The main diagnostic test parameters [12, 13] demonstrating the practical application and the relationship of these four terms.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"2046",leadTitle:null,fullTitle:"Machine Vision - Applications and Systems",title:"Machine Vision",subtitle:"Applications and Systems",reviewType:"peer-reviewed",abstract:"Vision plays a fundamental role for living beings by allowing them to interact with the environment in an effective and efficient way. The ultimate goal of Machine Vision is to endow artificial systems with adequate capabilities to cope with not a priori predetermined situations. To this end, we have to take into account the computing constraints of the hosting architectures and the specifications of the tasks to be accomplished, to continuously adapt and optimize the visual processing techniques. Nevertheless, by exploiting the low?cost computational power of off?the?shell computing devices, Machine Vision is not limited any more to industrial environments, where situations and tasks are simplified and very specific, but it is now pervasive to support system solutions of everyday life problems.",isbn:null,printIsbn:"978-953-51-0373-8",pdfIsbn:"978-953-51-5654-3",doi:"10.5772/2456",price:119,priceEur:129,priceUsd:155,slug:"machine-vision-applications-and-systems",numberOfPages:286,isOpenForSubmission:!1,isInWos:1,hash:"a5e8fcd36ede802fd6462fb9fa996838",bookSignature:"Fabio Solari, Manuela Chessa and Silvio P. Sabatini",publishedDate:"March 23rd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/2046.jpg",numberOfDownloads:25423,numberOfWosCitations:6,numberOfCrossrefCitations:9,numberOfDimensionsCitations:14,hasAltmetrics:0,numberOfTotalCitations:29,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 12th 2011",dateEndSecondStepPublish:"May 10th 2011",dateEndThirdStepPublish:"September 14th 2011",dateEndFourthStepPublish:"October 14th 2011",dateEndFifthStepPublish:"February 13th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"13366",title:"Dr.",name:"Fabio",middleName:null,surname:"Solari",slug:"fabio-solari",fullName:"Fabio Solari",profilePictureURL:"https://mts.intechopen.com/storage/users/13366/images/2513_n.jpg",biography:"Fabio Solari received the Laurea degree in Electronic Engineering from the University of Genoa, Italy, in 1995. In 1999 he obtained his Ph.D. in Electronic Engineering and Computer Science from the same University. Since 2005, he has been appointed as Assistant Professor of Computer Science at the Faculty of Engineering of the University of Genoa. His research activity concerns the study of the physical processes of biological vision to inspire novel algorithms and artificial perceptual machines based on neuromorphic computational paradigms. In particular, he is interested in: \n- Computational models of neural architectures, mainly in the dorsal stream of the visual cortex.\n- Algorithms for motion and depth computation, exploiting processing techniques based on spatio-temporal, multi-channel and multi-scale filtering. \n- Robotic systems for active vision: functional assessment of anthropomorphic robotic heads for active foveation; sensorimotor coordination in the peripersonal (e.g., reaching and grasping) and extrapersonal (e.g., navigation) space; space-variant vision systems (log-polar mapping).\n- Context sensitive receptive fields: motion analysis and motion interpretation, e.g. the time-to-contact estimation.\n- Software tools for the simulation of robotic systems and for the real-time processing of complex visual descriptors: neuromorphic algorithms for graphics processing units, GPGPU; virtual environments for the simulation of stereo active vision systems.\n- Augmented reality systems for the study of the visuo-motor coordination in the peripersonal space.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Genoa",institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"15165",title:"Dr.",name:"Manuela",middleName:null,surname:"Chessa",slug:"manuela-chessa",fullName:"Manuela Chessa",profilePictureURL:"https://mts.intechopen.com/storage/users/15165/images/system/15165.jpg",biography:"Manuela Chessa is a Postodoctoral Research scientist at the University of Genoa, Italy. She received her MSc in Bioengineering from the University of Genoa in 2005, and the Ph.D. in Bioengineering from University of Genoa in 2009. She has been working in the PSPC Lab since 2005, and her research interests are focused on the study of biological and artificial vision systems, on the development of bioinspired models for the estimation of optic flow and disparity, on the study of the interplay existing between vision and motion control in the peripersonal space, and on the development of virtual and augmented reality system for the study of the perception of tridimensionality.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:{id:"15166",title:"Dr.",name:"Silvio P.",middleName:null,surname:"Sabatini",slug:"silvio-p.-sabatini",fullName:"Silvio P. Sabatini",profilePictureURL:"https://mts.intechopen.com/storage/users/15166/images/system/15166.jpg",biography:"Silvio P. Sabatini received the Laurea Degree in Electronics Engineering and the Ph.D. in Computer Science from the University of Genoa in 1992 and 1996. He is currently Associate Professor of Bioengineering at the Department of Informatics, Bioengineering, Robotics and Systems of the University of Genoa. In 1995 he promoted the creation of the “Physical Structure of Perception and Computation” (PSPC) Lab to develop models that capture the “physicalist” nature of the information processing occurring in the visual cortex, to understand the signal processing strategies adopted by the brain, and to build novel algorithms and architectures for artificial perception machines. His research interests relate to visual coding and multidimensional signal representation, early-cognitive models for visually-guided behavior, and robot vision.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"527",title:"System Automation",slug:"system-automation"}],chapters:[{id:"33553",title:"Bio-Inspired Active Vision Paradigms in Surveillance Applications",doi:"10.5772/38872",slug:"bio-inspired-active-vision-paradigms-in-surveillance-applications",totalDownloads:1866,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Mauricio Vanegas, Manuela Chessa, Fabio Solari and Silvio Sabatini",downloadPdfUrl:"/chapter/pdf-download/33553",previewPdfUrl:"/chapter/pdf-preview/33553",authors:[{id:"13366",title:"Dr.",name:"Fabio",surname:"Solari",slug:"fabio-solari",fullName:"Fabio Solari"}],corrections:null},{id:"33554",title:"Stereo Matching Method and Height Estimation for Unmanned Helicopter",doi:"10.5772/29665",slug:"stereo-matching-method-and-height-estimation-for-unmanned-helicopter",totalDownloads:1663,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Kuo-Hsien Hsia, Shao-Fan Lien and Juhng-Perng Su",downloadPdfUrl:"/chapter/pdf-download/33554",previewPdfUrl:"/chapter/pdf-preview/33554",authors:[{id:"78819",title:"Dr.",name:"Kuo-Hsien",surname:"Hsia",slug:"kuo-hsien-hsia",fullName:"Kuo-Hsien Hsia"},{id:"85733",title:"Prof.",name:"Juhng-Perng",surname:"Su",slug:"juhng-perng-su",fullName:"Juhng-Perng Su"},{id:"85735",title:"MSc.",name:"Shao-Fan",surname:"Lien",slug:"shao-fan-lien",fullName:"Shao-Fan Lien"}],corrections:null},{id:"33555",title:"Fast Computation of Dense and Reliable Depth Maps from Stereo Images",doi:"10.5772/34976",slug:"fast-computation-of-dense-and-reliable-depth-maps-from-stereo-images",totalDownloads:2652,totalCrossrefCites:1,totalDimensionsCites:0,signatures:"M. Tornow, M. Grasshoff, N. Nguyen, A. Al-Hamadi and B. Michaelis",downloadPdfUrl:"/chapter/pdf-download/33555",previewPdfUrl:"/chapter/pdf-preview/33555",authors:[{id:"102462",title:"Dr.",name:"Michael",surname:"Tornow",slug:"michael-tornow",fullName:"Michael Tornow"},{id:"103726",title:"MSc.",name:"Thien-Nghia",surname:"Nguyen",slug:"thien-nghia-nguyen",fullName:"Thien-Nghia Nguyen"},{id:"103727",title:"Prof.",name:"Bernd",surname:"Michaelis",slug:"bernd-michaelis",fullName:"Bernd Michaelis"},{id:"137516",title:"MSc.",name:"Michael",surname:"Grasshoff",slug:"michael-grasshoff",fullName:"Michael Grasshoff"}],corrections:null},{id:"33556",title:"Real-Time Processing of 3D-TOF Data in Machine Vision Applications",doi:"10.5772/34160",slug:"real-time-processing-of-3d-tof-data-in-machine-vision-applications",totalDownloads:2671,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Stephan Hussmann, Torsten Edeler and Alexander Hermanski",downloadPdfUrl:"/chapter/pdf-download/33556",previewPdfUrl:"/chapter/pdf-preview/33556",authors:[{id:"6250",title:"Prof. Dr.-Ing.",name:"Stephan",surname:"Hussmann",slug:"stephan-hussmann",fullName:"Stephan Hussmann"}],corrections:null},{id:"33557",title:"Rotation Angle Estimation Algorithms for Textures and Their Implementations on Real Time Systems",doi:"10.5772/26657",slug:"rotation-angle-estimation-algorithms-for-textures-and-their-real-time-implementation-",totalDownloads:1958,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Cihan Ulas, Onur Toker and Kemal Fidanboylu",downloadPdfUrl:"/chapter/pdf-download/33557",previewPdfUrl:"/chapter/pdf-preview/33557",authors:[{id:"67465",title:"Mr.",name:"Cihan",surname:"Ulas",slug:"cihan-ulas",fullName:"Cihan Ulas"},{id:"127960",title:"Dr.",name:"Onur",surname:"Toker",slug:"onur-toker",fullName:"Onur Toker"},{id:"127961",title:"Prof.",name:"Kemal",surname:"Fidanboylu",slug:"kemal-fidanboylu",fullName:"Kemal Fidanboylu"}],corrections:null},{id:"33558",title:"Characterization of the Surface Finish of Machined Parts Using Artificial Vision and Hough Transform",doi:"10.5772/35182",slug:"characterization-of-surface-finish-of-machined-parts-using-artificial-vision-and-hough-transform",totalDownloads:2501,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Alberto Rosales Silva, Angel Xeque-Morales, L.A. Morales -Hernandez and Francisco Gallegos Funes",downloadPdfUrl:"/chapter/pdf-download/33558",previewPdfUrl:"/chapter/pdf-preview/33558",authors:[{id:"2941",title:"Dr.",name:"Alberto",surname:"Rosales-Silva",slug:"alberto-rosales-silva",fullName:"Alberto Rosales-Silva"},{id:"11317",title:"Dr.",name:"Francisco J.",surname:"Gallegos-Funes",slug:"francisco-j.-gallegos-funes",fullName:"Francisco J. Gallegos-Funes"},{id:"103334",title:"MSc.",name:"Angel",surname:"Xeque",slug:"angel-xeque",fullName:"Angel Xeque"},{id:"103340",title:"Dr.",name:"Luis",surname:"Morales",slug:"luis-morales",fullName:"Luis Morales"}],corrections:null},{id:"33559",title:"Methods for Ellipse Detection from Edge Maps of Real Images",doi:"10.5772/35150",slug:"methods-for-ellipse-detection-from-edge-maps-of-real-images",totalDownloads:2491,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Dilip K. Prasad and Maylor K.H. Leung",downloadPdfUrl:"/chapter/pdf-download/33559",previewPdfUrl:"/chapter/pdf-preview/33559",authors:[{id:"103174",title:"Dr.",name:"Dilip",surname:"Prasad",slug:"dilip-prasad",fullName:"Dilip Prasad"}],corrections:null},{id:"33560",title:"Detection and Pose Estimation of Piled Objects Using Ensemble of Tree Classifiers",doi:"10.5772/33551",slug:"detection-and-pose-estimation-of-piled-objects-using-ensemble-of-tree-classifiers",totalDownloads:2112,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Masakazu Matsugu, Katsuhiko Mori, Yusuke Mitarai and Hiroto Yoshii",downloadPdfUrl:"/chapter/pdf-download/33560",previewPdfUrl:"/chapter/pdf-preview/33560",authors:[{id:"96123",title:"Dr.",name:"Masakazu",surname:"Matsugu",slug:"masakazu-matsugu",fullName:"Masakazu Matsugu"},{id:"100026",title:"Mr.",name:"Katsuhiko",surname:"Mori",slug:"katsuhiko-mori",fullName:"Katsuhiko Mori"},{id:"100027",title:"Mr.",name:"Yusuke",surname:"Mitarai",slug:"yusuke-mitarai",fullName:"Yusuke Mitarai"},{id:"100034",title:"Mr.",name:"Hiroto",surname:"Yoshii",slug:"hiroto-yoshii",fullName:"Hiroto Yoshii"}],corrections:null},{id:"33561",title:"Characterization of Complex Industrial Surfaces with Specific Structured Patterns",doi:"10.5772/27201",slug:"characterization-of-complex-industrial-surfaces-with-specific-structured-patterns",totalDownloads:1636,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Yannick Caulier",downloadPdfUrl:"/chapter/pdf-download/33561",previewPdfUrl:"/chapter/pdf-preview/33561",authors:[{id:"69180",title:"Dr.",name:"Yannick",surname:"Caulier",slug:"yannick-caulier",fullName:"Yannick Caulier"}],corrections:null},{id:"33562",title:"Discontinuity Detection from Inflection of Otsu’s Threshold in Derivative of Scale-Space",doi:"10.5772/27502",slug:"discontinuity-detection-from-inflection-of-otsu-s-threshold-in-the-derivative-of-scale-space",totalDownloads:1714,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Rahul Walia, David Suter and Raymond A. Jarvis",downloadPdfUrl:"/chapter/pdf-download/33562",previewPdfUrl:"/chapter/pdf-preview/33562",authors:[{id:"70415",title:"Mr.",name:"Rahul",surname:"Walia",slug:"rahul-walia",fullName:"Rahul Walia"},{id:"119864",title:"Prof.",name:"Raymond A",surname:"Jarvis",slug:"raymond-a-jarvis",fullName:"Raymond A Jarvis"},{id:"119865",title:"Prof.",name:"David",surname:"Suter",slug:"david-suter",fullName:"David Suter"}],corrections:null},{id:"33563",title:"Reflectance Modeling in Machine Vision: Applications in Image Analysis and Synthesis",doi:"10.5772/26554",slug:"reflectance-modeling-in-machine-vision-applications-in-image-analysis-and-synthesis",totalDownloads:2106,totalCrossrefCites:2,totalDimensionsCites:1,signatures:"Robin Gruna and Stephan Irgenfried",downloadPdfUrl:"/chapter/pdf-download/33563",previewPdfUrl:"/chapter/pdf-preview/33563",authors:[{id:"67059",title:"Mr.",name:"Robin",surname:"Gruna",slug:"robin-gruna",fullName:"Robin Gruna"},{id:"74290",title:"MSc.",name:"Stephan",surname:"Irgenfried",slug:"stephan-irgenfried",fullName:"Stephan Irgenfried"}],corrections:null},{id:"33564",title:"Towards the Optimal Hardware Architecture for Computer Vision",doi:"10.5772/34023",slug:"towards-the-optimal-hardware-architecture-for-computer-vision",totalDownloads:2053,totalCrossrefCites:4,totalDimensionsCites:5,signatures:"Alejandro Nieto, David López Vilarino and Víctor Brea Sánchez",downloadPdfUrl:"/chapter/pdf-download/33564",previewPdfUrl:"/chapter/pdf-preview/33564",authors:[{id:"2541",title:"Mr.",name:"Alejandro",surname:"Nieto",slug:"alejandro-nieto",fullName:"Alejandro Nieto"},{id:"103915",title:"Dr.",name:"David",surname:"López Vilariño",slug:"david-lopez-vilarino",fullName:"David López Vilariño"},{id:"103916",title:"Dr.",name:"Víctor M.",surname:"Brea Sánchez",slug:"victor-m.-brea-sanchez",fullName:"Víctor M. Brea Sánchez"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"850",title:"Human-Centric Machine Vision",subtitle:null,isOpenForSubmission:!1,hash:"eb922d441849d97d0f39989c3437ba69",slug:"human-centric-machine-vision",bookSignature:"Manuela Chessa, Fabio Solari and Silvio P. Sabatini",coverURL:"https://cdn.intechopen.com/books/images_new/850.jpg",editedByType:"Edited by",editors:[{id:"13366",title:"Dr.",name:"Fabio",surname:"Solari",slug:"fabio-solari",fullName:"Fabio Solari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66301",slug:"corrigendum-to-denim-fabrics-woven-with-dual-core-spun-yarns",title:"Corrigendum to: Denim Fabrics Woven with Dual Core-Spun Yarns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66301.pdf",downloadPdfUrl:"/chapter/pdf-download/66301",previewPdfUrl:"/chapter/pdf-preview/66301",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66301",risUrl:"/chapter/ris/66301",chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]}},chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]},book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9288",leadTitle:null,title:"Design and Manufacturing",subtitle:null,reviewType:"peer-reviewed",abstract:"In product development, decisions taken in design and manufacturing are considered the most influential factors for succeeding commercialisation. Product development is a complex integrated process of several steps starting from design where the market needs are identified and turned into competitive product specifications and different design concepts. In other words, design is about identifying a problem, developing solution proposals, and validating the most feasible solution with real users. Manufacturing technologies, on the other hand, help designers to make those virtual models into physical parts by transforming different types of raw materials. This book on design and manufacturing, written by a number of experts from all over the world, presents a design perspective and different manufacturing applications from various industrial sectors.",isbn:"978-1-78985-866-2",printIsbn:"978-1-78985-865-5",pdfIsbn:"978-1-83962-889-4",doi:"10.5772/intechopen.83290",price:119,priceEur:129,priceUsd:155,slug:"design-and-manufacturing",numberOfPages:266,isOpenForSubmission:!1,hash:"29172b8e746a303c2c48f39292fd4c10",bookSignature:"Evren Yasa, Mohsen Mhadhbi and Eleonora Santecchia",publishedDate:"July 29th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9288.jpg",keywords:null,numberOfDownloads:3056,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:7,numberOfTotalCitations:7,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 14th 2019",dateEndSecondStepPublish:"August 28th 2019",dateEndThirdStepPublish:"October 27th 2019",dateEndFourthStepPublish:"January 15th 2020",dateEndFifthStepPublish:"March 15th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"219594",title:"Ph.D.",name:"Evren",middleName:null,surname:"Yasa",slug:"evren-yasa",fullName:"Evren Yasa",profilePictureURL:"https://mts.intechopen.com/storage/users/219594/images/9465_n.jpg",biography:"Dr. Evren Yasa graduated with her degree in Mechanical Engineering from the Istanbul Technical University and completed\nher master degree at the University of British Columbia on\nvolumetric error modeling and compensation. She received her\nPh.D. degree with her thesis on “Combined Process of Selective\nLaser Melting and Selective Laser Erosion/Laser Re-melting” at\nthe Catholic University of Leuven, and won the “Emerald Outstanding Doctoral Study-Highly commended” award with her doctoral dissertation.\nAfter her Ph.D. study, she worked as a senior engineer at TEI, a GE-joint venture\ncompany specializing in manufacturing aero-engine parts, where she led Additive\nManufacturing projects. Later, she joined Eskisehir Osmangazi University as an\nassistant professor. Moreover, she has been working as an independent expert in\nlaser-based manufacturing on behalf of European Commission in FP7 and Horizon2020 projects.",institutionString:"Eskisehir Osmangazi University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Eskişehir Osmangazi University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:{id:"228366",title:"Dr.",name:"Mohsen",middleName:null,surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi",profilePictureURL:"https://mts.intechopen.com/storage/users/228366/images/system/228366.jpeg",biography:"Dr. Mohsen Mhadhbi obtained his Ph.D. degree from the Faculty\nof Sciences of Sfax, Tunisia. He is currently Assistant Professor\nof Chemistry in the National Institute of Research and Physical-chemical Analysis, Tunisia. His research interests include\ninorganic chemistry, material engineering, intermetallics, and\npowder technology. He has published works in national and\ninternational impacted journals and books. He is a teacher in\ninorganic chemistry. He has supervised several researchers in materials science. He\nis a member of various scientific journals and associations and has been serving as\nan editorial board member of repute.",institutionString:"National Institute of Research and Physical-Chemical Analysis",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Tunis El Manar University",institutionURL:null,country:{name:"Tunisia"}}},coeditorTwo:{id:"270298",title:"Dr.",name:"Eleonora",middleName:null,surname:"Santecchia",slug:"eleonora-santecchia",fullName:"Eleonora Santecchia",profilePictureURL:"https://mts.intechopen.com/storage/users/270298/images/system/270298.jpeg",biography:"Dr. Eleonora Santecchia (PhD) is Assistant Professor in Metallurgy at the Marche Polytechnic University (UNIVPM) located in Ancona, Italy. Her current research activities are mainly\nfocused on metal additive manufacturing and, in particular, on\nthe laser powder bed fusion (LPBF) and direct energy deposition\n(DED) techniques. She received her Master Degree (cum laude)\nin Thermomechanical Engineering at the Marche Polytechnic\nUniversity (Ancona, Italy) in 2010, and obtained her Ph.D. in Materials, Waters\nand Soils Engineering on March 2014 (Marche Polytechnic University, Ancona,\nItaly). She accomplished a two years postdoctorate fellowship at Qatar University\nin Doha (Qatar) working on the Project NPRP 5-423-2-167 “Advanced ultra-hard\nnanostructured coatings for innovative applications in mechanical and chemical\nindustries”. From 2016 to 2019 she worked as an INSTM Postdoctoral Researcher at\nthe Marche Polytechnic University (Ancona), within the European Project DREAM\nH2020 “Driving up Reliability and Efficiency of Additive Manufacturing”. She is\nexperienced in microstructural characterization by scanning electron microscopy,\nenergy dispersive spectroscopy, and X-ray diffraction techniques. Furthermore, Dr.\nSantecchia is an enthusiastic additive manufacturing researcher, with a particular\npassion for laser-based 3D printing techniques.",institutionString:"Marche Polytechnic University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1356",title:"Manufacturing Engineering",slug:"technology-industrial-engineering-manufacturing-engineering"}],chapters:[{id:"70110",title:"Design for Manufacturing of Electro-Mechanical Assemblies in the Aerospace Industry",slug:"design-for-manufacturing-of-electro-mechanical-assemblies-in-the-aerospace-industry",totalDownloads:234,totalCrossrefCites:0,authors:[null]},{id:"68474",title:"Industrial Applications of Intelligent Adaptive Sampling Methods for Multi-Objective Optimization",slug:"industrial-applications-of-intelligent-adaptive-sampling-methods-for-multi-objective-optimization",totalDownloads:288,totalCrossrefCites:0,authors:[null]},{id:"68343",title:"Design for Sustainability with Biodegradable Composites",slug:"design-for-sustainability-with-biodegradable-composites",totalDownloads:349,totalCrossrefCites:0,authors:[null]},{id:"70001",title:"Integrating Sustainability in the Strategic Stage of an Innovation Process: A Design Brief Perspective",slug:"integrating-sustainability-in-the-strategic-stage-of-an-innovation-process-a-design-brief-perspectiv",totalDownloads:192,totalCrossrefCites:0,authors:[{id:"154290",title:"M.Sc.",name:"Kristel",surname:"Dewulf",slug:"kristel-dewulf",fullName:"Kristel Dewulf"}]},{id:"70473",title:"Prologue: The New Era of Sintering",slug:"prologue-the-new-era-of-sintering",totalDownloads:169,totalCrossrefCites:0,authors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"},{id:"270298",title:"Dr.",name:"Eleonora",surname:"Santecchia",slug:"eleonora-santecchia",fullName:"Eleonora Santecchia"}]},{id:"69701",title:"Utilization of Additive Manufacturing to Produce Tools",slug:"utilization-of-additive-manufacturing-to-produce-tools",totalDownloads:241,totalCrossrefCites:0,authors:[{id:"219596",title:"Dr.",name:"Kıvılcım",surname:"Ersoy",slug:"kivilcim-ersoy",fullName:"Kıvılcım Ersoy"}]},{id:"67294",title:"Fabrication of Fine-Grained Functional Ceramics by Two-Step Sintering or Spark Plasma Sintering (SPS)",slug:"fabrication-of-fine-grained-functional-ceramics-by-two-step-sintering-or-spark-plasma-sintering-sps-",totalDownloads:242,totalCrossrefCites:0,authors:[{id:"216560",title:"Dr.",name:"Walace",surname:"Matizamhuka",slug:"walace-matizamhuka",fullName:"Walace Matizamhuka"}]},{id:"69886",title:"Rapid Physical Models: A New Phase in Industrial Design",slug:"rapid-physical-models-a-new-phase-in-industrial-design",totalDownloads:211,totalCrossrefCites:0,authors:[null]},{id:"67448",title:"Effects of Dispersed Sulfides in Bronze During Sintering",slug:"effects-of-dispersed-sulfides-in-bronze-during-sintering",totalDownloads:257,totalCrossrefCites:0,authors:[null]},{id:"70809",title:"Comprehensive Review on Full Bone Regeneration through 3D Printing Approaches",slug:"comprehensive-review-on-full-bone-regeneration-through-3d-printing-approaches",totalDownloads:230,totalCrossrefCites:0,authors:[null]},{id:"72320",title:"3D Printed Bioscaffolds for Developing Tissue-Engineered Constructs",slug:"3d-printed-bioscaffolds-for-developing-tissue-engineered-constructs",totalDownloads:206,totalCrossrefCites:0,authors:[{id:"39279",title:"Prof.",name:"Md Enamul",surname:"Hoque",slug:"md-enamul-hoque",fullName:"Md Enamul Hoque"}]},{id:"69997",title:"Application the Geometric Modeling Methods and Systems in Design Engineering and Manufacturing on Example of Agriculture Engineering",slug:"application-the-geometric-modeling-methods-and-systems-in-design-engineering-and-manufacturing-on-ex",totalDownloads:197,totalCrossrefCites:0,authors:[{id:"268891",title:"Ph.D.",name:"Tojiddin",surname:"Juraev",slug:"tojiddin-juraev",fullName:"Tojiddin Juraev"}]},{id:"71402",title:"Manufacturing a Ceramic Water Filter Press for Use in Nigeria",slug:"manufacturing-a-ceramic-water-filter-press-for-use-in-nigeria",totalDownloads:240,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"287827",firstName:"Gordan",lastName:"Tot",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/287827/images/8493_n.png",email:"gordan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5266",title:"Sustainable Drying Technologies",subtitle:null,isOpenForSubmission:!1,hash:"b181534649ba314c0b6b66563924b0b5",slug:"sustainable-drying-technologies",bookSignature:"Jorge del Real Olvera",coverURL:"https://cdn.intechopen.com/books/images_new/5266.jpg",editedByType:"Edited by",editors:[{id:"166103",title:"Dr.",name:"Jorge",surname:"Del Real Olvera",slug:"jorge-del-real-olvera",fullName:"Jorge Del Real Olvera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6245",title:"Pulp and Paper Processing",subtitle:null,isOpenForSubmission:!1,hash:"02d43c16cfb998c3a76fb4aab8d88403",slug:"pulp-and-paper-processing",bookSignature:"Salim Newaz Kazi",coverURL:"https://cdn.intechopen.com/books/images_new/6245.jpg",editedByType:"Edited by",editors:[{id:"93483",title:"Dr.",name:"Salim Newaz",surname:"Kazi",slug:"salim-newaz-kazi",fullName:"Salim Newaz Kazi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9278",title:"Mass Production Processes",subtitle:null,isOpenForSubmission:!1,hash:"789ba305188dfbafa096787e75c14ffc",slug:"mass-production-processes",bookSignature:"Anil Akdogan and Ali Serdar Vanli",coverURL:"https://cdn.intechopen.com/books/images_new/9278.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,isOpenForSubmission:!1,hash:"165b06fe031e98420855654b0a5e25c4",slug:"applications-of-design-for-manufacturing-and-assembly",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6736",title:"Abrasive Technology",subtitle:"Characteristics and Applications",isOpenForSubmission:!1,hash:"928e702841e3f565da642039ea0c31ce",slug:"abrasive-technology-characteristics-and-applications",bookSignature:"Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/6736.jpg",editedByType:"Edited by",editors:[{id:"110857",title:"Associate Prof.",name:"Anna",surname:"Rudawska",slug:"anna-rudawska",fullName:"Anna Rudawska"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"56238",title:"Detection and Diagnosis of Breast Diseases",doi:"10.5772/intechopen.69898",slug:"detection-and-diagnosis-of-breast-diseases",body:'\n
Most women experience breast changes in their life. This is due to normal growth and changes in hormone levels. However, lumps, bumps, breast pain, nipple discharges, or skin irritation are examples of breast problems that have similar symptoms. The vast majority of lesions and abnormalities occurs in the breast are not cancer but are far more frequent than malignant ones [1–7]. Benign breast constitutes a heterogeneous group of lesions including various abnormalities, inflammatory lesions, epithelial and stromal proliferations, and neoplasms [3–5]. However, cancer is a disease that starts in a localized organ or tissue and then grows out of control. Breast cancer is an important health problem as it is the most common malignancy in women in Western countries. It is the second most frequent cause of cancer death in women (after lung cancer) [8, 9]. The incidence rate, however, rises dramatically over the age of 50 years. This is may be due to several risk factors such as family history, genetics, early menstruation, late menopause medication, and other factors that have not yet been identified. The above problems have prompted global governments to put constant efforts to increase patient\'s recovery level against this disease. Early and accurate detection with mass screening programs helps improves a woman\'s chances for successful treatment. It also minimizes pain, suffering, and anxiety that surround patients and their families. The goal of this chapter is to introduce the problems caused by breast cancer, starting with the requirements for breast imaging, an overview of the methods for diagnosing breast abnormalities with the focus on molecular imaging of the breast.
\nThe goal of breast evaluation is to classify findings as normal physiologic variations, clearly benign, or possibly malignant. The size, shape, and appearance of the female breast are not constant but undergo a number of changes during the lifetime of women. For instance, changes occur with pregnancy, breast feeding, and during the menstrual cycle. In addition, the age of the subject not only influences the shape but also parenchymal density of the breast. That is why young women tend to have dense breasts (more fibro-glandular tissue), creating a rounded appearance. On the other hand, postmenopausal women have breasts containing a large amount of fat. This makes the X-ray mammogram far more effective in older women as the fat content is more radio-translucent (appears darker) compared to glandular tissue (appears under-exposed) in younger women [10]. The above discussion suggests that both the shape and parenchymal density of the breast impose particular constraints on the choice of imaging modality. The imaging technique should be powerful for initial detection and subsequent follow-up of the diseases.
\nAt present, no single technique was used for all cases of breast cancer detection without showing certain clinical or technical limitations. This implies necessity to address the specific needs that can help for breast tumors imaging to overcome these limitations. For instance, breast compression often needed as it holds the breast still and enhances the spatial resolution. It also evens out the breast thickness and reduces scatter in X-ray or γ-ray imaging [11], thus increasing image sharpness. Moreover, it spreads out the tissue so that the overlying breast tissue will not obscure small abnormalities. Since the breast is an external organ and extends to the chest wall, it requires appropriate views to be obtained. For instance, in X-ray mammography, a lateral (from the side) view of the breast allows separation of the chest wall from lesions deep within the breast. On the other hand, in single photon γ-ray emission imaging, one needs to separate the breast from the heart by employing an appropriate prone (face down) position. However, it has been claimed that with prone imaging view, there is a possibility of missing a small low-intensity medial lesion because of attenuation. This implies that another image is needed but in the lateral view. In addition, shielding the camera from the background cardiac flux is very useful in tumor detection in terms of contrast and resolution.
\nThe usefulness of diagnostic imaging tests, which is their ability to detect a patient or subject with disease or exclude a patient or subject without disease. In other words, the idea in using any diagnostic test is to be able to correctly diagnose the disease and easily interpret the results. The latter is achieved by calculating the probability that a patient has a disease. The diagnostic test performance is usually measured by calculating four important statistical parameters or terms. These are the test\'s sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) [12, 13]. Table 1 illustrates these parameters and their relationship. In breast tumor γ-ray imaging, these parameters are dependent on clinical history, biological factors such as size, site, or location, the type of the lesion, and patient’s age. The test parameters may also depend on the physical and the practical aspects as well as on the imaging technology parameters. Sensitivity and specificity are properties of a test that tell us how good the diagnostic test is at predicting the disease and whether it is to be used or not [12]. Sensitivity is the proportion of people with the disease who have a positive test for the disease [12]. Specificity is the proportion of people without the disease who test negative [12]. A high sensitivity test means that the test has a low rate of false-negatives and high specificity means that the test has a low rate of false-positives. In brief, the text here and Table 1 simply provide a practical application, hence of what these concepts mean in clinical practice and how they can be used in practical settings to aid the diagnostic process.
\nTest outcome | \nCondition as determined by “gold” standard | \n\n | |
---|---|---|---|
True | \nFalse | \n||
Positive | \nTrue positive | \nFalse positive | \n⇒Positive predictive value | \n
Negative | \nFalse negative | \nTrue negative | \n⇒Negative predictive value | \n
\n | ⇓ Sensitivity | \n⇓ Specificity | \n\n |
In clinical practice, the decision to send patients for breast biopsies is arbitrary, i.e., there is no fixed test threshold. Instead, the decision is usually based on the needs of patients and clinicians for the different clinical situations. As a result, for any given image of a breast lesion, there is a kind of trade-off between the sensitivity and specificity, i.e., sensitivity can only increase by decreasing the specificity of a test. For instance, if the decision is to only select patients with extremely abnormal images to have breast biopsy, then the test will become extremely specific but not very sensitive. In this case, many patients falsely diagnosed as not having breast diseases or breast cancer. On the other hand, if the decision is to send patients with borderline abnormal images to have biopsy, the test will then become more sensitive but less specific. As a result, many patients who do not have breast cancer sent for an unnecessary biopsy, i.e., the diagnostic tests are useless. This sensitivity specificity trade-off of the diagnostic test is accurately illustrated by the analysis of the receiver operating characteristic (ROC) curve at each test threshold or cut-point. This curve is a plot of the true positive rate against the false positive rate for the different possible thresholds of the diagnostic test. The area under the ROC curve is a measure of test accuracy, i.e., how well the test separates or classifies the patient population into those with the abnormality and those without. An area of 1 represents excellent performance test and an area of 0.5 represents a fail test.
\nTo know the probability that the imaging test is giving the correct diagnosis, the positive and negative predictive values are needed. The PPV of a test is the probability of a patient having the disease following a positive test result [13]. The NPV is the probability of a person not having the disease following a negative test result [13]. These test performance measures are influenced by the probability of disease at any point in time of the total abnormality in the population tested [13]. The predictive values also vary as a function of disease prevalence and patient subpopulation. Thus, a combined measure of diagnostic performance, the likelihood ratio, is a clinically useful diagnostic test performance measure. Negative likelihood ratios measure the ability of the test to accurately rule out disease, and positive likelihood ratios measure the ability of the test to accurately detect disease. In summary, both sensitivity and specificity terms of a diagnostic test suffer from limitations in clinical practice, as they cannot estimate the probability of breast cancer in an individual patient. However, PPV and NPV help to overcome this problem, but they both vary according to disease prevalence and populations.
\nBreast lesion investigations may include self or clinical breast examination, X-ray mammography, and biopsy. In addition, a variety of other efficient complementary imaging modalities provide additional information to achieve a definite breast diagnosis. The following subsections give an overview of the main diagnostic techniques used for breast tumor imaging.
\nMammography is a low energy (25–32 keV) X-ray examination of the soft tissues of the breast. It uses the variation in density between normal mammary features and abnormal tissue structures (lesion) to produce the image. The X-ray images are either captured on a film or directly stored on a digital computer. The former is one of the widely used current techniques based on screen-film technology. X-ray mammography considered the gold standard in breast imaging as it is fast, available, and has a lower cost than other breast imaging techniques. It has two main applications: as a screening method in asymptomatic patients and as a diagnostic method in symptomatic populations. The former application is extremely important and its introduction in the past three decades has significantly reduced the mortality rate of breast cancer in many countries [14, 15]. This is because the screening services accurately detect micro-calcifications and nonpalpable soft tissue masses, which have been beyond other imaging methods, due to the high spatial resolution (∼50–100 μm). Normally, screening is achieved by exposing the breast to X-rays after gently compressed between two plates and then taking two views for each breast. A craniocaudal (imaging from above to below) and lateral views are generally taken. A lead grid is used to reduce scattering photons that reach the film. Diagnostic mammography evaluates the entire breast as well as characteristics of the mass. It is used for assessing the size of the lesion, for pre-surgical localization of suspicious areas of breast, and in the guidance of needle biopsies. The reported sensitivity (the fraction of patients actually having the disease and correctly diagnosed as positive) in lesion detection varied between 69 and 90% [16] depending on the breast density. The specificity (the fraction of patients without the disease, correctly diagnosed as negative) is the major drawback of conventional mammography. A variation in specificity between 87 and 97% and a low positive predictive value as low as 15% has also been reported [17]. This ‘less than perfect’ performance may be due to several confounding factors, e.g., poor mammographic technique, observer error, the lesions are nonpalpable or at a cellular level, and/or the lesions are obscured by the normal breast tissues. The presence of scars or tissue distortion may hide true small tumors on the mammogram. Nevertheless, conventional mammography remains a valuable and cost-effective technique for breast tumor diagnosis. Over the last three decades, considerable efforts are carried out to improve the current screen-film mammographic technique. These improvements include image quality, acquisition techniques, and interpretation protocol in order to reduce some of the mammographic limitations [18].
\nThe use of digital imaging in general radiography has increased rapidly in recent years. This has extended to mammographic imaging. “Digital mammography” (DM) is a possible current direction in breast imaging compared to film-based conventional mammography. This is due to the presence of X-ray detector, which is considered the heart of DM. A number of technologies and several types of integrated digital detector system are in use nowadays. DM has the potential to improve contrast resolution compared with film-screen imaging. This is because DM detectors like other detectors characterized by sensitivity, spatial resolution properties, quantum detection efficiency, noise, and linearity of response.
\nThis has improved diagnostic capability and relatively outweighs the potential reduction in limiting spatial resolution. DM technique offers many inherent advantages over the conventional screen film-based technology [19, 20]. For instance, processing with digital systems increase dynamic range (two to four times the dynamic range of typical film-screen), improved quantum efficiency, signal-to-noise-signal, and storage and display mechanisms.
\nMoreover, DM detector provides features for automatic control of exposure factors of the image acquisition. This represents the spatial pattern of X-ray transmitted by the breast tissue accurately. The use of computer-assisted image interpretation claimed to be helpful for the physician. This may enhance different features such as computer-aided diagnosis, which may further improve the visibility of lesions and improve mammographic sensitivity [21]. Therefore, repeated exposures (which are sometimes, needed when using conventional mammography) are not required and this may reduce the radiation dose. The advantage of digital imaging systems compared with film-screen imaging is the ability to manipulate and possibly enhance the displayed image. The breast dose levels required by current digital imaging systems are, in general, similar to those of a modern mammographic film-screen combination. However, developments in detector design and optimization of beam quality may eventually result in a reduction in radiation dose. With the use of DM, a number of image processing operations can be introduced to correct for spatial nonuniformities in detector responses. In addition, it is also possible to improve the effective spatial resolution of the detector. It also overcomes a number of limitations inherent in the screen-film image receptor used in conventional mammography. Consequently, this improved the diagnostic image quality as well as reduced the doses to the breast tissues.
\nFurthermore, it does not need either cassettes or dark rooms or processors, and thus allegedly saves space and time in archiving and retrieving DM images. However, DM requires large disk space for saving image data. Despite several advantages, DM does not yet reach the level of detail to replace screen film mammography. However, with continuous technical improvements of the digital system, this may be expected to change in the near future. Both conventional and DM systems suffer from substantial technical and clinical limitations. For instance, these systems are unreliable in imaging patients with dense parenchyma tissue especially in the younger female population due to more glandular tissue. Mammographic findings are nonspecific (cannot always differentiate benign from malignant disease) and often underestimate the size of the detected lesion. X-ray-based imaging is also not useful for breast diagnosis following surgery or radiotherapy, as the patient\'s breasts in these cases have architectural distortion.
\nMoreover, both the tube spectrum and the peak potential (KVp) are important parameters affecting the image quality in film-screen and digital mammography. Automatic selection of proper target/filter combination in modern mammography systems may be affected by improper KVp. In conventional devices, the user depends on central laboratory calibration and has no easy way to calibrate the instrument during use. It is worth mentioning that X-ray mammography is not always useful for nonpalpable tumors. Another group of women with a known family history of breast cancer was recommended not to repeat X-ray mammography. In other words, those close carrying a mutation in BRCA1 (human gene called breast cancer 1, early onset) or BRCA2 (breast cancer 2) genes. Those groups are at high genetic risk of cancer. Some even have opted for preventative bilateral mastectomy. It is preferred not to repeat scan in this group due to X-ray dose and thus, a more sensitive diagnostic test would be advisable. Once the diagnostic tests particularly X-ray mammography indicates or suspects breast cancer, breast biopsies are then performed. Breast biopsy is an invasive procedure used to remove tissue or cells from the breast for microscopic examination. This technique generally performed under local anesthesia. Several types of biopsy are available depending on location, type, and size of lesion. Fine needle aspiration biopsy is performed by inserting a very thin needle to the lesion for taking a small sample of cells, fluid, or tissue. Core needle biopsy is used with a large needle to remove a small cylindrical shape of tissue. Surgical biopsy involves removing part (incisional biopsy) or entire (excisional biopsy) lesion tissue.
\nIn addition, a special wire localization technique may be used during surgery for deeply seated lesion. This technique usually performed under X-ray or ultrasound guidance. There are special instruments and techniques that help to guide the needle biopsy. These include stereotactic biopsy with a 3D mammographic technique to find the exact location of breast lesion and vacuum-assisted biopsy using a tube to gently suck the breast lesion and a knife to remove tissue. This technique is much less traumatic than open biopsy. Moreover, a sentinel node (the first lymph node to receive drainage from a breast cancer cell) biopsy may often be used to determine whether cancer cells have spread to other tissue. In summary, invasive breast biopsies play an important role for evaluating breast cancer particularly nonpalpable lesions. These surgical procedures are important for staging (see Table 2) and are considered the “gold standard” [17] to determine the presence or absence of breast cancer. However, invasive breast biopsy procedures are expensive, time consuming, and are often associated with emotional stress. It also causes scar and tissue distortion that complicate the future mammography. As a result, additional imaging tests are being used to reduce the trauma, cost, avoid, or minimize unnecessary invasive breast biopsies, and more importantly to further improve breast cancer diagnosis.
\nStage | \nTumor size | \nLymph node involvement | \nMetastasis | \n
---|---|---|---|
0 | \nCarcinoma in situ | \nN0 | \nM0 | \n
I | \n≤2 cm | \nN0 | \nM0 | \n
IIA | \nNo evidence of tumor | \nN1 | \nM0 | \n
\n | ≤2 cm | \nN1 | \nM0 | \n
\n | 2–5 cm | \nN0 | \nM0 | \n
IIB | \n2–5 cm | \nN1 | \nM0 | \n
\n | 5 cm< | \nN0 | \nM0 | \n
IIIA | \nNo evidence of tumor | \nN2 | \nM0 | \n
\n | ≤2 cm | \nN2 | \nM0 | \n
\n | 2–5 cm | \nN2 | \nM0 | \n
\n | 5 cm< | \nN1 | \nM0 | \n
\n | 5 cm< | \nN2 | \nM0 | \n
IIIB | \nOf any size | \nN0 | \nM0 | \n
\n | Of any size | \nN1 | \nM0 | \n
\n | Of any size | \nN2 | \nM0 | \n
IIIC | \nOf any size | \nN3 | \nM0 | \n
IV | \nOf any size | \nAny N | \nM1 | \n
The staging of breast cancer, adapted from Ref. [22].
Note: Beyond stage IIIB, the tumor is usually extended to either the skin or the chest wall and thus can be of any size. The N0 = no regional lymph node, N1 = metastasis in movable ipsilateral axillary lymph node(s), N2 = metastasis in ipsilateral axillary lymph node(s) fixed or matted, and N3 = metastasis in ipsilateral infraclavicular lymph node(s) or clinically apparent.
From the previous discussion, it is clear that there are some clinical situations where there are significant limitations to use mammography in isolation. In such cases, there is a great need to use sensitive tests to achieve a high confidence and accurate diagnostic decision. The use of breast biopsies is necessary if breast cancer is indicated or suspected in such cases. Of the performed breast biopsies, ≈60–80% [17] are negative of breast cancer or have benign lesions. In these cases, breast biopsies are considered unnecessary. This has led many breast cancer experts to propose complementary imaging modalities to provide additional diagnostic information and reduce unnecessary breast biopsies. Over the last two decades, complementary diagnostic techniques such as ultrasonography (US), magnetic resonance imaging (MRI), and radionuclide breast imaging techniques have emerged as potential investigations for the detection and diagnosis of breast cancer. The radionuclide breast imaging technique, unlike X-ray mammography, is not affected by breast density. This has prompted a number of investigators to evaluate the feasibility of radionuclide breast imaging techniques in a screening context particularly for women with dense breast.
\nUS uses high frequency acoustic waves that reflect at boundaries with different acoustic properties. It is a noninvasive technique, easily available, and relatively cheap. Breast US provides unique information in assessing both palpable and nonpalpable breast abnormalities. For instance, it clearly differentiates between solid masses and cystic lesions. It is considered to be useful in cancer staging, measuring tumor sizes, easy accessing lesions located in peripheries, and reducing the number of unnecessary biopsies. It allows accurate needle placement during biopsy and is very useful for aspiration of cysts. The members of the European group for breast cancer screening recommended using US as a complementary method to X-ray mammography. In addition, the use of high frequency transducers has improved spatial resolution and thus claimed to be useful in axillary node evaluation. However, breast US technique is time consuming and operator/observer dependent. It has also a number of other limitations that may be due to the overlapping in sonographic characteristics. For instance, it cannot detect calcifications (micro calcifications or macro calcifications) in ductal carcinoma in situ (DCIS). It could also miss solid lesions especially in a fatty breast and if detected cannot determine whether a solid mass is benign or malignant. For these reasons, US is not used in some institutions as a screening technique for asymptomatic breast cancer as it is difficult to ensure that the entire breast has been scanned.
\nMagnetic resonance imaging (MRI) images is created by the recording of signals generated after radio-frequency excitation of nuclear particles exposed to strong magnetic field. Breast MRI is a nonionizing tomographic functional technique that may be used when the diagnosis is uncertain with mammography [23]. The technique is valuable for specific clinical indications such as patients with (1) axillary adenopathy (enlargement or inflammation of lymph gland), (2) possible tumor recurrence after surgery or radiotherapy, (3) lesions overlying implants, or (4) those requiring staging of multi-focal carcinoma (two or more discrete lesions in one breast) [24]. Breast MRI with dedicated breast coil has excellent soft tissue resolution that enhances the ability to both identify the location and in some cases determines the full extent of the lesion. The use of intravenous contrast agent, gadolinium, which accumulates in tissues with a dense blood vessel network, also increases the sensitivity of breast MRI [16]. However, the reported specificity (ability to determine if lesion is benign or malignant) is 56–72% [24]. This technique has a limited application in patients with implanted metal devices or other metallic materials inside the body. In addition, several clinical limitations have been reported in the literature suggested not to use MRI in pre-menopausal women. For example, changes that do occur in the T1 value of the breast tissue during the menstrual cycle [24] mean that patients should be scanned between the 6th and 16th day of the cycle. In summary, researchers have concluded that breast MRI is very sensitive, but not very specific and thus, cannot be used alone to rule out cancer. MRI is limited by lack of availability and inconsistent quality, and the technique is too expensive for routine use in breast cancer screening in the general patient population.
\nThe need to improve breast cancer detection and to reduce unnecessary invasive breast biopsies has stimulated researchers to investigate functional imaging modalities. These techniques produce a range of different imaging approaches such as positron emission tomography (PET), single photon emission computed tomography (SPECT), planar imaging, and dedicated imaging instrumentation with and without breast compression. These imaging techniques of the breast potentially offer additional information in breast cancer diagnosis. This is because these imaging methods rely on the physiological and biochemical characteristics of a lesion. Thus, it is considered as the best hope to differentiate between benign/normal and malignant diseases. These functional techniques are also used to assess and monitor the effect of cancer prevention drugs. The current radionuclide imaging techniques used for breast tumor imaging are briefly discussed.
\nIn PET, a small amount of positron emitter radiotracer, 18F fluorodeoxyglucose (FDG), is administered intravenously to the patient [25]. It is then distributed in the body, and as it decays, the radionuclide emits a positron in any random direction. If the positron while travelling interacts with an electron within the body, the two particles then annihilate and produce two γ-rays of 511 keV each. Either a whole body scanner or a breast-specific positron emission mammography (PEM) camera [26] is used to detect the two γ-rays in coincidence (two events that are detected within ≈12 ns). PEM is increasingly used in North America not only in cancer diagnosis but also in staging, planning, and monitoring anticancer therapy. This information can be helpful in eliminating unnecessary axillary dissection [27], biopsies, and in determining the appropriate treatment. The diagnosis of viable tumor tissue following chemotherapy is another application of PET [28, 29]. Imaging with 18F-FDG has shown considerable promise in breast cancer imaging, but the exact role is still in evolution. Wahl [30] recommended that it is best applied to solve difficult clinical cases in specific patients rather than routinely. There are at least four reasons that limit the wide use of PEM for routine cancer diagnosis. The first one is the high cost (over £2 million) of PET coincidence imaging equipment, i.e., cyclotron, scanner, and radiochemistry facility [25]. The second one is the difficulty of producing and labeling the short half-life PET radionuclides [21]. The third reason is the lack of medical centers with the required experience to develop more advanced methodology appropriate for breast oncology. In particular, more data is still needed concerning the metabolism of different PET radiopharmaceuticals in breast tumors. The final reason is the lack of oncologists with a high knowledge of PET methodology [30].
\nScintimammography (SM) is a promising noninvasive functional imaging technique. It has been proposed to complement X-ray mammography and to improve patient selection for biopsy. This single photon imaging of the breast involves injecting the patient in the arm vein with a small amount (555–740 MBq [31]) of radiopharmaceutical. The most commonly used radiopharmaceutical for SM is 99mTc labeled sestamibi. After injection, the radiopharmaceutical distributes in the breast tissue as well as in other body organs. It accumulates more in the target object (breast lesion) with uptake ratio nearly 9:1 tumor-to-background-ratio (TBR) [32]. A standard full-size clinical gamma camera is then used to scan the patient and thus measure the 3D distribution of the radioactivity. SM imaging using full size clinical γ-camera includes a range of different imaging approaches such as planar (2D) imaging or SPECT technique. The latter technique gives a 3D image but is not widely used because it is difficult to accurately localize the lesion [33]. In contrast, planar SM is the technique that is more widely used in clinical practice because it provides better lesion localization particularly the prone images with lateral views [33]. In this case, the gamma camera is usually equipped with a low energy high resolution (LEHR) parallel-hole collimator and two views (prone and supine) are taken, to the diagnosed breast. Since the energy imaged is 140 keV representing the photopeak, 20% energy window (symmetric ±10%) is often used and thus, centered over the photopeak. The main clinical applications of planar SM imaging are summarized here and the details are found in literatures [33–39]. In brief, SM with a general purpose γ-camera introduced to evaluate patients with dense breast tissue and prior to breast biopsy [34]. The technique is considered valuable for many clinical applications such as evaluating the axillary lymph nodes, investigating patients with micro calcifications [35], assessing multi-focal and multi-centric breast cancer diseases [36]. It is also useful for imaging patients following surgery, chemotherapy, hormonal replacement therapy, and radiotherapy as well as for patients with breast implants [33]. The technique may also assist in the differentiation of benign and malignant breast abnormalities by measuring the radiotracer uptake in the lesion as compared with surrounding breast tissue. Studies such as Refs. [37, 38] suggested that SM may be used as a second-line diagnostic test in cases where the sensitivity of mammography is decreased or there is a doubt about the presence of a lesion.
\nIn summary, SM using conventional γ-camera is considered as a useful complementary imaging modality to aid the diagnosis and the detection of breast cancer [39]. It may also help to assess patients recommended for biopsy and this may reduce the number of unnecessary or benign breast biopsies. However, the major drawback of the current standard clinical gamma camera SM imaging systems is the use of mechanical collimator. This causes the camera imaging system to utilize a very small fraction, ∼0.01%, of the total number of the emitted photons. This limits the statistics and hence the quality and diagnostic value of the observed images. The collimator sensitivity and resolution are a trade-off and the camera is also limited by its intrinsic spatial resolution. As a result, these factors make it difficult to practically image cases of smaller, nonpalpable lesions (<1 cm) that may be deep seated or those close to the chest wall. These have stimulated the development of newly dedicated (breast specific) instrumentations that used for breast tumor imaging applications.
\nRecent years have seen considerable interest by scientists in developing new compact medical imaging detectors. These instruments proposed for different clinical applications with the aim to improve image quality by building cameras of suitable size and shape for the part of the body under investigation. Among these designed detectors is the small-dedicated gamma camera for functional breast tumor imaging. The justification for this development is that a standard full size clinical gamma camera designed for whole body imaging and thus, is not been optimized for breast tumor imaging. In other words, there are a number of shortcomings with such general purpose gamma camera such as the limiting sensitivity. On average (50% [40]) for lesions <1 cm such as DCIS particularly, the medially located tumors. In addition, several studies [41–52] have pointed out that due to the large FoV of the camera and the bulky collimators, it is difficult to position the camera close to the breast, and thus, imaging breast tissue adjacent to the chest wall may not be possible. This may, ultimately, decrease the spatial resolution of the camera imaging system and thus affect the diagnostic value of the test in detecting such a small lesion size. To overcome some of the limitations offered by conventional gamma camera on breast imaging, Gupta et al. [41] reported the first preliminary clinical data that performed with breast-specific detectors and then compare it with the data obtained from standard full-size camera. A limited number of patients were investigated in this study but interestingly reported a higher sensitivity for the dedicated camera. Following this and due to the large research activities, new generation of detectors have been designed and developed for breast tumor imaging. For instance, the position-sensitive photo-multiplier tubes (PSPMT), semiconductor arrays, and scintillation crystals are coupled to an array of solid-state photodetectors. Table 3 summarizes the features and the physical parameters of some of the currently under investigation and the commercially available dedicated breast camera. In general, these small FoV detectors have led to the improvement of the overall spatial resolution of such imaging system.
\nCameras and study (reference) | \nCrystal sizes (mm3) | \nFoV sizes (cm2) | \nIntrinsic resolution (mm) | \nSpatial resolution (mm) | \nEnergy resolution (%) | \n
---|---|---|---|---|---|
CsI(TI) [47] | \n2 × 2 × 3 | \n10 × 10 | \n2 | \n9 | \nn/a | \n
CsI(Si) [49] | \n3 ×3 × 6 | \n21 × 21 | \n3 | \n6.5 | \nn/a | \n
NaI(TI) [50] | \n3 ×3 × 6 | \n15 × 20 | \n3 | \n6.3 | \n10% | \n
LumaGEM Nal(TI) [42, 50] | \n2 ×2 × 6 | \n12.8 × 12.8 | \n2.2 | \n3.4 | \n10% | \n
LumaGEM 32000S/12K2 (CZT) [51] | \n2.5 ×2.5 × 5 | \n16 × 20 | \n1.58 | \n2.5 | \n6% | \n
LumaGEM (CsI) 5600 crystal [52] | \n3 × 3× 6 | \n10 × 10 | \n1.7 | \nn/a | \nn/a | \n
Physical characteristics and specifications of dedicated gamma cameras proposed for scintimammography.
All cameras are based on PSPMT(s) principle. The CZT detector array absorbs the γ-rays directly and converts their energy into electrical signal without the conversion to visible light as in the case with a scintillation detector. The spatial resolution is measured with general purpose collimator at 10 cm distance except the LumaGEM cameras that based on ultra-high resolution collimators.
Note: n/a, not available.
The commercially available dedicated breast camera has two detectors and is designed and optimized to image only the breasts. It possesses a high intrinsic spatial resolution and the camera is also equipped with ultra-high resolution parallel-hole collimator and thus, optimized for high-resolution SM. The main advantage of such cameras is the ability to separate the breast from the chest wall by positioning the camera close to the breast. Thus, the camera can be used in areas with limited space (e.g., medial view can be possible), where the use of a full-sized camera is impractical or impossible. The use of moderate breast compression capabilities may improve both the signal-to-noise ratio (SNR) and the spatial resolution [42] and thus increase the sensitivity for detecting smaller lesions. The proposed clinical indications for such dedicated cameras are similar to the full size clinical gamma camera SM. There are some recent clinical studies associated with using these dedicated gamma cameras. For instance, a clinical preliminary study by Brem et al. [43, 44] using dedicated breast camera demonstrated a slight improvement in resolution and tumor sensitivity particularly for lesions ≤1 cm. Rhodes et al. reported [45] on SM, performed on 40 women with small mammographic abnormalities (<2 cm) scheduled to undergo biopsy. The SM examination identified (33/36) malignant lesions confirmed at biopsy. The authors concluded that this preliminary study suggested an important role for the dedicated SM camera in women with dense breasts.
\nIn another study, Brem et al. [46] evaluated 94 women (median age 55 years) who presented with normal mammographic and physical examination results but all subjects were considered at high risk of developing breast cancer. Of these women, 35 had a history of previous breast carcinoma or atypical ductal hyperplasia. The authors concluded that with this camera, they could depict small (8–9 mm) nonpalpable lesions in women at a high risk of breast cancer. In summary, while these studies using breast-specific cameras are promising, all are considered preliminary in nature because they are based on very few cases. Additional studies with a larger sample size are needed to accurately assess and reach scientific conclusions concerning these proposed cameras. They also need to be cost competitive with the general purpose gamma cameras in order to be widely used in breast tumor imaging applications. In addition, the smallest lesion sizes that can be detected with these cameras claimed to be 3–3.3 mm [47] compared to 4–5 mm [48] with conventional camera. However, the evidence published to date did not demonstrate a statistically significant difference in lesion detection. The spatial resolution of these proposed cameras may further improve by increasing the pixel size but there are practical limitations in the development of cameras with small pixel sizes, including cost and detector design. More importantly, due to the use of collimator, these dedicated cameras suffer from low detection efficiency.
\nIn many centers, the current evaluation and primary diagnosis of breast are based on combination of physical examination, mammography, and breast biopsy. Mammography represents a significant contribution and remains the gold standard for breast tumor imaging. This is because mammography is relatively simple, cost-effective, and relatively, highly sensitive. However, in many clinical cases, mammography may be nonspecific and lesions may not be detected. This is because the breast lesion can be indistinguishable from normal breast tissue or obscured by the dense parenchyma. Mammography is also not reliable following radiation therapy, surgery, and hormonal replacement therapy. Consequently, breast biopsies are used for many cases as a second-line diagnostic test to evaluate a suspicious lesion. Unfortunately, many breast biopsies are performed on normal patients, which results in high cost and patient’s stress. Thus, other noninvasive imaging techniques are needed and can be used as complementary functional methods to minimize unnecessary breast biopsies.
\nMRI and US are adjunctive imaging techniques to mammography. Breast US is relatively inexpensive and is currently the commonest complementary method. This technique is also useful particularly when there is a cyst in the breast, but has lower accuracy in solid lesions. Breast MRI with contrast is a sensitive and relatively specific technique for some certain indications but are too expensive to be used routinely. Both MRI and US are useful tools in breast diagnosis, in particular for solving problems in selected applications. For the aforementioned reasons, the use of complementary imaging techniques, to aid in the diagnosis, is necessary. Thus, additional imaging methods are needed for investigation, detection, and diagnosis of breast cancer. Functional breast γ-ray imaging techniques have aided breast cancer diagnosis.
\nAmong the currently used techniques are planar SM with 99mTc labeled sestamibi and PET with 18F-FDG. Both radionuclide techniques have been emerged as potential investigation for the detection and diagnosis of breast cancer. Consequently, it is increasingly used particularly for imaging patients with dense breasts. Having discussed commercial imaging methodologies, various weaknesses in each approach has led to the need for new complimentary imaging methods. Of these approaches, SM is one of the most promising approach. The current research in this area is focusing on dedicated collimator-based cameras. These dedicated cameras also suffer from low detection efficiency. In addition, this is an unattractive option for many health providers, due to limited clinical applications of such an imaging system. This provides the motivation for investigating the application of collimator-less method in breast tumor imaging. A gamma camera, employing a low energy high resolution (LEHR) parallel-hole collimator is used, to generate an image of the resulting radionuclide distribution. The LEHR collimator geometrically selects γ-photons from a predetermined direction and as a result, a very small fraction of the total emitted photons reaches the detector. Thus, this limits the detection efficiency and spatial resolution of the observed image–collimator are trade-off.
\nFactors like these have generated massive research aimed to improve the accuracy and efficiency of the current SM imaging systems and reduce the overall costs of breast surgical biopsies procedures but without the need for the new dedicated camera instrumentation development. This is one of the primary motivations to carry out research using a simple coded aperture (CA) mask, instead of a collimator, coupled to a standard clinical gamma camera for breast tumor imaging without the need for a new dedicated camera instrumentation development. This is particularly attractive at general hospital level, where the cost of running an additional dedicated imaging system may be prohibitive. In addition, the smallest lesion sizes that can be detected with dedicated cameras claimed to be 4–5 mm compared to 8–10 mm with conventional camera. The spatial resolution of these proposed cameras may further improve by increasing the pixel size, but there are practical limitations in the development of cameras with small pixel sizes, including cost and detector design. CA imaging as originally developed for astronomical applications is well suited for detecting faint pseudo-point like objects in a nonzero background. Thus, it appears to be well matched to the imaging objectives in SM. While related prior work has also considered, this approach is characterized by gross simplifications in terms of clinical reality [53, 54].
\nThis work funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (MED_2516).
\nThe incidence of microbial attack in different sectors such as food, textiles, medicine, water disinfection, and food packaging leads to a constant trend in the search for new antimicrobial substances. The increased resistance of some bacteria to some antibiotics and the toxicity to the human body of some organic antimicrobial substances has increased the interest in the development of inorganic antimicrobial substances. Among these compounds, metal and metal oxide compounds have attracted significant attention due to their broad-spectrum antibacterial activities. On the other hand, nanoscale materials are well known thanks to their increased properties due to their high surface area-to-volume ratio. Antimicrobial NPs have shown excellent and different activities from their bulk properties [1, 2].
During last decades, metal oxide nanoparticles, such as zinc oxide (ZnO), manganese oxide (MgO), titanium dioxide (TiO2), and iron oxide (Fe2O3), have been extensively applicable thanks to their unique physiochemical properties in biological applications. Among metal oxide antimicrobial agents, TiO2 is a valuable semiconducting transition metal oxide material and shows special features, such as easy control, reduced cost, non-toxicity, and good resistance to chemical erosion, that allow its application in optics, solar cells, chemical sensors, electronics, antibacterial and antifungal agents [3]. In general, TiO2 nanoparticles (TiO2 NPs) present large surface area, excellent surface morphology, and non-toxicity in nature. Several authors have reported that TiO2 NPs have been one of the most studied NPs thanks to their photocatalytic antimicrobial activity, exerting excellent bio-related activity against bacterial contamination [4, 5, 6, 7].
Antimicrobial activity of nanoparticles is highly influenced by several intrinsic factors such as their morphology, size, chemistry, source, and nanostructure [8, 9, 10, 11]. Specifically, antimicrobial activity of TiO2 NPs is greatly dependent on photocatalytic performance of TiO2, which depends strongly on its morphological, structural, and textural properties [12]. Several TiO2 NPs have been developed through different methods of synthesis. Specifically, in this chapter, eco-friendly synthesis based on biological sources, such as natural plant extracts and metabolites from microorganisms, which have resulted in TiO2 NPs with different size, shape, morphology, and crystalline structures will be presented. Titanium dioxide produces amorphous and crystalline forms and primarily can occur in three crystalline polymorphous: anatase, rutile, and brookite. Studies on synthesis have stated that the crystalline structure and morphology of TiO2 NPs is influenced by process parameters such as hydrothermal temperatures, starting concentration of acids, etc. [13]. The crystal structures and the shape of TiO2 NPs are both the most important properties that affect their physicochemical properties, and therefore their antimicrobial properties [14]. Regarding the crystal structures, anatase presents the highest photocatalytic and antimicrobial activity. Some works have shown that anatase structure can produce OH˙ radicals in a photocatalytic reaction, and as it will be clearly explained below, bacteria wall and membranes can be deadly affected [15, 16].
The potential health impact and toxicity to the environment of NPs is currently an important matter to be addressed. Several works have confirmed that metal oxide NPs conventionally synthesized using chemical methods, such as sol–gel synthesis and chemical vapor deposition, have shown different levels of toxicity to test organisms [17, 18, 19, 20]. In recent years, researchers have emphasized on the development of nanoparticles promoted through environmental sustainability and processes characterized by an ecological view, mild reaction conditions, and non-toxic precursors. Due to this growing sensitivity toward green chemistry and biological processes, ecological processes are currently being investigated for the synthesis of non-toxic nanoparticles.
These biological methods are considered safe, cost-effective, biocompatible, non-toxic, sustainable, and environmentally friendly processes [20]. Furthermore, it has been described that chemically synthesized NPs have exhibited less stability and added agglomeration, resulting in biologically synthesized NPs that are more dispersible, stable in size, and the processes consuming less energy [21].
These biosynthetic methods, also called “green synthesis,” use various biological resources available in nature, including live plant [22], plant products, plant extracts, algae, fungi, yeasts [23], bacteria [24], and virus for the synthesis of NPs. Among these methods, the processes that use plant-based materials are considered the most suitable for large-scale green synthesis of NPs with respect to their ease and safety [25]. On the other hand, the reduction rate of metal ions in the presence of the plant extract is much faster compared to microorganisms, and provides stable particles [26]. Plants contain biomolecules that have been highly studied by researchers like phenols, nitrogen compounds, terpenoids, and other metabolites. It is well known that the hydroxyl and carboxylic groups present in these biocompounds act as stabilizers and reducing agents due to their high antioxidant activity [12]. Thus, plant extracts have been studied as one of the best green alternatives for metal oxide nanoparticles synthesis [27]. In recent years, TiO2 nanoparticles have been obtained by using different plant extracts, but not all of them have been studied for their antimicrobial activity. Table 1 presents a compilation of synthesized TiO2 nanoparticles from green synthesis by using plant extracts that were tested against different microorganisms.
Source | Titanium precursor | Size (nm) | Shape/crystal structure | Target microorganism (method) |
---|---|---|---|---|
Azadirachta indica leaves extract [28] | TiO2 | 25–87 (SEM) | Spherical/anatase-rutile | S. typhi, E. coli, and K. pneumoniae (broth micro dilution method) |
Psidium guajava leaves extract [29] | TiO(OH)2 | 32.58 (FESEM) | Spherical shape and clusters/anatase-rutile | S. aureus and E. coli (agar diffusion) |
Vitex negundo Linn leaves extract [30] | Ti{OCH(CH3)2}4 | 26–15 (TEM) | Spherical and rod shaped/tetragonal phase anatase | S. aureus and E. coli (agar diffusion) |
Morinda citrifolia leaves extract [31] | TiCl4 | 15–19 (SEM) | Quasi-spherical shape/rutile | S. aureus, B. subtilis, E. coli, P. aeruginosa, C. albicans, A. niger (agar diffusion) |
Trigonella foenum-graecum leaf extract [21] | TiOSO4 | 20–90 (HR-SEM) | Spherical/anatase | E. faecalis, S. aureus, S. faecalis, B. subtilis., Y. enterocolitica, P. vulgaris, E. coli, P. aeruginosa, K. pneumoniae, and C. albicans (agar diffusion) |
Orange peel extract [32] | TiCl4 | 20–50 (SEM) | Irregular and angular structure with high porous net/anatase | S. aureus, E. coli, and P. aeruginosa (agar diffusion) |
Glycyrrhiza glabra root extracts [33] | TiO2 | 60–140 (FESEM) | Spherical shape/anatase | S. aureus and K. pneumoniae (agar diffusion) |
Synthesis of TiO2 NPs by using plant extracts.
Different factors need to be evaluated in this research field in order to obtain TiO2 NPs with better properties and to maintain their biocompatibility. It has been shown that nanoparticles obtained from green synthesis can have a better morphology and size translated into better antimicrobial activity. Mobeen and Sundaram have obtained TiO2 NPs from titanium tetrachloride precursor through a chemical and a green synthesis method. Sulfuric acid and ammonium hydroxide were used in the chemical-based method and, in the green synthesis, those chemical reagents were replaced by an orange peel extract [32]. The nanoparticles obtained by using the natural extract presented a well-defined and smaller crystalline nature (approx. 17.30 nm) compared to the nanoparticles synthesized through the chemical method (21.61 nm). Both methods resulted in anatase crystalline structures, and, when evaluating the antimicrobial activity, the more eco-friendly NPs revealed higher bactericidal activity against Gram-positive and Gram-negative bacteria compared to the chemically synthesized nanoparticles.
Bavanilatha et al. have also detailed TiO2 NPs green synthesis with Glycyrrhiza glabra root extract. Antibacterial activity against Staphylococcus aureus and Klebsiella pneumonia were investigated and in vivo toxicity tests using the zebrafish embryonic model (Danio rerio) were also carried out [33]. Results have demonstrated their biocompatibility because healthy embryos of adult fish to different variations of NP and no distinctive malformations were observed at every embryonic stage with respect to embryonic controls.
Subhapriya and Gomathipriya have biosynthesized TiO2 NPs by using a Trigonella foenum-graecum leaf extract, obtaining spherical NPs and their size varied between 20 and 90 nm, and their antimicrobial activity was evaluated through the standard method of disc diffusion [21]. The NPs showed significant antimicrobial activity against Yersinia enterocolitica (10.6 mm), Escherichia coli (10.8 mm), Staphylococcus aureus (11.2 mm), Enterococcus faecalis (11.4 mm), and Streptococcus faecalis (11.6 mm). Results confirmed developed TiO2 NPs as an effective antimicrobial drug that can lead to the progression of new antimicrobial drugs.
Spherical TiO2 NPs were synthesized from plants, in particular by applying a Morinda citrifolia leaf extract, and through advanced hydrothermal method [31]. Developed TiO2 NPs showed a size between 15 and 19 nm in an excellent quasispherical shape. In addition, their antimicrobial activity was tested against human pathogens, such as Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger. TiO2 NPs exhibited interesting antimicrobial activity, principally against Gram-positive bacteria.
In addition to plants, other organisms can produce inorganic compounds at an intra or extracellular level. The synthesis of TiO2 NPs through microorganisms, including bacteria, fungi, and yeasts, also meets the requirements and the exponentially growing technological demand toward eco-friendly strategies, by avoiding the use of toxic chemicals in the synthesis and protocols [34]. The metabolites generated by microorganism present bioreducing, capping, and stabilizing properties that improve the NPs synthesis performance. Jayaseelan et al. have stated glycyl-L-proline, one of the most abundant metabolite from Aeromonas hydrophilia bacteria, as the main compound that acted as a capping and stabilizing agent during TiO2 NPs green synthesis [35]. Moreover, the interest in fungi in green synthesis of metal oxide nanoparticles has increased over last years. Fungi enzymes and/or metabolites also present intrinsically the potential to obtain elemental or ionic state metals from their corresponding salts [34, 36]. Different works based on the green synthesis of TiO2 NPs from bacteria and fungus are presented in Table 2. Some of them have been synthesized with antimicrobial and antifungal purposes, and their target microorganisms are also declared.
Microorganism | Titanium precursor | Size (nm) | Shape/crystal structure | Target microorganisms (method) |
---|---|---|---|---|
Aeromonas hydrophilia [46] | TiO(OH)2 | 28–54 (SEM) ~ 40.5 (XRD) | Spherical/uneven | S. aureus, S. pyogenes (agar diffusion) |
Aspergillus flavus [34] | TiO2 | 62–74 (TEM) | Spherical/anatase and rutile | E. coli, P. aeruginosa, K. pneumoniae, B. subtilis (agar diffusion and MIC) |
Bacillus mycoides [37] | Titanyl hydroxide | 40–60 (TEM) | Spherical/anatase | E. coli (toxicity) |
Bacillus subtilis [38] | K2TiF6 | 11–32 (TEM) | Spherical | Aquatic biofilm |
Fusarium oxysporum [36] | K2TiF6 | 6–13 (TEM) | Spherical/brookite | — |
Lactobacillus sp. [51] | TiO(OH)2 | ~ 24.6 (TEM) | Spherical/anatase-rutile | — |
Planomicrobium sp. [39] | TiO2 | 100–500 (SEM) | Irregular/pure crystalline | B. subtilis, K. planticola, Aspergillus niger (agar diffusion) |
Propionibacterium jensenii [52] | TiO(OH)2, 300°C | 15–80 (FESEM) | Spherical | — |
Saccharomyces cerevisiae [51] | TiO(OH)2 | ~ 12.6 (TEM) | Spherical/anatase-rutile | — |
Examples of TiO2 NPs synthesis through microorganisms, both bacteria and fungus strains.
Two important factors that affect NPs synthesis are the type of microorganisms and their source. Some microorganisms widely used in the food industry are Lactobacillus, a bacterium used in dairy products and as a probiotic supplement, and Saccharomyces cerevisiae, a yeast commonly used in bakery. Jha et al. have investigated the effectiveness of both microorganisms to synthesize TiO2 NPs. A comparison between synthesis through Lactobacillus from yogurt and probiotic tablets resulted in different NP sizes: a particle size of 15–70 nm for yogurt, and 10–25 nm for tablets. This difference was due to the purity of the bacteria [40]. In general, TiO2 NP synthesis through microorganisms has not provided stable sizes, being not industrially scalable compared to the synthesis of nanoparticles from plants.
Harmful bacteria, such as Staphylococcus aureus, Burkholderia cepacia, Pseudomonas aeruginosa, Clostridium difficile, Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, Mycobacterium tuberculosis, and Neisseria gonorrhoeae, are responsible for bacterial infections that can cause serious diseases in humans year after year [40]. The principal solution is the use of antibiotics, antimicrobial and antifungal agents. Nevertheless, in recent years there has been an increase in the resistance of several bacterial strains to these substances, and therefore there is currently a great interest in the search for new antimicrobial substances. The antimicrobial nanoparticles have been studied due to their high activity, specifically the metal oxide nanoparticles [41, 42, 43]. In this sense, titanium dioxide nanoparticles are one of the antimicrobial NPs whose study has gained interest during last years.
TiO2 is a thermally stable and biocompatible chemical compound with high photocatalytic activity and has presented good results against bacterial contamination [44]. Table 3 presents some research including the antimicrobial capacity of TiO2 NPs.
Microorganism | NPs | Results |
---|---|---|
Methicillin-resistant Staphylococcus aureus [45] | Fe3O4-TiO2 core/shell magnetic NPs | The survival ratio [%] of bacteria decreased from 82.40 to 7.13%. |
Staphylococcus saprophyticus [45] | Fe3O4-TiO2 core/shell magnetic NPs | The survival ratio [%] of bacteria decreased from 79.15 to 0.51%. |
Streptococcus pyogenes[57] | Fe3O4-TiO2 core/shell magnetic NPs | The survival ratio [%] of bacteria decreased from 82.87 to 4.45%. |
Escherichia coli [46] | TiO2 nanotubes ~ 20 nm | 97.53% of reduction |
Staphylococcus aureus [46] | TiO2 nanotubes ~ 20 nm | 99.94% of reduction |
Bacillus subtilis [47] | TiO2 NPs co-doped with silver (19–39 nm) | 1% Ag-N-TiO2 had the highest antibacterial activity with antibacterial diameter reduction of 22.8 mm |
Mycobacterium smegmatis [48] | Cu-doped TiO2NPs ~20 nm | The percentage of inhibition was around 47% |
Pseudomonas aeruginosa [49] | TiO2 NPs 10–25 nm | Although it was not completely euthanized, their survival was significantly inhibited. |
Shewanella oneidensis MR-1 [48] | Cu-doped TiO2 NPs ~20 nm | The percentage of inhibition was around 11% |
TiO2 nanoparticles against different microorganisms and their antimicrobial activities.
The principal factors differentiating the antimicrobial activity between TiO2 NPs were their morphology, crystal nature, and size. According to López de Dicastillo et al. [11], hollow TiO2 nanotubes presented interesting antimicrobial reduction thanks to the enhancement of specific surface area. This fact can be explained by the nature of titanium dioxide, and one of the main mechanisms of its action is through the generation of reactive oxygen species (ROS) on its surface during the process of photocatalysis when it exposed to light at an appropriate wavelength. It is important to highlight that some research works have evidenced antimicrobial activity of TiO2 NPs increased when they were irradiated with UV-A light due to the photocatalytic nature of this oxide. The time of irradiation varied between 20 min [45] and 3 hours [50].
Titanium dioxide nanoparticles (TiO2 NPs) are one of the most studied materials in the area of antimicrobial applications due to its particular abilities, such as bactericidal photocatalytic activity, safety, and self-cleaning properties. The mechanism referred to the antimicrobial action of TiO2 is commonly associated to reactive oxygen species (ROS) with high oxidative potentials produced under band-gap irradiation photo-induces charge in the presence of O2 [51]. ROS affect bacterial cells by different mechanisms leading to their death. Antimicrobial substances with broad spectrum activity against microorganisms (Gram-negative and Gram-positive bacteria and fungi) are of particular importance to overcome the MDR (multidrug resistance) generated by traditional antibiotic site-specific.
The main photocatalytic characteristic of TiO2 is a wide band gap of 3.2 eV, which can trigger the generation of high-energy electron–hole pair under UV-A light with wavelength of 385 nm or lower [52]. As mentioned above for bulk powder, TiO2 NPs have the same mechanism based on the ROS generation with the advantage of being at nanoscale. This nanoscale nature implies an important increase of surface area-to-volume ratio that provides maximum contact with environment water and oxygen [53] and a minimal size, which can easily penetrate the cell wall and cell membrane, enabling the increase of the intracellular oxidative damage.
Bacteria have enzymatic antioxidant defense systems like catalases and superoxide dismutase, in addition to natural antioxidants like ascorbic acid, carotene, and tocopherol, which inhibit lipid peroxidation or O-singlet and the effects of ROS radicals such as OH2˙− and OH˙. When those systems are exceeded, a set of redox reactions can lead to the death cell by the alteration of different essential structures (cell wall, cell membrane, DNA, etc.) and metabolism routes [54]. In the following sections, several ways that cellular structures were affected in the presence of TiO2 NPs will be described. In order to understand the genome responses of bacteria to TiO2-photocatalysis, some biological approaches related to expression of genes encoding to defense and repair mechanism of microorganism will explained below. Different mechanisms and processes of antimicrobial activity of TiO2 NPs are represented as a global scheme in Figure 1.
Scheme of main antimicrobial activity-based processes.
ROS are responsible for the damage by oxidation of many organic structures of microorganisms. One of them is the cell wall, which is the first defense barrier against any injury from the environment, thus being the first affected by oxidative damage. Depending on the type of microorganism, the cell wall will have different composition; that is, in fungi and yeast, cell walls are mainly composed of chitin and polysaccharides [55], Gram-positive bacteria contain many layers of peptidoglycan and teichoic acid, and Gram-negative bacteria present a thin layer of peptidoglycan surrounded by a secondary lipid membrane reinforced with transmembrane lipopolysaccharides and lipoproteins [56]. Thus, the effect of TiO2 NPs will be slightly different depending type of microorganism.
It has been studied that the composition of the cell wall in Pichia pastoris (yeast) changed in the presence of TiO2, increasing the chitin content in response to the ROS effects [57]. The cell wall of Escherichia coli (Gram-negative) composed of lipo-polysaccharide, phosphatidyl-ethanolamine, and peptidoglycan has been reported to be sensitive to the peroxidation caused by TiO2 [58]. The damage can be quantified by assessing the production of malondialdehyde (MDA), which is a biomarker of lipid peroxidation, or through ATR-FTIR of the supernatant of cell culture, which evidenced the way that porins and proteins on the outer membrane were affected, probably as a result of greater exposure to the surface of TiO2 [59]. In fungi, the release of OH˙ captured hydrogen atoms from sugar subunits of polysaccharides, which composed the cell wall, leading to the cleavage of polysaccharide chain and the exposition of cell membrane [60].
In terms of genetic issues, there is evidence that the bacteria change the level expression of certain genes encoding for proteins involved in lipopolysaccharide and peptidoglycan metabolism, pilus biosynthesis, and protein insertion related to the cell wall which values were lower-expressed after exposition to TiO2 NPs [61].
The second usual cellular target of most of antibiotics is the cell membrane mainly composed by phospholipids, which grant the cell a non-rigid cover, permeability, and protection. Most of the studies with TiO2 NPs have been focused to the loss of membrane integrity caused by oxidation of phospholipids due to ROS such hydroxyl radicals and hydrogen peroxide [62, 63], which led to an increase in the membrane fluidity, leakage of cellular content, and eventually cell lysis.
Gram-positive bacteria present only one membrane protected by many layers of peptidoglycan, whereas Gram-negative bacteria are composed by two membranes, inner and outer, and a thin layer of peptidoglycan between them. The outer membrane is exposed, thus, more liable to mechanical breakage due to the lack of peptidoglycan protective cover, like in Gram-positive bacteria [64]. Some studies have demonstrated a better antimicrobial performance of TiO2 NPs against Gram-positive bacteria [65] while others reported that Gram-negative bacteria were more resistant [66, 67]. It can be concluded that the bacterial inactivation effectiveness depends mainly on the resistant capacity of cell wall structures and the damage level of ROS generation [68].
In contrast with the lower expression of genes related to the cell wall seen before, the level expression of genes encoding for enzymes involved in metabolism of lipid essential for the cell membrane structure, are over-expressed [61]. It would be concluded that cells compensate the initial cell wall damage by reinforcing the second defense barrier, the cell membrane, in a way to provide support against the oxidation produced by ROS.
In fungi, the biocidal effect is not quite different. In the presence of TiO2 NPs and UV light, hydroxyl radicals, hydrogen peroxide, and superoxide anions initially promote oxidation of the membrane, leading to an unbalance in the cell permeability, even decomposition of cell walls [69]. This oxidation can inhibit cell respiration by affecting intracellular membranes in mitochondria. Studies have demonstrated biocidal effects on Penicillium expansum [70], but there is still research on other strains.
Beyond the relatively well-studied initial lipoperoxidation attack of TiO2 NPs on the outer/inner cell membrane of the microorganism, specific mechanisms are still aimed of being solved.
As the oxidative damage generates lipoperoxidation of cell membranes due to their lipid nature, the respiratory chain, which takes place in the double-membrane mitochondria, is also affected. This organelle is a natural source of ROS in aerobic metabolism because superoxide anions are produced in the electron transfer respiratory chain process. Mitochondria can control this fact by converting them into H2O2 by superoxide dismutase (SOD), and finally into water by glutathione peroxidase and catalase [71]. The presence of TiO2 NPs increases the production of ROS at levels that this enzymatic defense mechanism cannot attenuate the damage, even a dysregulation in electron transfer through the mitochondrial respiratory chain implies an increase in ROS generation [72].
The genetic approaches have indicated that changes in level expression in genes related to the energy production in mitochondria prioritize the most efficient pathway to uptake oxygen, which is through ubiquinol coenzyme [61]. This coenzyme presented a higher capacity to exchange electrons, while the coenzyme-independent oxygen uptake pathways were expressed at lower level.
Damage at molecular level in DNA affects all regulatory microorganism metabolism, replication, transcription, and cell division. DNA is particularly sensitive to oxidative damage because oxygen radicals, specially OH˙ produced by Fenton reaction [73], may attack the sugar-phosphate or the nucleobases and cause saccharide fragmentation aimed to the strand break [74].
DNA strand modifications are more lethal than base modifications (punctual mutation). Mitochondrial DNA is more vulnerable to oxidative damage than nuclear DNA because it is closer to a major cellular ROS source [75].
Besides the enzymatic detoxification system (SOD, glutathione and catalase), DNA injuries are covered by a set of structures related to post-translational modification, protein turnover, chaperones (related to folding), DNA replication and repair, which are significantly over-expressed in the presence of TiO2 NPs [61].
Iron is an essential ion for cell growth and survival, but it can turn potentially toxic if some malfunction in homeostatic regulation occurs (i.e., Fenton reaction that produces ROS). Bacteria are able to regulate iron concentration in order to maintain it in a physiological range [76]. This regulation involves directly siderophores to active transport of iron in cell [77], whose coding genes related to siderophore synthesis and iron transport protein are significantly lower-expressed in the presence of TiO2 NPs, decreasing the ability to assimilate and transport it, leading to cell death [61]. The loss of homeostasis regulation was confirmed by ICP-MS analysis, which revealed that the presence of TiO2 NPs significantly reduced the cellular iron level in Pseudomonas brassicacearum, directly proportional to the cell viability [78].
Regarding the functions related to Pi group (PO43−) uptake, major differences were found in the expression of set of genes contained in Pho regulon, which were significantly lower when compared to the control [61]. The Pho regulon is a regulatory network in bacteria, yeast, plants, and animals, related to assimilation of inorganic phosphate, merely available in nature, and essential to nutritional cross-talk, secondary metabolite production, and pathogenesis [79].
This suggested that the microorganisms were highly deficient in phosphorus uptake and metabolism in the presence of TiO2 NPs. It should be also noted that the Pho regulon has been reported to regulate biofilm synthesis capacity and pathogenicity [80].
TiO2 NPs can directly oxidize components of cell signaling pathways and even change the gene expression by interfering with transcription factors [81]. There is evidence to confirm the interference of TiO2 NPs in biosynthesis pathways of signaling molecules that bind lipopolysaccharide, stabilize and protect the cell wall against oxidative damage [82]. Moreover, a significant decrease in the synthesis of quorum-sensing signal molecule related to functions like pathogenesis and biofilm development was observed. This was corroborated through Scanning Electron Microscopy (SEM) images of bacteria (P. aeruginosa) growth in the presence of TiO2 NPs without UV irradiation. Cells appeared mainly non-aggregated and dispersed in the substratum, compared with controls without NPs where cells were mainly aggregated by lateral contact. This suggested that TiO2 NPs not only affected microorganisms by oxidative damage, but also bacteria aggregation and biofilm formation, which directly influenced in pathogenicity [83].
In plants and algae, ROS can act as signaling intermediates in the process of transcription factor controlling stress response by H2O2, which is activated by a GSH peroxidase, and not by peroxides directly. But there is still lack of research in this area [84].
The control of morphology and crystal structure of TiO2 NPs is the most important factor to enhance their antimicrobial activity. The appropriate design based on desirable surface properties given by shaped nanoparticles can improve effectiveness that is also dependent on the type of bacteria. The route of synthesis of TiO2 NPs is also a key factor. Recent works have revealed more eco-friendly synthesis methods, principally based on plant-based compounds and microorganisms, such as bacteria and fungus. Antimicrobial activity of different TiO2 NPs against Gram-positive and Gram-negative bacteria including antibiotic-resistant strains has been confirmed in different works.
Specific studies on antimicrobial mechanisms have evidenced that microorganism exposed to photocatalytic TiO2 NPs exhibited cell inactivation at regulatory network and signaling levels, an important decrease in the activity of respiratory chain, and inhibition in the ability to assimilate and transport iron and phosphorous. These processes with the extensive cell wall and membrane alterations were the main factors that explain the biocidal activity of TiO2 NPs.
The authors acknowledge the financial support of CONICYT through the Project Fondecyt Regular 1170624 and “Programa de Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia” Project FB0807, and CORFO Project 17CONTEC-8367.
The authors declare no conflict of interest.
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"25"},books:[{type:"book",id:"8737",title:"Rabies Virus",subtitle:null,isOpenForSubmission:!0,hash:"49cce3f548da548c718c865feb343509",slug:null,bookSignature:"Dr. Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:null,editors:[{id:"61139",title:"Dr.",name:"Sergey",surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science",subtitle:null,isOpenForSubmission:!0,hash:"b6091426454b1c484f4d38efc722d6dd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10496",title:"Feed Additives in Animal Nutrition",subtitle:null,isOpenForSubmission:!0,hash:"8ffe43a82ac48b309abc3632bbf3efd0",slug:null,bookSignature:"Prof. László Babinszky",coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",editedByType:null,editors:[{id:"53998",title:"Prof.",name:"László",surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"23",title:"Social Sciences",slug:"social-sciences",parent:{title:"Social Sciences and Humanities",slug:"social-sciences-and-humanities"},numberOfBooks:83,numberOfAuthorsAndEditors:1292,numberOfWosCitations:289,numberOfCrossrefCitations:397,numberOfDimensionsCitations:757,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"social-sciences",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9251",title:"Pleistocene Archaeology",subtitle:"Migration, Technology, and Adaptation",isOpenForSubmission:!1,hash:"65e1040ad23f0385a56f2d0472b4aee5",slug:"pleistocene-archaeology-migration-technology-and-adaptation",bookSignature:"Rintaro Ono and Alfred Pawlik",coverURL:"https://cdn.intechopen.com/books/images_new/9251.jpg",editedByType:"Edited by",editors:[{id:"177123",title:"Ph.D.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8090",title:"Who Wants to Retire and Who Can Afford to Retire?",subtitle:null,isOpenForSubmission:!1,hash:"90fe30d224594414bb156e42afa47f5e",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",bookSignature:"Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/8090.jpg",editedByType:"Edited by",editors:[{id:"77112",title:"Dr.",name:"Ingrid",middleName:null,surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10032",title:"Fire Safety and Management Awareness",subtitle:null,isOpenForSubmission:!1,hash:"ba924ac3ec282316ae8ba97882cc4592",slug:"fire-safety-and-management-awareness",bookSignature:"Fahmina Zafar and Anujit Ghosal",coverURL:"https://cdn.intechopen.com/books/images_new/10032.jpg",editedByType:"Edited by",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7806",title:"Public Sector Crisis Management",subtitle:null,isOpenForSubmission:!1,hash:"84a998820880e0f006a5e9eac40d83e7",slug:"public-sector-crisis-management",bookSignature:"Alexander Rozanov, Alexander Barannikov, Olga Belyaeva and Mikhail Smirnov",coverURL:"https://cdn.intechopen.com/books/images_new/7806.jpg",editedByType:"Edited by",editors:[{id:"233092",title:"Dr.",name:"Alexander",middleName:null,surname:"Rozanov",slug:"alexander-rozanov",fullName:"Alexander Rozanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9256",title:"Risk Management and Assessment",subtitle:null,isOpenForSubmission:!1,hash:"b5547d1d68d2db6f22eedb8f306b0276",slug:"risk-management-and-assessment",bookSignature:"Jorge Rocha, Sandra Oliveira and César Capinha",coverURL:"https://cdn.intechopen.com/books/images_new/9256.jpg",editedByType:"Edited by",editors:[{id:"145918",title:"Ph.D.",name:"Jorge",middleName:null,surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7810",title:"Quality of Life",subtitle:"Biopsychosocial Perspectives",isOpenForSubmission:!1,hash:"0392d2712c58885b729bd943f9aac37f",slug:"quality-of-life-biopsychosocial-perspectives",bookSignature:"Floriana Irtelli, Federico Durbano and Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/7810.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",middleName:null,surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6927",title:"Intellectual Property Rights",subtitle:"Patent",isOpenForSubmission:!1,hash:"9fd5884b3bce2ec6f77a8356ea384a37",slug:"intellectual-property-rights-patent",bookSignature:"Sakthivel Lakshmana Prabu, Suriyaprakash Tnk, Eduardo Jacob-Lopes and Leila Queiroz Zepka",coverURL:"https://cdn.intechopen.com/books/images_new/6927.jpg",editedByType:"Edited by",editors:[{id:"91590",title:"Dr.",name:"Sakthivel",middleName:null,surname:"Lakshmana Prabu",slug:"sakthivel-lakshmana-prabu",fullName:"Sakthivel Lakshmana Prabu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6944",title:"Heritage",subtitle:null,isOpenForSubmission:!1,hash:"80ee36ba67b1fe4ff971074f7ddc4d00",slug:"heritage",bookSignature:"Daniela Turcanu-Carutiu",coverURL:"https://cdn.intechopen.com/books/images_new/6944.jpg",editedByType:"Edited by",editors:[{id:"176482",title:"Prof.",name:"Daniela",middleName:null,surname:"Turcanu-Carutiu",slug:"daniela-turcanu-carutiu",fullName:"Daniela Turcanu-Carutiu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7823",title:"Off and Online Journalism and Corruption",subtitle:"International Comparative Analysis",isOpenForSubmission:!1,hash:"a9255404676105c3160a4b0bd63e4b36",slug:"off-and-online-journalism-and-corruption-international-comparative-analysis",bookSignature:"Basyouni Ibrahim Hamada and Saodah Wok",coverURL:"https://cdn.intechopen.com/books/images_new/7823.jpg",editedByType:"Edited by",editors:[{id:"245157",title:"Prof.",name:"Basyouni",middleName:null,surname:"Hamada",slug:"basyouni-hamada",fullName:"Basyouni Hamada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7822",title:"Second Language Acquisition",subtitle:"Pedagogies, Practices and Perspectives",isOpenForSubmission:!1,hash:"fc5086868a638baf9f0f09eac83cb346",slug:"second-language-acquisition-pedagogies-practices-and-perspectives",bookSignature:"Christine Savvidou",coverURL:"https://cdn.intechopen.com/books/images_new/7822.jpg",editedByType:"Edited by",editors:[{id:"1264",title:"Dr.",name:"Christine",middleName:null,surname:"Savvidou",slug:"christine-savvidou",fullName:"Christine Savvidou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",middleName:null,surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:83,mostCitedChapters:[{id:"42656",doi:"10.5772/55538",title:"Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction",slug:"conceptual-frameworks-of-vulnerability-assessments-for-natural-disasters-reduction",totalDownloads:8798,totalCrossrefCites:15,totalDimensionsCites:54,book:{slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",title:"Approaches to Disaster Management",fullTitle:"Approaches to Disaster Management - Examining the Implications of Hazards, Emergencies and Disasters"},signatures:"Roxana L. Ciurean, Dagmar Schröter and Thomas Glade",authors:[{id:"163703",title:"Prof.",name:"Thomas",middleName:null,surname:"Glade",slug:"thomas-glade",fullName:"Thomas Glade"},{id:"164141",title:"Ph.D. Student",name:"Roxana",middleName:"Liliana",surname:"Ciurean",slug:"roxana-ciurean",fullName:"Roxana Ciurean"},{id:"164142",title:"Dr.",name:"Dagmar",middleName:null,surname:"Schroeter",slug:"dagmar-schroeter",fullName:"Dagmar Schroeter"}]},{id:"45760",doi:"10.5772/56967",title:"Parenting and Culture – Evidence from Some African Communities",slug:"parenting-and-culture-evidence-from-some-african-communities",totalDownloads:7847,totalCrossrefCites:5,totalDimensionsCites:16,book:{slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Patricia Mawusi Amos",authors:[{id:"162496",title:"Mrs.",name:"Patricia",middleName:"Mawusi",surname:"Amos",slug:"patricia-amos",fullName:"Patricia Amos"}]},{id:"59705",doi:"10.5772/intechopen.74943",title:"Augmented Reality Trends in Education between 2016 and 2017 Years",slug:"augmented-reality-trends-in-education-between-2016-and-2017-years",totalDownloads:1531,totalCrossrefCites:13,totalDimensionsCites:15,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Rabia M. Yilmaz",authors:[{id:"225838",title:"Dr.",name:"Rabia",middleName:null,surname:"Yilmaz",slug:"rabia-yilmaz",fullName:"Rabia Yilmaz"}]}],mostDownloadedChaptersLast30Days:[{id:"58890",title:"Philosophy and Paradigm of Scientific Research",slug:"philosophy-and-paradigm-of-scientific-research",totalDownloads:7810,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"management-culture-and-corporate-social-responsibility",title:"Management Culture and Corporate Social Responsibility",fullTitle:"Management Culture and Corporate Social Responsibility"},signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",authors:[{id:"179629",title:"Prof.",name:"Jolita",middleName:null,surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}]},{id:"34156",title:"History and Sociology: What is Historical Sociology?",slug:"history-and-sociology-what-is-historical-sociology-",totalDownloads:14526,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"sociological-landscape-theories-realities-and-trends",title:"Sociological Landscape",fullTitle:"Sociological Landscape - Theories, Realities and Trends"},signatures:"Jiri Subrt",authors:[{id:"119641",title:"Dr",name:null,middleName:null,surname:"Subrt",slug:"subrt",fullName:"Subrt"}]},{id:"58060",title:"Pedagogy of the Twenty-First Century: Innovative Teaching Methods",slug:"pedagogy-of-the-twenty-first-century-innovative-teaching-methods",totalDownloads:6585,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"new-pedagogical-challenges-in-the-21st-century-contributions-of-research-in-education",title:"New Pedagogical Challenges in the 21st Century",fullTitle:"New Pedagogical Challenges in the 21st Century - Contributions of Research in Education"},signatures:"Aigerim Mynbayeva, Zukhra Sadvakassova and Bakhytkul\nAkshalova",authors:[{id:"201997",title:"Dr.",name:"Aigerim",middleName:null,surname:"Mynbayeva",slug:"aigerim-mynbayeva",fullName:"Aigerim Mynbayeva"},{id:"209208",title:"Dr.",name:"Zukhra",middleName:null,surname:"Sadvakassova",slug:"zukhra-sadvakassova",fullName:"Zukhra Sadvakassova"},{id:"209210",title:"Dr.",name:"Bakhytkul",middleName:null,surname:"Akshalova",slug:"bakhytkul-akshalova",fullName:"Bakhytkul Akshalova"}]},{id:"74219",title:"Introductory Chapter: Pleistocene Archaeology - Migration, Technology, and Adaptation",slug:"introductory-chapter-pleistocene-archaeology-migration-technology-and-adaptation",totalDownloads:143,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"Rintaro Ono and Alfred Pawlik",authors:[{id:"177123",title:"Ph.D.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"},{id:"300616",title:"Dr.",name:"Alfred",middleName:null,surname:"Pawlik",slug:"alfred-pawlik",fullName:"Alfred Pawlik"}]},{id:"52475",title:"Teenage Pregnancies: A Worldwide Social and Medical Problem",slug:"teenage-pregnancies-a-worldwide-social-and-medical-problem",totalDownloads:5625,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"an-analysis-of-contemporary-social-welfare-issues",title:"An Analysis of Contemporary Social Welfare Issues",fullTitle:"An Analysis of Contemporary Social Welfare Issues"},signatures:"Sylvia Kirchengast",authors:[{id:"188289",title:"Prof.",name:"Sylvia",middleName:null,surname:"Kirchengast",slug:"sylvia-kirchengast",fullName:"Sylvia Kirchengast"}]},{id:"58894",title:"Research Ethics",slug:"research-ethics",totalDownloads:1673,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-culture-and-corporate-social-responsibility",title:"Management Culture and Corporate Social Responsibility",fullTitle:"Management Culture and Corporate Social Responsibility"},signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",authors:[{id:"179629",title:"Prof.",name:"Jolita",middleName:null,surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}]},{id:"42656",title:"Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction",slug:"conceptual-frameworks-of-vulnerability-assessments-for-natural-disasters-reduction",totalDownloads:8798,totalCrossrefCites:15,totalDimensionsCites:54,book:{slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",title:"Approaches to Disaster Management",fullTitle:"Approaches to Disaster Management - Examining the Implications of Hazards, Emergencies and Disasters"},signatures:"Roxana L. Ciurean, Dagmar Schröter and Thomas Glade",authors:[{id:"163703",title:"Prof.",name:"Thomas",middleName:null,surname:"Glade",slug:"thomas-glade",fullName:"Thomas Glade"},{id:"164141",title:"Ph.D. Student",name:"Roxana",middleName:"Liliana",surname:"Ciurean",slug:"roxana-ciurean",fullName:"Roxana Ciurean"},{id:"164142",title:"Dr.",name:"Dagmar",middleName:null,surname:"Schroeter",slug:"dagmar-schroeter",fullName:"Dagmar Schroeter"}]},{id:"63639",title:"Cooperative Learning: The Foundation for Active Learning",slug:"cooperative-learning-the-foundation-for-active-learning",totalDownloads:1952,totalCrossrefCites:6,totalDimensionsCites:5,book:{slug:"active-learning-beyond-the-future",title:"Active Learning",fullTitle:"Active Learning - Beyond the Future"},signatures:"David W. Johnson and Roger T. Johnson",authors:[{id:"259976",title:"Dr.",name:"David",middleName:null,surname:"Johnson",slug:"david-johnson",fullName:"David Johnson"},{id:"263004",title:"Dr.",name:"Roger",middleName:null,surname:"Johnson",slug:"roger-johnson",fullName:"Roger Johnson"}]},{id:"45760",title:"Parenting and Culture – Evidence from Some African Communities",slug:"parenting-and-culture-evidence-from-some-african-communities",totalDownloads:7847,totalCrossrefCites:5,totalDimensionsCites:16,book:{slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Patricia Mawusi Amos",authors:[{id:"162496",title:"Mrs.",name:"Patricia",middleName:"Mawusi",surname:"Amos",slug:"patricia-amos",fullName:"Patricia Amos"}]},{id:"59744",title:"Advantages of Bilingualism and Multilingualism: Multidimensional Research Findings",slug:"advantages-of-bilingualism-and-multilingualism-multidimensional-research-findings",totalDownloads:2348,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"multilingualism-and-bilingualism",title:"Multilingualism and Bilingualism",fullTitle:"Multilingualism and Bilingualism"},signatures:"Evelyn Fogwe Chibaka",authors:[{id:"220564",title:"Dr.",name:"Evelyn Fogwe",middleName:null,surname:"Chibaka",slug:"evelyn-fogwe-chibaka",fullName:"Evelyn Fogwe Chibaka"}]}],onlineFirstChaptersFilter:{topicSlug:"social-sciences",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"74808",title:"Development Strategies towards a Reputable International Program: Special Focus at International Program for Islamic Economics and Finance, Universitas Muhammadiyah Yogyakarta",slug:"development-strategies-towards-a-reputable-international-program-special-focus-at-international-prog",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.94322",book:{title:"Education at the Intersection of Globalization and Technology"},signatures:"Dimas Bagus Wiranatakusuma"},{id:"74503",title:"Alignment between the Strategic Plans of Island Regions and the Agenda 2030 for Sustainable Development",slug:"alignment-between-the-strategic-plans-of-island-regions-and-the-agenda-2030-for-sustainable-developm",totalDownloads:10,totalDimensionsCites:0,doi:"10.5772/intechopen.95344",book:{title:"Peripheral Territories, Tourism, and Regional Development"},signatures:"Deolésio Mendes, Ana José and Joaquim Mourato"},{id:"74651",title:"Can Turn-Taking Highlight the Nature of Non-Verbal Behavior: A Case Study",slug:"can-turn-taking-highlight-the-nature-of-non-verbal-behavior-a-case-study",totalDownloads:22,totalDimensionsCites:0,doi:"10.5772/intechopen.95516",book:{title:"Types of Nonverbal Communication"},signatures:"Izidor Mlakar, Matej Rojc, Darinka Verdonik and Simona Majhenič"}],onlineFirstChaptersTotal:53},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/140777/erika-ekholm",hash:"",query:{},params:{id:"140777",slug:"erika-ekholm"},fullPath:"/profiles/140777/erika-ekholm",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()