List of wild relatives of three major cereals and three major legumes.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"4596",leadTitle:null,fullTitle:"Plants for the Future",title:"Plants for the Future",subtitle:null,reviewType:"peer-reviewed",abstract:"The world has come to understand only recently the importance of plants in our life. Therefore, we have brought together such book chapters that will help strengthen the scientific background of the readers on plants and deliver the message regarding plants for the future, in food security, health, industry, and other areas.\nThis book will add to the scientific knowledge of the readers on the molecular aspects of plants.",isbn:null,printIsbn:"978-953-51-2185-5",pdfIsbn:"978-953-51-5409-9",doi:"10.5772/59292",price:119,priceEur:129,priceUsd:155,slug:"plants-for-the-future",numberOfPages:202,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"b43de0fe61cddb43f93cc0972b4299e0",bookSignature:"Hany El-Shemy",publishedDate:"October 21st 2015",coverURL:"https://cdn.intechopen.com/books/images_new/4596.jpg",numberOfDownloads:15528,numberOfWosCitations:20,numberOfCrossrefCitations:26,numberOfCrossrefCitationsByBook:3,numberOfDimensionsCitations:39,numberOfDimensionsCitationsByBook:3,hasAltmetrics:1,numberOfTotalCitations:85,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 19th 2014",dateEndSecondStepPublish:"October 10th 2014",dateEndThirdStepPublish:"January 14th 2015",dateEndFourthStepPublish:"April 14th 2015",dateEndFifthStepPublish:"May 14th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy",profilePictureURL:"https://mts.intechopen.com/storage/users/54719/images/system/54719.jpg",biography:"Prof. Hany A. El-Shemy received a Ph.D. in Biochemistry from the University of Cairo, Egypt, and a Ph.D. in Genetic Engineering from the University of Hiroshima, Japan. He holds two patents and has written thirteen international books. He has also published more than 100 SCI journal papers and 55 conference presentations. Dr. El-Shemy was a technique committee member as well as chair of many international conferences. He has also served as editor for journals including PLOS ONE, BMC Genomics, and Current Issues in Molecular Biology. He has received several awards, including state prizes from the Academy of Science, Egypt (2004, 2012, and 2018), the Young Arab Researcher prize from the Shuman Foundation, Jordan (2005), and Cairo University Prizes (2007, 2010, and 2014). He served as an expert for the African Regional Center of Technology, Dakar, Senegal, as well as a visiting professor at Pan African University, African Union. He served as vice president of the Academy of Science and Technology, Egypt, from 2013 to 2014. Since 2014 he has been the dean of the Faculty of Agriculture, Cairo University. In 2018, he was elected a fellow of the African Academy of Science.",institutionString:"Cairo University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"13",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"365",title:"Molecular Genetics",slug:"agricultural-and-biological-sciences-plant-biology-molecular-genetics"}],chapters:[{id:"48893",title:"Understanding the Genetics of Clubroot Resistance for Effectively Controlling this Disease in Brassica Species",doi:"10.5772/60936",slug:"understanding-the-genetics-of-clubroot-resistance-for-effectively-controlling-this-disease-in-brassi",totalDownloads:2264,totalCrossrefCites:11,totalDimensionsCites:10,hasAltmetrics:1,abstract:"Clubroot disease is one of the most serious diseases of Brassica species, which is caused by soil-borne pathogen Plasmodiophora brassicae Woronin. Clubroot disease has a long history on vegetable crops belonging to the Brassica species; most recently, this disease is also invading rapeseed/canola crop around the globe. The clubroot disease causes significant yield and quality losses in highly infected fields. Clubroot pathogens invade into the host plant roots and infect root tissues with the formation of abnormal clubs, named as galls, which results in incompetent plant roots to intake water and nutrients and eventually dead plants. As it is a soil-borne disease and accomplishes its disease cycle in two different phases and both phases are highly efficient to damage root system as well as to release more inoculum, there are many challenges to control this disease through chemical and other cultural practices. In general, clubroot disease can be effectively managed by developing resistant cultivars. In this chapter, various resistance sources of clubroot disease in different Brassica species have been discussed with potential applications in canola/rapeseed breeding programs worldwide. Importance of gene mapping and molecular marker development efforts by different research studies for clubroot in B. rapa, B. oleracea, and B. napus has been stressed. Transcriptomic and metabolomic changes occurring during host–pathogen interactions are also covered in this chapter, which would enhance our understanding and utilization of clubroot resistance in Brassica species.",signatures:"Arvind H. Hirani and Genyi Li",downloadPdfUrl:"/chapter/pdf-download/48893",previewPdfUrl:"/chapter/pdf-preview/48893",authors:[{id:"173418",title:"Dr.",name:"Genyi",surname:"Li",slug:"genyi-li",fullName:"Genyi Li"}],corrections:null},{id:"48920",title:"Molecular Farming in Plants",doi:"10.5772/60757",slug:"molecular-farming-in-plants",totalDownloads:3319,totalCrossrefCites:4,totalDimensionsCites:7,hasAltmetrics:0,abstract:"Plant molecular farming describes the production of recombinant proteins and other secondary metabolites in plants. This technology depends on a genetic transformation of plants that can be accomplished by the methods of stable gene transfer, such as gene transfer to nuclei and chloroplasts, and unstable transfer methods like viral vectors. An increasing quest for biomedicines has coincided with the high costs and inefficient production systems (bacterial, microbial eukaryotes, mammalian cells, insect cells, and transgenic animals). Therefore, transgenic plants as the bioreactors of a new generation have been the subject of considerable attention with respect to their advantages, such as the safety of recombinant proteins (antibodies, enzymes, vaccines, growth factors, etc.), and their potential for the large-scale and low-cost production. However, the application of transgenic plants can entail some worrying concerns, namely the amplification and diffusion of transgene, accumulation of recombinant protein toxicity in the environment, contamination of food chain, and costs of subsequent processing. The given threats need to be the subject of further caution and investigation to generate valuable products, such as enzymes, pharmaceutical proteins, and biomedicines by the safest, cheapest, and most efficient methods.",signatures:"Tarinejad Alireza and Rahimi Esfanjani Nader",downloadPdfUrl:"/chapter/pdf-download/48920",previewPdfUrl:"/chapter/pdf-preview/48920",authors:[{id:"173317",title:"Dr.",name:"Alireza",surname:"Tarinejad",slug:"alireza-tarinejad",fullName:"Alireza Tarinejad"},{id:"174002",title:"M.Sc.",name:"Nader",surname:"Rahimi Esfanjani",slug:"nader-rahimi-esfanjani",fullName:"Nader Rahimi Esfanjani"}],corrections:null},{id:"48940",title:"Biochemical Parameters in Tomato Fruits from Different Cultivars as Functional Foods for Agricultural, Industrial, and Pharmaceutical Uses",doi:"10.5772/60873",slug:"biochemical-parameters-in-tomato-fruits-from-different-cultivars-as-functional-foods-for-agricultura",totalDownloads:2446,totalCrossrefCites:6,totalDimensionsCites:11,hasAltmetrics:0,abstract:"Tomato and tomato based products are an important agricultural production worldwide. More than 80 % of grown tomatoes in the worldwide are processing in the products such as tomato juice, paste, puree, catsup, sauce, and salsa. Tomato fruit is rich in phytochemicals and vitamins. Tomato nutritional value, color, fruit and flavor of their products depends mainly on lycopene, β-carotene, ascorbic acid and sugars and their ratio in fruits. Epidemiological studies and the results associated with the consumption of tomato products against the prevention of chronic diseases such as cancer and cardiovascular disease, confirming the tomato products as a functional food, and show that lycopene and β-carotene acts as an antioxidant. In order to increase the amount of these elements in tomato fruit, it is important to evaluate and investigate tomato genotypes influence to the carotenoids accumulation. Studies have confirmed that the carotenoid content in tomato fruits is determined by genotypic characteristics. In this work the main attention will be focused on from the biochemical and physical properties in tomato of different varieties, chemical and physical properties, to functional properties of supercritical fluid extraction of lycopene from tomato processing by products supercritical fluid tomato extracts.",signatures:"Pranas Viskelis, Audrius Radzevicius, Dalia Urbonaviciene, Jonas\nViskelis, Rasa Karkleliene and Ceslovas Bobinas",downloadPdfUrl:"/chapter/pdf-download/48940",previewPdfUrl:"/chapter/pdf-preview/48940",authors:[{id:"83785",title:"Prof.",name:"Pranas",surname:"Viskelis",slug:"pranas-viskelis",fullName:"Pranas Viskelis"},{id:"171932",title:"Dr.",name:"Dalia",surname:"Urbonavičienė",slug:"dalia-urbonaviciene",fullName:"Dalia Urbonavičienė"},{id:"173562",title:"Dr.",name:"Audrius",surname:"Radzevicius",slug:"audrius-radzevicius",fullName:"Audrius Radzevicius"},{id:"173563",title:"MSc.",name:"Jonas",surname:"Viskelis",slug:"jonas-viskelis",fullName:"Jonas Viskelis"},{id:"173564",title:"Dr.",name:"Rasa",surname:"Karkleliene",slug:"rasa-karkleliene",fullName:"Rasa Karkleliene"},{id:"173565",title:"Dr.",name:"Ceslovas",surname:"Bobinas",slug:"ceslovas-bobinas",fullName:"Ceslovas Bobinas"}],corrections:null},{id:"48941",title:"Acid Phosphatase Kinetics as a Physiological Tool for Assessing Crop Adaptability to Phosphorus Deficiency",doi:"10.5772/60975",slug:"acid-phosphatase-kinetics-as-a-physiological-tool-for-assessing-crop-adaptability-to-phosphorus-defi",totalDownloads:1747,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Acid phosphatases (APase) exuded from the roots is important in mobilizing organic phosphate in the soil . Enzyme kinetics can provide reliable physiological markers to detect the potential for superior plant performance under low P . Kinetic constants for the secreted APase could be used as an early physiological indicator for P stress tolerance in legumes, Desmodium tortuosum , Phaseolus vulgaris,Vigna unguiculata and Crotalaria juncea were grown from seed in +P and -P nutrient solutions and plants were harvested during the early vegetative phase in order to collect the root exudates in vivo and for dry biomass, leaves soluble Pi, and total P in the dry biomass. Root surface Na-soluble APase was extracted from +P and -P grown plants by incubating three intact plants in beakers with their roots immersed in a 0.1 M NaCl solution. Secreted APase was obtained with the roots of three plants individually immersed in a dialysis tube (12 kD) containing NaCl 100 mM and then transferred to a recipient containing 3L of the same solution. Kinetic constants Km and Vmax were determined using a range substrate (p-NPP)concentration (S). Activity (v) was expressed as µmoles PNP/h per g root fresh (FWr) or dry weight DWr. Graphical representations were used for the determination of the Km and Vmax: Linewaver-Burk double reciprocal plot 1/v vs. 1/S plot; Hanes-Wolf plot S/v vs. S and Woolf-Augustinsson-Hofstee plot v vs. v/S. The first visual indication of P deficiency was a reduction in leaf area and dry biomass and a higher soluble Pi in the leaves of +P plants. Activity was higher in -P plants at the beginning of the growth period and the proper timing for the onset of the P-stress was apparently crucial for the induction of APase. For Phaseolus vulgaris Km values apparently indicate the lack of phosphate starvation-inducible APase and a higher Vmax in -P plants; however, with the combination of a high Km with a high Vmax plant behaviour could be improved under P deficiency. In Vigna unguiculata the low Vmax in -P plants may be compensated for by its lower Km. Crotalaria juncea showed considerably greater kinetic diversity, but Km was lower in -P plants. The practical implications of Km and Vmax are explained in terms of the potential for P-liberation under limiting Pi ; to be efficient an increase in Pi uptake is likely to occur if the APase released has a low Km (in the neighborhood of the soil P concentration) and a high Vmax as found for Desmodium, Phaseoulus and Vigna. The Km provided a means of comparing the enzyme from high or low-P plants indicating that Km is a reliable physiological tool for assessing plant adaptability to P-deficiency and it is suggested that Km, Vmax with total leaf area and relative growth rate (RGR).",signatures:"Jocelyne Ascencio",downloadPdfUrl:"/chapter/pdf-download/48941",previewPdfUrl:"/chapter/pdf-preview/48941",authors:[{id:"106601",title:"Dr.",name:"Jocelyne",surname:"Ascencio",slug:"jocelyne-ascencio",fullName:"Jocelyne Ascencio"}],corrections:null},{id:"48939",title:"Genetic Strategies to Enhance Plant Biomass Yield and Quality- Related Traits for Bio-Renewable Fuel and Chemical Productions",doi:"10.5772/61005",slug:"genetic-strategies-to-enhance-plant-biomass-yield-and-quality-related-traits-for-bio-renewable-fuel-",totalDownloads:1967,totalCrossrefCites:4,totalDimensionsCites:7,hasAltmetrics:0,abstract:"Owing to the increasing concerns on the environment, climate change, and limited natural resources, there are currently considerable efforts applied to produce chemicals and materials from renewable biomass. While initial emphasis has been placed on biofuel production from food plant sugars, the competition between crop usage for food and non-food applications has promoted research efforts to genetically improve yield and quality-related traits for biorefining applications. This chapter summarizes the potential of genetic and biotechnological strategies for improving plant biomass yields and quality-related traits and for breeding varieties more suitable to meet biorefining applications. Attempts were also made to provide a description on the genetic and molecular mechanisms affecting starch, cell wall composition and architecture, and oils synthesis and deposition, including genetic strategies to modify these traits. Similarly, the chapter covers the genetic strategies to improve yields by emphasizing the efforts done to identifying genetic variation and gene(s) governing critical morphological, structural, and physiological traits that in turn influence biomass yields. Finally, in the chapter it is suggested that knowledge of plant biosynthetic pathways will eventually provide valuable opportunities for metabolic engineering, as well as access to chemical transformations unique to plants for breeding varieties with built-in new traits.",signatures:"Massimiliano Lauria, Francesco Molinari and Mario Motto",downloadPdfUrl:"/chapter/pdf-download/48939",previewPdfUrl:"/chapter/pdf-preview/48939",authors:[{id:"174090",title:"Dr.",name:"Mario",surname:"Motto",slug:"mario-motto",fullName:"Mario Motto"}],corrections:null},{id:"49073",title:"Nod-Factor Signaling in Legume-Rhizobial Symbiosis",doi:"10.5772/61165",slug:"nod-factor-signaling-in-legume-rhizobial-symbiosis",totalDownloads:2185,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Leguminous plants (or Legumes, family Fabaceae) are known to form symbioses with extremely broad range of beneficial soil microorganisms (BSM), representing examples of almost all plant-microbe mutualistic systems. One of the most ecologically important and well-studied legume beneficial symbioses is root nodule (RN) symbiosis (symbiotic association with nitrogen-fixing bacteria). Compared with other interactions of legumes with BSM, RN symbioses demonstrate high level of genetic and metabolic integrity, which implies, inter alia, highly specific mutual recognition of partners. In this chapter, we describe the mechanisms of plant-microbe recognition during initial steps of RN symbiosis using the interaction of model legumes - pea (Pisum sativum L.), barrel medic (Medicago truncatula Gaertn.) and Lotus japonicus (Regel.) K. Larsen - with rhizobia as an example. We paid particular attention to symbiotic system of P. sativum since pea, besides its importance as a model object of genetics, is also a valuable crop plant. Hence, in conclusion, we discuss the potential to use obtained knowledge for optimizing the broad spectrum of plant adaptive functions and to improve the sustainability of legume crop production.",signatures:"Sulima Anton Sergeevich, Zhukov Vladimir Alexandrovich, Shtark\nOksana Yurievna, Borisov Alexey Yurievich and Tikhonovich Igor\nAnatolievich",downloadPdfUrl:"/chapter/pdf-download/49073",previewPdfUrl:"/chapter/pdf-preview/49073",authors:[{id:"73360",title:"Dr.",name:"Alexey",surname:"Borisov",slug:"alexey-borisov",fullName:"Alexey Borisov"},{id:"81134",title:"Dr.",name:"Vladimir",surname:"Zhukov",slug:"vladimir-zhukov",fullName:"Vladimir Zhukov"},{id:"81139",title:"Dr.",name:"Oksana",surname:"Shtark",slug:"oksana-shtark",fullName:"Oksana Shtark"},{id:"81142",title:"Prof.",name:"Igor",surname:"Tikhonovich",slug:"igor-tikhonovich",fullName:"Igor Tikhonovich"},{id:"173550",title:"MSc.",name:"Anton",surname:"Sulima",slug:"anton-sulima",fullName:"Anton Sulima"}],corrections:null},{id:"49242",title:"Evolutionary Analysis of Basic RNase Genes from Rosaceous Species — S-RNase and Non-SRNase Genes",doi:"10.5772/61439",slug:"evolutionary-analysis-of-basic-rnase-genes-from-rosaceous-species-s-rnase-and-non-srnase-genes",totalDownloads:1602,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Over the past two and half decades there has been an explosion of progress in a growing number of model self incompatibility (SI) systems on our understanding of the molecular, biochemical and cellular processes underlying the recognition of self pollen and the initiation of a cascade of biochemical and cellular events that prevent self fertilization. These studies are unrevealing the complexity of a trait (SI) whose sole purpose, as far as we know, is to exert a strong influence on the breeding system of plants. Evolutionary interest in floral traits that influence the breeding system and in the forces that shape these traits began with Darwin who devoted one complete book to the subject (Darwin 1876) and significant portions of a second book. The evolution of plant breeding systems is often viewed as the interplay between the advantages and disadvantages of selfing. Evolutionary biologists have long noted that there are three primary advantages to selfing. First, there is an inherent genetic transmission advantage to selfing because a plant donates two haploid sets of chromosomes to each selfed seed and can still donate pollen to conspecifics. Second, selfing can provide reproductive assurance when pollinators are scarce or and third, it often costs less, in terms of energy and other resources, to produce selfed seed (e.g. fewer resources are expended to attract and reward pollinators. Some major questions remain unanswered concerning the evolution of stylar SRNases. Most pressing is the apparent disparity in patterns of diversification seen in the Solanaceae and Plantaginaceae relative to what is observed in the Rosaceae. Thus, we reviewing current publication regarding the evolutionary analysis basic RNases towards comprehensive view.",signatures:"Karim Sorkheh",downloadPdfUrl:"/chapter/pdf-download/49242",previewPdfUrl:"/chapter/pdf-preview/49242",authors:[{id:"173332",title:"Dr.",name:"Karim",surname:"Sorkheh",slug:"karim-sorkheh",fullName:"Karim Sorkheh"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"497",title:"Soybean and Nutrition",subtitle:null,isOpenForSubmission:!1,hash:"11aa0c9ed0f6ea8da765be93b50954bb",slug:"soybean-and-nutrition",bookSignature:"Hany El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/497.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"496",title:"Soybean and Health",subtitle:null,isOpenForSubmission:!1,hash:"66d40dbc031b2825ba95f7ac2bfae1b6",slug:"soybean-and-health",bookSignature:"Hany El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/496.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"495",title:"Soybean",subtitle:"Physiology and Biochemistry",isOpenForSubmission:!1,hash:"09e5f0af30214d460498f8d770e985cf",slug:"soybean-physiology-and-biochemistry",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/495.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3244",title:"Soybean",subtitle:"Bio-Active Compounds",isOpenForSubmission:!1,hash:"b21aa6107fce439bd06d53fbe0bc3c9e",slug:"soybean-bio-active-compounds",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/3244.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3086",title:"Drug Discovery",subtitle:null,isOpenForSubmission:!1,hash:"80322b9ccee17fd312a8d936eb917e69",slug:"drug-discovery",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/3086.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3083",title:"Soybean",subtitle:"Pest Resistance",isOpenForSubmission:!1,hash:"4046b5f670fa7e27e71d2e35bd645411",slug:"soybean-pest-resistance",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/3083.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6385",title:"Potential of Essential Oils",subtitle:null,isOpenForSubmission:!1,hash:"3dc02ec3b9f324b4b571867aa4ee7f15",slug:"potential-of-essential-oils",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/6385.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",isOpenForSubmission:!1,hash:"ccf7987200bfc541e2e56bb138de86f3",slug:"aromatic-and-medicinal-plants-back-to-nature",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6026",title:"Active Ingredients from Aromatic and Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"f5988dd981b01f4497052300329105b2",slug:"active-ingredients-from-aromatic-and-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/6026.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7855",title:"Essential Oils",subtitle:"Oils of Nature",isOpenForSubmission:!1,hash:"4cbe4fd4ef95d61934405026e1702d4c",slug:"essential-oils-oils-of-nature",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/7855.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"81169",slug:"corrigendum-to-sarcopenia-technological-advances-in-measurement-and-rehabilitation",title:"Corrigendum to: Sarcopenia: Technological Advances in Measurement and Rehabilitation",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/81169.pdf",downloadPdfUrl:"/chapter/pdf-download/81169",previewPdfUrl:"/chapter/pdf-preview/81169",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/81169",risUrl:"/chapter/ris/81169",chapter:{id:"79749",slug:"sarcopenia-technological-advances-in-measurement-and-rehabilitation",signatures:"Letizia Lorusso, Luigi Esposito, Daniele Sancarlo and Grazia D’Onofrio",dateSubmitted:"October 7th 2021",dateReviewed:"October 18th 2021",datePrePublished:"December 20th 2021",datePublished:null,book:{id:"11011",title:"Frailty and Sarcopenia - Recent Evidence and New Perspectives",subtitle:null,fullTitle:"Frailty and Sarcopenia - Recent Evidence and New Perspectives",slug:null,publishedDate:null,bookSignature:"Dr. Grazia D'Onofrio and Dr. Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/11011.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"272628",title:"Dr.",name:"Grazia",middleName:null,surname:"D'Onofrio",slug:"grazia-d'onofrio",fullName:"Grazia D'Onofrio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"79749",slug:"sarcopenia-technological-advances-in-measurement-and-rehabilitation",signatures:"Letizia Lorusso, Luigi Esposito, Daniele Sancarlo and Grazia D’Onofrio",dateSubmitted:"October 7th 2021",dateReviewed:"October 18th 2021",datePrePublished:"December 20th 2021",datePublished:null,book:{id:"11011",title:"Frailty and Sarcopenia - Recent Evidence and New Perspectives",subtitle:null,fullTitle:"Frailty and Sarcopenia - Recent Evidence and New Perspectives",slug:null,publishedDate:null,bookSignature:"Dr. Grazia D'Onofrio and Dr. Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/11011.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"272628",title:"Dr.",name:"Grazia",middleName:null,surname:"D'Onofrio",slug:"grazia-d'onofrio",fullName:"Grazia D'Onofrio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"11011",title:"Frailty and Sarcopenia - Recent Evidence and New Perspectives",subtitle:null,fullTitle:"Frailty and Sarcopenia - Recent Evidence and New Perspectives",slug:null,publishedDate:null,bookSignature:"Dr. Grazia D'Onofrio and Dr. Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/11011.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"272628",title:"Dr.",name:"Grazia",middleName:null,surname:"D'Onofrio",slug:"grazia-d'onofrio",fullName:"Grazia D'Onofrio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11776",leadTitle:null,title:"Fashion Industry",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"e8d53d1029a7bccf825aa55d43fecc68",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 20th 2021",dateEndSecondStepPublish:"January 10th 2022",dateEndThirdStepPublish:"March 11th 2022",dateEndFourthStepPublish:"May 30th 2022",dateEndFifthStepPublish:"July 29th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"6 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"59806",title:"Wild Soybeans: An Opportunistic Resource for Soybean Improvement",doi:"10.5772/intechopen.74973",slug:"wild-soybeans-an-opportunistic-resource-for-soybean-improvement",body:'Challenged by limited land and water resources and a concomitant increase in population, changing dietary expectations and climatic change are demanding escalated food supplies [1]. The nutritional value of grain legumes is far better than cereals even if their production is low, making them a unique and essential component of balanced diet [2]. Grain legumes have suffered a reduction in genetic diversity largely due to plant breeding activities aimed at artificial selection of desirable traits. The new varieties, as well as land races in farmer’s field, have desirable characteristics which have become genetically diverged from their ancestors or wild progenitors [3].
In order to cope with the global warming led climatic variations and limited water supplies, there is a constant need of crop improvement; the crop potential has been reduced due to domestication, genetic bottlenecks, and artificial selection [2]. To explore more genes and gene families for alternative production systems, crop wild relatives are a rational choice mainly due to limited or no breeding barriers [4]. The wild progenitors of crops are sometimes easily available, but this is not the case for all species as some of the wild species have gone extinct, or in other cases, multiple progenitors contributed to the genome of the domesticated plants, e.g., wheat. In some cases, some species are indirectly expanding the genomes of the domesticated crops as they may be related species of wild progenitors or wild cousins [5]. Wild crop relatives are mostly adapted to larger climatic variations and are evolved to withstand biotic and abiotic stresses [6]. Therefore, for crop improvement, we have two possibilities, namely, genetic modification or introduction of genetic materials through breeding with crop wild relatives. Of course the use of genetic engineering to create genetically modified plants is relatively quick and efficient but the acceptance of genetically modified plants among the consumers is still controversial. On the other hand, the desirable traits including resistance to biotic and abiotic stresses, nutritional values can be incorporated into the current agricultural crop by using conventional and new breeding technologies. This practice is sometimes quite challenging mainly due to linkage drag; however, recent advances in genetics and genomic approaches have expanded our understanding of evolution, linkage, and heredity of complex traits [4, 5, 6] (Table 1).
Crop | Wild relatives | Reference |
---|---|---|
Rice | [7] | |
Wheat | [8] | |
Corn | [9] | |
Soybean | See Table 2 for wild cousins of soybean | [10] |
Common bean | [11] | |
Chickpea | [12] |
List of wild relatives of three major cereals and three major legumes.
The
Wild soybeans grow on roadsides, riversides villages, lakeshores, wastelands, and fertile valleys. Apart from numerous phenotypic distinctions among both species, their annual growing habit with similar ploidy level and ability to produce fertile offspring without genetic isolation results in a flow of certain characteristics from wild to cultivated populations [16]. Wild soybeans exhibit distinct geographical patterns as well as interspecific horizontal mechanisms of flow of genetic information to cultivated species mainly because of sharing the same gene pool and close proximity [10] (Table 2).
Genus | Subgenus | Species | Authority | Reference |
---|---|---|---|---|
Merr. Sieb. & Zucc. | [17, 18] | |||
F. J. Hermann Wendl. Benth. Benth. Hayata Benth. (Benth) Newell & Hymowitz Tindale Tindale Tindale Tindale (Benth.) Tindale Tindale & Craven Tindale & Craven Tindale & Craven Tateishi & Ohashi Tindale & Craven B. Pfeil & Tindale B. E. Pfeil & Tindale Tindale & B. E. Pfeil B. Pfeil B. Pfeil, Tindale & Craven B. E. Pfeil & Craven B. E. Pfeil, Tindale & Craven Hayata B. E. Pfeil & Craven |
Members of genus
Many parts of China and South Korea which were previously regarded as habitat for wild soybean are now being used for agricultural, commercial purposes (roads, buildings or dams) or are now part of the sea. Destruction of natural soybean habitats due to land clearance for agricultural or industrial purposes has led to decreased wild germplasm resources [19]. Furthermore, reduction in genetic diversity has been witnessed due to the domestication of soybean during past three decades. Progenitor wild species exhibit discrete geographic patterns with greater genetic diversity but the selection and allele frequency changes during domestication has curtailed genetic variability. Various studies have reported a reduction of genetic diversity up to 50% in domesticated/improved cultivars as compared to wild progenitors [3, 15]. Artificial selection and domestication mainly focused dominant selection of desirable traits such as oil content, seed size, and seed coat luster, imposing selection pressure on particular traits and ignoring other important traits. Another factor involved in diminishing genetic diversity is habitat fragmentation [20] (Figure 1).
Geographic distribution of wild soybeans.
Whole genome sequencing of wild soybean genome started a new era for soybean functional and comparative genomics and has substantially increased our understanding about soybean domestication history, bottlenecks, lost diversity and has created a way forward towards its potential use in expanding the gene pool of soybean. The wild and cultivated soybeans have significant and useful genomic differences which highlight the phenotypic differences and as well as the domestication-related traits. Kim et al. [21] aligned 915.4 Mb genomic sequence of wild soybean with soybean reference genome excluding the gaps and found that wild soybean genome covered 97.65% of soybean genome with a difference of 35.2 Mb (3.76% of 937.5 Mb). The difference region consisted of 0.267% substitution bases, 0.043% insertion/deletions (indels), and 3.45% of large deleted sequences. Single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) in precisely aligned areas differed by 0.31% between cultivated and wild soybean. The complex genome rearrangement is mainly caused by indels, inversions, and translocations (up to thousands of base pairs); along with SNPs and indels [22]. The wild soybean genome has greater allelic diversity than that of soybean. Resequencing of 17 wild and 14 cultivated soybean genomes to an average of ×5 depth and >90% coverage identified higher allelic diversity [15].
Based on whole-genome SNP analysis using the parameter θπ, a higher level of genetic diversity was found in wild soybeans (2.97 × 10−3) as compared to cultivated soybeans (1.89 × 10−3). Similar findings were also reported when 302 wild and cultivated soybeans were whole-genome sequenced to an average depth of > x11; the genetic diversity (π) decreased from 2.94 × 10−3 in
Wild soybeans are a potential genetic resource for the improvement of cultivated soybean and aid greatly in exploring alternative production systems. Wild soybeans, as in case of another wild relative of cultivated crop species, contain higher genetic diversity as they had a long time opportunity to evolve and withstand under varied environmental conditions without inference by humans [4, 15]. Wild soybeans are interfertile with cultivated soybeans and represent an easily accessible or primary gene pool for soybean improvement [10]. However, the global climate change and increase in human population have developed a scenario of securing, conserving, characterizing, and using wild soybeans as a resource for soybean improvement. Loss of genetic diversity during the process of soybean domestication and presence of a domestication bottleneck, i.e., domestication syndrome has led towards changes in growth habits, loss of germination inhibition and mechanisms of seed dispersal [4]. This domestication has also enabled the crop plants to withstand and adapt to modern agriculture and farming system, which is very encouraging. However, loss of diversity in cultivated soybeans calls for revisiting natural diversity reservoirs, i.e., wild soybeans in search of potential genes/alleles for higher yield. Multiples sequences that are unique to wild soybeans have been discovered but a report from Korea by Chung et al. [23] also witnessed gene loss events in wild soybeans. However, this discrepancy might be due to diversity of wild collections [4]. Multiple agronomic traits, lineage-specific genes, and domestication-related traits have been studied in wild soybeans in contrast to cultivated soybeans, and it has been proved that wild soybeans are an essential genomic resource containing unique and useful genetic resources that have been lost during domestication to expand the gene pool in order to improve soybean [3, 15, 24, 25]. One recent example is the salt-resistant gene GmCH1X identified in wild soybean. The salt-resistant gene originally did not have a Ty1/copia retrotransposon insertion into its exon 3 in wild soybean and controls 80% salt tolerance in wild soybean (W05) as compared to its counterpart C08 (cultivated soybean) which had retrotransposon insertion possibly due to recent round of whole genome duplication [24], strongly implying that wild soybeans’ genetic diversity must be explored.
Recent development in high-throughput sequencing technologies is clearly promoting a revolution in the comparative genomic sequencing of major crops. A rapid growth in the number of sequenced genomes of crops and their wild relatives has established that wild species tend to have higher genetic diversities, making the wild relatives promising natural resources of novel genes/alleles for crop improvement. Many studies have provided the details on wild soybean specific genes/alleles controlling major abiotic and biotic stress tolerance-related traits. Contrastingly, cultivated soybeans also have unique genes/alleles which have been possibly lost during the evolution of wild soybeans. However, the results of each comparative study must be based on the genetic diversity present within the subject population [4, 21, 26].
Identification of genes for domestication-related traits is an important task to maintain diversity in crops for improvement. Such a knowledge provides essential understanding of how and what genetic signatures have brought necessary changes in plant phenotype and physiology during the process of domestication. In soybean, the domestication-related traits are the increased size of inflorescence, grain yield, seed size, seed color, hilum color, pubescence form, apical dominance, stem determinacy, and plant height. Many of the domestication QTLs have been identified, such as twining habit (Ch. 02 and 18), hard seededness (Ch. 02 and 06), determinate habit (Ch. 17), maximum internode length (Ch. 06, 18 and 19), flowering time (Ch. 06 and 16), pod dehiscence (Ch. 16), seed weight (Ch. 17), stem determinacy (Ch. 17), oil content (Ch. 03, 11, 12, 13, 15, 17), flower color (Ch. 13), seed coat color (Ch. 08), pubescence form (Ch. 01, 12, 18, 19, 20), and plant height (Ch. 18) [3, 15].
Many useful QTLs/genes have been obtained by characterizing wild soybeans or using genetic populations resulting from crosses between wild and cultivated soybeans. These genes/QTLs have been characterized to understand the stress resistance mechanisms and various biochemical pathways related to plant development, yield, and local breeding traits. (1) Multiple genes/alleles responsible for flower color, i.e., pinkish-white and white flowers have been identified from wild soybeans. Flavonoid 3′5′-hydroxylase (F3′5′H) and dihydroflavonol-4-reductase (DFR) are responsible for anthocyanin production. Different loci control the anthocyanin content and decide the fate of flower color. Different loci, i.e., W1, W3, W4, w1-s1, w1-s2, w1-Ip, and w1-p2 have been reported to control white color and pinkish-white [27, 28]. (2) Other studies on seed antioxidant, phenolics, and flavonoid contents have identified GmMATE1, 2, 4 genes [29]. Astringent taste in soy products is caused by group A saponins.
Wild soybean (the presumed progenitor of soybean) is very often a plant of disturbed habitats of Southeast Asia. Such habitats are mostly on the roadsides, intensive agricultural lands, and areas with higher human disturbances in terms of land use. The adaptation to these disturbed areas actually predisposes the wild soybeans to agricultural systems; this is one of the reasons for its domestication in East Asia [2, 19]. The vulnerability of these habitats to agriculture systems and urban expansion causes reduction in area of distribution and hence the diversity. As discussed earlier, wild soybean is an efficient resource for identification and characterization of furnished and important genes for soybean improvement [10]. Economically, genebanks and wild genetic resources have been unambiguously reported to have led towards higher economic return by increasing soybean productivity [5]. Wild soybean germplasm preservation is underway in many countries mainly China, Korea, Japan, and the United States of America [10, 19]. Surely, the collections are growing by following the principles of conservation genetics; however, the complete representative collections are yet to be achieved as there remain many unexplored uninhabited natural habitats of wild soybeans which might carry many useful genes, alleles, or mutations. The undiscovered variations are greatly in demand by plant breeders to increase soybean production for an ever-increasing population [18]. Wild soybean germplasm should be collected mainly to (a) to understand the taxonomy and phylogenetic relationships, (b) to understand the biosystematics of certain yield-related pathways, (c) characterize and conserve germplasm, and (d) make it available for soybean breeders across the globe [10, 18, 19]. Currently, there are many gene banks which are working on wild soybean germplasm conservation. In Southeast Asia, China holds the largest wild soybean germplasm collection of 6172 accessions under Chinese Crop Germplasm Information system [42], followed by Chung’s Wild Legume Germplasm Collection (CWLGC) holding 6012 accessions and National Institute of Agrobiological Sciences Genebank in Japan which holds 1131 accessions [43]. Outside East Asia, the largest collection of wild soybean germplasm is USDA Soybean Germplasm Collection holding nearly 21,810 accessions belonging to 21 species of genus Glycine [44]. Almost 1179 accessions belong to 20 wild relatives of cultivated soybean including the wild soybean. N. I. Vavilov Institute of Plant Genetic Resources (VIR) holds ~350 accessions [45]. All of these germplasm collections are either focused on cultivated soybean or limited to a particular country/region. There is a dire need of germplasm center particularly focused on the collection, characterization, and dissemination of wild soybean accessions from the main distribution area of the species i.e., Southeast Asia. Out of the above-mentioned germplasm collections, CWLGC is primarily focused on wild soybean germplasm collections from China, Korea, Japan, and Far East Russia near Chinese border.
Chung’s wild legume germplasm collection strives to develop a comprehensive conservation program resourcefully and efficiently to conserve and promote the genetic diversity within wild legumes with main focus on wild legumes. Guided with the principles of conservation genetics, CWLGC focuses on (a) direct collection, (b) acquirement, (c) conservation, (d) evaluation and characterization, and (e) documenting and distribution of wild soybean germplasm. CWLGC was established in 1983 by Professor Gyuhwa Chung at Department of Biotechnology, Chonnam National University, Yeosu campus, Republic of Korea. CWLGC holds 10,314 different legume genera. However, particular emphasis is on the germplasm collection, multiplication, evaluation, and utilization of
Wild soybean germplasm conservation at CWLGC.
A glimpse of diverse legume germplasm seed collection at CWLGC.
The authors declare that there exists no conflict of interest.
In the last decade, the Internet of Things has become an important component of modern info communications. According to Transforma Insights [1], the total number of active Internet of Things (IoT) devices in 2019 was 7.6 billion. The number of active IoT devices is expected to grow up to 24.1 billion by 2030, with a CAGR of 11%. For the forecasted period, the short-range technologies will remain the main type of IoT device connection: Wi-Fi, Bluetooth, Zigbee. The number of IoT device connections to cellular networks is predicted to increase from 1.2 billion in 2019 up to 4.7 billion in 2030. The need to provide a large number of connections and IoT device traffic transmission has become the main driver for the development and implementation of a new 5G mobile broadband standard [2].
The development of the Internet of Things is constrained by the limited coverage of terrestrial mobile broadband networks, which ones for commercial reasons cover areas with relatively high population densities. It is possible to expand the area of providing IoT services by using the satellite telecommunication systems resource, with specified and widespread application. The purpose of this article is to present the overview of the readiness of existing Satellite Communications Systems to provide IoT Services, and describe potential directions for the development of this communications sector in future.
Up to now, the Cloud Computing [3] technology has been the prevailing architecture for IoT systems. According to this architecture, IoT devices (hereinafter referred to as IoT Smart Things) transform monitored physical parameters into electronic signals and transmit relevant information to the Cloud Computing Data Centers for information processing in accordance with the IoT service purpose, information storage and archiving. If it is necessary to implement any actions, the Cloud Computing Data Center delivers control actions bursts to the IoT Smart Things.
Current satellite telecommunications systems are used to transmit IoT information Traffic for IoT systems based on the Cloud Computing Architecture. Figure 1 shows the model of the IoT System built on Cloud Computing Architecture and using a satellite telecommunications system. The IoT Smart Things are located at the lowest level of the hierarchical structure of the IoT System. This group of devices includes Sensors, i.e. devices that transform physical processes into electrical signals and form IoT Information Bursts based on these electrical signals, as well as devices that implement physical actions based on received commands - Actuators. The Cloud Computing Data Center is at the top of the hierarchical level of the system.
The IoT system model, built on the basis of the cloud computing architecture and using a satellite telecommunications system.
The Satellite Communication Segment provides with IoT Data Relay Channel from IoT Smart Thing Sensor, to a Cloud Computing Data Center and vice versa, to the IoT Smart Thing Actuator. The satellite communication channel is established with the following elements utilization:
VSAT terminal, which is located in close proximity to IoT Smart Things, sensors and actuators, and provides connection of these devices on short-range technology basis: Wi-Fi, Bluetooth, Zigbee. The VSAT interface to the local network or to the terrestrial local communication network is the system boundary for a satellite telecommunications system;
Communication Satellite, which provides retransmission of the IoT Smart Things information. For the hierarchical model of the Cloud IoT System Architecture mission, the type of satellite payload, or repeater of a telecommunications satellite is not essential: either it will be Transparent Transponder or Regenerative Transponder [4];
The VSAT-Network HUB or Gate Way. Generally, this facility is connected to the Internet Backbone through which IoT data transmission to the Cloud Computing Data Center is provided.
Figure 2 shows examples of utilization of various types of Satellite Communication Systems to support the operation of the IoT Systems and to provide IoT Services. The Figure 2 shows Satellite Communication Systems using two orbits types: Low Earth Orbit (LEO) and Geostationary Orbit (GEO). Considering the fact that Broadband Access Satellite Systems in LEO and in Medium Earth Orbit (MEO) do not have essential differences in their construction architecture, Figure 2 does not show MEO Satellite Communication Systems, like O3b System.
Satellite communication systems utilization for providing operation of IoT systems.
The first application option of LEO satellite communication systems is utilization of the IoT narrow-band long range data transmission modified protocol LoRaWAN with exploitation of the CubeSat form factor spacecraft [5]. IoT Smart Things within the CubSat coverage zone, transmit IoT information bursts by LoRaWAN protocol. CubSat receives and retransmits the signals, which come at the LoRaWAN Gate Way. The LoRaWAN Gate Way is connected with the local communication system and provides IoT data transmission through the Internet network to the Cloud Computing Data Center. The IoT Service Control actions bursts are transmitted in the opposite direction. In this architecture, the satellite segment is used as a radio extension link, i.e. as a tool providing the transmission range increase of the LoRaWAN protocol signals.
StarLink and OneWeb are the perspective broadband access satellite systems, which are currently at the different stages of the Satellite Constellation development. These Systems are also capable to provide the IoT data transmission.
The architecture of the StarLink System has been changing several times during the system design and the spacecraft development. The StarLink Constellation with satellites located on LEO with 550 km high is currently in the stage of satellite launches realization and constellation development [6]. StarLink satellites form steerable beams that cover End User Terminals and Gate Ways Earth Station, and provide broadband access satellite service. The external interface of the StarLink end user terminal serves as the StarLink system interface for IoT systems. IoT Smart Things are being connected to a StarLink terminal via a short-range radio access network, for example WiFi or LAN. Then the IoT information packets are being transmitted in the information up-link flow to the StarLink satellite, where it is being routed towards the beam covering the gate way at a given time. It has been often mentioned in the press that StarLink satellites provide an Inter-Satellite Optical (laser) Link [7]. In this case, as shown in Figure 2, the IoT information packet can be transmitted over Inter-Satellite Optical Line from the satellite which covers the StarLink end user terminal with connected IoT Smart Things, to a satellite which covers a Gate Way Earth Station. The StarLink Gate Way Earth Station interface is connected to the Internet Backbone and IoT Smart Things information packets come to the Cloud Computing Data Center through this connection.
The OneWeb System Architecture includes two groups of satellite beams: the User Beams providing connection with the User Terminal and the GateWay Beams providing connection with the GateWay Earth Station. The interface of the OneWeb User Terminal to the LAN or WiFi serves as the interface of the OneWeb system and therefore the borderline of the OneWeb system to the IoT Smart Things. The OneWeb User Terminal transmits IoT information bursts of the IoT Smart Things connected to it in the general flow through the Up-Link to the OneWeb satellite, which relays the received User Beams information flow to the Gate Way beam. The OneWeb Gate Way Earth Station is connected to the Internet Backbone. The Gate Way Earth Station receives information bursts of the IoT Smart Things in the general flow, extracts them and provides routing over the Internet Network to the Cloud Computing Data Center.
Currently, GEO communication Regular Satellites and High Throughput Satellites (HTS) are capable to provide the IoT information data transmission services. Both types of GEO satellites can be equipped with a payload with Transparent Transponders or Regenerative Transponders [4]. Figure 2 shows an example of IoT data transmission using the HTS. Allocation of the separate User Beams and Gate Way Beams is the feature of the architecture of the HTS geostationary satellite communication systems [8]. The interface of the VSAT Terminal to the LAN or WiFi serves as an external interface of the geostationary satellite communication system to the IoT Smart Things. The VSAT Terminal multiplexes IoT information bursts into a common flow and transmits it over the Up-Link. The HTS satellite transfers the received flow from the VSAT User Terminal to the Gate Way Beam. The GateWay, or its analogue - the HUB of VSAT Network in case of geostationary Regular Satellites utilization, is connected to the Internet Backbone, through which the IoT information bursts get to the Cloud Computing Data Center. To improve the efficiency of cloud services provided with the use of satellite telecommunication systems, the Microsoft Company together with Azure Company started the project implementation on the Cloud Storage Data Centers location in close proximity with satellite teleports [9].
As can be seen from the above presented structure, Satellite Communication Systems take place of data transmission channels between IoT Smart Things and Cloud Computing Data Centers in IoT Systems. The Satellite Communication Systems have to provide two-way transmission of the entire IoT Data Traffic in the Cloud Architecture IoT System, that significantly increases the communication load for channels and systems.
The high communication channels load with two-way traffic generated by the IoT system is not the only disadvantage of the conventional IoT cloud architecture, but it is also the delay caused by the IoT information bursts transmission over the data channel through routers and other network equipment. Besides, the propagation time of the radio signal in radio networks and of the light wave in fiber-optic communication systems are of a significant impact. Delay has a particular impact on the IoT Delay Sensitive Service [10].
The solution to the problem is utilization of Fog and Edge Computing [3] in the IoT System Architecture. In this case, some of computations related to the IoT information processing is performed at the intermediate layers of the IoT system hierarchical structure. For this, the corresponding computing capacity is located at intermediate layers. Computing capacity locates nearer to the IoT Smart Things: Sensors and Actuators. As a result, the IoT information processing time is reduced, the IoT system response time to external impact is reduced, and the communication channel load is reduced. Only the results of IoT data processing at the lower layers are being transferred to the higher layers of the hierarchical system, at the same time the value of the transmitted information increases.
Satellite communication systems are flexible enough to be adapted for implementation of Fog and Edge Computing. Figure 3 shows the IoT Satellite System Model constructed with implementation of Fog and Edge Computing Architecture.
Hierarchical model of the internet of things satellite system architecture with implementation of fog and edge computing.
Edge Computing is a Distributed Computing Model when computation takes place near location where data is collected and analyzed, rather than on a Centralized Server or in the Cloud [11]. As shown earlier, in most cases, the User Terminal or VSAT Terminal Interface acts as the satellite communications system/network boundary to the local area network or to the short-range radio network, for example, Wi-Fi, ZigBee. The User Terminal or VSAT Terminal is located in the immediate vicinity to the location of the IoT Smart Things - Sensors and Actuators. Implementation of Edge Computing in satellite telecommunication systems can be ensured by supplementing of the User Terminal or VSAT Terminal Modem with an additional Computing Module or Single-Board Computer. Structurally, a User Terminal or VSAT Terminal is a board with modem chips installed on it. Through modernization, such a design can be supplemented with a Single-Board Computer, which will provide the implementation of Edge Computing. An alternative option is to connect a Single-Board Computer to an Ethernet-type Local Area Network with a Wi-Fi router being connected to it as well as other equipment of radio access technology for short-range IoT Smart Things. This added Computing Capacity will support the IoT Smart Things computing needs within the coverage of a short-range radio access network. In this case, only the results information about the IoT local information processing will be transmitted via a satellite communication channel.
Edge Computing is a Distributed Computing Model when computation takes place near location where data is collected and analyzed, rather than on a Centralized Server or in the Cloud [11]. As shown earlier, in most cases, the User Terminal or VSAT Terminal Interface acts as the satellite communications system/network boundary to the local area network or to the short-range radio network, for example, Wi-Fi, ZigBee. The User Terminal or VSAT Terminal is located in the immediate vicinity to the location of the IoT Smart Things - Sensors and Actuators. Implementation of Edge Computing in satellite telecommunication systems can be ensured by supplementing of the User Terminal or VSAT Terminal Modem with an additional Computing Module or Single-Board Computer. Structurally, a User Terminal or VSAT Terminal is a board with modem chips installed on it. Through modernization, such a design can be supplemented with a Single-Board Computer, which will provide the implementation of Edge Computing. An alternative option is to connect a Single-Board Computer to an Ethernet-type Local Area Network with a Wi-Fi router being connected to it as well as other equipment of radio access technology for short-range IoT Smart Things. This added Computing Capacity will support the IoT Smart Things computing needs within the coverage of a short-range radio access network. In this case, only the results information about the IoT local information processing will be transmitted via a satellite communication channel.
Fog Computing is implemented at intermediate layers of the IoT System Hierarchical Model [12]. A Communication Satellite or a Satellite Constellation is the intermediate layer of the Hierarchical Structure of the Internet of Things System with a Satellite Communications Segment. It includes both GEO Satellites and LEO or MEO Satellite Constellations. The implementation of Fog Computing in the satellite segment of IoT Systems is possible by supplementing the orbital segment with Computing Capacity for the Fog computing implementation. In [13], the Fog computing implementation method was proposed by supplementing Micro-Constellations with separate Satellites-Computers. Considering the fact that the modernization of satellite-repeaters equipment is possible only at the stage of their manufacturing, the implementation of Fog computing in the orbital segment of the IoT Satellite Systems will take a longer period of time. This time period includes the project development of a modernized satellite, its ground tests, expectation time for an Orbital Life Time completion of the already launched satellites and a queuing time for new satellite launch.
Supplementing the Orbital Segment of Satellite Communications Systems with Computing Capacity will allow the implementation of Fog computing for processing of the IoT Information accepted from IoT Smart Things located in the service area of the Satellite. As a result, the efficiency of information processing will increase, and the Delay Time will be reduced. The IoT Information Traffic will load only the section “User Terminal - Satellite Payload” of the Satellite Communication Channel. In the direction “Satellite Payload – Gate Way/VSAT-network HUB” the result of IoT Information processing and summarizing will be transmitted only, that will significantly reduce the amount of information transmitted and increase its value.
Modern Satellite Communications Technologies as well as design and production technologies of Spacecraft for various purposes significantly expand the capabilities of Satellite Communication Systems in terms of Cloud computing implementation, which are at the highest hierarchical layer of the IoT System Architecture. Along with the traditional solution of IoT Information Transfer support to the Cloud Computing Data Center, with utilization of the GateWays or VSAT-network HUB with the Internet backbone connection, an alternative solution is possible – the special Spacecraft-Satellite Cloud Data Centers development and launching them to GEO. Currently the Space Belt project is underway already [14]. However, this project implies the use of Satellites – Data Center (or Cloud Data Storage) located in LEO. Access to Satellites Data Centers implies to be carried out through a GEO Satellite-Repeater.
An alternative solution is the development and launch of GEO Satellite, with a Cloud Data Center Module as a Payload. These Satellites will be accessed via GEO Satellite-Repeaters according with Inter-Satellite Links. To increase data storage and computing operations liability, to increase cloud computing productivity, Satellite Cloud Computing Data Centers will be connected to ground-based Cloud Computing Data Centers provided with special high-speed secure radio links.
A LEO Communication system built to ensure the IoT Data Transmission using a modified communication long-range LoRaWAN protocol can be adapted to implement Fog computing by upgrading the System Orbital Segment Architecture by LoRaWAN GateWay equipment and Computing Capacity (see Figure 4).
Architecture of the modified LEO internet of things satellite system based on the LoRaWAN protocol.
Considering the LoRaWAN Architecture, the CubeSat Payload can be supplemented with the following equipment:
LoRaWAN Gateway, which provides data collection from Sensors – IoT Smart Things and relays the Sensor Data to the Central Server in the combined Multiplexed Stream;
Computing Module (CPU), which will act as a LoRaWAN Server directly on-board CubeSat. The CPU installation as the part of Payload will allow the implementation of Fog computing in LEO Satellite System to provide processing of the IoT Smart Things Information Burst directly on the board of CubeSat. The CubeSat provides processing of IoT Smart Things Information located in the service area of the CubeSat.
The proposed changes could be implemented within several years. Since the CubeSats in-orbit life time is rather short and, as a rule, does not exceed 3–5 years, the proposed changes can be implemented via the launch of CubeSats next generation implying to maintain the operation of the orbital constellation of the system.
To ensure the interaction of the orbital and ground segments of the IoT LEO Communication System, constructed with utilization of the CubeSat type of spacecraft and providing IoT services based on the modified LoRaWAN algorithm, it is advisable that the System Orbital Segment/Satellite Constellation will be connected with the ground Internet network through GateWay Earth Station which should be added to the Ground Infrastructure of the IoT Satellite System. The main task of the Gate Way Earth Station is to receive the IoT data combined Multiplexed Stream, i.e. the information on the results from processing of the IoT Sensor information bursts in the Fog computing layer of IoT System, and transferring the received data flow to the Cloud Computing Data Center. The Gate Way Earth Station in a LEO Communications Satellite System provides connection with several Satellites simultaneously. Therefore, it is advisable to add the equipment of the GateWay Earth Station with a computer, which will equip the Earth Station with Computing Capacity. The Computing Capacity implemented into the Earth Station will make it possible to realize Fog computing for generalizing of the IoT information from several CubeSats situated in the GateWay Earth Station radio visibility zone. In the Hierarchical Architecture of the Internet of Things, such a processing of generalized information corresponds to the Fog computing layer.
To improve the efficiency of LEO Satellite Communication Systems developed with utilization of small- and ultra-small satellites, including CubeSats, the Inter-Satellite Links (ISL) are included in the system architecture [15]. The ISL utilization between CubeSats in LEO Communication System allows transmitting the generalized IoT Data Flow to a neighboring CubeSat for its further relaying to the GateWay Earth Station and thus to expand the service area of the GateWay Earth Station and to reduce their number.
The Transparent Payload utilization in satellites is a feature of the OneWeb LEO Broadband Access Satellite System Architecture. The OneWeb Satellite Payload provides transfer of the User Beam frequency band to the Gate Way Beam frequency band [16]. There is no information processing in the payload. The OneWeb System architecture does not imply Inter-Satellite Links between Satellites.
For adaptation of the OneWeb System to the peculiarities of the Internet of Things and implementation of Edge and Fog computing, the capabilities of User Terminals and Gateway can be used (see Figure 5). In the OneWeb System the network boundary from the End User side is the interface to the Ethernet LAN or to the Wi-Fi radio access network. The equipment of the User Terminal could be supplemented with a computing module in the form of a separate Processor Unit or a Single-Board Computer. An alternative option could be the connection of the Single-Board Computer to the Ethernet LAN. This Computing Capacity, located at the User Terminal layout in the immediate vicinity of the IoT Smart Things (Sensors and Actuators), is introduced into the System in order to implement Edge Computing. Supplementing the User Terminal with a computing facility will make possible primary processing of information packets from IoT Sensors and form control commands for Actuators at the User Terminal Layer. The Satellite Communication Channel will transmit generalized information formed on the results of processing information from the local group of IoT Smart Things located in the coverage area of the short-range radio access technology.
Adaptation of the OneWeb satellite system for IoT systems.
Fog computing can be implemented at the GateWay Layer. For this, the GateWay Earth Station Equipment have to be supplemented with a Computing Module - a Multiprocessor Computer Group installed in additional Rack (see Figure 5). This Computation equipment will provide the IoT Data processing received from the service area of the OneWeb Satellite, or from Satellites situated in the service area of the GateWay Earth Station. Control commands for special IoT Smart Things and groups of Smart Things – Actuators, will be transmitted from the GateWay Earth Station via Satellite to the User Terminal. Generalized information on the results of the IoT data processing and about the decisions and generated control commands will be transmitted via the Internet to the Cloud Computing Data Center, as to the highest Layer of the IoT System Hierarchical Architecture.
LEO Broadband Access Satellite System Starlink, like the OneWeb System, has a formed architecture focused on providing End Users with high-speed Internet Access Services. As it was above mentioned, the existing Starlink System Architecture allows only the IoT Services of a Cloud Architecture.
For adaptation of the StarLink System to the Internet of Things System peculiarities and implementation of Edge and Fog computing, methods similar to those proposed for the OneWeb system can be used, namely (see Figure 6):
Adaptation of StarLink system for edge and fog computing IoT services.
supplementing User Terminals with Single-Board Computers or connecting a Single-Board Computer to the WiFi Radio Network for implementation of Edge computing for the data processing of the IoT Smart Things located inside a short-range radio access network;
supplementing of the equipment of the GateWay Earth Station with a separate multiprocessor computer group/rack for implementation of Fog computing for the data processing for the IoT Smart Things located in the service area of all the StarLink satellites in the GateWay radio visibility zone.
At the same time, the Laser Inter-Satellite Links utilization in the StarLink System [7] makes it possible to consider the decision of supplementing the StarLink Constellation with Satellite-Computers (see Figure 6). Unlike StarLink Satellite-Repeaters, the Payload of the Satellite-Computer is a Computing Module - a Processor Unit and a long-term Memory Module. Like Satellite-Repeaters, the Satellite-Computer Payload comprises the Router in it. To ensure links with other satellites, the Satellite-Computer is equipped with Optical Heads for the Laser Inter-Satellite Links.
The purpose of the Satellite-Computer is to generate the Computational Capacity directly in LEO in the same Orbital Plane with the Satellite-Repeaters. In each Orbital Plane of the StarLink Constellation, several Satellite-Computers can be placed (see Figure 7). The IoT information will be transmitted from Satellite-Repeaters to a Satellite-Computer via Inter-Satellite Links for processing, actuator command generation and aggregation of generalized information. Placing Satellite-Computers in the Orbital Plane and retargeting optical transceivers/optical heads of Laser Inter-Satellite Links towards them will not destroy the integrity of the Orbital Plane Data Transmission Ring Network, as Satellite-Computer, like the Satellite-Receiver, is equipped with a Router that will distribute data streams assigned for further retransmission via the Ring Network of the Orbital Plane and will extract information assigned for processing in the Computing Module of the Satellite-Computer.
Location of satellites-computers in one orbital plane of the StarLink constellation.
Supplementing of the StarLink Constellation with Satellite-Computers will make it possible to create Computing capacity directly in the orbit for the Fog computing implementation for the IoT Systems.
Geostationary Satellite Communication Systems are an important component of modern Satellite Communication Infrastructure. The growing demand for data transmission bandwidth and for provision of information services, primarily for the Internet Access, has become a driver for the HTS, a new class of GEO Satellites, to enter the market. The main advantage of these satellites is the information transmission low cost per one bit between two subscribers [8].
The architecture of GEO HTS Systems has its own characteristics, which were mentioned above. Another feature of HTS is the principle: one Transponder per one Spot Beam [17]. According to this principle, one Transponder provides amplification of signals via the entire frequency band, which can be 150 ÷ 250 MHz and more.
The architecture of GEO HTS Systems can be adapted to the peculiarities of the IoT Systems in several stages as follows (see Figure 8). At the first stage, it is possible to upgrade the system elements related to the Ground Communication Segment: User/VSAT Terminals and Gate Way Earth Stations (GateWay). Loading Computing Capacity on these elements will allow the implementation of Edge and Fog computing for the IoT Systems. Possible technical solutions for the Computing Capacity implementation on these elements are similar to the technical solutions discussed above for OneWeb and StarLink LEO Systems.
Adaptation of the geostationary high-throughput systems to the IoT systems peculiarities and interaction with an orbital cloud computing data center.
Currently available design and manufacture technologies for the GEO Satellites with a 15–20 years life time, and the experience accumulated in the construction and operation of Satellite Constellations, in-Orbit Satellites Interaction, makes it possible to consider the issue of creating perspective Orbital Cloud Data Storage, consisting of several Geostationary Satellites – GEO Satellite Cloud Data Centers (see Figure 8).
Orbital Cloud Data Storage cannot be considered the alternative to the Ground Cloud Data Processing and Storage Centers, since the Computing Capacity and Storage Capacity for Ground Cloud Data Centers are practically unlimited. Orbital Cloud Data Storage is an augmentation to the Ground Cloud Infrastructure and is focused primarily on processing and storing data from IoT Satellite Systems. To improve the reliability of data storage and the Computing Capacity increase, if necessary, the Orbital Cloud Data Storage interacts with the Ground Cloud Centers infrastructure via RF data transmission channels specially dedicated.
GEO High-Throughput Satellites will provide access to GEO Satellites - Cloud Data Centers via Inter-Satellite Link, set up in the radio frequency or optical band. The possibility of the long-distance optical links utilization in space has been practically confirmed on the establishment of the Europe Data Relay System (EDRS), implemented by the European Space Agency order [18].
To route IoT Information to the Satellite - Cloud Data Center, the GEO HTS Satellite have to route IoT Traffic. Routing can be provided by the following method:
with Regenerative Payload on board the Satellite through extracting IoT information from the Data Transport Stream transmitted by VSAT terminals and IoT Information routing towards GEO Satellite - Cloud Data Center. The Advanced Regenerative On-board Processing Satellite (AR-OBPS) technology can be used as a basic technology for this process [19];
when separated frequency bands allocated for IoT information in the common frequency band of each user beam. The IoT Information frequency band will be switched in the Satellite Payload separately from the other frequency band and transmitted over the Inter-Satellite Link between satellites to GEO Satellite - Cloud Computing Data Center. The Intelsat EpicNG Platform Digital Payload Technology [20] can be used as a basic technology for this process.
Orbital Cloud Data Storage can provide the IoT Data Processing for LEO IoT Systems (see Figure 9). In this case, LEO System based on the LoRaWAN protocol provides the implementation of Fog computing, as shown above, and the Orbital Cloud Data Storage provides the Cloud computing Layer (see Figure 3).
Interaction between the orbital cloud data storage and the LEO IoT satellite system based on the modified LoRaWAN protocol.
Interaction between LEO CubeSats and GEO Satellites – Cloud Computing Data Centers, is provided via LEO-GEO Inter-Satellite Link. To set up GEO-LEO Inter-Satellite Link the CubeSats from the LEO System could be equipped with Deployable Parabolic Dish Antennas [21]. LEO CubeSats should be designed to point Deployable Parabolic Dish Antenna towards GEO Satellite – Cloud Computing Data Center or towards GEO HTS, which in this case will be used as an IoT Data Repeater and Router.
Figure 10 shows the architecture of the Constellation of the combined LEO-GEO IoT Satellite System. CubeSats are located in LEO and provide the IoT Information/IoT Information Burst reception using modified LoRaWAN protocol directly from IoT Smart Things – Sensors and transmitting control information to IoT Smart Things – Actuators within CubeSat coverage zone. To simplify, in Figure 10 only the Orbital Plane is shown. The LEO Component of the Constellation consists of several Orbital Planes, which number is determined according to the requirements for continuity of the Service, Power Capacity and the Life Time of IoT Devices - Sensors and Actuators, and other factors. CubeSats are equipped with Deployable Parabolic Dish Antennas of RF LEO-GEO Inter-Satellite link and provide parabolic antennas steering towards the GEO Satellite.
The combined GEO-LEO IoT satellite system constellation architecture.
GEO Satellites - Cloud Computing Data Centers or GEO High-Throughput Satellites are located in the Geostationary Orbit and are equipped with GEO-GEO Inter-Satellite Link. GEO Satellite provides the reception of processed IoT Data from LEO CubeSats in the radio visibility zone. To provide a continuous radio interconnection with LEO CubeSats, three GEO Satellites - Cloud Computing Data Centers or High-Throughput Satellites is sufficient to be placed in GEO. The integrity of the Orbital and Ground Cloud Data Infrastructure is supported by GEO-GEO Inter-Satellite Links and GEO Satellite - Ground Cloud Computing GateWay Earth Station Links (see Figure 10).
Currently, Geostationary Orbit is uploaded enough with operating GEO Satellites of various missions and Satellites that have been taken out of service (inoperative). Figure 11 shows a chart of the Geostationary Orbit upload by satellites under control [22].
Geostationary orbit upload [
As can be seen from Figure 11, the most free GEO sectors are the ones located over the Pacific and Atlantic oceans: sectors 144° W ÷ 164° W; 56° W ÷ 60° W; 20° W ÷ 24° W. Considering the fact that GEO-GEO Inter-Satellite Link are used to provide access to GEO Satellite - Cloud Data Centers, the GEO Satellites from the Orbital Cloud Data Storage can be placed in these GEO sectors, which are not of interest for the satellite communication services provision to end users on the Earth surface.
Modern Satellite Communication Systems provide data transfer of IoT Systems, based mainly on Cloud Technology. The disadvantage of the IoT Systems Cloud Architecture is the necessity to transfer the entire amount of information from IoT Smart Things to Cloud Computing Data Centers and vice versa, that leads to Satellite Communication Systems inefficient load.
Satellite Communication Systems can be adapted to the peculiarities of Data Transport Streams in the IoT Systems, which use Fog and Edge computing Technologies to increase their efficiency. The Satellite Communication Systems adaptation to the peculiarities of IoT Fog and Edge computing is being carried out by placing computers of various capacities as the part of User/VSAT Terminals, Satellite Payloads and Gate Ways Earth Stations or VSAT networks HUB Stations. Such an arrangement of Computing Capacities and distribution of computations allows maintaining the strong IoT System Hierarchical Architecture, reducing the processing time and the transferred data volume, and increasing the value of information transmitted to the Cloud Computing Data Center.
The ways for the Satellite Communication Systems transition from the IoT Systems Cloud Architecture to the Multi-Layer Architecture with the Edge and Fog computing utilization are proposed. The implementation variants of Fog computing in LEO Systems are considered: Satellite Constellation of CubeSats with the modernized LoRaWAN protocol - the CubeSat Payload update and CubeSats replacement during the Satellite Constellation planned update; OneWeb system - the End-User Terminals and GateWay Earth Station equipment update; StarLink System – the User and Gate Way terminals update, the Constellation supplementation with Satellites - Computers.
In GEO High-Throughput Systems, the implementation of Edge and Fog computing is possible in two stages. At the first stage, the transition to Fog and Edge computing is possible by the User terminals and GateWay Earth Station modernization to supplement their structure with Computing Modules. At the second stage, during the planned replacement of a GEO High-Throughput Satellite, its Payload can be equipped with additional equipment for the IoT Systems Traffic allocation, traffic processing and carrying out the necessary calculations for the Fog computing system implementation in the Space Segment Structure.
To increase the efficiency of processing, storage and the IoT Systems access to Cloud Services, it is reasonable to create a Cloud Services Space Segment - an Orbital Cloud Data Storage, consisting of several GEO Satellites - Cloud Computing Data Centers which are connected via Inter-Satellite Links. The Orbital Cloud Data Storage can be accessed through upgraded GEO High-Throughput Satellites and through LEO CubeSats equipped with a LEO-GEO Inter-Satellite Link.
Advanced Regenerative On-board Processing Satellite Europe Data Relay System Geostationary Orbit High Throughput Satellites Internet of Things Inter-Satellite Link Local Area Network Low Earth Orbit Medium Earth Orbit Very Small Aperture Terminal
Our business values are based on those any scientist applies to their research. The values of our business are based on the same ones that all good scientists apply to their research. We have created a culture of respect and collaboration within a relaxed, friendly, and progressive atmosphere, while maintaining academic rigour.
\n\nPlease check out our job board for open positions.
',metaTitle:"Careers at IntechOpen",metaDescription:"Employee quote to be added",metaKeywords:null,canonicalURL:"/page/careers-at-intechopen",contentRaw:'[{"type":"htmlEditorComponent","content":"Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\\n\\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\\n\\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\\n\\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\\n\\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\n\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\n\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\n\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\n\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\n\n\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"5,6,12,13,18"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11641",title:"Updates on Fermentation",subtitle:null,isOpenForSubmission:!0,hash:"a40ca422d610cac17d09b0df36469351",slug:null,bookSignature:"Dr. Raúl Ferrer-Gallego",coverURL:"https://cdn.intechopen.com/books/images_new/11641.jpg",editedByType:null,editors:[{id:"353129",title:"Dr.",name:"Raúl",surname:"Ferrer-Gallego",slug:"raul-ferrer-gallego",fullName:"Raúl Ferrer-Gallego"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11800",title:"Cyanobacteria - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"645b037b086ec8c36af614326dce9804",slug:null,bookSignature:"Dr. Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/11800.jpg",editedByType:null,editors:[{id:"186791",title:"Dr.",name:"Archana",surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",subtitle:null,isOpenForSubmission:!0,hash:"cf1ee76443e393bc7597723c3ee3e26f",slug:null,bookSignature:"Dr. Toonika Rinken and Dr. Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",editedByType:null,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11636",title:"Neuroplasticity - Visual Cortex Reorganization From Neurons to Maps",subtitle:null,isOpenForSubmission:!0,hash:"b306ce94998737c764d08736e76d60e1",slug:null,bookSignature:"Dr. Alyssa A Brewer and Dr. Brian Barton",coverURL:"https://cdn.intechopen.com/books/images_new/11636.jpg",editedByType:null,editors:[{id:"115304",title:"Dr.",name:"Alyssa",surname:"Brewer",slug:"alyssa-brewer",fullName:"Alyssa Brewer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11475",title:"Food Security Challenges and Approaches",subtitle:null,isOpenForSubmission:!0,hash:"090302a30e461cee643ec49675c811ec",slug:null,bookSignature:"Dr. Muhammad Haseeb Ahmad, Dr. Muhammad Imran and Dr. Muhammad Kamran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",editedByType:null,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11607",title:"Aquatic Plants - Biology and Environmental Impacts",subtitle:null,isOpenForSubmission:!0,hash:"9103c1501af58e2c24202646f15f0940",slug:null,bookSignature:"Dr. Abd El-Fatah Abomohra, Dr. Mei Li and Dr. Adel W. Almutairi",coverURL:"https://cdn.intechopen.com/books/images_new/11607.jpg",editedByType:null,editors:[{id:"186114",title:"Dr.",name:"Abdelfatah",surname:"Abomohra",slug:"abdelfatah-abomohra",fullName:"Abdelfatah Abomohra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11674",title:"Updates on Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!0,hash:"5d7d49bd80f53dad3761f78de4a862c6",slug:null,bookSignature:"Dr. Gaia Favero",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",editedByType:null,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11635",title:"Towards New Perspectives on Toxoplasma gondii",subtitle:null,isOpenForSubmission:!0,hash:"2d409a285bea682efb34a817b0651aba",slug:null,bookSignature:"Dr. Saeed El-Ashram, Dr. Guillermo Téllez and Dr. Firas Alali",coverURL:"https://cdn.intechopen.com/books/images_new/11635.jpg",editedByType:null,editors:[{id:"209746",title:"Dr.",name:"Saeed",surname:"El-Ashram",slug:"saeed-el-ashram",fullName:"Saeed El-Ashram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:82},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4422},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"20",title:"Physics",slug:"physics",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:155,numberOfSeries:0,numberOfAuthorsAndEditors:3640,numberOfWosCitations:4735,numberOfCrossrefCitations:2258,numberOfDimensionsCitations:4933,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"20",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10672",title:"Nonlinear Optics",subtitle:"Nonlinear Nanophotonics and Novel Materials for Nonlinear Optics",isOpenForSubmission:!1,hash:"cfe87b713a8bee22c19361b86b03d506",slug:"nonlinear-optics-nonlinear-nanophotonics-and-novel-materials-for-nonlinear-optics",bookSignature:"Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/10672.jpg",editedByType:"Edited by",editors:[{id:"2359",title:"Dr.",name:"Boris I.",middleName:"I.",surname:"Lembrikov",slug:"boris-i.-lembrikov",fullName:"Boris I. Lembrikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10966",title:"Acoustic Emission",subtitle:"New Perspectives and Applications",isOpenForSubmission:!1,hash:"e4cbf5fe77dcf581393247bd9ac4277a",slug:"acoustic-emission-new-perspectives-and-applications",bookSignature:"Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10966.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",middleName:null,surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10209",title:"Quantum Computing and Communications",subtitle:null,isOpenForSubmission:!1,hash:"588d044631767881b7490cd9cb2c052b",slug:"quantum-computing-and-communications",bookSignature:"Yongli Zhao",coverURL:"https://cdn.intechopen.com/books/images_new/10209.jpg",editedByType:"Edited by",editors:[{id:"199527",title:"Associate Prof.",name:"Yongli",middleName:null,surname:"Zhao",slug:"yongli-zhao",fullName:"Yongli Zhao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:"plasma-science-and-technology",bookSignature:"Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10168",title:"Electromagnetic and Acoustic Waves in Bioengineering Applications",subtitle:null,isOpenForSubmission:!1,hash:"fab55a6aa34e666274aabfdd3dc7f32d",slug:"electromagnetic-and-acoustic-waves-in-bioengineering-applications",bookSignature:"Ivo Čáp, Klára Čápová, Milan Smetana and Štefan Borik",coverURL:"https://cdn.intechopen.com/books/images_new/10168.jpg",editedByType:"Authored by",editors:[{id:"314791",title:"Dr.",name:"Ivo",middleName:null,surname:"Čáp",slug:"ivo-cap",fullName:"Ivo Čáp"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"9655",title:"Bioluminescence",subtitle:"Technology and Biology",isOpenForSubmission:!1,hash:"26b9e7dade717a5ffdc2dbcfaa1ea43d",slug:"bioluminescence-technology-and-biology",bookSignature:"Hirobumi Suzuki and Katsunori Ogoh",coverURL:"https://cdn.intechopen.com/books/images_new/9655.jpg",editedByType:"Edited by",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10674",title:"Topics on Quantum Information Science",subtitle:null,isOpenForSubmission:!1,hash:"d7481712cff0157cd8f849cba865727d",slug:"topics-on-quantum-information-science",bookSignature:"Sergio Curilef and Angel Ricardo Plastino",coverURL:"https://cdn.intechopen.com/books/images_new/10674.jpg",editedByType:"Edited by",editors:[{id:"125424",title:"Prof.",name:"Sergio",middleName:null,surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10205",title:"Quantum Chromodynamic",subtitle:null,isOpenForSubmission:!1,hash:"0d9403b5c874f6e63b0686cd7c432e00",slug:"quantum-chromodynamic",bookSignature:"Zbigniew Piotr Szadkowski",coverURL:"https://cdn.intechopen.com/books/images_new/10205.jpg",editedByType:"Edited by",editors:[{id:"67836",title:"Prof.",name:"Zbigniew Piotr",middleName:null,surname:"Szadkowski",slug:"zbigniew-piotr-szadkowski",fullName:"Zbigniew Piotr Szadkowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10767",title:"Fiber Optics",subtitle:"Technology and Applications",isOpenForSubmission:!1,hash:"f6624b8ef72a4a369383a4b719bba2a4",slug:"fiber-optics-technology-and-applications",bookSignature:"Guillermo Huerta-Cuellar",coverURL:"https://cdn.intechopen.com/books/images_new/10767.jpg",editedByType:"Edited by",editors:[{id:"237167",title:"Dr.",name:"Guillermo",middleName:null,surname:"Huerta-Cuellar",slug:"guillermo-huerta-cuellar",fullName:"Guillermo Huerta-Cuellar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10481",title:"Practical Applications of Laser Ablation",subtitle:null,isOpenForSubmission:!1,hash:"e9f235e98a88813c08a9dba80525b195",slug:"practical-applications-of-laser-ablation",bookSignature:"Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/10481.jpg",editedByType:"Edited by",editors:[{id:"177814",title:"Dr.",name:"Dongfang",middleName:null,surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10017",title:"Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"e20f25706d03f0c52ac852f7fa2375e7",slug:"optoelectronics",bookSignature:"Mike Haidar Shahine",coverURL:"https://cdn.intechopen.com/books/images_new/10017.jpg",editedByType:"Edited by",editors:[{id:"102474",title:"Dr.",name:"Mike Haidar",middleName:null,surname:"Shahine",slug:"mike-haidar-shahine",fullName:"Mike Haidar Shahine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7886",title:"Photodynamic Therapy",subtitle:"From Basic Science to Clinical Research",isOpenForSubmission:!1,hash:"d7ef096c2bcf9efbda76d7631ce1e3ac",slug:"photodynamic-therapy-from-basic-science-to-clinical-research",bookSignature:"Natalia Mayumi Inada, Hilde Harb Buzzá, Kate Cristina Blanco and Lucas Danilo Dias",coverURL:"https://cdn.intechopen.com/books/images_new/7886.jpg",editedByType:"Edited by",editors:[{id:"90788",title:"Dr.",name:"Natalia Mayumi",middleName:null,surname:"Inada",slug:"natalia-mayumi-inada",fullName:"Natalia Mayumi Inada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:155,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"32842",doi:"10.5772/34901",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:74766,totalCrossrefCites:37,totalDimensionsCites:85,abstract:null,book:{id:"1590",slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"49652",doi:"10.5772/61720",title:"Sample Preparations for Scanning Electron Microscopy – Life Sciences",slug:"sample-preparations-for-scanning-electron-microscopy-life-sciences",totalDownloads:8726,totalCrossrefCites:37,totalDimensionsCites:83,abstract:"Sample preparations are essential in scanning electron microscopy. Flawed sample preparations can undermine the quality of results and lead to false conclusions. Thus, the aim of this chapter is to equip researchers, post graduate students and technicians with essential knowledge required to prepare samples for scanning electron microscopy (SEM) investigations in the life sciences.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mogana Das Murtey and Patchamuthu Ramasamy",authors:[{id:"176330",title:"Dr.",name:"Mogana",middleName:"Das",surname:"Murtey",slug:"mogana-murtey",fullName:"Mogana Murtey"},{id:"181159",title:"Mr.",name:"Patchamuthu",middleName:null,surname:"Ramasamy",slug:"patchamuthu-ramasamy",fullName:"Patchamuthu Ramasamy"}]},{id:"30963",doi:"10.5772/34176",title:"Microstructural and Mineralogical Characterization of Clay Stabilized Using Calcium-Based Stabilizers",slug:"microstructural-and-mineralogical-characterization-of-clay-stabilized-using-calcium-based-stabilizer",totalDownloads:6789,totalCrossrefCites:29,totalDimensionsCites:48,abstract:null,book:{id:"1505",slug:"scanning-electron-microscopy",title:"Scanning Electron Microscopy",fullTitle:"Scanning Electron Microscopy"},signatures:"Pranshoo Solanki and Musharraf Zaman",authors:[{id:"20942",title:"Prof.",name:"Pranshoo",middleName:null,surname:"Solanki",slug:"pranshoo-solanki",fullName:"Pranshoo Solanki"},{id:"20945",title:"Prof.",name:"Musharraf",middleName:null,surname:"Zaman",slug:"musharraf-zaman",fullName:"Musharraf Zaman"}]},{id:"26791",doi:"10.5772/28067",title:"Optical Vortices in a Fiber: Mode Division Multiplexing and Multimode Self-Imaging",slug:"optical-vortices-in-a-fiber-mode-division-multiplexing-and-multimode-self-reproducing",totalDownloads:4530,totalCrossrefCites:29,totalDimensionsCites:47,abstract:null,book:{id:"2018",slug:"recent-progress-in-optical-fiber-research",title:"Recent Progress in Optical Fiber Research",fullTitle:"Recent Progress in Optical Fiber Research"},signatures:"S.N. Khonina, N.L. Kazanskiy and V.A. Soifer",authors:[{id:"72613",title:"Prof.",name:"Svetlana",middleName:null,surname:"Khonina",slug:"svetlana-khonina",fullName:"Svetlana Khonina"}]},{id:"49655",doi:"10.5772/61830",title:"Electrical Discharge in Water Treatment Technology for Micropollutant Decomposition",slug:"electrical-discharge-in-water-treatment-technology-for-micropollutant-decomposition",totalDownloads:4985,totalCrossrefCites:31,totalDimensionsCites:44,abstract:"Hazardous micropollutants are increasingly detected worldwide in wastewater treatment plant effluent. As this indicates, their removal is insufficient by means of conventional modern water treatment techniques. In the search for a cost-effective solution, advanced oxidation processes have recently gained more attention since they are the most effective available techniques to decompose biorecalcitrant organics. As a main drawback, however, their energy costs are high up to now, preventing their implementation on large scale. For the specific case of water treatment by means of electrical discharge, further optimization is a complex task due to the wide variety in reactor design and materials, discharge types, and operational parameters. In this chapter, an extended overview is given on plasma reactor types, based on their design and materials. Influence of design and materials on energy efficiency is investigated, as well as the influence of operational parameters. The collected data can be used for the optimization of existing reactor types and for development of novel reactors.",book:{id:"5093",slug:"plasma-science-and-technology-progress-in-physical-states-and-chemical-reactions",title:"Plasma Science and Technology",fullTitle:"Plasma Science and Technology - Progress in Physical States and Chemical Reactions"},signatures:"Patrick Vanraes, Anton Y. Nikiforov and Christophe Leys",authors:[{id:"49112",title:"Prof.",name:"Christophe",middleName:null,surname:"Leys",slug:"christophe-leys",fullName:"Christophe Leys"},{id:"176861",title:"Dr.",name:"Anton",middleName:null,surname:"Nikiforov",slug:"anton-nikiforov",fullName:"Anton Nikiforov"},{id:"176862",title:"Mr.",name:"Patrick",middleName:null,surname:"Vanraes",slug:"patrick-vanraes",fullName:"Patrick Vanraes"}]}],mostDownloadedChaptersLast30Days:[{id:"49562",title:"Laser-Induced Plasma and its Applications",slug:"laser-induced-plasma-and-its-applications",totalDownloads:4709,totalCrossrefCites:12,totalDimensionsCites:26,abstract:"The laser irradiation have shown a range of applications from fabricating, melting, and evaporating nanoparticles to changing their shape, structure, size, and size distribution. Laser induced plasma has used for different diagnostic and technological applications as detection, thin film deposition, and elemental identification. The possible interferences of atomic or molecular species are used to specify organic, inorganic or biological materials which allows critical applications in defense (landmines, explosive, forensic (trace of explosive or organic materials), public health (toxic substances pharmaceutical products), or environment (organic wastes). Laser induced plasma for organic material potentially provide fast sensor systems for explosive trace and pathogen biological agent detection and analysis. The laser ablation process starts with electronic energy absorption (~fs) and ends at particle recondensation (~ms). Then, the ablation process can be governed by thermal, non-thermal processes or a combination of both. There are several types of models, i.e., thermal, mechanical, photophysical, photochemical and defect models, which describe the ablation process by one dominant mechanism only. Plasma ignition process includes bond breaking and plasma shielding during the laser pulse. Bond breaking mechanisms influence the quantity and form of energy (kinetic, ionization and excitation) that atoms and ions can acquire. Plasma expansion depends on the initial mass and energy in the plume. The process is governed by initial plasma properties (electron density, temperature, velocity) after the laser pulse and the expansion medium. During first microsecond after the laser pulse, plume expansion is adiabatic afterwards line radiation becomes the dominant mechanism of energy loss.",book:{id:"5093",slug:"plasma-science-and-technology-progress-in-physical-states-and-chemical-reactions",title:"Plasma Science and Technology",fullTitle:"Plasma Science and Technology - Progress in Physical States and Chemical Reactions"},signatures:"Kashif Chaudhary, Syed Zuhaib Haider Rizvi and Jalil Ali",authors:[{id:"176684",title:"Dr.",name:"Kashif Tufail",middleName:null,surname:"Chaudhary",slug:"kashif-tufail-chaudhary",fullName:"Kashif Tufail Chaudhary"},{id:"176867",title:"Dr.",name:"Syed Zuhaib",middleName:null,surname:"Haider Rizivi",slug:"syed-zuhaib-haider-rizivi",fullName:"Syed Zuhaib Haider Rizivi"},{id:"176868",title:"Prof.",name:"Jalil",middleName:null,surname:"Ali",slug:"jalil-ali",fullName:"Jalil Ali"}]},{id:"52164",title:"An Overview on Quantum Cascade Lasers: Origins and Development",slug:"an-overview-on-quantum-cascade-lasers-origins-and-development",totalDownloads:3232,totalCrossrefCites:2,totalDimensionsCites:11,abstract:"This chapter presents an introductory review on quantum cascade lasers (QCLs). An overview is prefaced, including a brief description of their beginnings and operating basics. Materials used, as well as growth methods, are also described. The possibility of developing GaN-based QCLs is also shown. Summarizing, the applications of these structures cover a broad range, including spectroscopy, free-space communication, as well as applications to near-space radar and chemical/biological detection. Furthermore, a number of state-of-the-art applications are described in different fields, and finally a brief assessment of the possibilities of volume production and the overall state of the art in QCLs research are elaborated.",book:{id:"5389",slug:"quantum-cascade-lasers",title:"Quantum Cascade Lasers",fullTitle:"Quantum Cascade Lasers"},signatures:"Raúl Pecharromán-Gallego",authors:[{id:"188866",title:"Dr.",name:"Raúl",middleName:null,surname:"Pecharromán-Gallego",slug:"raul-pecharroman-gallego",fullName:"Raúl Pecharromán-Gallego"}]},{id:"49526",title:"Focused Ion Beams (FIB) — Novel Methodologies and Recent Applications for Multidisciplinary Sciences",slug:"focused-ion-beams-fib-novel-methodologies-and-recent-applications-for-multidisciplinary-sciences",totalDownloads:4299,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Considered as the newest field of electron microscopy, focused ion beam (FIB) technologies are used in many fields of science for site-specific analysis, imaging, milling, deposition, micromachining, and manipulation. Dual-beam platforms, combining a high-resolution scanning electron microscope (HR-SEM) and an FIB column, additionally equipped with precursor-based gas injection systems (GIS), micromanipulators, and chemical analysis tools (such as energy-dispersive spectra (EDS) or wavelength-dispersive spectra (WDS)), serve as multifunctional tools for direct lithography in terms of nano-machining and nano-prototyping, while advanced specimen preparation for transmission electron microscopy (TEM) can practically be carried out with ultrahigh precision. Especially, when hard materials and material systems with hard substrates are concerned, FIB is the only technique for site-specific micro- and nanostructuring. Moreover, FIB sectioning and sampling techniques are frequently used for revealing the structural and morphological distribution of material systems with three-dimensional (3D) network at micro-/nanoscale.This book chapter includes many examples on conventional and novel processes of FIB technologies, ranging from analysis of semiconductors to electron tomography-based imaging of hard materials such as nanoporous ceramics and composites. In addition, recent studies concerning the active use of dual-beam platforms are mentioned",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Meltem Sezen",authors:[{id:"176338",title:"Associate Prof.",name:"Meltem",middleName:null,surname:"Sezen",slug:"meltem-sezen",fullName:"Meltem Sezen"}]},{id:"50866",title:"Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution",slug:"effects-of-different-laser-pulse-regimes-nanosecond-picosecond-and-femtosecond-on-the-ablation-of-ma",totalDownloads:6073,totalCrossrefCites:10,totalDimensionsCites:34,abstract:"Ultra-short laser pulse interaction with materials has received much attention from researchers in micro- and nanomachining, especially for the generation of nanoparticles in liquid environments, because of the straightforward method and direct application for organic solvents. In addition, the colloidal nanoparticles produced by laser ablation have very high purity—they are free from surfactants and reaction products or by-products. In this chapter, nanosecond, picosecond and femtosecond laser pulse durations are compared in laser material processing. Due to the unique properties of the short and ultra-short laser pulse durations in material processing, they are more apparent in the production of precision material processing and generation of nanoparticles in liquid environments.",book:{id:"5236",slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Abubaker Hassan Hamad",authors:[{id:"183494",title:"Dr.",name:"Abubaker",middleName:"Hassan",surname:"Hamad",slug:"abubaker-hamad",fullName:"Abubaker Hamad"}]},{id:"49537",title:"Electron Diffraction",slug:"electron-diffraction",totalDownloads:10111,totalCrossrefCites:10,totalDimensionsCites:31,abstract:"Electron microscopes are usually supplied with equipment for obtaining diffraction patterns and micrographs from the same area of a specimen and the best results are attained if the complete use is to be made of these combined facilities. Electron diffraction patterns are used to obtain quantitative data including phase identification, orientation relationship and crystal defects in materials, etc. At first, a general introduction including a geometrical and quantitative approach to electron diffraction from a crystalline specimen, the reciprocal lattice and electron diffraction in the electron microscope are presented. The scattering process by an individual atom as well as a crystal, the Bragg law, Laue conditions and structure factor are also discussed. Types of diffraction patterns such as ring pattern, spot pattern and Kikuchi pattern, and general and unique indexing diffraction patterns are explained. The procedure for indexing simple, complicated and imperfect patterns as well as Kikuchi lines and a combination of Kikuchi lines and spots is outlined. The known and unknown materials are identified by indexing patterns. Practical comparisons between various methods of analysing diffraction patterns are also described. The basic diffraction patterns and the fine structure in the patterns including specimen tilting experiments, orientation relationship determination, phase identification, twinning, second phases, crystallographic information, dislocation, preferred orientation and texture, extra spots and streaks are described in detail. Finally, electron diffraction patterns of new materials are investigated.",book:{id:"5075",slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mohsen Asadi Asadabad and Mohammad Jafari Eskandari",authors:[{id:"176352",title:"Dr.",name:"Mohsen",middleName:null,surname:"Asadi Asadabad",slug:"mohsen-asadi-asadabad",fullName:"Mohsen Asadi Asadabad"},{id:"177600",title:"Dr.",name:"Mohammad",middleName:null,surname:"Jafari Eskandari",slug:"mohammad-jafari-eskandari",fullName:"Mohammad Jafari Eskandari"}]}],onlineFirstChaptersFilter:{topicId:"20",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82228",title:"Nonlinear Intelligent Predictive Control for the Yaw System of Large-Scale Wind Turbines",slug:"nonlinear-intelligent-predictive-control-for-the-yaw-system-of-large-scale-wind-turbines",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.105484",abstract:"This chapter presents a nonlinear intelligent predictive control using multi-step prediction model for the electrical motor-based yaw system of an industrial wind turbine. The proposed method introduces a finite control set under constraints for the demanded yaw rate, predicts the multi-step yaw error using the control set element and the prediction wind directions, and employs an exhaustive search method to search the control output candidate giving the minimal value of the objective function. As the objective function is designed for a joint power and actuator usage optimization, the weighting factor in the objective function is optimally determined by the fuzzy regulator that is optimized by an intelligent algorithm. Finally, the proposed method is demonstrated by simulation tests using real wind direction data.",book:{id:"11499",title:"Nonlinear Systems - Recent Developments and Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11499.jpg"},signatures:"Dongran Song, Ziqun Li, Jian Yang, Mi Dong, Xiaojiao Chen and Liansheng Huang"},{id:"82102",title:"Vortex Analysis and Fluid Transport in Time-Dependent Flows",slug:"vortex-analysis-and-fluid-transport-in-time-dependent-flows",totalDownloads:9,totalDimensionsCites:0,doi:"10.5772/intechopen.105196",abstract:"In this contribution, we present a set of procedures developed to identify fluid flow structures and characterize their space-time evolution in time-dependent flows. In particular, we consider two different contests of importance in applied fluid mechanics: 1) large-scale almost 2D atmospheric and oceanic flows and 2) flow inside the left ventricle in the human blood circulation. For both cases, we designed an ad hoc experimental model to reproduce and deeply investigate the considered phenomena. We will focus on the post-processing of high-resolution velocity data sets obtained via laboratory experiments by measuring the flow field using a technique based on image analysis. We show how the proposed methodologies represent a valid tool suitable for extracting the main patterns and quantify fluid transport in complex flows from both Eulerian and Lagrangian perspectives.",book:{id:"10958",title:"Vortex Dynamics - From Physical to Mathematical Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/10958.jpg"},signatures:"Stefania Espa, Maria Grazia Badas and Simon Cabanes"},{id:"82222",title:"High-Lying Confined Subbands in Terahertz Quantum Cascade Lasers",slug:"high-lying-confined-subbands-in-terahertz-quantum-cascade-lasers",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.105479",abstract:"In designing the terahertz quantum cascade lasers, electron injection manner indeed plays a significant role to achieve the population inversion. The resonant tunneling process is commonly employed for this injection process but waste more than 50% fraction of populations out of the active region owing to resonance alignment, and the injection efficiency is obviously degraded due to thermal incoherence. An alternative approach is to consider the phonon-assisted injection process that basically contributes to most of the populations to the upper lasing level. However, this manner is still not realized in experiments if a short-period design only containing two quantum wells is used. In this work, it is found in this design that the population inversion is indeed well improved; however, the optical gain is inherently low even at a low temperature. Those two opposite trends are ascribed to a strong parasitic absorption overlapping the gain. The magnitude of this overlap is closely related to the lasing frequency, where frequencies below 3 THz suffer from fewer effects.",book:{id:"11495",title:"Fundamentals and Application of Femtosecond Optics",coverURL:"https://cdn.intechopen.com/books/images_new/11495.jpg"},signatures:"Li Wang"},{id:"81917",title:"Fluidics for Reconfigurable Microwave Components",slug:"fluidics-for-reconfigurable-microwave-components",totalDownloads:11,totalDimensionsCites:0,doi:"10.5772/intechopen.104857",abstract:"Dielectric and conducting liquids with varying electromagnetic properties can offer novel alternatives for building tunable microwave passive components as well as antennas. Injecting these fluidics in or around microwave substrates alters their overall electrical characteristics, enabling circuit reconfigurability. Alternatively, changing the shapes and dimensions of conductors by using liquid metals can achieve similar reconfigurability. An overview of different liquids and their electromagnetic properties is first given. The principles behind the reconfigurability of the electrical characteristics of typical guiding structures based on mode shape variation in the presence of fluids are discussed. The realization of an N-bit programmable impedance tuner in 3D LTCC technology based on these principles is presented.",book:{id:"11145",title:"Recent Microwave Technologies",coverURL:"https://cdn.intechopen.com/books/images_new/11145.jpg"},signatures:"Dorra Bahloul, Ines Amor and Ammar Kouki"},{id:"82149",title:"Colorimetric Evaluations and Characterization of Natural and Synthetic Dyes/Pigments and Dyed Textiles and Related Products",slug:"colorimetric-evaluations-and-characterization-of-natural-and-synthetic-dyes-pigments-and-dyed-textil",totalDownloads:7,totalDimensionsCites:0,doi:"10.5772/intechopen.104774",abstract:"This book chapter covers principles and few case studies on colorimetric Estimation of (i) determining purity/active ingredient % of selective dyes/pigments (ii) Identification of any colorants to distinguish from other similar compound, (iii) Measurement of surface colour strength of a dyed textile, (iv) Measurement of colour differences by estimating DE, DL*, Da*, Db*, DC and DH values, (v)Computer-aided colour match prediction for any standard shades, (vi) Estimation of compatibility of two dyes/colourants to use for compound shades, (vii) Determination of rate of dyeing, dyeing isotherm and dyeing kinetics to control dyeing, (viii) Optimization of dyeing process variables, (ix) Precession grading of Colour Fastness of dyed textiles on fading under different ways/agencies and (x) Estimation of Soil Removal efficacy of different detergent used for textiles. These colorimetric measurements are found to be very useful for effective process and product control of dyed textile materials. Selected Case studies on all the above colorimetric applications with specific example or experimented data are discussed for each of the method under reference. Finally, the other applications of colorimetric analysis besides textiles industry are also mentioned in concluding remarks.",book:{id:"11002",title:"Colorimetry",coverURL:"https://cdn.intechopen.com/books/images_new/11002.jpg"},signatures:"Ashis Kumar Samanta"},{id:"82116",title:"Thermo-Rheological Effect on Weak Nonlinear Rayleigh-Benard Convection under Rotation Speed Modulation",slug:"thermo-rheological-effect-on-weak-nonlinear-rayleigh-benard-convection-under-rotation-speed-modulati",totalDownloads:10,totalDimensionsCites:0,doi:"10.5772/intechopen.105097",abstract:"The effects of rotation speed modulation and temperature-dependent viscosity on Rayleigh-Benard convection were investigated using a non-autonomous Ginzburg-Landau equation. The rotating temperature-dependent viscous fluid layer has been considered. The momentum equation with the Coriolis term has been used to describe finite-amplitude convective flow. The system is considered to be rotating about its vertical axis with a non-uniform rotation speed. In particular, we assume that the rotation speed is varying sinusoidally with time. Nusselt number is obtained in terms of the system parameters and graphically evaluated their effects. The effect of the modulated system diminishes the heat transfer more than the un-modulated system. Further, thermo-rheological parameter VT is found to destabilize the system.",book:{id:"11498",title:"Boundary Layer Flows - Modelling, Computation, and Applications of Laminar, Turbulent Incompressible and Compressible Flows",coverURL:"https://cdn.intechopen.com/books/images_new/11498.jpg"},signatures:"S.H. Manjula and Palle Kiran"}],onlineFirstChaptersTotal:50},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"
\r\n\tSustainable development focuses on linking economic development with environmental protection and social development to ensure future prosperity for people and the planet. To tackle global challenges of development and environment, the United Nations General Assembly in 2015 adopted the 17 Sustainable Development Goals. SDGs emphasize that environmental sustainability should be strongly linked to socio-economic development, which should be decoupled from escalating resource use and environmental degradation for the purpose of reducing environmental stress, enhancing human welfare, and improving regional equity. Moreover, sustainable development seeks a balance between human development and decrease in ecological/environmental marginal benefits. Under the increasing stress of climate change, many environmental problems have emerged causing severe impacts at both global and local scales, driving ecosystem service reduction and biodiversity loss. Humanity’s relationship with resource exploitation and environment protection is a major global concern, as new threats to human and environmental security emerge in the Anthropocene. Currently, the world is facing significant challenges in environmental sustainability to protect global environments and to restore degraded ecosystems, while maintaining human development with regional equality. Thus, environmental sustainability with healthy natural ecosystems is critical to maintaining human prosperity in our warming planet.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11978,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:null},onlineFirstChapters:{paginationCount:34,paginationItems:[{id:"81595",title:"Prosthetic Concepts in Dental Implantology",doi:"10.5772/intechopen.104725",signatures:"Ivica Pelivan",slug:"prosthetic-concepts-in-dental-implantology",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80500",title:"Novel Dental Implants with Herbal Composites: A Review",doi:"10.5772/intechopen.101489",signatures:"Gopathy Sridevi and Seshadri Srividya",slug:"novel-dental-implants-with-herbal-composites-a-review",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78320",title:"Implant-Retained Maxillary and Mandibular Overdentures - A Solution for Completely Edentulous Patients",doi:"10.5772/intechopen.99575",signatures:"Dubravka Knezović Zlatarić, Robert Ćelić and Hrvoje Pezo",slug:"implant-retained-maxillary-and-mandibular-overdentures-a-solution-for-completely-edentulous-patients",totalDownloads:64,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79724",title:"Implant Stability Quotient (ISQ): A Reliable Guide for Implant Treatment",doi:"10.5772/intechopen.101359",signatures:"Gaurav Gupta",slug:"implant-stability-quotient-isq-a-reliable-guide-for-implant-treatment",totalDownloads:59,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80223",title:"Bridging the Gap: Nasoalveolar Moulding in Early Cleft Palate Rehabilitation",doi:"10.5772/intechopen.101986",signatures:"Amanda Nadia Ferreira",slug:"bridging-the-gap-nasoalveolar-moulding-in-early-cleft-palate-rehabilitation",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80186",title:"Effects of Various Dentofacial Orthopedic and Orthognathic Treatment Modalities on Pharyngeal Airway",doi:"10.5772/intechopen.101719",signatures:"Tejashri Pradhan and Aarti Sethia",slug:"effects-of-various-dentofacial-orthopedic-and-orthognathic-treatment-modalities-on-pharyngeal-airway",totalDownloads:83,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78834",title:"Current Methods for Acceleration of Orthodontic Tooth Movement",doi:"10.5772/intechopen.100221",signatures:"Mehmet Akin and Leyla Cime Akbaydogan",slug:"current-methods-for-acceleration-of-orthodontic-tooth-movement",totalDownloads:127,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79817",title:"Peri-Implant Soft Tissue Augmentation",doi:"10.5772/intechopen.101336",signatures:"Marko Blašković and Dorotea Blašković",slug:"peri-implant-soft-tissue-augmentation",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Marko",surname:"Blašković"},{name:"Dorotea",surname:"Blaskovic"}],book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79100",title:"Orthodontics and the Periodontium: A Symbiotic Relationship",doi:"10.5772/intechopen.100801",signatures:"Betsy Sara Thomas and Mohan Alexander",slug:"orthodontics-and-the-periodontium-a-symbiotic-relationship",totalDownloads:72,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79680",title:"Digital Workflow for Homemade Aligner",doi:"10.5772/intechopen.100347",signatures:"Dalal Elmoutawakkil and Nabil Hacib",slug:"digital-workflow-for-homemade-aligner",totalDownloads:201,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79611",title:"Growth Factors and Dental Implantology",doi:"10.5772/intechopen.101082",signatures:"Deeksha Gupta",slug:"growth-factors-and-dental-implantology",totalDownloads:103,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79584",title:"Orthodontic Management of Adult Sleep Apnea: Clinical Case Reports",doi:"10.5772/intechopen.101193",signatures:"Lahcen Ousehal, Soukaina Sahim, Hajar Bouzid, Hakima Aghoutan, Asmaa El Mabrak, Mohamed Mahtar and Mohamed El Fatmi Kadri Hassani",slug:"orthodontic-management-of-adult-sleep-apnea-clinical-case-reports",totalDownloads:86,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78791",title:"Surface Modification of Titanium Orthodontic Implants",doi:"10.5772/intechopen.100038",signatures:"Abdulqadir Rampurawala and Amol Patil",slug:"surface-modification-of-titanium-orthodontic-implants",totalDownloads:146,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79334",title:"Orthodontic Therapeutic Biomarkers in Saliva and Gingival Crevicular Fluid",doi:"10.5772/intechopen.100733",signatures:"Sagar S. Bhat, Ameet V. Revankar and Shrinivas M. Basavaraddi",slug:"orthodontic-therapeutic-biomarkers-in-saliva-and-gingival-crevicular-fluid",totalDownloads:127,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78213",title:"A Review of Current Concepts in Full Arch Rehabilitation with Dental Implants",doi:"10.5772/intechopen.99704",signatures:"Leandro Díez-Suárez",slug:"a-review-of-current-concepts-in-full-arch-rehabilitation-with-dental-implants",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Leandro",surname:"Díez Suárez"}],book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:16,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:4,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"40",title:"Ecosystems and Biodiversity",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices"},{id:"38",title:"Pollution",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment"},{id:"41",title:"Water Science",scope:"