The influence of parameters on the movement of water surfactants from the gas phase.
- Transmission of information or data, when it is essential for an amount of energy to reach the receiver to restore the transmitted information;\n
- Transmission of electric energy in the form of electromagnetic field, when the energy transfer efficiency is essential, the power being used to energize the receiving equipment.\n
\nThe second form of energy transfer is the subject of this book.",isbn:"978-953-51-2468-9",printIsbn:"978-953-51-2467-2",pdfIsbn:"978-953-51-6659-7",doi:"10.5772/61488",price:119,priceEur:129,priceUsd:155,slug:"wireless-power-transfer-fundamentals-and-technologies",numberOfPages:140,isOpenForSubmission:!1,isInWos:1,hash:"2a20c1dde39792560dab996742f0e73c",bookSignature:"Eugen Coca",publishedDate:"June 29th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5187.jpg",numberOfDownloads:15198,numberOfWosCitations:12,numberOfCrossrefCitations:8,numberOfDimensionsCitations:22,hasAltmetrics:1,numberOfTotalCitations:42,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 12th 2015",dateEndSecondStepPublish:"November 2nd 2015",dateEndThirdStepPublish:"February 6th 2016",dateEndFourthStepPublish:"May 6th 2016",dateEndFifthStepPublish:"June 5th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"5766",title:"Dr.",name:"Eugen",middleName:null,surname:"Coca",slug:"eugen-coca",fullName:"Eugen Coca",profilePictureURL:"https://mts.intechopen.com/storage/users/5766/images/1434_n.jpg",biography:"Eugen Coca is currently Associate Professor and Director of the Computers, Electronics and Automation Department at the Stefan cel Mare University of Suceava, Romania. He is also the Technical Manager and Scientific Coordinator of the Electromagnetic Compatibility Laboratory—EMCLab.ro, from the same university, and also Executive Editor of Advances in Electrical and Computer Engineering journal. His current research interests are in the areas of electromagnetic compatibility, design, testing, and compliance of domestic and automotive products with emissions and immunity standards, wired and wireless communications, wireless sensor networks and general microcontroller systems and their applications. He authored or co-authored three books or book chapters, and more than 50 papers in international journals or conferences. He has also been involved as project manager or researcher in more than 40 research projects, public or privately funded. He received his BSEE and the PhD in Electronics Engineering from the Gheorghe Asachi Technical University of Iasi, Romania, in 1994 and 2001, respectively. Dr. Coca teaches Electromagnetic Compatibility, Wireless Sensor Network, Mobile and Satellite Communications, Digital and Analog Communication Systems, and Computer-Aided Design.",institutionString:null,position:"Associate Professor",outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"756",title:"Power Electronics",slug:"power-electronics"}],chapters:[{id:"50520",title:"Fundamentals of Inductively Coupled Wireless Power Transfer Systems",doi:"10.5772/63013",slug:"fundamentals-of-inductively-coupled-wireless-power-transfer-systems",totalDownloads:3612,totalCrossrefCites:2,totalDimensionsCites:6,signatures:"Ali Abdolkhani",downloadPdfUrl:"/chapter/pdf-download/50520",previewPdfUrl:"/chapter/pdf-preview/50520",authors:[{id:"179618",title:"Dr.",name:"Ali",surname:"Abdolkhani",slug:"ali-abdolkhani",fullName:"Ali Abdolkhani"}],corrections:null},{id:"51032",title:"Analysis of Wireless Power System Efficiency in Dependency on Configuration of Resonant Tank",doi:"10.5772/62998",slug:"analysis-of-wireless-power-system-efficiency-in-dependency-on-configuration-of-resonant-tank",totalDownloads:1521,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Michal Frivaldsky, Pavol Spanik, Peter Drgona, Viliam Jaros and\nMarek Piri",downloadPdfUrl:"/chapter/pdf-download/51032",previewPdfUrl:"/chapter/pdf-preview/51032",authors:[{id:"180825",title:"Dr.",name:"Michal",surname:"Frivaldsky",slug:"michal-frivaldsky",fullName:"Michal Frivaldsky"},{id:"185361",title:"Prof.",name:"Pavol",surname:"Spanik",slug:"pavol-spanik",fullName:"Pavol Spanik"},{id:"185362",title:"Dr.",name:"Peter",surname:"Drgona",slug:"peter-drgona",fullName:"Peter Drgona"},{id:"185363",title:"MSc.",name:"Marek",surname:"Piri",slug:"marek-piri",fullName:"Marek Piri"},{id:"185364",title:"MSc.",name:"Viliam",surname:"Jaros",slug:"viliam-jaros",fullName:"Viliam Jaros"}],corrections:null},{id:"51254",title:"Wireless Power Transfer by Using Magnetically Coupled Resonators",doi:"10.5772/64031",slug:"wireless-power-transfer-by-using-magnetically-coupled-resonators",totalDownloads:4122,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Ali Agcal, Selin Ozcira and Nur Bekiroglu",downloadPdfUrl:"/chapter/pdf-download/51254",previewPdfUrl:"/chapter/pdf-preview/51254",authors:[{id:"19888",title:"Dr.",name:"Nur",surname:"Bekiroglu",slug:"nur-bekiroglu",fullName:"Nur Bekiroglu"},{id:"179716",title:"Dr.",name:"Selin",surname:"Ozcira",slug:"selin-ozcira",fullName:"Selin Ozcira"},{id:"186130",title:"Dr.",name:"Ali",surname:"Agcal",slug:"ali-agcal",fullName:"Ali Agcal"}],corrections:null},{id:"50788",title:"Innovative Wireless Power Receiver for Inductive Coupling and Magnetic Resonance Applications",doi:"10.5772/63341",slug:"innovative-wireless-power-receiver-for-inductive-coupling-and-magnetic-resonance-applications",totalDownloads:1894,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Young-Jun Park, Hongjin Kim, Hyung-Gu Park and Kang-Yoon Lee",downloadPdfUrl:"/chapter/pdf-download/50788",previewPdfUrl:"/chapter/pdf-preview/50788",authors:[{id:"180098",title:"Prof.",name:"Kang-Yoon",surname:"Lee",slug:"kang-yoon-lee",fullName:"Kang-Yoon Lee"},{id:"185231",title:"Mr.",name:"Young-Jun",surname:"Park",slug:"young-jun-park",fullName:"Young-Jun Park"},{id:"185232",title:"Dr.",name:"Hyung-Gu",surname:"Park",slug:"hyung-gu-park",fullName:"Hyung-Gu Park"}],corrections:null},{id:"50455",title:"Microwave Power Transmission Based on Retro-reflective Beamforming",doi:"10.5772/62855",slug:"microwave-power-transmission-based-on-retro-reflective-beamforming",totalDownloads:1618,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"Xin Wang and Mingyu Lu",downloadPdfUrl:"/chapter/pdf-download/50455",previewPdfUrl:"/chapter/pdf-preview/50455",authors:[{id:"179390",title:"Prof.",name:"Xin",surname:"Wang",slug:"xin-wang",fullName:"Xin Wang"},{id:"183027",title:"Dr.",name:"Mingyu",surname:"Lu",slug:"mingyu-lu",fullName:"Mingyu Lu"}],corrections:null},{id:"51247",title:"A Review of Dynamic Wireless Power Transfer for In‐Motion Electric Vehicles",doi:"10.5772/64331",slug:"a-review-of-dynamic-wireless-power-transfer-for-in-motion-electric-vehicles",totalDownloads:2434,totalCrossrefCites:3,totalDimensionsCites:7,signatures:"Kai Song, Kim Ean Koh, Chunbo Zhu, Jinhai Jiang, Chao Wang and\nXiaoliang Huang",downloadPdfUrl:"/chapter/pdf-download/51247",previewPdfUrl:"/chapter/pdf-preview/51247",authors:[{id:"179138",title:"Prof.",name:"Kai",surname:"Song",slug:"kai-song",fullName:"Kai Song"},{id:"179160",title:"Dr.",name:"Jinhai",surname:"Jiang",slug:"jinhai-jiang",fullName:"Jinhai Jiang"},{id:"179161",title:"Prof.",name:"Chunbo",surname:"Zhu",slug:"chunbo-zhu",fullName:"Chunbo Zhu"},{id:"180988",title:"Dr.",name:"Xiaoliang",surname:"Huang",slug:"xiaoliang-huang",fullName:"Xiaoliang Huang"},{id:"180989",title:"Dr.",name:"Kim Ean",surname:"Koh",slug:"kim-ean-koh",fullName:"Kim Ean Koh"},{id:"186538",title:"Dr.",name:"Chao",surname:"Wang",slug:"chao-wang",fullName:"Chao Wang"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"848",title:"Lithium Ion Batteries",subtitle:"New Developments",isOpenForSubmission:!1,hash:"004acb03be77776b99046c8ce75985e0",slug:"lithium-ion-batteries-new-developments",bookSignature:"Ilias Belharouak",coverURL:"https://cdn.intechopen.com/books/images_new/848.jpg",editedByType:"Edited by",editors:[{id:"68750",title:"Dr.",name:"Ilias",surname:"Belharouak",slug:"ilias-belharouak",fullName:"Ilias Belharouak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5186",title:"Energy Management of Distributed Generation Systems",subtitle:null,isOpenForSubmission:!1,hash:"8163ec5236e181f2439394b698a33a40",slug:"energy-management-of-distributed-generation-systems",bookSignature:"Lucian Mihet-Popa",coverURL:"https://cdn.intechopen.com/books/images_new/5186.jpg",editedByType:"Edited by",editors:[{id:"28225",title:"Prof.",name:"Lucian",surname:"Mihet-Popa",slug:"lucian-mihet-popa",fullName:"Lucian Mihet-Popa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1860",title:"Fourier Transform",subtitle:"Signal Processing",isOpenForSubmission:!1,hash:"b8f6c94b687a4f0351f2e8d961e35275",slug:"fourier-transform-signal-processing",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/1860.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"69",title:"Electric Machines and Drives",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"electric-machines-and-drives",bookSignature:"Miroslav Chomat",coverURL:"https://cdn.intechopen.com/books/images_new/69.jpg",editedByType:"Edited by",editors:[{id:"17405",title:"Dr.",name:"Miroslav",surname:"Chomat",slug:"miroslav-chomat",fullName:"Miroslav Chomat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3634",title:"Lithium-ion Batteries",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"lithium-ion-batteries",bookSignature:"Chong Rae Park",coverURL:"https://cdn.intechopen.com/books/images_new/3634.jpg",editedByType:"Edited by",editors:[{id:"7013",title:"Lithium-ion Batteries",name:"Chong Rae",surname:"Park",slug:"chong-rae-park",fullName:"Chong Rae Park"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5168",title:"Alkali-ion Batteries",subtitle:null,isOpenForSubmission:!1,hash:"2ffb06f3e5dbad9167428c4c443e3a5e",slug:"alkali-ion-batteries",bookSignature:"Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/5168.jpg",editedByType:"Edited by",editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5835",title:"Development and Integration of Microgrids",subtitle:null,isOpenForSubmission:!1,hash:"f7816bff39f3662d16a4df91841e2b5b",slug:"development-and-integration-of-microgrids",bookSignature:"Wen-Ping Cao and Jin Yang",coverURL:"https://cdn.intechopen.com/books/images_new/5835.jpg",editedByType:"Edited by",editors:[{id:"174154",title:"Prof.",name:"Wenping",surname:"Cao",slug:"wenping-cao",fullName:"Wenping Cao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"336",title:"Advances in Motor Torque Control",subtitle:null,isOpenForSubmission:!1,hash:"2d769bac113d774802e268569e6324c7",slug:"advances-in-motor-torque-control",bookSignature:"Mukhtar Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/336.jpg",editedByType:"Edited by",editors:[{id:"62262",title:"Dr.",name:"Mukhtar",surname:"Ahmad",slug:"mukhtar-ahmad",fullName:"Mukhtar Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5754",title:"Recent Developments on Power Inverters",subtitle:null,isOpenForSubmission:!1,hash:"23d990840df375cc66028ba369ad0471",slug:"recent-developments-on-power-inverters",bookSignature:"Ali Saghafinia",coverURL:"https://cdn.intechopen.com/books/images_new/5754.jpg",editedByType:"Edited by",editors:[{id:"174893",title:"Dr.",name:"Ali",surname:"Saghafinia",slug:"ali-saghafinia",fullName:"Ali Saghafinia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5119",title:"Smart Metering Technology and Services",subtitle:"Inspirations for Energy Utilities",isOpenForSubmission:!1,hash:"9068fb3ae88f309a33ac632bae27da1d",slug:"smart-metering-technology-and-services-inspirations-for-energy-utilities",bookSignature:"Moustafa Eissa",coverURL:"https://cdn.intechopen.com/books/images_new/5119.jpg",editedByType:"Edited by",editors:[{id:"35245",title:"Prof.",name:"Moustafa",surname:"Eissa",slug:"moustafa-eissa",fullName:"Moustafa Eissa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66065",slug:"corrigendum-to-eating-disorders-as-new-forms-of-addiction",title:"Corrigendum to: Eating Disorders as New Forms of Addiction",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66065.pdf",downloadPdfUrl:"/chapter/pdf-download/66065",previewPdfUrl:"/chapter/pdf-preview/66065",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66065",risUrl:"/chapter/ris/66065",chapter:{id:"52200",slug:"eating-disorders-as-new-forms-of-addiction",signatures:"Francisco J. Vaz-Leal, María I. Ramos-Fuentes, Laura Rodríguez-\nSantos and M. Cristina Álvarez-Mateos",dateSubmitted:"April 9th 2016",dateReviewed:"August 12th 2016",datePrePublished:null,datePublished:"February 1st 2017",book:{id:"5372",title:"Eating Disorders",subtitle:"A Paradigm of the Biopsychosocial Model of Illness",fullTitle:"Eating Disorders - A Paradigm of the Biopsychosocial Model of Illness",slug:"eating-disorders-a-paradigm-of-the-biopsychosocial-model-of-illness",publishedDate:"February 1st 2017",bookSignature:"Ignacio Jauregui-Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/5372.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui Lobera"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"188555",title:"Prof.",name:"Francisco J.",middleName:null,surname:"Vaz-Leal",fullName:"Francisco J. Vaz-Leal",slug:"francisco-j.-vaz-leal",email:"fjvazleal@gmail.com",position:null,institution:null},{id:"188719",title:"Dr.",name:"María Cristina",middleName:null,surname:"Álvarez Mateos",fullName:"María Cristina Álvarez Mateos",slug:"maria-cristina-alvarez-mateos",email:"cristinaalvarezmateos@gmail.com",position:null,institution:null},{id:"195142",title:"Dr.",name:"Laura",middleName:null,surname:"Rodríguez Santos",fullName:"Laura Rodríguez Santos",slug:"laura-rodriguez-santos",email:"laura@unex.es",position:null,institution:null},{id:"195143",title:"Dr.",name:"María I",middleName:null,surname:"Ramos Fuentes",fullName:"María I Ramos Fuentes",slug:"maria-i-ramos-fuentes",email:"miramos@unex.es",position:null,institution:null}]}},chapter:{id:"52200",slug:"eating-disorders-as-new-forms-of-addiction",signatures:"Francisco J. Vaz-Leal, María I. Ramos-Fuentes, Laura Rodríguez-\nSantos and M. Cristina Álvarez-Mateos",dateSubmitted:"April 9th 2016",dateReviewed:"August 12th 2016",datePrePublished:null,datePublished:"February 1st 2017",book:{id:"5372",title:"Eating Disorders",subtitle:"A Paradigm of the Biopsychosocial Model of Illness",fullTitle:"Eating Disorders - A Paradigm of the Biopsychosocial Model of Illness",slug:"eating-disorders-a-paradigm-of-the-biopsychosocial-model-of-illness",publishedDate:"February 1st 2017",bookSignature:"Ignacio Jauregui-Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/5372.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui Lobera"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"188555",title:"Prof.",name:"Francisco J.",middleName:null,surname:"Vaz-Leal",fullName:"Francisco J. Vaz-Leal",slug:"francisco-j.-vaz-leal",email:"fjvazleal@gmail.com",position:null,institution:null},{id:"188719",title:"Dr.",name:"María Cristina",middleName:null,surname:"Álvarez Mateos",fullName:"María Cristina Álvarez Mateos",slug:"maria-cristina-alvarez-mateos",email:"cristinaalvarezmateos@gmail.com",position:null,institution:null},{id:"195142",title:"Dr.",name:"Laura",middleName:null,surname:"Rodríguez Santos",fullName:"Laura Rodríguez Santos",slug:"laura-rodriguez-santos",email:"laura@unex.es",position:null,institution:null},{id:"195143",title:"Dr.",name:"María I",middleName:null,surname:"Ramos Fuentes",fullName:"María I Ramos Fuentes",slug:"maria-i-ramos-fuentes",email:"miramos@unex.es",position:null,institution:null}]},book:{id:"5372",title:"Eating Disorders",subtitle:"A Paradigm of the Biopsychosocial Model of Illness",fullTitle:"Eating Disorders - A Paradigm of the Biopsychosocial Model of Illness",slug:"eating-disorders-a-paradigm-of-the-biopsychosocial-model-of-illness",publishedDate:"February 1st 2017",bookSignature:"Ignacio Jauregui-Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/5372.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui Lobera"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7723",leadTitle:null,title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",reviewType:"peer-reviewed",abstract:"Artificial intelligence (AI) is taking on an increasingly important role in our society today. In the early days, machines fulfilled only manual activities. Nowadays, these machines extend their capabilities to cognitive tasks as well. And now AI is poised to make a huge contribution to medical and biological applications. From medical equipment to diagnosing and predicting disease to image and video processing, among others, AI has proven to be an area with great potential. The ability of AI to make informed decisions, learn and perceive the environment, and predict certain behavior, among its many other skills, makes this application of paramount importance in today's world. This book discusses and examines AI applications in medicine and biology as well as challenges and opportunities in this fascinating area.",isbn:"978-1-78984-018-6",printIsbn:"978-1-78984-017-9",pdfIsbn:"978-1-78984-605-8",doi:"10.5772/intechopen.77536",price:119,priceEur:129,priceUsd:155,slug:"artificial-intelligence-applications-in-medicine-and-biology",numberOfPages:140,isOpenForSubmission:!1,hash:"a3852659e727f95c98c740ed98146011",bookSignature:"Marco Antonio Aceves-Fernandez",publishedDate:"July 31st 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",keywords:null,numberOfDownloads:5649,numberOfWosCitations:3,numberOfCrossrefCitations:2,numberOfDimensionsCitations:6,numberOfTotalCitations:11,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 10th 2018",dateEndSecondStepPublish:"October 22nd 2018",dateEndThirdStepPublish:"December 21st 2018",dateEndFourthStepPublish:"March 11th 2019",dateEndFifthStepPublish:"May 10th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves-Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves-Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco A. Aceves-Fernandez obtained his BSc (Eng) in Telematics from the Universidad de Colima, Mexico. He obtained both his MSc and PhD from the University of Liverpool, England, in the field of Intelligent Systems. He is full professor at the Universidad Autonoma de Queretaro, Mexico. He has been a recognized member of the National System of Researchers (SNI) since 2009. He has published more than eighty research papers as well as a number of book chapters and congress papers. He has contributed in more than twenty funded research projects, both academic and industrial, in the area of artificial intelligence, including environmental, biomedical, automotive, aviation, consumer, and robotics applications. He is also honorary president at the Mexican Association of Embedded Systems (AMESE), a senior member of the Institute of Electrical and Electronics Engineer (IEEE), and a board member for many institutions and associations. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"685",title:"Bioinformatics",slug:"engineering-biomedical-engineering-bioinformatics"}],chapters:[{id:"65650",title:"Designing Data-Driven Learning Algorithms: A Necessity to Ensure Effective Post-Genomic Medicine and Biomedical Research",slug:"designing-data-driven-learning-algorithms-a-necessity-to-ensure-effective-post-genomic-medicine-and-",totalDownloads:442,totalCrossrefCites:0,authors:[null]},{id:"65853",title:"A Review of EMG Techniques for Detection of Gait Disorders",slug:"a-review-of-emg-techniques-for-detection-of-gait-disorders",totalDownloads:1098,totalCrossrefCites:0,authors:[null]},{id:"66246",title:"Radiation Oncology in the Era of Big Data and Machine Learning for Precision Medicine",slug:"radiation-oncology-in-the-era-of-big-data-and-machine-learning-for-precision-medicine",totalDownloads:1467,totalCrossrefCites:0,authors:[null]},{id:"63949",title:"A Survey on 3D Ultrasound Reconstruction Techniques",slug:"a-survey-on-3d-ultrasound-reconstruction-techniques",totalDownloads:1185,totalCrossrefCites:2,authors:[null]},{id:"65463",title:"Quantum Neural Machine Learning: Theory and Experiments",slug:"quantum-neural-machine-learning-theory-and-experiments",totalDownloads:1059,totalCrossrefCites:0,authors:[null]},{id:"66732",title:"Using Artificial Intelligence and Big Data-Based Documents to Optimize Medical Coding",slug:"using-artificial-intelligence-and-big-data-based-documents-to-optimize-medical-coding",totalDownloads:398,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6646",title:"Artificial Intelligence",subtitle:"Emerging Trends and Applications",isOpenForSubmission:!1,hash:"133520f4918b2d1f1c304ffeadba89a9",slug:"artificial-intelligence-emerging-trends-and-applications",bookSignature:"Marco Antonio Aceves-Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/6646.jpg",editedByType:"Edited by",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves-Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves-Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,isOpenForSubmission:!1,hash:"0d51ba46f22e55cb89140f60d86a071e",slug:"advances-and-applications-in-deep-learning",bookSignature:"Marco Antonio Aceves-Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",editedByType:"Edited by",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves-Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves-Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3703",title:"New Developments in Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"new-developments-in-biomedical-engineering",bookSignature:"Domenico Campolo",coverURL:"https://cdn.intechopen.com/books/images_new/3703.jpg",editedByType:"Edited by",editors:[{id:"1909",title:"Dr.",name:"Domenico",surname:"Campolo",slug:"domenico-campolo",fullName:"Domenico Campolo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3222",title:"State of the Art in Biosensors",subtitle:"General Aspects",isOpenForSubmission:!1,hash:"0057daafc7f0654587e99f5fc3f03a34",slug:"state-of-the-art-in-biosensors-general-aspects",bookSignature:"Toonika Rinken",coverURL:"https://cdn.intechopen.com/books/images_new/3222.jpg",editedByType:"Edited by",editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"506",title:"Advanced Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"8ae90cb19bbf5c0a612d7cf490464f8d",slug:"advanced-biomedical-engineering",bookSignature:"Gaetano D. Gargiulo and Alistair McEwan",coverURL:"https://cdn.intechopen.com/books/images_new/506.jpg",editedByType:"Edited by",editors:[{id:"24082",title:"Dr.",name:"Gaetano",surname:"Gargiulo",slug:"gaetano-gargiulo",fullName:"Gaetano Gargiulo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2715",title:"Independent Component Analysis for Audio and Biosignal Applications",subtitle:null,isOpenForSubmission:!1,hash:"3915fb2a427c73e9aeee010bb1857ae5",slug:"independent-component-analysis-for-audio-and-biosignal-applications",bookSignature:"Ganesh R Naik",coverURL:"https://cdn.intechopen.com/books/images_new/2715.jpg",editedByType:"Edited by",editors:[{id:"2276",title:"Dr.",name:"Ganesh R.",surname:"Naik",slug:"ganesh-r.-naik",fullName:"Ganesh R. Naik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6573",title:"Bioinformatics in the Era of Post Genomics and Big Data",subtitle:null,isOpenForSubmission:!1,hash:"ebdf5cb36c49d7d0eaa38059c4434ee4",slug:"bioinformatics-in-the-era-of-post-genomics-and-big-data",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/6573.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Dr.",name:"Ibrokhim Y.",surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7639",title:"Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations",subtitle:null,isOpenForSubmission:!1,hash:"94f9f01b510ca80812f0eee467f9428b",slug:"bioinformatics-tools-for-detection-and-clinical-interpretation-of-genomic-variations",bookSignature:"Ali Samadikuchaksaraei and Morteza Seifi",coverURL:"https://cdn.intechopen.com/books/images_new/7639.jpg",editedByType:"Edited by",editors:[{id:"187501",title:"Prof.",name:"Ali",surname:"Samadikuchaksaraei",slug:"ali-samadikuchaksaraei",fullName:"Ali Samadikuchaksaraei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery and Development",subtitle:null,isOpenForSubmission:!1,hash:"043c178c3668865ab7d35dcb2ceea794",slug:"artificial-intelligence-in-oncology-drug-discovery-and-development",bookSignature:"John W. Cassidy and Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:"Edited by",editors:[{id:"244455",title:"Dr.",name:"John",surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9236",title:"Cheminformatics and its Applications",subtitle:null,isOpenForSubmission:!1,hash:"3fed97d1719b8a321190c86985494a34",slug:"cheminformatics-and-its-applications",bookSignature:"Amalia Stefaniu, Azhar Rasul and Ghulam Hussain",coverURL:"https://cdn.intechopen.com/books/images_new/9236.jpg",editedByType:"Edited by",editors:[{id:"213696",title:"Dr.",name:"Amalia",surname:"Stefaniu",slug:"amalia-stefaniu",fullName:"Amalia Stefaniu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48687",title:"Modern Methods (Without Determining the Contact Angle and Surface Tension) for Estimating the Surface Properties of Materials (Using Video and Computer Technology)",doi:"10.5772/61041",slug:"modern-methods-without-determining-the-contact-angle-and-surface-tension-for-estimating-the-surface-",body:'
Surface activity indicators when using this method and the device are:
The amount of liquid which can move one kilogram of surfactant. The value of this parameter varies from tens up to hundreds of thousands of units. The indicator can be converted to units of energy - joules.
The amount of fluid retained in the surface per unit time is calculated based on the first index and the surfactant supplements characteristic may be indicative of the characteristics of the surface and the liquid.
The velocity of propagation of capillary and microwaves. This indicator complements the first two.
A new method for determining the surface activity is carried out on the installation (see. Figure 1). [2]
General scheme of installation. 1. A table with an adjustable horizontal; 2. Object - preparation (surface under study); 3. The camcorder recorded the size of the drop; 4. The camcorder recorded changes in the surface of the object - the drug; 5. Pipette; 6. Indicator mesh; 7. Lights
Measurements: A - B range displaced liquid layer. A - C size scaling
On the table with an adjustable level of the horizontal surface of the stack 1 of the plate material properties 2, the surface of which should be investigated (Scheme 1 indicates how an object is prepared). For the retention of the investigated liquid on a surface layer with 0.1-1 mm thickness, the material deposited on the circumference of a hydrophobic material depends if the liquid is polar or not, or if the liquid are solutions of various substances. The effect of which should be further investigated. Then, the camera or film camera 4 is set so that the boundary line and the center of the bounding figures were clearly visible in the viewfinder and on the possibility of occupying the entire frame (Image sharpness adjustment). After setting up the sharpness, the line is set with a scale of 1 mm, and the camera fixed for subsequent scaling measurements. The line is set perpendicular to the optical axis of the lens fixing process chamber 4 exactly at the diameter of the circle. After that, the line is removed.
In limited hydrophilic or hydrophobic substance circles, the test liquid is measured in an amount necessary to produce the liquid layer thickness selected by the researcher.
Exactly over the center of the bounding shapes, such as circles, a calibrated weight drop was established at the diameter of the capillary pipette tip 5 so that the drop fell from it as accurately as possible at the center of the figure. The edge of the pipette tip was mounted at a height of 4-30 mm. Illuminator 7 display grid 6 is set so that the reflection from the surface of the liquid in the image grid locking chamber 4 was clearly visible.
The camera captured an image at the same time to determine the volume of a drop at the moment of separation from the capillary pipette including 3 cameras that captured a larger scale, drop, and surfactant solution or sample liquid that was introduced into the center of the circle. To fix the process of the moving fluid, the film footage was consistently studied to determine the distance from the center of the drop to the ground "wave motion" and in accordance with the scale that converted the results into units of length. Similarly, the droplet diameter at the time of separation from the capillary pipette was determined.
If it is necessary to define or map out the properties of the surfactant, one can use the "standard" surface, which are heat-resistant hydrophobic films or writing paper, or surface-modified paper, for example with gelatin.
When working with paper, it is applied to the circumference of the necessary internal diameter of the hydrophobic dye. The line width of the bounding figure is 5 - 6 mm. The damaged part of the paper with her bounding figure (object - a drug) is soaked in a solvent (for example water) for a certain time (for example 10 minutes) and placed on a table or laid on a plane-parallel plate (thick glass). In this straightened paper, because it is removed from air extruded by a glass tube with rounded ends, (for example a diameter of the pipette 10 - 15 mm) or other device, (for example a roller or roller glossing pictures for unfolding and adhering wallpaper). In the area of the paper, you applied bounded by lines (circle, square). The test liquid is applied in an amount necessary to produce the layer thickness that is determined by experimental conditions. In the center of the pipette tip, the locking chamber is included and applied to the center of the bounding shape of the object - a drop of solution of the test drug surfactant.
To determine the amount of fluid displaced in the scan frame, the frame corresponded to the maximum radius (diameter) of the displaced fluid layer using standard computer programs to measure it. Figure 1 shows an example of the measurement. After finding the radius determined by
the amount of moving water, its density is given. For example, the volume of the displaced fluid was found to be 9.4 x 10-7 m3, the water depth was 5.0 x 10-4 m, and the weight of displaced fluid was 0.00094 kg. When the surfactant concentration is 5 kg/m3, the diameter is 0.00229 m, and the droplet amount of the surfactant is equal to 3.15 x 10-8 kg, then, the specific liquid transfer amounts to 29,688.55 kg. One kg of surfactants is able to move the 29.7 tons of water. This is consistent with the work produced in J 7106.37.
Fig. 2 shows the results of a study based on the effect of these parameters on the amount of fluid displacement surfactants. Figure 3 shows the results of the determination of the perfect work in moving liquid surfactants.
The change in the specific amount of water transferred and surfactants "balancer", depending on the content of the surfactant and the confining diameter of the circle (the layer thickness of 0.0005 m). Bounding circle radii (curves upward) 0.04; 0.05; 0.06; 0.07; 0.08 m. [1,3]
From these results, it is evident that one kilogram of surfactant with a great deal of movement implements 110,000 joules, and it depends on the area of the movement. The greater the radius of the bounding area of a circle, the more work is done. The quantity of the displaced fluid is enormous given that 1 kg of the liquid surfactant mass moves in 370000 kg., and one of the surfactant molecules can move 3500000 water molecules [4]. It can be assumed that the distribution of the surfactant on the surface is liberated in the form of a film, which pushes their hydrophobic boundary forming a hydrophilic water wave motion (see Fig. 9, wave movement is marked С).
The change in the specific operation when water is moving and a surfactant "equalizer", depending on the content of the surfactant and the confining diameter of the circle (layer thickness 0.005 m). Bounding circle radii (curves upward) 0.04; 0.05; 0.06; 0.07; 0.08 m [1].
Change in the diameter of the displaced liquid layer during the movement is shown in Figure 4. It can be seen that the diameter increases rapidly passing through the maximum point and then decreases slowly.
Change in the diameter of the displaced fluid layer
Increase in the diameter occurs almost in a straight line (see Figure 5). A reduction in the diameter is well described by a second degree polynomial shape and is very close to the exponent (Fig. 6). From the above results, it can be seen that the performance can be considered to characterize a surfactant, wherein the range considerably exceeds the measurement range of the contact angle (0 to 180) and the range of values of the surface tension (20 to 480 [5]). This has been determined for we have studied a range of values from tens to hundreds of thousands of units [1].
Increase in the diameter of the displaced fluid layer
Reducing the diameter of the displaced fluid layer
To study the surface properties of the liquid, the time was determined where the greatest range of movement in the number of staff from the moment of touching a drop of surfactant liquid to a frame moving with the largest radius was determined. To know the frame rate, the time between frames is multiplied by the number of frames to achieve the greatest range of fluid movement. Then, multiply the result with the time to reach the maximum displacement of the liquid, the number of displaced kilogram of surfactant liquid finding surface. The results are shown in Fig. 7.
The change of parameters depending on the surfactant concentration: 1. The specific amount of fluid displacement (kg liquid / kg of surfactant) 2. The specific amount of fluid displacement per unit time ((kg liquids / kg surfactant) * sec)
From these results, it is seen that the amount of fluid displaced is changed, passed through a maximum, which is a concentration of 4 kg/m3. Perhaps, this is due to the properties of surfactant solutions, which vary significantly with increasing concentration and the formation of micellar nanostructures.
The liquid can be characterized by the methods given above. At the same time, we observed the regularity of occurrence and propagation of microwaves, which can also be used to characterize the surface properties of the fluid [6].
To determine the distribution ranges of microwaves, reflection display grids were used, which is clearly seen on the surface of the liquid in the video. The excitation of the surface of the liquid carried the water droplets drop at a height of 0.02 m on the surface of the water and poured in a circumscribing circle on the paper surface. The different amount introduced into the circle bounded the fluid to change the thickness of the layer from 0.0002 m to 0.001 m on the surface of the flooded paper.
Changes occurring in the interaction of water droplets to the surface layer of water were recorded with a video camera. Then, on a frame scan, selected images in which measurements were recorded changed. For this purpose, standard computer programs were used. Similarly, the effect of surfactant concentration on the velocity of the waves was included in the study. It has been shown that the water droplets in contact with the surface of the water formed microwaves first (see Fig. 8) and then moved over the water surface substantially at a constant speed (70 - 75)*10-2 m/s (see Figure 10). With the passage of the microwave image, the grid display disappears. The resulting large waves then move on to the liquid surface at an average rate of 32*10-2 m/s (see Figure 8). The increase in the thickness of the water layer in area C increases the distance of propagation of the microwaves. Considering the studies of American astronauts, it can be assumed that microwave oscillations are produced by the surface film having a thickness of 0.00015 m [7]. Their height (amplitude of oscillation) may not exceed the double thickness of the film but interaction of the drops of surfactant solution with the water also causes the appearance of these two types of waves. However, the larger wave, starting from the center of the dropping, and then moved to the edges of the bounding circle is already under the action "move fluid wave". (See fig. 9 mark C).
She seemed to be pushed in front of the wave, and the trailing edge of the wave becomes steeper. This wave slows down when approaching the edge of the bounding circle and its movement initially opens the surface of the liquid (see Fig. 9. mark A) and the "boundary layer" of liquid (see Fig. 9). In the notation, the line indicating the mesh is clearly visible, under the influence of a force field where the liquid surface is. Moreover, at low concentrations of surfactants and a strong interaction with the liquid lying below the surface of the "wave motion of the liquid", the “boundary layer” is rolled on the surface. It was great all the time and zone A was determined to have an observed free liquid. The introduction of surfactants somewhat reduces the velocity of the propagation of large capillary waves (Without the surfactant average speed is 32*10-2m/s capillary wave and with surfactants, it is 20.5*10-2 m/s). Moreover, the microwaves are observed on the surface of large waves because the indicator on the surface of the liquid keeper is not visible (Figures 8 and 9). A large wave of "moving fluid" slows down when approaching the edge of the circle to this limit: (13-15)*10-2 m/s. The speed of microwaves remains almost constant at the range of 65 – 75*10-2 m/s. This speed can be detected only two times during the passage of the microwaves on the investigated surface. Furthermore, microwaves quickly reach the circle limit.
Microwaves (area B) and capillary movement (area A) on the surface of the liquid. In the area of microwave indicator net disappears.
View of the water layer after exposure to drops of surfactant.
The effect of opening the boundary layer fluid wave motion can be used to estimate and visually observe the thickness of the boundary layers. Also, the properties of microwaves to increase the range of the spread with increasing thickness in the liquid layer can be used to estimate the thickness of the layer of water associated with the surface on which the liquid is present and to evaluate the interaction energy of the liquid with the surface [6]. In the method of the moving fluid, a surfactant is proposed for use due to its characteristics and surface properties in surfactant identification, including metrology and nanomaterials.
The changing speed of microwaves on the surface from the impact of a drop of water.
The change in the speed of the capillary wave action due to the drops of surfactant. The water depth is 0.0005 m.
Studies have shown that in a limited space, microwaves do not change their speed, while the larger capillary waves significantly reduce its speed when approaching the limiting barrier. This can serve as a basis for concluding that occurs due to fluctuations in the microwave surface of the liquid film. A wave of migration has a pulsating speed like bumping and the surfacing of the boundary layer, slowing down and crashing "surfacing" acceleration.
Microwaves can be used to determine the thickness of the boundary layers created on the surface, study the increasing the thickness of the layers of water, and expose small water droplets on the surface dropping them from a small height.
After recording a video, defined images, in which the measurements of the amount of liquid transfer and the range of wave propagation, which are the characteristics of the surfactant properties of liquids and surfaces, can be seen frame by frame. At the same time, the images can determine the thin, visible layer of liquid. Figure 12 shows a view of the exposed surface of the surfactant layer of liquid. Figure 12 shows three clearly visible that are staggered. Zone A - is the surface (substrate) excepted from the liquid, zone B – is the tampering surfactant interfacial layer of liquid, and zone C – is free (not bound to the substrate) and fluid displacement.
Three zones. Surfactant - "equalizer" with a concentration of 3 kg/m3. The diameter of the circle bounding 0.144 m: A - surface freed from water; B - surface boundary layer; C - moving layer of fluid
Izmenenie microwaves spread on the water surface depending on the thickness of the substrate - the paper
Since there is liquid on the surface layer bordering the air and the volume of liquid, it is possible to conclude that the thickness of the liquid on any surface exceed the total thickness of the surface layers and that the interfacial layer of the rest of the liquid will be "free". US astronauts conducting experiments in space determined that a double layer of water in the air interface when there is no free liquid is equal to 300 microns (0.0003 m). Consequently, a single layer is equal to 0.00015 meters, and the thickness of the liquid layer above the value property of this layer should undergo changes. We believe that the easiest way to define these changes is that it can serve as a distance propagation of microwaves on the surface of the liquid layer of known thickness. In this paper, we change the thickness of the liquid layer from 0.0002 to 0.0006 m.
The dependence of the radial propagation of the microwaves on the surface of its layer thickness.
The determination of microwave range is carried out by the disappearance of the indicator grid lines on the surface of the water (see. Fig. 15). The results of the measurements are shown in Figure 13, which illustrates the sharp increase in the area of microwave propagation beginning with 0.0003 mm. Perhaps, this is the thickness of the water layer in which the surface layer and the boundary layers start to move away from each other. Then, when the surface layer has a thickness of 0.15 mm, the boundary layer will have a thickness of 0.3 minus 0.15 = 0.15 mm. Approximately, the same value is obtained when considering the radial distribution of microwaves (see Fig. 4). Direct drawn through the experimental points intersects at the horizontal axis at 0.12 mm. In other words, given the zero value of the radius of the microwaves on the propagation of the liquid layer with 0.12 mm thickness, the liquid layer is bonded to a substrate.
The type of surface water layer with a thickness of 0.4 mm. The distribution of microwaves on the surface is observed by the disappearance of the grid display.
Thus, the method for moving the liquid surfactant can be used to characterize the boundary layer thickness.
In the study of fluid displacement, it was observed that microwaves begin to form when the surface of the water droplet is at a small distance in drip surfactants. Consequently, using surfactant with high volatility can cause a slide on the surface layer of water from the gas phase surfactant [8].
For the experiment, in the method described above, the only investigated material were a small square and a thickness of 1 mm. They were placed in the center of the bounding shape (a circle) and the amount of water is taken. Having regard to the volume of the test material, a layer of water with a predetermined thickness was generated on it. The objects of the study used were duralumin discs, silicon hereinafter - the "silicon", and LiNbO3 of the "Lithium". The capillary pipette was placed at different heights (from 1.5 to 4mm) from the surface being studied, on which the fluid (water) was located. Also, there was a change the thickness of the liquid layer from 0.3 to 0.6 mm. The measurement results are shown in Table 1.
Observations have shown that a decrease in the height of the capillary over the studied surface purifying it from the liquid is more intense. The surface on which the liquid was, is cleared of the water layer quickly. A thickness of 0.3 mm in the water displaces the surfactant on the surface being studied for 6-7 seconds. Table 1 with a reduced thickness of the liquid cleansing surface is faster. The greatest speed of moving liquid is observed on silicon, and the smallest on the paper. One can assume that the communication between the water surface and the paper is higher than the surface of lithium and silicon wafers. At the same time, the thickness of the water layer, which can still be displaced under the action of the surfactant, is less in paper plates than to silicon and lithium. The paper limited the thickness of the water layer at 0.4 mm, silicon between 0.5 to 0.6 mm, and lithium. This effect is used to evaluate the thickness of the boundary layer of water on the surface of the materials investigated [9]. However, there is a contradiction. Lower speed happens in thin layers of water, which may be due to surface roughness. The average value of surface roughness in micron samples obtained on the instrument "Profilers - 296" is : paper - 4.55 ; Li - 1.16 ; and silicon - 0.75. The physical nature of this indicator is that the larger the value, the greater the difference between the highest and the lowest point on the surface (vertical drop), therefore, the greater roughness. Consequently, the roughest paper will then be lithium and silicon. In the reverse speed of the fluid buildup, with a correlation coefficient of - 0.999 and the same parameters (height above the surface of the capillary pipette and the thickness of 3.5 mm to 0.3 mm) fluid velocity of the liquid will move: paper - 2.62; Li - 16.49 ; and silicon - 18.9 mm3/sec. At first glance, these results confirm the conclusion about the effect of roughness on the velocity of the fluid. However, this aspect requires a more detailed study. For example, if one adopts the hypothesis about the impact on the speed of the fluid, the strength of the molecules of the liquid from the surface under study, it turns out that the paper bond strength liquid is higher than the surface of silicon wafers and lithium. Therefore, the rate of fluid movement across the paper surface is less than the surface of the silicon wafer and lithium. But, as we have noted above, the movement and penetration of the liquid occurs on the investigated surface with a liquid layer of different thicknesses. For the paper, the value of the minimum thickness of the fluid at which there is a breakthrough of the liquid layer is 0.4 mm to 0.6 mm, and lithium-silicon is 0.5mm [9]. This means, lithium and silicon binds more water than paper. According to fluid handling associated with more water and logically, paper - the stronger of the coupling, the smaller will move liquid per unit of time (for more details see below).
\n\t\t\t\tObject\n\t\t\t | \n\t\t\t\n\t\t\t\tThe height above the surface of the object, mm\n\t\t\t | \n\t\t\t\n\t\t\t\tThe water depth, mm\n\t\t\t | \n\t\t\t\n\t\t\t\tBreakthrough time the total thickness of the water layer, sec\n\t\t\t | \n\t\t\t\n\t\t\t\tThe diameter of the layer of fluid displaced by 20 frames (4 seconds), mm\n\t\t\t | \n\t\t\t\n\t\t\t\tThe volume of the displaced fluid mm3\n\t\t\t\t\n\t\t\t | \n\t\t\t\n\t\t\t\tTime from onset of exposure, sec\n\t\t\t | \n\t\t\t\n\t\t\t\tThe speed of movement through fluid 20 frames (4 seconds), mm3/s\n\t\t\t | \n\t\t\t\n\t\t\t\tThe speed of movement from the start of exposure, mm3/s\n\t\t\t | \n\t\t
lithium | \n\t\t\t3,5 | \n\t\t\t0,3 | \n\t\t\t1,4 | \n\t\t\t16,7 | \n\t\t\t65,99 | \n\t\t\t5,4 | \n\t\t\t16,49 | \n\t\t\t12,22 | \n\t\t
3,5 | \n\t\t\t0,4 | \n\t\t\t6,8 | \n\t\t\t17,05 | \n\t\t\t91,32 | \n\t\t\t10,8 | \n\t\t\t22,83 | \n\t\t\t8,45 | \n\t\t|
2,0 | \n\t\t\t0,5 | \n\t\t\t0,6 | \n\t\t\t13,12 | \n\t\t\t67,61 | \n\t\t\t4,6 | \n\t\t\t16,90 | \n\t\t\t14,69 | \n\t\t|
silicon | \n\t\t\t3,5 | \n\t\t\t0,3 | \n\t\t\t2,0 | \n\t\t\t17,91 | \n\t\t\t75,61 | \n\t\t\t6,0 | \n\t\t\t18,90 | \n\t\t\t12,60 | \n\t\t
2,5 | \n\t\t\t0,5 | \n\t\t\t0,8 | \n\t\t\t17,05 | \n\t\t\t114,15 | \n\t\t\t4,8 | \n\t\t\t28,53 | \n\t\t\t23,78 | \n\t\t|
2,0 | \n\t\t\t0,5 | \n\t\t\t0,8 | \n\t\t\t17,52 | \n\t\t\t120,55 | \n\t\t\t4,8 | \n\t\t\t30,13 | \n\t\t\t25,11 | \n\t\t|
paper | \n\t\t\t3,5 | \n\t\t\t0,3 | \n\t\t\t8,2 | \n\t\t\t6,67 | \n\t\t\t10,51 | \n\t\t\t12,2 | \n\t\t\t2,62 | \n\t\t\t0,86 | \n\t\t
3,0 | \n\t\t\t0,3 | \n\t\t\t5,0 | \n\t\t\t9,74 | \n\t\t\t22,36 | \n\t\t\t9,0 | \n\t\t\t5,59 | \n\t\t\t2,48 | \n\t\t|
2,5 | \n\t\t\t0,3 | \n\t\t\t1,6 | \n\t\t\t7,86 | \n\t\t\t14,54 | \n\t\t\t5,6 | \n\t\t\t3,64 | \n\t\t\t2,6 | \n\t\t|
2,0 | \n\t\t\t0,3 | \n\t\t\t1,0 | \n\t\t\t7,54 | \n\t\t\t13,41 | \n\t\t\t5,0 | \n\t\t\t3,35 | \n\t\t\t2,68 | \n\t\t|
1,5 | \n\t\t\t0,3 | \n\t\t\t0,4 | \n\t\t\t8,32 | \n\t\t\t16,34 | \n\t\t\t4,4 | \n\t\t\t4,08 | \n\t\t\t3,71 | \n\t\t
The influence of parameters on the movement of water surfactants from the gas phase.
During the experiment, it was observed that erodible ring structure appear at the surface layer of the water, which later disappears. (see Figs. 16 and 17)
Position of the edges forming a ring structure.
Position of the edges of the ring structure formed from structure.
In Figure 16, arrows 1 and 2 indicate that the position of the edges formed a ring structure. Arrow 3, on the other hand, shows the emergence of a new ring structure. In Figure 17, arrows 4 and 5 show the position of the edges of the ring structure formed, which is marked by the arrow 3 in Figure 16. Arrow 6, then, shows the emergence of a new ring structure. There are several explanation of this effect:
This stratified destruction layer are associated with the studied surface water, thus, water layers in the associated liquid layer have varying degrees of communication between them.
The impact of the electric potential between the capillary pipette and the surface is being studied.
This "microdroplets" evaporating surfactants spreads over the surface of water.
The first explanation is the most acceptable. In previous studies on the movement of a drop of liquid surfactant, the free liquid displacement is observed on the surface of the water bound to the gelatin layer and then destroys the boundary layer. Below are the data from this work.
The movement to the peripheral areas of liquid drug is slow and comes in two stages. The first stage is under the influence of highly concentrated surfactant solution (80 kg / m3) "sulphonol" located above the moving fluid bed bound. After a while, the fluid begins to move associated with the gelatin layer of water, freeing the surface and causing it to become dull. (see Figs. 18-20)
The time taken for the movement of fluid may be determined by the number of frames from the starting points. Since the beginning of the movement, it is necessary to frame up to № 10. The movement of “free” liquid ends at frame 43 (Fig. 18). At a frequency of shooting 24 frames per second on the move, 1.375 sec have been spent. Without noticeable changes in the layer, "bound" water was up to the frame number 60 in 0.7 seconds. Further movement of the associated layer to frame 215 occurred within 6.45 sec.
View of the water surface after movement of the "free" liquid on the surface of the water associated with gelatin frame 43. A - bound fluid layer; B - bound (shaft) move "free" liquid.
The start of the movement associated with the liquid layer on the surface of the gelatin block 81. A - bound fluid layer; B - bound (shaft) move "free" liquid; C - free gelatin surface.
Bound liquid layer on the surface of the gelatin is not destroyed by the surfactant concentration of 5 g / cm3. Movement of the "free" liquid only occurred on the surface of the "bound".
The type of surface bound gelatin layer of water moving frame 215. A - bound fluid layer; B - bound (shaft) move "bound" liquid; C - matt exempt from bound water surface layer of gelatin.
The surface of the paper layer of bound water is destroyed under the action of a surfactant and a small concentration of 5 kg/m3.
It is possible that ring structures will form in a contactless displacement fluid given a scenario similar to the one above. The observed circular formations change their dimensions slowly. Therefore, we assume that this is the most likely scenario of the destruction process of boundary layers.
The second assumption about the nature of electricity does not exclude, but rather complements the first scenario. More so, only after grounding the tripod holding capillary dropper measurement results in our experiments stabilized.
The third assumption, in principle, is unlikely, as it implies a rapid condensation of the evaporated molecules in microdroplets. Evaporation or not molecular, and cluster. We are assuming that the surfactant molecules at the water surface form a monomolecular film that is moved by the water. The highest measured diameters of the annular formations (see Fig. 16 and 17) are calculated using the table data area and the height of surfactant molecules on their surface. Measurements and calculations showed that the diameter of the "microdroplets" with the observed size of the circular formations may be within 0.00020245 m. 2,82743E + 13 contains more than molecules. The droplet size is large enough. Therefore, it can be assumed that the surfactant molecules at the surface either does not fit into a continuous film upon evaporation or is the molecules and the clusters containing few molecules are detached from the total weight. The first assumption is most likely because the calculations carried out the work of Karbainova, A.N. [4] It was shown that one molecule surfactant can move 3.5 million molecules of water. If you use this value to calculate the number of surfactant molecules needed to move the volumes of liquid, which are shown in Table 1, it turns out that the greatest number of molecules that moved will be equal to 1,15233E+15 and the smallest is 1,00465E+14. A number of the above-mentioned droplet size must be delivered to the first surface 41 in the second case 4. Naturally, the number of droplets is significantly larger and significantly smaller in droplet size, possibly approaching nanoscale.
The measurement of the contact angle (wetting angle) showed that the contact angle of water droplets on lithium (45o) is lower than silicon (55 °)(See drawings on the left and right). That is, lithium is more hydrophilic than silicon and accordingly, the rate of water movement on lithium is less than silicon. Water molecules bind more strongly to the surface of lithium, so it is necessary to expend more energy for their movement and other things being equal, the amount of water transferred will be smaller. For example, when the height of the capillary is 2.0 mm, the volume rate of water transferred to lithium is 67.61 mm3, 16.9 mm3/sec and silicon is at 120.55 mm3, 30.13 mm3/sec)(Tab. 1). When the value of the difference in contact angle is 10o between silicon and lithium, the volume rate of water movement between the surfaces is practically twice of that of the silicon. Consequently, new hydrophilic indicators give a more differentiated picture.
The change in the surface properties of the skin treatment processes was also investigated. A sample size of 4x4 cm was glued to a sheet of paper, coated thereon the limit line as a circle, and treated sequentially with water, aqueous acids and salt, an aqueous solution of a chromium tanning agent. After completing these processes, the speed of the movement of the water layer with thickness of 0.2 mm on the surface of the samples is determined. After exposure to water, the travel speed was found to be - 2.05 mm/sec for samples after exposure to acid and salt; 3.37 mm/sec after exposure to chrome tanning agent; and 6.86 mm/sec. The results showed that during the treatment, there is an increase in the velocity of the fluid, i.e. water-repellency at the surface of the skin as a consequence of reducing the surface water connection and therefore increases the speed of movement. This corresponds to the theoretical concepts of the science of skin.
Thus, studies have shown the possibility of estimating the properties of different surfaces by the use of non-contact displacement fluid. It is shown that the movement of the liquid surfactant influences the surface roughness and the strength of molecular interaction with the surface of the liquid.
The study of fluid motion on the surface of duralumin has shown that there are several features that can be seen only on light reflecting surfaces. Studies were therefore conducted as set forth above.
The process of moving the non-contact liquid surfactant consists of several stages. At the beginning of travel, a surfactant element removes water from the surface layers of the molecules that are fixed in this layer due to the interaction with the molecules of air between them. During the experiment, it was observed that erodible ring structures appear on the surface layer of water, which disappears over time (see Fig. 21).
The formation of the ring structures (arrows) in the water layer of 0.4 mm thickness on a paper surface.
In our opinion, this layering destruction of water is bound to the surface under the study. Therefore, the layers of bound water in the liquid layer have different degrees of communication between them. Furthermore, the water layer is structured on one side with air on the other side of the surface where the liquid is located. With the structure status stored in the interaction of the surface of the water with a surfactant, which is embedded in the layer structure and the stability limit is exceeded, new created surfactant molecules embedded structure begins its destruction and the movement of the liquid layer. This altered state structures, with embedded surfactant molecules, are maintained long enough, which, according to our measurements, is more than 20 seconds.
Formation of dark spots.
It is possible that the formation of dark spots before the breakthrough of the liquid layer on the duralumin becomes a specific interest (see Fig. 3). We assume that this is due to a decrease in the thickness of water for up to 3 - 5 nm or less than the wavelength of light [10]. And the moving layer of water can "roll" in the study water to the surface film thickness of the dark spots. Figure 14 shows the formation of a water film (marked by an arrow) which is then collected in the droplet.
It is possible that the formation of a dark film was due to depressions in the surface of duralumin. Then, this effect can be used to assess mechanical defects on surfaces with almost nanometer thickness. The figure also shows the optical transition to deepen or to a defect or when not to manifest itself. At any rate, the reflection capillary is not changed. To detect this defect by optical methods, a special instrument base and an increase in size is required.
The sequence of frames showing the formation of a thin film of water at dark moving surfactant-ohm, which is later collected in a drop (marked by an arrow).
The method of moving the liquid surfactant was used to assess the particulate materials, including water-soluble measurement results that are shown in Table 2. For studies, particulate materials are mixed with water and were made into a pattern in which the material surface is leveled. The template was placed in the center of the bounding figure and above the layer of water creating a thickness of 0.2 mm. Capillary with isobutyl alcohol surfactants are over the patterns. The camcorder was then turned on. It was then seen that the capillary was fed vertically to the surface of the template.
Fluid movement speed, mm / sec | \n\t\t\t\n\t\t\t\tDisperse powder and granular\n\t\t\t | \n\t\t\t\n\t\t\t\twater-soluble\n\t\t\t | \n\t\t||||||
SiO2\n\t\t\t | \n\t\t\tFe2O3\n\t\t\t | \n\t\t\tCaOH2\n\t\t\t | \n\t\t\tZnO | \n\t\t\tMgO | \n\t\t\tCuO | \n\t\t\tNaCl | \n\t\t\tNaHCO3\n\t\t\t | \n\t\t|
58,50 | \n\t\t\t7,64 | \n\t\t\t10,69 | \n\t\t\t12,06 | \n\t\t\t17,29 | \n\t\t\t85,1 | \n\t\t\t74,18 | \n\t\t\t57,0 | \n\t\t
The speed of the liquid (water) on the surface of particulate materials.
The table shows that the velocity of the liquid material on the surface can serve to characterize the extent of water interaction with the material. For example, the reaction of water with the surface of the copper oxide is insignificant as the moving speed of 85.1 mm / sec is much greater than on the surfaces of other materials - sand, iron oxide, lime, and others, but is very close to the speed of movement over the surface of table salt. Therefore, their surface is more hydrophobic [10, 11].
Studies of particulate materials by fluid displacement are possible to detect moving objects using silicon oxide.
We explored the possibility of estimating the surface properties of powder and granular materials, without determining the surface tension and wetting angle [4]. We found that with the interaction of the surfactant with the liquid layer above the surface of the sand amd after bringing the surfactant in the sand into contactthe camcorder recorded self-propelled objects of different types.
Conventionally, these are the six types:
Large objects resembling a UFO (Fig. 24)
Underwater objects (Fig. 25); Fast-moving underwater (Fig. 30)
Large objects resembling agglomerates particle (Fig. 26)
Objects to perform cyclic motion picture (Fig. 29)
The rod-shaped figure. (Fig. 29)
Point black.
The first type of moving objects. Large objects resembling a UFO. Getting traffic frame 698, continued frames 708 - 718. The arrows marked the position of the object. The speed of movement of the object is 10-15 mm/sec. Its size is larger than 5 mm. (moving from right to left, top) In the shade (to 698), a bright object is seen on a dark background. And on a light background is a dark object (to 708 and 718). This can be interpreted as the illumination object. Similar changes were observed for the other types. See Fig. 29. Frames 178, 189, 198, 276, 292, 328.
From Figure 24, the movement of the object causes display grid lines curves to be reflected from the surface of the water. This indicates that the object is moving on the water surface. But, there are objects moving in the water beneath the surface. (see Fig. 25).
Underwater object. Changes in the display grid lines (moving from right to left, top). Movement is seen beneath the surface. The speed of movement of the object is 10-15 mm/sec. Its size is approximately 4 mm.
From figure 25, the object moves from left to right and slightly upwards. Speed estimation is approximately 10 - 15 mm/sec. It is sufficient, in principle, to quickly notice the object with an unaided eye movement.
Given that the thickness of the surface layer of water on the air interface is 0.15 mm [7], it can be assumed that the object moved at least at this depth. It follows that the movement of the objects does not only affect surface forces. In principle, there were hopes to explain the observed motion of the objects.
Large objects, in the form of agglomerates, obviously also moves under the water surface (see Fig. 26) as reflected by the changes in the surface mesh of the indicator observed.
The third type of moving objects - shapeless aggregates. The speed of movement of the object is about 35 - 40 mm / sec (the trajectory 3 in Fig. 27).
For the experiment, the recorded moving agglomerates were characterized by the emergence of many objects. Fig. 27 shows the trajectories of some objects.
The trajectories of the objects
From the observation of the movement of objects, it was noted that in the beginning, a moving black circular object in shots 17 - 39 (path 4) has initiated. Then, it continues to become an agglomerate (path 3) and, following the black object, both come to a single point (see Fig. 26)(Frame 34 - 84). At this point, there is intense movement of the objects in a small volume. From this point, after a while, the new black object starts to move quickly (frames 85 - 100 trajectory 5). Along with the sinter, a noticeable movement was produced but in reverse, which was showed by the dark object in frames 64 - 74 (milestone trajectory 6). Another dark object (path 7 shots 69 - 78) was seen moving together with other large agglomerates. Initially, the agglomerate is not noticeable and suddenly appears near this point object and continues to move together. At the bottom, starting with frame 58, two objects are substantially on the same trajectory at first and then a large object is shown(1 and 2 of the trajectory).
Moving objects change their size and position. It can be assumed that this is due to the addition and elimination of particles that make up the objects or the rearrangement of it. Before the experiment, the sand used in the experiment was sifted through a sieve with 1 mm openings. The observed objects have the same parameters, significantly exceeding this size. Consequently, the objects, themselves, are formed during the experiment.
The trajectories of the cyclic objects. The direction of movement is indicated by the arrows.
In our point of view, the time of passage of the objects in the shadow of the device unit is important. In general, the moving objects appear darker than the surrounding background (there is light merging with the general background). However, objects remain visible and lighter than the shade behind the shadow of the devices. In our opinion, this indicates that the objects glow. Indeed, the cyclically moving objects in the original frames show that the objects marked by the arrows in Figure 28 had a yellow gold color (like light).
The successive frames of the cyclic movement of objects (path 1 frames 168-207. Trajectory 2 frames 215-328 Fig. 28)
It is believed that the water in the seas and lakes by chemiluminescence illuminates during the oxidation of organic substances with oxygen. Moreover, the luminescence observed depends on the ultrasound and the purity of the water that can be suppressed. The purer the water, the less intense is the glow [13]. Possibly, the ultrasound destroys the self-organizing structure of the particles, leading to a decrease in the luminescence. In purer water, the smaller particles can be united and pushed downward for the oxidation of organic substances. With regard to our experience, these facts suggest that the association of the particles into larger agglomerates causes the acceleration of the oxidation reaction. Any association and creation of complex structures in itself contribute to the acceleration of electrons, which causes the glow and helps create movement. At the same time, it can be assumed that the particles are oxidation catalysts and as a result, have a visible glow.
The fourth type of moving objects performs cyclic movements (Fig. 29). On the frames 281, 292, and 328, large arrows labeled objects rod type 5. In frames 178, 189, 198, 204, 273, 276, 281, 292, and 328, moving objects are in the shade and have a bright appearance that may shine.
We also recorded fast-moving underwater objects (see Fig. 30). Their speed is 100 - 150 mm/sec. A total of four frames recorded the motion of this particle.
It is possible that there are particles moving with an even higher speed. But they could not be fixed, due to the technical capabilities of the equipment.
A fast-moving underwater object.
These results show that research in this area are the prospects in the creation of sufficiently large, even visible to the naked eye, objects moving independently of nanoparticles in water. It is then necessary to understand the principles that unite and move the newly created objects.
Work-related musculoskeletal disorder is an injury that occurs in the workplace or during the work due to sudden exertion or prolonged use of tendons, muscles, joints and nerves to physical factors such as repetitive movement, force or awkward positions. Shoulder disorders, lateral-medial epicondylitis, wrist tendinitis, and carpal tunnel syndromes in addition to other nonspecific strains, sprains are classified as common upper limb musculoskeletal disorders [1].
\nEpicondylitis is a common disorder of the arm that happens as a result of resisted use of the flexor and extensor muscles of the wrist. The men and women are affected equally, especially between fourth and fifth decades [2, 3]. Lateral epicondylitis, termed as tennis elbow, commonly occur after repeated activities of supination/pronation of the forearm while the elbow in extension, whereas medial epicondylitis, termed as golfer’s elbow, mostly occur in athletes, tennis players, and workers whose jobs (e.g., carpentry) require similar movements [4, 5, 6, 7]. Lateral epicondylitis is seen 5–10 times more than the medial epicondylitis [7, 8].
\nTreatment starts with conservative management including anti-inflammatory drug administration, physical therapy, rest, and steroid injections with variable long-term success.as soon as the diagnosis is confirmed, On the other hand the novel biological therapies which includes injection of platelet-rich plasma (PRP), collagen-producing tenocyte-like cells, various types of stem cells at the site of the tendon lesion, or prolotherapy are used as the developing treatment strategies [2, 9, 10]. Other treatment options include ultrasonographically guided tenotomy, extracorporeal shock-wave therapy, and iontophoresis and phonophoresis to obtain deep penetration of topical medications into the soft tissues [11]. Surgery is performed if there is no clinical response after 6–9 months of conservative treatment. Surgical techniques include open and arthroscopic approaches with dissection, release, and debridement of the degenerated and calcified tendons [12]. In our experience, we prefer a mini-open approach which allows a shorter recovery time and early postoperative mobilization therapy.
\nThe extensor carpi radialis brevis, extensor digitorum communis, extensor carpi ulnaris, brachioradialis, extensor digiti minimi, supinator and extensor carpi radialis longus are called the wrist extensors, which allow the hand to move upward and extend. The wrist extensors form a strong conjoined tendon which is attached at the lateral epicondyle and lateral supracondylar ridge [13] (Figure 1). Repeated use of these tendons can cause microscopic tears and degeneration at the origin that can result forearm muscle weakness along with swelling and pain at the elbow. The ECRB forms the deep and anterior aspect of this common tendons and slides along capitellum’s lateral edge during elbow extension and flexion. This contact and sliding may play a role in the pathophysiology of epicondylitis [4, 8, 14]. The essential lesion of lateral epicondylitis involves the ECRB mostly, followed by the extensor digitorum communis and to a lesser extent, other muscles and tendons of the lateral compartment. Capsular injury, thickening and tearing of the lateral ulnar collateral ligament (LUCL) and radial collateral ligament (RCL) have been also identified as another cause of lateral epicondylitis [14].
\nIllustration shows the lateral elbow musculotendinous anatomy, close to the site of the tendon origin on the lateral epicondyle. ECRB = extensor carpi radialis brevis, CET = common extensor tendon, ECU = extensor carpi ulnaris, ECRL = extensor carpi radialis longus, and EDC = extensor digitorum communis [8].
The lateral collateral ligament complex consists of the RCL, annular ligament, accessory lateral collateral ligament, and LUCL (Figure 2). Moreover, the LUCL runs along the lateral and posterior aspects of the radius to insert on the tubercle of the supinator crest of the ulna and disruption of which results in posterolateral rotatory instability of the elbow [14].
\nIllustration shows the ligamentous anatomy of the lateral aspect of the elbow. AL = annular ligament, LUCL = lateral ulnar collateral ligament, and RCL = radial collateral ligament [8].
Lateral epicondylitis most commonly occurs between the ages of 30–50 years old. This pathology is caused by chronic stress to the forearm muscles with the repetitive activities of gripping and wrist extension. The most common movement that results with epicondylitis is radial deviation, extension of wrist, and forearm supination [15]. Many individuals develop lateral epicondylitis for no identifiable reason; however, poor mechanics or technique may be a reason in athletes.
\nAs it is mentioned above, this condition is an overuse degenerative process of tendons of external carpi radialis brevis and extensor digitorum communis primarily. Beside clinical symptom of prolonged pain at the elbow, histological findings are granulation tissue, micro-rupture, an abundance of fibroblasts, vascular hyperplasia, unstructured collagen, and notably a lack of traditional inflammatory cells (macrophages, lymphocytes, neutrophils) within the tissue. In ultrasonographic evaluation calcifications, intrasubstance tears, thickening and heterogeneity of the common extensor tendon is mostly revealed [5, 15].
\nProvocative testing is done by performing the Cozen’s test which is also known as resisted wrist extension test. During this test, the patient’s elbow is stabilized in 90° of flexion by the examiner’s thumb, while palpating over the patient’s lateral epicondyle. The patient is then asked to make a fist, pronate the forearm, and radially deviate and extend the wrist while the manual resistance of the examiner. The test is considered positive if the test produces pain or reproductive of other symptoms in the area of the lateral epicondyle. Tenderness is usually seen over 5 mm. distal and anterior to the lateral epicondyle [15].
\nMill’s test is an alternative to Cozen’s test, where the patient is asked to close the hand, with the wrist in dorsiflexion and the elbow extended. During the test, the wrist is forced into flexion, while palpating over the lateral epicondyle. The patient denies to do any motion, if he/she feels any pain on lateral epicondyle, and the test is considered positive [16].
\nOn the other hand, the differential diagnosis is broad (Table 1), and imaging is often necessary when refractory or confounding symptoms are present. In a report, 5% reason of lateral epicondylitis is related with radial tunnel syndrome [17].
\nPosterolateral rotatory instability, LUCL injury | \n
Osteochondritis dissecans of the capitellum | \n
Occult fracture | \n
Radial tunnel syndrome | \n
Osteoarthrosis | \n
Differential diagnosis of lateral elbow pain.
Imaging of lateral epicondylitis not only confirms the clinical suspicion but also allows assessment of the injury severity and location. Multiple modalities such as magnetic resonance imaging (MRI), computed tomographic (CT) imaging, ultrasonography and EMG have been described following initial elbow radiography.
\nAn initial x-ray evaluation should be taken in three views: anterior-posterior (AP), lateral, and lateral oblique view. The AP graphy is performed with the elbow fully extended, palm of the hand pointing upward (exorotation) and forearm supinated to display medial and lateral epicondyles as well as radiocapitellar and ulnotrochlear articular surfaces. The lateral view should be obtained with the hand is turned vertically, elbow in 90° of flexion, palm of the hand pointing toward patient and forearm in neutral position. Articulation between the distal humerus and proximal forearm is seen on these X-rays. Moreover the lateral oblique view is similar to the AP view, however the hand and forearm are fully externally rotated to obtain the views of the radiocapitellar joint, medial epicondyle, radioulnar joint and coronoid process.
\nX-rays can be helpful in evaluating bony structures’ pathology, such as osteophyte formation secondary to arthritis, as well as calcifications that may be present in tendon or muscle tissues as a result of injury. Radiographic evaluations show normal results in most cases, and are mainly useful for ruling out other abnormalities such as arthrosis, osteochondritis dissecans and intra-articular free bodies. When X-ray is inconclusive, further studies such as MRI, ultrasound, or CT scan may be ordered.
\nSonography is an inexpensive, accessible and radiation-free test. Moreover high-frequency probes has an advantages of improved resolution, allowing application to extraarticular soft tissues for which it is increasingly used as an alternative to MRI [18]. Additionally, dynamic imaging can be performed in flexion/extension, supination/pronation, or under valgus/varus stress. Dynamic sonography is also an ideal method of image-guided intervention and can be used to provide real-time guidance of injections of local anesthetic, steroids, or platelet-rich plasma. However, its value is debatable because it is examiner-dependent.
\nIn many cases MRI can be useful in evaluating the soft tissues for tears, fluid, inflammation, or other changes within the joint or surrounding tissues. It is a great tool to evaluate soft tissue damage due to chronic overuse injuries of the elbow. However the bony cortex is not as well evaluated at MR imaging compared with CT, but the ability to detect subtle signal intensity changes in the marrow and periosteal soft tissues increases sensitivity to early stress changes in bone. Patients positioning can be either prone or supine, with the arm held at the side in anatomical position. Inıtial evaluation includes the assessment of the radiocapitellar, ulnohumeral and radioulnar articulations of the elbow. The following examination steps are tendons, muscles, ligaments, and the three major nerves of the elbow [19, 20].
\nCT imaging is particularly useful in demonstrating intraarticular extension of fractures, the distribution of small fracture fragments within and adjacent to the joint space, as well as any associated bony malalignment. CT can also be useful in evaluating chronic pain following injury and can readily identify abnormal ossifications or calcifications which can be seen as a sequela of trauma, including osteochondral bodies, heterotopic ossification, or myositis ossificans. Intraarticular contrast material can be injected for improved visualization of joint bodies and cartilage. Osseous manifestations of secondary degenerative change are also well evaluated with CT. Less often, CT arthrography is performed for evaluation of ligamentous integrity in patients with contraindications to MR imaging [18].
\nAside from imaging, many elbow pain cases will require an electromyography/nerve conduction study to investigate the function of forearm muscle in healthy and diseased. This test consists of two parts, and utilizes needle EMG to test the muscles in the extremity. It may be helpful in nerve compressive processes. The needle EMG may reveal the differentiation between denervation versus nerve injury or compression [21]. However future diagnosing studies are essential for this test.
\nIn case of significant swelling or fever, blood work should be indicated whether the reason is systemic inflammation or not. This would help direct the treatment toward a systemic, rheumatologic, or infectious etiology [21, 22].
\nThe medial epicondyle is the common origin of the flexor and pronator muscles of the forearm. Five muscles (flexor carpi radialis, palmaris longus, flexor carpi ulnaris, flexor digitorum superficialis and pronator teres) share the same origin and form the conjoined flexor tendons (Figure 3) [7]. The MCL, or known as ulnar collateral ligament, is formed by anterior, posterior, and oblique bands, which creates a triangular shape along the medial aspect of the elbow, deep to the pronator mass (Figure 4). MCL injury, specifically anterior band injury, is included in the differential diagnosis of medial elbow pain, and therefore the MCL must be evaluated. The MCL is also prone to concurrent injury with me- dial epicondylitis.
\nIllustration shows the medial elbow musculotendinous anatomy. FCU = flexor carpi ulnaris, FCR = flexor carpi radialis, FDS = flexor digitorum superficialis, PT = pronator teres, and PL = palmaris longus [8].
Picture shows the ligamentous anatomy of the medial aspect of the elbow. AL = annular ligament, ant = anterior band, and post = posterior band [8].
Medial epicondylitis is a tendinopathy of conjoined tendon due to overload or overuse. This pathology is also called golfer’s elbow which mostly develops as a result of high energy valgus forces in athletes. However 90% of cases are not sports-related.
\nPatients with medial epicondylitis typically present with medial elbow pain, which often develops due to repetitive elbow use, gripping, or valgus stress. The pain is worse with forearm motion, hand gripping and throwing. It usually resolves with cessation of activity [4, 7, 23]. On physical examination, there may be tenderness, swelling, erythema or warmth. The tenderness is elicited by palpation over the 5–10 mm distal and anterior to the medial epicondyle [4].
\nMedial epicondylitis test involves an active and passive component where the pain is exacerbated by resisted wrist flexion and forearm pronation at an angle of 90° [7]. Test is positive when the patient endorses pain with this maneuver. Due to similar symptoms and associated valgus forces, C6–C7 radiculopathies, cubital tunnel syndrome, ulnar neuritis, anterior interosseous nerve entrapment, tardy ulnar palsy and MCL instability, as well as other causes of medial elbow pain (capsulitis, arthrofibrosis, loose bodies, or medial epicondyle avulsion fracture) should be considered in the differential diagnosis (Table 2). The Tinel sign (distal pain and tingling during direct compression of the nerve at the elbow) should be used to evaluate for ulnar neuropathy, and the ulnar collateral ligament should be stressed especially in athletes [23]. The elbow valgus stress test is used to assess the integrity of the medial collateral ligament by palpating the medial joint line and stabilizing the distal humerus in 20 degrees of elbow flexion, [23]. The tests are considered positive if the patient experiences pain or excessive laxity along the MCL compared to the contralateral side.
\nMCL İnjury | \n
Little League Elbow | \n
Osteochondritis dissecans (OCD) | \n
Ulnar neuropathy (ulnar neuritis, entrapment) | \n
Flexor-pronator strain | \n
Occult fracture | \n
Differential diagnosis of medial elbow pain.
Medial epicondylitis is generally considered to start as a microtear due to chronic stress which is related with repetitive concentric or eccentric loading of the wrist flexors and pronator teres, resulting angiofibroblastic changes. Angiofibroblastic changes include mucoid degeneration of the tendinous origin and formation of reactive granulation tissue [24]. As a result focal necrosis or calcification can occur with decreasing collagen strength, scar tissue formation, and thickening of the tendons. Though it was thought that the pronator teres and flexor carpi radialis were most commonly affected, the studies suggest that all muscles except palmaris longus are affected equally [20].
\nThough the conservative treatment is a common intervention for the treatment, surgical treatment is applied to remove the pathologic tissues around these origins (the common flexor origin) to eliminate pain generators and decompression to promote tissue regeneration in chronic pathology.
\nAs in lateral epicondylitis, imaging is not always essential in the initial evaluation of medial epicondylitis. Radiographs are most useful to rule out other causes of elbow pain and usually normal in this pathology. Especially, in children where the diagnosis is uncertain, comparison to the unaffected arm may be necessary.
\nSonography is also a quick, easy and cost-effective modality to evaluate tendon pathology and distinguish from other etiologies. Moreover dynamic evaluation can be done in areas of chronic degeneration.
\nMRI is the ideal diagnostic imaging modality in medial epicondylitis and rule out other possible causes of elbow pain like MCL strain, osteochondritis dissecans, or other soft tissue injuries.
\nComputed tomography, electromyogram and bone scan may be useful in refractory cases to rule out other etiologies as well [23].
\nOnce the diagnosis is clear, offending activities including decreasing the volume, frequency, or intensity should be cascaded. Beside, patients may respond to non-steroidal anti-inflammatory drugs and acetaminophen as an initial step. Also topical nitroglycerin patches have proven helpful in the treatment of tendinopathies. Most cases of epicondylitis are managed conservatively. Though medial epicondylitis is less common compared to lateral epicondylitis, the treatment is more difficult.
\nThe primary goal of the first step of treatment includes pain and inflammation relief. Modification of life style is important. Physical therapy takes a great role for the management of treatment simultaneously. Multiple physical therapy modalities including dry needling, etracorporeal shock wave therapy, iontophoresis, electrical stimulation and ultrasonography takes great role to overcome this pathology [25, 26, 27, 28]. Theoretically, eccentric strengthening efficiently induces hypertrophy of the musculotendinous unit and increases it tensile strength, thereby reducing strain of the tendon. Therapy was more effective than rest and restriction of activities.
\nCounterforce bracing (forearm bands) inhibits full muscular expansion and decreases the force on the muscular tissue proximal to the brace. Night splinting with a cock up wrist splint and elbow kinesio taping may be helpful. In case of non-compliance or when these treatment modalities are not available injections are used. Currently corticosteroids (especially betamethasone sodium phosphate and dipropionate) and local anesthetic mixture is the most common, however recent studies have shown a new group of injectable substances such as botulinum toxin, autologous blood, platelet-rich plasma, hyaluronic acid and prolotherapy are being utilized [29]. Recent studies have shown that Visual Analog Scale (VAS) pain scores and functional scores during the first 2–6 weeks (acute period) have improved after the injections mentioned above [2]. However the dose and frequency of the corticosteroids or others is still controversial. Moreover the corticosteroid injection may result with local skin atrophy, depigmentation and muscle wasting [2].
\nBotulinum toxin A have been shown as an off-label treatment and have some literature support in refractory cases. It has also has the ability to cause a partial paralysis of the wrist flexors and extensors and allow the pathologic tissue to heal while avoiding micro trauma to the tendon. In a study, 60 patients who received a blinded injection of botulinum toxin or placebo have been evaluated with results of significant lower VAS pain scores at 4 and 12 weeks in the botulinum toxin group. On the other hand the major adverse effect seen with botulinum toxin injection is finger and wrist extensor weakness [30].
\nAutologous blood injection has been described by Edwards and Calandruccio [31]. Autologous platelet-rich plasma (PRP) have been shown to reduce pain and improve function in refractory epicondylitis [31]. Mishra and Pavelko reported significantly better VAS and functional scores at 8-week period compared to placebo [32]. In conclusion, the effect of remaining injection modalities, which are known as PRP and autologous whole blood, are about the chronic cases with a persistent efficacy during long term follow up. At the end hyaluronic acid and prolotherapy injections have also been studied for epicondylitis have been found to be effective in refractory cases however the mechanism is not well known [33, 34].
\nSurgical indications for medial and lateral epicondylitis include persistent pain and weakness of the forearm that persists after a period of at least 6 months of conservative care, however it is usually not needed. These surgeries involve release of the common flexor and extensor tendon at the epicondyle and debridement of pathologic tissue. The mini-open muscle resection involves removal of degenerative tissue of the flexor carpi radialis. Fascial elevation and tendon origin resection is another available technique [34]. The prognosis for recovery is very good with relief of pain, but often results in weakness of the forearm musculature [33].
\nMedial and lateral epicondylitis is a chronic inflammation disease which results in loss of labor. Moreover these pathologies are related with other upper extremity abnormalities most of which are accompanied with cervical disc pathologies. Physician should be aware of other conditions which led to or mimics epicondylitis. The patients’ social status and job should be questioned at first intervention, thus the treatment varies depending on the situation. If a pure epicondylitis is diagnosed the treatment algorithm is defined above beginning conservatively at first to surgery at last. The aim of the treatment is directed to return to activity as well.
\nOur books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.
',metaTitle:"Order Print Copies",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your printed copy, you can do so by contacting our Print Sales Department at orders@intechopen.com.\n\nOur hardcover books are carefully designed and printed on wood-free premium quality paper.\n\nThe paper size is 155 mm x 225 mm (6.1 X 8.8 inches).",metaKeywords:null,canonicalURL:"/page/order-print-copies",contentRaw:'[{"type":"htmlEditorComponent","content":"InTechOpen contributors can order print books at a special price ranging from:
\\n\\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\\n\\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\\n\\n\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nASEAN - Books International
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nMallory International Ltd
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'InTechOpen contributors can order print books at a special price ranging from:
\n\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\n\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\n\n\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nASEAN - Books International
\n\nChina Publishers Services Ltd - CPS
\n\nMallory International Ltd
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15790}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0"},books:[{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9667",title:"Neuroimmunology",subtitle:null,isOpenForSubmission:!0,hash:"9cf0e8203ce088c0b84add014fd8d382",slug:null,bookSignature:"Prof. Robert Weissert",coverURL:"https://cdn.intechopen.com/books/images_new/9667.jpg",editedByType:null,editors:[{id:"79343",title:"Prof.",name:"Robert",surname:"Weissert",slug:"robert-weissert",fullName:"Robert Weissert"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10270",title:"Fog Computing",subtitle:null,isOpenForSubmission:!0,hash:"54853b3034f0348a6157b5591f8d95f3",slug:null,bookSignature:"Dr. Isiaka Ajewale Alimi, Dr. Nelson Muga, Dr. Qin Xin and Dr. Paulo P. Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/10270.jpg",editedByType:null,editors:[{id:"208236",title:"Dr.",name:"Isiaka",surname:"Alimi",slug:"isiaka-alimi",fullName:"Isiaka Alimi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:null,isOpenForSubmission:!0,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:null,bookSignature:"Prof. Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:null,editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:110},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5238},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"640",title:"Economic Geology",slug:"economic-geology",parent:{title:"Geology and Geophysics",slug:"geology-and-geophysics"},numberOfBooks:1,numberOfAuthorsAndEditors:6,numberOfWosCitations:4,numberOfCrossrefCitations:6,numberOfDimensionsCitations:9,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"economic-geology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1551",title:"Mining Methods",subtitle:null,isOpenForSubmission:!1,hash:"0992b82f531fb76fb833acf59850e37d",slug:"mining-methods",bookSignature:"Turgay Onargan",coverURL:"https://cdn.intechopen.com/books/images_new/1551.jpg",editedByType:"Edited by",editors:[{id:"104892",title:"Prof.",name:"Turgay",middleName:null,surname:"Onargan",slug:"turgay-onargan",fullName:"Turgay Onargan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"30795",doi:"10.5772/39172",title:"Surface Coal Mining Methods in Australia",slug:"surface-coal-mining-methods-in-australia",totalDownloads:17989,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Rudrajit Mitra and Serkan Saydam",authors:[{id:"138736",title:"Prof.",name:"Serkan",middleName:null,surname:"Saydam",slug:"serkan-saydam",fullName:"Serkan Saydam"}]},{id:"30796",doi:"10.5772/35061",title:"Surface Coal Mining Methods in China",slug:"surface-coal-mining-methods-in-china",totalDownloads:3779,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Changsheng Ji",authors:[{id:"102822",title:"Prof.",name:"Changsheng",middleName:null,surname:"Ji",slug:"changsheng-ji",fullName:"Changsheng Ji"}]},{id:"30797",doi:"10.5772/39174",title:"Ground Control for Underground Evaporite Mine in Turkey",slug:"ground-control-for-underground-evaporite-mine-in-turkey",totalDownloads:3305,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"T. Onargan, K. Kucuk, A. Deliormanli, S. Saydam and M.Y. Koca",authors:[{id:"104892",title:"Prof.",name:"Turgay",middleName:null,surname:"Onargan",slug:"turgay-onargan",fullName:"Turgay Onargan"}]}],mostDownloadedChaptersLast30Days:[{id:"30795",title:"Surface Coal Mining Methods in Australia",slug:"surface-coal-mining-methods-in-australia",totalDownloads:17988,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Rudrajit Mitra and Serkan Saydam",authors:[{id:"138736",title:"Prof.",name:"Serkan",middleName:null,surname:"Saydam",slug:"serkan-saydam",fullName:"Serkan Saydam"}]},{id:"30798",title:"Longhole Stoping at the Asikoy Underground Copper Mine in Turkey",slug:"longhole-stoping-at-the-asikoy-underground-copper-mine-in-turkey",totalDownloads:5408,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Alper Gönen",authors:[{id:"138734",title:"Dr.",name:"Alper",middleName:null,surname:"Gonen",slug:"alper-gonen",fullName:"Alper Gonen"}]},{id:"30799",title:"Leak Tightness of Underground Carbon Dioxide Storage Sites and Safety of Underground CO2 Storage by Example of the Upper Silesian Coal Basin (Poland)",slug:"tightness-of-underground-carbon-dioxide-storage-sites-and-safety-of-underground-co2-",totalDownloads:1873,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Eleonora Solik-Heliasz",authors:[{id:"107268",title:"Dr.",name:"Eleonora",middleName:null,surname:"Solik-Heliasz",slug:"eleonora-solik-heliasz",fullName:"Eleonora Solik-Heliasz"}]},{id:"30797",title:"Ground Control for Underground Evaporite Mine in Turkey",slug:"ground-control-for-underground-evaporite-mine-in-turkey",totalDownloads:3304,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"T. Onargan, K. Kucuk, A. Deliormanli, S. Saydam and M.Y. Koca",authors:[{id:"104892",title:"Prof.",name:"Turgay",middleName:null,surname:"Onargan",slug:"turgay-onargan",fullName:"Turgay Onargan"}]},{id:"30796",title:"Surface Coal Mining Methods in China",slug:"surface-coal-mining-methods-in-china",totalDownloads:3778,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Changsheng Ji",authors:[{id:"102822",title:"Prof.",name:"Changsheng",middleName:null,surname:"Ji",slug:"changsheng-ji",fullName:"Changsheng Ji"}]}],onlineFirstChaptersFilter:{topicSlug:"economic-geology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/142499/luca-cucullo",hash:"",query:{},params:{id:"142499",slug:"luca-cucullo"},fullPath:"/profiles/142499/luca-cucullo",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()