Structural formulas of apatites: M(1)4M(2)6(XO4)6Z2 [2].
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"5880",leadTitle:null,fullTitle:"Recent Applications in Sol-Gel Synthesis",title:"Recent Applications in Sol-Gel Synthesis",subtitle:null,reviewType:"peer-reviewed",abstract:"Versatility, extended compositional ranges, better homogeneity, lesser energy consumption, and requirement of nonexpensive equipments have boosted the use of sol-gel process on top of the popularity in the synthesis of nanosystems. The sol-gel technique has not only revolutionized oxide ceramics industry and/or material science but has also extended widely into multidimensional applications. The book Recent Applications in Sol-Gel Synthesis comprises 14 chapters that deal mainly with the application-oriented aspects of the technique. Sol-gel prepared metal oxide (MO) nanostructures like nanospheres, nanorods, nanoflakes, nanotubes, and nanoribbons have been employed in biomedical applications involving drug deliveries, mimicking of natural bone, and antimicrobial activities. The possibility of controlling grain size in aerogel and preparation of ultrahigh-temperature ceramic (UHTC)-based materials, fluorescent glasses, ultraviolet photosensors, and photocatalysts have been discussed in detail by the experts in the field. The usefulness of sol-gel materials as active GRIN, as textile finisher, and as leather modifier with water-repellent and oil-resistive properties would be an incentive for researchers keen to pursue the field.",isbn:"978-953-51-3246-2",printIsbn:"978-953-51-3245-5",pdfIsbn:"978-953-51-4758-9",doi:"10.5772/65824",price:139,priceEur:155,priceUsd:179,slug:"recent-applications-in-sol-gel-synthesis",numberOfPages:310,isOpenForSubmission:!1,isInWos:1,hash:"68be79ff7b57c32110c680c599aa8ffd",bookSignature:"Usha Chandra",publishedDate:"July 5th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5880.jpg",numberOfDownloads:24124,numberOfWosCitations:42,numberOfCrossrefCitations:33,numberOfDimensionsCitations:66,hasAltmetrics:1,numberOfTotalCitations:141,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 18th 2016",dateEndSecondStepPublish:"November 8th 2016",dateEndThirdStepPublish:"February 4th 2017",dateEndFourthStepPublish:"May 5th 2017",dateEndFifthStepPublish:"July 4th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"49671",title:"Prof.",name:"Usha",middleName:null,surname:"Chandra",slug:"usha-chandra",fullName:"Usha Chandra",profilePictureURL:"https://mts.intechopen.com/storage/users/49671/images/5802_n.jpg",biography:"Dr. Usha Chandra, retired professor in Physics, emeritus fellow (UGC), and emeritus scientist (CSIR), University of Rajasthan, Jaipur, India, is an experimentalist carrying out research on nanomaterials, minerals, and meteorites under high pressure using Mössbauer spectroscopy. Nanocrystalline perovskites (LaSrMnO) and pyrites (CoFeS2) synthesized using sol-gel process and studied under high pressure using various techniques are the achievements worth mentioning. As an expert in X-ray absorption spectroscopic (XANES, EXAFS) and photoemission (XPS) techniques, she has published several research articles in international journals. She is a member of various professional bodies in this arena. As a member of the American Physical Society (USA.), the Indian Physics Association (India), and the International Advisory Board—Mössbauer Effect Data Center—her contribution to the field is exclusive.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1169",title:"Condensed Matter Physics",slug:"nanotechnology-and-nanomaterials-material-science-condensed-matter-physics"}],chapters:[{id:"55242",title:"Facile Methodology of Sol-Gel Synthesis for Metal Oxide Nanostructures",doi:"10.5772/intechopen.68708",slug:"facile-methodology-of-sol-gel-synthesis-for-metal-oxide-nanostructures",totalDownloads:3234,totalCrossrefCites:12,totalDimensionsCites:21,signatures:"Shrividhya Thiagarajan, Anandhavelu Sanmugam and\nDhanasekaran Vikraman",downloadPdfUrl:"/chapter/pdf-download/55242",previewPdfUrl:"/chapter/pdf-preview/55242",authors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"},{id:"199415",title:"Dr.",name:"Shrividhya",surname:"Thiagarajan",slug:"shrividhya-thiagarajan",fullName:"Shrividhya Thiagarajan"},{id:"199416",title:"Dr.",name:"Anandhavelu",surname:"Sanmugam",slug:"anandhavelu-sanmugam",fullName:"Anandhavelu Sanmugam"}],corrections:null},{id:"54534",title:"Sol-Gel-Derived Silicon-Containing Hybrids",doi:"10.5772/67824",slug:"sol-gel-derived-silicon-containing-hybrids",totalDownloads:1579,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Maria Zielecka, Elzbieta Bujnowska, Katarzyna Suwala and\nMagdalena Wenda",downloadPdfUrl:"/chapter/pdf-download/54534",previewPdfUrl:"/chapter/pdf-preview/54534",authors:[{id:"199856",title:"Prof.",name:"Maria",surname:"Zielecka",slug:"maria-zielecka",fullName:"Maria Zielecka"},{id:"205087",title:"Mrs.",name:"Elzbieta",surname:"Bujnowska",slug:"elzbieta-bujnowska",fullName:"Elzbieta Bujnowska"},{id:"205088",title:"MSc.",name:"Katarzyna",surname:"Suwala",slug:"katarzyna-suwala",fullName:"Katarzyna Suwala"},{id:"205107",title:"MSc.",name:"Magdalena",surname:"Wenda",slug:"magdalena-wenda",fullName:"Magdalena Wenda"}],corrections:null},{id:"54498",title:"Preparation of Ultra-High Temperature Ceramics–Based Materials by Sol-Gel Routes",doi:"10.5772/67783",slug:"preparation-of-ultra-high-temperature-ceramics-based-materials-by-sol-gel-routes",totalDownloads:1756,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Fei Li, Xiao Huang and Guo‐Jun Zhang",downloadPdfUrl:"/chapter/pdf-download/54498",previewPdfUrl:"/chapter/pdf-preview/54498",authors:[{id:"198754",title:"Dr.",name:"Fei",surname:"Li",slug:"fei-li",fullName:"Fei Li"},{id:"199091",title:"Prof.",name:"Xiao",surname:"Huang",slug:"xiao-huang",fullName:"Xiao Huang"},{id:"199092",title:"Prof.",name:"Guo-Jun",surname:"Zhang",slug:"guo-jun-zhang",fullName:"Guo-Jun Zhang"}],corrections:null},{id:"54667",title:"Sol-Gel Synthesis, Structural Characterization and Microwave Dielectric Properties of Bismuth Niobate Modified by Iron Inclusion",doi:"10.5772/intechopen.68211",slug:"sol-gel-synthesis-structural-characterization-and-microwave-dielectric-properties-of-bismuth-niobate",totalDownloads:971,totalCrossrefCites:2,totalDimensionsCites:1,signatures:"Susana Devesa, Manuel P.F. Graça and Luís C. Costa",downloadPdfUrl:"/chapter/pdf-download/54667",previewPdfUrl:"/chapter/pdf-preview/54667",authors:[{id:"40763",title:"Prof.",name:"Manuel Pedro",surname:"Graça",slug:"manuel-pedro-graca",fullName:"Manuel Pedro Graça"},{id:"196414",title:"Prof.",name:"Luís",surname:"Costa",slug:"luis-costa",fullName:"Luís Costa"},{id:"199719",title:"Ph.D. Student",name:"Susana",surname:"Devesa",slug:"susana-devesa",fullName:"Susana Devesa"}],corrections:null},{id:"55130",title:"Fluorescence Properties of Rare-Earth-Doped Sol-Gel Glasses",doi:"10.5772/intechopen.68534",slug:"fluorescence-properties-of-rare-earth-doped-sol-gel-glasses",totalDownloads:1463,totalCrossrefCites:2,totalDimensionsCites:6,signatures:"Helena Cristina Vasconcelos and Afonso Silva Pinto",downloadPdfUrl:"/chapter/pdf-download/55130",previewPdfUrl:"/chapter/pdf-preview/55130",authors:[{id:"93646",title:"Prof.",name:"Helena",surname:"Vasconcelos",slug:"helena-vasconcelos",fullName:"Helena Vasconcelos"},{id:"205438",title:"Mr.",name:"Afonso",surname:"Silva Pinto",slug:"afonso-silva-pinto",fullName:"Afonso Silva Pinto"}],corrections:null},{id:"54511",title:"Recent Characterisation of Sol-Gel Synthesised TiO2 Nanoparticles",doi:"10.5772/67822",slug:"recent-characterisation-of-sol-gel-synthesised-tio2-nanoparticles",totalDownloads:2335,totalCrossrefCites:3,totalDimensionsCites:6,signatures:"Muhamad Zamri Yahaya, Mohd Asyadi Azam, Mohd Asri Mat\nTeridi, Pramod Kumar Singh and Ahmad Azmin Mohamad",downloadPdfUrl:"/chapter/pdf-download/54511",previewPdfUrl:"/chapter/pdf-preview/54511",authors:[{id:"199509",title:"Dr.",name:"Ahmad Azmin",surname:"Mohamad",slug:"ahmad-azmin-mohamad",fullName:"Ahmad Azmin Mohamad"},{id:"200501",title:"Mr.",name:"Muhamad Zamri",surname:"Yahaya",slug:"muhamad-zamri-yahaya",fullName:"Muhamad Zamri Yahaya"},{id:"205268",title:"Dr.",name:"Mohd Asyadi",surname:"Azam",slug:"mohd-asyadi-azam",fullName:"Mohd Asyadi Azam"},{id:"205269",title:"Dr.",name:"Mohd Asri",surname:"Mat Teridi",slug:"mohd-asri-mat-teridi",fullName:"Mohd Asri Mat Teridi"},{id:"205270",title:"Dr.",name:"Pramod Kumar",surname:"Singh",slug:"pramod-kumar-singh",fullName:"Pramod Kumar Singh"}],corrections:null},{id:"54957",title:"Synthesis of Titanium Dioxide Nanorod Arrays Using a Facile Aqueous Sol-Gel Route for Ultraviolet Photosensor Applications",doi:"10.5772/intechopen.68460",slug:"synthesis-of-titanium-dioxide-nanorod-arrays-using-a-facile-aqueous-sol-gel-route-for-ultraviolet-ph",totalDownloads:1131,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Marmeezee Mohd. Yusoff, Mohamad Hafiz Mamat and Mohamad\nRusop Mahmood",downloadPdfUrl:"/chapter/pdf-download/54957",previewPdfUrl:"/chapter/pdf-preview/54957",authors:[{id:"101789",title:"Dr.",name:"Mohamad Hafiz",surname:"Mamat",slug:"mohamad-hafiz-mamat",fullName:"Mohamad Hafiz Mamat"},{id:"108886",title:"Dr.",name:"Mohamad Rusop",surname:"Mahmood",slug:"mohamad-rusop-mahmood",fullName:"Mohamad Rusop Mahmood"},{id:"200099",title:"Mr.",name:"Marmeezee",surname:"Mohd. Yusoff",slug:"marmeezee-mohd.-yusoff",fullName:"Marmeezee Mohd. Yusoff"}],corrections:null},{id:"54956",title:"Advancement of Sol-Gel–Prepared TiO2 Photocatalyst",doi:"10.5772/intechopen.68357",slug:"advancement-of-sol-gel-prepared-tio2-photocatalyst",totalDownloads:1801,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Robabeh Bashiri, Norani Muti Mohamed and Chong Fai Kait",downloadPdfUrl:"/chapter/pdf-download/54956",previewPdfUrl:"/chapter/pdf-preview/54956",authors:[{id:"200162",title:"Dr.",name:"Robabeh",surname:"Bashiri",slug:"robabeh-bashiri",fullName:"Robabeh Bashiri"},{id:"200890",title:"Prof.",name:"Norani",surname:"Muti Mohamed",slug:"norani-muti-mohamed",fullName:"Norani Muti Mohamed"},{id:"200892",title:"Dr.",name:"Chong",surname:"Fai Kait",slug:"chong-fai-kait",fullName:"Chong Fai Kait"}],corrections:null},{id:"54703",title:"Sol-Gel-Derived Doped ZnO Thin Films: Processing, Properties, and Applications",doi:"10.5772/67857",slug:"sol-gel-derived-doped-zno-thin-films-processing-properties-and-applications",totalDownloads:2378,totalCrossrefCites:6,totalDimensionsCites:9,signatures:"Asad Mahmood and Abdul Naeem",downloadPdfUrl:"/chapter/pdf-download/54703",previewPdfUrl:"/chapter/pdf-preview/54703",authors:[{id:"191569",title:"Prof.",name:"Abdul",surname:"Naeem",slug:"abdul-naeem",fullName:"Abdul Naeem"},{id:"196379",title:"Dr.",name:"Asad",surname:"Mahmood",slug:"asad-mahmood",fullName:"Asad Mahmood"}],corrections:null},{id:"55078",title:"Photoluminescence Studies on ZnO Thin Films Obtained by Sol-Gel Method",doi:"10.5772/intechopen.68529",slug:"photoluminescence-studies-on-zno-thin-films-obtained-by-sol-gel-method",totalDownloads:1347,totalCrossrefCites:4,totalDimensionsCites:5,signatures:"Guadalupe Valverde Aguilar, Mónica R. Jaime Fonseca, Ángeles\nMantilla Ramírez and Antonio G. Juárez Gracia",downloadPdfUrl:"/chapter/pdf-download/55078",previewPdfUrl:"/chapter/pdf-preview/55078",authors:[{id:"186652",title:"Dr.",name:"Guadalupe",surname:"Valverde Aguilar",slug:"guadalupe-valverde-aguilar",fullName:"Guadalupe Valverde Aguilar"},{id:"186653",title:"Dr.",name:"Mónica",surname:"Jaime Fonseca",slug:"monica-jaime-fonseca",fullName:"Mónica Jaime Fonseca"},{id:"199674",title:"Dr.",name:"Angeles",surname:"Mantilla Ramírez",slug:"angeles-mantilla-ramirez",fullName:"Angeles Mantilla Ramírez"},{id:"199675",title:"Dr.",name:"Antonio Gustavo",surname:"Juárez Gracia",slug:"antonio-gustavo-juarez-gracia",fullName:"Antonio Gustavo Juárez Gracia"}],corrections:null},{id:"55584",title:"Sol‐Gel Materials Used in Phosphoproteomics and Glycoproteomics Applications",doi:"10.5772/intechopen.68891",slug:"sol-gel-materials-used-in-phosphoproteomics-and-glycoproteomics-applications",totalDownloads:944,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Hacı Mehmet Kayili, Mehmet Atakay and Bekir Salih",downloadPdfUrl:"/chapter/pdf-download/55584",previewPdfUrl:"/chapter/pdf-preview/55584",authors:[{id:"99580",title:"Dr.",name:"Bekir",surname:"Salih",slug:"bekir-salih",fullName:"Bekir Salih"},{id:"205288",title:"Dr.",name:"H. Mehmet",surname:"Kayili",slug:"h.-mehmet-kayili",fullName:"H. Mehmet Kayili"},{id:"205289",title:"Dr.",name:"Mehmet",surname:"Atakay",slug:"mehmet-atakay",fullName:"Mehmet Atakay"}],corrections:null},{id:"55185",title:"Sol-Gel Glass Coating Synthesis for Different Applications: Active Gradient-Index Materials, Microlens Arrays and Biocompatible Channels",doi:"10.5772/67830",slug:"sol-gel-glass-coating-synthesis-for-different-applications-active-gradient-index-materials-microlens",totalDownloads:1389,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Ana Isabel Gómez Varela, María Aymerich, Daniel Nieto García,\nYolanda Castro Martín, Pieter A.A. de Beule, Ezequiel Álvarez,\nCarmen Bao-Varela and María Teresa Flores-Arias",downloadPdfUrl:"/chapter/pdf-download/55185",previewPdfUrl:"/chapter/pdf-preview/55185",authors:[{id:"176988",title:"Dr.",name:"Daniel",surname:"Nieto",slug:"daniel-nieto",fullName:"Daniel Nieto"},{id:"198793",title:"Dr.",name:"Carmen",surname:"Bao-Varela",slug:"carmen-bao-varela",fullName:"Carmen Bao-Varela"},{id:"198920",title:"Dr.",name:"Ana",surname:"Gómez-Varela",slug:"ana-gomez-varela",fullName:"Ana Gómez-Varela"},{id:"200746",title:"MSc.",name:"María",surname:"Aymerich",slug:"maria-aymerich",fullName:"María Aymerich"},{id:"200747",title:"Dr.",name:"María Teresa",surname:"Flores-Arias",slug:"maria-teresa-flores-arias",fullName:"María Teresa Flores-Arias"},{id:"200767",title:"Dr.",name:"Yolanda",surname:"Castro",slug:"yolanda-castro",fullName:"Yolanda Castro"},{id:"200770",title:"Dr.",name:"Pieter",surname:"A.A. De Beule",slug:"pieter-a.a.-de-beule",fullName:"Pieter A.A. De Beule"},{id:"200771",title:"Dr.",name:"Ezequiel",surname:"Álvarez",slug:"ezequiel-alvarez",fullName:"Ezequiel Álvarez"}],corrections:null},{id:"54300",title:"Sol-Gel Applications in Textile Finishing Processes",doi:"10.5772/67686",slug:"sol-gel-applications-in-textile-finishing-processes",totalDownloads:2190,totalCrossrefCites:0,totalDimensionsCites:6,signatures:"Nurhan Onar Camlibel and Buket Arik",downloadPdfUrl:"/chapter/pdf-download/54300",previewPdfUrl:"/chapter/pdf-preview/54300",authors:[{id:"198613",title:"Dr.",name:"Nurhan",surname:"Onar Camlibel",slug:"nurhan-onar-camlibel",fullName:"Nurhan Onar Camlibel"},{id:"198950",title:"Dr.",name:"Buket",surname:"Arik",slug:"buket-arik",fullName:"Buket Arik"}],corrections:null},{id:"54546",title:"Sol-Gel Process for Surface Modification of Leather",doi:"10.5772/67837",slug:"sol-gel-process-for-surface-modification-of-leather",totalDownloads:1606,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Franco Ferrero, Monica Periolatto and Giuseppe Gozzelino",downloadPdfUrl:"/chapter/pdf-download/54546",previewPdfUrl:"/chapter/pdf-preview/54546",authors:[{id:"173940",title:"Prof.",name:"Franco",surname:"Ferrero",slug:"franco-ferrero",fullName:"Franco Ferrero"},{id:"174224",title:"Ph.D.",name:"Monica",surname:"Periolatto",slug:"monica-periolatto",fullName:"Monica Periolatto"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"397",title:"Nanofibers",subtitle:"Production, Properties and Functional Applications",isOpenForSubmission:!1,hash:"934fe33b73b2ecba961c67d5a90021ec",slug:"nanofibers-production-properties-and-functional-applications",bookSignature:"Tong Lin",coverURL:"https://cdn.intechopen.com/books/images_new/397.jpg",editedByType:"Edited by",editors:[{id:"49937",title:"Dr.",name:"Tong",surname:"Lin",slug:"tong-lin",fullName:"Tong Lin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1045",title:"Nanocomposites and Polymers with Analytical Methods",subtitle:null,isOpenForSubmission:!1,hash:"65d477e855685ea85913e5aba0c5217e",slug:"nanocomposites-and-polymers-with-analytical-methods",bookSignature:"John Cuppoletti",coverURL:"https://cdn.intechopen.com/books/images_new/1045.jpg",editedByType:"Edited by",editors:[{id:"49991",title:"Dr.",name:"John",surname:"Cuppoletti",slug:"john-cuppoletti",fullName:"John Cuppoletti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3200",title:"Nanofibers",subtitle:null,isOpenForSubmission:!1,hash:"97487143b896780afaf08cfd67cd1eec",slug:"nanofibers",bookSignature:"Ashok Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/3200.jpg",editedByType:"Edited by",editors:[{id:"7718",title:"Professor",name:"Ashok",surname:"Kumar",slug:"ashok-kumar",fullName:"Ashok Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"191",title:"Advances in Nanocomposite Technology",subtitle:null,isOpenForSubmission:!1,hash:"4dc3407e602cdd348af663727baebe3d",slug:"advances-in-nanocomposite-technology",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/191.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3077",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",subtitle:null,isOpenForSubmission:!1,hash:"38dd4fb088a27b2552bf3d371e8c2872",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",bookSignature:"Satoru Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/3077.jpg",editedByType:"Edited by",editors:[{id:"30519",title:"Dr.",name:"Satoru",surname:"Suzuki",slug:"satoru-suzuki",fullName:"Satoru Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"514",title:"Nanowires",subtitle:"Implementations and Applications",isOpenForSubmission:!1,hash:"a72c02407edeef3d1a2ff8ddc07cad87",slug:"nanowires-implementations-and-applications",bookSignature:"Abbass Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/514.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"861",title:"Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"f32b97a9aa541939cb212373d471d477",slug:"nanomaterials",bookSignature:"Mohammed Muzibur Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/861.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"468",title:"Electronic Properties of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"electronic-properties-of-carbon-nanotubes",bookSignature:"Jose Mauricio Marulanda",coverURL:"https://cdn.intechopen.com/books/images_new/468.jpg",editedByType:"Edited by",editors:[{id:"9142",title:"Prof.",name:"Jose Mauricio",surname:"Marulanda",slug:"jose-mauricio-marulanda",fullName:"Jose Mauricio Marulanda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3156",title:"Nanowires",subtitle:"Science and Technology",isOpenForSubmission:!1,hash:"1916d90306aa50f0cae870c88e7550fa",slug:"nanowires-science-and-technology",bookSignature:"Nicoleta Lupu",coverURL:"https://cdn.intechopen.com/books/images_new/3156.jpg",editedByType:"Edited by",editors:[{id:"6995",title:"Dr.",name:"Nicoleta",surname:"Lupu",slug:"nicoleta-lupu",fullName:"Nicoleta Lupu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66066",slug:"erratum-microbial-responses-to-different-operating-practices-for-biogas-production-systems",title:"Erratum - Microbial Responses to Different Operating Practices for Biogas Production Systems",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66066.pdf",downloadPdfUrl:"/chapter/pdf-download/66066",previewPdfUrl:"/chapter/pdf-preview/66066",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66066",risUrl:"/chapter/ris/66066",chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]}},chapter:{id:"65614",slug:"microbial-responses-to-different-operating-practices-for-biogas-production-systems",signatures:"Maria Westerholm and Anna Schnürer",dateSubmitted:"June 11th 2018",dateReviewed:"November 30th 2018",datePrePublished:"February 12th 2019",datePublished:"September 4th 2019",book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"262546",title:"Prof.",name:"Anna",middleName:null,surname:"Schnürer",fullName:"Anna Schnürer",slug:"anna-schnurer",email:"anna.schnurer@slu.se",position:null,institution:null},{id:"263116",title:"Dr.",name:"Maria",middleName:null,surname:"Westerholm",fullName:"Maria Westerholm",slug:"maria-westerholm",email:"Maria.Westerholm@slu.se",position:null,institution:null}]},book:{id:"6839",title:"Anaerobic Digestion",subtitle:null,fullTitle:"Anaerobic Digestion",slug:"anaerobic-digestion",publishedDate:"September 4th 2019",bookSignature:"J. Rajesh Banu",coverURL:"https://cdn.intechopen.com/books/images_new/6839.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"218539",title:"Dr.",name:"Rajesh",middleName:null,surname:"Banu",slug:"rajesh-banu",fullName:"Rajesh Banu"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9858",leadTitle:null,title:"Climate and Ecology of Holocene",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"e4f2d361bf0521f27d50aab719db5045",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9858.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 6th 2019",dateEndSecondStepPublish:"June 27th 2019",dateEndThirdStepPublish:"August 26th 2019",dateEndFourthStepPublish:"November 14th 2019",dateEndFifthStepPublish:"January 13th 2020",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49963",title:"Substituents and Dopants in the Structure of Apatite",doi:"10.5772/62213",slug:"substituents-and-dopants-in-the-structure-of-apatite",body:'\nAs was already said in Chapter 1, the generic formula of apatite (M10(XO4)6Z2) enables partial or complete substitution for cationic as well as anionic sites [1],[2]:
Cation substitution, where M = Ca2+, Pb2+, Sr2+, Mg2+, Fe2+, Mn2+, Cd2+, Ba2+, Co2+, Ni2+, Cu2+, Zn2+, Sn2+, Eu2+, Na+, K+, Li+, Rb+, NH4+, La3+, Ce3+, Sm3+, Eu3+, Y3+, Cr3+, Th4+, U4+, U6+ and □.
Substitution for phosphorus by one or two cations, where X = PO43−, AsO43−, SiO43−, VO43−, CrO43−, CrO42−, MnO43−, SO42−, SeO42−, BeF42−, GeO44−, ReO53−, SbO3F4−, SiO3N5−, BO45−, BO33− and CO32−.
Z-site substation, where Z = F−, OH−, Cl−, O2−, O3−, NCO−, BO2−, Br−, I−, NO2−, CO32−, O22−, O2−, S2−, NCN2−, NO22− and □.
where □ represents the vacancy cluster [1].
\nBesides the monoionic substitution, the co-substitution and mutual combinations of substitutions in anionic and cationic sites (multi-ionic substitution) were also often reported [3],[4],[5],[6]. Mutual substitutions of trace elements into apatite structure brought new physicochemical, mechanical and biological properties in comparison with pure apatite or monoionic substituted apatite materials, e.g. hydroxylapatite [3].
\nSome substitutions can proceed only at the synthesis stage, while a limited ion exchange between solid apatite and surrounding solution can also occur. Due to their high chemical diversity and ion-exchange capabilities, apatites are considered as materials for toxic waste storage and for wastewater purification. The ion exchange in apatitic structures in human organism also presents an interest for medicine [7].
\nRecent studies have shown that a number of alkaline-earth-rare-earth silicates and germanates also have the apatite structure, and these have the cell sizes which span the division between the “apatites” and the “pyromorphites”. Some, particularly barium and lanthanum apatites, have the lattice parameters comparable with the members of the pyromorphite group. Thus, Ba2La8(SiO4)6O2 has the cell parameters a = 9.76 Å and c = 7.30 Å and Pb10(PO4)6F2 shows a = 9.76 and c = 7.29 Å, while Ba3La7(GeO4)6O1.5 has a = 9.99 Å and c = 7.39 Å and Pb10(AsO4)6F2 has a = 10.07 Å and c = 7.42 Å. During synthetic studies, however, it became apparent that the prediction of the composition of compounds with apatite-type structures could not be made solely on the basis of satisfying the valence considerations, since the occurrence of the apatite-type structure also appears to be determined by the ratio of the mean size of “A” ions (i.e. Ca ions in fluorapatite) to the mean size of “X” ions in XO4 [8],[9].
\nThe ionic radius of elements that can be accommodated instead of M in the lattice of apatite (M5(XO4)3Zq).
The structure of hydroxyapatite allows large variations from its theoretical composition as well as the formation of nonstoichiometric forms and ionic substitutions. More than half of naturally occurring elements are known to be accommodated in the apatite lattice to significant extent. Ca2+ cation can be substituted by Na+, K+, Mg2+, Sr2+, Pb2+, Mn2+ (Fig. 1(a)) or rare-earth elements[1] - (REE, Fig. 1(b)) and PO43− anions by AsO43−, SO42− or CO32− without destroying the apatite structure. The changes in lattice parameters must be indicative of the type of substitution occurring. For example, Cl− interchange for OH− ions causes a change to lattice parameters from a = 9.4214 Å and c = 6.8814 Å to 6.628 Å and 6.764 Å, respectively. Another example is the Sr2+ substitution for Ca2+, which causes lengthening of a- and c-axes from 9.418 Å and 6.884 Å to 9.76 Å and 7.27 Å, respectively [8],[12],[13],[14],[15].
\nThe substitutions at Z site play a very important role in the crystallography of specific species. The Z site lies in the channel formed by the X sites in fluorapatite and is of just the right size to fit between X atoms, and it lies on (001) mirror planes to yield the space group P63/
Some of the various families of substitutions that were experimentally established in apatites are summarized in Table 1. In general, the ions that substitute for Ca in the A position have the valences from 1 to 3 and the coordination numbers of VII at Ca(2) (6h) site and IX at Ca(1) (4f) site. Table 2 introduces the cation radii of possible apatite substituents at M-site [2].
\nM10 | \nX6 | \nO24 | \nZ2 | \nDesignation | \n
---|---|---|---|---|
M(1)4M(2)6 | \n\n | O12O6O6 | \n\n | \n |
Ca10 | \nP6 | \nO24 | \n(OH)2 | \nHAP | \n
C4Ln6 | \nSi6 | \n|||
Sr10 | \nS3Si3 | \nF2 | \nFAP | \n|
Ca2Ln8 | \nSi6 | \nO2 | \nOxyapatite | \n|
SrCa9 | \nP6 | \n□ | \nZ-site vacancies | \n|
Nd4Ca6 | \nGe6 | \n□2 | \n||
Sr10 | \nP4Si2 | \n□2 | \n||
Na2Ca8 | \nP6 | \n□2 | \n||
□2La2Ca4La2 | \n□2 | \nM-, Z-site vacancy | \n||
□2La2La2 | \nGe6 | \n\n | (OH)2 | \nM-site vacancies (?) | \n
Structural formulas of apatites: M(1)4M(2)6(XO4)6Z2 [2].
Substituents | \nCoordination number | \n|||||
---|---|---|---|---|---|---|
Arens | \nShannon and Prewitt | \n|||||
\n | \n | VI | \nVI | \nVII | \nVIII | \nIX | \n
M2+\n | \nBa | \n1.34 | \n1.36 | \n1.39 | \n— | \n1.47 | \n
Pb | \n1.20 | \n1.18 | \n— | \n1.29 | \n1.33 | \n|
Eu | \n— | \n1.17 | \n— | \n1.25 | \n— | \n|
Sn | \n0.93 | \n— | \n— | \n1.22 | \n— | \n|
Sr | \n1.12 | \n1.16 | \n1.21 | \n1.25 | \n— | \n|
Ca | \n0.99 | \n1.00 | \n1.07 | \n1.12 | \n1.18 | \n|
Cd | \n0.97 | \n0.95 | \n1.00 | \n1.07 | \n— | \n|
Mn | \n— | \n0.83 | \n— | \n0.93 | \n— | \n|
Zn | \n0.74 | \n0.745 | \n— | \n— | \n0.90 (E) | \n|
Co | \n0.72 | \n0.735 | \n— | \n— | \n— | \n|
Cu | \n0.72 | \n0.73 | \n— | \n— | \n— | \n|
Mg | \n0.66 | \n0.72 | \n— | \n0.89 | \n— | \n|
Ni | \n0.69 | \n0.69 | \n— | \n— | \n— | \n|
M+\n | \nK | \n1.33 | \n1.38 | \n1.46 (?) | \n1.51 (?) | \n1.55 (?, E) | \n
\n | Na | \n0.97 | \n1.02 | \n1.13 (?) | \n1.16 | \n1.32 (?, E) | \n
Cation radii of possible apatite substituents at M10-site of M10(XO4)6Z2 unit [2].
(E) and (?) denote interpolated and doubtful values, respectively.
An example of charge compensating substitution for phosphorus by two cations is the substitution during the synthesis of apatite species of the composition of Ca10(SiO4)3(SO4)3F2 (CSSF, fluorellestadite [16]) [2],[17],[18]:
\nThese synthetic phases have mineral equivalents in the minerals from the ellestadite group, which are listed in Table 3. Since the mineral with ideal end-member formula Ca5(SiO4)1.5(SO4)1.5Cl is assumed not to exist, the name ellestadite-(Cl) is discredited [19].
\nDescriptor | \nBrief description | \n
---|---|
a [Å] | \nLattice constant of hexagonal unit cell | \n
b [Å] | \n|
c:a | \nVariable axial ratio | \n
rMI [Å] | \nShannon’s ionic radii of M(I)-site ion (nine-coordination) | \n
rX [Å] | \nShannon’s ionic radii of X-site ion | \n
rMII [Å] | \nShannon’s ionic radii of M(II)-site ion (seven-coordination for X = F−, eight-coordination for X = Cl− and Br−) | \n
RZ [Å] | \nShannon’s ionic radii of Z-site ion | \n
Av CR [Å] | \nAverage crystal radius = [(rM(I)x4) + (rM(II)x6) + (rXx6) + (rOx24) + (rZx2))]/42 | \n
MEN - OEN | \nElectronegativity difference between M and O atom | \n
XEN - OEN | \nElectronegativity difference between X and O atom | \n
MEN - ZEN | \nElectronegativity difference between M atom at M(II) site and Z atom | \n
MEN - XEN | \nElectronegativity difference between M atom at M(I) site and X atom | \n
M(I) – O(1) [Å] | \nDistance between M(I) atom and O(1) atom | \n
M(I) – O(1)M(I)z = 0 [Å] | \nDistance between M(I) atom and O(1) atom with the constraint z = 0 at M(I) | \n
ΔM(I)−O [Å] | \nDifference in the lengths M(I) – O(1) and M(I) – O(2). | \n
\n\n | \nDifference in the lengths M(I) – O(1) and M(I) – O(2) with the constraint z = 0 at M(I) | \n
ΨM(I)−O [°] | \nAngle that M(I)-O(1) bond makes with respect to c | \n
\n\n | \nAngle that M(I)-O(1) bond makes with respect to c with the constraint z = 0 at M(I) | \n
δM(I) [°] | \nCounter-rotation angle of M(I)O6 structural unit | \n
ϕ M(I) [°] | \nMetaprism twist angle (π/3 – 2δM(I)) | \n
αM(I) [°] | \nOrientation of M(I)6 unit with respect to a | \n
<X-O> [Å] | \nAverage X-O bond length | \n
<τO−X−O> [°] | \nAverage O-X-O bond-bending angle | \n
ρM(II) [Å] | \nM(II)-M(II) triangular side length | \n
M(II) – Z [Å] | \nOrientation of M(II)-M(II)-M(II) triangles with respect to a | \n
M(II) – O(3) [Å] | \nDistance between M(II) and O3 atoms | \n
φO(3)−M(II)−O(3) [°] | \nO(3) – M(II) – O(3) angle | \n
Etotal [eV] | \nTotal energy calculated from ab initio calculations | \n
The list of 29 discrete descriptors of electronic and crystal structure parameters [23].
The fluorellestadite apatite and its solid solutions are minor components of many fluorine-mineralized clinkers. It is stable to liquidus temperature of 1240°C at which it incongruently melts to dicalcium silicate (2CaO·SiO2) and liquid [16]. The solid-state synthesis and the luminescence properties of europium-doped fluorellestadite (CSSF:Eu2+) cyan-emitting phosphor were described by
The general composition of silico-sulfate apatites, i.e. ellestadites, is Ca10(SiO4)3−x/2(PO4)x(SO4)3−x/2(F,Cl,OH)2 and their structures conform to P63/
The syntheses of Sr and Pb analogues of CSSF are also reported [18]. Strontium silico-sulfate apatite is not stable and decomposes to the mixture of strontium silicate and sulfate when heated to 1130°C for 30 min. Since high temperatures must be avoided, several attempts to prepare cadmium and barium silico-sulfate apatites were unsuccessful and the silicocarnotite-like phase was obtained from a mixture of the composition of Ca10(GeO4)3(SO4)8F2 rather than apatite [17].
\nSince there is a huge potential for the substitution in apatite structure (M(1)4M(2)6(XO4)6Z2 and for the formation of solid solution as well, the classification method enables to identify the key crystallographic parameters which can serve as strong classifiers of crystal chemistries. The structure maps for apatite compounds via data mining were reported by
Basically, the structure map approach involves the visualization of the data of known compounds with known crystal structures in a two-dimensional space using two scalar descriptors (normally heuristically chosen), which are associated with physical/chemical properties, crystal chemistry or electronic structure. The objective is to map out the relative geometric position of each structure type from which one tries to discern qualitatively if there are strong associations of certain structure types to certain bivariate combinations of parameters [23].
\nBond-distortion angle applied for the construction of structure map [23].
A new structure map, defined using the two distortion angles (Fig. 3) [23]:
1.The αMII (rotation angle of MII-MII-MII triangular units);
The
That enables to classify the apatite crystal chemistries based on the site occupancy at M, X and Z sites and this classification is accomplished using the K-means clustering analysis (Fig. 3).
\nStructure map for the classification of apatite chemistries based on the site occupancy (Table 4) at M, X and Z sites [23].
For example, clusters 1 and 2 (k = 1 and k = 2) correspond to F-apatites (fluorapatites). They are well localized in the structure map and are characterized by relatively low αMII and \n
Cluster | \nSite occupancy | \n||
---|---|---|---|
k = 1 and k = 2 | \nSite | \nM | \nBa, Pb, Sr, Ca | \n
X | \nP, V, Mn | \n||
Z | \nF | \n||
k = 3 | \nSite | \nM | \nBa | \n
X | \nP | \n||
Z | \nCl, Br | \n||
k = 4 | \nSite | \nM | \nSr, Hg | \n
X | \nP | \n||
Z | \nCl, Br | \n||
k = 5 | \nSite | \nM | \nCa, Cd, Pb | \n
X | \nV, Cr, As | \n||
Z | \nCl | \n||
k = 6 | \nSite | \nM | \nCa, Pb | \n
X | \nP | \n||
Z | \nCl, Br | \n||
k = 7 | \nSite | \nM | \nZn | \n
X | \nP | \n||
Z | \nZ | \nZ | \nF, Cl | \n
Even though Ca2+ and Hg2+ cations have roughly the same ionic size (1.18 and 1.23 Å at M(I) site), their electronegativity data indicates that Hg atoms (electronegativity value of 2 in Pauling scale) are relatively highly covalent compared to Ca atoms (electronegativity value of 1 in Pauling scale). In the structure map, this covalent character is predicted to be manifested in the bond distortion angle \n
Sr2+ ion, which is larger than Ca2+, is ordered almost completely into the smaller Ca(2) site in the apatite structure (Fig. 4). The bond valence sums of Sr ions at two sites demonstrate that Sr is severely overbonded at apatite Ca site but less at Ca(2) site. Complete ordering of Sr into Ca(2) sites has important implications for the diffusion of that element in the apatite structure. It is the subject of several recent studies. The diffusion of Sr in (001) was shown to be as rapid or even more rapid than the diffusion parallel to [001]. As there are neither sites available for Sr, which are linked in (001), nor any interstitial sites, which can contain Sr2+ ion, the diffusion mechanism involving the vacancies or defects or both is indicated [24].
\n\nA series of Sr-substituted hydroxyapatites, (SrxCa1−x)5(PO4)3OH, where x = 0.00, 0.25, 0.50, 0.75 and 1.00, was investigated by
The structure of natural Sr-bearing apatite refined by Hughes et al [24] and viewed along the c-axis.
Strontium is often substituted for calcium in order to confer the radio-opacity in glasses used for dental cements, biocomposites and bioglass-ceramics. It can be concluded that strontium substitutes for calcium with little change in the glass structure as a result of their similar charge to size ratio. Glasses with low content of strontium nucleate in the bulk to form calcium apatite phase. Glasses with medium strontium content nucleate to mixed calcium-strontium apatite at the surface and glass fully substituted by strontium to strontium fluorapatite [26].
\nMagnesium-substituted hydroxyapatite (MgHAP) powders with different crystallinity levels, prepared at room temperature via a heterogeneous reaction between Mg(OH)2/Ca(OH)2 powders and (NH4)2HPO4 solution using the mechanochemical- hydrothermal route, were reported by
Two effects of different magnesium sources (magnesium nitrate and magnesium stearate) on the synthesis of Mg-substituted hydroxyapatite (Mg-n-HAP) nanoparticles by the co-precipitation method were investigated by
Copper-substituted hydroxyapatite (Ca10−xCux(PO4)6(OH)2 (where x = 0.05 – 2.0) and fluorapatite Ca10−xCux(PO4)6F2 (x = 0.05 – 2.0) were synthesized by
According to
In this process, Ni2+ ions are first adsorbed onto the surface of hydroxyapatite (surface complexation, Section 6.5.2) and then the substitution of Ca2+ for Ni2+ ions takes place.
\nZinc is a common bioelement. The zinc content in human bones ranges from 0.0126% to 0.0217% by weight [7]. Zinc as a cationic substituent in hydroxyapatite provides the option to counteract the effects of osteoporosis [31]. The incorporation of zinc into the HAP structure (Zn-HAP) was abundantly studied, owing to the key effect of Zn2+ cations in several metabolic processes that makes zinc eligible for use in many biomedical applications and to its possible antimicrobial activity [3].
\nThe results of structure analysis indicated that Zn ions substituted partially for Ca ions in the apatite structure and the upper limit of Zn substitution for Ca in HA was about 20 mol.%. In general, the HAP lattice parameters, a and c, decreased with Zn addition [32].
\nZn-substituted apatite was synthesized by the precipitation method as follows [33]:
where 0 ≤ x ≤ 1. The pH of the solution was adjusted to 8 by aqueous solution of NH3, and the reaction mixture was kept at 90°C for 5 h with stirring. The resulting suspension was then subjected to suction filtration, and the powdery product was dried at 100°C for 10 h. It is known that the usage of chloride or nitrate of calcium as a starting reagent may cause the incorporation of Cl− or NO3− into the structure of apatite. This can be avoided by the utilization of acetate salts, because acetate ions are not incorporated into the apatite, i.e. they would not affect the apatite structure.
\nThe synthesis and the characterization of iron-substituted hydroxyapatite via a simple ion-exchange procedure were described by
The synthesis and the characterization of cobalt-substituted hydroxyapatite (Co-HAP) powders via the precipitation method were described by
Single crystals of chlorapatite [Ca5(PO4)3Cl] with the substitution of approximately 20% of Ca2+ by Co2+ (space group P63/
Naturally occurring manganese-substituted apatite is known as manganese-bearing apatite (Mn,Ca5(PO4)3F, Section 1.1). According to the findings of
The structure of natural Mn-bearing apatite refined by Hughes et al [24] and viewed along the c-axis.
It is interesting to note that apatite acts effectively as a geochemical sieve that traps Mn2+ and excludes Fe2+ elements, which are virtually inseparable in most geochemical systems. The bond valence sums for Fe2+ at apatite Ca sites yield 1.26 and 1.19 valence units for Ca(1) and Ca(2) sites, respectively; large discrepancy from the formal valence prohibits extensive substitution of Fe2+ in the apatite structure (Fig. 5) [24].
\nThe crystal structure of pale blue transparent Mn-rich fluorapatite (9.79 wt.% of MnO) with optimized formula (Ca8.56M2+1.41Fe2+0.01)P6O24F2 was resolved by
Crystals of La-, Gd- and Dy-bearing fluorapatite [La-FAP, Gd-FAP, Dy-FAP, Ca10−x−2y NayREEx+y(P1−ySixO4)Z2, where x = 0.24 – 0.29 and y = 0.32 – 0.36] were synthesized by hydrothermal route by
The structure of some REE-bearing apatites [37],[38] is shown in Fig. 6.
\nRare-earth-element ordering and structural variations in natural rare-earth-bearing fluorapatites (a), LaFAP (b), NdFAP (c), GdFAP (d) and DyFAP (e) [37],[38].
The partitioning of REE between two Ca positions in apatite contradicts usual first-order dependence on spatial accommodation, with LREE[1] - [39],[40],[41],[42],[43], in particular, favoring the smaller Ca(2) position. This behavior was variously ascribed to the control via [37]:
Substitution mechanism;
Electronegativity difference;
Bond valence.
The preference of individual REE among multiple Ca positions in minerals (the site occupancy of individual REE) was not extensively studied because of the inability of conventional diffraction methods to distinguish among individual elements at multiply-occupied sites. The site preference for individual LREE from theoretical bond-valence sums was estimated by
The isomorphic substitutions of neodymium for strontium in the structure of synthetic Sr5(VO4)3OH apatite structure type (P63/
where x = 0, 0.02, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18 and 0.20. The substitution scheme can be expressed as:
The procedure includes three stages:
Preparation of solution;
Thermolysis;
Treatment of the dry residue.
The solutions for the thermolysis were prepared by dissolving Sr(NO3)2 in water; Nd2O3 was dissolved in water with nitric acid added; NH4VO3 was dissolved in water with hydrogen peroxide added. Dry residues after concentrating the solutions were pestled in an agate mortar and calcined with the temperature steadily raised from 600 to 800°C and intermittent grindings [44].
\nThorium and uranium (actinides [45],[46][1] -)-bearing apatites were synthesized by
The structure of UFAP (a), ThFAP (b), UClAP (c), ThClAP (d), ThSrFAP (e) and ThSrClAP (f) [47] viewed along the c-axis.
The structure refinements of U-doped chlorapatites show that U is essentially distributed equally between the two Ca sites with UCa(2)/UCa(1) values, which range from 0.89 to 1.17. The results of Th-doped chlorapatites show that Th substitutes into both Ca(1) and Ca(2) sites with ThCa(2)/ThCa(1) values, which range from 0.61 to 0.67. In Th-doped strontium apatites with F and Cl end-members, Th is incorporated into both Ca(1) and Ca(2) sites. The range of ThCa(2)/ThCa(1) values is 0.56 to 1.00 for the F end-member and 0.39 to 0.94 for the Cl end-member. U-doped samples indicate that U in fluorapatite is tetravalent, whereas, in chlorapatite, it is heterovalent but dominantly hexavalent [47].
\nBased on the chemical analyses of U-, Th-doped fluor-, chlor- and strontiumapatite specimens in this study, local charge compensation may be maintained by the following coupled substitutions (M represents U or Th and [] represents the vacancy) [47]:
The incorporation of U and Th into fluorapatite results in a decrease of the size of both Ca polyhedra, but the incorporation of U and Th into chlorapatite gives rise to an increase in the volume of both Ca polyhedra. The decrease of both Ca polyhedral volumes in fluorapatite caused by the substitution of U and Th can be explained by the decrease of ionic radius from Ca to U and Th. However, the increase in the volume of both Ca polyhedra in chlorapatite is hard to understand. Because of the effect on Ca(2) polyhedron caused by the replacement of F− by Cl−, it can be explained by the structural distortion of Ca(2) polyhedron [47].
\nUranium-doped oxy-silicophosphates (britholites) of the composition of CaxLay(SiO4)6−u (PO4)uOt:U4+ were synthesized by
or
where An4+ substitutes for tetravalent U4+ and Th4+.
\nThe incorporation of thorium in the structure is probably possible due to small differences of ionic radius between calcium (1.06 Å), neodymium (1.05 Å) and thorium (1.00 Å). In order to ensure the quantitative incorporation of thorium, it appeared necessary to consider the coupled substitution [50].
instead of the substitution scheme:
Indeed, in the first way, homogeneous and single-phase solid solutions were prepared from Ca9Nd(PO4)5(SiO4)F2 to Ca9Th(PO4)4(SiO4)2F2 leading to full neodymium substitution. Associated small increase of the unit cell parameters results from the simultaneous replacement of phosphate groups by bigger silicate. It was accompanied by a significant change in the grain morphology. These results contrast with those obtained when the coupled substitution according to Eq. 19 was performed, which confirmed the limitation of about 10 wt.% in the Th substitution [50]. Good resistance of the materials to influence of aqueous solutions enables their utilization for the immobilization of tetravalent actinides in phosphate ceramics [49].
\nThe favorable biocompatibility of hydroxyapatite (HA) makes it a popular bone graft material as well as a coating layer on metallic implant. One common and accepted strategy to prevent the implant-related infections is to create antibacterial properties for the implant. Silver ions can be either incorporated into the apatite during the co-precipitation process (AgHAP-CP) or subjected to the ion exchange with calcium ions in apatite (AgHAP-IE). The incorporation of silver ions into apatite is based on the equation [51]:
where y is the molar amount of silver to be incorporated. However, the distribution of silver ions in AgHAP-CP and AgHAP-IE was different, thus affecting the antibacterial action.
\nThe absorption of cadmium cations in apatites is relevant both from the medical standpoint of cadmium uptake by human bones, as well as since cadmium migration in nature involves the absorption and desorption equilibria with natural minerals, including apatites. Cadmium has a slight preference for Ca(I) site in fluorapatite and for Ca(II) site in hydroxyapatite [7],[52]. The interactions between these two ions (Cd and Ca) during absorption and ionic change processes in apatites present therefore considerable practical and theoretical interest. Cadmium is also a frequent heavy toxic pollutant element in water [7].
\nCalculated energy differences (E) between these sites are of 12 and 8 kJ·mol−1 for fluorapatite and hydroxylapatite, respectively. The preference is not strong, and however, a part of the sites of the other type is also occupied by cadmium ions. The relative site occupation can be expressed by the equation [7]:
where E = E(Cd2+ or Zn2+ on Ca(1)) – E(Cd2+ or Zn2+ on Ca(2)). At T = 298 K, P = 85 and 17 Cd2+ in fluorapatite and hydroxylapatite, respectively. From the value of P and from the fact that the sum of the two probabilities is 1, one can calculate that the probability of the lower-energy site occupancy is of 99% and 94%, respectively.
\n\n
Pentavalent arsenic, vanadium and chromium substitution can completely replace phosphorus in calcium, strontium and barium fluor- and chlorapatites. Calcium fluor-vanadate, -arsenate and -chromate structures were distorted compared to normal hexagonal apatite. Manganese completely replaced phosphorus only in barium apatites, while chromium and manganese could not be incorporated into lead apatites. Excluding these exceptions, continuous solid solutions were formed between the phosphate and/or vanadate and the chromate or manganese analogues for given divalent and halide ions [54]. The substitution of CO32− ions at X- (carbonate-apatite of A-type) and Z-site (carbonate-apatite of B-type) was already described in Section 4.6.
\nThe arsenate (As5+) substitution in the hydroxylapatite structure was examined by
Complete PO43− ↔ AsO43− substitution was also recognized in experimental studies of apatite analogues, such as in the system Sr5(PO4)3OH-Sr5(AsO4)3OH [58]. The Rietveld refinement of Sr5(AsO4)3Cl (pentastrontium tris[arsenate(V)] chloride, 890.31 g·mol−1) from high-resolution synchrotron data was performed by
The structure of Sr5(AsO4)3Cl apatite (perspective view along the c-axis).
The synthesis of synthetic alkaline-earth vanadate hydroxylapatites from hydroxide fluxes was performed by
The structure of Sr5(VO4)3OH (a) and Ba5(VO4)3OH (b) apatite viewed along the c-axis.
The compounds (solid solution) of the composition of Pb5(PxV1−xO4)3Cl (0 ≤ x ≤ 1), which are synthetic analogues of minerals pyromorphite, vanadinite and endlichite, were synthesized for the first time by
Fragment of Pb5(VO4)3Cl crystal structure [61].
The variations of unit cell parameters as a function of composition respect Vegard’s law. These compounds are structurally built of discrete phosphate or vanadate tetrahedra linked to one another by lead polyhedra, which form joint layers (Fig. 10). Apatite-type structures offer typically two crystallographic positions for cations differing in the coordination number and local symmetry. Lead atoms occupying the first positions form polyhedra shaped as three-capped trigonal prisms of PbO9 having the symmetry C3, the columns of which run along the threefold axis. Distorted two-capped trigonal prisms of PbO6Cl2 residing in the second positions have local symmetry С1.
\nThe syntheses of chromium (Cr(V) [62]) analogues of apatite were described in literature including the following compounds [63],[64],[65],[66],[67],[67],[69],[70],[71],[72]:
Ca5(CrO4)3OH, which is isomorphous to hydroxyapatite (Section 1.5.2): space group P63/
Sr5(CrO4)3OH with predicted lattice constants a = 9.9561 Å and c = 7.488 Å.
Ba5(CrO4)3OH.
Ca5(CrO4)3F with predicted lattice constants a = 9.733 Å and c = 7.0065 Å
Ca5(CrO4)3Cl with predicted lattice constants a = 10.1288 Å and c = 6.7797 Å.
Sr5(CrO4)3F with predicted lattice constants a = 9.9349 Å and c = 7.5037Å.
Sr5(CrO4)3Cl with lattice constant a = 10.125 Å and c = 7.328Å.
Sr5(CrO4)3Br with predicted lattice constants a = 10.2895 Å and c = 7.2712 Å.
These compounds are in general prepared by the ignition of mixture of alkaline-earth carbonates, hydroxides or oxides with Cr2O3 in the presence of water vapor. Ca3(CrO4)2 compound (orthochromate), which is isomorphous with Ca3(PO4)2, is formed as an intermediate by carrying out the synthesis in dry atmosphere; this compound is often identified as 9CaO·4CrO3·Cr2O3 [63],[73],[74],[75].
\nTheoretical compositions and formula weights of chromium apatite analogues are given in Table 5.
\nCompound | \nComposition [wt.%] | \nM | \n||||
---|---|---|---|---|---|---|
M | \nCr | \nO | \nZ | \nH | \n[g.mol−1] | \n|
Ca5(CrO4)3OH | \n35.44 | \n27.59 | \n36.79 | \n— | \n0.18 | \n565.39 | \n
Sr5(CrO4)3OH | \n54.55 | \n19.42 | \n25.90 | \n— | \n0.13 | \n803.09 | \n
Ba5(CrO4)3OH | \n65.29 | \n14.83 | \n19.78 | \n— | \n0.10 | \n1051.64 | \n
Ca5(CrO4)3F | \n35.32 | \n27.49 | \n33.84 | \n3.35 | \n— | \n567.38 | \n
Ca5(CrO4)3Cl | \n34.33 | \n26.72 | \n32.88 | \n6.07 | \n— | \n583.33 | \n
Sr5(CrO4)3F | \n54.42 | \n19.37 | \n23.85 | \n2.36 | \n— | \n805.08 | \n
Sr5(CrO4)3Cl | \n53.33 | \n18.99 | \n23.37 | \n4.31 | \n— | \n821.53 | \n
Sr5(CrO4)3Br | \n50.59 | \n18.01 | \n22.17 | \n9.23 | \n— | \n865.98 | \n
Theoretical compositions of chromium apatite analogues (M(CrO3)4Z).
Sr10(CrO4)6F2 possesses typical hexagonal structure of apatite with the space group P63/
Structural representation of Sr10(CrO4)6F2 apatite with SrO6 octahedra and CrO4 tetrahedra: larger and smaller spheres mark F and O atoms, respectively. The unit cell is indicated by black lines [71].
The crystal structure (Fig. 12) and the magnetic properties of strontium chromate phase (Sr5(CrO4)3(Cu0.586O)) with apatite-like structure were determined by
Crystal structure of Sr5(CrO4)3(Cu0.586O): (a) projection along the c-axis and (b) side view showing the infinite [CuO]− chains and the coordination polyhedra of Cr and Sr atoms [76].
This phase crystallizes in the space group P63/
Selenium oxyanion-substituted hydroxyapatite (SeHAP) was synthesized as a promising material for the treatment of bone cancer to reduce the probability of recurrence, because selenium plays an important role in protein functions and it has significant effect on the induction of cancer cell apoptosis [77]. Another study indicated that selenite (SeO42−) or selenite (SeO32−) oxyanions exert their cancer chemopreventive effects by direct oxidation of critical thiol-containing cellular substrates and that they are more efficacious anticarcinogenic agents than selenomethionine or selenomethylselenocysteine with a lack of oxidation capability [3],[78].
\nSelenium was incorporated into the hydroxyapatite lattice by replacing some of the phosphate groups with selenite groups. SeO42− (selenate) ion has tetrahedral structure like PO43− ion (Fig. 5 and Table 4 in Section 1.2), but it is slightly larger (2.49 Å) in diameter than phosphate ion, which is 2.38 Å in diameter. By contrast, SeO32− (selenite) ion has very similar diameter (2.39 Å), but it has a quite different flat trigonal pyramid geometry. The substitution of bivalent selenium oxyanions forms positively charged vacancy compensated by simultaneous decalcification and dehydroxylation according to the reaction [3],[79]:
The SeHAP crystal lattice parameters increased slightly as the Se concentration increased when the Se/P ratios were less than 0.5 [80]. All samples prepared via the precipitation method from aqueous solution by
Nitrogen was incorporated into hydroxyapatite by dry ammonia treatments at temperatures between 900 and 1200°C in the presence of graphite. The process of synthesis of cyanamidapatite (Ca10(PO4)6CN2, Ca10(PO4)6NCN) can be described by the following chemical equations [13]:
Ammonia reacts with graphite during the thermal treatment forming [CN2]2− ions (Eq. 24). These cyanamide ions interchange with moveable OH− ions situated on the sixfold screw axis of apatite to form cyanamidapatite (Eq. 25). A similar reaction is known for the synthesis of calcium cyamide from calcium oxide:
The treatments at temperatures above 1200°C or long-term treatments destroy the apatite lattice completely through the phosphate reduction. Cyanimide ions lose their sites in the apatite lattice and the nitrogen content decreases [13]. The synthesis of Ca10(PO4)6CN2 apatite provides the evidence that the hydroxylapatite structure is able to incorporate larger organic molecules [81].
\nDirect transformation of TCP (Ca3(PO4)2) into cyanamidapatite according to the reaction:
was also proposed by
Although “oxygenated” apatites were not much investigated compared to other substituted apatites, some past studies have, however, reported the possibility of apatitic channels to incorporate oxygenated species such as H2O2 or O2 or molecular ions including O22− (the peroxide ion) and superoxide O2−. They are single-phase nanocrystalline apatites, where part of apatitic OH− ions are replaced by oxygenated species. Typically by peroxide ions (quantified) and at least the traces of superoxide ions can be prepared by the precipitation from aqueous calcium and phosphate solutions in the presence of H2O2 under medium room temperature [83],[84].
\nThe local structure of hydroxyl-peroxy apatite was described by
According to the concentration of peroxide ions in hydroxyl-peroxy apatite and the theoretical value, the corresponding formula for the hydroxyl-peroxy apatite is proposed as follows [85]: Ca10(PO4)6(OH)1.34−2x(O2)0.33(O)x□0.33+x.
Possible configuration of hydroxyl ions, peroxide or oxide ions and vacancies in the channel along the crystallographic c-axis in hydroxyl-peroxy apatite. O, H atoms and vacancies are presented by large gray circles, small open circles and gray squares, respectively. Filled small circles represent H atoms perturbed by the incorporation of peroxide ions [85].
A scheme of possible configurations of hydroxyl ions, peroxide or oxide ions and vacancies in the channel along the crystallographic c-axis in hydroxyl-peroxy apatite is illustrated in Fig. 13. Peroxide ions incorporated into HAP are located in the channel of apatite structure through the substitution of a portion of OH− radicals, and the material is a solid solution of hydroxyl- and peroxide apatite.
\n\n
where [] was the vacancy. O2− ion was active and could react with O2 to produce O22−.
Peroxide ions associated with the vacancies were situated placed in the channel of HA lattice along the c-axis through the substitution of a portion of OH radicals. The molecular ions constituted a symmetric vibrator with a stretching vibration active in Raman spectrometry. This vibration was recorded at 750 cm−1 in the Raman spectra of O22−-containing HA samples. The final product was a solid solution of hydroxyl- and peroxide-apatite. However, the existence of peroxide ions in the HA lattice caused the contraction of the unit-cell dimensions of HA materials. In addition, a new hydrogen bond was formed between peroxide ions and adjacent OH radicals, which was determined by using molecular spectroscopy analysis. During annealing treatment in air, peroxide ions decomposed and the substituted OH radicals re-entered the HA lattice, resulting in the elimination of the structural aberrations caused by the incorporation of peroxide ions. The concentration of peroxide ions present in HA samples was measured by chemical analysis [86].
\nThe synthesis and the structure of four new chalcogenide[1] - [87] phosphate apatitic phases of the composition given by the formula:
Ca10(PO4)6S: a = 9.4619 Å, c = 9.8342 Å, c:a = 0.7223 and V = 529.88 Å3 (Fig. 14(a));
Sr10(PO4)6S: a = 9.8077 Å, c = 9.2089 Å, c:a = 0.7350 and V = 600.53 Å3 (Fig. 14 (b));
Ba10(PO4)6S: a = 10.2520 Å, c = 7.6590 Å, c:a = 0.7471 and V = 697.14 Å3 (Fig. 14(c));
Ca10(PO4)6Se: a = 9.5007 Å, c = 9.8406 Å, c:a = 0.7200 and V = 534.73 Å3 (Fig. 14 (d)).
were reported by
The structure of Ca(PO4)6S (a), Sr(PO4)6S (b), Ba(PO4)6S (c) and Ca(PO4)6Se (d) viewed along the c-axis.
These four apatites are isostructural and crystallize in the trigonal space group P3 over bar with the chalcogenide ion positioned at (001/2). Sulfoapatites show no ability to absorb H2S in the way that oxyapatite absorbs H2O at elevated temperatures. This can be attributed to the position of sulfide ion and the way it influences the crystal structure around vacant chalcogenide position at (000) [88].
\nStrontium borate-phosphate Sr10(PO4)5.5(BO4)0.5(BO2)[1] - was prepared from SrCO3, NH4H2PO4 and H3BO3 at high temperature (from 1150 to 1550°C) and was found to be free of alkali metal compounds. Sr10(PO4)5.5(BO4)0.5(BO2) phase is a derivative of the apatite crystal structure with metaborate ion at Z-site: space group P3, a = 9.7973 Å, c = 7.3056 Å, V = 607.29 Å3, Z = 1 [89],[90],[91].
\nThe strontium sites are found to be fully occupied, while [PO4]3ˉ tetrahedra are partially replaced by [BO4]5ˉ groups. The crystal structure contains Sr cations occupying the 6g (Sr(1)) and 2d (Sr(2), Sr(3)) sites, isolated tetrahedral [PO4]3ˉ/[BO4]5ˉ groups and linear [BO2]ˉ groups located in hexagonally shaped (trigonal antiprismatic) channels formed by Sr(1) atoms and running along [001] (Fig. 15). The space group of the present compound is reduced to P3, because the orientation of the [PO4]/[BO4] tetrahedra destroys the mirror plane characteristic for the apatite crystal structure (P63/
Crystal structure of Sr10(PO4)5.5(BO4)0.5(BO2): projection along [001] showing the hexagonally shaped channels formed by Sr(1) around the threefold inversion axis (Z = (P0.95B0.05) (a) and side view emphasizing the linear [BO2]− groups and the corresponding trigonal antiprisma formed by Sr(1) (b) [89].
Crystalline solid solutions[1] - [92] of apatites are frequently encountered where the possibility and type depend on the condition of formation or preparation, thermal history after formation and the end-members of the series [2]. The structure of ternary solid solution of hexagonal (P63/
The solid solution in hexagonal ternary apatite is achieved by a 0.4 Å shift along the c-axis of Cl atom relating to its position in end-member chlorapatite. This adjustment affects the Markovian sequence[1] - [94] of anions in the (0,0,z) anion columns by providing a structural environment that includes column OH species at the distance of 2.96 Å from Cl. The shift of Cl atom is accompanied by splitting of Ca(2) atoms into two distinct positions as a function of the kind of anion neighbor (F or OH vs. Cl). Additional nonequivalent Cl site, similar to that in end-member chlorapatite, is also present. Those Cl atoms with adjacent OH occupy a site different from Cl atoms adjacent to vacancies in the anion column [93].
\nReduction of symmetry in monoclinic ternary apatite results from the ordering of Cl and OH within the anion columns. The atomic positions of Cl and OH in the anion column are equivalent to those in hexagonal ternary apatite, but each is ordered into only one of the two hexagonal symmetry-equivalent sites [93].
\nThe apatite supergroup minerals of the solid solution [95]:
where x = 0 – 3 and y = 0 – 1.5 were found in altered calcareous xenoliths within the ignimbrite of the Upper Chegem caldera, Northern Caucasus, Russia. These minerals belonging to the apatite supergroup occur in all zones of skarn from the core to the contact with ignimbrite as follows: brucite-marble, spurrite (Ca5(SiO4)2CO3 [96]), humite (Mg7(SiO4)3(F,OH)2 [97]) and larnite[1] - (Ca2SiO4 [98],[99],[100],[101]) zones. They are associated with both high-temperature minerals: reinhardbraunsite (Ca5(SiO4)2(OH)2 [102]), chegemite (Ca7(SiO4)3(OH)2 [103]), wadalite (Ca6Al5Si2O16Cl3 [104]), rondorfite (Ca8Mg(SiO4)4Cl2 [105]), cuspidine (Ca4(Si2O7)F2 [106]), lakargiite (CaZrO3 [107]) and srebrodolskite (Ca2Fe3+\n2O5 [108]), corresponding to the sanidinite metamorphic facies,[1] - and secondary low-temperature minerals: calcium hydrosilicates (hillebrandite [113], awfillite [114], bultfonteinite [115]), hydrogarnets [116] and minerals of the ettringite group [117].
\nThe minerals of the apatite supergroup often form elongated cracked hexagonal or pseudo-hexagonal crystals up to 250 μm in size as well as grain aggregates. A new solid-solution series was found between ellestadite and svabite-johnbaumite (±apatite) with the ellestadite type isomorphic substitution according the following scheme [95]:
where R = As5+ and P5+. The As content in investigated minerals decreases from the contact skarn zone with the ignimbrite towards the core of altered xenoliths (from 2.11 As pfu[1] - to 0), for example [95]:
Svabite:
Ca5[(AsO4)2.01(PO4)0.33(SiO4)0.33(SO4)0.33]3[F0.58(OH)0.30Cl0.12]Ʃ1;
As-bearing fluorapatite:
Ca5[(PO4)1.56(AsO4)1.06(SiO4)0.19(SO4)0.19]3[F0.59(OH)0.35Cl0.06]Ʃ1;
As-bearing hydroxylellestadite:
Ca5[(SiO4)1.25(SO4)1.25(AsO4)0.43(PO4)0.07]3[(OH)0.70Cl0.20F0.10]Ʃ1;
Si, S-bearing hydroxylapatite:
Ca5[(PO4)0.95(SO4)0.93(SiO4)0.93(AsO4)0.19]3[(OH)0.67Cl0.18F0.15]Ʃ1;
Hydroxylellestadite:
Ca5[(SO4)1.49(SiO4)1.49(PO4)0.02]3[(OH)0.74F0.13Cl0.13]Ʃ1.
The crystals of As-bearing phases belonging to the investigated solid solution are heterogeneous and small in size. Therefore, X-ray single-crystal data were obtained for only Si, S, As-bearing hydroxylapatite (see the formula above): P63/
The hydrothermal synthesis of vanadate/phosphate hydroxyapatite solid solutions of the composition of Ca10(VO4)x(PO4)6−x(OH)2, where x = 0, 1, 2, 3, 4, 5 and 6, was firstly reported by
The crystal structure of 11 samples of synthetic Na-Ca-sulfate apatite systems of the composition of Na6.45Ca3.55(SO4)6(FxCl1−x)1.55, where x = 0 – 1, was refined by
Lead apatites form a family of isomorphous compounds, and well-known members of the group are mimetite (Pb5(AsO4)3Cl, Section 1.6.7) and pyromorphite (Pb5(PO4)3Cl, Section 1.6.4). Isostructural with vanadinite Pb5(VO4)3Cl, these three constituents form a ternary system within the apatite group of P63/
A number of compounds of the mimetite Pb5(AsO4)3Cl-pyromorphite Pb5(PO4)3Cl solid-solution series were synthesized at room temperature by
Solid solutions of Pb8M2(XO4)6 lead alkali apatites were studied by
Some other examples of apatite solid solutions are listed below [2]:
Ca2Y8(SiO4)6O2 – Ca8Y2(PO4)6O2;
Ca2La8(SiO4)6O2 – Ca8La2(PO4)6O2;
Ca2Y8(SiO4)6O2 –Y10(SiO4)4(BO4)2O2;
Mg2Y8(SiO4)6O2 – Y10(SiO4)4(BO4)2O2;
Pb4+\n3Pb2+\n5Y2(SiO4)6O2 – Pb2+\n2Y8(SiO4)6O2;
Ca10(PO4)6(OH)2 – Ca4Y6(SiO4)6(OH)2;
M10(PO4)6F2 – M10(PO4)6F2 (M = Sr, Ba, Pb);
M10(PO4)6F2 – M10(MnO4)6F2 (M = Sr, Ba, Pb).
Since apatite is an important accessory mineral in most common rock types, it is often used in trace element and isotope investigations of igneous and metamorphic rocks [123]. Stable isotope compositions of biologically precipitated apatite in bone, teeth and scales are widely used to obtain the information on the diet, behavior and physiology of extinct organisms and to reconstruct past climate in terrestrial and marine conditions [124].
\nBroad spectrum of substitutions in the apatite lattice allows the incorporation of various isotopes, which offer a number of instruments for the interpretation of paleoenvironment and diagenesis. The relative stability of francolite compared to other sedimentary minerals led to an enormous number of studies and applications. Various isotopes occupy the Ca2+ and PO43− sites in the lattice of apatite (Fig. 16).
\nPossible isotopic substitutions in the structure of francolite [125].
Since the earliest application in deep-time study of Late Cretaceous paleotemperatures in 1950, the oxygen isotope paleothermometry is based on the temperature dependence of oxygen isotope fractionation between authigenic minerals[1] - [126] and ambient waters. Under the equilibrium conditions, the 18O/16O ratio of sedimentary carbonate and phosphate minerals depends only on the temperature of precipitation and on the 18O/16O ratio of ambient water. Thermodynamic relationships and bond vibrational frequencies can be used to determine the mineral-water isotopic fractionation relations but not with the precision and accuracy necessary for the paleothermometry. Such an application requires the calibrations based on mineral-water oxygen exchange experiments at high temperatures, mineral precipitation experiments at low temperatures and/or natural experiments using minerals grown under known conditions [127],[128].
\nCarbon, oxygen and sulfur isotopes are used to reconstruct the oxygenation stages of the sediments during organic matter degradation and precipitation of apatite. The application of this method gives good results for modern and Neogene deposits. In older occurrences, the signature of carbon and oxygen composition is commonly overprinted by diagenetic and burial diagenesis [125],[129]. The carbon isotope ratios of apatite can be used to interpret the source of carbon in magmas and metamorphic fluids using the assumption that the carbon isotope fractionations between phases are small in igneous and metamorphic systems [123].
\nThe carbon isotope analysis of bioapatites was first applied to terrestrial mammals in early 1980s [130],[131],[132]. While it is now known that some bones do undergo the C-isotope exchange extremely readily, collagen, bone and enamel record different periods of time during the life of a single individual, and the diet may change. That means, there is a fundamental ambiguity (preservation vs. normal intraindividual differences) in interpreting the isotopic differences among different tissues. Unfortunately, early results were taken to imply that all bioapatites are unreliable, and it was not until the 1990s that it became accepted that the tooth enamel, at least, is a robust recorder of diet. Thus, the early work of
Fossil biogenic apatites display the trace element compositions that can record environmental and biological signals, give insights into past water compositions or be used for dating paleontological and archeological bones and teeth. The mechanisms of the process of trace element and their isotopes incorporation into apatites of skeletal phosphatic tissues are described by
Partitioning between aqueous fluids and crystals;
Surface adsorption, complexation and chelation;
Diffusion processes.
Partitioning of divalent cations is defined by the chemical equilibrium expressing the divalent cation (Me2+) exchange between apatite and aqueous solutions [135]:
where (aq) and (ss) refer to the aqueous solution and to the solid solution, respectively. The equilibrium constant of Eq. 31 can be written as
where x is the molar fraction in apatite solid solution, m is the molality in water, λ is the activity coefficient of the component in the solid solution, K(T) is the solubility product of the end-member at temperature T and γ is the ion activity in the aqueous solution, the ratio of which in water is assumed to be equal to one. The activity coefficients in regular solid-solution model are described by Margules parameters[1] - [136] and can be approximated by the elastic energy due to the deformation of the host crystal lattice around the substituted cation [135],[137]:
where NA is the Avogadro number, E is the Young’s modulus of the crystal, ri is the ionic radius of cation normally occupying the site in the i-compound (Ca in apatite) and rj is the ionic radius of the substituted cation in compound j. The elasticity of hydroxyapatite gives E = 114 ± 2 GPa.
\nAt low concentrations (XMe−apatite << 1) like those of trace elements in biogenic apatites, Eq. 32 is reduced to the relationships [135]:
where the term exp (-ΔGideal/RT) is the free enthalpy change of the reaction 31, equivalent to the ratio of end-member solubility products. Unlike carbonates, the data of solubility products and thermodynamics for end-member apatites are scarce. When no data are available for the solubility and enthalpy of formation of the end-members, it is assumed that the elastic energy term dominates over the partitioning, i.e. ΔGideal ≪ WGMeCa. Promising ways for obtaining the enthalpies of formation and the substitution energies are the first-principle calculations [138] and the atomistic modeling [135],[139].
\nFor heterovalent substitutions, the equilibrium reaction becomes complex since complementary substitutions are necessary to maintain the charge balance in the crystal. Typically, the substitution of trivalent elements of important rare-earth series requires the compensation by Na+ for Ca2+ at an adjacent site or even more complex substitution scheme involving carbonate groups or fluorine. In that case, most thermodynamic data required for the calculation of the equilibrium constant are not available. Among the series of elements with the same charge and substitution scheme, the pattern of equilibrium constants, or of distribution coefficients, can be approximated by combining Eqs. 33 and 34 [135]:
where Eeff is the effective Young’s modulus and r0 is the optimum radius for maximum equilibrium constant KD0, all of which will depend on the charge of the considered series of elements. These parameters can be adjusted to experimental data such as partition coefficients between minerals and liquids and lead to parabola-like curves, the position and curvature of which depend on the charge of the element. This approach was applied so far only to rare-earth elements in apatite, where the relative partition coefficients were extrapolated from magmatic temperatures around 800°C to low temperatures appropriate for fossil diagenesis [135].
\nThe complexation of metal cations in aqueous fluids involves binding with a broad range of molecules from simple inorganic ones (e.g. carbonates, phosphates and sulfates) to complex organic ones (humic acids, amino acids, proteins, enzymes, etc.). For molecules with several bonding sites and structural flexibility (e.g. multidentate or chelator), the complexation is thermodynamically favored with respect to the complexation with several monodentates having one bonding site; the process is named chelation. Chelators can be adsorbed on mineral surfaces while remaining complexed to metallic cations. The pattern of the partition coefficients associated with this process was measured for rare-earth elements complexed with humic acids and manganese oxides. It shows null fractionation along the whole series; the effect of chelation is therefore to screen the trace element in the crystal or ligand field and to suppress the fractionation associated with ionic radius variations and tetrad effects, and most of the anomalies associated with redox of Ce [140]. Similar effects might occur for the adsorption of chelated metals on other mineral surfaces and in particular phosphates. In addition to chelators, the transition metals also form complexes with proteins and enzymes that interact with bones and teeth in living organisms and may influence their incorporation in bioapatite [135].
\nSolid-state diffusion in crystals is a thermally activated process governed by the enthalpy of formation and of migration of defects and usually well described by the Arrhenius relation [135]:
where D0 is the pre-exponential factor corresponding to the diffusion coefficient at infinite temperature and ΔHa is the activation enthalpy (or energy) of the diffusion process. The extrapolation of high-temperature diffusion data of trace elements in apatite shows that these processes are inefficient at temperatures below 300°C, which cover the conditions of diagenetic alteration up to low-grade metamorphism [135],[141].
\nThe differing initial and boundary conditions imposed in three sets of diffusion experiments:
Ion implantation;
In-diffusion with powder sources experiment;
Out-diffusion.
consequently resulting in different solutions to the diffusion equation. However, in all cases, the process can be described as one-dimensional, concentration-independent diffusion [141].
\nThe summary of data diffusion for cations and anions in apatite (a) [142] and the diffusion of Sm and Nd for various minerals and oxides (a) [141].
A plot of diffusivities of various cations and anions in apatite is shown in Fig. 17(a). The diffusivities of Mn are similar to those of Sr and about an order of magnitude slower than those of Pb. On the other hand, the diffusion of Mn2+ in apatite is about two orders of magnitude faster than the diffusion of (trivalent) REE when coupled substitutions according to Eqs. 4 and 5 are involved [141],[142]. The diffusion coefficients of Nd and Sm in various minerals and related oxides are plotted in Fig. 17(b). The diffusion of REE in apatite is relatively fast; when only simple REE exchange is involved, it is among the fastest in rock-forming minerals for which the data exist. Even when the chemical diffusion involving coupled exchange is considered, REE transport in apatite is considerably faster than the REE diffusion in other accessory minerals [141].
\n‘Camellia sinensis’ is the botanical name of tea plant and was originated from Southeast Asia [1]. Tea was introduced by Portuguese and Chinese during the sixteenth century [2]. During the seventeenth century, drinking of tea became popular in Britain [3]. In the current scenario, tea is one of the most ancient and popular beverages around the world followed by water. Tea is grown primarily in tropical and temperate regions which include China, India, Japan and Sri Lanka [5]. Tea plants were cultivated in several African and American countries. Primarily it has two varieties such as Camellia sinensis and Camellia assamica, and it belongs to the Camelliaece family. Tea plant is an evergreen shrub with optimal range from 15 to 20°C. The sinensis strain has originated from China and it produces different categories based on processing [4], such as black tea (wilted and fully oxidized), green tea (unwilted and unoxidized) and oolong tea (wilted, bruised and partially oxidized). Furthermore, assamica strain is originated from Assam region, especially in Northern India. Due to its enormous growth, it is a favour for India, Sri Lanka and African countries. But this strain is not used for producing black, white and oolong teas [5].
Green tea (non-fermented)
Black tea (fermented)
Oolong tea (partly fermented)
White tea (least processing)
All the four types of tea are made from same (Camellia sinensis) plant, but it differs from processing methods. Green tea is made by crushing tea leaves—and then steaming, rolling and drying them. It undergoes minimal processing and contains 80–90% catechins and flavanols (10% of total flavonoids). The infused leaf is green, and the liquor is mild, pale green or lemon-yellow. Black tea involves additional processing steps such as aeration and withering. Specifically, it contains 20–30% of catechin, 50–60% of total flavonoid and theaflavins and thearubigins representing 10%, respectively. Black tea is the most common type of tea produced and consumed. The infused leaf has a dark brown colour and a sweet aroma. Oolong tea is a partially or semi-fermented tea. A full-bodied tea with a fragrant flavour and a sweet fruity aroma has some qualities of both black tea and green tea due to its manufacturing process. It is more suitable for people who prefer a low caffeine option. White tea is appreciated by tea connoisseurs for its unmatched subtlety, complexity and natural sweetness. It is also considered to be a far greater source of antioxidants than green tea because the tea leaves undergo minimum processing [6]. During the black tea manufacturing process, tea leaves are crushed and subjected for enzymatic oxidation process/fermentation process. Subsequent fermentation of catechins is condensed and it leads to produce the theaflavins (TFs) and thearubigins (TRs). These constituents are responsible for specific taste and colour of black tea [7]. Furthermore, during the fermentation process, monomeric polymers are converted to polymeric polyphenols (theaflavins and thearubigins). The polymeric polyphenols (theaflavins and thearubigins) are higher molecular weight and they are not absorbed by the gastrointestinal tract, but monomeric polyphenols (catechins) are very smaller in size [8]. The black tea contains 3–10% of monomeric polyphenols, higher concentration of polymers and gallic acid than the green tea [9]. Oolong tea is produced by partially oxidization process with fewer amounts of polymeric polyphenols and it contains higher amount of EGCG than the black tea.
Tea leaves contain a number of chemical compounds. When they are processed, these compounds break down and form new compounds. The tea leaves are rich in polyphenols [10], caffeine (approximately 3.5%), theobromine (0.15–0.2%), theophylline (0.02–0.04%), lignin (6.5%), organic acids (1.5%), chlorophyll (0.5%), thiamine (4%), free amino acids (1–5.5%) and numerous flavonoid compounds. In addition, they consist of other compounds including flavones, phenolic acids and depsides, carbohydrates, alkaloids, minerals, vitamins and enzymes [11]. Tea leaves also contain flavanols—quercetin, kaempferol, myricetin, and their glycosides. The most favourable effects of tea are accredited to the polyphenols and 3–6% of caffeine [12].
In addition to this, several polyphenolic catechins are available in green tea, which include (−) epicatechin (EC), (−) epicatechin-3-gallate (ECG), (−) epigallocatechin-3-gallate (EGCG) and (−) epigallocatechin (EGC) (Figure 1). In green tea, it has some other compounds with interest of human health like caffeine, fluoride, minerals and trace elements (chromium and manganese) [13, 14]. In green tea, catechins are present in high amount because it is produced by young leaves. It is noteworthy for its highest content of catechins and it is closely related to influence the quality [15, 16].
Structure of catechins (EC, EGC, ECG and EGCG).
The taste and the flavour of tea are enhanced by chemical compounds, which are polyphenols, caffeine, organic acids and volatile terpenes [17]. The characteristic taste of green tea is a mixture of bitterness, umami taste, sweetness and slight sourness. Furthermore, it has been detected that the tea taste is influenced by polyphenols, amino acids and caffeine [18]. The aroma of tea is enhanced by volatile organic compounds such as terpenoids, alcohol and carbonyl compounds.
In a food manufacturing company, lipid oxidation and development of rancidity is a major issue. Lipid oxidation reduces shelf-life, quality and nutritional value of their products. Autoxidation causes oxidative deterioration of food lipids as a chain reaction of free radical generation through initiation, propagation and termination. Oxidation initiators such as heat, light, ionizing radiation, transition metals, metalloproteins and enzymes facilitate the generation of these primary free radicals. In the primary oxidation, lipid hydroperoxides are identified to reduce the taste and odour. Disintegration of hydroperoxides yields aldehydes, alcohols, ketones, hydrocarbons and acids that are considered as the secondary oxidation products of lipids.
In a food industry, antioxidant is expected to delay the development of rancidity in food. Antioxidant is a substance that detains lipid oxidation by inhibiting the free radical formation or which can diffuse the oxidation reaction. This substance helps to preserve the foods by delaying development of rancidity and discoloration due to lipid oxidation. There are two different categories of antioxidants which are involved for their mechanisms are divided into primary and secondary antioxidants. Primary antioxidants inhibit and disrupt the initiation phase and the propagation stage of antioxidants. Secondary antioxidant are involved in the deactivation process of singlet oxygen, chelate the metal ions, UV-rays absorption, scavenge oxygen and helps to regenerate the primary antioxidants. Primary antioxidants in combination with secondary antioxidants are used for better health benefits.
Tea polyphenols are well known for their antioxidant properties and these are primarily attributed to the combination of hydroxyl groups and aromatic rings. The above said primary constituents (hydroxyl groups and aromatic rings) aid in assembling their chemical structure with binding, which lead to the hydroxyl groups that lead to neutralization of lipid free radicals. Many studies report that tea polyphenols and tea catechins are exceptional electron donors with effective scavengers of physiologically relevant reactive oxygen species and superoxide anions [19, 20, 21, 22, 23]. Catechins also exhibit antioxidant activity through redox potential of the transition metal ions. Mainly polyphenolic compounds have hydroxyl and carboxyl groups and they have the ability to bind with iron and copper [20].
Green tea catechins exhibit antioxidant activity via inhibition of pro-oxidant enzymes and they induce antioxidant enzymes [23]. Catechins and their derivatives are used as a substrate in food products, and they show high antioxidant activity [24]. Green tea catechins have active antioxidants in bulk oils and give similar performance to other hydroprofile antioxidants such as redox and ascorbic acid [25, 26]. Catechins are also used as an emulsifying agent, and they show delaying oxidation of polyunsaturated fatty acids that are rich in marine and vegetable oils [27]. In corn oil, dry glycerol system was oxidized at 50°C and the antioxidant activity of epigallocatechin gallate showed superior activity than the epicatechin [27]. Zhong and Shahidi [28] conducted the study of structural modification of epigallocatechin to improve lipophilicity by esterification of epigallocatechin gallate with selected fatty acids such as stearic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The lipophilized derivatives produced greater antioxidant activity than the original epigallocatechin molecule.
Radical scavenging activities of catechin, epicatechin and epicatechin gallate were higher than those of L-ascorbate and beta-carotene [29]. In another study, Nanjo et al. [22] reported that DPPH radical scavenging activities of catechin and epicatechin were less than epigallocatechin, epicatechin and epigallocatechin gallates. Epicatechin is another monomeric flavonol from green tea. Few reports suggested that epicatechin is capable of scavenging hydroxyl radicals, peroxy radicals and superoxide radicals [30, 31, 32, 33]. The antioxidant activity is rich in green tea followed by oolong, black and pu’erh tea [5]. Chan et al. evaluated the role of non-polymeric phenolic (NP) and polymeric tannin (PT) constituents in the antibacterial and antioxidant activities of different brands of tea such as green, black and herbal teas. All the six types of tea were examined and revealed that PT constituents have shown strong antibacterial and anticancer activity [5]. Another advantage of tea catechins possesses anti-discolouring effect on beverages and margarine containing beta-carotene [34, 35, 36, 37]. Hence, tea polyphenols act as antioxidants by delaying the process of β-carotene degradation. The individual tea polyphenols were examined separately; epigallocatechin showed strong anti-discolouring effect, whereas epicatechin and catechin showed no activity, and gallic acid had moderate activity.
The appropriate incorporation of green tea extract is essential in food products, and to ensure tea, antioxidants components are thoroughly mixed in the food matrix. For adequate shelf-life extension in food, small amount of tea extract is required and it may determine the achievement of the antioxidant benefits. Commercially available green tea in a grained powder form and tea extract can be solubilized in water. Water soluble green tea extract has low viscosity which makes it essential for spraying and homogenous distribution. Green tea extract can be dispersed into food grade solvent to produce oil-soluble liquid product. The liquid form of green tea extract is directly added into oils and fats. The oil may be heated at 40–60°C temperature under stirring condition; during the process, tea extract is slowly added to oil. The above said process is extended for an additional period to aid their uniform distribution of green tea extracts in oils (Figure 2).
Schematic representation of green tea extracts incorporation in food industry.
In recent years, green tea extract supplemented products are ever growing of consumer interest. Green tea extract is used for many food products including bread [38] biscuits, dehydrated apple [39] and meat products [40]. In a food industry, the major problem is lipid oxidation and it induces the potential toxicity in food products [33]. The main application of green tea extract is spraying in many food products and it showed comparable antioxidant performance to conventional synthetic antioxidant tert-butylhydroquinone (TBHQ). Furthermore, green tea extract is more cost-effective than other natural sources. Usually, meat and meat products have high lipid content and they range from 4.5 to 11%, and thus they are vulnerable to lipid oxidation [41]. Fish tissues are composed of highly unsaturated fatty acids and they are even more susceptible for lipid oxidation than meat and meat products [33].
In a food industry to prevent the lipid oxidation, synthetic antioxidants are used as preservatives, such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) and tert-butylhydroquinone (TBHQ), because they are inexpensive and effective [33]. Therefore, these synthetic antioxidants are found to be highly toxic at higher concentrations [42] and thus natural antioxidants are suitable for preventing the lipid peroxidation. Hence tea catechin has high potential for the inhibition of lipid peroxidation in foods [43, 44]. Specifically, EGCG is more efficient for inhibition of lipid peroxidation than the α-tocopherol and BHA. The plausible mechanism of catechins has been found effectively to chelate metal ions and it initiates the lipid peroxidation chain reaction [45].
Each species of meat differs in the level of fatty acid and iron, thus its susceptibility to lipid oxidation also differs [46]. For instance, beef has been found to be more susceptible to lipid oxidation followed by duck, ostrich, pork and chicken. The green tea catechins are highly efficient to prevent the lipid oxidation when supplemented with meat and meat products. For example, 300 mg/kg of tea catechin is minced with red meat (beef and pork) and poultry (chicken, duck, ostrich) meat to prevent the lipid oxidation under refrigeration storage. Similarly, catechin (200 mg/kg) is also being used in plastic package of cooked and raw beef under modified storage conditions (80% O2 and 20% CO2) with 4°C refrigeration for 7 days to inhibit lipid [39]. Hence, tea catechins have been shown to have high potential against lipid oxidation in meat and meat products. The catechins are used to prevent the lipid oxidation in meats by chelating iron, which is the major active catalyst for oxidative rancidity in meat [47]. Furthermore, tea catechins trap the peroxy radicals and suppress the free radical chain reactions; finally, it prevents the lipid oxidation in meat products.
Several studies reported that catechins are not effective against the discolouration of meat and meat products, while using 200 mg/kg of catechin minced at 2°C for 20 days in the atmosphere of 80% O2 and 20% CO2 [39, 48]. By contrast, Tang et al. [49] noticed that the addition of catechins improved colour stability under modified atmosphere packaging (MAP) condition with 80% O2 and 20% CO2 under refrigeration for 7 days. Banon et al. reported combinatorial (catechins with sulphite) treatment showed delaying in discolouration with of raw sulphite beef patties packed under alcoholic condition during refrigeration for 9 days [50]. The beneficial effect of catechins minced with meat and meat products improved their quality and enhanced shelf-life with additional antioxidant potentials to consumers. Furthermore, catechins in meat and meat products are rich in iron, because catechins can bind with iron to reduce its absorption in the body [51].
Oxidative deterioration is the major problem of fish and fish products, and it causes degradation and off-flavour development. Commercially available catechins are applied in salmon fillets at a concentration of 0.5% (w/w) and it is found to extend the shelf-life of the fillets compared to untreated samples [52]. The catechin concentration will vary from fish to fish, e.g. silver carp 0.2% (w/w) and mackerel patties (300 mg/kg). Tea catechins are also additionally used in fish oils (@250 ppm) to prevent oxidative deterioration. Oxidative deterioration was significantly delayed in fish and fish products during storage [36, 43, 53]. The tea catechins have high potential to prevent the lipid peroxidation than tocopherol, BHA, BHT and TBHQ [53, 54]. Therefore, tea catechins have wide applications in fish and fish products in order to enhance the shelf-life and health benefits.
The green tea catechins are supplemented with plant food products to extend the shelf-life and health benefits. For example, catechins are added in vegetables, oils, cakes, starch, bread and juice to extend their shelf-life and health benefits of their products. To prevent the lipid oxidation, 200 ppm of catechins were added in canola oil (Figure 3) [55]. Tea catechins were also added in apple juice to prevent from bacteria, and have many applications in other plant food products [56]. In another study, dry apple product was enriched with green tea extract. The changes in the antioxidant activity and colour were analysed. The antioxidant content and the antioxidant capacity of dry apple were increased by addition of green tea extract, but the colour changes were observed only slightly, meanwhile no difference was observed in aroma and taste [38].
Green tea extract and catechins’ applications in food industry.
Green tea catechins are associated with number of diseases due to its reactive oxygen species against cancer, cardiovascular and neurodegenerative diseases. Several studies are reported for the anticancer activity of green tea catechins, especially in animal models of skin, breast, prostate and lung cancer [57, 58]. In addition, green tea catechins have several properties such as anti-angiogenic [59, 60], anti-mutagenic [61, 62] and hypocholesterolemic [63]. Furthermore, green tea has shown significant protection against neurodegenerative diseases (Parkinson’s disease, Alzheimer’s disease and Ischemic damage) [64]. Tea polyphenols are extensively studied against various medicinal properties like anti-diabetic activity in mice model [65], antibacterial [66], anti-HIV [67], anti-aging [68] and anti-inflammatory activity [69].
Green tea extract rich in catechins has been subjected to numerous studies and shown to modulate cancer growth, metastasis, angiogenesis and other aspects of cancer progression by affecting different mechanisms [52, 57, 70, 71, 72, 73]. Green tea consumption has beneficial effect of carcinogenesis in the digestive tract, which is postulated, and it induces the inhibition by EGCG [74]. Banon et al. [50] reported combinatorial (catechins with sulphite) treatment showed delayed discolouration in raw beef patties packed under alcoholic condition with 9 days refrigeration period [72]. Epigallocatechin-3-gallate (EGCG) potentially induced apoptosis and suppressed cell growth by modulating expression of cell cycle regulatory proteins, activating killer caspases and suppressing activation of NF-KB cells [75]. Tea polyphenols have potential to inhibit the growth of stomach cancer cells and also inhibit the proliferation of stomach cancer cells (KATO III), and specifically, they inhibit the tumour necrosis factor-α (TNF-α) of stomach cancer cells [76]. In addition, tea polyphenols have shown inhibitory effects against gastrointestinal cancer and also they are efficient to inhibit the proliferation of various other cancer cells. Epigallocatechin-3-gallate (EGCG) was reported to control and promote IL-23-dependent DNA repair which will enhance cytotoxic T-cell activities and block cancer development by inhibiting carcinogenic signal transduction pathways [77]. Epigallocatechin-3-gallate (EGCG) was also shown to modulate several biological pathways including growth factor-mediated pathway, mitogen-activated protein kinase pathway and ubiquitin/proteasome degradation pathway [78]. In a clinical study, regular green tea consumption was demonstrated and it expressed delayed cancer onset. Furthermore, breast cancer patients experienced lower recurrence rate and longer remissions [78]. In another clinical study, it is proven that 200 mg of EGCG by oral administration was more effective to patients with human papilloma virus-infected cervical lesion [79]. Epigallocatechin-3-gallate (EGCG) is the most studied catechin in cancer research, but under in vitro analysis, ECG and EG catechins are treated with pancreatic ductal adenocarcinoma cells where they exhibited stronger anti-proliferative and anti-inflammatory effects including inhibition of NF-KB, IL-8 and UPA than EGC. Breast cancer is the most common cancer in women around the world. In western countries, breast cancer is more prevalent compared to Japan. In Japan, regular tea consumption, as part of the diet, and also green tea consumption are most believed to reduce the risk of breast cancer [80]. It is reported that 10–40 μM of EGCG inhibit tumour formation and downregulate ER-α36 expression in 24 h, which is consistent with downregulation of the epidermal growth factor receptor (EGFR). Epigallocatechin-3-gallate (EGCG) inhibits the growth of ER-negative human breast cancer stem cells through downregulation of ER-α36 expression and it indicates that EGCG treatment will lead to longer survival of patients with mammary cancers [81]. Green tea polyphenols have various health benefits of cancer prevention and also used as an adjuvant in chemotherapy. Few studies suggest that the use of combinatorial drugs (green tea with chemotherapeutic drugs) has shown reduced risk of cancer, improved survival rate among cancer patients and decreased chemotherapy-mediated side effects [82]. In addition, mice were treated with EGCG, anticancer drugs alone and combinatorial drugs, and an average reduction of tumour volume size to 73.5% (EGCG), 66.3% (anticancer drugs) and 29.7% (EGCG combinatorial drugs) was reported respectively. This report strongly suggests that combinations of EGCG show effective results than the treatment with EGCG and anticancer drugs while treating alone. Furthermore, calculations for complete elimination of tumour in mice are converted to that for humans which would be intake of 6–9 (1.37–2.05 g of EGCG) cups of green tea per day [83].
This study enlightens about the green tea and its bioactive components (EGCG, ECG, EGC and EC). These bioactive components are rich in antioxidants and supplemented with various food products to inhibit the lipid peroxidation. In addition, it extends the shelf-life and health benefits of food products by their antioxidants. Furthermore, it has great potential applications in various diseases such as diabetic, anti-obesity and anticancer. Many reports suggest the use of tea polyphenols to kill the cancer cells and also show various combinations with other similar compounds. This study suggested the use of green tea supplemented food products to promote health benefits. It prevents the cancer and these products can be included as dietary supplement for cancer fighters. This study clearly defines a big platform of tea constituents for food industries and theranostic applications.
.
",metaTitle:"Order Print Copies - Terms",metaDescription:".",metaKeywords:null,canonicalURL:"page/order-print-copies-terms/",contentRaw:'[{"type":"htmlEditorComponent","content":"Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nMy order has not arrived, what do I do?
\\n\\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Orders have to be prepaid in advance and before printing. We accept payment in GBP, EUR and USD. Payments can be made by bank transfer or cheque, by credit card (Visa, MasterCard, American Express, Discover Card) and PayPal worldwide online payments system. In accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery times for orders vary from 12-20 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nMy order has not arrived, what do I do?
\n\nIf you do not receive your order within 30 days, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us. Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nTaxes: Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: Shipping costs do not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118374},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5247},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"82",title:"Biochemistry",slug:"chemistry-biochemistry",parent:{title:"Chemistry",slug:"chemistry"},numberOfBooks:4,numberOfAuthorsAndEditors:133,numberOfWosCitations:102,numberOfCrossrefCitations:48,numberOfDimensionsCitations:156,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"chemistry-biochemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7238",title:"Fuel Ethanol Production from Sugarcane",subtitle:null,isOpenForSubmission:!1,hash:"f3b4eb4ac5837543b99bd6e1a1a4cacc",slug:"fuel-ethanol-production-from-sugarcane",bookSignature:"Thalita Peixoto Basso and Luiz Carlos Basso",coverURL:"https://cdn.intechopen.com/books/images_new/7238.jpg",editedByType:"Edited by",editors:[{id:"139174",title:"Ph.D.",name:"Thalita",middleName:null,surname:"Peixoto Basso",slug:"thalita-peixoto-basso",fullName:"Thalita Peixoto Basso"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,isOpenForSubmission:!1,hash:"c93a00abd68b5eba67e5e719f67fd20b",slug:"biochemistry-and-health-benefits-of-fatty-acids",bookSignature:"Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",middleName:null,surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5283",title:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5d879e015ea226a3cf4633c0a187c830",slug:"applications-of-molecular-spectroscopy-to-current-research-in-the-chemical-and-biological-sciences",bookSignature:"Mark T. Stauffer",coverURL:"https://cdn.intechopen.com/books/images_new/5283.jpg",editedByType:"Edited by",editors:[{id:"97565",title:"Dr.",name:"Mark",middleName:"Thomas",surname:"Stauffer",slug:"mark-stauffer",fullName:"Mark Stauffer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3586",title:"Agricultural Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"a05731d42f4d1009e8a0f51e0f483081",slug:"agricultural-chemistry",bookSignature:"Margarita Stoytcheva and Roumen Zlatev",coverURL:"https://cdn.intechopen.com/books/images_new/3586.jpg",editedByType:"Edited by",editors:[{id:"6375",title:"Prof.",name:"Margarita",middleName:null,surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"43080",doi:"10.5772/55287",title:"Grain Yield Determination and Resource Use Efficiency in Maize Hybrids Released in Different Decades",slug:"grain-yield-determination-and-resource-use-efficiency-in-maize-hybrids-released-in-different-decades",totalDownloads:4363,totalCrossrefCites:3,totalDimensionsCites:13,book:{slug:"agricultural-chemistry",title:"Agricultural Chemistry",fullTitle:"Agricultural Chemistry"},signatures:"Laura Echarte, Lujan Nagore, Javier Di Matteo, Matías Cambareri, Mariana Robles and Aída Della Maggiora",authors:[{id:"164811",title:"Dr.",name:"Laura",middleName:null,surname:"Echarte",slug:"laura-echarte",fullName:"Laura Echarte"},{id:"165595",title:"Dr.",name:"Maria",middleName:"Lujan",surname:"Nagore",slug:"maria-nagore",fullName:"Maria Nagore"},{id:"165596",title:"BSc.",name:"Javier",middleName:null,surname:"Di Matteo",slug:"javier-di-matteo",fullName:"Javier Di Matteo"},{id:"165598",title:"BSc.",name:"Mariana",middleName:null,surname:"Robles",slug:"mariana-robles",fullName:"Mariana Robles"},{id:"165599",title:"MSc.",name:"Aída",middleName:null,surname:"Della Maggiora",slug:"aida-della-maggiora",fullName:"Aída Della Maggiora"},{id:"167765",title:"Dr.",name:"Matias",middleName:null,surname:"Cambareri",slug:"matias-cambareri",fullName:"Matias Cambareri"}]},{id:"43053",doi:"10.5772/55416",title:"In vitro Antioxidant Analysis and the DNA Damage Protective Activity of Leaf Extract of the Excoecaria agallocha Linn Mangrove Plant",slug:"in-vitro-antioxidant-analysis-and-the-dna-damage-protective-activity-of-leaf-extract-of-the-excoecar",totalDownloads:2913,totalCrossrefCites:1,totalDimensionsCites:12,book:{slug:"agricultural-chemistry",title:"Agricultural Chemistry",fullTitle:"Agricultural Chemistry"},signatures:"C. Asha Poorna, M.S. Resmi and E.V. Soniya",authors:[{id:"148913",title:"Dr.",name:"Soniya",middleName:null,surname:"E V",slug:"soniya-e-v",fullName:"Soniya E V"}]},{id:"52212",doi:"10.5772/64477",title:"Fourier Transform Infrared and Raman Characterization of Silica-Based Materials",slug:"fourier-transform-infrared-and-raman-characterization-of-silica-based-materials",totalDownloads:2416,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"applications-of-molecular-spectroscopy-to-current-research-in-the-chemical-and-biological-sciences",title:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences",fullTitle:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences"},signatures:"Larissa Brentano Capeletti and João Henrique Zimnoch",authors:[{id:"178200",title:"Prof.",name:"Joao Henrique",middleName:null,surname:"Zimnoch Dos Santos",slug:"joao-henrique-zimnoch-dos-santos",fullName:"Joao Henrique Zimnoch Dos Santos"},{id:"186947",title:"Dr.",name:"Larissa",middleName:null,surname:"Brentano Capeletti",slug:"larissa-brentano-capeletti",fullName:"Larissa Brentano Capeletti"}]}],mostDownloadedChaptersLast30Days:[{id:"43057",title:"Heavy Metal Content in Bitter Leaf (Vernonia amygdalina) Grown Along Heavy Traffic Routes in Port Harcourt",slug:"heavy-metal-content-in-bitter-leaf-vernonia-amygdalina-grown-along-heavy-traffic-routes-in-port-harc",totalDownloads:5851,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"agricultural-chemistry",title:"Agricultural Chemistry",fullTitle:"Agricultural Chemistry"},signatures:"Ogbonda G. Echem and L. G. Kabari",authors:[{id:"26433",title:"Dr.",name:"Ledisi",middleName:"Giok",surname:"Kabari",slug:"ledisi-kabari",fullName:"Ledisi Kabari"}]},{id:"52212",title:"Fourier Transform Infrared and Raman Characterization of Silica-Based Materials",slug:"fourier-transform-infrared-and-raman-characterization-of-silica-based-materials",totalDownloads:2415,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"applications-of-molecular-spectroscopy-to-current-research-in-the-chemical-and-biological-sciences",title:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences",fullTitle:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences"},signatures:"Larissa Brentano Capeletti and João Henrique Zimnoch",authors:[{id:"178200",title:"Prof.",name:"Joao Henrique",middleName:null,surname:"Zimnoch Dos Santos",slug:"joao-henrique-zimnoch-dos-santos",fullName:"Joao Henrique Zimnoch Dos Santos"},{id:"186947",title:"Dr.",name:"Larissa",middleName:null,surname:"Brentano Capeletti",slug:"larissa-brentano-capeletti",fullName:"Larissa Brentano Capeletti"}]},{id:"63140",title:"Lipids and Fatty Acids in Human Milk: Benefits and Analysis",slug:"lipids-and-fatty-acids-in-human-milk-benefits-and-analysis",totalDownloads:1061,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"biochemistry-and-health-benefits-of-fatty-acids",title:"Biochemistry and Health Benefits of Fatty Acids",fullTitle:"Biochemistry and Health Benefits of Fatty Acids"},signatures:"Jesui Vergilio Visentainer, Oscar Oliveira Santos, Liane Maldaner, Caroline Zappielo, Vanessa Neia, Lorena Visentainer, Luciana Pelissari, Jessica Pizzo, Adriela Rydlewski, Roberta Silveira, Marilia Galuch and Jeane Laguila Visentainer",authors:[{id:"170125",title:"Dr.",name:"Jeane",middleName:"Eliete Laguila",surname:"Visentainer",slug:"jeane-visentainer",fullName:"Jeane Visentainer"},{id:"256644",title:"Dr.",name:"Oscar",middleName:null,surname:"Santos",slug:"oscar-santos",fullName:"Oscar Santos"},{id:"258900",title:"Ph.D.",name:"Jesui",middleName:null,surname:"Vergilio Visentainer",slug:"jesui-vergilio-visentainer",fullName:"Jesui Vergilio Visentainer"},{id:"267803",title:"MSc.",name:"Caroline",middleName:null,surname:"Zappielo",slug:"caroline-zappielo",fullName:"Caroline Zappielo"},{id:"267804",title:"MSc.",name:"Vanessa",middleName:null,surname:"Javera Neia",slug:"vanessa-javera-neia",fullName:"Vanessa Javera Neia"},{id:"267807",title:"MSc.",name:"Luciana",middleName:null,surname:"Pelissari",slug:"luciana-pelissari",fullName:"Luciana Pelissari"},{id:"267808",title:"MSc.",name:"Jessica",middleName:null,surname:"Pizzo",slug:"jessica-pizzo",fullName:"Jessica Pizzo"},{id:"267812",title:"Dr.",name:"Liane",middleName:null,surname:"Maldaner",slug:"liane-maldaner",fullName:"Liane Maldaner"},{id:"267813",title:"MSc.",name:"Lorena",middleName:null,surname:"Visentainer",slug:"lorena-visentainer",fullName:"Lorena Visentainer"},{id:"267814",title:"MSc.",name:"Adriela",middleName:null,surname:"Rydlewski Ito",slug:"adriela-rydlewski-ito",fullName:"Adriela Rydlewski Ito"},{id:"267815",title:"MSc.",name:"Roberta",middleName:null,surname:"Silveira",slug:"roberta-silveira",fullName:"Roberta Silveira"},{id:"267816",title:"MSc.",name:"Marilia",middleName:null,surname:"Galuch",slug:"marilia-galuch",fullName:"Marilia Galuch"}]},{id:"63324",title:"Fatty Acids: From Membrane Ingredients to Signaling Molecules",slug:"fatty-acids-from-membrane-ingredients-to-signaling-molecules",totalDownloads:844,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"biochemistry-and-health-benefits-of-fatty-acids",title:"Biochemistry and Health Benefits of Fatty Acids",fullTitle:"Biochemistry and Health Benefits of Fatty Acids"},signatures:"Michio Hashimoto and Shahdat Hossain",authors:[{id:"260006",title:"Prof.",name:"Shahdat",middleName:null,surname:"Hossain",slug:"shahdat-hossain",fullName:"Shahdat Hossain"},{id:"260206",title:"Prof.",name:"Michio",middleName:null,surname:"Hashimoto",slug:"michio-hashimoto",fullName:"Michio Hashimoto"}]},{id:"63663",title:"Fatty Acids, Gut Microbiota, and the Genesis of Obesity",slug:"fatty-acids-gut-microbiota-and-the-genesis-of-obesity",totalDownloads:868,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"biochemistry-and-health-benefits-of-fatty-acids",title:"Biochemistry and Health Benefits of Fatty Acids",fullTitle:"Biochemistry and Health Benefits of Fatty Acids"},signatures:"Patricia de Velasco, Amanda Ferreira, Louise Crovesy, Tarsis Marine and Maria das Graças Tavares do Carmo",authors:[{id:"259177",title:"Prof.",name:"Maria Das Graças",middleName:null,surname:"Tavares Do Carmo",slug:"maria-das-gracas-tavares-do-carmo",fullName:"Maria Das Graças Tavares Do Carmo"},{id:"259178",title:"Dr.",name:"Patricia",middleName:null,surname:"De Velasco",slug:"patricia-de-velasco",fullName:"Patricia De Velasco"},{id:"259181",title:"MSc.",name:"Amanda",middleName:null,surname:"Ferreira",slug:"amanda-ferreira",fullName:"Amanda Ferreira"},{id:"259182",title:"Dr.",name:"Tarsis",middleName:null,surname:"Marine Ferreira",slug:"tarsis-marine-ferreira",fullName:"Tarsis Marine Ferreira"},{id:"259183",title:"MSc.",name:"Louise",middleName:null,surname:"Crovesy De Oliveira",slug:"louise-crovesy-de-oliveira",fullName:"Louise Crovesy De Oliveira"}]},{id:"50766",title:"Using Fluorescence Spectroscopy to Diagnose Breast Cancer",slug:"using-fluorescence-spectroscopy-to-diagnose-breast-cancer",totalDownloads:1587,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"applications-of-molecular-spectroscopy-to-current-research-in-the-chemical-and-biological-sciences",title:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences",fullTitle:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences"},signatures:"Tatjana Dramićanin and Miroslav Dramićanin",authors:[{id:"183261",title:"Prof.",name:"Miroslav",middleName:null,surname:"Dramicanin",slug:"miroslav-dramicanin",fullName:"Miroslav Dramicanin"},{id:"183280",title:"Dr.",name:"Tatjana",middleName:null,surname:"Dramicanin",slug:"tatjana-dramicanin",fullName:"Tatjana Dramicanin"}]},{id:"62041",title:"Assessment of Sugarcane-Based Ethanol Production",slug:"assessment-of-sugarcane-based-ethanol-production",totalDownloads:1354,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"fuel-ethanol-production-from-sugarcane",title:"Fuel Ethanol Production from Sugarcane",fullTitle:"Fuel Ethanol Production from Sugarcane"},signatures:"Rubens Eliseu Nicula de Castro, Rita Maria de Brito Alves,\nCláudio Augusto Oller do Nascimento and Reinaldo Giudici",authors:[{id:"50350",title:"Prof.",name:"Claudio",middleName:null,surname:"Oller Do Nascimento",slug:"claudio-oller-do-nascimento",fullName:"Claudio Oller Do Nascimento"},{id:"98033",title:"Dr.",name:"Rita Maria",middleName:null,surname:"De Brito Alves",slug:"rita-maria-de-brito-alves",fullName:"Rita Maria De Brito Alves"},{id:"248441",title:"BSc.",name:"Rubens E",middleName:null,surname:"N De Castro",slug:"rubens-e-n-de-castro",fullName:"Rubens E N De Castro"},{id:"248442",title:"Prof.",name:"Reinaldo",middleName:null,surname:"Giudici",slug:"reinaldo-giudici",fullName:"Reinaldo Giudici"}]},{id:"64502",title:"Introductory Chapter: Fatty Acids in Modern Times",slug:"introductory-chapter-fatty-acids-in-modern-times",totalDownloads:701,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"biochemistry-and-health-benefits-of-fatty-acids",title:"Biochemistry and Health Benefits of Fatty Acids",fullTitle:"Biochemistry and Health Benefits of Fatty Acids"},signatures:"Viduranga Y. Waisundara",authors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",middleName:null,surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}]},{id:"51767",title:"Applications of Molecular Spectroscopic Methods to the Elucidation of Lignin Structure",slug:"applications-of-molecular-spectroscopic-methods-to-the-elucidation-of-lignin-structure",totalDownloads:2213,totalCrossrefCites:2,totalDimensionsCites:9,book:{slug:"applications-of-molecular-spectroscopy-to-current-research-in-the-chemical-and-biological-sciences",title:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences",fullTitle:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences"},signatures:"Tingting You and Feng Xu",authors:[{id:"174103",title:"Prof.",name:"Feng",middleName:null,surname:"Xu",slug:"feng-xu",fullName:"Feng Xu"},{id:"182550",title:"Dr.",name:"Tingting",middleName:null,surname:"You",slug:"tingting-you",fullName:"Tingting You"}]},{id:"52007",title:"Improving Food Safety by Using One- and Two-Photon- Induced Fluorescence Spectroscopy for the Detection of Mycotoxins",slug:"improving-food-safety-by-using-one-and-two-photon-induced-fluorescence-spectroscopy-for-the-detectio",totalDownloads:1709,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"applications-of-molecular-spectroscopy-to-current-research-in-the-chemical-and-biological-sciences",title:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences",fullTitle:"Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences"},signatures:"Lien Smeesters, Wendy Meulebroeck and Hugo Thienpont",authors:[{id:"182428",title:"Ph.D.",name:"Lien",middleName:null,surname:"Smeesters",slug:"lien-smeesters",fullName:"Lien Smeesters"},{id:"183268",title:"Prof.",name:"Wendy",middleName:null,surname:"Meulebroeck",slug:"wendy-meulebroeck",fullName:"Wendy Meulebroeck"},{id:"183270",title:"Prof.",name:"Hugo",middleName:null,surname:"Thienpont",slug:"hugo-thienpont",fullName:"Hugo Thienpont"}]}],onlineFirstChaptersFilter:{topicSlug:"chemistry-biochemistry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/142843/y-gul-ozkaya",hash:"",query:{},params:{id:"142843",slug:"y-gul-ozkaya"},fullPath:"/profiles/142843/y-gul-ozkaya",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()