Part of the book: Biomass Now
Part of the book: Biomass Production and Uses
Adsorption of Cr(VI) from aqueous solution onto the nanomaterials prepared by modified chitosan was investigated in a batch system to evaluate the efficiency of biomass as an adsorbent. The crosslinking materials of chitosan & silicon dioxide and carboxymethyl chitosan & silicon dioxide were synthesized, respectively, as new adsorbent materials for the removal of Cr(VI) from aqueous solutions. The adsorption potential of Cr(VI) by the nanomaterials for desalination was investigated by varying experimental conditions such as pH, contact time and the dosage of the nanomaterials. Adsorption isotherms of Cr(VI) onto the membrane were studied with varying initial concentrations under optimum experiment conditions. The surface property of the membrane was characterized by SEM (scanning electron microscope) and Fourier transform infrared spectrometer (FT-IR). The concentrations of Cr(VI) in solution are determined by ICP-AES (inductively coupled plasma atomic emission spectrometry). The membrane of carboxymethyl chitosan & silicon dioxide exhibited higher adsorption capacity than the membrane of chitosan & silicon dioxide for Cr(VI). The adsorption sites and specific surface area may be increased by changing from chitosan to carboxymethyl chitosan. The maximum adsorption capacity was estimated as 80.7 mg·g−1 for Cr(VI) under the optimum conditions.
Part of the book: Chitin-Chitosan