrović"},{id:"309867",title:"BSc.",name:"Marija",surname:"Gogić",slug:"marija-gogic",fullName:"Marija Gogić"},{id:"309868",title:"Prof.",name:"Dragan",surname:"Radojković",slug:"dragan-radojkovic",fullName:"Dragan Radojković"},{id:"309869",title:"MSc.",name:"Vladimir",surname:"Živković",slug:"vladimir-zivkovic",fullName:"Vladimir Živković"},{id:"309870",title:"MSc.",name:"Nenad",surname:"Stojiljković",slug:"nenad-stojiljkovic",fullName:"Nenad Stojiljković"}],corrections:null},{id:"70818",title:"High Hydrostatic Pressure Treatment of Meat Products",doi:"10.5772/intechopen.90858",slug:"high-hydrostatic-pressure-treatment-of-meat-products",totalDownloads:318,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Rosa María García-Gimeno and Guiomar Denisse Posada Izquierdo",downloadPdfUrl:"/chapter/pdf-download/70818",previewPdfUrl:"/chapter/pdf-preview/70818",authors:[{id:"35213",title:"Dr.",name:"Rosa María",surname:"García-Gimeno",slug:"rosa-maria-garcia-gimeno",fullName:"Rosa María García-Gimeno"},{id:"315909",title:"Dr.",name:"Guiomar Denisse",surname:"Posada-Izquierdo",slug:"guiomar-denisse-posada-izquierdo",fullName:"Guiomar Denisse Posada-Izquierdo"}],corrections:null},{id:"69428",title:"Gamma Irradiation and High Hydrostatic Pressure Applied to Hamburger Conservation",doi:"10.5772/intechopen.88874",slug:"gamma-irradiation-and-high-hydrostatic-pressure-applied-to-hamburger-conservation",totalDownloads:192,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Michelle Guimarães Horta, Fabiana Regina Lima, Carlos Alberto Gois Suzart and Poliana Mendes de Souza",downloadPdfUrl:"/chapter/pdf-download/69428",previewPdfUrl:"/chapter/pdf-preview/69428",authors:[{id:"246696",title:"Dr.",name:"Poliana",surname:"Mendes De Souza",slug:"poliana-mendes-de-souza",fullName:"Poliana Mendes De Souza"},{id:"267120",title:"BSc.",name:"Fabiana Regina",surname:"Lima",slug:"fabiana-regina-lima",fullName:"Fabiana Regina Lima"},{id:"301565",title:"M.Sc.",name:"Michelle",surname:"Guimarães Horta",slug:"michelle-guimaraes-horta",fullName:"Michelle Guimarães Horta"},{id:"310805",title:"Dr.",name:"Carlos Alberto",surname:"Gois Suzart",slug:"carlos-alberto-gois-suzart",fullName:"Carlos Alberto Gois Suzart"}],corrections:null},{id:"68406",title:"Importance and Applications of Ultrasonic Technology to Improve Food Quality",doi:"10.5772/intechopen.88523",slug:"importance-and-applications-of-ultrasonic-technology-to-improve-food-quality",totalDownloads:531,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Maged E.A. Mohammed and Mohammed R. Alhajhoj",downloadPdfUrl:"/chapter/pdf-download/68406",previewPdfUrl:"/chapter/pdf-preview/68406",authors:[{id:"147638",title:"Dr.",name:"Maged",surname:"Mohammed",slug:"maged-mohammed",fullName:"Maged Mohammed"},{id:"309353",title:"Prof.",name:"Mohammed",surname:"Alhajhoj",slug:"mohammed-alhajhoj",fullName:"Mohammed Alhajhoj"}],corrections:null},{id:"70102",title:"Effect of Polyethylene Glycol 3350 on the Handling Properties of Low Salt Wheat Dough Formulations",doi:"10.5772/intechopen.90132",slug:"effect-of-polyethylene-glycol-3350-on-the-handling-properties-of-low-salt-wheat-dough-formulations",totalDownloads:177,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Andrea K. Stone, Aleksandar Yovchev, Pierre J. Hucl, Martin G. Scanlon and Michael T. Nickerson",downloadPdfUrl:"/chapter/pdf-download/70102",previewPdfUrl:"/chapter/pdf-preview/70102",authors:[{id:"178314",title:"Dr.",name:"Michael",surname:"Nickerson",slug:"michael-nickerson",fullName:"Michael Nickerson"}],corrections:null},{id:"70340",title:"Glycation of Animal Proteins Via Maillard Reaction and Their Bioactivity",doi:"10.5772/intechopen.90373",slug:"glycation-of-animal-proteins-via-maillard-reaction-and-their-bioactivity",totalDownloads:292,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Blanca Areli Mondaca-Navarro, Roberto Rodríguez Ramírez, Alma Guadalupe Villa Lerma, Luz Angelica Ávila Villa and Gabriel Davidov Pardo",downloadPdfUrl:"/chapter/pdf-download/70340",previewPdfUrl:"/chapter/pdf-preview/70340",authors:[{id:"311432",title:"Dr.",name:"Roberto",surname:"Rodríguez-Rámírez",slug:"roberto-rodriguez-ramirez",fullName:"Roberto Rodríguez-Rámírez"},{id:"311434",title:"MSc.",name:"Blanca Areli",surname:"Mondaca-Navarro",slug:"blanca-areli-mondaca-navarro",fullName:"Blanca Areli Mondaca-Navarro"},{id:"311435",title:"Dr.",name:"Alma Guadalupe",surname:"Villa-Lerma",slug:"alma-guadalupe-villa-lerma",fullName:"Alma Guadalupe Villa-Lerma"},{id:"311436",title:"Dr.",name:"Luz Angelica",surname:"Avila-Villa",slug:"luz-angelica-avila-villa",fullName:"Luz Angelica Avila-Villa"},{id:"314694",title:"Dr.",name:"Gabriel",surname:"Davidov-Pardo",slug:"gabriel-davidov-pardo",fullName:"Gabriel Davidov-Pardo"}],corrections:null},{id:"68737",title:"Packaging Design Alternatives for Meat Products",doi:"10.5772/intechopen.88586",slug:"packaging-design-alternatives-for-meat-products",totalDownloads:739,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Nícolas Mazzola and Claire I.G.L. Sarantopoulos",downloadPdfUrl:"/chapter/pdf-download/68737",previewPdfUrl:"/chapter/pdf-preview/68737",authors:[{id:"300723",title:"M.Sc.",name:"Nícolas",surname:"Mazzola",slug:"nicolas-mazzola",fullName:"Nícolas Mazzola"},{id:"300724",title:"Prof.",name:"Claire",surname:"Sarantopoulos",slug:"claire-sarantopoulos",fullName:"Claire Sarantopoulos"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1128",title:"Structure and Function of Food Engineering",subtitle:null,isOpenForSubmission:!1,hash:"f34c50135f0247fd4120af8b18ee0405",slug:"structure-and-function-of-food-engineering",bookSignature:"Ayman Amer Eissa",coverURL:"https://cdn.intechopen.com/books/images_new/1128.jpg",editedByType:"Edited by",editors:[{id:"32499",title:"Prof.",name:"Ayman",surname:"Amer Eissa",slug:"ayman-amer-eissa",fullName:"Ayman Amer Eissa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8544",title:"Food Preservation and Waste Exploitation",subtitle:null,isOpenForSubmission:!1,hash:"510c0be10ee47559ddfd296740e24517",slug:"food-preservation-and-waste-exploitation",bookSignature:"Sonia A. Socaci, Anca C. F?rca?, Thierry Aussenac and Jean-Claude Laguerre",coverURL:"https://cdn.intechopen.com/books/images_new/8544.jpg",editedByType:"Edited by",editors:[{id:"191241",title:"Ph.D.",name:"Sonia A.",surname:"Socaci",slug:"sonia-a.-socaci",fullName:"Sonia A. Socaci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8313",title:"Food Engineering",subtitle:null,isOpenForSubmission:!1,hash:"f34f0100db8038cd838a4a03fb56de6a",slug:"food-engineering",bookSignature:"Teodora Emilia Coldea",coverURL:"https://cdn.intechopen.com/books/images_new/8313.jpg",editedByType:"Edited by",editors:[{id:"220490",title:"Ph.D.",name:"Teodora Emilia",surname:"Coldea",slug:"teodora-emilia-coldea",fullName:"Teodora Emilia Coldea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66066",slug:"erratum-microbial-responses-to-different-operating-practices-for-biogas-production-systems",title:"Erratum - Microbial Responses to Different Operating Practices for Biogas Production Systems",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66066.pdf",downloadPdfUrl:"/chapter/pdf-download/66066",previewPdfUrl:"/chapter/pdf-preview/66066",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66066",risUrl:"/chapter/ris/66066",chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]}},chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]},book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10708",leadTitle:null,title:"Topics in Regional Anesthesia",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe goal of this book on Topics in Regional Anesthesia is to review selected subjects of importance in daily practice. Since the first years of the introduction of cocaine by Carl Koller in 1884, the evolution of regional anesthesia has been continuous, gradual and safe. Its development has been based on anatomy, the pharmacology of local anesthetics and adjuvant drugs, as well as advances in the various blocking techniques, with ultrasound guidance being the most recent advent. The use of ultrasound in regional anesthesia has shown the reduction of complications, which makes it mandatory to knowledge and acquire skills in all ultrasound-guided techniques.
\r\n\r\n\tUltrasound-guided regional blocks will be reviewed extensively, as well as intravenous regional anesthesia, thoracic spinal anesthesia. The role of regional anesthesia and analgesia in critically ill patients is of paramount importance. In addition, we will review the current role of regional techniques during the Covid-19 pandemic. Complications and malpractice is another topic that should be reviewed. Regional anesthesia procedures in some specialties such as pediatrics, orthopedics, cancer surgery, neurosurgery, acute and chronic pain will be discussed.
",isbn:"978-1-83969-570-4",printIsbn:"978-1-83969-569-8",pdfIsbn:"978-1-83969-571-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"264f7f37033b4867cace7912287fccaa",bookSignature:"Prof. Víctor M. Whizar-Lugo and Dr. José Ramón Saucillo-Osuna",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10708.jpg",keywords:"Regional Anesthesia, Ultrasound-Guided Regional Anesthesia, Local Anesthetics, Preventive Analgesia, Peripheral Blocks, Pediatric Regional Anesthesia, Intravenous Regional Anesthesia, Techniques, Complications, Adjuvants in Regional Anesthesia, Opioids, Alfa2 Agonists",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 23rd 2021",dateEndSecondStepPublish:"March 23rd 2021",dateEndThirdStepPublish:"May 22nd 2021",dateEndFourthStepPublish:"August 10th 2021",dateEndFifthStepPublish:"October 9th 2021",remainingDaysToSecondStep:"18 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Whizar-Lugo has published more than 100 publications on Anesthesia, Pain, Critical Care, and Internal Medicine. He works as an anesthesiologist at Lotus Med Group and belongs to the Institutos Nacionales de Salud as an associated researcher.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo",profilePictureURL:"https://mts.intechopen.com/storage/users/169249/images/system/169249.jpg",biography:"Víctor M. Whizar-Lugo graduated from Universidad Nacional Autónoma de México and completed residencies in Internal Medicine at Hospital General de México and Anaesthesiology and Critical Care Medicine at Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán in México City. He also completed a fellowship at the Anesthesia Department, Pain Clinic at University of California, Los Angeles, USA. Currently, Dr. Whizar-Lugo works as anesthesiologist at Lotus Med Group, and belongs to the Institutos Nacionales de Salud as associated researcher. He has published many works on anesthesia, pain, internal medicine, and critical care, edited four books, and given countless conferences in congresses and meetings around the world. He has been a member of various editorial committees for anesthesiology journals, is past chief editor of the journal Anestesia en México, and is currently editor-in-chief of the Journal of Anesthesia and Critical Care. Dr. Whizar-Lugo is the founding director and current president of Anestesiología y Medicina del Dolor (www.anestesiologia-dolor.org), a free online medical education program.",institutionString:"Institutos Nacionales de Salud",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],coeditorOne:{id:"345887",title:"Dr.",name:"José Ramón",middleName:null,surname:"Saucillo-Osuna",slug:"jose-ramon-saucillo-osuna",fullName:"José Ramón Saucillo-Osuna",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000033rFXmQAM/Profile_Picture_1611740683590",biography:"Graduated from the Facultad de Medicina de la Universidad Autónoma de Guadalajara, he specialized in anesthesiology at the Centro Médico Nacional de Occidente in Guadalajara, México. He is one of the most important pioneers in Mexico in ultrasound-guided regional anesthesia. Dr. Saucillo-Osuna has lectured at multiple national and international congresses and is an adjunct professor at the Federación Mexicana de Colegios de Anestesiología, AC, former president of the Asociación Mexicana de Anestesia Regional, and active member of the Asociación Latinoamericana de Anestesia Regional.",institutionString:"Centro Médico Nacional de Occidente",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Dr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17660",title:"The Chotts Fold Belt of Southern Tunisia, North African Margin: Structural Pattern, Evolution, and Regional Geodynamic Implications",doi:"10.5772/20636",slug:"the-chotts-fold-belt-of-southern-tunisia-north-african-margin-structural-pattern-evolution-and-regio",body:'At the North of the old African continent, craton and shields having more than two billion years, Tunisia, Algeria and northern Morocco underwent a complex geodynamic and structural evolution during the Mesozoic and Cenozoic times (Dercourt et al., 1985; Bouillin, 1986; Frizon de Lamotte et al., 2009). This evolution resulted in the development of varied paleogeographic fields, in relation with the Tethyan and Atlantic movements. Its end led to the genesis of the North-African alpine orogen (Dercourt et al., 1985; Martinez et al., 1990) formed by the Maghrebid and Atlassic domains (Fig. 1).
Tunisia occupies the eastern part of this orogen, located at the north of a large Saharan platform, developed on the stable African craton, not deformed during the alpine cycle and bounded by a major structural lineament « South Atlassic fault » composed of complex overlapping folds trending NE-SW, E-W and NW-SE (Caire,1971; Zargouni, 1985; Turki, 1988; Zouari et al., 1990; Ben Ayed, 1993; Boukadi, 1994; Bédir, 1995; Bouaziz, 1995; Zouari, 1995; Bouaziz et al., 1999, 2002; Abbès, 2004; Zouaghi et al., 2005a, b, 2011; Ouali, 2007; Melki et al, 2010).
Structures of the North African margin were usually subject of discussion. This domain could be considered as a passive margin, close to the oceanic opening, characterized by a strong subsidence marked by accumulations of prograding deposits (Dercourt et al., 1985; Biju-Duval et al., 1976). For others, it is a transform margin related to displacements of the African plate compared to the Eurasian plate. These movements generated opening of the Paleo-Tethys (Arthaud and Thomas, 1977). The Africa-Europe relative motions would be at the origin of the recent ocean floor spreading of the Mediterranean (Taponnier, 1977; Reading, 1980; Olivet et al., 1982; Alvarez et al., 1984; Ricou, 1994).
The study area belongs to the North African margin and the northern edge of the Saharan platform. Studies undertaken on Paleo-Tethys show the development of deformed and subsiding zones between the cratonic blocks and the basins (Caire, 1974; Arthaud and Thomas, 1977; Aubouin and Debelmas, 1980; Bernoulli and Lemoine, 1980; Durand-Delga and Fonrbote, 1980; Bousquet and Philip, 1981; Dercourt et al., 1992). The geodynamic aspects at the Mediterranean scale are the origin of the tectonic mechanisms responsible for the structural evolution of the study area during the Mesozoic and Cenozoic periods. These aspects correspond to: (1) Permian-Triassic Tethyan rifting. Mesozoic divergence between the blocks continues and results in opening of the central Atlantic and the Tethys ligure and development of the Mesogea following the fragmentation of the Pangea super-continent, which generates the Gondwana to the South and the Laurasia to the North. An extensional tectonic event was consequently generated during the beginning of Mesozoic times, recorded in the African and European margins. (Biju-Duval, 1980; Dercourt et al., 1985 and 1992). (2) During the Cenozoic times, blocks located on both sides of the Mediterranean Basin converge, involving compressional phases, which induced formation of the European alpine chains and the Maghrebides (Bouillin, 1977, 1986).
The tectonic polyphasage in North Africa domains presents one of the most discussed subjects from an area to another. Some interpretations concerning the role of inherited features, halokinesis and later inversion, showed by outcrop studies, remain still not well argued even if the majority of authors agree with the influence of the ante-Triassic basement on the sedimentary lapout. In this work we try to study the geometry and structural evolution of the various morphostructural units during extensional and contractional periods.
The studies carried out on outcropping strata and on well data of southern Tunisia allow to identify the lithostratigraphic series from Paleozoic to the Quaternary one. However, there are some divergences between the authors concerning the age of various geological Formations (Burollet, 1956; Fournié, 1978; M’Rabet, 1987). The sedimentary series show lateral variations of thickness and facies and local gaps. In this section we try to describe and discuss briefly the sedimentary history of the study area.
The Paleozoic outcrops in the Tebaga mountain is represented only by Permian deposits. In addition the Paleozoic has been crossed by many petroleum wells in Saharan platform of Tunisia where various units have been identified. (Busson, 1969, 1970a, b; Ben Ismail, 1982, 1991). During the Paleozoic periods, the Saharan field is characterized by clayey detrital and sandy facies indicating a continental to margino-continental deposition (Fig. 2) with a general tendency to marine platform towards the North in the Djeffara domain (Bellini and Massa, 1980). For the southern Atlas, no information exists yet concerning the Paleozoic. But based on its lithostratigraphy, the Early Paleozoic could be marked by a progradational series followed by a transgressive interval corresponding to the clays of Silurian-Devonian known in the Saharan field (Busson, 1969, 1970a, b; Ben Ismail, 1982).
Except the Triassic, which keeps a relative homogeneity of facies from the South to the North (Kamoun et al., 2001), the Mesozoic paleogeographic scheme is characterized by a marginal platform environment with continental influence marked by detrital, carbonate-evaporite and evaporite to the South and by a marine deposition (clayey, more carbonated-clay, less evaporitic and sandy) to the North.
In Tunisia the Jurassic rarely outcrops and is classically represented by three carbonated members of the Nara Formation (Burollet, 1956; Soussi, 2002) (Fig. 2), indicating deposition in a moderate deep marine of external platform in central Tunisia. Towards the South, in the Saharan platform, presence of detrital and evaporite layers indicate fluvio-deltaic and lagunal internal platform under a restricted and confined marine environment. (Ben Ismail, 1982; Chandoul et al., 1993 ; Kamoun et al., 1999).
Geological (Castany, 1951) and tectonic (Zargouni, 1985; Ben Ferjani, 1990; Bédir, 1995; Zouaghi et al., 2009, 2011) setting of the southern Atlas and Saharan platform of Tunisia and eastern Algeria showing distribution of anticline axis trends, location of main outcrops, deep faults and distribution of Mesozoic basins and paleohighs
Lithostratigraphic correlation of Paleozoic to Cenozoic series highlighted in the petroleum wells, showing thickness and facies variation between structures of southern Tunisia
The Cretaceous, which largely outcropped can be subdivided into two great mega-units: the first essentially clastic until Aptian corresponds to the lower Cretaceous fluvial and deltaic to marine environments (Marie et al., 1984; M’Rabet, 1987; Ben Youssef, 1999; Azaïez et al., 2007 ; Lazzez et al., 2008; Guellala, 2010; Zouaghi et al., 2011); the second represented by carbonates, clays and rare evaporitic layers, corresponds to the Late Cretaceous (Marie et al., 1984; Fakraoui, 1990; Abdallah et al., 2000). The southern part of Tunisia belongs to sub-continental field of Saharan platform, where the sedimentation rate is low to null in some localities of the vast stable platform (Burollet, 1956; Bishop, 1975; Ben Ferjani et al., 1990; Negra, 1994; Chaabani, 1995; Zouaghi et al., 2011).
The Paleogene represented by clays, carbonates and evaporites is identified in the Gafsa-Metlaoui phosphate basin (Sassi, 1974; Chaabani, 1995), showing varied thicknesses. The Saharan platform domain and the Chotts zone, already emerged since the end of the Cretaceous, are deprived of Paleogene sedimentation (Fig. 2). The Cenozoic is represented in the Saharan domain by the Neogene-Quaternary continental sandy and silty deposits (Zargouni, 1985; Fakraoui, 1990; Addoum, 1995). The marine deposition has evolved to continental since the end of the Cretaceous. In the Atlassic domain, the marine environment continued at least until the end of the Eocene. It is marked by the clayey, carbonated and evaporite series of the Paleogene and changed to frankly continental detrital sedimentation during the Neogene and Quaternary periods.
Placed within the Maghrebin framework, Tunisia occupies a privileged geological position in the African structuring. It belongs to the old African frame by its southern Saharan part, and to the alpine field by its northern area. The boundary between these two domains is marked by the South-Atlassic morphostructural master fault system (Fig. 3).
The southern Atlas, extension of the western Saharan Atlas in Algeria, includes mountains of the Gafsa area trending E-W to NE-SW and NW-SE (Burollet, 1956; Boltenhagen, 1985; Zargouni, 1985; Abdeljaoued and Zargouni, 1985; Boukadi, 1994; Zouari, 1995; Bédir, 1995; Bédir et al.; 2001, Hlaiem, 1999; Bouaziz et al, 2002; Zouaghi et al., 2005a, b, 2009, 2011). These chains consist of overlapping folds poured to the South and separated by synclines filled with Neogene and Quaternary deposits (Fig. 1).
Structural map, showing location of the master trending faults and folds. Rhombic structures are highlighted between the northwest-southeast and east-west right-steeping, dextral strike-slip faults (Zargouni, 1985; Ben Ferjani, 1990; Bédir, 1995; Zouaghi et al., 2009, 2011)
NW-SE interpreted seismic section L1 crossing the Gantass and northern range of the Chotts. The reduction of thickness and unconformities are related to rejuvenation of master faults associated with Triassic evaporate risings
The Metlaoui tectonic bundle, which is made from West to East by the Bliji, Alima, Oum El Khecheb and Stah anticlines, is extended to the West in Algeria by the Mandra anticlines and is truncated to the East by the Gafsa master strike-slip fault. The Gafsa fold belt generally trending NW-SE is composed by the Moulares, Bou Ramli and Ben Younes anticlines and is crossed by the N120 Gafsa master dextral wrench fault (Zargouni, 1985; Zargouni et al., 1985; Boukadi, 1994; Bédir, 1995; Zouari, 1995; Boutib and Zargouni, 1998; Zouaghi et al., 2005a, b, 2009) (Fig. 1). The Orbata fold belt located at the East of Gafsa town is constituted by the Orbata and Bou Hedma anticlines, which are often asymmetric with sigmoidal shape (Boukadi et al., 1998 ; Bensalem et al., 2009). The Bou Hedma structure is affected to the West by the Mech dextral strike-slip fault. Between the Metlaoui and Orbata chains and northern range of the Chotts are located the Gantass, Sehib, Berda, Chemsi and Ben Kheir separated overlapping folds (Figs. 3 and 4).
The Chotts fold belt, which includes northern and southern chain of Chotts separated by the Chott El Fedjedj depocenter, is the most external structure of the Atlassic domain (Rabia, 1985; Zargouni, 1985; Abdeljaoued and Zargouni, 1985; Fakraoui, 1990; Ben Ayed, 1993; Bouaziz, 1995; Hlaiem, 1999). The eastern end of this fold belt is affected by several faults; the most significant one is that of Bir Oum Ali. The Hadifa diapir appears to be composed by Triassic saliferous located in the eastern end of northern chain of the Chotts shows the Triassic halokinesis in the study area.
These folded structures, located in northern edge of the Saharan platform, are affected and truncated by faults trending NW-SE and E-W (Fig. 3). They are often anchored on these lineaments and are characterized by axial virgations and echelon along a WSW- ENE axial direction (Rabia, 1985; Zargouni, 1985; Fakraoui, 1990; Ben Ayed, 1993; Bouaziz, 1995). The great anticline structures are asymmetric and marked by faulted southern side with steep dip (Fig. 4).
Located on the northern edge of the African craton, this domain is composed of a Precambrian substratum surmounted by a thick Paleozoic cover (Figs. 4 and 5). However, Dahar field, high since the Carboniferous times is unconformably overlain by Mesozoic deposits on the Medenine Upper Permian, which is the only Paleozoic outcrop in Tunisia (Busson, 1967; Burollet and Desforges, 1982; Bouaziz, 1986; Ben Ayed, 1993; Bouaziz, 1995; Bouaziz et al., 1999). Except the upper Permian marine deposits of the Tebaga, the Precambrian and Paleozoic are recognized, in southern Tunisia by deep petroleum wells (Fig. 2). Mesozoic series of Dahar slightly tilted towards the West, have not recorded the Alpine and Atlassic shortening phases. To the East, the Djeffara plain, bounded by a NW-SE network of normal faults (Castany, 1954) and marked by Carboniferous and Permian high subsidence related to NE-SW extension (Ben Ayed, 1993; Bouaziz, 1995). The Talemzane Arch is the most significant structure appreciably trending E-W, corresponds to substratum of the Saharan platform and generated following the Hercynian tectonic phase (Busson, 1970a, b). On both sides of the Talemzane Arch, the Mesozoic strata, Triassic in particular, rest with angular unconformity on the eroded Paleozoic (Busson, 1967). This ridge extends from the Algerian Sahara crossing the Dahar structure of Southern Tunisian and constitutes the northern edge of the Ghedames basin and the limit between the Saharan craton and the extensive Mesogean domain to the North.
Study of seismic lines (Figs. 5, 6 and 8) shows that the transitional zone between the little deformed Saharan platform and the Atlassic folded zone, being complex with deep E-W direction in the Djerid Chotts area. This zone corresponded to a major lineament represented by North-Saharan faults and flexures separating the northern subsiding domain with relatively thick sedimentary cover in the Chotts and Gafsa basins from the southern domain with thin sediments.
The Chotts structures contain the Chott Djerid and El Fedjedj depocenters, which are bounded by the North and South chains. The Chotts domain generally trends E-W extending from the Gulf of Gabes in the East to the Nefta-Tozeur zone in the West of Chott Djerid.
On both sides of the chain of Chotts, the thicknesses and facies changed (Figs. 2 and 4). These significant and abrupt variations testify of pronounced subsidence in the Chotts furrow, controlled by normal faults during the Mesozoic times. The synsedimentary activity seems to be accompanied by Triassic halokinetic activity during the Jurassic and Early Cretaceous (Figs. 4, 5 and 8). Triassic saliferous facies moved and caused a local thickness variation of overlying series near the normal faults, inducing therefore an early structuring of the northern chain of Chotts.
Seismic section L2 of the Chott El Fedjaj, showing two positive flower fault structures trending east-west and evolution of Mesozoic series under faulting change and halokinesis of northern and southern range of the Chotts
The early halokinesis and its influence on the Chotts structuring was also observed in areas of the southern Atlas of Tunisia (Bédir, 1995; Boukadi and Bédir, 1996; Zitouni, 1997; Boukadi et al., 1998; Hlaiem, 1999; Bédir et al., 2000, 2001; Ben Timzal, 2000; Tanfous-Amri et al., 2005; Zouaghi et al., 2005a, b, 2007 ; Azeiez et al., 2007) and in the Saharan Atlas of Algeria (Vially et al., 1994). Thicknesses of the Mesozoic and Cenozoic series increase gradually from the Saharan platform to the Chotts depocenters (Figs. 5 and 6).
Study of seismic sections shows that the Djerid basin could has a half-graben geometry bounded to the North by a major fault of northern chain of the Chotts (Figs. 5 and 6). Towards the East, the Chott El Fedjej seems to correspond to a graben structure limited to the South and to the North by fault systems. In this area, seismic reflectors emphasize migration of depocenter from North to South since the Triassic until the Early Cretaceous. This inversion would be related to the synsedimentary tectonic and halokinetic activity of the Chotts faults during the extensional intervals. Inversion of structures has continued during Late Cretaceous and Neogene.
The Hercynian unconformity defined by toplap structures of the eroded Paleozoic series is related to intense erosion which succeeded the Hercynian orogenesis (Figs.4-6). The aggradational/retrogradational onlaps mark the transgression of Early Triassic composed by sandy-clay, showing an angular unconformity. The seismic reflector, tilted to the North by slight slope, is characterized by continuous reflections and high amplitude.
Seismic section L3 of the Djerid Chott, illustrating distribution of major unconformities and their evolution towards the northern Chotts east-west strike-slip fault and associated Triassic salt intrusion (see Fig. 4)
The top of the Jurassic Nara dolomite formation is marked by moderate continuous and high amplitude seismic doublet (Fig. 6). This reflector is sealed by progradational downlaps of the overlying Neocomian fluvial continental series. This unconformity marked the change from a marine carbonate platform deposition to a fluvial continental one related to a regional marine regression, which reached central Tunisia.
The Late Barremian-Early Aptian erosional surface, which is observed on the entire Saharan platform, is defined by moderate to well continuous and high amplitude reflections forming locally seismic doublets (Figs. 4 and 6). The toplaps correspond to erosional truncation of the Barremian-Neocomian upper detrital series that are onlapped by Aptian to Cenomanian aggradational/retrogradational transgressive carbonates and clays to the South. The occurrence of this regional erosional surface could explained by an uplifting generated by a tectonic deformation and a sea level fall.
The upper Cretaceous unconformity is characterized by basal toplaps, corresponding to upper strata of Senonian truncated by post-Cretaceous erosion. It is marked by moderate continuous and high amplitude reflections followed by the Neogene-Quaternary sandy-clay continental series deposed in angular unconformity by onlap structures (Fig. 6). Absence of all Paleogene strata indicates general elevation of the Saharan platform at the end of Cretaceous related to the Late Cretaceous-Eocene compressional tectonics associated with sea level falls.
Previous synthesis works described the geodynamic evolution of the southern margin of Maghrebid Tethys and established approximate models showing the relation between current structuring and the ancient Hercynian and later-Hercynian events. The outcrops results (Zargouni, 1985; Delteil et al., 1991; Boukadi, 1994; Zouari, 1995) seem agree with those elaborate in subsurface (Ben Ismail, 1991; Bédir, 1995; Zitouni, 1997; Jallouli and Mickus, 2000; Gabtni et al., 2005; Zouaghi et al., 2005a, b, 2009; Gabtni, 2006). These tectonic models, particularly related to the Tertiary and Quaternary deformations were used for deduce the geodynamic evolution of the Mesozoic basins.
Extensional tectonics started with the Carboniferous-Permian times known in the Dahar plateau and the Djeffara plain of South-East Tunisia (Bishop, 1975; Ben Ferjani et al., 1990\n\t\t\t\t\tBouaziz, 1995; Bouaziz et al., 1999, 2002). This extensional event continued and accentuated during Mesozoic periods in relation with the sub-meridian Tethyan extensional framework, which affected the whole of the North-African margin. The relatively thick sedimentary strata of Triassic, Jurassic and Early Cretaceous in the Chotts area, the Gulf of Gabes, and the Gafsa area (Figs. 2, 4-6) testify to an active subsidence during these periods.
Triassic structuring seems to be inherited from the Paleozoic. Mechanisms of the opening are accompanied by thick sedimentary sequences and probably volcanic in subsiding grabens with installation of progradational systems tracts of Early to Middle Triassic sandy-clay and carbonate sequences. The evaporites and salts of the upper Triassic sequences seem to be accumulated on down sides of faults bordering grabens. The Triassic NNW-SSE to NW-SE oriented extension (Bouaziz et al., 2002) is associated with the alkaline magmatism documented from petroleum well data in the Chotts basin (Laaridhi-Ouazaa, 1994). Basin structuring and sedimentary lapout of the Triassic have been described in Algerian outcrops (Bouillin, 1977; Vila, l980; Obert, l984, 1986; Kazi Tani, 1986). This kinematic corresponds to the beginning of opening of the Tethys and the central Atlantic and therefore separation of Africa from Eurasia. This event coincides with the beginning of the anti-clockwise rotational migration of African plate towards the East (Olivet et al., 1982, Dercourt et al., 1985).
During the Jurassic and Early Cretaceous, the synsedimentary and halokinetic activity of faults, probably developed since Triassic, persists in relation with N-S extensional stage (Fig. 7). This activity involved formation of the pre-existing structures.
The opening of basins, which began with the Triassic has continued and accentuated during the Jurassic where the grabens and subsiding depocenters in southern Atlas showed a geodynamic mechanism similar to that prevailed with the Triassic. Synchronism between the opening of basins and the Jurassic halokinetic rising has accentuated the paleogeographic differentiation, which characterized by progradational deposits on sides of Rim Synclines (Figs. 4 and 5) and by carbonated reefal platforms appeared since the Jurassic.
The Early Cretaceous is marked by a notable change in the tectonic structuring, induced by the reorientation of tectonic extensional stress and sedimentary evolution. This change is fossilized by general unconformity marked by lower Cretaceous progradational downlaps of Sidi Khalif Formation above the Jurassic carbonates (Figs. 4-6). This discordance has been also highlighted in Algeria by Vila (1980) and Obert (1984, 1986). The opening movements observed during the Triassic and Jurassic, are clearly decreased and even sealed during the Early Cretaceous around the majority of Atlassic blocks. The deep fault network starts to undergone deviations of some directions following the strike-slip movements, the rotations of blocks and the rising of the Triassic intrusions and domes across master fault intersections (Zouaghi, 2008; Zouaghi et al., 2005b, 2011).
The Jurassic and lower Cretaceous kinematics show an influence of extensional stresses trending near NNW-SSE (Fig. 7), which is well integrated in the context of the Tethyan openings (Vila, 1980; Olivet et al., 1982; Obert, 1984, 1986; Dercourt et al., 1985).
During Late Cretaceous several complex deformations have been showed controlled by both extensional and compressional stages. The highlighted structures indicate irregularity of the tectonic and sedimentary mode in Tunisia. These intervals are marked by major Triassic evaporite extrusion indicating the saliferous movements and diapirism well characterized in northern Tunisia (Perthuisot, 1978; Vila, 1980). These deformations result in thickness and facies variations associated with unconformities and gaps recorded in middle and upper Cretaceous strata (Figs. 4-6 and 8) highlighted in many localities of the Tunisian Atlas. The end of the Late Cretaceous corresponds to the beginning of the compressional stresses marked by installation of several anticlines. This extensional stress change to strike-slip movements caused deposition of thick Albian-Cenomanian black shales rocks in the subsiding blocks and reefal carbonated platforms on the high blocks. Regionally, this evolution is related to the bringing together of the African plate with the Iberia to the West and Eurasia to the East, under the effect of its rotation but also related to the East-West relative movement of these plates (Olivet et al., 1982; Dercourt et al., 1985; Guiraud and Bosworth, 1997).
Effect of the regional tectonic stress field on the geodynamic evolution integrating strike-slip movements, basin geometry, filling and Triassic halokinesis
With the beginning of Tertiary times and especially since the Eocene until Quaternary, the compressional events were largely highlighted in the Tunisian areas. These periods are marked by principal tectonic phases of compression trending NW-SE to N-S, which are related to the mechanisms of collision between the African and European plates.
The Eocene corresponds to the final emergence of the Saharan Platform, which started since the Late Cretaceous with the development of the Gafsa-Metlaoui intracontinental folds and synclines. During this period, the Saharan domain that is marked by absence of the Paleogene Sediments, is exposed to erosive action assigning upper strata of the Early Cretaceous (Figs. 4 and 6). Formation of the Eocene folded structures, are locally accompanied by the opening of grabens along the strike slip fault corridors (Ben Ayed, 1993; Melki et al., 2010; Zouaghi et al., 2010). The contractional regional constraint is still NW-SE generating transpressional dextral strike-slip movements on lineaments trending N90 and N120 (Figs. 3 and 7).
The Eocene contractional events detected on the southern Tunisian margin are related to formation of the alpine arc following collision of Europe with the Apulia margin and the accentuation of the Africa-Europe bringing together (Olivet et al., 1982; Dercourt et al., 1985)
At Late Miocene, contractional tectonics become more evident and fossilized by development of folded structures and infilling of the intracontinental basins in southern Atlas (Figs. 4, 5 and 8). The structures previously started by the halokinesis since the Jurassic are reactivated and accentuated during these compressional deformations. The NW-SE upper Miocene contractional events could be correlated to the processes of Africa and Europe bringing together and its collision. The Tortonian major contractional phase, which induces thrust sheets of the North African margin, is well documented (Vila, 1980; Obert, 1984, 1986).
The Quaternary is marked by complex structures resulting from the combined effect of the tectonic polyphasage dominated by the N-S contractional stress (Fig. 7) and saliferous tectonics. We think that it is the result of a combination of a cover tectonic style and deep basement movements.
The Atlassic folds and synclines seem to be evolved under three contractional tectonic events. The first, known as Pyrenean dated end Cretaceous-Eocene has NW-SE (N120 to N140) dominant paleo-stress, the second of Late Miocene named Alpine trending NW-SE, and the third corresponds to post-Villafranchian phase oriented N-S. Some authors have showed another minor and local contractional event dated of Late Pliocene and characterized by N150 to N160 direction of shortening (Zargouni, 1985; Fakraoui, 1990; Addoum, 1995; Bouaziz, 1995).
During the compressional events a local extensional episodes were highlighted. In particularly the Middle Miocene (Langhian-Serravalian) phase trending NE-SW, which induced the opening of the grabens of central Tunisia (Philip et al., 1986; Ben Ayed, 1993; Chihi, 1995; Zouaghi, 2008; Zouaghi et al., 2010, 2011). The N-S post-Villafranchian compressional phase, which largely marked the Atlassic structuring, is associated with normal faults in the Khenchla depression of the eastern Saharan Atlas (Addoum, 1995). In southern Atlas the Eocene-Paleocene phosphate series of the Gafsa-Metlaoui basin shows existence of synsedimentary normal faults (Bouaziz, 1995) that coexist sometimes with other reverse faults (Ben Ayed, 1993; Melki et al., 2010).
Seismic section L4 across the El Fedjaj Chott, showing folding and wrench salt-intrusion at the intersection of the northeast-southwest Tebaga-Fatnassa and northwest-southeast Hadifa master lineaments
The main works established on the kinematic of deformation in the Atlassic domain (Creusot et al., 1992 ; Creusot et al., 1993 ; Outtani et al., 1995 ; Addoum, 1995) show the coexistence of two modes of folding; the first corresponds to the folds formed on inherited faults of the infra-Triassic basement, where the ancient extensional structures are reactivated and evolved to reverse faults during the compressional deformations; the second model of propagation folds was also highlighted.
Because the oblique position of the preexistent faults compared to the direction of tectonic stress (Fig. 7), formation of folds becomes more complex because of the strike-slip fault movements (Letouzey, 1990; Ben Ayed, 1993). This kinematic of deformation results in the positive flower-structures organized into overlapping fold belts recognized at the southern Atlas, the most known are the Metlaoui chains, the Chotts chains and the Gafsa chains. In fact, formation of the Atlassic chains was generated by interaction between the major effect related to reactivation in transcurrent and inversion of the old basement faults (thick-skinned style) and a surface effect related to decollement and overfolding of the supra-Triassic cover (thin-skinned style) (Hlaiem, 1999; Zouaghi et al., 2005b; Bensalem et al., 2009). Moreover the early halokinesis during Jurassic and Early Cretaceous associated with the synsedimentary activity of some normal faults contributed to pre-structuring and guiding the genesis of Atlassic fold belts.
Lithostratigraphic column of the study area reveals the existence of several Formations, which could constitute potential levels of decollement of the overlying cover at the time of folding. Although the main level of decollement remains the Triassic evaporites (Hlaiem, 1999; Zouaghi et al., 2005b; Bensalem et al., 2009), the Cretaceous clays and sandy-clays are locally considered as levels of secondary detachments (Outtani et al., 1995).
The seismic reflection sections suggest a model of broken folds on break-thrusting associated with reverse deep-seated faults in the Triassic. We suggest than these folds are controlled by the basement inherited extensional structures (Figs. 4, 5 and 9).
The kinematic study on seismic lines allows to propose folded structures associated with reverse deep-seated faults reaching the Triassic strata (Figs. 4 and 8). Position and orientation of existing structures would be related to the position of ancient normal faults, which controlled genesis and evolution of the folds structures and associated reverses faults during the compressional events.
Thickness variations on sides of the master faults, which bounded the basins in southern Atlas during the Jurassic and Lower Cretaceous, suggest the existence of normal fault generated during the rifting and extensional phases and caused subsidence increasing (Figs. 5 and 6). The resulted in steps structuring seem to be in agreement with the Knowledge model, which characterizes the North Africa passive margin (Biju-Duval, 1980; Ben Ayed, 1993; Bédir, 1995; Zouaghi, 2008; Zouaghi et al., 2011).
The deep master faults, which are associated with the anticline structures could have a role in the structuring of the cover since the extensional periods by their synsedimentary and halokinetic activity inducing local structural anomalies marked by variations of thicknesses and facies, unconformities, pinching outs and gaps of depositions (Figs. 8 and 9). These inherited faults could influence the localization of the future Atlassic chains before starting of the compressional deformations (Vially et al., 1994).
Block diagram imaging the strain partitioning and resulted folds during the Cenozoic transpressional inversion of Chotts inherited structures
In addition to the role of Triassic halokinesis during the extensional periods that consist in a pre-structuring of the chains, the inherited normal faults would be reactivated and reversed and therefore control the evolution of folds during the contractional times. According to the seismic data we suggest that anticlines structures of southern Atlas are comparable to broken folds on break thrusts (Fig. 9). The slope is generated by the rejuvenation of pre-existing basement faults.
Study of major unconformities using the seismic reflections had permitted to identify the principal tectono-sedimentary events, which marked the history of infilling and deformation of the Chotts basins during the Mesozoic and Cenozoic periods. In spite of the local tectonic history, eustatism has marked Saharan craton, in particular during the great falls of sea level. The history of deposition of Chott domain recorded the combined effect of the tectonic deformation and eustatic change, which marked the Saharan platform.
The significant thickening of the Mesozoic series from the South to the North indicates a high subsidence in the Chotts areas controlled by master faults of the Chotts. The southern range of Chotts is characterized by a reduced Mesozoic sedimentation on the platform, which corresponded to a relatively resistant butte rests on the ante-Mesozoic substratum of the northern side of the Talemzane Arch. Increase of thickness in the distal zone to the North, suggests a reduction of deposition space to the South.
Deposition in the Saharan intra-cratonic and marginal basin suggests effect of the Chotts faults related to the regional geodynamic evolution of the peri-tethyan platforms in North Africa.
During the Cenozoic compressive phases trending NW-SE to N-S, rejuvenation of the major faults of Chotts is marked by dextral strike-slip movements, which generate the overlapping fold belts and overthrust folds on the cover of the North chain of Chotts. Structures resulted from deep tectonic deformations as Thick-skinned style and from tectonics of cover as Thin-skinned style are marked by folding and decollement of the sedimentary cover. The southern sides of the majority of chains are vertically straightened sometimes inverted, and transpressive structures are associated with reverse faults. The overlapping folds, which characterize the southern Atlas chains result from dextral strike-slip motion trending near E-W at the level of the basement.
Evolution of the structures around the tectonic blocks of Southern Tunisia from the Jurassic to the Neogene is guided by the rejuvenation of deep crustal lineaments trending E-W and NW-SE and have controlled geometry and evolution of the following sedimentary deposits.
Tectonic deformations have induced halokinesis along master inherited faults. Intersection of these faults during regional extensional and contractional events in the Triassic subsalt basement caused its vertical rising. Interaction of folding and salt diapirism accentuates overthrusting along strike-slip faults.
The strike-slip faults delimited the asymmetric tectonic blocks and differently moved during the geological history. The extensional and transtensional movements during the Triassic, Jurassic and Early Cretaceous, then contractional and transpressional from the end of Late Cretaceous, induced opening of quadratic basins and formation of platforms then closing of the basins and migration of subsiding depocenters, resulting sometimes in blocking stages with compressions following the ancient structural inheritances. The reorientations of the regional stresses along major tectonic discontinuities appear to be induced by movements of the African plate compared to the Eurasia and Iberia (Olivet et al., 1982; Dercourt et al., 1985). Thus we highlight the effects of the principal tectonic events related to the migration of the African plate since the Triassic-Jurassic rifting and the geodynamic answers to these movements at times of shortening on the Tunisian margin.
The study is based on subsurface data set recorded during exploration and production surveys. It has been partly supported by national and international geological and geophysical projects and research programs on southern Atlas of Tunisia. We thank the ETAP, AGIP, SHELL, CPG and ONM companies for its coordinations and helps.
We thank reviewers and editors of the book for comments and suggestions on an early version of the chapter.
The modern metal forming industry has taken complete advantage and benefit offered by the advanced techniques in order to remain in today’s competitive market. The solidification modeling is a phase-change phenomena which is amazingly complicated as well as critical in many areas of science and engineering and also very vital in the field of automotive and aerospace applications. In the field of foundry engineering, when the molten metal is poured into the mold cavity, the metal solidifies and discharges heat into the mold, the metal shrinks due to which an air gap is formed in between the cast and the mold. This air gap acts as an obstruction for the heat flow from the cast to the mold and is to be found as one of the moving boundary conditions to be given as input for the casting simulation software. In the simulation of a solidification of the casting process, many parameters play a significant role responsible for the quality of the cast.
The data base for the properties of commonly used materials such as density, thermal conductivity, specific heat, solidus temperature, liquidus temperature, latent heat release etc., for the simulation of casting parameters need to be maintained by the industries.
To comprehend the heat transfer mechanism we need to know the behavior of solidification. The heat transfer from the liquid hot temperature cast to the mold is a very complex phenomenon and different modes of heat transfer can be observed while solidification in the cast. While heat transfer is predominant the resistance to the heat flow also has different dimensions to this solidification. This resistance mainly depends on liquid cast metal, latent heat release, interface, solidified cast, the type of mold and the ambient conditions. General solidification of an alloy is discussed in the Figure 1 and specific cooling curve for Al6061 is shown in Figure 2.
Solidification curve for alloy.
Aluminum alloy (Al6061) solidification curve.
Initially on pouring the liquid metal cast into the mold cavity the whole metal fluid flows and occupies the mold cavity, the liquid metal flowing with the velocity, mixes thoroughly and releases heat to the mold due to the very high temperature difference. Complete thermal contact is observed between the cast and the mold which causes the heat transfer to be purely conduction, where the resistance offered by this liquid metal is negligible since the entire fluid flow is the superheated cast metal. Once the cast metal reaches the liquidus point on cooling, the cast shrinks and releases latent heat and also a number of metal oxides are released which causes an air gap between the cast and the mold. Due to this air gap the heat transfer phenomenon now changes to a complex one where all modes of heat transfer can be observed simultaneously. This air gap is characterized with an Interfacial Heat transfer Coefficient (IHTC) “h” across the metal-mold interface. The rate of heat at the interface is found using the surface heat flux as q (W/m2) and given by the Eq. 1.
Tc and Tm are the cast and mold surface temperatures at the interface in K or deg. C.
The dynamics of solidification of cast metal, mold temperature and the cast temperature can be clearly understood from the cooling curves shown in Figure 2. Once the molten metal fills the cavity the alloy cast reaches the maximum temperature. Generally the heat transfer analysis starts from this point onwards as the temperature drops from the liquid cast metal to the liquidus temperature (TL), the point at which the solidification begins and this freezing is called liquid cooling. The loss of superheat temperature of the cast metal after pouring is found due to the turbulence in the liquid metal. This rate of cooling is linear and a minimum amount of heat is transferred from the cast to the mold as it is having a complete contact with the mold surface.
As the solidification progresses with time it reaches the liquidus point at the same time where the mold temperature increases significantly to a maximum temperature. Further the solid skin forms on the outer cast surface, the metal shrinks and an air gap starts forming between the metal and the mold. When the cast solidifies further the air gap separates the two surfaces. This is a common phenomenon in most of the alloys. The rate of heat transfer from the cast to the mold is very high as it releases larger quantity of latent heat to the mold and the cast temperature gradually reaches a solidus (TS) temperature of the alloy. The air gap plays a significant role in varying IHTC with various factors influencing solidification.
Further solidification reduces the cast surface temperature, however the inner cast metal shrinks and it further releases the heat to the mold and there is rise in the mold temperature as shown in Figure 2. Thereafter further reduction in the cast temperature after the solidus point (Ts) was found as the third stage of solidification. The air gap size is further increased as the solidification time increase and its effects are felt till the end of solidification. However there is still a temperature difference between the cast and mold for the further heat transfer to continue.
Once the complete air gap is formed between the cast and the mold, the gap will contain almost all kinds of gaseous except air that contradicts the air gap term. The sand mold which is used for the casting application, generates the mold gases which are often high in hydrogen, containing typically 50 percent which fills the air gap. The hydrogen gas thermal conductivity increases the heat transfer by 7 times more as the mold temperature rises to a high temperature of 500°C due to radiation. Therefore it is very essential to know or analyze the interface during the solidification process as it is further discussed in the next section.
On comparing the green sand mold with dry sand mold the green sand mold expand homogeneously and release heat to the surrounding which leads to a lesser resistance for the heat flow whereas dry sand mold offers more resistance than the green sand mold. The high thermal conductivity die mold material has uniform temperature variation and assumes homogeneous expansion.
While melting the metal in the furnace has a higher specific volume hence it occupies more space by the metal and on pouring it results in the solidification in the mold which increases the complexity of the solidification [1]. After pouring the temperature of the cast reduces and the specific volume also reduces which causes shrinkage in the poured volume as shown in Figure 3. To understand the complex behavior of solidification we need to understand three different stages of shrinkage of metal during the solidification process; it includes liquid shrinkage, liquid- solid shrinkage and solid shrinkage.
Specific volume changes against cast surface temperature.
The superheated metal which is poured in the liquid state has more specific volume than the liquid metal in the cavity [2]. This liquid metal occupies the mold cavity and is in superheated state and comes in complete contact with the mold surface. Here the mode of heat transfer is purely conduction shown in Figure 3. On solidification there is a liquid contraction due to reduction in specific volume, the metal cools further and reaches to a liquidus temperature. This contraction of liquid metal separates cast and mold surface and imitates the air gap formation which is assigned as liquid shrinkage.
Actually the liquid contraction leads to a solidification which is a complex problem in the casting industry. This requires a proper feeding mechanism to fill the cavity by maintaining high liquid cast temperature while pouring and if not then the partial liquid - solid contraction leads to shrinkage porosity. The specific volume of the solid metal is lesser than the liquid metal. All the solidifications are planned for the directional solidification which refers to the faster cooling rate at which solidification progresses from the cavity metal to the feeder mechanism. The faster cooling rate and the movement of liquid in the solidification is due to the area of the surface which enables the liquid metal to drop its high temperature to solidus temperature. The runner, riser and the gating system is designed in the mold pattern enhances the directional solidification by transferring proper heat flow from the cast to the mold.
The alloys of eutectic type allow lesser solidification shrinkage volume and also have a lower sensitivity to the solidification problems caused by sudden geometry changes. While they involve smaller risers, these can be omitted completely in certain cases by gates placed strategically and because the metal feed avenues stay open longer, it ensures a uniform solidifying process. While eutectic type of solidification is the most simplest, it requires the least reciprocity and can withstand a range of geometries. Directional solidification is more complex; however, when it has an ideally designed geometry, it is highly capable of extremely higher interior unity. Heat transfer is in fact the main process behind the bilaterally symmetrical and mutual state of connectedness in the process of solidification shrinkage and geometrical patterns. The heat transfer during solidification of castings involves three modes of heat transfer, namely radiation, conduction and convection, the rate of heat transfer is still dependent on the geometry of the casting as discussed later in the interfacial heat transfer coefficient section.
The final stages of shrinkage in the solid state which can cause a separate series of problems. As cooling progresses, and the casting attempts to reduce its size in consequence, it is rarely free to contract as it wishes. This stage of solidification is usually complex either by the types of mold, or by the other casting parts like the runner and riser that have already solidified and cooled as the air gap formed. The air gap formed is mainly due to the various factors like metal oxide formation, coefficient of thermal expansion, latent heat released, evaporation moisture in the case of sand mold, interfacial gap, mode of heat transfer etc. this type of solidification shrinkage is also called as pattern shrinkage.
These factors are the major causes for the heat to flow from the cast to the mold and it is found that it majorly affects the solidification and in turn affects the quality of the cast product. The amount of solid metal stretches like plastic casting, makes the solidification again into a complex problem. This shrinkage behavior leads to difficulty in predicting the size of the pattern since the degree to which the pattern is made oversize (the ‘contraction allowance’ or ‘patternmaker’s allowance’) is not easy to quantify. This shrinkage also causes hot tearing or cracking of the casting which lead to more localized problems.
In general, liquids contract on freezing because of the rearrangement of atoms from a rather open ‘random close-packed’ arrangement to a regular crystalline array of significantly denser packing. The densest solids are those that have cubic close packed (face-centred-cubic, fcc, and hexagonal close-packed, hcp) symmetry. Thus the greatest values for contraction on solidification are seen for these metals.
The heat transfer characteristics during casting are governed by IHTC. The molten metal is poured into the cavity it first enters the mold due to the fluidity of the metal, it occupies the cavity and ensures complete contact between the metal and the mold. In the early stage of solidification, the fluidity of the molten metal conformance and contact between the cast and mold surfaces is good. At this early stage of solidification due to the nucleation of the metal, higher initial surface heat flux is reached. Further the solid skin forms and then spreads to cover the entire casting surface. As the solidified layer forms with sufficient strength, simultaneously air gap forms and as a consequence the contact between the casting and the mold are reduced. This leads to the sudden drop in the heat flux and the solid skin forms on the outer cast surface [3]. The cast liquid - solid shrinks/contracts away from the mold surface. This further releases heat and it is absorbed by the mold surface and in turn increases the temperature of the mold as it expands. The mode of heat transfer is not only due to conduction at this stage because the heat from the metal to the mold takes place across the interface region but also due to other modes of heat transfer convection and radiation. The air gap varies for the different cast metals and depends on their factors of the release of metal oxides, hydrogen gases and material properties of the cast and mold, geometry etc.
Further the third stage of solidification is identified between the liquidus to solidus temperature of the cast as the fall in the casting surface temperature is suddenly halted, due to the release of latent heat. After the complete solid skin formation on the cast the heat transfer further diminishes and gap size increases and the mode for heat transfer is assumed to be conduction of heat through the gaseous phase in the interface using the air gap method. This air gap size is measured as x by assuming the expansion to be homogeneous, and the interfacial heat transfer coefficient is estimated as h = k/x: where k is thermal conductivity of the air (W/mK) as shown in Figure 4. This concept of conduction as a mode of heat transfer in IHTC is reported by Kai- Ho and Robert D Pelhke, [4]. There are many factors that influence the IHTC and practically the IHTC becomes highly unpredictable if all the factors are not taken into account while designing. The various factors listed by the authors Lewis and Ransing, [5] and Guo Zhi-Peng et al. [6], that affect the interfacial heat during solidification is listed below.
Schematic representation of IHTC during solidification of casting.
Die coating thickness: The initial high peak value of IHTC is reduced with an increase of die coating thickness. While pouring the metal at the liquid stage the effect of die coating behaves as a weaker influence at the interface as the air gap formed.
Insulating pads, chills, etc.: The IHTC has different behaviors with insulating pads and chills. It is obvious that always the insulating material reduces the IHTC and the chills increases the IHTC.
Geometry of Casting: The area of contact with the mold and the directional solidification will have higher IHTC.
Pouring temperature: Higher values of superheat will increase the initial value of IHTC.
Surface roughness: Higher initial value of IHTC for the better contact when the surfaces are smooth.
Alloy composition: Higher initial value established for an alloy with a larger freezing range.
Latent heat: Cast from superheat temperature to liquidus temperature ensures sharp slope in IHTC due to the evolution of latent heat.
Metallostatic pressure: During the pouring of molten metal into the cavity rises the metallostatic pressure, this is also responsible for higher IHTC at the initial stage.
Mold temperature: During initial stage higher IHTC due to the higher mold temperature and smaller temperature difference for higher peak heat flux.
Die Coating thickness: Increase of die coating thickness decreases the IHTC. While pouring the metal at the liquid stage the effect of die coating behaves as a weaker influence at the interface as the air gap formed.
Mold materials
Type of castings
As it is pointed out by many researchers the gap size mainly depends on the gas that is formed in the interface. The rate of solidification of castings made in a sand mold is generally controlled by the rate at which heat can be absorbed by the mold. In fact, compared to many other casting processes, the sand mold acts as an excellent insulator, keeping the casting warm. However, of course, ceramic investment and plaster molds are even more insulating, avoiding premature cooling of the metal, and aiding fluidity to give the excellent ability to fill thin sections for which these casting processes are renowned. It is regrettable that the extremely slow cooling can contribute to rather poorer mechanical properties.
Extensive literature reviews have been made, in order to determine the interfacial heat transfer behavior during the solidification of casting at the metal-mold interfaces, since the 1970’s. The boundary conditions as a surface heat flux and mold surface temperature established at the metal mold interface were used to determine the precise interfacial heat transfer coefficient value by using many mathematical methods described in the literature. The most common approaches can be distinguished here as follows for the determination of IHTC at the metal-mold interface including surface heat flux and mold surface temperature:
Air gap measurement technique
Pure Analytical approach
Semi-analytical method
Numerical Methods
The following section explains the detailed procedure of these methods listed above.
This method calculates the IHTC based on entrapped gas properties present at the interface. The thermal conductivity of the air between the cast mold interface and the distance of air gap measured as x with the LVDT [7]. The formula used for IHTC calculation is, h = k/x, W/m2K. The mode of heat transfer assumed in this method is conduction at the interface, but the other modes of heat transfer are also practically possible as we have discussed in the above section. Hence this method is not widely accepted by the researchers.
In this approach, experimental cooling curves were obtained at certain locations of the cast surface and on the mold to estimate the IHTC. The IHTC is calculated based on measured cast temperature, estimated mold surface temperature and estimated mold surface heat flux. Generally solidification heat transfer problems as shown in Figure 5 were categorized as
Direct Heat Conduction Problem (DHCP)
Indirect Heat Conduction Problem (IHCP)
Schematic diagram for DHCP and IHCP conditions.
In the DHCP the boundary conditions were known at the metal mold interface (which is a moving boundary problem and is difficult to acquire the parameters at the interface) and the effects were determined, mathematically it is known as a well posed problem. But in solidification of casting, knowing the boundary condition is very difficult because of its high transient nature, moving boundary problem, high temperature region, combination of all modes of heat transfer, etc., at the interface. So the inverse heat conduction problem is used to approach the problem. In order to calculate the boundary condition at the interface as a surface heat flux and surface temperature of the mold, experiments were carried out to determine temperatures in the mold to get the input data. This leads to a method of adoption of an ill-posed problem or the inverse heat conduction problem (IHCP) [8]. This ill-posed nature makes IHCP conduct experimentation to determine the boundary conditions at the interface before it has to be solved from the available data rather than using a DHCP approach.
The interfacial heat transfer coefficient at the cast mold interface can be calculated based on Eq. (1), requiring the transient surface heat flux. Cast and mold surface temperatures are measured using thermocouples during solidification regardless of its uncertainty in the physical measurements. The pure analytical or other methods mentioned above are unable to determine the surface heat flux at the interface. This leads to the numerical approaches and their formulation of inverse heat conduction problem (IHCP) at the interface to determine the boundary conditions. The boundary conditions at the interface are explored or determined by the IHCP. This has been studied by various techniques like FDM, FEM, FVM and CV methods. One of the common and mostly used method is mainly based on the function minimization technique based on the numerically calculated and measured data [6].
Where, F(h) is the minimization function, Ti, Yi are calculated and measured transient temperatures at the same locations, i= 0 to N, nodal point. The errors in the temperature measurement may also lead the IHCP into ill-posed. This problem leads the researchers to propose many techniques to solve for IHCP to determine boundary conditions at the interface with the measured temperature histories.
Polynomial extrapolation method: The temperature at the interface was deduced by extrapolating any one of the polynomial curve fitting techniques. This method needed many measurements inside the cast and mold surfaces. This mathematical tool failed to minimize measurement errors.
Regularization method: In order to minimize the error from the measurement obtained a sensitivity analysis can be carried out using the Tikhonov regularization theory. This was used to regularize some function to relate the measured data and this was improving the accuracy and stability of the results obtained. This method could achieve an excellent solution and could be applied to any complex geometry, but the computation takes a very long time.
Boundary element method and Laplace transform: the unknown temperature were transformed into equations as well as written as matrix format. This could be easily solved and written into a computer program. But it has some restrictions. It was an effective method to solve a simple linear problem. But the measured temperature data always has more noise (disturbances) in the data, this could fluctuate the result obtained as heat flux.
Beck’s function specification with finite difference method (implicit & explicit): It was another minimizing error technique used based on heat flux, where sum of squares of assumed and calculated data are used into the function. This method could be used for linear or nonlinear problems. Also, it has long computation time and also could achieve an accurate solution with efficient computation.
Control volume method: This method works, based on energy balance applied over a control volume drawn on each nodal point. The next one is the governing equation for the transient heat conduction written as a partial transient heat conduction equation changed into an ordinary differential transient equation. This involves both energy and mass conservation on each node, leads to a complex formulation equation containing up to 4th order, which may be difficult to program using computer languages, and can only be applied to simple geometrical shapes and one dimension.
A sample of a rectangular geometry with an aluminum (Al6061) cast volume of 45 cm3 was solidified and the IHTC was calculated as shown below in Figure 6. Here the IHTC curve was calculated using the control volume method and it shows a gradual increase. Various characteristics of the IHTC and the heat transfer can be discussed [9].
IHTC variation for the rectangular aluminum casting with sand mold.
The behavior of the sample rectangular cast was considered as it summarizes most of the heat transfer modes in solidification of the cast. On pouring the IHTC was found to be 370 W/m2 K at 90 s, the higher initial surface heat flux was due to a perfect thermal contact. As further solidification starts, vaporization takes place in the sand mold because of the moisture content, presence of hydrogen release along with metal oxides across the interface and the reduction of specific volume of metal creates an air gap and decreases the value of IHTC rapidly to a minimum value of 163 W/m2 K at 130 s. The shrinkage of metal causes release of latent heat and rise in the IHTC, then heat transfer reduces once the solid skin is formed [10]. Again the inner metal leaks and flows out from the solid skin to outside and gets cooled which again releases latent heat and so IHTC increases and decreases. Continuous rise and fall of the IHTC shows peak formation, which is shown till the end of solidification. The fourth peak value of 1718 W/m2 K at 600 s and further again at 720 s the IHTC reached the highest peak value of 1918 W/m2 K. The vapor pressure developed in the sand mold is due to the escape of moisture content to the ambient, which is sufficient to allow the heat to flow from the solidifying metal to sand mold hence the sharp rise in IHTC is observed in the final stage of solidification. Not only vapor pressure but also huge temperature differences causes high heat flows. Due to the thermal resistance induced, as the metal solidifies and contracts, a fall in the IHTC is vividly observed.
The materials that change phase during solidification to room temperature can be much more complicated. The heat transfer in the solidification is a complicated phenomenon as shown in the above sections. Understanding the heat transfer characteristics while solidification will help to link the various developments in the micro structure of the materials and the dislocations present. When solidification is complete the strength of the material can be assessed and the formation of the grains in the material can be directed by control of the temperature and heat flow on solidification.
The IHTC of a sample of Al6061 is thoroughly explained to comprehend the various modes of heat transfer while solidification is taking place. Proper cooling helps to govern the solidification and as the temperature is sufficiently low the strains of dislocations will not be sufficiently mobile to migrate into low energy positions, forming low-angle boundaries. Thus the alloy will become sufficiently strong to retain any further strain as elastic strain. Once the metal solidifies properly the structure of the alloy will no longer be affected during further cooling. Hence a complete idea of IHTC at all the times of solidification is the best option to minimize the errors and maximize the strength.
.
",metaTitle:"Order Print Copies - Terms",metaDescription:".",metaKeywords:null,canonicalURL:"page/order-print-copies-terms/",contentRaw:'[{"type":"htmlEditorComponent","content":"Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nMy order has not arrived, what do I do?
\\n\\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nMy order has not arrived, what do I do?
\n\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118374},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5247},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"403",title:"Microbial Genetics",slug:"karyology-microbial-genetics",parent:{title:"Karyology",slug:"karyology"},numberOfBooks:5,numberOfAuthorsAndEditors:169,numberOfWosCitations:69,numberOfCrossrefCitations:34,numberOfDimensionsCitations:80,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"karyology-microbial-genetics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5085",title:"Telomere",subtitle:"A Complex End of a Chromosome",isOpenForSubmission:!1,hash:"2a8f40859d7bc312dea327fd9b058a20",slug:"telomere-a-complex-end-of-a-chromosome",bookSignature:"Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/5085.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4720",title:"Flow Cytometry",subtitle:"Select Topics",isOpenForSubmission:!1,hash:"5a842a00d86bc7f956a5fd1fe6d62b8a",slug:"flow-cytometry-select-topics",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/4720.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3536",title:"Chromatin Remodelling",subtitle:null,isOpenForSubmission:!1,hash:"31abe97fe35989e4547bab854b38e03a",slug:"chromatin-remodelling",bookSignature:"Danuta Radzioch",coverURL:"https://cdn.intechopen.com/books/images_new/3536.jpg",editedByType:"Edited by",editors:[{id:"165250",title:"Dr.",name:"Danuta",middleName:null,surname:"Radzioch",slug:"danuta-radzioch",fullName:"Danuta Radzioch"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1578",title:"Flow Cytometry",subtitle:"Recent Perspectives",isOpenForSubmission:!1,hash:"fccad401cbcf998ea4de62d524abf82d",slug:"flow-cytometry-recent-perspectives",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/1578.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2291",title:"Clinical Flow Cytometry",subtitle:"Emerging Applications",isOpenForSubmission:!1,hash:"a5414617aafe62d7c6ec8205028f6967",slug:"clinical-flow-cytometry-emerging-applications",bookSignature:"Ingrid Schmid",coverURL:"https://cdn.intechopen.com/books/images_new/2291.jpg",editedByType:"Edited by",editors:[{id:"109787",title:"M.Sc.",name:"Ingrid",middleName:null,surname:"Schmid",slug:"ingrid-schmid",fullName:"Ingrid Schmid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"44225",doi:"10.5772/55370",title:"Role of Enhancer of Zeste Homolog 2 Polycomb Protein and Its Significance in Tumor Progression and Cell Differentiation",slug:"role-of-enhancer-of-zeste-homolog-2-polycomb-protein-and-its-significance-in-tumor-progression-and-c",totalDownloads:3389,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"chromatin-remodelling",title:"Chromatin Remodelling",fullTitle:"Chromatin Remodelling"},signatures:"Irene Marchesi and Luigi Bagella",authors:[{id:"91878",title:"Prof.",name:"Luigi",middleName:null,surname:"Bagella",slug:"luigi-bagella",fullName:"Luigi Bagella"},{id:"164852",title:"Dr.",name:"Irene",middleName:null,surname:"Marchesi",slug:"irene-marchesi",fullName:"Irene Marchesi"}]},{id:"52461",doi:"10.5772/65353",title:"Molecular Diagnosis and Precision Therapeutic Approaches for Telomere Biology Disorders",slug:"molecular-diagnosis-and-precision-therapeutic-approaches-for-telomere-biology-disorders",totalDownloads:1213,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"telomere-a-complex-end-of-a-chromosome",title:"Telomere",fullTitle:"Telomere - A Complex End of a Chromosome"},signatures:"Rosario Perona, Laura Iarriccio, Laura Pintado-Berninches, Javier\nRodriguez-Centeno, Cristina Manguan-Garcia, Elena Garcia, Blanca\nLopez-Ayllón and Leandro Sastre",authors:[{id:"179373",title:"Dr.",name:"Leandro",middleName:null,surname:"Sastre",slug:"leandro-sastre",fullName:"Leandro Sastre"},{id:"184869",title:"Dr.",name:"Rosario",middleName:null,surname:"Perona",slug:"rosario-perona",fullName:"Rosario Perona"},{id:"184870",title:"Dr.",name:"Laura",middleName:null,surname:"Iarriccio",slug:"laura-iarriccio",fullName:"Laura Iarriccio"},{id:"184871",title:"MSc.",name:"Laura",middleName:null,surname:"Pintado-Berninches",slug:"laura-pintado-berninches",fullName:"Laura Pintado-Berninches"},{id:"184872",title:"MSc.",name:"Javier",middleName:null,surname:"Rodriguez-Centeno",slug:"javier-rodriguez-centeno",fullName:"Javier Rodriguez-Centeno"},{id:"184873",title:"Ms.",name:"Cristina",middleName:null,surname:"Manguan-Garcia",slug:"cristina-manguan-garcia",fullName:"Cristina Manguan-Garcia"},{id:"184874",title:"Dr.",name:"Elena",middleName:null,surname:"Garcia",slug:"elena-garcia",fullName:"Elena Garcia"},{id:"184875",title:"Dr.",name:"Blanca",middleName:null,surname:"Lopez-Ayllon",slug:"blanca-lopez-ayllon",fullName:"Blanca Lopez-Ayllon"}]},{id:"37421",doi:"10.5772/38616",title:"What Flow Cytometry can Tell Us About Marine Micro-Organisms – Current Status and Future Applications",slug:"what-flow-cytometry-can-tell-about-marine-microrganisms-current-status-and-future-applications",totalDownloads:2396,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"flow-cytometry-recent-perspectives",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Recent Perspectives"},signatures:"A. Manti, S. Papa and P. Boi",authors:[{id:"118302",title:"Dr.",name:"Anita",middleName:null,surname:"Manti",slug:"anita-manti",fullName:"Anita Manti"}]}],mostDownloadedChaptersLast30Days:[{id:"49878",title:"Immunophenotyping of Acute Leukemias – From Biology to Clinical Application",slug:"immunophenotyping-of-acute-leukemias-from-biology-to-clinical-application",totalDownloads:2485,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-select-topics",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Select Topics"},signatures:"Francesco Mannelli",authors:[{id:"178848",title:"M.D.",name:"Francesco",middleName:null,surname:"Mannelli",slug:"francesco-mannelli",fullName:"Francesco Mannelli"}]},{id:"50878",title:"Detection of Anti-HLA Antibodies by Flow Cytometer",slug:"detection-of-anti-hla-antibodies-by-flow-cytometer",totalDownloads:2351,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-select-topics",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Select Topics"},signatures:"Tülay Kılıçaslan Ayna and Aslı Özkızılcık Koçyiğit",authors:[{id:"178265",title:"Dr.",name:"Tulay",middleName:null,surname:"Kilicaslan Ayna",slug:"tulay-kilicaslan-ayna",fullName:"Tulay Kilicaslan Ayna"}]},{id:"37054",title:"Effect of Monocyte Locomotion Inhibitory Factor (MLIF) on the Activation and Production of Intracellular Cytokine and Chemokine Receptors in Human T CD4+ Lymphocytes Measured by Flow Cytometry",slug:"effect-of-monocyte-inhibitory-locomotion-factor-mlif-on-the-activation-and-production-of-intracellul",totalDownloads:1566,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"clinical-flow-cytometry-emerging-applications",title:"Clinical Flow Cytometry",fullTitle:"Clinical Flow Cytometry - Emerging Applications"},signatures:"Sara Rojas-Dotor",authors:[{id:"109461",title:"Dr.",name:"Sara",middleName:null,surname:"Rojas-Dotor",slug:"sara-rojas-dotor",fullName:"Sara Rojas-Dotor"}]},{id:"50807",title:"The Role of Cytometry for Male Fertility Assessment in Toxicology",slug:"the-role-of-cytometry-for-male-fertility-assessment-in-toxicology",totalDownloads:1268,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-select-topics",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Select Topics"},signatures:"Maria de Lourdes Pereira, Helena Oliveira, Henrique M.A.C.\nFonseca, Fernando Garcia e Costa and Conceição Santos",authors:[{id:"79715",title:"Prof.",name:"Maria De Lourdes",middleName:null,surname:"Pereira",slug:"maria-de-lourdes-pereira",fullName:"Maria De Lourdes Pereira"},{id:"174419",title:"Prof.",name:"Fernando",middleName:null,surname:"Garcia E Costa",slug:"fernando-garcia-e-costa",fullName:"Fernando Garcia E Costa"},{id:"185982",title:"Prof.",name:"Helena",middleName:null,surname:"Oliveira",slug:"helena-oliveira",fullName:"Helena Oliveira"},{id:"185983",title:"Prof.",name:"Henrique M.A.C.",middleName:null,surname:"Fonseca",slug:"henrique-m.a.c.-fonseca",fullName:"Henrique M.A.C. Fonseca"},{id:"185984",title:"Prof.",name:"Conceição",middleName:null,surname:"Santos",slug:"conceicao-santos",fullName:"Conceição Santos"}]},{id:"37421",title:"What Flow Cytometry can Tell Us About Marine Micro-Organisms – Current Status and Future Applications",slug:"what-flow-cytometry-can-tell-about-marine-microrganisms-current-status-and-future-applications",totalDownloads:2393,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"flow-cytometry-recent-perspectives",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Recent Perspectives"},signatures:"A. Manti, S. Papa and P. Boi",authors:[{id:"118302",title:"Dr.",name:"Anita",middleName:null,surname:"Manti",slug:"anita-manti",fullName:"Anita Manti"}]},{id:"37445",title:"Retracted: Applications of Quantum Dots in Flow Cytometry",slug:"applications-of-quantum-dots-in-flow-cytometry",totalDownloads:1852,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"flow-cytometry-recent-perspectives",title:"Flow Cytometry",fullTitle:"Flow Cytometry - Recent Perspectives"},signatures:"Dimitrios Kirmizis, Fani Chatzopoulou, Eleni Gavriilaki and Dimitrios Chatzidimitriou",authors:[{id:"45414",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kirmizis",slug:"dimitrios-kirmizis",fullName:"Dimitrios Kirmizis"},{id:"122229",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Chatzidimitriou",slug:"dimitrios-chatzidimitriou",fullName:"Dimitrios Chatzidimitriou"},{id:"134576",title:"BSc.",name:"Fani",middleName:null,surname:"Chatzopoulou",slug:"fani-chatzopoulou",fullName:"Fani Chatzopoulou"},{id:"134577",title:"Dr.",name:"Helen",middleName:null,surname:"Gavriilaki",slug:"helen-gavriilaki",fullName:"Helen Gavriilaki"}]},{id:"51979",title:"Telomeres and Cellular Senescence in Metabolic and Endocrine Diseases",slug:"telomeres-and-cellular-senescence-in-metabolic-and-endocrine-diseases",totalDownloads:1188,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"telomere-a-complex-end-of-a-chromosome",title:"Telomere",fullTitle:"Telomere - A Complex End of a Chromosome"},signatures:"Ryusaku Matsumoto and Yutaka Takahashi",authors:[{id:"187040",title:"Dr.",name:"Yutaka",middleName:null,surname:"Takahashi",slug:"yutaka-takahashi",fullName:"Yutaka Takahashi"}]},{id:"52461",title:"Molecular Diagnosis and Precision Therapeutic Approaches for Telomere Biology Disorders",slug:"molecular-diagnosis-and-precision-therapeutic-approaches-for-telomere-biology-disorders",totalDownloads:1213,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"telomere-a-complex-end-of-a-chromosome",title:"Telomere",fullTitle:"Telomere - A Complex End of a Chromosome"},signatures:"Rosario Perona, Laura Iarriccio, Laura Pintado-Berninches, Javier\nRodriguez-Centeno, Cristina Manguan-Garcia, Elena Garcia, Blanca\nLopez-Ayllón and Leandro Sastre",authors:[{id:"179373",title:"Dr.",name:"Leandro",middleName:null,surname:"Sastre",slug:"leandro-sastre",fullName:"Leandro Sastre"},{id:"184869",title:"Dr.",name:"Rosario",middleName:null,surname:"Perona",slug:"rosario-perona",fullName:"Rosario Perona"},{id:"184870",title:"Dr.",name:"Laura",middleName:null,surname:"Iarriccio",slug:"laura-iarriccio",fullName:"Laura Iarriccio"},{id:"184871",title:"MSc.",name:"Laura",middleName:null,surname:"Pintado-Berninches",slug:"laura-pintado-berninches",fullName:"Laura Pintado-Berninches"},{id:"184872",title:"MSc.",name:"Javier",middleName:null,surname:"Rodriguez-Centeno",slug:"javier-rodriguez-centeno",fullName:"Javier Rodriguez-Centeno"},{id:"184873",title:"Ms.",name:"Cristina",middleName:null,surname:"Manguan-Garcia",slug:"cristina-manguan-garcia",fullName:"Cristina Manguan-Garcia"},{id:"184874",title:"Dr.",name:"Elena",middleName:null,surname:"Garcia",slug:"elena-garcia",fullName:"Elena Garcia"},{id:"184875",title:"Dr.",name:"Blanca",middleName:null,surname:"Lopez-Ayllon",slug:"blanca-lopez-ayllon",fullName:"Blanca Lopez-Ayllon"}]},{id:"44220",title:"Condensins, Chromatin Remodeling and Gene Transcription",slug:"condensins-chromatin-remodeling-and-gene-transcription",totalDownloads:2090,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"chromatin-remodelling",title:"Chromatin Remodelling",fullTitle:"Chromatin Remodelling"},signatures:"Laurence O. W. Wilson and Aude M. Fahrer",authors:[{id:"164464",title:"Mr.",name:"Laurence",middleName:null,surname:"Wilson",slug:"laurence-wilson",fullName:"Laurence Wilson"},{id:"164788",title:"Dr.",name:"Aude",middleName:null,surname:"Fahrer",slug:"aude-fahrer",fullName:"Aude Fahrer"}]},{id:"44225",title:"Role of Enhancer of Zeste Homolog 2 Polycomb Protein and Its Significance in Tumor Progression and Cell Differentiation",slug:"role-of-enhancer-of-zeste-homolog-2-polycomb-protein-and-its-significance-in-tumor-progression-and-c",totalDownloads:3388,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"chromatin-remodelling",title:"Chromatin Remodelling",fullTitle:"Chromatin Remodelling"},signatures:"Irene Marchesi and Luigi Bagella",authors:[{id:"91878",title:"Prof.",name:"Luigi",middleName:null,surname:"Bagella",slug:"luigi-bagella",fullName:"Luigi Bagella"},{id:"164852",title:"Dr.",name:"Irene",middleName:null,surname:"Marchesi",slug:"irene-marchesi",fullName:"Irene Marchesi"}]}],onlineFirstChaptersFilter:{topicSlug:"karyology-microbial-genetics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/144099/angel-e-absalon",hash:"",query:{},params:{id:"144099",slug:"angel-e-absalon"},fullPath:"/profiles/144099/angel-e-absalon",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()