Classes of natural waters.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"116",leadTitle:null,fullTitle:"Advances in Computer Science and Engineering",title:"Advances in Computer Science and Engineering",subtitle:null,reviewType:"peer-reviewed",abstract:"The book Advances in Computer Science and Engineering constitutes the revised selection of 23 chapters written by scientists and researchers from all over the world. The chapters cover topics in the scientific fields of Applied Computing Techniques, Innovations in Mechanical Engineering, Electrical Engineering and Applications and Advances in Applied Modeling.",isbn:null,printIsbn:"978-953-307-173-2",pdfIsbn:"978-953-51-5990-2",doi:"10.5772/606",price:139,priceEur:155,priceUsd:179,slug:"advances-in-computer-science-and-engineering",numberOfPages:474,isOpenForSubmission:!1,isInWos:1,hash:"897d50d8b6fb91d0957ce38776069702",bookSignature:"Matthias Schmidt",publishedDate:"March 22nd 2011",coverURL:"https://cdn.intechopen.com/books/images_new/116.jpg",numberOfDownloads:58418,numberOfWosCitations:40,numberOfCrossrefCitations:40,numberOfDimensionsCitations:80,hasAltmetrics:1,numberOfTotalCitations:160,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 1st 2010",dateEndSecondStepPublish:"June 29th 2010",dateEndThirdStepPublish:"October 4th 2010",dateEndFourthStepPublish:"December 3rd 2010",dateEndFifthStepPublish:"February 16th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"21289",title:"Dr.",name:"Matthias",middleName:null,surname:"Schmidt",slug:"matthias-schmidt",fullName:"Matthias Schmidt",profilePictureURL:"https://mts.intechopen.com/storage/users/21289/images/1553_n.jpg",biography:"Dr. Matthias Schmidt was born in 1978 in Germany. He studied industrial engineering and economics in Hanover. After his work as a project engineer he finished his doctoral thesis in the field of assembly logistics and received his doctor’s decree from the Faculty of Mechanical Engineering of the Leibniz University Hannover. Dr. Schmidt is the author of several international articles and book chapters. He has lectureships in the areas of company management and lean production. Currently, he is the Head of Research and Industry at the Institute of Production Systems and Logistics of the Leibniz University Hannover. He coordinates research activities in the areas factory planning, logistics, production management, lean production and ergonomics as well as industrial consulting projects in the same areas.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"564",title:"Ubiquitous Computing",slug:"ubiquitous-computing"}],chapters:[{id:"14394",title:"Next Generation Self-learning Style in Pervasive Computing Environments",doi:"10.5772/16213",slug:"next-generation-self-learning-style-in-pervasive-computing-environments",totalDownloads:1819,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Kaoru Ota, Mianxiong Dong, Long Zheng, Jun Ma, Li Li, Daqiang Zhang and Minyi Guo",downloadPdfUrl:"/chapter/pdf-download/14394",previewPdfUrl:"/chapter/pdf-preview/14394",authors:[{id:"18150",title:"Dr.",name:"Mianxiong",surname:"Dong",slug:"mianxiong-dong",fullName:"Mianxiong Dong"}],corrections:null},{id:"14395",title:"Automatic Generation of Programs",doi:"10.5772/16012",slug:"automatic-generation-of-programs",totalDownloads:1388,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Ondřej Popelka and Jiří Štastný",downloadPdfUrl:"/chapter/pdf-download/14395",previewPdfUrl:"/chapter/pdf-preview/14395",authors:[{id:"22883",title:"Dr.",name:"Ondřej",surname:"Popelka",slug:"ondrej-popelka",fullName:"Ondřej Popelka"},{id:"23182",title:"Dr.",name:"Jiří",surname:"Šťastný",slug:"jiri-stastny",fullName:"Jiří Šťastný"}],corrections:null},{id:"14396",title:"Application of Computer Algebra into the Analysis of a Malaria Model using MAPLE",doi:"10.5772/15588",slug:"application-of-computer-algebra-into-the-analysis-of-a-malaria-model-using-maple",totalDownloads:2604,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Davinson Castaño Cano",downloadPdfUrl:"/chapter/pdf-download/14396",previewPdfUrl:"/chapter/pdf-preview/14396",authors:[{id:"21328",title:"Dr.",name:"Davinson",surname:"Castaño Cano",slug:"davinson-castano-cano",fullName:"Davinson Castaño Cano"}],corrections:null},{id:"14397",title:"Understanding Virtual Reality Technology: Advances and Applications",doi:"10.5772/15529",slug:"understanding-virtual-reality-technology-advances-and-applications",totalDownloads:2904,totalCrossrefCites:4,totalDimensionsCites:13,signatures:"Moses Okechukwu Onyesolu and Felista Udoka Eze",downloadPdfUrl:"/chapter/pdf-download/14397",previewPdfUrl:"/chapter/pdf-preview/14397",authors:[{id:"21147",title:"Dr.",name:"Moses",surname:"Onyesolu",slug:"moses-onyesolu",fullName:"Moses Onyesolu"},{id:"24832",title:"Mr.",name:"Felista Udoka",surname:"Eze",slug:"felista-udoka-eze",fullName:"Felista Udoka Eze"}],corrections:null},{id:"14398",title:"Real-Time Cross-Layer Routing Protocol for Ad Hoc Wireless Sensor Networks",doi:"10.5772/15626",slug:"real-time-cross-layer-routing-protocol-for-ad-hoc-wireless-sensor-networks",totalDownloads:2354,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Khaled Daabaj and Shubat Ahmeda",downloadPdfUrl:"/chapter/pdf-download/14398",previewPdfUrl:"/chapter/pdf-preview/14398",authors:[{id:"21446",title:"PhD.",name:"Khaled",surname:"Daabaj",slug:"khaled-daabaj",fullName:"Khaled Daabaj"},{id:"22971",title:"Prof.",name:"Shubat S.",surname:"Ahmeda",slug:"shubat-s.-ahmeda",fullName:"Shubat S. Ahmeda"}],corrections:null},{id:"14399",title:"Experimental Implementation of Lyapunov based MRAC for Small Biped Robot Mimicking Human Gait",doi:"10.5772/16038",slug:"experimental-implementation-of-lyapunov-based-mrac-for-small-biped-robot-mimicking-human-gait",totalDownloads:2990,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Pavan K. Vempaty, Ka C. Cheok, and Robert N. K. Loh",downloadPdfUrl:"/chapter/pdf-download/14399",previewPdfUrl:"/chapter/pdf-preview/14399",authors:[{id:"22892",title:"PhD.",name:"Pavan Kumar",surname:"Vempaty",slug:"pavan-kumar-vempaty",fullName:"Pavan Kumar Vempaty"}],corrections:null},{id:"14400",title:"Performance Assessment of Multi-State Systems with Critical Failure Modes: Application to the Flotation Metallic Arsenic Circuit",doi:"10.5772/15112",slug:"performance-assessment-of-multi-state-systems-with-critical-failure-modes-application-to-the-flotati",totalDownloads:1402,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Seraphin C. Abou",downloadPdfUrl:"/chapter/pdf-download/14400",previewPdfUrl:"/chapter/pdf-preview/14400",authors:[{id:"19712",title:"Dr.",name:"Seraphin Chally",surname:"Abou",slug:"seraphin-chally-abou",fullName:"Seraphin Chally Abou"}],corrections:null},{id:"14401",title:"Object Oriented Modeling of Rotating Electrical Machines",doi:"10.5772/15898",slug:"object-oriented-modeling-of-rotating-electrical-machines",totalDownloads:3142,totalCrossrefCites:3,totalDimensionsCites:4,signatures:"Christian Kral and Anton Haumer",downloadPdfUrl:"/chapter/pdf-download/14401",previewPdfUrl:"/chapter/pdf-preview/14401",authors:[{id:"2951",title:"Dr.",name:"Christian",surname:"Kral",slug:"christian-kral",fullName:"Christian Kral"},{id:"22442",title:"Mr.",name:"Anton",surname:"Haumer",slug:"anton-haumer",fullName:"Anton Haumer"}],corrections:null},{id:"14402",title:"Mathematical Modelling and Simulation of Pneumatic Systems",doi:"10.5772/15313",slug:"mathematical-modelling-and-simulation-of-pneumatic-systems",totalDownloads:4515,totalCrossrefCites:3,totalDimensionsCites:8,signatures:"Djordje Dihovicni and Miroslav Medenica",downloadPdfUrl:"/chapter/pdf-download/14402",previewPdfUrl:"/chapter/pdf-preview/14402",authors:[{id:"20314",title:"Dr.",name:"Djordje",surname:"Dihovicni",slug:"djordje-dihovicni",fullName:"Djordje Dihovicni"},{id:"20315",title:"Dr.",name:"Miroslav",surname:"Medenica",slug:"miroslav-medenica",fullName:"Miroslav Medenica"}],corrections:null},{id:"14403",title:"Longitudinal Vibration of Isotropic Solid Rods: From Classical to Modern Theories",doi:"10.5772/15662",slug:"longitudinal-vibration-of-isotropic-solid-rods-from-classical-to-modern-theories",totalDownloads:4610,totalCrossrefCites:7,totalDimensionsCites:18,signatures:"Michael Shatalov, Julian Marais, Igor Fedotov and Michel Djouosseu Tenkam",downloadPdfUrl:"/chapter/pdf-download/14403",previewPdfUrl:"/chapter/pdf-preview/14403",authors:[{id:"8202",title:"Dr.",name:"Michael",surname:"Shatalov",slug:"michael-shatalov",fullName:"Michael Shatalov"}],corrections:null},{id:"14404",title:"A Multiphysics Analysis of Aluminum Welding Flux Composition Optimization Methods",doi:"10.5772/15430",slug:"a-multiphysics-analysis-of-aluminum-welding-flux-composition-optimization-methods",totalDownloads:3075,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Joseph I. Achebo",downloadPdfUrl:"/chapter/pdf-download/14404",previewPdfUrl:"/chapter/pdf-preview/14404",authors:[{id:"20798",title:"Dr.",name:"Joseph",surname:"Achebo",slug:"joseph-achebo",fullName:"Joseph Achebo"}],corrections:null},{id:"14405",title:"Estimation of Space Air Change Rates and CO2 Generation Rates for Mechanically-Ventilated Buildings",doi:"10.5772/16062",slug:"estimation-of-space-air-change-rates-and-co2-generation-rates-for-mechanically-ventilated-buildings",totalDownloads:2453,totalCrossrefCites:6,totalDimensionsCites:12,signatures:"Xiaoshu Lu, Tao Lu and Martti Viljanen",downloadPdfUrl:"/chapter/pdf-download/14405",previewPdfUrl:"/chapter/pdf-preview/14405",authors:[{id:"2657",title:"Dr.",name:"Xiaoshu",surname:"Lu",slug:"xiaoshu-lu",fullName:"Xiaoshu Lu"},{id:"23028",title:"M.Sc",name:"Tao",surname:"Lu",slug:"tao-lu",fullName:"Tao Lu"},{id:"23029",title:"Prof.",name:"Martti",surname:"Viljanen",slug:"martti-viljanen",fullName:"Martti Viljanen"}],corrections:null},{id:"14406",title:"Decontamination of Solid and Powder Foodstuffs using DIC Technology",doi:"10.5772/16025",slug:"decontamination-of-solid-and-powder-foodstuffs-using-dic-technology",totalDownloads:3575,totalCrossrefCites:4,totalDimensionsCites:8,signatures:"Tamara Allaf, Colette Besombes, Ismail Mih, Laurent Lefevre and Karim Allaf",downloadPdfUrl:"/chapter/pdf-download/14406",previewPdfUrl:"/chapter/pdf-preview/14406",authors:[{id:"22910",title:"Prof.",name:"Abdul Karim Salim",surname:"Allaf",slug:"abdul-karim-salim-allaf",fullName:"Abdul Karim Salim Allaf"},{id:"22911",title:"Ms.",name:"Tamara",surname:"Allaf",slug:"tamara-allaf",fullName:"Tamara Allaf"},{id:"24143",title:"Ms.",name:"Colette",surname:"Besombes",slug:"colette-besombes",fullName:"Colette Besombes"},{id:"24144",title:"Mr.",name:"Ismail",surname:"Mih",slug:"ismail-mih",fullName:"Ismail Mih"},{id:"24145",title:"Prof.",name:"Laurent",surname:"Lefevre",slug:"laurent-lefevre",fullName:"Laurent Lefevre"}],corrections:null},{id:"14407",title:"Dynamic Analysis of a DC-DC Multiplier Converter",doi:"10.5772/15217",slug:"dynamic-analysis-of-a-dc-dc-multiplier-converter",totalDownloads:2787,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"J. C. Mayo-Maldonado, R. Salas-Cabrera, J. C. Rosas-Caro, H. Cisneros-Villegas, M. Gomez-Garcia, E. N.Salas-Cabrera, R. Castillo-Gutierrez and O. Ruiz-Martinez",downloadPdfUrl:"/chapter/pdf-download/14407",previewPdfUrl:"/chapter/pdf-preview/14407",authors:[{id:"19999",title:"Dr.",name:"Ruben",surname:"Salas-Cabrera",slug:"ruben-salas-cabrera",fullName:"Ruben Salas-Cabrera"},{id:"20000",title:"Prof.",name:"Julio C.",surname:"Rosas-Caro",slug:"julio-c.-rosas-caro",fullName:"Julio C. Rosas-Caro"},{id:"20001",title:"MSc.",name:"Jonathan C.",surname:"Mayo-Maldonado",slug:"jonathan-c.-mayo-maldonado",fullName:"Jonathan C. Mayo-Maldonado"},{id:"21908",title:"Prof.",name:"Eduardo Nacu",surname:"Salas-Cabrera",slug:"eduardo-nacu-salas-cabrera",fullName:"Eduardo Nacu Salas-Cabrera"},{id:"21909",title:"Prof.",name:"Rafael",surname:"Castillo-Gutierrez",slug:"rafael-castillo-gutierrez",fullName:"Rafael Castillo-Gutierrez"},{id:"22004",title:"Prof.",name:"Hermenegildo",surname:"Cisneros-Villegas",slug:"hermenegildo-cisneros-villegas",fullName:"Hermenegildo Cisneros-Villegas"},{id:"22536",title:"Prof.",name:"Mario",surname:"Gomez-Garcia",slug:"mario-gomez-garcia",fullName:"Mario Gomez-Garcia"},{id:"24284",title:"Prof.",name:"Omar",surname:"Ruiz-Martinez",slug:"omar-ruiz-martinez",fullName:"Omar Ruiz-Martinez"}],corrections:null},{id:"14408",title:"Computation Time Efficient Models of DC-to-DC Converters for Multi-Domain Simulations",doi:"10.5772/15813",slug:"computation-time-efficient-models-of-dc-to-dc-converters-for-multi-domain-simulations",totalDownloads:1845,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Johannes V. Gragger",downloadPdfUrl:"/chapter/pdf-download/14408",previewPdfUrl:"/chapter/pdf-preview/14408",authors:[{id:"22126",title:"Mr.",name:"Johannes V.",surname:"Gragger",slug:"johannes-v.-gragger",fullName:"Johannes V. Gragger"}],corrections:null},{id:"14409",title:"How to Prove Period-Doubling Bifurcations Existence for Systems of any Dimension - Applications in Electronics and Thermal Field",doi:"10.5772/14985",slug:"how-to-prove-period-doubling-bifurcations-existence-for-systems-of-any-dimension-applications-in-ele",totalDownloads:3450,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Céline Gauthier-Quémard",downloadPdfUrl:"/chapter/pdf-download/14409",previewPdfUrl:"/chapter/pdf-preview/14409",authors:[{id:"19422",title:"Dr.",name:"Céline",surname:"Gauthier-Quémard",slug:"celine-gauthier-quemard",fullName:"Céline Gauthier-Quémard"}],corrections:null},{id:"14410",title:"Geometry-Induced Transport Properties of Two Dimensional Networks",doi:"10.5772/15434",slug:"geometry-induced-transport-properties-of-two-dimensional-networks",totalDownloads:1084,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Zbigniew Domański",downloadPdfUrl:"/chapter/pdf-download/14410",previewPdfUrl:"/chapter/pdf-preview/14410",authors:[{id:"20811",title:"Prof.",name:"Zbigniew",surname:"Domański",slug:"zbigniew-domanski",fullName:"Zbigniew Domański"}],corrections:null},{id:"14411",title:"New Approach to a Tourist Navigation System that Promotes Interaction with Environment",doi:"10.5772/15661",slug:"new-approach-to-a-tourist-navigation-system-that-promotes-interaction-with-environment",totalDownloads:1535,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Yoshio Nakatani, Ken Tanaka and Kanako Ichikawa",downloadPdfUrl:"/chapter/pdf-download/14411",previewPdfUrl:"/chapter/pdf-preview/14411",authors:[{id:"21327",title:"Dr.",name:"Yoshio",surname:"Nakatani",slug:"yoshio-nakatani",fullName:"Yoshio Nakatani"}],corrections:null},{id:"14412",title:"Logistic Operating Curves in Theory and Practice",doi:"10.5772/15573",slug:"logistic-operating-curves-in-theory-and-practice",totalDownloads:3743,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"Peter Nyhuis and Matthias Schmidt",downloadPdfUrl:"/chapter/pdf-download/14412",previewPdfUrl:"/chapter/pdf-preview/14412",authors:[{id:"21289",title:"Dr.",name:"Matthias",surname:"Schmidt",slug:"matthias-schmidt",fullName:"Matthias Schmidt"},{id:"21290",title:"Dr.",name:"Peter",surname:"Nyhuis",slug:"peter-nyhuis",fullName:"Peter Nyhuis"}],corrections:null},{id:"14413",title:"Lütkenhöner’s „Intensity Dependence of Auditory Responses“: An Instructional Example in How Not To Do Computational Neurobiology",doi:"10.5772/15193",slug:"l-tkenh-ner-s-intensity-dependence-of-auditory-responses-an-instructional-example-in-how-not-to-do-c",totalDownloads:1484,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Lance Nizami",downloadPdfUrl:"/chapter/pdf-download/14413",previewPdfUrl:"/chapter/pdf-preview/14413",authors:[{id:"19921",title:"Dr.",name:"Lance",surname:"Nizami",slug:"lance-nizami",fullName:"Lance Nizami"}],corrections:null},{id:"14414",title:"A Warning to the Human-Factors Engineer: False Derivations of Riesz’s Weber Fraction, Piéron’s Law, and Others Within Norwich et al.’s Entropy Theory of Perception",doi:"10.5772/15189",slug:"a-warning-to-the-human-factors-engineer-false-derivations-of-riesz-s-weber-fraction-pi-ron-s-law-and",totalDownloads:1275,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Lance Nizami",downloadPdfUrl:"/chapter/pdf-download/14414",previewPdfUrl:"/chapter/pdf-preview/14414",authors:[{id:"19921",title:"Dr.",name:"Lance",surname:"Nizami",slug:"lance-nizami",fullName:"Lance Nizami"}],corrections:null},{id:"14415",title:"A Model of Adding Relations in Two Levels of a Linking Pin Organization Structure with Two Subordinates",doi:"10.5772/15594",slug:"a-model-of-adding-relations-in-two-levels-of-a-linking-pin-organization-structure-with-two-subordina",totalDownloads:2763,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Kiyoshi Sawada",downloadPdfUrl:"/chapter/pdf-download/14415",previewPdfUrl:"/chapter/pdf-preview/14415",authors:[{id:"839",title:"Prof.",name:"Kiyoshi",surname:"Sawada",slug:"kiyoshi-sawada",fullName:"Kiyoshi Sawada"}],corrections:null},{id:"14416",title:"The Multi-Objective Refactoring Set Selection Problem - A Solution Representation Analysis",doi:"10.5772/15975",slug:"the-multi-objective-refactoring-set-selection-problem-a-solution-representation-analysis",totalDownloads:1623,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Camelia Chisăliţă-Creţu",downloadPdfUrl:"/chapter/pdf-download/14416",previewPdfUrl:"/chapter/pdf-preview/14416",authors:[{id:"22732",title:"Dr.",name:"Maria-Camelia",surname:"Chisalita-Cretu",slug:"maria-camelia-chisalita-cretu",fullName:"Maria-Camelia Chisalita-Cretu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"67321",slug:"corrigendum-to-clinical-approach-in-the-diagnosis-of-acute-appendicitis",title:"Corrigendum to: Clinical Approach in the Diagnosis of Acute Appendicitis",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/67321.pdf",downloadPdfUrl:"/chapter/pdf-download/67321",previewPdfUrl:"/chapter/pdf-preview/67321",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/67321",risUrl:"/chapter/ris/67321",chapter:{id:"61365",slug:"clinical-approach-in-the-diagnosis-of-acute-appendicitis",signatures:"Alfredo Alvarado",dateSubmitted:"September 14th 2017",dateReviewed:"February 16th 2018",datePrePublished:null,datePublished:"June 27th 2018",book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221775",title:"M.D.",name:"Alfredo",middleName:null,surname:"Alvarado",fullName:"Alfredo Alvarado",slug:"alfredo-alvarado",email:"alfredoalvara@hotmail.com",position:null,institution:null}]}},chapter:{id:"61365",slug:"clinical-approach-in-the-diagnosis-of-acute-appendicitis",signatures:"Alfredo Alvarado",dateSubmitted:"September 14th 2017",dateReviewed:"February 16th 2018",datePrePublished:null,datePublished:"June 27th 2018",book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221775",title:"M.D.",name:"Alfredo",middleName:null,surname:"Alvarado",fullName:"Alfredo Alvarado",slug:"alfredo-alvarado",email:"alfredoalvara@hotmail.com",position:null,institution:null}]},book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10833",leadTitle:null,title:"Tumor Angiogenesis",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"43a677751c41bab37183c0082984f056",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 25th 2020",dateEndSecondStepPublish:"December 16th 2020",dateEndThirdStepPublish:"February 14th 2021",dateEndFourthStepPublish:"May 5th 2021",dateEndFifthStepPublish:"July 4th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"55753",title:"Desalination: A Means of Increasing Irrigation Water Sources for Sustainable Crop Production",doi:"10.5772/intechopen.69312",slug:"desalination-a-means-of-increasing-irrigation-water-sources-for-sustainable-crop-production",body:'
As more than 60% of rainfall, the primary source of water for agriculture is lost to evapotranspiration [1], with the continuous increase in human population and its resultant increase in water demand which is expected to nearly double its size in the next 50 years, the exploitation of the available water resources and the advent of climate change with its global warming effect on available water for crop production, the search for new, sustainable and drought‐proof water resources is inevitable [2]. He further stated that since agricultural activities consume more than 60% of the total water demand, using treated wastewater for irrigation can reduce depletion of groundwater significantly. In Refs. [1, 3], it was stated that water‐scarce countries especially the Middle East countries located in the arid and semi‐arid zones will have to rely more on the use of non‐conventional irrigation water resources such as saline aquifers to partly alleviate water scarcity. Although, the present freshwater resources may soon be insufficient to meet the growing demand for food [4], most of these drought‐proof water resources contain dissolved solids and chemicals such as salts. The application of these water resources for irrigation purposes often result to the detrimental effect of salinization of soils, environmental degradation and low crop yield.
Salinization is one of the land degradation processes rendering millions of hectares of land unproductive for crop cultivation. It was stated in Ref. [5] that salinization is one of the most serious land degradation problems facing the world. According to El‐Swaify [6], salinity is when an ‘excessive’ amount or concentration of soluble salts occurs in the soil, either naturally or as a result of mismanaged irrigation water. Although, he further reported that salt‐affected soils are most abundant in arid regions worldwide, the extent of saline soils is variable [7], whereas Yan et al. [5] stated that soil salinity vary in time and space. Salts are often introduced into soil and water systems via the use of excessive inorganic fertilizers which are leached or washed away as runoff into underground water bodies used for irrigation purposes. According to El‐Swaify [6], salts in soil and irrigation water may be either naturally present as products of geochemical weathering of rocks and parent materials or derived directly from sea water flooding, spray or intrusion into groundwater sources and/or caused by irrigation mismanagement, particularly when internal soil drainage is impeded. Due to the presence of salts, most saline lands are virtually uncultivated in the dry season because of strong salinity and lack of water in good quality and quantity [7]. According to Gleick [8], almost half of the human population suffers insufficient access to portable water, and water scarcity in agriculture has been considered to be a global crisis [9].
Hence, desalination, which is any process that removes salt from water [10] to produce desalinized water, is increasingly considered a source of water for agriculture [4]. Even though soil salinity has been affecting agriculture for thousands of years, significant research has been conducted only in the past 100 years [11]. Thus, this review highlights some of the effects of salinity on soil and crop growth and yield, and some possible methods of desalinization of water and soil resources for optimum utilization in a crop production system.
Different salts, cations and anions vary in their effects on plants and soils, and as such differences in ionic compositions of soil solutions and waters with similar electrical conductivity values may lead to dissimilar effects [6]. Salinity may adversely affect soil structure and other physical properties, and this could finally be transmitted to crop growth and development. For instance, the breakdown of soil structure can exacerbate salt effects on crops through increased surface crusting, germination inhibition and reduced permeability, porosity and aeration [6]. In Ref. [12], it was reported that soil infiltration rate was greatly affected by sodicity and electrolyte concentration of the irrigation water. In Ref. [13], it was reported that increasing salinity and sodicity resulted in a progressively smaller, more stressed microbial community which was less metabolically efficient. Saline soils have been reported to contain sufficient salts at the root zone to impair crop growth [7]. Also, Corwin et al. [14] noted salinity as one of the most significant soil properties influencing cotton yield in a response model. In Ref. [15], it was reported that the emergence of sunflower and maize was affected by salinity and that the higher the salinity, the lower the leaf area and the dry matter production.
Desalination describes a range of processes which are used to reduce the amount of dissolved solids in water [16]. Also, Nofal [17] defined desalination as the removal of excess salt and other minerals from water in order to get fresh water suitable for drinking water, animal consumption and irrigation purposes. It is used to produce clean water from water sources containing dissolved chemicals, and in most cases, water sources are salty, producing fresh water from sea water or brackish water [16]. They further stated that natural waters may be classified approximately according to their total dissolved solid (TDS) values as listed in Table 1. Desalination is a water saving alternative to brackish water irrigation even though its diffusion as a viable method of water treatment has been limited by high costs and concern about the lack of plant nutrients in desalinated water [17]. In Ref. [4], it was also confirmed that desalination not only separates the undesirable salts from the water but also removes ions that are essential to plant growth. Although, a recent report concludes that the costs of desalination remain prohibitively expensive for full use by irrigated agriculture [18], for high value cash crops like green‐house vegetables and flowers, its use may be economically feasible [4]. According to Smith and Shaw [16], low‐cost methods of desalination by distillation are also available.
Type of water | Total dissolved solids (mg/L) |
---|---|
Sweet waters | 0–1000 |
Brackish waters | 1000–5000 |
Moderately saline waters | 5000–10,000 |
Severely saline waters | 10,000–30,000 |
Seawater | More than 30,000 |
Due to the impact of climate change which has led to uncertainty in the amount and duration of rainfall for crop production, 69% of global water supply is being channelled for irrigation purpose [19]. As a result, present fresh water resources may soon be insufficient to meet the growing demand for food [4]. Although, at present, sea water desalination provides 1% of the world’s drinking water, desalinized water is increasingly considered a source of water for agriculture [4]. In some countries, farmers have already adopted the use of desalinized brackish water for crop production. For instance, Mechell and Lesikar [20] reported that ∼22% of water desalinated in Spain are used for agricultural irrigation purposes, whereas an Australian survey found that 53% of the population envisioned desalinated water usage for irrigation of vegetables as highly likely.
Desalination is a water saving alternative to brackish water irrigation [17]. By implication, it could increase the possible sources of water for irrigation, and as such enhance sustainable all‐year round crop production. According to Ref. [4], the low level of salinity of desalinized water is an extra benefit, because the salts [especially Sodium (Na+) and Chlorine (Cl−)] damage soils, stunt plant growth and harm the environment. Hence, desalinized water could improve the quality of irrigation water thereby reducing the possibilities of the incidence of soil salinity with its consequent adverse effect on crop growth and yield via its deteriorating effects on soil properties. Furthermore, desalination could increase the size of land area for cultivation, the number of crops (including salt sensitive crops) cultivated, improve crop quality, increase crop productivity and increase the broad band of water use for other purposes [17]. Desalination has been reported to improve farmers’ income [17].
According to Refs. [10, 21], techniques used in a desalination process essentially separates saline water into two parts, hence, two streams of water are produced.
Treated water that has low concentrations of salts and minerals.
Concentrate or brine, which has salt and mineral concentrations higher than that of the pre‐treated water.
It is often associated with electrical generation plants, from which both electricity and waste heat are available [16]. Some of these desalination methods could be relatively expensive, whereas others such as desalination by distillation could be low‐cost methods. According to Refs. [10, 21], the two major types of technologies used for desalination can be broadly classified into thermal technologies (multi‐stage flash distillation, multi‐effect distillation and vapour compression distillation) and membrane technologies (electrodialysis/electrodialysis reversal and reverse osmosis), with reverse osmosis, and distillation followed by condensation being two main desalination methods [16]. In Ref. [10], it was stated that both technologies need energy to operate and produce fresh water. However, the most appropriate method can be selected on the basis of the total dissolved solids (TDS) value of the raw water (Table 2).
Process | Total dissolved solid value (mg/L) |
---|---|
Ion exchange (not described here) | 500–1000 |
Electrodialysis | 500–3000 |
Reverse osmosis (standard membranes) | 500–5000 |
Reverse osmosis (high‐resistance membranes) | Over 5000 |
Distillation | Over 30,000 |
Suitability of desalination process based on the total dissolved solids.
Source: Smith and Shawerji [16].
These technologies involve the eating of saline water and collecting the condensed vapour distillate to produce pure water [10]. In Ref. [21], it was reported that thermal distillation technologies are widely used in the Middle East, primarily because the region’s petroleum reserves keep energy cost low. However, thermal technologies have rarely been used for brackish water desalination, because of the high cost involved [10]. According to Refs. [6, 21], thermal technologies are grouped into three major large scale processes, i.e., multi‐stage flash distillation (MSF), multi‐effect distillation (MED) and vapour compression distillation (VCD). They stated that solar distillation, which is another thermal technology, is typically used for very small production rates.
This process of distillation involves the use of several (multi‐stage) chambers [10]. According to Ref. [21], this process sends the pre‐treated saline water through multiple chambers as illustrated in Figure 1 [22]. In the MSF process, each successive stage of the plant operates at progressively lower pressures. In Ref. [21], it was explained that the pre‐treated saline water is heated and compressed to a high temperature and high pressure, and the pressure is reduced as the water progressively passes through the chambers, causing the water to rapidly boil. In other words, the pre‐treated water is first heated under high pressure as it is passed into the first ‘flash chamber\', where the pressure is released, causing the water to boil rapidly, resulting in sudden evaporation or ‘flashing\', which continues in each successive stage, because the pressure at each stage is lower than that of the previous stage [10]. The vapour produced by the flashing is then condensed on a heat exchanger tubing that runs through each stage and collected as fresh water. Generally, only a small percentage of the pre‐treated saline water is converted into vapour and condensed [10].
An illustration of the multi-stage flash distillation (MSF) process (Source: Buros, 1990).
The MED process has been used since the late 1950s and the early 1960s [10]. According to Ref. [21], the MED employs the same principles as the MSF process except that instead of using multiple chambers of a single vessel, MED uses successive vessels (Figure 2), i.e., MED occurs in a series of vessels, using the principles of evaporation and condensation at reduced ambient pressure [21]. Here, water is produced by a series of evaporator vessels at progressively lower pressures. Water boils at lower temperatures as pressure decreases, such that the water vapour of the first vessel serves as the heating medium for the second, and so on [10]. According to Ref. [21], the multiple vessels make the MED process more efficient, while [10] stated that the more the vessels, the higher the performance ratio of the MED.
A schematic diagram of a multi-effect distillation (MED) process (Source: [22]).
The VCD can function independently or in combination with other thermal distillation processes such as the MED [10, 21]. According to Ref. [23], the heat for evaporating the pre‐treated saline water comes from the compression of vapour, rather than the direct exchange of heat from steam produced in a boiler (Figure 3). It usually involves the use of a mechanical compressor to generate heat for evaporation [10]. Vapour compression distillation unit are commonly used to produce fresh water for small‐ to medium‐scale purposes such as resorts, hotels and industrial applications [21].
An example of a vapour compression distillation (VCD) process (Source: [22]).
This involves the use of solar energy for water desalination as shown in Figure 4. Also, Buros [21] stated that although the designs of solar distillation units vary greatly, the basic principles are the same. They explained that the sun provides the energy to evaporate the saline water, and the water vapour formed from the evaporation process then condenses on a clear glass covering before it is collected as fresh water in the condensate trough. The clear glass or plastic covering is used to transmit radiant energy and also to allow water vapour to condense on its interior surface before it is collected as fresh water. Alike VCD, solar desalination is generally used for small‐scale operations [21].
An example of a solar still distillation process (Source: [22]).
According to Ref. [21], there are several membrane treatment processes, including reverse osmosis, nanofiltration, ultrafiltration and microfiltration. These processes involve the use of a barrier, which is a membrane, and a driving force. The membranes contain pores which differ in sizes according to the type of process (Figure 5). It was explained in Ref. [21] that membrane technologies often require that the water undergo chemical and physical pre‐treatment to limit blockage by debris and scale formation on the membrane surfaces. The general characteristics of membrane processes are presented in Table 3. Membrane technologies can be subdivided into two broad categories: electrodialysis/electrodialysis reversal (ed/edr) and reverse osmosis (RO) [10]. According to Ref. [21], the driving force used in electrodialysis or electrodialysis reversal is an electrical potential, whereas that used in reverse osmosis is a pressure gradient.
An illustration of the range of nominal membrane pore sizes for reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF) (Source: [23]).
Membrane process | Membrane driving force | Typical separation mechanism | Operating structure (pore size) | Typical operating range (μm) | Permeate description | Typical constituents removed |
---|---|---|---|---|---|---|
Microfiltration | Hydrostatic pressure difference or vacuum in open vessels | Sieve | Macropores (>50 nm) | 0.08–2.0 | Water + dissolved solutes | TSS, turbidity, protozoan oocysts and cysts, some bacteria and viruses |
Ultrafiltration | Hydrostatic pressure difference | Sieve | Mesopores (2–50 nm) | 0.005–0.2 | Water + small molecules | Macromolecules, colloids, most bacteria, some viruses, proteins |
Nanofiltration | Hydrostatic pressure difference | Sieve + solution/diffusion + exclusion | Micropores (<2 nm) | 0.001–0.01 | Water + very small molecules, ionic solutes | Small molecules, some hardness, viruses |
Reverse osmosis | Hydrostatic pressure difference | Solution/diffusion + exclusion | Dense (<2 nm) | 0.0001– 0.001 | Water + very small molecules, ionic solutes | Very small molecules, colour, hardness, sulfates, nitrate, sodium, other ions |
Dialysis | Concentration difference | Diffusion | Mesopores (2–50 nm) | – | Water + small molecules | Macromolecules, colloids, most bacteria, some viruses, proteins |
Electrodialysis | Electromotive force | Ion exchange with selective membranes | Micropores (<2 nm) | – | Water + ionic solutes | Ionized salt ions |
This is a voltage‐driven membrane process in which an electrical potential is used to move salts through a membrane, leaving fresh water behind as product water [10]. In Ref. [21], it was explained that the membrane used for ED/EDR are built in such a way that they only allow passage of either positively or negatively charged ions, but not both. Here, ionic molecules, such as sodium, chloride, calcium and carbonate in saline water, that are known to cause adverse effects on soil and crop productivity are removed from the treated water as the cations are attracted to the negative electrode, whereas the anions are attracted to the positive electrode while passing through selected membranes. According to Ref. [10], the membranes are usually arranged in an alternate pattern, with anion‐selective membrane followed by a cation‐selective membrane. He further explained that during this process, the salt content of the water channel is diluted, while concentrated solutions are formed at the electrodes. Concentrated and diluted solutions are created in the spaces between the alternating membranes, and these spaces bound by two membranes are called cells [10]. The pre‐treated saline water passes through all the cells simultaneously to provide a continuous flow of desalinated water and a steady stream of concentrate from the stack [10]. Although the ED was originally conceived as a seawater desalination process, it has generally been used for brackish water desalination [10].
According to Refs. [10, 21], the EDR functions in a similar way as the ED. However, El‐Swaify [6] explained that the only exception to the EDR operating on the same general principle as the ED unit is that both the product and the concentrate channels are identical in the EDR, whereas Buros [21] also explained that the polarity or charge of the electrodes is switched periodically in the reverse process. Immediately following reversal, the product water is removed until the lines are flushed out and the desired water quality restored [10]. They explained that the reversal in flow of ions helps to remove scaling, slimes and other debris from the membranes before they accumulate in large amount, thus extending the system’s operating life.
In relation to thermal processes, reverse osmosis is a relatively new process that was commercialized in the 1970s [10, 24]. Currently, it is the most widely used method for desalination in the United States [10]. This process of desalination uses a pressure gradient as the driving force to move high pressure pre‐treated saline water through a membrane that prevents the salt ions from passing, thus, yielding the product water stream and a concentrated brine stream as shown in Figure 6, respectively [10, 21]. In other words, reverse osmosis utilizes hydraulic pressure to offset osmotic pressure and induces mass transport of water across a semi‐permeable membrane [25]. This is simply applying pressure (in excess of the osmotic pressure) to the saline water [16]. Osmotic pressure (π) is calculated using the Van’t Hoff equation:
Basic components of a reverse osmosis membrane treatment process (Source: [21]).
where M is the molar concentration of dissolved species; R is the ideal gas constant and T is the temperature on the Kelvin scale.
According to Ref. [10], high pressure pumps supply the pressures between the range of 150 psi for slightly brackish water to 800–1000 psi for salt water, to enable the water to pass through the membrane and have the salt rejected. It is worthy to note that the membrane is easily torn and needs to be supported carefully [16]. Due to the fact that the membrane of the reverse osmosis process consists of small pores, the salt water needs to be filtered first to remove particles which might damage the membranes, while chemical additives may be added to prevent biological growth and scaling [16, 21]. This is very important as the membrane surfaces must remain clean [10].
The individual spiral reverse osmosis membrane element through which the high pressure pre‐treated saline water flows are constructed in a concentric spiral pattern that allow alternating layers of pre‐treated water and brine spacing, reverse osmosis membrane and a porous product water carrier (Figure 7) [21]. The porous product water carrier allows the fresh water to flow into the centre of the membrane element to be collected in the product water tube. According to Ref. [10], the reverse osmosis processes are used for desalinating brackish water (TDS > 1500 mg/L) and seawater. Although membrane desalination processes using reverse osmosis or nanofiltration are diffusion‐controlled membrane processes [25], also, Krishna [10] explained that unlike nanofiltration, which is a membrane process that is used for the removal of divalent salt ions such as calcium, magnesium and sulphate, reverse osmosis is used for the removal of sodium and chloride.
Dissected view of a spiral reverse osmosis membrane element (Source: [22]).
According to Ref. [26], following mass balance equations are commonly used to describe reverse osmosis and nanofiltration membrane process performance. Equation (2) indicates mass balance for water flow:
where Qf is feedwater flow rate (m3/d); ρf is density of feedwater; Qp is permeate flow rate (m3/d); ρp is density of permeate; Qc is concentrate flow rate (m3/d) and ρc is density of concentrate.
Equation (3) describes mass balance for solute flux:
where Cf is feedwater solute concentration, units of mass per volume (mg/L); Cp is permeate solute concentration, units of mass per volume (mg/L) and Cc is concentrate solute concentration, units of mass per volume (mg/L).
Forward osmosis is used to describe the use of osmosis as a salt‐water separation mechanism through an engineered membrane. It is an emerging membrane treatment process that belongs to the class of osmotically driven membrane processes [25]. It was first presented by Cath et al. [27] and could also be called direct osmosis. Unlike reverse osmosis where pressure is applied to the pre‐treated saline water and a low salinity permeate is produced, forward osmosis involves a semi‐permeable membrane which separates a high osmotic pressure ‘draw’ solution from the pre‐treated saline water with relatively lower salinity and osmotic pressure. Here, water is drawn across the membrane by natural osmosis, restricting the passage of salts at the membrane surface. In Ref. [25], it explained that when equal volumes of a dilute feed solution and a concentrated draw solution are separated by a semi‐permeable membrane, water flows into the concentrated draw solution, which has a higher osmotic pressure. This flow continues until chemical equilibrium is reached. The increase in water column height in the high osmotic pressure chamber at equilibrium equates to the difference in osmotic pressure between the dilute and concentrated solutions. Thus, forward osmosis uses the osmotic pressure differential (Δπ) across the membrane, rather than the hydraulic pressure differential as in reverse osmosis, as the driving force for transport of water through the membrane. The transport of water in forward osmosis is described in Eq. (4):
where JW = water flux; Δπ is differential osmotic pressure across the membrane; KW is water permeability coefficient of the membrane; σ is reflection coefficient (a measure of the relative permeability of a particular membrane to a particular solute) and ΔP is differential applied pressure across the membrane.
Past research has shown that forward osmosis membranes are good barriers to a broad range of contaminants, including bacteria, protozoa, viruses and other dissolved organic and inorganic constituents in contaminated water [27]. Also, in comparison to other desalination processes such as the multi‐stage flash, multi‐effect distillation and reverse osmosis, McGinnis and Elimelech [28] estimated that the forward osmosis has relatively lowest relative energy consumption (Figure 8). The authors estimated that forward osmosis with a thermally decomposing draw solution [such as in the forward osmosis low temperature distillation (FO‐LT) process which incorporates the use of low‐quality heat for thermal decomposition of the draw solution and recovery using distillation columns] would use less than one‐third the work energy of reverse osmosis for desalination.
Estimated energy consumption for desalination processes (Source: [29]).
According to Ref. [1], the amount of fresh groundwater or agricultural activities is negligible and exists only in some locations. He further stated that desalination of brackish and saline water seems to be promising, especially in the absence of any other alternative. In spite of this, the cost of desalinated water are still too high for full use of this resource in irrigated agriculture, with the exception of intensive horticulture or high‐value cash crops, such as vegetables and flowers grown in greenhouses [29]. In Refs. [1, 29], reverse osmosis was reported to be the preferred desalination technology for agricultural uses because of the cost reductions driven by improvements in membranes in recent years. An example of countries that have adopted the application of desalinated water for irrigated agriculture is Spain. According to Ref. [30], Spain has more than 300 treatment plants with most of the plants processing brackish water, and located in coastal areas or within 60 km of the sea. It was also noted in Ref. [29] that small and medium size brackish water desalination plants, with a capacity of less than 1000 m3/d (11.6 L/s), are common because they adapt better to individual farmer requirements and to the existing hydraulic structures. As irrigated agriculture does not require the strict standards that apply for drinking‐water requirements, opportunities appear to exist for the adoption of high‐quality desalinated water, and in this way, the final cost of a cubic metre of irrigation water can be reduced [29].
Salinity arises from various natural and human‐induced processes and is a major phenomenon that deteriorates soil properties, thus limiting the potentials of soils for sustainable crop production. Desalinated water is usually of high quality and can have less negative impact on soils and crops in comparison with direct use of brackish water. Thus, water desalination could have positive impacts on agriculture and the environment, such as increasing water availability and recycling poor‐quality water. The use of osmotic and distillation mechanisms to recover high quality water from wastewater effluents and saline waters could be high‐tech demanding especially when considering desalination of large volume of water for irrigation and other forms of utilization.
Although, the use of low‐tech distillation methods could be easily adopted by peasant farmers in rural communities, the use of reverse osmosis has been said to be the most suitable for irrigated agriculture. As some of the processes involved in desalinizing saline water for sustainable crop production could be expensive, it could also be cost‐effective, owing to the fact that desalination could save water for agricultural production, increase the amount and types of crops grown, the area of land cultivated and as such improve the quality of crop yield and farmers’ income.
The main issues which various industries are facing are the accumulation of undesired substances or materials dissolved or presented as a suspension in the fluid on the heat transfer surfaces [1]. This phenomenon which is called as fouling affects the equipment operation by reducing their thermal effectiveness. This causes a significant economic loss due to the installations of regular cleaning [2, 3].
\nFouling in heat transfer process is often inevitable and reduces energy efficiency and plant operability. Mitigation of fouling, and effective cleaning strategies, both require understanding the mechanisms involved in deposition and cleaning [4]. Many researches on fouling in heat transfer processes are dealt with, by reducing the efficiency of heat transfer and limiting productivity [5]. Phosphoric acid fouling in concentration process preheat exchangers is a persistent operational problem that compromises energy recovery in these process. Progress is hampered by the lack of quantitative knowledge of the dynamic effects of fouling on heat transfer exchanger [6]. Generally, phosphoric acid, which is the cold fluid, flows through the tube side while steam, which is the hot stream, flow through the shell side in heat exchangers [7]. The solution of concentrated phosphoric acid is supersaturated with calcium sulfate, resulting in the deposition on the contact material [8]. Given that the thermal conductivity of these scales is low, even a thin layer of scale can drastically reduce the overall heat transfer coefficient [9]. Furthermore, fluorosilicate and fluoroaluminate deposits on the acid ducts of clarifier tanks and evaporators can be imbedded in gypsum scale, which reduces pipe diameter and flow rate. In spite of considerable research efforts at the phosphoric acid type scale, no viable commercial solution has been found [10, 11, 12]. Behbahani et al. [13] have done a high number of fouling experiments in a side-stream of a phosphoric acid plant for various flow velocities, surface temperatures and concentrations in order to determine the mechanisms which control the deposition process. After identifying the effects of operational parameters on the deposition process, a fouling kinetic model by crystallization has been developed in Behbahani et al. [8]. A mathematical model has been elaborated to predict the fouling resistance in concentrating phosphoric acid [14]. The predicted fouling resistances were compared with the experimental data. Majority engineering calculations on heat transfer use the experimental heat transfer coefficients [15].
\nIn this survey, we will examine the fouling phenomenon of the heat exchanger tubes for the preheat circuit of the phosphoric acid. The heat exchanger used for heating phosphoric acid is exposed to the fouling problem at the tube side of heat exchangers. In this context an experimental determination of the thermal fouling resistance by measuring the inlet and outlet temperatures of phosphoric acid, the temperature of steam, suction and discharge pressure of the pump and acid density measurement, the overall heat transfer coefficient has been determined. The determination of the overall heat transfer coefficient for the heat exchanger with clean and fouled surfaces makes it possible to calculate the fouling resistance.
\nFouling can be divided into a number of distinct mechanisms. In general, many of these fouling mechanisms occur at the same time and each requires a different prevention technique. Among these different mechanisms, some represent different stages of the fouling process. The main mechanisms or stages of fouling include:
Period of initiation or delay. This is the clean surface period before dirt accumulation. This accumulation of relatively small deposits can even improve heat transfer over a clean surface and give the appearance of a “negative” fouling rate and a total negative fouling amount.
Particle fouling and formation, aggregation and flocculation.
Mass transport and migration of fouling agents to fouling sites.
Separation and deposition phase involving nucleation or initiation of fouling sites and attachment leading to deposit formation.
Growth, aging and hardening and increase of deposit resistance or auto-retardation, erosion and elimination.
Fouling is defined as a phenomenon that occurs with or without a temperature gradient in many natural, domestic and industrial processes. A surface is “dirty” when unwanted material accumulates there.
\nThe fouling rate is normally defined as the average deposit surface loading per unit of surface area in a unit of time. Depending on the fouling mechanism and conditions, the fouling rate may be linear, falling, asymptotic or saw-tooth, as the case may be. Figures 1 and 2 shows the different types of fouling rate.
Linear fouling is the type of fouling where the rate of fouling can be stable over time with the increase of fouling resistance and deposit thickness. It usually occurs when the temperature of the deposition in contact with the flowing fluid remains constant.
Fouling curves.
Practical fouling curve.
Ebert and Panchal [16] presented a fouling model expressing the average (linear) fouling rate under given conditions following two competing terms, namely a deposit term and an attenuated term.
\nwhere α, β, γ and δ are parameters determined by regression, τw\n is the shear stress at the tube wall and T\nfilm is the temperature of the fluid film (average of local bulk and local wall fluid temperatures). The relationship in Eq. (1) indicates the possibility of identifying combinations of temperature and velocity below where fouling rates will be negligible. Ebert and Panchal [16] present this as the “threshold condition.” The model in Eq. (1) suggests that the geometry of the heat exchanger which affects the surface and film temperatures, velocities and shear stresses can be effectively applied to maintain the conditions below “threshold conditions” in a given heat exchanger.
Falling fouling is the type of fouling where the fouling rate decreases with time, and the deposit thickness does not reach a constant value, although the fouling rate never drops below a certain minimum value. In general falling fouling is due to an increase of removal rate with time. Its progress can often be described by two numbers: the initial fouling rate and the fouling rate after a long period of time.
Asymptotic fouling rate is where rate decreases with time until it becomes negligible after a period of time when the deposition rate becomes equal to the deposit removal rate and the deposit thickness remains constant. This type of fouling generally occurs where the tube surface temperature remains constant while the temperature of the flowing fluid drops as a result of increased resistance of fouling material to heat transfer. Asymptotic fouling may also result from soft or poorly adherent suspended solid deposits upon heat transfer surfaces in areas of fast flow where they do not adhere strongly to the surface with the result that the thicker the deposit becomes, the more likely it is to wash off in patches and thus achieve some average asymptotic value over a period of time. The asymptotic fouling resistance increases with increasing particle concentration and decreasing fluid bulk temperature, flow velocity, and particle diameter. The asymptotic fouling model was first described by Kern and Seaton [17]. In this model, the competing fouling mechanisms result in asymptotic fouling resistance beyond which any additional increase in fouling does not happen.
Saw-tooth fouling occurs where part of the deposit is detached after a critical residence time or once a critical deposit thickness has been reached. The fouling layer then builds up and breaks off again. This periodic variation could be due to pressure pulses, scaling, trapping of air inside the surface deposits during shutdowns or other reasons. It often corresponds to the moments of system shutdowns, startups or other transients during operation.
The fouling resistances can be measured experimentally or analytically. The main measurement methods include:
Direct weighing: the simplest method for assessing the extent of deposition on laboratory test surfaces is to weigh directly. The method requires an exact balance in order to be able to detect relatively small changes in the mass of deposits. It may be necessary to use thin walled tube to reduce the tare mass in order to increase the accuracy of the method.
Thickness measurement: in many examples of fouling the thickness of the deposit is relatively small, perhaps less than 50 μm, so that a direct measurement is not easy to obtain. A relatively simple technique provided there is reasonable access to the deposit, consists in measuring the thickness. By using a removable coupon or plate, the thickness of a hard deposit such as a scale, can be obtained using a micrometer or traveling microscope. For a deformable deposit containing a large proportion of water, e.g., a biofilm it is possible to use an electrical conductivity technique.
Heat transfer measurements: in this method, the fouling resistance can be determined according to the changes in heat transfer during the deposition process. The equation for the following operations will be Eq. (11). The data can be reported in terms of changes in overall heat transfer coefficient. A major hypothesis of this method is that the presence of the deposit does not affect the hydrodynamics of the flowing fluid. However, during the first stages of deposition, the surface of the deposit is generally rougher than the metal surface so that the turbulence in the fluid is greater than when it is flowing on a smooth surface. As a result the fouling resistance calculated from the data will be lower than if the increased turbulence level had been taken into account. It is possible that the increased turbulence offsets the thermal resistance of the deposit and negative values of thermal resistance will be calculated.
Pressure drop: as an alternative to direct heat transfer measurements it is possible to use changes in pressure drop caused by the presence of the deposit. The pressure drop is increased for a given flow rate due to the reduced flow area in the fouled condition and the roughness of the deposit. The shape of the curve relating pressure drop with time will generally, follow an asymptotic shape so that the time to achieve asymptotic fouling resistance can be determined. The method is often associated with the direct measurement of thickness of the deposit layer. Friction factor changes can also be used to indicate fouling of a flow channel.
Other techniques for assessing fouling: with regard to their effect on heat exchanger performance the measurement of heat transfer reduction or increase in pressure drop provide a direct indication. The simple methods of measuring deposit thickness described above are useful, but in general they require that the experiment be completed in order to allow access to the test sections. Ideally non-intrusive techniques would allow further deposition while maintaining experimental conditions without disturbance. Such techniques include the use of radioactive tracers and optical methods. Laser techniques can be used to study the accumulation and removal of deposits. In addition, infra-red systems are used to study the development and removal of biofilms from tubular test sections. Microscopic examination of deposits may provide further evidence of the mechanisms of fouling, but this is usually a “backup” system rather than providing quantitative data.
As noted above, fouling has the effect of forming on the heat transfer surface a substantially solid deposit of low thermal conductivity, through which heat is to be transferred by conduction. But as the thermal conductivity of the fouling layer and its thickness are not generally known, the only possible solution to the heat transfer problem is to introduce a fouling factor to take into account the additional resistance to heat transfer and possible calculation of the overall coefficient of heat transfer. A fouling coefficient is also sometimes specified, it is the reciprocal value of the fouling factor. When carrying out heat transfer calculations, the selection of fouling factors must be made with caution, especially when the fouling resistances completely dominate the thermal design.
\nThe influence of inherent uncertainties in fouling factors is generally greater than that of uncertainties in other design parameters such as fluid properties, flow rates and temperatures [18]. An important fouling factor is sometimes adopted as a safety margin to cover uncertainties on the properties of fluids and even in the knowledge of the process, but the use of an excessively large fouling factor will result in an oversized heat exchanger with two or three times more area than is necessary. Although many tabulations based on the experiment are available and provide typical fouling factors such as the TEMA RGP-T-2.4 table [19], an acceptable assessment of the effects of fouling needs to be judged and evaluated for each particular application. Such tabulations can, however, serve as a guide in the absence of more specific information.
\nA number of semi empirical models have been proposed over the years for the prediction of the rate of fouling in heat exchangers or for estimating a fouling factor to be used in heat transfer calculations.
\nThe first work on this subject began in the late 1950s with Kern and Seaton [17].
\nThe modeling resulting from this work is based on the assumption that two processes act simultaneously. The first process is that of particle deposition characterized by a deposition flux that is constant if the concentration is also constant. The second process is that of the re-entrainment of particles characterized by a re-entrain flow ϕr\n dependent on the mass of particles (mp\n) deposited. The particle balance of the deposit is expressed according to the following equation:
\n\n
The deposition process is designed as the serialization of particle transport and adhesion mechanisms. The following assumptions are made:
consideration of a single type of fouling;
homogeneity of the deposit;
not taken into account of the phase of initiation of the deposit and the state of surface;
constancy of the properties and thermo-physical characteristics of the fluid and the deposit.
The particle wall transport phase controls the deposition process while the shear stress controls the re-entrain phase of the particles. Thus, considering the proportionality of ϕ\nd as a function of the deposited mass of particles, we can write the following equations:
\nOr
\n\nkp\n is the transport coefficient.
\n\nCb\n the particle concentration in the fluid.
\n\nCw\n the particle concentration at the wall.
\n\nC\n1 a dimensional constant.
\n\nτw\n the shear stress exerted by the fluid on the deposit.
\nEquation (2) thus becomes:
\nThe solution of Eq. (5) is thus:
\nAssuming that τ= \n
We can thus express the equation as follows:
\nConsidering that the initial fouling flow is equal to the deposition flow and that the thermo physical properties of the deposit (conductivity and density) are constant, it is thus possible to express Eq. (7) in the form of a thermal fouling resistance:
\nWith Rf(t), the evolution of the fouling resistance as a function of time expressed in [m2-K/W] Rf\n*, the asymptotic value of the fouling resistance expressed in [m2-K/W] (this value characterizes the situation where the deposition rate equals the breakout speed). t, the time expressed in [s] τ, the characteristic time expressed in [s] and whose value is generally attributed to the time required for the fouling resistance to reach its asymptotic value if the evolution of this kinetics was linear.
\nThe Kern and Seaton [17] model therefore provides a mathematical description of the concept of simple fouling. This equation verifies the asymptotic behavior of the formation of a particulate deposit on the exchange surface of a heat exchanger. All models and theory of fouling are based on this model.
\nAn apparent weakness of the Kern and Seaton [17] model is that the re-entrain flow depends on the thickness of the deposition layer. As a result, it is only once a significant deposit thickness has accumulated that the role of the re-entrain term becomes significant [20]. In the case of high speed flow, the deposit would be completely removed.
\nWe also note that this model requires to go back on the values of Rf\n* and τ. In general, there is no way to predict these values unless detailed experimental work has been done [21]. These values are thus established on a given installation and especially under given operating conditions. Thus, a modification, even minor, of the operating conditions (for example, water quality, flow modification) significantly modifies the parameters of the model and leads to a bad modeling of the fouling [22].
\nHowever, we note various works that make it possible to know the impact of the flow velocity (Um) on the value of the asymptotic fouling resistance Rf\n*, or even to determine the value Rf\n*.
\nDifferent authors thus propose a relationship of proportionality of type:
\nWith regard to the tube exchangers: for Kern and Seaton [17] the value of i is −1. For Watkinson [23], this constant takes the value of −1.2 to −2.
\nAs far as plate heat exchangers are concerned, Muller-Steinhagen [24] has in its study demonstrated a relation of proportionality between the asymptotic resistance of fouling Rf\n* and the inverse of the speed squared (i.e., an exponent i − 2 in Eq. (9)), without providing a general relationship.
\nIn the same context, Grandgeorge [25] proposes an empirical relation resulting from several experiments on different industrial size plate heat exchangers. In this context, Grandgeorge [25] established that the use of the initial pressure drop in the heat exchanger (ΔPo) in place of the flow velocity makes it possible to correlate with the aid of a single relationship the value of the asymptotic resistance Rf\n*. The relationship is as follows:
\nBased on these observations, this model has been revised and modified by various researchers with various descriptions of the term deposition and re-entrain: Only empirical parameters were added and derived solely from the experimental study [20, 25].
\nThe phosphoric acid concentration loop is allowed to concentrate—by evaporation—the phosphoric acid from 28 to 54% P2O5 in a forced-circulation evaporator closed loop, functioning under vacuum feeded by a barometric condenser. The system used for concentration composed of a stainless steel tubular heat exchanger, a centrifugal pump, a boiler or expansion chamber, a barometric condenser and a basket filter [26].
\nThe inclusion of the dilute acid is done at the basket filter where it mixes with the circulating acid in order to protect the pump from abrasion and to limit the heat exchanger fouling, which reduces the stop frequency for washing. The circulation pump then aspirates the mixture formed and sends it to the inlet of the heat exchanger at a temperature in the order of 70°C. The heat exchanger allows heating the phosphoric acid at a temperature in the order of 80°C. The steam undergoes a condensation at a temperature of around 120°C at the level of the exchanger. The condensate will be sent to a storage tank before being returned to the utility center.
\nThe overheated mixture of the acid outgoing the exchanger then passes into the boiler where an amount of water evaporates and the production of concentrated acid is done by overflow in inner tube of the boiler and the rest will be recycled. The condenser also ensures the re-entrain of incondensable outgoing of the boiler by the effect of water tube created by the waterfall. At the foot of the barometric guard, the seawater is gathered in a guard tank before being rejected to the sea (Figure 3).
\nSimplified diagram of the phosphoric acid concentration unit.
Our experimental study is based on the following hypotheses.
The flow of two fluids (Phosphoric acid and steam) is at counter current.
Values of the thermo-physical properties of the fluids were considered constant.
The thermal losses were neglected.
The inlet and outlet temperatures of the two fluids are determined at the extremities of the heat exchanger.
Pump suction and discharge pressure measurements are taken at the extremities of the circulation pump.
The experimental data was collected out during 1 year. The method that we used to follow the fouling evolution consists in carrying out a heat balance at the boundaries of the heat exchanger by the intermediary of measurements of the inlet and outlet temperatures pump suction and discharge pressure measurements and acid density measurement (Figure 4). The latter was taken each 2 h during all the day.
\nThe measurement method at the boundaries of the heat exchanger.
This method, albeit indirect, makes it possible to detect the necessary moment to shut down the installation for cleaning. In the current study, the temporal evolution of the fouling resistance of the phosphoric acid was studied.
\nThe calculation of the fouling resistance was done using the following relation:
\nThe overall heat transfer coefficient at the dirty state was given in the time course, via the expression:
\nThis relation is taken by the evaluation of energy on the heat exchanger by supposing the isolated system and the physical properties of the two fluids, as well as, the heat transfer coefficients stay constant along the exchanger.
\nIn the phosphoric acid concentration unit, the operating conditions at the limits of the heat exchanger unstable, it is necessary to disclose the heat exchange coefficients in the proper conditions Up\n corresponding to the new operating conditions. Assuming that the cleaning between operational runs is perfect and that the heat exchangers are totally free of fouling at the beginning of a new run. The initial value of the overall heat transfer coefficient at the beginning of every cycle is considered as the value of the overall heat transfer coefficient in the clean state.
\nThe evolution of the fouling resistance in the phosphoric acid concentration process heat exchanger was followed for a study period quoted previously. This heat exchanger is already in service for 100 days before the be-ginning of the present study. However, it has carried out a stop that lasted 12 hours then its return to service. This stop is for the heat exchangers cleaning.
\nAll the results from the fouling resistance are presented on Figure 5.
\nVariation of the fouling resistance as a function of time for the stainless-steel-tubular heat exchanger.
According to the values of these resistances, which are the majority higher than zero, this experimental data presents a fouling state. This is evident since, as mentioned before, this exchanger is in service for more than 3 months. The curves presented show that the temporal evolution of the fouling resistance, seems to follow an asymptotic evolution, which conforms to the model of Kern and Seaton [17], with the absence of the induction period. That can be explained to the rapid evolution of this phenomenon associated in particular with the characteristics of the treated phosphoric acid. As it appears clearly as the fouling resistance increases with the time until reaching a maximum value varied from 1.38 * 10−4 to 1.61 * 10−4 m2.K.W−1.
\nThe series functioned for more than 5 days, a sufficient period so that the resistance asymptotic value is reached. The fluctuation observed on these curves are due to the variation of flow, which, acting on the shear stress to the wall, causes re-entrain deposit particles or their deposition according to the sent flow value.
\nFrom Eq. (11), we notice that the overall heat transfer coefficient is inversely proportional to the fouling resistance.
\nThe fouling resistance increases over time, which leads to a decrease in the flow of heat exchanged between the phosphoric acid and the steam, and subsequently the decrease in the overall heat transfer coefficient. As it appears clearly on Figures 5 and 6, when the fouling resistance increases with the time, the overall heat transfer coefficient decreases until reaching a minimum value varied from 1821 to 2078 W.m−2.K−1.
\nVariation of the overall heat transfer coefficient as a function of time for the stainless-steel-tubular heat exchanger.
One of the earliest correlative models for the characterization of the asymptotic kinetics of fouling, we distinguish Kern and Seaton [17], whose general expression is as follows:
\nThis model gives rather satisfactory results, provided that the asymptotic value of the thermal resistance Rf\n* as well as the time constant τ are evaluated, which strongly conditions the accuracy of the model.
\nThe analysis of the experimental data which makes it possible to carry out the plots of Figure 7 gives us the results of the two greatness Rf\n* and τ for the stainless steel tubular heat exchanger. The asymptotic model is fairly faithful to the experimental data with determination coefficient R\n2 close to 1 (Table 1).
\nKinetics of fouling of the stainless-steel-tubular heat exchanger.
Rf* [m2.K.W−1] | \nτ [h] | \nR2\n | \n
---|---|---|
1.72*10−4\n | \n40.32 | \n0.975 | \n
Values of the asymptotic fouling resistance, the time constant and the determination coefficient for the stainless-steel tubular heat exchanger.
The monitoring of heat exchangers provides the sound knowledge of the fouling evolution in the specific conditions of the process. Deposit formation is a thermal resistance which leads important economic penalties.
\nThe aim of this work was the study of the heat exchanger fouling phenomenon in the concentration phosphoric acid process. Secondly, the study concerned the temporal evolution of the fouling resistance and the overall heat transfer coefficient.
\nThe results achieved revealed an asymptotic evolution of the fouling resistance, compliant with the model of Kern and Seaton with the lack of the induction period, which is explained by the consequence of an improper cleaning, or a deviation between the present study and the beginning of the heat exchangers functioning after the last stop.
\n\n area, m2\n specific heat capacity, J.Kg−1.K−1\n correction factor (=1 for a steam condenser) mass flow rate, kg.s−1\n pressure, bar thermal power, W fouling resistance, m2.K.W−1\n temperature, K time, h overall heat transfer coefficient, W.m−2.K−1\n difference of greatness between two points time required to reach 63.2% of Rf*, h acid circulation exchange input logarithmic mean clean output clean state dirty state steam asymptotic value
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"9496",title:"Dyslipidemia",subtitle:null,isOpenForSubmission:!0,hash:"1d1174ff4ed8ad553c944e99add28154",slug:null,bookSignature:"Dr. Wilbert S. Aronow",coverURL:"https://cdn.intechopen.com/books/images_new/9496.jpg",editedByType:null,editors:[{id:"164597",title:"Dr.",name:"Wilbert S.",surname:"Aronow",slug:"wilbert-s.-aronow",fullName:"Wilbert S. Aronow"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10585",title:"Interleukin",subtitle:null,isOpenForSubmission:!0,hash:"6d4ebb087fdb199287bc765704246b60",slug:null,bookSignature:"Ph.D. Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/10585.jpg",editedByType:null,editors:[{id:"45803",title:"Ph.D.",name:"Payam",surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10300",title:"Breast Cancer",subtitle:null,isOpenForSubmission:!0,hash:"bcf3738b16b0a4de6066853ab38b801c",slug:null,bookSignature:"Dr. Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/10300.jpg",editedByType:null,editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9589",title:"Depigmentation as a Disease or Therapeutic Goal",subtitle:null,isOpenForSubmission:!0,hash:"3e1efdb1fc8c403c402da09b242496c6",slug:null,bookSignature:"Dr. Tae-Heung Kim",coverURL:"https://cdn.intechopen.com/books/images_new/9589.jpg",editedByType:null,editors:[{id:"121353",title:"Dr.",name:"Tae-Heung",surname:"Kim",slug:"tae-heung-kim",fullName:"Tae-Heung Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9608",title:"Myasthenia Gravis",subtitle:null,isOpenForSubmission:!0,hash:"db6c84e3aa58f3873e1298add7042c44",slug:null,bookSignature:"Dr. Nizar Souayah",coverURL:"https://cdn.intechopen.com/books/images_new/9608.jpg",editedByType:null,editors:[{id:"162634",title:"Dr.",name:"Nizar",surname:"Souayah",slug:"nizar-souayah",fullName:"Nizar Souayah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8485",title:"Weather Forecasting",subtitle:null,isOpenForSubmission:!0,hash:"eadbd6f9c26be844062ce5cd3b3eb573",slug:null,bookSignature:"Associate Prof. Muhammad Saifullah",coverURL:"https://cdn.intechopen.com/books/images_new/8485.jpg",editedByType:null,editors:[{id:"320968",title:"Associate Prof.",name:"Muhammad",surname:"Saifullah",slug:"muhammad-saifullah",fullName:"Muhammad Saifullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10542",title:"Molecular Epidemiology Study of Mycobacterium Tuberculosis Complex",subtitle:null,isOpenForSubmission:!0,hash:"29279e34f971687dc28de62534335ac4",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10542.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10552",title:"Montmorillonite",subtitle:null,isOpenForSubmission:!0,hash:"c4a279761f0bb046af95ecd32ab09e51",slug:null,bookSignature:"Prof. Faheem Uddin",coverURL:"https://cdn.intechopen.com/books/images_new/10552.jpg",editedByType:null,editors:[{id:"228107",title:"Prof.",name:"Faheem",surname:"Uddin",slug:"faheem-uddin",fullName:"Faheem Uddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!0,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10304",title:"Giant-Cell Arteritis",subtitle:null,isOpenForSubmission:!0,hash:"b144271ebc5d331aab73de18a7f9f4f5",slug:null,bookSignature:"Dr. Imtiaz A. Chaudhry",coverURL:"https://cdn.intechopen.com/books/images_new/10304.jpg",editedByType:null,editors:[{id:"66603",title:"Dr.",name:"Imtiaz",surname:"Chaudhry",slug:"imtiaz-chaudhry",fullName:"Imtiaz Chaudhry"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10539",title:"Ginseng in Medicine",subtitle:null,isOpenForSubmission:!0,hash:"5f388543a066b617d2c52bd4c027c272",slug:null,bookSignature:"Prof. Christophe Hano and Dr. Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editedByType:null,editors:[{id:"313856",title:"Prof.",name:"Christophe",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10482",title:"Human Teeth – Structure and Composition of Dental Hard Tissues and Developmental Dental Defects",subtitle:null,isOpenForSubmission:!0,hash:"82a91346a98d34805e30511d6504bd4c",slug:null,bookSignature:"Dr. Ana Gil De Bona and Dr. Hakan Karaaslan",coverURL:"https://cdn.intechopen.com/books/images_new/10482.jpg",editedByType:null,editors:[{id:"203919",title:"Dr.",name:"Ana",surname:"Gil De Bona",slug:"ana-gil-de-bona",fullName:"Ana Gil De Bona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:164},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1005",title:"Clinical Pathology",slug:"clinical-pathology",parent:{title:"Diagnostics",slug:"diagnostics"},numberOfBooks:2,numberOfAuthorsAndEditors:69,numberOfWosCitations:28,numberOfCrossrefCitations:13,numberOfDimensionsCitations:40,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"clinical-pathology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7905",title:"Saliva and Salivary Diagnostics",subtitle:null,isOpenForSubmission:!1,hash:"ae7cd7860043968aa88daae89795a591",slug:"saliva-and-salivary-diagnostics",bookSignature:"Sridharan Gokul",coverURL:"https://cdn.intechopen.com/books/images_new/7905.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1959",title:"Biomarker",subtitle:null,isOpenForSubmission:!1,hash:"3fa6155a28277c6ce2e169f338c9bbcf",slug:"biomarker",bookSignature:"Tapan Kumar Khan",coverURL:"https://cdn.intechopen.com/books/images_new/1959.jpg",editedByType:"Edited by",editors:[{id:"113568",title:"Prof.",name:"Tapan",middleName:"Kumar",surname:"Khan",slug:"tapan-khan",fullName:"Tapan Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"36390",doi:"10.5772/38822",title:"Potential Muscle Biomarkers of Chronic Myalgia in Humans - A Systematic Review of Microdialysis Studies",slug:"potential-muscle-biomarkers-of-chronic-myalgia-in-humans-a-systematic-review-of-microdialysis-studie",totalDownloads:1709,totalCrossrefCites:6,totalDimensionsCites:16,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Björn Gerdle and Britt Larsson",authors:[{id:"119711",title:"Prof.",name:"Bjorn",middleName:null,surname:"Gerdle",slug:"bjorn-gerdle",fullName:"Bjorn Gerdle"},{id:"138423",title:"Prof.",name:"Britt",middleName:null,surname:"Larsson",slug:"britt-larsson",fullName:"Britt Larsson"}]},{id:"36394",doi:"10.5772/36750",title:"8-Nitroguanine, a Potential Biomarker to Evaluate the Risk of Inflammation-Related Carcinogenesis",slug:"8-nitroguanine-a-potential-biomarker-to-evaluate-the-risk-of-inflammation-related-carcinogenesis",totalDownloads:1782,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Ning Ma, Mariko Murata, Shiho Ohnishi, Raynoo Thanan, Yusuke Hiraku and Shosuke Kawanishi",authors:[{id:"71918",title:"Dr.",name:"Yusuke",middleName:null,surname:"Hiraku",slug:"yusuke-hiraku",fullName:"Yusuke Hiraku"},{id:"109629",title:"Prof.",name:"Ning",middleName:null,surname:"Ma",slug:"ning-ma",fullName:"Ning Ma"},{id:"120432",title:"Dr.",name:"Shiho",middleName:null,surname:"Ohnishi",slug:"shiho-ohnishi",fullName:"Shiho Ohnishi"},{id:"120433",title:"Prof.",name:"Mariko",middleName:null,surname:"Murata",slug:"mariko-murata",fullName:"Mariko Murata"},{id:"120434",title:"Prof.",name:"Shosuke",middleName:null,surname:"Kawanishi",slug:"shosuke-kawanishi",fullName:"Shosuke Kawanishi"},{id:"121961",title:"Dr.",name:"Raynoo",middleName:null,surname:"Thanan",slug:"raynoo-thanan",fullName:"Raynoo Thanan"}]},{id:"36392",doi:"10.5772/36793",title:"Biomarkers and Therapeutic Drug Monitoring in Psychiatry",slug:"biomarkers-and-therapeutic-drug-monitoring-in-psychiatry",totalDownloads:1709,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"R. Lozano, R. Marin, A. Pascual, MJ. Santacruz, A. Lozano and F. Sebastian",authors:[{id:"109838",title:"Dr.",name:"Roberto",middleName:null,surname:"Lozano Ortiz",slug:"roberto-lozano-ortiz",fullName:"Roberto Lozano Ortiz"},{id:"115991",title:"Dr.",name:"Reyes",middleName:null,surname:"Marin",slug:"reyes-marin",fullName:"Reyes Marin"},{id:"115992",title:"Dr.",name:"Asuncion",middleName:null,surname:"Pascual",slug:"asuncion-pascual",fullName:"Asuncion Pascual"},{id:"115993",title:"Ms.",name:"Francisca",middleName:null,surname:"Sebastian",slug:"francisca-sebastian",fullName:"Francisca Sebastian"},{id:"115994",title:"Ms.",name:"Maria Jesus",middleName:null,surname:"Santacruz",slug:"maria-jesus-santacruz",fullName:"Maria Jesus Santacruz"}]}],mostDownloadedChaptersLast30Days:[{id:"66233",title:"Functions of Saliva",slug:"functions-of-saliva",totalDownloads:986,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Narendra Maddu",authors:[{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu"}]},{id:"67299",title:"Salivary Diagnostics in Oral Diseases",slug:"salivary-diagnostics-in-oral-diseases",totalDownloads:512,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Manohar Bhat and Devikripa Bhat",authors:[{id:"280750",title:"Dr.",name:"Manohara",middleName:null,surname:"Bhat",slug:"manohara-bhat",fullName:"Manohara Bhat"},{id:"296530",title:"Dr.",name:"Devikripa",middleName:null,surname:"Bhat",slug:"devikripa-bhat",fullName:"Devikripa Bhat"}]},{id:"66416",title:"Salivary Diagnostics",slug:"salivary-diagnostics-1",totalDownloads:426,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Varsha Pathiyil and Rahul Udayasankar",authors:[{id:"281226",title:"Dr.",name:"Varsha",middleName:null,surname:"Pathiyil",slug:"varsha-pathiyil",fullName:"Varsha Pathiyil"},{id:"290603",title:"Dr.",name:"Rahul",middleName:null,surname:"Udayasankar",slug:"rahul-udayasankar",fullName:"Rahul Udayasankar"}]},{id:"36391",title:"Genotoxicity Biomarkers: Application in Histopathology Laboratories",slug:"genotoxicity-biomarkers-application-in-histopathology-laboratories",totalDownloads:2078,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Carina Ladeira, Susana Viegas, Elisabete Carolino, Manuel Carmo Gomes and Miguel Brito",authors:[{id:"109595",title:"Prof.",name:"Susana",middleName:null,surname:"Viegas",slug:"susana-viegas",fullName:"Susana Viegas"},{id:"110391",title:"Ph.D.",name:"Carina",middleName:null,surname:"Ladeira",slug:"carina-ladeira",fullName:"Carina Ladeira"},{id:"110393",title:"Prof.",name:"Miguel",middleName:null,surname:"Brito",slug:"miguel-brito",fullName:"Miguel Brito"},{id:"117579",title:"Prof.",name:"Elisabete",middleName:null,surname:"Carolino",slug:"elisabete-carolino",fullName:"Elisabete Carolino"},{id:"117581",title:"Prof.",name:"Manuel",middleName:null,surname:"Carmo Gomes",slug:"manuel-carmo-gomes",fullName:"Manuel Carmo Gomes"}]},{id:"67113",title:"Introductory Chapter: Saliva - The Future of Disease Diagnostics",slug:"introductory-chapter-saliva-the-future-of-disease-diagnostics",totalDownloads:249,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Gokul Sridharan",authors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}]},{id:"36394",title:"8-Nitroguanine, a Potential Biomarker to Evaluate the Risk of Inflammation-Related Carcinogenesis",slug:"8-nitroguanine-a-potential-biomarker-to-evaluate-the-risk-of-inflammation-related-carcinogenesis",totalDownloads:1782,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Ning Ma, Mariko Murata, Shiho Ohnishi, Raynoo Thanan, Yusuke Hiraku and Shosuke Kawanishi",authors:[{id:"71918",title:"Dr.",name:"Yusuke",middleName:null,surname:"Hiraku",slug:"yusuke-hiraku",fullName:"Yusuke Hiraku"},{id:"109629",title:"Prof.",name:"Ning",middleName:null,surname:"Ma",slug:"ning-ma",fullName:"Ning Ma"},{id:"120432",title:"Dr.",name:"Shiho",middleName:null,surname:"Ohnishi",slug:"shiho-ohnishi",fullName:"Shiho Ohnishi"},{id:"120433",title:"Prof.",name:"Mariko",middleName:null,surname:"Murata",slug:"mariko-murata",fullName:"Mariko Murata"},{id:"120434",title:"Prof.",name:"Shosuke",middleName:null,surname:"Kawanishi",slug:"shosuke-kawanishi",fullName:"Shosuke Kawanishi"},{id:"121961",title:"Dr.",name:"Raynoo",middleName:null,surname:"Thanan",slug:"raynoo-thanan",fullName:"Raynoo Thanan"}]},{id:"66564",title:"Salivary Biomarkers to Assess Breast Cancer Diagnosis and Progression: Are We There Yet?",slug:"salivary-biomarkers-to-assess-breast-cancer-diagnosis-and-progression-are-we-there-yet-",totalDownloads:381,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Charles F. Streckfus",authors:[{id:"29033",title:"Prof.",name:"Charles",middleName:"F.",surname:"Streckfus",slug:"charles-streckfus",fullName:"Charles Streckfus"}]},{id:"36396",title:"Salivary Hormones, Immunes and Other Secretory Substances as Possible Stress Biomarker",slug:"salivary-hormones-immunes-and-other-secretory-substances-as-possible-stress-biomarker",totalDownloads:1563,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Shusaku Nomura",authors:[{id:"100031",title:"Prof.",name:"Shusaku",middleName:null,surname:"Nomura",slug:"shusaku-nomura",fullName:"Shusaku Nomura"}]},{id:"67237",title:"Advantages of Salivary DNA in Human Identification",slug:"advantages-of-salivary-dna-in-human-identification",totalDownloads:297,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Raluca Dumache, Veronica Ciocan, Camelia Muresan, Ramona Parvanescu and Alexandra Enache",authors:[{id:"179199",title:"Dr.",name:"Raluca",middleName:null,surname:"Dumache",slug:"raluca-dumache",fullName:"Raluca Dumache"},{id:"181860",title:"Prof.",name:"Alexandra",middleName:null,surname:"Enache",slug:"alexandra-enache",fullName:"Alexandra Enache"},{id:"195502",title:"Dr.",name:"Veronica",middleName:null,surname:"Ciocan",slug:"veronica-ciocan",fullName:"Veronica Ciocan"},{id:"298285",title:"Dr.",name:"Camelia",middleName:null,surname:"Muresan",slug:"camelia-muresan",fullName:"Camelia Muresan"},{id:"298644",title:"Dr.",name:"Ramona",middleName:null,surname:"Parvanescu",slug:"ramona-parvanescu",fullName:"Ramona Parvanescu"}]},{id:"36388",title:"Inorganic Signatures of Physiology: The X-Ray Fluorescence Microscopy Revolution",slug:"inorganic-signatures-of-physiology-the-x-ray-fluorescence-microscopy-revolution",totalDownloads:1619,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Lydia Finney",authors:[{id:"109543",title:"Dr.",name:"Lydia",middleName:null,surname:"Finney",slug:"lydia-finney",fullName:"Lydia Finney"}]}],onlineFirstChaptersFilter:{topicSlug:"clinical-pathology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/142417/tomas-losak",hash:"",query:{},params:{id:"142417",slug:"tomas-losak"},fullPath:"/profiles/142417/tomas-losak",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()