Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\n
We wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\n
Throughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\n
We wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-partners-with-ehs-for-digital-advertising-representation-20210416",title:"IntechOpen Partners with EHS for Digital Advertising Representation"},{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"}]},book:{item:{type:"book",id:"9673",leadTitle:null,fullTitle:"Lactose and Lactose Derivatives",title:"Lactose and Lactose Derivatives",subtitle:null,reviewType:"peer-reviewed",abstract:"Lactose is a unique disaccharide found exclusively in the milk of mammals. This sugar has a crucial role in nourishing newborn and young mammals; however, some adults have difficulties in fully metabolizing lactose. Despite lactose intolerance in the population, the dairy industry produces 400,000 tons of crystalline lactose worldwide. The food and pharmaceutical industries use lactose as well as lactose derivatives in a wide variety of products. This book reviews some aspects of lactose properties and synthesis as well as recent advances in the recovery of lactose and lactose derivatives from cheese whey.",isbn:"978-1-83962-605-0",printIsbn:"978-1-83962-604-3",pdfIsbn:"978-1-83962-606-7",doi:"10.5772/intechopen.87477",price:119,priceEur:129,priceUsd:155,slug:"lactose-and-lactose-derivatives",numberOfPages:104,isOpenForSubmission:!1,isInWos:null,hash:"ab106ead5209f74acb0860d5651aac0b",bookSignature:"Néstor Gutiérrez-Méndez",publishedDate:"November 11th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9673.jpg",numberOfDownloads:1149,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:1,hasAltmetrics:1,numberOfTotalCitations:2,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 9th 2019",dateEndSecondStepPublish:"March 27th 2020",dateEndThirdStepPublish:"May 26th 2020",dateEndFourthStepPublish:"August 14th 2020",dateEndFifthStepPublish:"October 13th 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"176648",title:"Prof.",name:"Néstor",middleName:null,surname:"Gutiérrez-Méndez",slug:"nestor-gutierrez-mendez",fullName:"Néstor Gutiérrez-Méndez",profilePictureURL:"https://mts.intechopen.com/storage/users/176648/images/system/176648.jpg",biography:"Néstor Gutiérrez-Méndez is currently a full professor in the Chemistry Faculty at the Graduate School of Food Science, Autonomous University of Chihuahua, Mexico. He obtained his DSc from the Research Center for Food and Development (CIAD)-Mexico-Hermosillo in 2008. He is an active member of the National Researchers System (level 2) belonging to the Mexican Council of Science and Technology (CONACyT). He has authored/co-authored more than forty ISI journal articles and ten book chapters in prestigious editorials. His main research areas include dairy science and technology, the study of plant-derived compounds with antidiabetic effect, and the development of food-grade nano and microemulsions.",institutionString:"Autonomous University of Chihuahua",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Autonomous University of Chihuahua",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"494",title:"Bioorganic Chemistry",slug:"organic-chemistry-bioorganic-chemistry"}],chapters:[{id:"73316",title:"Introductory Chapter: Lactose",doi:"10.5772/intechopen.93837",slug:"introductory-chapter-lactose",totalDownloads:129,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Néstor Gutiérrez-Méndez",downloadPdfUrl:"/chapter/pdf-download/73316",previewPdfUrl:"/chapter/pdf-preview/73316",authors:[{id:"176648",title:"Prof.",name:"Néstor",surname:"Gutiérrez-Méndez",slug:"nestor-gutierrez-mendez",fullName:"Néstor Gutiérrez-Méndez"}],corrections:null},{id:"71576",title:"Lactose Synthesis",doi:"10.5772/intechopen.91399",slug:"lactose-synthesis",totalDownloads:241,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Lorena Mardones and Marcelo Villagrán",downloadPdfUrl:"/chapter/pdf-download/71576",previewPdfUrl:"/chapter/pdf-preview/71576",authors:[{id:"313375",title:"Ph.D.",name:"Lorena",surname:"Mardones",slug:"lorena-mardones",fullName:"Lorena Mardones"},{id:"317348",title:"Dr.",name:"Marcelo",surname:"Villagrán",slug:"marcelo-villagran",fullName:"Marcelo Villagrán"}],corrections:null},{id:"71860",title:"Membrane Applications for Lactose Recovering",doi:"10.5772/intechopen.92135",slug:"membrane-applications-for-lactose-recovering",totalDownloads:190,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Antónia Teresa Zorro Nobre Macedo, Joana Filipa Oliveira Monteiro, David José Chaveiro da Silva Azedo, Elizabeth da Costa Neves Fernandes de Almeida Duarte and Carlos Dias Pereira",downloadPdfUrl:"/chapter/pdf-download/71860",previewPdfUrl:"/chapter/pdf-preview/71860",authors:[{id:"208174",title:"Prof.",name:"Antónia",surname:"Macedo",slug:"antonia-macedo",fullName:"Antónia Macedo"},{id:"229862",title:"Prof.",name:"Elizabeth",surname:"Duarte",slug:"elizabeth-duarte",fullName:"Elizabeth Duarte"},{id:"299360",title:"Dr.",name:"Carlos",surname:"Pereira",slug:"carlos-pereira",fullName:"Carlos Pereira"},{id:"318019",title:"MSc.",name:"Joana",surname:"Monteiro",slug:"joana-monteiro",fullName:"Joana Monteiro"},{id:"318020",title:"MSc.",name:"David",surname:"Azedo",slug:"david-azedo",fullName:"David Azedo"}],corrections:null},{id:"73028",title:"Hundred Years of Lactitol: From Hydrogenation to Food Ingredient",doi:"10.5772/intechopen.93365",slug:"hundred-years-of-lactitol-from-hydrogenation-to-food-ingredient",totalDownloads:253,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Sergio I. Martinez-Monteagudo, Kaavya Rathnakumar, Maryam Enteshari, Collette Nyuydze, Juan C. Osorio-Arias and Hiran Ranaweera",downloadPdfUrl:"/chapter/pdf-download/73028",previewPdfUrl:"/chapter/pdf-preview/73028",authors:[{id:"150353",title:"Ph.D.",name:"Sergio I.",surname:"Martínez-Monteagudo",slug:"sergio-i.-martinez-monteagudo",fullName:"Sergio I. Martínez-Monteagudo"},{id:"322018",title:"Mrs.",name:"Kaavya",surname:"Rathnakumar",slug:"kaavya-rathnakumar",fullName:"Kaavya Rathnakumar"},{id:"322019",title:"Mrs.",name:"Maryam",surname:"Enteshari",slug:"maryam-enteshari",fullName:"Maryam Enteshari"},{id:"322020",title:"Mrs.",name:"Collette",surname:"Nyuydze",slug:"collette-nyuydze",fullName:"Collette Nyuydze"},{id:"322021",title:"Mr.",name:"Juan C.",surname:"Osorio-Arias",slug:"juan-c.-osorio-arias",fullName:"Juan C. Osorio-Arias"},{id:"322022",title:"Mr.",name:"Hiran",surname:"Ranaweera",slug:"hiran-ranaweera",fullName:"Hiran Ranaweera"}],corrections:null},{id:"72490",title:"Bioconversion of Lactose from Cheese Whey to Organic Acids",doi:"10.5772/intechopen.92766",slug:"bioconversion-of-lactose-from-cheese-whey-to-organic-acids",totalDownloads:174,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"José Manuel Pais-Chanfrau, Jimmy Núñez-Pérez, Rosario del Carmen Espin-Valladares, Marcos Vinicio Lara-Fiallos and Luis Enrique Trujillo-Toledo",downloadPdfUrl:"/chapter/pdf-download/72490",previewPdfUrl:"/chapter/pdf-preview/72490",authors:[{id:"262859",title:"Ph.D.",name:"José Manuel",surname:"Pais-Chanfrau",slug:"jose-manuel-pais-chanfrau",fullName:"José Manuel Pais-Chanfrau"},{id:"273373",title:"MSc.",name:"Jimmy",surname:"Núñez Pérez",slug:"jimmy-nunez-perez",fullName:"Jimmy Núñez Pérez"},{id:"320598",title:"Dr.",name:"Rosario del Carmen",surname:"Espín-Valladares",slug:"rosario-del-carmen-espin-valladares",fullName:"Rosario del Carmen Espín-Valladares"},{id:"320599",title:"Prof.",name:"Marcos Vinicio",surname:"Lara-Fiallos",slug:"marcos-vinicio-lara-fiallos",fullName:"Marcos Vinicio Lara-Fiallos"},{id:"320600",title:"Dr.",name:"Luis Enrique",surname:"Trujillo-Toledo",slug:"luis-enrique-trujillo-toledo",fullName:"Luis Enrique Trujillo-Toledo"}],corrections:null},{id:"73689",title:"Value-Added Compounds with Health Benefits Produced from Cheese Whey Lactose",doi:"10.5772/intechopen.94197",slug:"value-added-compounds-with-health-benefits-produced-from-cheese-whey-lactose",totalDownloads:170,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hada María Guevara-Alvarado, Néstor Gutiérrez-Méndez, Esther Carrillo-Pérez, Einar Vargas-Bello-Pérez and José Carlos Rodríguez-Figueroa",downloadPdfUrl:"/chapter/pdf-download/73689",previewPdfUrl:"/chapter/pdf-preview/73689",authors:[{id:"176648",title:"Prof.",name:"Néstor",surname:"Gutiérrez-Méndez",slug:"nestor-gutierrez-mendez",fullName:"Néstor Gutiérrez-Méndez"},{id:"260844",title:"Dr.",name:"Einar",surname:"Vargas-Bello-Pérez",slug:"einar-vargas-bello-perez",fullName:"Einar Vargas-Bello-Pérez"},{id:"320058",title:"Dr.",name:"José Carlos",surname:"Rodríguez-Figueroa",slug:"jose-carlos-rodriguez-figueroa",fullName:"José Carlos Rodríguez-Figueroa"},{id:"328571",title:"MSc.",name:"Hada María",surname:"Guevara-Alvarado",slug:"hada-maria-guevara-alvarado",fullName:"Hada María Guevara-Alvarado"},{id:"328704",title:"Dr.",name:"Esther",surname:"Carrillo-Pérez",slug:"esther-carrillo-perez",fullName:"Esther Carrillo-Pérez"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"2326",title:"Cellulose",subtitle:"Fundamental Aspects",isOpenForSubmission:!1,hash:"de85a5810169999b1c069d863593e56a",slug:"cellulose-fundamental-aspects",bookSignature:"Theo van de Ven and Louis Godbout",coverURL:"https://cdn.intechopen.com/books/images_new/2326.jpg",editedByType:"Edited by",editors:[{id:"130492",title:"Dr.",name:"Theo G.M.",surname:"Van De Ven",slug:"theo-g.m.-van-de-ven",fullName:"Theo G.M. Van De Ven"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3173",title:"Cellulose",subtitle:"Medical, Pharmaceutical and Electronic Applications",isOpenForSubmission:!1,hash:"6dd9f6c554e63ce49a11c013cd0d87cf",slug:"cellulose-medical-pharmaceutical-and-electronic-applications",bookSignature:"Theo van de Ven and Louis Godbout",coverURL:"https://cdn.intechopen.com/books/images_new/3173.jpg",editedByType:"Edited by",editors:[{id:"130492",title:"Dr.",name:"Theo G.M.",surname:"Van De Ven",slug:"theo-g.m.-van-de-ven",fullName:"Theo G.M. Van De Ven"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2507",title:"Nitroxides",subtitle:"Theory, Experiment and Applications",isOpenForSubmission:!1,hash:"95534fc76efda28b5e7e2480625b101b",slug:"nitroxides-theory-experiment-and-applications",bookSignature:"Alexander I. Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/2507.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2540",title:"Glycosylation",subtitle:null,isOpenForSubmission:!1,hash:"9c367b496cb644aac688c08e1b1f6959",slug:"glycosylation",bookSignature:"Stefana Petrescu",coverURL:"https://cdn.intechopen.com/books/images_new/2540.jpg",editedByType:"Edited by",editors:[{id:"129852",title:"Dr.",name:"Stefana",surname:"Petrescu",slug:"stefana-petrescu",fullName:"Stefana Petrescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4785",title:"Cellulose",subtitle:"Fundamental Aspects and Current Trends",isOpenForSubmission:!1,hash:"e1dcc6cb2bc929641d711f320ac52970",slug:"cellulose-fundamental-aspects-and-current-trends",bookSignature:"Matheus Poletto and Heitor Luiz Ornaghi Junior",coverURL:"https://cdn.intechopen.com/books/images_new/4785.jpg",editedByType:"Edited by",editors:[{id:"140017",title:"Dr.",name:"Matheus",surname:"Poletto",slug:"matheus-poletto",fullName:"Matheus Poletto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3174",title:"Cellulose",subtitle:"Biomass Conversion",isOpenForSubmission:!1,hash:"e59437808fca72f6190b4e92c6cb5a6d",slug:"cellulose-biomass-conversion",bookSignature:"Theo van de Ven and John Kadla",coverURL:"https://cdn.intechopen.com/books/images_new/3174.jpg",editedByType:"Edited by",editors:[{id:"143877",title:"Prof.",name:"John",surname:"Kadla",slug:"john-kadla",fullName:"John Kadla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3847",title:"Oligomerization of Chemical and Biological Compounds",subtitle:null,isOpenForSubmission:!1,hash:"11969d8e08568e065d3f375ebea337a4",slug:"oligomerization-of-chemical-and-biological-compounds",bookSignature:"Claire Lesieur",coverURL:"https://cdn.intechopen.com/books/images_new/3847.jpg",editedByType:"Edited by",editors:[{id:"169626",title:"Dr.",name:"Claire",surname:"Lesieur",slug:"claire-lesieur",fullName:"Claire Lesieur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2572",title:"The Complex World of Polysaccharides",subtitle:null,isOpenForSubmission:!1,hash:"85474ebd9130766214e58858fc30b8d4",slug:"the-complex-world-of-polysaccharides",bookSignature:"Desiree Nedra Karunaratne",coverURL:"https://cdn.intechopen.com/books/images_new/2572.jpg",editedByType:"Edited by",editors:[{id:"130501",title:"Prof.",name:"Desiree Nedra",surname:"Karunaratne",slug:"desiree-nedra-karunaratne",fullName:"Desiree Nedra Karunaratne"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5956",title:"Aflatoxin",subtitle:"Control, Analysis, Detection and Health Risks",isOpenForSubmission:!1,hash:"ec838f8f33b1167857351c7a2d507fc1",slug:"aflatoxin-control-analysis-detection-and-health-risks",bookSignature:"Lukman Bola Abdulra'uf",coverURL:"https://cdn.intechopen.com/books/images_new/5956.jpg",editedByType:"Edited by",editors:[{id:"149347",title:"Dr.",name:"Lukman",surname:"Abdulra'uf",slug:"lukman-abdulra'uf",fullName:"Lukman Abdulra'uf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6574",title:"Pyridine",subtitle:null,isOpenForSubmission:!1,hash:"5f51507105e28f22bb8240225d781043",slug:"pyridine",bookSignature:"Pratima Parashar Pandey",coverURL:"https://cdn.intechopen.com/books/images_new/6574.jpg",editedByType:"Edited by",editors:[{id:"142089",title:"Dr.",name:"Pratima",surname:"Parashar Pandey",slug:"pratima-parashar-pandey",fullName:"Pratima Parashar Pandey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"68990",slug:"erratum-application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodies",title:"Erratum - Application of Design for Manufacturing and Assembly: Development of a Multifeedstock Biodiesel Processor",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68990.pdf",downloadPdfUrl:"/chapter/pdf-download/68990",previewPdfUrl:"/chapter/pdf-preview/68990",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68990",risUrl:"/chapter/ris/68990",chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]}},chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]},book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10358",leadTitle:null,title:"Silage - Recent Advances and New Perspectives",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThis book aims to investigate the recent advances in the ensilage technologies through the results obtained for several forage crops used around the world as well as to bring the new perspectives for using chemical and microbial additives to making silages well preserved. It will present new additives with great potential to be used in many types of silages. Chemical and microbial additives have been widely used to control undesirable fermentation, as well as to ensure high aerobic stability. However, some new additives are being studied with great expectations. We intend to describe the different types of silos used in all conditions both in large and in small scale and how to control the losses during the fermentation process and after silos opening.
",isbn:"978-1-83969-114-0",printIsbn:"978-1-83969-113-3",pdfIsbn:"978-1-83969-115-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"1e33f63e9311af352daf51d49f0a3aef",bookSignature:"Dr. Juliana Oliveira and Dr. Edson Mauro Santos",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10358.jpg",keywords:"Corn, Legume, Sorghum, Grass, Chemical Additives, Antimicrobial, Fermentation Stimulating, Microbial Additives, Lactic Bacteria, Homofermentative, Heterofermentative, Types of Silos",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 15th 2020",dateEndSecondStepPublish:"November 30th 2020",dateEndThirdStepPublish:"January 29th 2021",dateEndFourthStepPublish:"April 19th 2021",dateEndFifthStepPublish:"June 18th 2021",remainingDaysToSecondStep:"5 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Associate professor at the Federal University of Paraíba (UFPB) and research productivity fellow at the National Council for Scientific and Technological Development (CNPq). She has been working for more than fifteen years in the use of forages in the diet of ruminant animals.",coeditorOneBiosketch:"Edson Santos is a researcher of the Brazilian Research National Councill – CNPq. During his research career, he has authored and co-authored more than 170 articles in peer-reviewed international journals.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"180036",title:"Dr.",name:"Juliana",middleName:null,surname:"Oliveira",slug:"juliana-oliveira",fullName:"Juliana Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/180036/images/system/180036.png",biography:"Juliana Oliveira is graduate in Animal Science and Doctor in Animal Science by Viçosa Federal University. She is specialized in animal feed and use of forage for small ruminants in the tropics. Your researches are based in using forage conservation to improve animal performance associated with using adapted crops in semiarid regions. She is Associate Professor at Paraiba Federal University since 2008.",institutionString:"Federal University of Paraíba",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Federal University of Paraíba",institutionURL:null,country:{name:"Brazil"}}}],coeditorOne:{id:"139631",title:"Dr.",name:"Edson Mauro",middleName:null,surname:"Santos",slug:"edson-mauro-santos",fullName:"Edson Mauro Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/139631/images/3204_n.jpg",biography:"Dr. Santos is a professor of Forage Crops and Pastures and Beef Cattle at the Federal University of Paraiba. Dr. Santos received his PhD in Animal Science (forage crops and ruminant nutrition) from the Federal University of Vicosa, a master’s degree in Animal Science (forage crops and ruminant nutrition), and a BS degree in Animal Science from the Federal Rural University of Rio de Janeiro. Dr. Santos’ areas of interest include silage microbiology, cultivation and conservation of forage crops in semiarid regions, alternative feeds for ruminants, and pasture management.",institutionString:"Federal University of Paraíba",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Federal University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17664",title:"Two Tectonic Geomorphology Studies on the Landscape and Drainage Network of Chain and Piedmont Areas of the Abruzzi Region (Central Apennines, Italy)",doi:"10.5772/18969",slug:"two-tectonic-geomorphology-studies-on-the-landscape-and-drainage-network-of-chain-and-piedmont-areas",body:'
1. Introduction
“Landscapes in tectonically active areas result from a complex integration of the effects of vertical and horizontal motions of crustal rocks and erosion or deposition by surface processes. In a sense, many landscapes can be thought of as resulting from competition among those processes acting to elevate the Earth\'s surface and those that tend to lower it” (Burbank and Anderson, 2001). Extracting information from deforming landscapes with an integrative approach is the main subject of tectonic geomorphology.
The landscape features have different dimensional scales that correspond to different tectonic implications. The major landforms (from continent scale to orogen scale; 107-104 km) and the intermediate ones (from mountain belt scale to ridge and valley scale; 104-10 km) result from the interaction of both endogenic and exogenic processes, with a dominancy of one over the other at different places and times, while the minor ones (at single landform scale; 10-10-2 km) are related to tectonics (tectonic landforms) or to erosion processes (i.e. fluvial, slope, glacial landforms) as defined since the beginning of the history of tectonic geomorphology (Gerasimov, 1946; Cailleux and Tricart, 1956; Mescerjakov, 1968; Ollier, 1981, 1999; Morisawa and Hack, 1985; Panizza and Castaldini, 1987; Ascione and Cinque, 1999; Burbank and Pinter, 1999; Burbank and Anderson, 2001; Peulvast and Vanney, 2001; Scheidegger, 2004). At intermediate to small scale, mountain belts, and related piedmont, are one of the main subjects of tectonic geomorphology. At this scale, drainage basins are the key features in the landscape. Basins consist of river channels, hill slopes, crests of interfluves and drainage divides that define the shape of the catchment. Some of these elements will respond more rapidly to changes imposed on them than others, according to the combination of many factors such as lithology, local tectonics, rock uplift/subsidence and climate changes (Morisawa and Hack, 1985; Kühni and Pfiffner, 2001; Twidale, 2004).
In tectonically active landscapes, changes in the incision/aggradation behaviour of the rivers are associated with the variations in climate and tectonics (Schumm, 1969; Bull, 1991; Merrits et al., 1994; Ascione and Cinque, 1999; Burbank and Pinter, 1999; Pazzaglia and Brandon, 2001; D’Agostino et al., 2001; Pazzaglia, in press). Such changes occur following a specific sequence involving incision, valley widening and aggradation, and tend to form a series of fluvial terraces. Otherwise, local tectonics tend to shape certain landforms such as river bends, linear valleys, beheaded and hanging valleys, knick points, counterflow confluences of streams and alluvial fans (Miccadei et al., 2004; D’Alessandro et al., 2008; Della Seta et al., 2008 and references therein). The analysis and correlation of these features within the drainage basins allows for the discovery and definition of geomorphic markers of tectonics, as well as its timing. A major influence in landscape is certainly due to rock material properties, although at different scales there are different influences of rock material properties on landscape evolution. The geomorphological features of mountain areas shaped on hard rocks are well recorded in the general configuration of topography and in well preserved tectonic landforms. In piedmont areas, or in general in areas developed on soft rocks, the evidence of tectonics in the landscape is less clear. In these contexts only integrative studies based on (a) terrain analysis, (b) morphostructural analysis of the relief, (c) analysis of geomorphic markers such as certain landforms (geomorphological evidence of tectonics) and deposits (developed in continental environment), (d) drainage basins’ analysis and morphometry, and (e) dating of deposits and landforms, provide clear indications concerning the role of tectonics in the landscape evolution.
Central Italy is characterized by a recent (Pliocene to present) geomorphological history and in this area several studies have been carried out at both local and regional scale, based on the integrative approach, by means of tectonic geomorphology methods (D’Alessandro et al., 2003; Miccadei et al., 2004; Ascione et al., 2008; D’Alessandro et al., 2008; Della Seta et al., 2008). In this paper two studies are presented on chain areas and piedmont areas in order to outline the methodological approach focused to decipher the role of morphotectonics and selective erosion in the landscape evolution (Fig. 1):
chain area – escarpment between the Montagna del Morrone ridge and the Sulmona tectonic basin (central Abruzzi);
piedmont area – dip stream valley (Sangro river valley, south-eastern Abruzzi)
These studies allow for the characteristics of the main morphostructural domains of central Italy (chain area and piedmont area) to be outlined and suggest, in general, the use of a similar methodological approach, but focused also on different geomorphological landscapes.
2. Study area
The Abruzzi region is located on the eastern slope of the central Apennine (central Italy). The geomorphological evolution of the region is related to a complex geological and structural framework developed since the Late Miocene with the formation of the Apennine thrust belt as part of the Mediterranean mountain system. The whole region has been affected since the Pliocene by extensional tectonics, uplift processes and strong morphostructural processes that have induced very active geomorphological processes. These processes have outlined and shaped the major morphostructural domain in the Abruzzi area: Apennine chain, Adriatic piedmont and Adriatic coastal plain (Fig. 1) (Patacca and Scandone, 2007).
At regional scale, the geomorphological analysis and the correlation to geological and structural characteristics allowed the identification, and the morphostructural characterisation, of the major landforms (Fig. 2; D’Alessandro et al., 2003). The results point out the clear coherence of present landforms with the tectonic framework in the Abruzzi area. In the chain area, exhumed thrust ridges and faulted homocline ridges are present (generally NW–SE, NNW–SSE, N–S), separated by tectonic valleys, fault line valleys, tectonic basins and tectonic-karstic basins, partially filled up with continental deposits. In the piedmont periadriatic area the most important morphological elements are represented by homocline relief (gently NE dipping), mesa relief, dip-stream valleys (SW–NE) and alluvial plains. The latter grade eastwards towards the coastal plain.
Figure 1.
Shaded relief image (a) and geological (b) map of the Abruzzi area (central Italy). Black boxes indicate the study areas
Figure 2.
Map of the morphostructural elements of central-eastern Abruzzi (modified from D’Alessandro et al., 2003). LEGEND: CHAIN (C). Ridges: Cr1) Exhumed thrust ridges; Cr2) Faulted homoclinal ridges; Cr3) Exhumed anticline ridges. Valleys: Cv1) Tectonic\n\t\t\t\t\t\tvalleys; Cv2) Fault\n\t\t\t\t\t\tline\n\t\t\t\t\t\tvalley (f Neogene arenaceous-clayey foredeep sequences; ca Mezo-Cenozoic carbonate sequences); Cv3) Transversal and Radial valleys. Basins: Cb1) Tectonic basin; Cb2) Karst-tectonic\n\t\t\t\t\t\tbasin. – PIEDMONT (M). Relief: Mh1) Homoclinal relief (Plio-Quaternary clayey-sandy sequences); Mh2) Mesa relief (Plio-Quaternary clayey-sandy-conglomeratic sequences); Mh3) Eroded\n\t\t\t\t\t\tthrust\n\t\t\t\t\t\trelief (Neogene arenaceous-clayey foredeep sequences); Mh4) Hills on a chaotic and folded clayey-calcareous assemblage (cl ”Argille varicolori” auctorum complex and Cenozoic marly sequences; ca Meso-Cenozoic carbonate sequences); Mv1) Dip-stream valleys; Mv2) Strike-stream valleys. – PLAINS (P). Pa) Alluvial plains (ra recent alluvial deposits; ta Pleistocene terraced alluvial deposits); Pc) Coastal plain (sc recent sandy and conglomeratic deposits)SYMBOLS: 1) Regional attitude; 2) Thrust (Miocene-Pliocene activity); 3) Strike-slip fault (?Pliocene activity); 4) Normal fault (Upper Pliocene - Quaternary activity); 5) Major fault scarp; 6) Major fault related scarp; 7) Major crest; 8) Primary drainage divideI) Ascione and Cinque, 1999; Peulvast and Vanney, 2001. II) Gerasimov, 1946; Mescerjakov, 1968; Panizza, 1997. III) Bartolini, 2002. IV) Peulvast and Vanney, 2001. V) Ascione and Cinque, 1999
The piedmont of Abruzzi region is characterized by a low relief hill landscape (i.e. cuesta, mesa, plateau reliefs) on Mio-Plio-Quaternary terrigenous deposits, related to sin-, late-orogenic phases of the Apennines, by post-orogenic Quaternary marine regressive deposits and fluvial continental deposits. The transition from marine to continental deposits dates the emersion of the area and the starting point of the drainage evolution at the late Lower Pleistocene – early Middle Pleistocene. The Pleistocene fluvial landscape evolution of the piedmont area and the comprehension of the role of tectonics is an intriguing issue, being a key area for the Apennines’ geodynamics, at the transition between compressional active tectonic areas, towards the east (Adriatic) and extensional active tectonic areas towards the west (Apennines chain).
3. Methods
The tectonic geomorphology studies presented in this work are carried out at drainage basin scale by means of: cartographic analysis and morphometry of orography and hydrography (map- and DEM-based), photogeology analysis, Quaternary continental deposits, fluvial terraces and morphotectonic detail field mapping, and morphotectonic cross section drawing. The topographic data in vector and in raster format were provided by Struttura Speciale di Supporto Sistema Informativo Regionale of Abruzzi Region (http://www.regione.abruzzo.it/xcartografia/).
Orography analysis is based on the 40m DEM. Within GIS software slope maps, energy of relief maps and hypsometry maps were realized. Hydrography analysis is based on 40m DEM and scale 1:25,000 topographic maps. Longitudinal profile, drainage density, azimuth of the drainage network, patterns and hydrography parameters were mapped (bifurcation parameters, hierarchic parameters, areal parameters etc.) in order to define the drainage development, to outline the control of morphological alignments and to suggest the tectonic control on basin arrangements (Horton, 1945; Miller, 1953; Schumm, 1956; Strahler, 1957; Avena et al., 1967; Avena and Lupia Palmieri, 1969; Ciccacci et al., 1992, 1995; Keller and Printer, 1996).
These methods, taking into account the relationship between forms and deposits, outlined by morphotectonic mapping and morphotectonic profiles, can contribute to defining the main steps of landscape evolution and the major control on it (tectonics, rock properties, climate change etc.), and to estimate the timing of landscape development.
4. Case studies - chain area: tectonic basin and fault escarpment (Montagna del Morrone ridge)
4.1. Introduction
Montagna del Morrone (2061 m a.s.l.) is one of the main central Apennine ridges (central-eastern part of the Abruzzi Apennines; Fig. 1). It is made up of marine Meso-Cenozoic carbonate rocks, forming an asymmetrical anticline fold with a NW-SE axis, NE verging and overthrust onto Neogene terrigenous deposits. The SW slope is broken by several normal fault systems, NW-SE striking and SW dipping, which separate the ridge from the Sulmona tectonic basin (Fig. 1, 2; Miccadei et al., 1999; Doglioni et al., 1998; Miccadei et al., 2004). This slope shows a complex physiography, both longitudinal and transversal, with secondary ridges, scarps, gentle slopes or counter slopes (Fig. 3). The summit is gently undulating in the southern part, while the northern part is a narrow crest. At the base of the slope a sharp slope change joins the wide plain of the Sulmona tectonic basin and corresponds with one of the main normal fault lines of the Abruzzi area. Many ephemeral streams drain the slope down to the basal break forming alluvial fans.
The Sulmona tectonic basin is a half graben with a NW-SE master fault forming its eastern boundary along the Mt. Morrone slope and is filled by a thick sequence of lacustrine, fluvial and slope Middle-Upper Pleistocene deposits (Miccadei et al., 1999; 2002). It shows a peculiar physiographic setting: the lowest mean topographic height (300 m) in central Apennines intramontane basins, a strong relief (2000 m) up to the eastern ridge (Mt. Morrone) and an anomalous triangular shape. Here, a complex fluvial drainage system converges (Aterno River from NW, Sagittario River from SW and S, Gizio River from S, Vella River and Velletta River from SE) and flow into Pescara River.
The collected data (orography, hydrography, Quaternary continental deposits, morphotectonic evidence) allow us to define geomorphic markers of tectonics and to outline Quaternary landscape evolution of the escarpment between the Sulmona basin and Montagna del Morrone. In order to couple deposits and landforms, six morphotectonic sections are presented (three ridge transversal profiles representative of the northern, central and southern sectors; three stream channel and interfluve profiles representative of the drainage basins).
Figure 3.
Panoramic view (from SW) of the Monte Morrone SW escarpment
4.2. Results
The analysis of the morphotectonic features of the area is based on the investigation of geology (bedrock units, superficial deposits, tectonics and neotectonics) and geomorphology (structural, slope, karst and fluvial landforms, and alluvial fans).
4.2.1. Geology
Bedrock units are made up of carbonate rocks of Lias to Paleogene age divided into units according to their resistance to weathering and erosive processes (Fig. 4a): bedded carbonate rocks (outcropping in the northern area), massive carbonate rocks (outcropping in the central area), carbonate rocks in thick beds (outcropping in the southern areas), dolomite\n\t\t\t\t\t\trocks (outcropping in the lower part of the slope in the northern and central sectors).
Such rock formations, as documented in the relevant literature, can be referred to various Meso-Cenozoic palaeogeographic domains: slope-basin in the northern sector, margin in the central sector and carbonate shelf in the southern sector (APAT, 2006).
Quaternary continental deposits (Fig. 4b) are essentially breccias and conglomerates that can be referred to talus slope and debris cones, to alluvial fans and to eluvial and colluvial covers. There are also chaotic breccias that can be accounted for by paleo-landslide. Based on comparisons with the sector of the Sulmona basin, these deposits can be placed between the Early Pleistocene and the Holocene (Sylos Labini et al., 1993; Carrara, 1998; Miccadei et al., 1999; Lombardo et al., 2001). These deposits are distributed non-homogeneously along all of the slope, but have good continuity at the base and in the mid-slope.
The SW escarpment of Montagna del Morrone is formed by the limb of the anticline structure disarticulated by systems of normal faults, known in the literature as the Monte Morrone fault zone (Vittori et al., 1995; Ciccacci et al., 1999; Miccadei et al., 2002, 2004). The bedrock formations are generally in counter-slope dipping strata, with NW- SE attitude and dipping from 20°NE (in the low part of the slope) to 70°NE (in the high part). Locally, at the base of the slope, there are also SW dipping strata (Fig. 4a).
There are two main normal fault systems with a predominantly N40°-50°W orientation (Fig. 4). These displace the bedrock formations and superficial deposits, and clearly display morphological evidence at different heights on the slope, corresponding to sharp slope breaks or clear fault scarps as described in the following paragraphs.
From the base upwards the main fault systems are as follows:
Basal border fault: this is a system of normal faults with Apennine orientation and SW dip which affect the bedrock formations (displacement higher than 1000 m), as well as the superficial deposits (estimated displacement of 700 m in the breccias of the Lower?-Middle Pleistocene [Miccadei et al., 2002] and up to several tens of metres in the alluvial fans of the Upper Pleistocene). Towards the north, it is made up of fault plains with N2030W orientation, 60SW dip and located at heights from 550 m to 650 m a.s.l. (Popoli, Roccacasale). Towards the south, it is made up of faults with attitude of N5060/50SW placed at heights between 750 and 800 m a.s.l. (Eremo di Celestino V, Pacentro).
The Schiena d’Asino fault: this is a system of normal faults with a N2030W strike and 60°50° SW dip (displacement in the bedrock formations over 1000 m) located at heights between 1100 and 1400 m a.s.l.. These fault plains, in the northern and central parts, are characterised by large rock fault scarps. The system continues southwards, but with a clear reduction of displacement and morphological evidence.
In the middle part of the slope, there is a secondary fault system with a N3050W orientation, widely covered by surface deposits. Minor faults with a NE-SW orientation and limited extension are also present transversal to the slope, but mostly in the central sector; they are characterized by thick cataclasite strata. In general they correspond to small valleys, mostly covered by surface deposits. They can be interpreted as transfer elements between the Schiena d’Asino fault and the Basal border fault.
Figure 4.
Geological-structural scheme of the Montagna del Morrone SW slope (Miccadei et al., 2004). a) Bedrock units: 1) Superficial deposits; 2) bedded carbonate rocks; 3) massive carbonate rocks; 4) carbonate rocks in thick beds; 5) dolomite rocks; 6) attitude of strata and dip angle; 7) normal faults (a: visible slickenside; b: invisible slickenside); 8) faults. b) Quaternary continental deposits: 1) eluvial and colluvial deposits (Holocene); 2) sands and gravels, fluvial (Holocene); 3) loose stratified carbonate breccias, slope (Holocene); 4) loose carbonate gravel and breccias, alluvial fan (Holocene); 5) stratified carbonate breccias loose or poorly cemented, slope (Upper Pleistocene); 6) heterometric carbonate gravel and breccias loose or poorly cemented, alluvial fan (Upper Pleistocene); 7) heterometric carbonate gravel and breccias loose or poorly cemented, alluvial fan (late Middle Pleistocene); 8) limestone and clayey-silt, lacustrine (Middle Pleistocene); 9) heterometric and chaotic breccias, paleo landslide (Lower?-Middle Pleistocene); 10) cemented carbonate gravel and breccias, alluvial fan (Lower?-Middle Pleistocene); 11) bedrock formations (Meso-Cenozoic); 12) normal fault (a: visible slickenside; b: invisible slickenside); 13) fault
4.2.2. Geomorphology
This section includes results from orography and hydrography analysis and from geomorphological field mapping. Particular attention has been devoted to the morphometric analysis of the slope, of the drainage network and basins and of the alluvial fan/catchment systems. The main landforms mapped on the slope, both erosional and depositional, have been defined along with their relative morphogenetic agents. These data are described and discussed in the following paragraphs.
4.2.2.1. Orography
The analysis of orography and slope has outlined a NW-SE straight slope 20 km long and up to 1700 m high (Fig. 5) connecting the Sulmona basin (~350 m a.s.l.) and the Morrone ridge (2061 m a.s.l.). The planar and profile form of the slope consists of concave and convex elements, but mostly of planar segments and sharp breaks (Fig. 5). The orography analysis brought to light a strong longitudinal and transversal heterogeneity, and enables us to distinguish three sectors:
northern sector, a double-ridged slope formed by two relatively down-faulted and uplifted blocks along the two major normal faults. It is made up of two rectilinear steep free faces, gently undulated (concave and convex) in plan, separated by an undulated horizontal or counter slope element.
central sector, made up of three main units, a rectilinear steep free face upslope, a gently sloping midslope, undulated in plan, and then again a steep lower slope.
southern sector, a single major uplifted block. The toe-slope is always marked by a sharp junction passing to the alluvial fan area with a high piedmont angle and it is broken by the mouths of narrow transversal valleys.
The Sulmona basin is a wide plain at 350-400 m a.s.l. partly dissected by the main river valleys (Aterno river, Sagittario river) with abrupt 50-100 m high terrace scarps.
Figure 5.
Orography, drainage basins and network (ordered according to Strahler, 1957) of the Montagna del Morrone SW slope (Miccadei et al., 2004)
4.2.2.2. Hydrography
The drainage network on the steep and heterogeneous escarpment is made up of ephemeral stream channels and the toe-slope break, these stream channels become less defined, forming wide alluvial fans. The slope was subdivided into 16 basins (A-P; Fig. 5; Tab. 1, 2). Of these 16 basins, eight are spread from the line of the crest right to the base of the slope (C, H, I, K, L, M, N and P). Two are endoreic (E and O) on the upstream half of the slope and six develop on the downstream half of the slope (A, B, D, F, G and J). The relief of these basins varies from a minimum of 266 m at the endoreic Basin O, to a maximum of 1510 m at Basin I which extends down from the highest peak (2061 m a.s.l., Mt. Morrone) right to 551 m a.s.l. The total planimetric area of the 16 basins is about 50,0 km², while the total area of the slope is 74,3 km²: the slope is organised into drainage basins over 67% of its planimetric area, while the remaining 33% is made up of areas of interfluve.
Basin
Area (Km2)
Perim. (Km)
H (m)
L (Km)
Re
Rc
Rh
∫ ips
ΣNu
ΣL (Km)
D
F
A
0,85
5,60
809
2,59
0,40
0,34
0,31
0,49
3
2,46
2,88
3,51
B
1,92
6,70
792
2,87
0,54
0,54
0,28
0,47
3
3,75
1,96
1,57
C
9,03
13,25
1335
3,85
0,88
0,65
0,35
0,41
20
15,71
1,74
2,21
D
1,15
5,21
533
2,04
0,59
0,53
0,26
0,68
7
3,77
3,27
6,07
E
3,36
7,88
1021
2,83
0,73
0,68
0,36
0,27
4
4,17
1,24
1,19
F
0,76
5,65
667
2,37
0,42
0,3
0,28
0,65
1
2,64
3,45
1,31
Average Northern sect.
2,85
0,31
0,50
2,42
2,64
G
1,11
5,58
596
2,08
0,57
0,45
0,29
0,67
4
3,26
2,92
3,59
H
2,62
8,20
1360
3,22
0,57
0,49
0,42
0,47
4
2,85
1,09
1,53
I
5,78
12,22
1510
4,50
0,60
0,49
0,34
0,56
16
13,93
2,41
2,77
J
0,93
4,23
588
1,81
0,60
0,65
0,32
0,59
1
1,83
1,97
1,08
K
3,57
9,73
1425
3,84
0,56
0,47
0,37
0,52
14
6,58
1,84
3,92
Average Central sect.
2,80
0,35
0,56
2,05
2,58
L
4,38
10,85
1464
4,25
0,56
0,47
0,34
0,60
13
9,81
2,24
2,97
M
2,05
8,62
1420
3,45
0,47
0,35
0,41
0,67
3
4,39
2,14
1,46
N
7,75
12,01
1436
4,44
0,71
0,68
0,32
0,64
47
22,67
2,93
6,06
O
0,91
4,68
266
1,15
0,94
0,52
0,23
0,45
5
1,93
2,11
5,47
P
3,72
8,43
1230
2,61
0,83
0,66
0,47
0,62
13
6,46
1,74
3,49
Average Southern sect.
3,76
0,35
0,60
2,23
3,89
Average all basins
3,12
0,62
0,52
0,33
2,25
3,01
Total
49,89
Table 1.
Main area and relief geomorphic indices of the basins: H) maximum relief; L) longitudinal length; Re) elongation ratio; Rc) circularity ratio; Rh) relief ratio; ∫ips) hypsometric integral; ΣNu) number of stream segments; ΣL) total stream segment length; D) drainage density; F) drainage frequency
The areal and relief properties of the basins (Tab. 1: Re, elongation ratio; Rc, circularity ratio; Rh, relief ratio; Schumm, 1956; Mayer, 1986; Keller and Pinter, 1996) were analysed, together with the hypsometric data (Tab. 1: ∫ips; Strahler, 1952), not simply to give an indication of the morpho-evolutionary stage, but also to identify the principal situations of disequilibrium and structural control.
Basin
Nu (1°)
Nu (2°)
Nu (3°)
Nu (4°)
ΣNu
Rb (1°-2°)
Rb (2°-3°)
Rb (3°-4°)
Rb aver.
Nd (1°)
Nd (2°)
Nd (3°)
Rbd (1°-2°)
Rbd (2°-3°)
Rbd (3°-4°)
Rbd aver.
R aver.
A
2
1
0
0
3
2,0
2
1
0
2,0
B
2
1
0
0
3
2,0
2
1
0
2,0
C
14
5
1
0
20
2,8
5,0
3,9
13
5
1
2,6
5,0
3,8
0,1
D
4
2
1
0
7
2,0
2,0
2,0
4
2
1
2,0
2,0
2,0
0,0
E
3
1
0
0
4
3,0
3
1
0
3,0
F
1
0
0
0
1
0,0
1
0
0
0,0
G
3
1
0
0
4
3,0
3
1
0
3,0
H
3
1
0
0
4
3,0
3
1
0
3,0
I
12
3
1
0
16
4,0
3,0
3,5
11
3
1
3,7
3,0
3,3
0,2
J
1
0
0
0
1
0,0
1
0
0
0,0
K
10
3
1
0
14
3,3
3,0
3,2
8
3
1
2,7
3,0
2,8
0,3
L
9
3
1
0
13
3,0
3,0
3,0
6
3
1
2,0
3,0
2,5
0,5
M
2
1
0
0
3
2,0
2
1
0
2,0
N
34
9
3
1
47
3,8
3,0
3,0
3,3
28
8
3
3,5
2,7
3,1
0,2
O
4
1
0
0
5
4,0
4
1
0
4,0
P
10
2
1
0
13
5,0
2,0
3,5
7
2
1
3,5
2,0
2,8
0,8
Total
115
35
9
1
160
98
33
9
Average
3,2
2,9
0,3
Table 2.
Geomorphic indices of the drainage network of the 16 basins present on the SW escarpment of Montagna del Morrone. Nu) stream number; Rb) bifurcation ratio; Nd) number of streams flowing into higher order streams; Rbd) direct bifurcation ratio; R) bifurcation index
The northern sector shows elongated (Re=0,4-0,5) and irregular (Re=0,7-0,9) drainage basins with moderately high relief ratios (Rh=0,26-0,36; Tab. 1). The drainage pattern is heterogeneous, sub-dendritic in the upper part and parallel in the lower part. Only Basin C is extended across the whole escarpment, but it shows a clear downstream narrowing (Fig. 5). The downslope interfluves are made of triangular-shaped fault related slopes passing upslope to moderate transversal spur ridges and then to the horizontal undulated mid-slope. In the upper part the valleys are just notched into the uplifted block of the Schiena d’Asino fault. The stream channels have concave-convex profiles with moderate knick points. The hypsometric integrals have values lower than in the southern sector (0,5-0,3) and show concave-convex curves (Fig. 6, Tab. 1).
The southern sector shows elongated (Re=~0,5) and irregular (Re=0,7-0,9) drainage basins with high relief ratios (Rh=0,23-0,47; Tab. 1), separated in the interfluves by wide straight rectilinear slopes (Fig. 5). The drainage patterns are parallel in the lower part of the slope and rectangular on the summit, the drainage density is moderate (1,74-2,93), intermediate between central and southern sectors, the stream channel profiles are convex with sharp knick points, the stream channel/interfluve relief is low, the ipsometric integral show high values (>0,6) and convex curves (Fig. 6, Tab. 1),.
The central sector is in an intermediate situation: the catchments are developed all along the slope, except for a single case (Basin J), but they show a strong downstream narrowing (Re=~0,5; Rh=0,29-0,42). The drainage pattern is parallel, transversal to the slope (Fig. 5), and characterised by the lowest drainage density (1,09-2,92). The stream channel profiles are mostly planar with moderate knick points and the hypsometric integral values are intermediate (0,4-0,6) with moderately convex curves (Fig. 5, Tab. 1).
Figure 6.
Ipsometric analysis of the SW escarpment of Montagna del Morrone (Miccadei et al., 2004). a) Ipsometric curves and ipsometric integral value of the whole escarpment. b) Ipsometric curves and ipsometric integral values of the 16 drainage basins. c) Planimetric distribution of the ipsometric integral values
4.2.2.3. Structural landforms
The geomorphological surveys allow for the mapping of landforms such as fault scarps, fault related slopes and crests (Fig. 7), essentially controlled by the normal fault systems on the slopes.
The fault scarps are made up of rock scarps from some tens of metres to 100 m high, markedly straight, with a basal and a summit part. The basal part is made up of well smoothed scarplets, from a few decimetres to some metres high, 45º - 70º dipping. This typology occurs mainly in the northern sector of the ridge and in the upper parts of the slope. Along the basal fault line these can be identified between Popoli and Roccocasale, at heights from 400 m to 600 m.
The partly retreated and weathered fault scarps are rock scarps up to 100 m high, sinuous, 60º-35º dipping. The basal smoothed scarplets corresponding to the fault plain are only locally preserved and partially covered by scree slopes. Upslope the free faces have, to some extent, retreated from the fault line. Inactive talus deposits, and at certain points the apex of inactive alluvial fans, can show evidence of displacement. These features were identified at the base of the slope above all in the southern sector (Pacentro).
The retreated and weathered fault scarps can be identified as weak breaks in the slope, often discontinuous and partially or completely covered by surface deposits (talus debris and alluvial fans). These landforms are linked upslope to moderate and weathered rock scarps, which result from retreat of the fault scarps.
Fault related slopes: are made up of generally straight and rectilinear high angle slopes (30º -60º), in limestone from stratified to massive, generally counter-slope plunging or sub-horizontal, bordered at the base by the different kinds of fault scarps described above. They are present particularly in the upper part of the slope, in the northern sector (Schiena d’Asino, C.le Affogato) and in the lower part (Popoli, Roccacasale, Pacentro) (Fig. 7). Especially in the central and southern sectors, they are incised by gullies and affected by slope processes that have formed talus slopes and debris cones, both inactive and active, at the base. In the lower part of the escarpment the fault related slopes, dissected by the outlets of the drainage basins, have a sub-triangular shape.
Crest lines: develop in a clear, sharp and slightly asymmetrical shape in the northern sector, while in the central and southern sectors they are more discontinuous, set upslope from a less inclined and gently undulating slope unit.
4.2.2.4. Slope landforms
Several slope landforms are mapped in the study area, even though non-homogeneously distributed: landslide scarps, rock slide bodies, talus slopes and debris cones and also evidence of deep seated gravitational slope deformations (Fig. 7).
Landslide scarps: are made up of arched or semi-circular rock scarps on limestone bedrock formations. They show a marked concave profile, but are generally very weathered. These forms are located on the higher parts of the slope, in the northern, central and southern sectors of the ridge.
Figure 7.
Geomorphological map of the SW escarpment of Montagna del Morrone (Miccadei et al., 2004)
Rock slide bodies: are made up of limestone in large blocks and of heterometric carbonate breccias (up to boulder size) in a chaotic arrangement with abundant clay-silt matrix, or, in some cases, of considerable volumes of limestone stratified rock that still maintains the original lithostructural arrangement. They show with a surface up to 3 km² (length/width ratio of 2:1 to 1:2) and thickness up to hundreds of metres. The longitudinal profile of the slip surface and landslide body is always markedly concave-convex. The movement from the slip surfaces is variable from several hundred metres to several km. The movement is generally complex, however, it is principally attributable to translational and rotational rock slide mechanisms. Similarly to the slip surfaces, the landslide accumulation is also partially covered by talus slopes and debris cones, by active and inactive alluvial fans (Late Pleistocene – Holocene) and by some relict parts, which have been attributed to the Mid-Pleistocene (Miccadei et al., 1999). This suggests an Early?-Mid Pleistocene age for the landslides identified on the slope. They are therefore entirely inactive paleo-landslides; only a few minor ones can be attributed to more recent ages.
Talus slope and debris cones: are formed by bodies of heterometric carbonate breccias. Various inactive forms can be identified from the characteristics of the material, the abundance or absence of matrix, soil and vegetation or from the characteristics of overlooking rock slopes. They are present along the whole escarpment of Montagna del Morrone.
Deep seated gravity slope deformations (D.S.G.S.D.): some areas of the slope are interrupted by elongated trenches and sackung-like features running parallel to the slope itself (NW-SE to NNW-SSE orientation), which are some tens of metres wide and some hundreds of metres long (up to 1000 m). These depressions are in general partly filled with debris and colluvial deposits. These features bring to light the presence of D.S.G.S.D. (Cavallin et al., 1987; Crescenti et al., 1989; Dramis and Sorriso-Valvo, 1994). They are especially evident in the central-northern part of the slope at heights from 1200 m to 500 m, upslope from the principal fault slopes along the Basal border fault (between Popoli and Roccacasale). In some cases they can be identified also upslope from the fault slope of Schiena d’Asino. In the summit area of the southern sector the arrangement of the trenches and karst depressions lead to an elongated NW-SE oriented depression from several tens to hundreds of metres wide and several kilometres. These forms do not display signs of recent movement, but they are very evident indeed and have not be shaped or filled by the geomorphological processes.
4.2.2.5. Karst landforms and complex origin landforms
Mapped landforms are gently undulated surfaces, small karst depressions and suspended valleys (Fig. 7).
Gently undulated surfaces: are areas with gently undulating morphology shaped in the bedrock formation, at a height that ranges from 1800 m to 2000 m, close to the top of the ridge in the central and southern sectors. The occurrence of small dolines and karst valleys suggests that the karst weathering is an important morphogenetic factor.
Karst depressions: are closed depressions with irregular shapes, elongated with a NW-SE or SW-NE orientation, medium in size (length ranging from 500 to 1000 m, width ranging from some tens of metres to 200 m) and filled with residual soils and colluvium. They are located between Mt. Morrone and Morrone di Pacentro at heights of 1500 - 1750 m. Being suspended at these heights, some of these features have been preserved, while others were broken by the incision of the streams along the slope and, also in this case, by intersection with the slip plain of some of the major landslides (Fig. 7).
Suspended valleys: are small valleys, with a flat or concave floor, located in the upper part of the slope (central and southern sectors). They have a very gentle stream channel gradient, abruptly passing downstream to a high stream channel gradient. This creates knick points and strongly convex channel profiles.
4.2.2.6. Fluvial and water erosion landforms
Fluvial and water erosion landforms are mostly present in the lower part of the SW Morrone slope. Major landforms mapped are: fluvial terraces, alluvial plains, alluvial fans (Fig. 7). Alluvial fans are active, inactive or relict and were the subject of morphometric analysis of the fan/catchment systems.
Alluvial fans: all along the join between the slope and the plain several fans are present, ranging in size from several ha to 2,20 km2 and with slope angles of up to more than 17°. The apex is located close to the Basal border fault, slightly upslope, entrenched in the fault related slopes and in the lower part of the catchments. Only the apex of Basin N is deeply entrenched, possibly because it is located between two wide landslide bodies (Fig. 7). The landforms are mostly inactive. The geometry and the spatial relationship between active and inactive forms indicate a general fan aggradation, except in the northern sector. Basin C, in particular, shows a clear entrenching of three subsequent fans and the formation of two orders of terraces.
Morphometric analysis of fan/catchment systems: the morphometric analysis on the main fan/catchment systems was processed in a GIS and on the DEM, following the most relevant literature (Bull, 1964; Saito, 1982; Blair and McPherson, 1994; Oguchi and Ohmori, 1994; Allen and Hovius, 1998; Allen and Densmore, 2000) and it is summarized in Tab. 3. The relationship between the main parameters and the interpolated functions are shown in Fig. 8. The first graph shows the relationship fan area vs. catchment area (Fig. 8a), defined by one of the most widely accepted functions (Af = k Abx, where Af = fan area, Ab = basin area, k and x = constant; Allen and Densmore, 2000), also defined by the ϕ ratio (fan area/catchment area; Allen and Hovius, 1998). Note the good alignment of most of the data except for a few anomalies (Basin C and N; triangular symbol in Fig. 8a).
The fan area was compared to the volume eroded from the catchments (EVc, Tab. 3, Fig. 8b), estimated as follows:
EVc = Vmax-Vc-TLVc (Vmax = volume of a prism with base corresponding to the catchment area and height to the catchment relief; Vc = volume between the catchment surface and a horizontal surface at the minimum height of the catchment; TLVc = estimated volume lacking because of the tectonic displacement along the Schiena d’Asino fault). In the third graph the relationship between the estimated fan volume (Vf) and the estimated volume eroded from the catchments (EVc) is shown (Fig. 8c). In both graphs the data distribution is similar to the first graph (Fig. 8a), but much more scattered; the anomalous data of Basin C and N is confirmed. The fourth graph (Fig. 8d) is similar to the first (Fig. 8a), but we must also consider the relief ratio (Rh) of the catchment in order to verify whether not only the dimension, but also the steepness could be an important factor in the geometry of the fans.
So the fan/catchment systems that seem to be anomalous in the previous graphs (Basin C and Basin N, triangular symbol in Fig. 8a,b,c,d) have been considered in detail. They both have a small alluvial fan, compared to the catchment area, and they have a low ϕ ratio value (fan area/catchment area) with respect to the other basins (Tab. 3). In the first case (Basin C) the deeply entrenched fans indicate the occurrence of deposition and erosion pulse, which led to the fan being undersize due to sediment removal. The geometry of the catchment and the distribution of surface deposits in it, indicate the presence of possible internal storage points that could have contributed to the undersizing of the fans, preventing the sediment supply. In the second case (Basin N) the geometry of the drainage pattern, the basin, the stream channel profile and the ipsometric integral (Fig. 6,7) suggest that the upper part of the catchment underwent a capture during the evolution of the slope. Therefore, the morphometric ratios were recalculated eliminating the supposed captured part (N* in Tab. 3).
The four graphs of Fig. 8a’,b’,c’,d’ were reprocessed eliminating the anomalous data (Basin C, Basin N) and considering the recalculated data (N*): note the clear increase in the R2 value of the regression line calculated. Particularly the approximation of the N* value to the tendency line could be an indirect confirmation of the capture process in the upper part of Basin N: the fan morphometry is still in equilibrium with the pre-capture catchment morphometry. Furthermore, note the increase of R2 in the graph of Fig. 8d’ in relation to the value in the graph of Fig. 8a’ which suggests the influence of catchment steepness in defining the fan area.
Basin
Af
Hf
Lf
Sf
Vf
Ac
Rc
Lc
Rh c
LVc
TLVc
EVc
∫ ips
ϕ
(km2)
(km)
(km)
Hf/Lf
(km3)
(km2)
(m)
(km)
(km3)
(km3)
(km3)
C (Tot)
1,64
0,160
1,64
0,10
43,7E-3
9,03
1335
3,850
0,35
7,05
2,00
5,05
0,41
0,18
C (pars)
0,46
0,070
0,85
0,08
5,4E-3
9,03
1335
3,850
0,35
7,05
2,00
5,05
0,41
0,05
K
1,44
0,200
1,44
0,14
47,9E-3
3,57
1425
3,836
0,37
2,48
0,30
2,18
0,52
0,40
I+L
2,20
0,320
1,95
0,16
117,3E-3
10,16
1510
4,500
0,34
6,23
1,60
4,63
0,58
0,22
J
0,46
0,225
1,17
0,19
17,1E-3
0,93
588
1,811
0,32
0,23
x
0,23
0,59
0,49
J+I+L
2,66
0,320
1,95
0,16
141,7E-3
11,09
1510
4,500
0,34
6,45
1,60
4,85
0,59
0,24
M
1,17
0,255
1,28
0,20
49,8E-3
2,05
1420
3,448
0,41
0,94
x
0,94
0,67
0,57
N
1,39
0,100
1,16
0,09
23,2E-3
7,75
1436
4,440
0,32
4,12
x
4,12
0,64
0,18
N*
1,39
0,100
1,16
0,09
23,2E-3
4,75
1360
2,950
0,46
2,58
x
2,58
0,60
0,29
N**
1,74
0,350
2,16
0,16
33,7E-3
4,75
1360
2,950
0,46
2,58
x
2,58
0,60
0,37
Table 3.
Morphometric parameters of the main alluvial fan and related source catchments (C, northern sector; K, J, I, L, central sector; M, N, southern sector). Af) Fan area; Hf) Fan relief; Lf) Fan length; Sf) Average fan slope; Vf) Estimated fan volume; Ac) Catchment area; Rc) Catchment relief; Lc) Catchment length; Rh c) Catchment relief ratio; LVc) Catchment lacking volume; TLVc) Tectonic lacking volume; EVc) Estimated eroded volume; ∫ ips) Hypsometric integral; ϕ) Fan area/Catchment area; x) negligible; N*) without possible captured upper part of the catchment; N**) considering the entrenched apex
4.3. Discussion
4.3.1. Orography and hydrography
The distribution of slope and relief is irregular in relation to the tectonic setting (Fig. 9): in the southern sector, slope and relief are mostly in the lower part along the wide free face; in the central and particularly in the northern sector, slope and relief are mostly in the upslope, low in the midslope and increase again in the lower part down to the toe-slope break.
The hydrography analysis outlines a poorly developed drainage system with slow denudation processes and strongly controlled by extensional tectonics. The southern sector of the ridge is characterized by a poorly dissected morphology and a clear stage of inequilibrium. This is due to a strong lithological and tectonic control: a single block of resistant rocks relatively uplifted by the activity of the Basal border fault and poorly incised by the drainage network.
Figure 8.
Graphics illustrating the relationships between some of the main morphometric parameters of alluvial fan/catchment systems (refer to Tab. 3). Note the logarithmic axes; each symbol represents a single fan/catchment pair (Circle: normally developed fan/catchment systems; Triangle: anomalous developed fan/catchment systems; see text for detail).a) Fan area vs. catchment area. b) Fan volume vs. catchment area. c) Fan volume vs. catchment estimated eroded volume. d) Fan area vs. catchment area x relief ratio. a’) b’) c’) d’) are the same graphics of a, b, c, d, reprocessed eliminating and recalculating the anomalous data (see text for detail). e) comparison of values of ϕ ratio (fan area/catchment area) calculated on the Montagna del Morrone with value obtained from numerical modelling (Allen and Densmore, 2000). f) comparison of values of ϕ ratio (fan area/catchment area) calculated on the Montagna del Morrone with value calculated in different structural context (Death Valley, Nevada U.S., Allen and Densmore, 2000)
Figure 9.
a) Synthetic 3D morphostructural scheme profiles of the SW escarpment of the Montagna del Morrone (Miccadei et al., 2004). b, c) synthetic transversal and stream channel morphostructural profiles of the northern sector of the escarpment; d, e) synthetic transversal and stream channel morphostructural profiles of the central sector of the escarpment; b, c) synthetic transversal and stream channel morphostructural profiles of the southern sector of the escarpment (for the legend of the deposits see Fig. 4)
The different morphometry of the drainage of the northern sector is thought to be due not to a different development of the erosional processes, but to a different morphostructural setting of this sector of the escarpment. It consists of a double-ridge made up of two different blocks risen in parallel along the Basal border fault and the Schiena d’Asino fault, which have formed two separate fault related slopes with the slightly undulated area in between (Fig. 4, 9). This setting has led to the separation of the catchments between the upper and lower blocks of the slope and the concave-convex hypsometric curve of the basin developed throughout the escarpment (Basin C).
This setting of the central sector is controlled by the interplay of principal faults parallel to the ridge and secondary transversal faults (Fig. 4, 9): the southern termination of the Schiena d’Asino fault, with a reduced morphostructural role, has formed an upper fault related slope, but has not separated upper and lower catchments as in the northern sector. The relative uplift of the lower block along the Basal border fault and the conflicting drainage deepening brought about the downstream narrowing of the catchments. The secondary transversal faults control the development of the parallel drainage network.
4.3.2. Geomorphology
The geomorphological surveys allow for the mapping of structural landforms, slope landforms, karst landforms and fluvial and water erosion landforms.
The processes that have controlled the evolution of the escarpment are highlighted by the characteristics and degree of physical weathering, retreat of fault scarps and fault related slopes, and in particular by the analysis of transversal profiles (mostly rectilinear with more or less evident rock scarps, Fig 9) when compared to the distribution of slope depositional forms (rock landslides and talus slopes) (Fig. 7).
The variable degradation of the fault scarps and the morphology of the fault slopes (according to Brancaccio et al., 1978; Wallace, 1978; Blumetti et al., 1993; Bosi et al., 1993; Stewart and Hancock, 1994; Ascione and Cinque, 1997; Peulvast and Vanney, 2001), suggest a variable balance between the relative tectonic uplift, rejuvenating the fault scarps, and the slope denudation processes. Variability of rock resistance seems to have a control on the development of the geomorphic processes influencing the physical weathering because of the different type of stratification, degree of fracturing and local presence of cataclasite.
Moreover, it is worth noting that the upslope profile of several fault scarps is poliphasic (Fig. 9). This suggests again the cyclic alternation of relief building phases linked to tectonic activity and slope denudation events.
In the northern sector, the slope related to the Schiena d’Asino fault shows a profile made up of a clear fault scarp separating slope segments with different dip angles (Fig. 9b, c). Upslope there are many minor rock cliffs and secondary scarps, while downslope there is a talus slope. On the basis of the models proposed by the literature, particularly for the Apennine area (Demangeot, 1965; Brancaccio et al., 1978; Bosi et al., 1993; Ascione and Cinque, 1997), the slope is thought to be affected by a period of repeated tectonic activity with slope development by replacement with moderate sediment accumulation on the downfaulted block. A possible renewal of the tectonic activity would have formed the present basal fault scarp, which is only partly weathered. On the slope related to the Basal border fault, only triangular shaped fault related slopes, retreated and developed, are preserved (Fig. 9b, c; Brancaccio et al., 1978; Wallace, 1978). This clearly shows the role of drainage downcutting in the geomorphology of the lower part of the northern sector.
In the southern sector, the geomorphological characteristics of the escarpment indicate that the relative uplift has taken place mostly on the Basal border fault (Fig. 9f,g). The basal fault scarp has in many cases clearly retreated and the fault line is covered by scree (Demangeot, 1965; Ascione and Cinque, 1997). Furthermore, on the fault related slope, there are wide rock landslide bodies and remnants of relict alluvial fans, referable to Early?-Mid Pleistocene age. This suggests an early stage of strong activity on the Basal border fault, leading to slope development by wide and sudden mass movements together with early slope replacement processes on the resistant, but highly jointed rocks. This created a steep slope, mostly planar, and supplied slope deposits along the slope down to the base, which are now preserved in remnants. The continuation of the fault activity, possibly at a reduced rate, has brought about a gradual slope development, shaping the basal fault scarps with a high sediment supply that has partly covered the fault lines, the relative scarplets and the landslide bodies placed on them (Fig. 7, 9a,f,g).
Several slope landforms are mapped in the study area, even though non-homogeneously distributed: landslide scarps, rock slide bodies, talus slopes and debris cones, and also evidence of deep seated gravitational slope deformations (Fig. 7, 9). The most significant landforms are large rock landslides mapped on the escarpment. Based on the geomorphological analysis, these landforms are thought to have started as deep seated gravitational slide deformation (D.S.G.S.D.), then evolved as large landslides (Dramis and Sorriso-Valvo, 1994; Dramis et al., 1995).
The distribution of such landforms is linked to the distribution of slope and local relief. In the southern sector of the ridge, the slope and local relief is concentrated in the basal part of the slope, corresponding to the Basal border fault related slope, where the main landslide bodies are located. Poor evidence of D.S.G.S.D. is mostly located in the summit area of the ridge. In the northern sector, however, the distribution of the slope and local relief in two parallel belts seems to have partly prevented the evolution of D.S.G.S.D. into landslides. Evidence for the former is in fact distributed along the lower part of the slope, while landslides are found only on the upper part of the slope, where the gradient becomes steep again.
On the basis of morpho-lithostratigraphic correlations with the relict alluvial fan deposits, these landslides can be dated to the Early?-Mid Pleistocene. The preparatory morphostructural conditions, such as high steep slope on carbonate jointed rocks, and the trigger causes, possibly related to strong seismicity necessary for the occurrence of this type of landslide, could be linked to an important morphotectonic phase during this period. This would have had a great effect on the morphogenesis of the slope. This is confirmed by the intense tectonic activity that took place between the Early Pleistocene and the Mid-Pleistocene, highlighted by various authors in the chain and periadriatic piedmont (Dramis, 1993; Bigi et al., 1996; Centamore and Nisio, 2003). So, possibly a large part of the relief of the slope should have already been formed in the early stages of the slope evolution (Early?-Mid Pleistocene) and would have further growth in later times, as confirmed by the geometry of the foot of the slip surfaces now suspended hundreds of metres above the base of the slope (Fig. 9 b, f, g).
Karst landforms and complex origin landforms on Mt. Morrone are found in the summit areas, as well as on several ridges of the eastern-central Apennines (Montagna Grande, Mt. Godi, Mt. Sirente, Monti Peligni, Maiella). These features have been attributed by many authors to remnants of a summit paleo-landscape and to different periods of shaping from the Late Miocene (Demangeot, 1965) to Late Pliocene-Early Pleistocene (Dramis, 1993; Coltorti and Farabollini, 1995; Centamore and Nisio, 2003). When considering the surface of the mid-slope in the northern sector, it is possible to identify a displacement of the undulated surface brought about by the Schiena d’Asino fault.
In our case, the landform characteristics and the geomorphological correlations with slope forms seem to suggest that the shaping of undulated surfaces and karst depressions may have started before the activity of the landslides between C.le delle Nocelle and Pacentro. This would allow the dating of the first genesis of these forms to a period before the Early?-Mid Pleistocene.
Geomorphological analysis of the alluvial fans has provided a significant contribution to the understanding of the morphostructural evolution of the escarpment and of its base junction with the Sulmona basin. The fans have been useful in defining the morphostratigraphic relationships between the deposits on the slope and in the basin, and also because of the volcanoclastic levels and paleosoil inside them, which have allowed the deposits to be dated (Miccadei et al., 1999). The morphometric analysis of the main fan/catchment systems is summarized in Tab. 3 and Fig. 8. The law which governs the fan area/catchment area relationship (according to Oguchi and Ohmori; 1994; Oguchi, 1997; Allen and Hovius, 1998; Allen and Densmore, 2000) is: Af = 0,59 Ab0,63. Note that the constant k (0,63 in this case) has a direct relationship with the erodibility of the materials, as already indicated in Bull (1964), and an inverse relationship with the rate of the movement of the faults at the apex of the fans (Oguchi and Ohmori, 1994).
The analysis of the results that were obtained on the Montagna del Morrone SW escarpment has very clearly demonstrated how the values, and especially the value of the constant k, are among the lowest known in the relevant literature and similar to values measured on fault related slopes with a fault slip rate documented at some mm/yr (Fig. 8e,f; Allen and Hovius, 1998; Allen and Densmore, 2000). This can be only partly due to higher resistance of the bedrock and must therefore also be accounted for by the high slip rate of the slope’s basal fault. The relationships between the other morphometric parameters are also governed by a power law, as the graphs of Fig. 8 b’, c’ show. The data are more scattered, but they confirm the morphostructural considerations.
Another important aspect relates to the values for the fan area/catchment relationship, which are markedly far from the gathered data in Fig 8a, as similarly occurs for the other parameters (Fig. 8b, c, d). These values are of fan/catchment systems which have undergone noteworthy perturbation in their geometry (Basin C - Mancini fan; Basin N - Marane fan). In the first case there are several generations of fans that are built up one upon the other. The positioning of the alluvial terraces and the correlation with the terraces of the Sulmona basin demonstrate how the development of the fan itself was affected by external elements, such as the process of regressive erosion from the Gole di Popoli in the Sulmona basin (Ciccacci et al., 1999). This has extended its action headward, leading to a re-cutting of the fan and limiting its growth. The overall catchment geometry and the surface sediment distribution suggest that internal factors such as the existence of sediment storage points in the catchment, which tend to prevent the sediment supply to the fan, have also led to the fan being undersize. In the second case (Basin N) the geometry of the network, of the basin and its hypsometry (Fig. 4,5) show how a large part of the summit area of the basin itself may have been ‘captured’ during one of the recent phases of the slope’s development. This is confirmed by comparing the value of the relationships calculated and illustrated in the graphs of Fig. 8. If the area that is considered the object of capture is excluded from the calculation, the data (triangular dot) clearly approximates to the regression line (cfr. Fig. 8 a, b, c, d, e\n\t\t\t\t\t\tFig. 8 a’, b’, c’, d’). Moreover, the anomalous value in the relationships studied shows that the phenomenon must have come about recently, as the re-equilibrium of the fan-basin system has not yet been achieved. Since Allen and Densmore (2000) point to re-equilibrium periods that are in fact rapid (to the order of tens of thousands of years), even considering the presence of resistant lithologies, it seems possible to date the capture to the Late-Pleistocene.
Therefore, it can be stated that the morphometric analysis of fan-basin systems can be exploited in morphostructural contexts such as the central Apennines, whether it be in morphotectonic analysis of fault related slopes or in the assessment of the conditions of equilibrium for single fan-catchment systems, which contributes to the study of local morphostructural evolution.
Finally, the geomorphological evolution of the alluvial fans in the central and southern sectors can be summarized. In the southern sector they are relatively small, with high dip angles, in clear aggradation, and are controlled by structural factors such as the resistant rocks of the catchment bedrock and the high slip rate on the Basal border fault. Considering the relationship between landslide scarps, catchments and alluvial fans, according to Blair (1999), it is possible to argue that the initiation of the catchments was due to the emplacement of the large landslide body.
In the northern sector, the alluvial fans are controlled more by interaction with the geomorphological evolution of the Popoli gorge, the northern outlet of the Sulmona basin, than by these same structural factors (Ciccacci et al., 1999). The regressive erosion due to the incision in the Popoli gorge deeply affected the alluvial fans of this sector, but only just touched those of the central sector, without reaching the southern sector.
4.4. Landscape evolution of the escarpment between the Montagna del Morrone ridge and the Sulmona tectonic basin
The integrated morphotectonic approach to the study of the mountain landscape of the central Apennine chain allows us to outline the main steps of the escarpment between Montagna del Morrone and the Sulmona basin (Fig. 10). The results clearly indicate that it is a high activity fault-generated mountain front according to Bull and McFadden (1977), Bull (1977), Wallace (1978), Bull (1987), Keller and Pinter (1996), and Allen and Densmore (2000). These features include low sinuosity and faceting, high slope and local relief, elongated and out of equilibrium drainage basins, convex and knick pointed stream channel profiles, prevailing areal denudation processes, general aggradation of the alluvial fans at the base of the slope and morphometry of the alluvial fan/catchment system.
This fault-generated mountain front, however, shows a peculiar morphostructural setting, variable both longitudinally and transversally, which led us to define a partition in three distinct sectors: northern, central and southern (Fig. 9). This is closely associated with the morphotectonic evolution of the Montagna del Morrone ridge and the Sulmona basin, which is due to the contrast of local tectonic subsidence on the basin and regional uplift during the Pleistocene (Miccadei et al., 2002).
The geomorphological investigations highlight a complex cyclic evolution in succeeding stages with the dominance either of morphotectonics, linked to the conflicting fault activity and regional uplift, or of erosional processes, particularly during cold stages of Quaternary climate fluctuations (Miccadei et al., 2004).
In a general balance the growth of the escarpment has strongly exceeded and dominated the effect of denudation, due to the local subsidence of the Sulmona basin relative to the Montagna del Morrone blocks along the Basal border fault and the Schiena d’Asino fault and to the general uplift of the area,. This has created relief of up to 1700 m and enabled the maintenance of very steep slopes, on highly resistant rocks, which have been moderately weathered and incised by climate-controlled erosional processes. These processes are mostly due to drainage network linear down-cutting in the mid and lower part of the northern and central sectors, while slope areal denudation is prevailing in the upper part of the northern and central sectors and in the southern sector.
Figure 10.
Evolution of the escarpment between the Montagna del Morrone ridge and the Sulmona basin (Miccadei et al., 2002)
In conclusion, it is possible to define the evolution of the escarpment between the Montagna del Morrone ridge and the Sulmona basin as a growth evolution, rapid in the earlier stages and then continuing in the later phases. We can summarise the main stages of this morphotectonic evolution as follows (Fig. 10):
Early moderately high relief incised by geomorphic processes, among which possibly karst weathering; remnants of this landscape, though reworked by karst processes and nivation, are preserved on the top of the ridge (Lower? Pleistocene);
Growth of the slope due to the strong activity of the normal fault; earlier doubling of the ridge in the northern sector; the central sector begins to work as a structural transfer; the occurrence of fractured carbonate rocks, the high local relief and high slope, and eventually, the occurrence of earthquake-triggered landslides, led to the emplacement of large rock slides and to sediment accumulation along the slope (scree slope breccias, alluvial fan conglomerates) (Lower?-Mid Pleistocene);
Development of drainage basins similar to the present ones (including Basin C, eventually after an early capture of the upper part) and incision of previous alluvial fans (Middle Pleistocene);
Erosion of the escarpment, mostly due to slope denudation processes in the southern sector (and upper part of the central and northern sector) and to stream incision in the northern sector (Middle-Late Pleistocene);
Morphotectonics, though possibly less intense than in the earlier stages, led to a progressive renewal with evidence of faulting, along the basal fault scarp of the southern sector and along both fault scarps of the central and northern sector (renewal mostly evident in the upper slope along the Schiena d’Asino fault scarp); a perturbation of some of the alluvial fan/catchment systems, caused in the northern sector by headward regressive erosion on the alluvial fans, controlled by the Sulmona basin outlet evolution and by upstream capture phenomena in the southern sector (Middle-Upper Pleistocene);
The erosion processes are capable of only partly contrasting the morphotectonic processes (evidence of faulting occurs mostly on Late Pleistocene alluvial fans) and have led to partial reorganization of the drainage basin, still now clearly out of equilibrium, particularly in the southern sector. The present morphotectonic setting is acquired (Upper Pleistocene-Holocene).
5. Case studies - piedmont area: dip stream valley (Sangro river valley)
5.1. Introduction
The Sangro river is, at present, 107 km long and flows on the Adriatic side of central Italy from the inner part of the Apennines to the coast. The direction of the river is variable, from N-S in the upper reach, to WNW-ESE, to SW-NE, to S-N, and, finally, to SW-NE in the lower reach (Fig. 1). The main tributary is the Aventino river, which flows along the eastern side of the Maiella massif and then into the Sangro 20 km away from the coast. The present drainage basin area is about 1560 km2 and its mean elevation is 970 m a.s.l.; about 70% of the basin lies within the range area; 30% within the piedmont one. The Sangro river’s long profile consists of several segments, the highest long valley gradient being in the intermediate sector between the range and the piedmont. Its course and long profile show that the Sangro river can be divided into different reaches based on abrupt bends and/or long gradient variations (Fig. 1). The first part of the Sangro river flows within the range on clayey-arenaceous Miocene foredeep deposits and meso-cenozoic carbonate sequences, and shows a regular long profile with knick points corresponding to the occurrence of carbonate rocks and thrusts. The intermediate reaches carve into thrusted pre-orogenic clayey and carbonate Oligo-Miocene pelagic sequences, overlain by sinorogenic clayey arenaceous Miocene foredeep deposits. This reach shows a marked convex shape with sharp knick points related to the lithostructural control of alternating clayey and carbonate rocks. The abrupt long gradient decrease corresponds to the front of the range. The lower reach incises with a concave long profile the Plio-Pleistocene clayey-sandy marine sediments of the Adriatic basin (Fig. 11).
The study area, the lower part of the Sangro valley, is located in the Adriatic piedmont, in the south eastern Abruzzi area and lies in a complex geological framework between the central Apennines and the coast (Fig. 11). This area is characterised by a cuesta, mesa and plateau relief at a moderate elevation, sloping from SW to NE, from 500 m a.s.l. to sea level. The Sangro river flows, in this area, from 150 m a.s.l. to sea level.
The geological setting is characterized by late-orogenic Plio-Pleistocene Adriatic foredeep units that, in the SW sector, unconformably overlie pre-orogenic Molise pelagic units (Fig. 1). The Plio-Pleistocene units consist of Middle Pliocene to Early Pleistocene foredeep terrigenous clayey-sandy deposits, up to 2000 m thick, with interbedded conglomerates, coarsening upwards into a sandstone-conglomerate regressive sequence. The structural setting is defined by a regional homocline gently dipping north-east and locally affected by systems of low displacement faults (NW-SE, SW-NE). The Plio-Pleistocene foredeep sequence unconformably overlies folded and thrusted Miocene-Pliocene structures.
In the SW sector (Fig. 12) the pre-orogenic Molise pelagic units are made up of a clayey pelagic Oligocene-Miocene formation (argille varicolori formation) and of a limestone and marly-limestone pelagic Miocene formation, which is followed by a pelitic and arenaceous-pelitic sin-orogenic foredeep Late Miocene sequence. The above mentioned units were affected by fold and thrust Miocene-Pliocene deformations that involved a major NE transport.
Pre-, sin- and late-orogenic sequences are unconformably overlain by Middle-Late Pleistocene and Holocene continental conglomerates and subordinate sands, mainly related to fluvial and alluvial fan deposits.
The geomorphological study performed in the area allowed us: i) to identify the fluvial and alluvial fan deposits and the transverse and longitudinal geometry of the related terraces; ii) to qualitatively and quantitatively analyse the geometry of the drainage network; and iii) to determine the distribution and geometry of significant morphotectonic evidence such as linear valleys and asymmetric valleys, hanging and beheaded valleys, counterflow streams and river bends.
Figure 11.
Geological scheme of south-eastern Abruzzi and location of the study area (black box). Legend: post-orogenic Quaternary continental deposits, 1) fluvial deposits (Holocene), 2) terraced fluvial and alluvial fan deposits (Middle-Late Pleistocene); sin- and late-orogenic terrigenous deposits, 3) marine to continental transitional sequences (Early Pleistocene), 4) hemipelagic sequences with conglomerate levels (Late Pliocene-Early Pleistocene), 5) turbiditic foredeep sequences (Late Miocene-Early Pliocene); pre-orogenic carbonate, marly and clayey deposits, 6) Molise pelagic sequences (Oligocene-Miocene), 7) carbonate platform, slope and pelagic sequences (Jurassic - Miocene); 8) thrust (dashed if buried); 9) normal fault (dashed if buried); 10) fault with strike slip or reverse component (dashed if buried); 11) Sangro river drainage divide; 12) course of the Sangro river (Fig. 1)
5.2. Results
In the lower Sangro valley, five levels of terraced fluvial and alluvial fan deposits can be identified, at decreasing heights above the present alluvial plain. The terraces show a heterogeneous plano-altimetric distribution and different sedimentological characteristics, formed in both alluvial fan (T1, T2) and fluvial environments (T3-T5 and alluvial plain) (Fig. 12; Tab. 4).
Figure 12.
Geologic and fluvial terraces map of the lower Sangro river valley (D’Alessandro et al., 2008). Legend: post-orogenic Quaternary continental deposits, 1) present alluvial plain deposits (Holocene), 2) fluvial terrace T5 deposits (Late Pleistocene), 3) fluvial terrace T4 deposits (late Middle Pleistocene), 4) fluvial terrace T3 deposits (Middle Pleistocene), 5) alluvial fan T2 deposits (Middle Pleistocene), 6) alluvial fan T1 deposits (Middle Pleistocene); sin- and late-orogenic terrigenous deposits, 7) conglomerates and sandstone of marine to continental transitional sequences (Early Pleistocene), 8) clays and sands of hemipelagic sequences with conglomerate levels (Late Pliocene-Early Pleistocene), 9) sandstone and siltstone of turbiditic sequences (Late Miocene-Early Pliocene); pre-orogenic carbonate, marly and clayey deposits, 10) limestone and marly-limestone of Molise pelagic sequences (Miocene), 11) clays of Molise pelagic sequences (Oligocene-Miocene); 12) 0-10° dipping strata; 13) 10-45° dipping strata; 14) 45-80° dipping strata; 15) 80-90° dipping strata; 16) buried thrust; 17) fault with strike slip or reverse component; 18) inferred neotectonic fault
The alluvial fan deposits (T1 and T2 in Fig. 12) are located at the summit of the hilly relief, at an elevation higher than 300 m a.s.l. and along the drainage divide between the Sangro basin and the surrounding ones. The fan deposits consist of heterometric, poorly sorted and sub-angular conglomerates (ϕmax> 50 cm) with a matrix of fine gravel to sand. They show variable thicknesses up to 20 m and they are often deeply eroded or preserved only as gravel remnants on planar surfaces.
The fluvial deposits are distributed along the lower Sangro valley, more extensively on the NW side. On the SE side the deposits are rare and thinner. They are arranged in four levels, inset in the older alluvial fan terraces, at elevations decreasing from 280 m to the present valley floor (T3, T4, T5 and present alluvial plain, Fig. 12, Tab. 4). Along the NW valley side down to the river mouth, the terrace treads are at various heights above the present valley floor, decreasing from 150-100 m in the case of T3, to 120-60 m (T4), 50-30 m (T5), down to the present alluvial plain (Tab. 4).
The deposits of the four terrace levels are made up of heterometric, moderately-to-well sorted pebble-to-cobble conglomerates; they are generally clast-supported with sandy matrix. The thickness of fluvial deposits is moderate, up to 20 m in the lower part of the valley. The basal erosive unconformity on the Pleistocene clayey and sandy bedrock outcrops in several locations on the valley side, particularly in quarries located in the lower part of the valley.
The transverse profiles show the relative incision of the fluvial terraces in the alluvial fan terraces and of the different terrace levels one into the other. The valley long profile shows a general downstream convergent geometry of the terrace treads.
The age of fluvial and alluvial fan deposits is inferred from the correlation with the surrounding basins in the Adriatic piedmont, as indicated in the previous section. The alluvial fans and the highest fluvial terrace (T1, T2, T3) are ascribed to the Middle Pleistocene, the second fluvial terrace (T4) to the late Middle Pleistocene, the third (T5) is dated to the Late Pleistocene and the alluvial plain to Holocene.
The Sangro river shows a mainly sub-dendritic drainage pattern in the piedmont area and a generally angular or trellis one in the mountain zone, related, in general terms, to both lithological and structural control. In the lower Sangro valley (Fig. 13a) the total azimuthal stream analysis of the network confirms the general sub-dendritic pattern, showing a sub-elliptical shape, although E-W and NW-SE main orientations are present (Fig. 13 b; Tab. 5). However, considering only the main streams (3rd order or higher), a general angular pattern can be detected along SW-NE, WSW-ENE and NW-SE orientations, as shown by the azimuthal statistics of the main streams (Fig. 13c; Tab. 5).
Morphotectonic field mapping focused on valley features: linear and asymmetric valleys, hanging and beheaded valleys, river bends and counterflow confluences of streams (Fig. 14a). Planimetric distribution is seemingly non-uniform, however, the analysis of azimuthal distribution can highlight an alignment along preferential orientations (Fig. 14b; Tab. 6).
Figure 13.
a) Drainage network of the Sangro basin in the piedmont area and of the surrounding areas; the dashed line marks the drainage divide of the Sangro basin (D’Alessandro et al., 2008). Legend of local drainage patterns: SD) sub-dendritic; P) parallel; SP) sub-parallel; T) trellis; R) radial. b) Total stream azimuth rose diagram for the lower Sangro valley. c) Main stream azimuth rose diagram. d) Azimuth rose diagram of the streams ordered according to Strahler (1957)
Figure 14.
a) Map of the morphological field evidence of tectonics (D’Alessandro et al., 2008). Legend: 1) alluvial fan surface T1; 2) alluvial fan surface T2; 3) fluvial terrace T3; 4) fluvial terrace T4; 5) fluvial terrace T5; 6) present alluvial plain; 7) linear and asymmetric valley; 8) hanging valley; 9) beheaded valley; 10) river bend; 11) counterflow confluence of streams; 7) profile locations (see Fig. 15). b) Azimuth rose diagram of morphological field evidence of tectonics
Linear valleys and asymmetric valleys show a main NNW-SSE orientation and secondary NW-SE and SW-NE orientations. These features - which are linked to the Late Pleistocene terrace (T5) - incise the Middle Pleistocene alluvial fan surfaces and the later fluvial terraces (T1 to T4) on the NW side of the Sangro valley, whereas they incise the Early Pleistocene clayey bedrock on the SE side.
The hanging valleys are located particularly on the northern and eastern sectors of the area, with WSW-ENE and SW-NE dominant orientations. River bends are frequent all over the study area and particularly on the NW side of the Sangro valley (Fig. 14). The azimuthal analysis shows two prevailing orientations: WSW-ENE and NW-SE (Fig. 14b).
The planimetric distribution of the beheaded valleys indicates a dominant SW-NE orientation (Fig. 14). In particular, they are located along the present northern and southern drainage divide of the Sangro basin, and drain into the adjacent basins (Fig. 14).
Finally, the counterflow confluences are mainly on the NW side of the Sangro valley (Fig. 14), they show a prevailing N-S direction and are connected to NNW-SSE linear valleys. These elements are located in an area characterised by beheaded valleys.
The morphological evidence of tectonics allows us to detect morphotectonic lineaments, mainly SW-NE, along the main valley, on its right side and in the northern area outside the Sangro basin. These lineament are intersected by NNW-SSE and WNW-ESE ones, particularly in the SW sector of the study area (Fig. 14, Tab. 6). On the NW side of the valley the correlation between terraces and morphotectonic elements indicates that the SW-NE elongated beheaded valleys are intersected by NNW-SSE and WNW-ESE linear valleys and river bends. The beheaded SW-NE valleys lie on, or slightly incise, the sandy-conglomeratic regressive sequence on top of the marine Pleistocene succession; locally, they are correlated with T1 terraces. The linear valleys incise the Middle Pleistocene fluvial and alluvial fan terraces (T1-T4) and are correlated with the Late Pleistocene terrace (T5). On the right (SE) valley side, it is possible to detect the intersection of NE-SW minor elements (counterflow confluences, linear valleys) with major NNW-SSE and WNW-ESE linear valleys, as already suggested by the drainage pattern.
order
orientation
1st
E-W NW-SE
2nd
NNW-SSE E-W
3rd
NW-SE
4th
NNW-SSE
5th
NNW-SSE
6th 7th 8th
SW-NE
Table 5.
Dominant azimuthal distribution of the ordered streams (Strahler, 1957)
elements
orientation
Linear valleys
NNW-SSE SW-NE
Asymmetric valleys
NNW-SSE E-W
Hanging valleys
SW-NW WSW-ENE
Beheaded valleys
SW-NE
River bends
WSW-ENE WNW-ENE
Counterflow confluences
N-S
Table 6.
Dominant azimuthal distribution of the morphotectonic evidence
5.3. Discussion
The analysis and the correlation of fluvial terraces and alluvial fan surfaces, drainage patterns and morphotectonic evidence provide several indications concerning drainage development in the piedmont area of the Sangro valley since the Middle Pleistocene. Moreover, they allow us to evaluate the role and timing of tectonics in the development of the piedmont area of the Sangro valley.
The remnants of alluvial fan surfaces (T1 and T2; Fig. 12, 15), on top of the hilly relief and along the present drainage divide, outline a landscape completely different from the present one: a Middle Pleistocene wide piedmont plain on which - after the emergence and, more specifically, during early continental morphogenesis - large alluvial fans formed, as already observed in the northern sector of the Adriatic piedmont (Nesci and Savelli, 2003).
Figure 15.
Cross-valley and long profiles showing the relation of the terrace deposits with the local valley geometry (A-A’, B-B’) and the relations among the terrace tread levels (C-C’) (D’Alessandro et al., 2008). Location and numbers legend are referred to Fig. 14
The plano-altimetric distribution of T3 and T4 fluvial terraces (Fig. 14, 15), elongated in the SW-NE direction and entrenched into the ancient fan surfaces and along both margins of the present valley, indicates the development of a subsequent SW-NE consequent drainage starting in the Middle Pleistocene (Coltorti et al., 1991; Nesci et al., 1992; Fanucci et al., 1996). This is confirmed by the SW-NE parallel pattern with marked SW-NE linear valleys, preserved in the northern area outside the drainage divide of the Sangro basin (Fig. 13).
On the NW side of the Sangro valley, a sub-parallel drainage is present along the NNW-SSE direction. Moreover, the sub-dendritic drainage shows NW-SE to NNW-SSE elongated main streams on both valley sides (3rd, 4th, 5th order, Fig. 13). These streams are marked by linear valleys that cut Middle Pleistocene fluvial terraces (T3 and T4) and are connected to the Late Pleistocene terrace (T5) (Fig. 14). This configuration indicates the control of local tectonics on drainage development along NNW-SSE faults and fractures, and suggests that the age of these elements can be ascribed to the late Middle Pleistocene (Fig. 12). The analysed counterflow junction of streams confirms tectonic control along the NNW-SSE orientation (Fig. 14). In the lower part of the valley, along the coastal area, the occurrence of SW-NE, NW-SE river bends and the anomaly in the path of the drainage divide can be related to the role of gravity deformation parallel to the coast.
On the SE side of the Sangro valley, SW-NE counterflow confluences and linear valleys carved on the clayey bedrock are aligned to the straight flank of the main valley and intersect NNW-SSE and WSW-ENE linear valleys. In this case, local tectonic control on the drainage is exerted also along SW-NE lineaments (Fig. 14).
Hence, a rectangular drainage network (sensu\n\t\t\t\t\tZernitz, 1932) developed during the late Middle Pleistocene, as a result of the junction of previous SW-NE streams’ directions - controlled by differential uplift and tilting - and new NNW-SSE, WNW-ESE and SW-NE streams’ directions, controlled by local tectonics along faults and fracture systems (Figs. 12, 14). The development of the NNW-SSE streams, on the NW side of the Sangro valley, beheaded the previous SW-NE drainage, as highlighted along the present divide. A major rearrangement of the drainage widened the basin towards the left (NW) side. In this scenario local tectonics could be an additional explanation of the drainage basin asymmetry in the Adriatic piedmont.
Finally, the development of a sub-dendritic drainage pattern on the clayey Plio-Pleistocene bedrock in the peripheral parts of the basin, together with a local radial pattern on the clayey-calcareous Miocene sequence, indicates a prevailing lithostructural control in the last phase of drainage incision and in the definition of the present fluvial landscape.
5.4. Sangro dip-stream valley landscape evolution
The integrated morphotectonic approach to the study of the fluvial landscape of the Adriatic piedmont allows us to outline the main steps of the lower Sangro river valley evolution:
alluvial fan development in a wide piedmont plain (Middle Pleistocene), following the emergence of the Adriatic basin, which progressively occurred during the Early Pleistocene due to regional uplift, as already observed in the northern Abruzzi and Marche area (Nesci and Savelli, 2003; Cantalamessa and Di Celma 2004);
consequent SW-NE parallel drainage controlled by a regional topographic gradient, due to regional differential uplift with NE tilting and by SW-NE tectonic structures (Middle Pleistocene);
superimposition of the SW-NE drainage on the uplifting piedmont and development of fluvial terraces (Middle Pleistocene – late Middle Pleistocene);
development of NNW-SSE, WNW-ESE and SW-NE faults with low displacements and fractures (late Middle Pleistocene);
adaptation of the drainage network to fault and fracture systems, and development of a rectangular pattern (late Middle Pleistocene – Late Pleistocene);
rearrangement of the drainage network due to lithology-controlled morphoselective processes (Late Pleistocene – Holocene).
The role of regional uplift with NE tilting in the development of the piedmont consequent valleys is confirmed in the case of the Sangro river valley. Local tectonics, mainly along NNW-SSE, WNW-ESE and SW-NE faults and fractures (Fig. 10), played a crucial role in the rearrangement and configuration of the drainage network during the late Middle Pleistocene.
6. Conclusion
This chapter provides examples of morphotectonic studies undertaken in Abruzzi (central Italy) within chain and piedmont areas:
chain area – escarpment between the Montagna del Morrone ridge and the Sulmona tectonic basin (central Abruzzi);
piedmont area – dip stream valley (Sangro river valley, south-eastern Abruzzi)
These areas are characterized by different geomorphological features: 1) bedrock lithologies (conservative carbonate bedrock in the montane area, not conservative clayey-arenaceous-conglomeratic bedrock in the piedmont area), 2) surface deposits (slope and alluvial fan deposits in the montane area, fluvial and alluvial fan deposits in the piedmont area), 3) landforms (slope landforms and fluvial, and water erosion landforms in the montane area, fluvial and water erosion landforms in the piedmont area), and 4) tectonic framework (strong Pleistocene-Holocene extensional tectonics and uplift in the montane area, Pleistocene-Holocene uplift with poor local tectonics in the piedmont area).
The studies suggest that different features of morphostructural domains require similar approaches and methods with suitable adaptation, based on (a) terrain analysis, (b) morphostructural analysis of the relief, (c) analysis of geomorphic markers such as certain landforms (geomorphological evidence of tectonics) and deposits (developed in a continental environment), (d) analysis and morphometry of drainage basins, (e) dating of deposits and landforms.
These studies are focused on deciphering the role of morphotectonics and selective erosion in the landscape’s evolution, incorporating regional morphostructural analysis (based on DEM analysis), Quaternary fluvial deposits mapping, local morphostructural analysis (based on field mapping and aerial photo interpretation), drainage network analysis and orography and hydrography morphometry. The key point is the integration of field geomorphological methods and modern morphotectonic analysis (including drainage network and terrain analysis). Only the correlation of these methods of analysis at drainage basin scale allow us to find out and define geomorphic markers of tectonics and landscape evolution, suggesting also its timing.
The results allow us to outline the main morphostructural features of central Italy (chain area and piedmont area) and to suggest the use of a similar methodological approach, but focused also on different geomorphological landscapes. In addition, discussion and conclusions of the studies show how integrative morphotectonic studies allow for the description of drainage network and landscape evolution driven by the alternating action of tectonic forces and geomorphic processes due to orography and Pleistocene climate fluctuations. It is possible also to define the role of morphotectonics and selective erosion in the landscape evolution and suggest the relative timing of this evolution, while only incorporating specific geochronology studies enables us to define the absolute timing of tectonics and landscape evolution.
Acknowledgments
The authors wish to thank the Struttura Speciale di Supporto Sistema Informativo Regionale of Abruzzo Region (http://www.regione.abruzzo.it/xcartografia/), for providing the topographic data and aerial photos used for the geomorphological investigations and in the figures of this work.
\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/17664.pdf",chapterXML:"https://mts.intechopen.com/source/xml/17664.xml",downloadPdfUrl:"/chapter/pdf-download/17664",previewPdfUrl:"/chapter/pdf-preview/17664",totalDownloads:3845,totalViews:305,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,dateSubmitted:"October 31st 2010",dateReviewed:"July 5th 2011",datePrePublished:null,datePublished:"August 9th 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/17664",risUrl:"/chapter/ris/17664",book:{slug:"new-frontiers-in-tectonic-research-at-the-midst-of-plate-convergence"},signatures:"Miccadei Enrico and Piacentini Tommaso",authors:[{id:"33172",title:"Dr.",name:"Tommaso",middleName:null,surname:"Piacentini",fullName:"Tommaso Piacentini",slug:"tommaso-piacentini",email:"tpiacentini@unich.it",position:null,institution:{name:"University of Chieti-Pescara",institutionURL:null,country:{name:"Italy"}}},{id:"48880",title:"Prof.",name:"Enrico",middleName:null,surname:"Miccadei",fullName:"Enrico Miccadei",slug:"enrico-miccadei",email:"miccadei@dst.unich.it",position:null,institution:{name:"University of Chieti-Pescara",institutionURL:null,country:{name:"Italy"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Study area ",level:"1"},{id:"sec_3",title:"3. Methods",level:"1"},{id:"sec_4",title:"4. Case studies - chain area: tectonic basin and fault escarpment (Montagna del Morrone ridge)",level:"1"},{id:"sec_4_2",title:"4.1. Introduction",level:"2"},{id:"sec_5_2",title:"4.2. Results",level:"2"},{id:"sec_5_3",title:"4.2.1. Geology",level:"3"},{id:"sec_6_3",title:"Table 1.",level:"3"},{id:"sec_6_4",title:"4.2.2.1. Orography ",level:"4"},{id:"sec_7_4",title:"Table 1.",level:"4"},{id:"sec_8_4",title:"4.2.2.3. Structural landforms",level:"4"},{id:"sec_9_4",title:"4.2.2.4. Slope landforms",level:"4"},{id:"sec_10_4",title:"4.2.2.5. Karst landforms and complex origin landforms",level:"4"},{id:"sec_11_4",title:"Table 3.",level:"4"},{id:"sec_14_2",title:"4.3. Discussion",level:"2"},{id:"sec_14_3",title:"4.3.1. Orography and hydrography",level:"3"},{id:"sec_15_3",title:"4.3.2. Geomorphology",level:"3"},{id:"sec_17_2",title:"4.4. Landscape evolution of the escarpment between the Montagna del Morrone ridge and the Sulmona tectonic basin",level:"2"},{id:"sec_19",title:"5. Case studies - piedmont area: dip stream valley (Sangro river valley)",level:"1"},{id:"sec_19_2",title:"5.1. Introduction",level:"2"},{id:"sec_20_2",title:"5.2. Results ",level:"2"},{id:"sec_21_2",title:"5.3. Discussion ",level:"2"},{id:"sec_22_2",title:"5.4. Sangro dip-stream valley landscape evolution",level:"2"},{id:"sec_24",title:"6. Conclusion",level:"1"},{id:"sec_25",title:"Acknowledgments",level:"1"},{id:"sec_25",title:"Acknowledgments",level:"2"}],chapterReferences:[{id:"B1",body:'AllenP. A.DensmoreA. L.2000Sediment flux from an uplifting fault block. Basin Res., 12367380'},{id:"B2",body:'AllenP. A.HoviusN.1998Sediment supply from landslide-dominated catchments: implications for basin-margin fans. Basin Res., 101935'},{id:"B3",body:'AmbrosettiP.BonadonnaF. P.BosiC.CarraroF.CitaB. M.GigliaG.ManettiP.MartinisB.MerloC.PanizzaM.PapaniG.RampoldiR.1976Proposta di un progetto operativo per l’elaborazione della carta neotettonica d’Italia. Progetto finalizzato geodinamica, 149'},{id:"B4",body:'APAT2006Carta Geologica d’Italia alla scala 1:50.000, Foglio 369 "Sulmona".'},{id:"B5",body:'APAT2007Carta Geomorfologica d’Italia 1:50.000Guida alla rappresentazione cartografica. Presidenza del Consiglio dei Ministri, Dip. Servizi Tecnici Nazionali, Servizio Geologico, Quaderno serie III, 10, 59 pp,\n\t\t\t'},{id:"B6",body:'AscioneA.CinqueA.1997Le scarpate su faglia dell’Appennino Meridionale: genesi, età e significato tettonico. Il Quaternario, 10(2), 285-292, Verona.'},{id:"B7",body:'AscioneA.CinqueA.1999Tectonics and erosion in the long term relief history of the southern Apennines (Italy). Zeit. Geomorph. N.F., 118116'},{id:"B8",body:'AscioneA.CinqueA.MiccadeiE.VillaniF.BertiC.2008The Plio-Quaternary uplift of the Apennine chain: new data from the analysis of topography and river valleys in central Italy. Geomorphology, 102105118'},{id:"B9",body:'AucelliP. P. C.CavinatoG. P.CinqueA.1996Indizi geomorfologici di tettonica plio-quaternaria sul piedimonte adriatico dell’ Appennino abruzzese. Il Quaternario 9299302\n\t\t\t'},{id:"B10",body:'AvenaG. C.LupiaPalmieri. E.1969Analisi geomorfica quantitativa. In: Idrogeologia dell’alto bacino del Liri (Appennino centrale). Geol. Romana, 8319378'},{id:"B11",body:'AvenaG. C.GiulianoG.LupiaPalmieri. E.1967Sulla valutazione quantitativa della gerarchizzazione ed evoluzione dei reticoli fluviali. Boll. Soc. Geol. It., 86781796'},{id:"B12",body:'BartoliniC.PeccerilloC.2002I fattori geologici delle forme del rilievo. Lezioni di Geomorfologia strutturale, Pitagora Editrice, Bologna.'},{id:"B13",body:'BelisarioF.Del MonteM.FrediP.FunicielloR.LupiaPalmieri. E.SalviniF.1999Azimuthal analysis of stream orientations to define regional tectonic lines. Zeitshrift fur Geomorphologie N.F. Suppl. Bd. 1184163'},{id:"B14",body:'BigiS.CantalamessaG.CentamoreE.DidaskaluP.DramisF.FarabolliniP.GentiliB.InvernizziC.MicarelliA.NisioS.PambianchiG.PotettiM.1996La fascia periadriatica marchigiano-abruzzese dal Pliocene medio ai tempi attuali: evoluzione tettonico-sedimentaria e geomorfologica. Studi Geol. Camerti, Vol. Spec. 1995/13749'},{id:"B15",body:'BlairT. C.1999Alluvial fan and catchment initiation by rock avalanching, Owens Valley, California. Geomorphology, 28201221'},{id:"B16",body:'BlairT. C.Mc PhersonJ. G.1994Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes and facies assemblages. Journ. Sediment. Res., A64(3), 450-489.'},{id:"B17",body:'BlumettiA. M.DramisF.MichettiA. M.1993Fault-generated mountain front in the central Apennines (central Italy): geomorphological features and seismotectonic implications. Earth Surf. Proc. and Landf., 18203223'},{id:"B18",body:'BosiC.GaladiniF.MessinaP.1993Neotectonic significance of bedrock fault scarps: case studies from the Lazio-Abruzzi Apennines (central Italy). Zeit. Geomorph. N.E., Suppl.-Bd. 94187206'},{id:"B19",body:'BrancaccioL.CinqueA.SgrossoI.1978L’analisi morfologica dei versanti come strumento per la ricostruzione degli eventi neotettonici. Mem. Soc. Geol. It., 19621626\n\t\t\t'},{id:"B20",body:'BullW. B.2007Tectonic geomorphology of mountains, Blackwell Publishing, Malden, MA. 316 p.'},{id:"B21",body:'BullW. B.1964Relations of alluvial-fan size and slope to drainage-basin size and lithology in western Fresino Country, California. Abstract, article 19, B-51/B-53, 1 fig.'},{id:"B22",body:'BullW. B.1977The alluvial fan environment: Progress in Phys. Geogr., 1222270'},{id:"B23",body:'BullW. B.1987Relative rates of long term uplift of mountain fronts. In Crone A.G., Omdahl E.L. eds Directions in paleoseismology, U.S. Geol. Surv. Open-File Rep. 87-693, 192-202.'},{id:"B24",body:'BullW. B.Mc FaddenL. D.1977Tectonic geomorphology north and south of the Garlock fault, California. In: Doehring D.D. (ed.): Geomorphology in arid regions. 3rd Geomorphology Symposium, State Univ. New York, 115138'},{id:"B25",body:'BullW. B.1991Geomorphic response to climatic change. Oxford University Press, New York.'},{id:"B26",body:'BurbankD. W.AndersonR. A.2001Tectonic Geomorphology, Blackwell Science, Malden, MA, USA.'},{id:"B27",body:'BurbankD. W.PinterN.1999Landscape evolution: the interaction of tectonics and surface processes. Basin Research 11 (1), 16'},{id:"B28",body:'CailleuxA.TricartJ.1956Les problème de la classification des fait geomorphologiques. Annales de Geographie 65, 162186'},{id:"B29",body:'CalderoniG.NesciO.SavelliD.1991Terrace fluvial deposits from the middle basin of Cesano river (Northern Marche, Apennines): reconnaissance study and radiometric constraints on their age. Geografia Fisica e Dinamica Quaternaria 14201207'},{id:"B30",body:'CantalamessaG.Di CelmaC.2004Sequence response to syndepositional regional uplift: insights from high-resolution sequence stratigraphy of the late Early Pleistocene strata, Periadriatic Basin, central Italy. Sedimentary Geology 164283309'},{id:"B31",body:'CarraraC.1998I travertini della Valle del Pescara tra Popoli e Torre dè Passeri. Il Quaternario, 11(2), 163-179.'},{id:"B32",body:'CastiglioniB.1935Ricerche geomorfologiche nei terreni pliocenici dell’Italia centrale. Pubbl. Ist. Geogr. R. Univ. Roma, s. A, 4.'},{id:"B33",body:'CavallinA.CrescentiU.DramisF.PrestininziA.Sorriso-ValvoM.1987Tipologia e diffusione delle deformazioni gravitative profonde di versante in Italia: prime valutazioni. Mem. Soc. Geol. It., 37241252'},{id:"B34",body:'CentamoreE.NisioS.2003Effects of uplift and tilting in the central-northern Apennines (Italy). In: Bartolini C. (ed.): Uplift and erosion: driving processes and resulting landforms, international workshop, Siena, September 2021Quaternary International, 101-102C, 93-101.'},{id:"B35",body:'CentamoreE.CiccacciS.Del MonteM.FrediP.LupiaPalmieri. E.1996Morphological and morphometric approach to the study of the structural arrangement of the north-eastern Abruzzo (central Italy). Geomorphology 16127137'},{id:"B36",body:'CiccacciS.D’AlessandroL.DramisF.MiccadeiE.1999Geomorphological evolution and neotectonics of the Sulmona intramontane basin (Abruzzi, Apennine, central Italy). Zeit. Geomorph., 1182740'},{id:"B37",body:'CiccacciS.D’AlessandroL.FrediP.LupiaPalmieri. E.1992Relation between morphometric characteristics and denudational processes in some drainage basins of Italy. Zeit. Geomorph. N.F., 3615367'},{id:"B38",body:'CiccacciS.Del MonteM.FrediP.LupiaPalmieri. E.1995Plano altimetric configuration, denudational processes and morphodynamics of drainage basins. Geol. Romana, 31113\n\t\t\t'},{id:"B39",body:'CiccacciS.FrediP.LupiaPalmieri. E.SalviniF.1986An approach to the quantitative analysis of the relations between drainage pattern and fracture trend. International Geomorphology. John Wiley & Sons, Chichester, 4968'},{id:"B40",body:'ColtortiM.FarabolliniP.1995Quaternary evolution of the “Castelluccio di Norcia” basin (Umbro-Marchean Apennines, central Italy). Il Quaternario, 8(1), 149-166.'},{id:"B41",body:'ColtortiM.ConsoliM.DramisF.GentiliB.PambianchiG.1991Evoluzione geomorfologica delle piane alluvionali delle Marche centro-meridionali. Geografia Fisica e Dinamica Quaternaria 1487100'},{id:"B42",body:'CrescentiU.DramisF.GentiliB.PambianchiG.1989Deformazioni gravitative profonde di versante e grandi frane nell’area a sud di Monte Porrara (Appennino centrale, Abruzzo). Mem. Soc. Geol. It., 39477486'},{id:"B43",body:'CurradoC.D’AmbrogiC.2002Plio-Pleistocene morphostructural evolution of Chieti sector in the Periadriatic Basin: an example of integrated analysis. Memorie della Società Geologica Italiana 57501508'},{id:"B44",body:'D’AgostinoN.JacksonJ. A.DramisF.FunicielloR.2001Interactions between mantle upwelling, drainage evolution and active normal faulting: an example from central Apennines (Italy). Geophysical Journal International 141, 475497'},{id:"B45",body:'D’AlessandroL.MiccadeiE.PiacentiniT.2008Morphotectonic study of the lower Sangro river valley (Abruzzi, central Italy). Geomorphology 102, 145158'},{id:"B46",body:'D’AlessandroL.MiccadeiE.PiacentiniT.2003Morphostructural elements of central-eastern Abruzzi: contributions to the study of the role of tectonics on the morphogenesis of the Apennine chain. Quaternary International 101-102C, 115124'},{id:"B47",body:'Del MonteM.Di BucciD.TrigariA.1996Assetto morfotettonico della regione compresa tra la Majella e il Mare adriatico (Appennino Abruzzese). Memorie della Società Geologica Italiana 51419430'},{id:"B48",body:'Della SetaM.Del MonteM.FrediP.MiccadeiE.NesciO.PambianchiG.PiacentiniT.TroianiF.2008Morphotectonic evolution of the Adriatic piedmont of the Apennines: an advancement in the knowledge of the Marche-Abruzzo border area. Geomorphology 102, 119129'},{id:"B49",body:'DemangeotJ.1965Geomorphologie des Abruzzes Adriatiques, C. Rech. et Doc. Cart. Mem. Doc., 1403Paris'},{id:"B50",body:'Di CelmaC.FarabolliniP.MoscatelliU.2000Landscape, settlement and roman cadastres in the lower Sangro valley (Italy). Proceedings- Geoarchaeology of the landscape of classical antiquity, International Colloquium Gent, 23-24 October 1998, Babesch Supplement, 514'},{id:"B51",body:'DoglioniC.D’AgostinoN.MariottiG.1998Normal faulting vs. regional subsidence and sedimentation rate. Marine and Petroleum Geol., 15737750'},{id:"B52",body:'DramisF.1993Il ruolo dei sollevamenti tettonici a largo raggio nella genesi del rilievo appenninico. In: Farabollini P., Invernizzi C., Pizzi A., Cavinato G.P., Miccadei E. (eds.): Evoluzione geomorfologica e tettonica quaternaria dell’Appennino centro-meridionale. Studi Geol. Camerti, vol. spec. 1992/1915'},{id:"B53",body:'DramisF.FarabolliniP.GentiliB.PambianchiG.1995Neotectonics and large-scale gravitational phenomena in the Umbria-Marche Apennines, Italy. In Slaymaker O. (ed.), Steepland geomorphology. J. Wiley, Sons, New York, 199217\n\t\t\t'},{id:"B54",body:'DramisF.Sorriso-ValvoM.1994Deep-seated gravitational slope deformations, related landslides and tectonics. In: N. Oyagy, M., Sorriso-Valvo and B. Voight (eds.): Deep-seated landslides and large-scale rock avalanches. Engineering Geol., 38 (3-4), 231-243.'},{id:"B55",body:'DramisF.1993Il ruolo dei sollevamenti tettonici a largo raggio nella genesi del rilievo appenninico. In: Farabollini, P., Invernizzi, C., Pizzi, A., Cavinato, G.P., Miccadei, E. (Eds.), Evoluzione geomorfologica e tettonica quaternaria dell’Appennino centro-meridionale. Studi Geologici Camerti, 1992/1915'},{id:"B56",body:'ElmiC.1991Anomalie del reticolo idrografico nell’Appennino centro-settentrionale: evoluzione geomorfologica e neotettonica. Giornale di Geologia, ser. 3a, 53/28192'},{id:"B57",body:'ENEL1981Elementi di neotettonica del territorio italiano, 3194'},{id:"B58",body:'FanucciF.MorettiE.NesciO.SavelliD.VeneriF.1996Tipologia dei terrazzi vallivi ed evoluzione del rilievo nel versante adriatico dell’Appennino centro-settentrionale. Il Quaternario 9255258'},{id:"B59",body:'FrankelK. L.PazzagliaF. J.2005Tectonic geomomorphology, drainage basin metrics and active mountain fronts. Geografia Fisica e Dinamica Quanternaria 28721'},{id:"B60",body:'GerasimovI. P.1946Experience with geomorphological interpretation of the general scheme of geological structure of USSR, Probleme Fizische Geographie 12, 89115'},{id:"B61",body:'GNGFG, Gruppo Nazionale Geografia Fisica e Geomorfologia1994Proposta di legenda geomorfologica a indirizzo applicativo. Geogr. Fis. Dinam. Quat., 16(2), 129-152.'},{id:"B62",body:'HortonR. E.1945Erosional development of streams and their drainage basin; hydrophysical approach to quantitative morphology. In: Schumm S.A. (Ed.), Drainage Basin Morphology, Geol. Soc. America Bull, 56275370'},{id:"B63",body:'ISPRA2009Carta Geologica d’Italia 1:50.000Aggiornamento ed integrazioni delle linee guida della Carta Geologica d’Italia alla scala 1:50.000. Presidenza del Consiglio dei Ministri, Dip. Servizi Tecnici Nazionali, Servizio Geologico, Quaderno serie III, 12(1,2,3).\n\t\t\t'},{id:"B64",body:'KellerE. A.PinterN.1996Active tectonics, Prentice Hall, Upper Saddle River, New Jersey, 338 pp.'},{id:"B65",body:'KühniA.PfiffnerO. A.2001Drainage patterns and tectonic forcing: a model study for the Swiss Alps. Basin Research 13169197'},{id:"B66",body:'LeederM. R.JacksonJ. A.1993The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and central Greece. Basin Res., 579102'},{id:"B67",body:'LombardoM.CalderoniG.D’AlessandroL.MiccadeiE.2001The travertine deposits of the upper Pescara valley (Central Abruzzi, Italy): a clue for the reconstruction of the late Quaternary Palaeoenvironmental evolution of the area. In: Visconti G., Beniston M., Iannorelli E. D., Barba D (eds.): Global Changes, Protected Areas. Advances in global change research, 9459464'},{id:"B68",body:'LupiaPalmieri. E.CiccacciS.CivitelliG.CordaL.D’AlessandroL.Del MonteM.FrediP.PuglieseF.1996Geomorfologia quantitativa e morfodinamica del territorio abruzzese. I. Il Bacino del Fiume Sinello. Geografia Fisica e Dinamica Quaternaria 183146'},{id:"B69",body:'MayerL.1986Tectonic geomorphology of escarpments and mountain fronts. In: Wallace R.E., Allen C.R. (eds.): Active tectonics. National Academy Press, Washington D.C., 125135'},{id:"B70",body:'MerritsD. J.VincentK. R.WohlE. E.1994Long river profiles, tectonism, and eustasy: a guide to interpreting fluvial terraces. Journal of Geophysical Research 99, 1403114050'},{id:"B71",body:'MescerjakovJ. P.1968Les concept de morphostructure et de morphosculpture: un nouvel instrument de l’analyse géomorphologique. Annales de Géographie, 423, 539552'},{id:"B72",body:'MiccadeiE.BarberiR.CavinatoG. P.1999La geologia quaternaria della Conca di Sulmona (Abruzzo, Italia centrale). Geol. Romana, 345886\n\t\t\t'},{id:"B73",body:'MiccadeiE.MascioliF.PiacentiniT.2011Quaternary geomorphological evolution of the Tremiti Islands. Quaternary International, 233315'},{id:"B74",body:'MiccadeiE.ParonP.PiacentiniT.2004The SW escarpment of the Montagna del Morrone (Abruzzi, central Italy): geomorphology of a faulted-generated mountain front. Geografia Fisica e Dinamica Quaternaria, 27, 5587'},{id:"B75",body:'MiccadeiE.PiacentiniT.BarberiR.2002Uplift and local tectonic subsidence in the evolution of intramontane basins: the example of the Sulmona basin (central Apennines, Italy). In: Dramis F., Farabollini P., Molin P. (eds.): Large-scale vertical movements and related gravitational processes, International Workshop Camerino-Rome, 21th-26th June, 1999. Studi Geologici Camerti, Numero Speciale 2002119134'},{id:"B76",body:'MillerV. C.1953A quantitative geomorphology study of drainage basin characteristic in the Clinch Mountain Area, Virginia and Tennessee. Dept. of Geology, 3, 30.'},{id:"B77",body:'MolinP.FubelliG.2005Morphometric evidence of the topographic growth of central Apennines. Geografia Fisica e Dinamica Quanternaria 284761'},{id:"B78",body:'MolinP.PazzagliaF. J.DramisF.2004Geomorphic expression of active tectonics in a rapidly-deforming arc, Sila Massif, Calabria, southern Italy. American Journal of Sciences 304559589'},{id:"B79",body:'MorisawaM.HackT.1985Tectonic Geomorphology. Allen and Unwin, Boston & London.'},{id:"B80",body:'NesciO.SavelliD.2003Diverging drainage in the Marche Apennines (central Italy). Quaternary International 101-102, 203-209.'},{id:"B81",body:'NesciO.SavelliD.CalderoniG.ElmiC.VeneriF.1995Le antiche piane di fondovalle nell’Appennino nord-marchigiano. In: Assetto fisico e problemi ambientali delle pianure italiane. Memorie Società Geografica Italiana 53293312'},{id:"B82",body:'NesciO.SavelliD.VeneriF.1992Terrazzi vallivi e superfici di spianamento nell’evoluzione del rilievo appenninico nord-marchigiano. Studi Geologici Camerti, spec. 1992175180'},{id:"B83",body:'OguchiT.1997Late Quaternary sediment budget in alluvial-fan-source-basin systems in Japan. Journ. Quat. Science, 12(5), 381-390.'},{id:"B84",body:'OguchiT.OhmoriH.1994Analysis of relationships among alluvial fan area, source basin area, basin slope and sediment yield. Zeit. Geomorph. N.F., 38(4), 405-420.'},{id:"B85",body:'OllierC. D.1999Geomorphology and mountain building. Geogr. Fis. Dinam. Quat., 224960'},{id:"B86",body:'OllierC. D.1981Tectonics and landforms. Longman, London.'},{id:"B87",body:'PanizzaM.CastaldiniD.1987Neotectonic research in applied geomorphologic studies. Zeitschrift für Geomorphologie Suppl. Bd. 63, 173211'},{id:"B88",body:'PataccaE.ScandoneP.2007Geology of the southern Apennines, Boll. Soc. Geol. It. Spec. 7775119'},{id:"B89",body:'PazzagliaF.J. (in press). Fluvial terraces, in Wohl, E., ed., Treatise of Geomorphology. New York, NY: Elsevier.'},{id:"B90",body:'PazzagliaF. J.BrandonM. T.2001A fluvial record of long term steady-state uplift and erosion across the Cascadia forearc high, Western Washington State. American Journal of Science 301385431'},{id:"B91",body:'PeulvastJ. P.VanneyJ. R.2001Géomorphologie structurale. Tome 1, Relief et structure. Gordon and Breach Science Publisher, 505 pp.'},{id:"B92",body:'PicottiV.PonzaA.PazzagliaF. J.2009Topographic expression of active faults in the foothills of the northern Apennines, Tectonophysics 474285294'},{id:"B93",body:'RapisardiL.1982Tratti di neotattonica al confine molisano-abruzzese. CNR- Progetto finalizzato Geodinamica, Roma, 223232'},{id:"B94",body:'S.G.N.1994Carta Geomorfologica d’Italia 1:50.000Guida al rilevamento. Presidenza del Consiglio dei Ministri, Dip. Servizi Tecnici Nazionali, Servizio Geologico, Quaderno serie III, 4, 42 pp,\n\t\t\t'},{id:"B95",body:'SaitoK.1982Classification of alluvial fans in Japan by topographical and geological data of drainage basins. Geogr. Rev. Japan, 55334349\n\t\t\t'},{id:"B96",body:'ScheideggerA.2004Morphotectonics. Springer, Amsterdam'},{id:"B97",body:'SchummS. A.1956Evolution of drainage system and slopes in bad-lands at Perth Amboy, New Jersey. In: Schumm S.A. (ed.): Drainage Basin Morphology. Geol. Soc. America Bull., 67597598\n\t\t\t'},{id:"B98",body:'SchummS. A.1969River metamorphosis: proceedings of the American Society of Civil Engineers. Journal of the Hydraulics Division 95, 255273'},{id:"B99",body:'SpagnoloM.PazzagliaF. J.2005Testing the geological influences on the evolution of river profiles: a case from northern Apennines (Italy). Geografia Fisica e Dinamica Quanternaria 28103113'},{id:"B100",body:'StewartI. S.HancockP. L.1994Neotectonics. In: Hancock P.L. (ed.): «Continental deformation». Pergamon Press, 370409\n\t\t\t'},{id:"B101",body:'StrahlerA. N.1952Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. America Bull., 6311171142\n\t\t\t'},{id:"B102",body:'StrahlerA. N.1957Quantitative Analysis of Watershed Geomorphology. Am. Geophys. Union Trans., 38(6), 913-920.'},{id:"B103",body:'SylosLabini. S.BagnaiaR.D’EpifanioA.1993Il Quaternario del Bacino di Sulmona (Italia Centrale). Quaternaria Nova, 3343360'},{id:"B104",body:'TwidaleC. R.2004River patterns and their meaning. Earth-Science Reviews 67, 159218'},{id:"B105",body:'VittoriE.CavinatoG. P.MiccadeiE.1995Active faulting along the north-eastern edge of the Sulmona basin (central Apennines), Special Issue Bull. Am. Ass. Eng. Geol., 6115126'},{id:"B106",body:'WallaceR. E.1977Profiles and ages of young fault scarps in north-central Nevada. Geol. Soc. Am. Bull., 88107172\n\t\t\t'},{id:"B107",body:'WallaceR. E.1978Geometry and rate of changes of fault-generated range fronts, north-central Nevada. Geol. Surv. Journ. Res., 6637650'},{id:"B108",body:'ZernitzE. R.1932Drainage patterns and their significance. The Journal of Geology 40498521'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Enrico Miccadei",address:null,affiliation:'
Laboratory of Tectonic Geomorphology and GIS, Dipartimento di Geotecnologie per l\'Ambiente ed il Territorio (DIGAT), Università degli Studi "G. d\'Annunzio" Chieti-Pescara, Italy
Laboratory of Tectonic Geomorphology and GIS, Dipartimento di Geotecnologie per l\'Ambiente ed il Territorio (DIGAT), Università degli Studi "G. d\'Annunzio" Chieti-Pescara, Italy
'}],corrections:null},book:{id:"1297",title:"New Frontiers in Tectonic Research",subtitle:"At the Midst of Plate Convergence",fullTitle:"New Frontiers in Tectonic Research - At the Midst of Plate Convergence",slug:"new-frontiers-in-tectonic-research-at-the-midst-of-plate-convergence",publishedDate:"August 9th 2011",bookSignature:"Uri Schattner",coverURL:"https://cdn.intechopen.com/books/images_new/1297.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-594-5",pdfIsbn:"978-953-51-4460-1",editors:[{id:"37496",title:"Dr.",name:"Uri",middleName:null,surname:"Schattner",slug:"uri-schattner",fullName:"Uri Schattner"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"17658",title:'Tectonic Evolution of the Active "Chelif" Basin (Northern Algeria) from Paleomagnetic and Magnetic Fabric Investigations',slug:"tectonic-evolution-of-the-active-chelif-basin-northern-algeria-from-paleomagnetic-and-magnetic-fabri",totalDownloads:3177,totalCrossrefCites:0,signatures:"Derder M.E.M., Henry B., Amenna M., Bayou B., Maouche S., Besse J., Abtout A., Boukerbout H., Bessedik M., Bourouis S. and Ayache M.",authors:[{id:"35131",title:"Dr.",name:"Mohamed El-Messaoud",middleName:null,surname:"Derder",fullName:"Mohamed El-Messaoud Derder",slug:"mohamed-el-messaoud-derder"},{id:"44447",title:"Dr.",name:"Bernard",middleName:null,surname:"Henry",fullName:"Bernard Henry",slug:"bernard-henry"},{id:"44448",title:"Mr.",name:"Mohamed",middleName:null,surname:"Amenna",fullName:"Mohamed Amenna",slug:"mohamed-amenna"},{id:"44449",title:"Mr.",name:"Boualem",middleName:null,surname:"Bayou",fullName:"Boualem Bayou",slug:"boualem-bayou"},{id:"44450",title:"Dr.",name:"Said",middleName:null,surname:"Maouche",fullName:"Said Maouche",slug:"said-maouche"},{id:"44451",title:"Mr.",name:"Jean",middleName:null,surname:"Besse",fullName:"Jean Besse",slug:"jean-besse"},{id:"44452",title:"Mr.",name:"Abdeslam",middleName:null,surname:"Abtout",fullName:"Abdeslam Abtout",slug:"abdeslam-abtout"},{id:"44453",title:"Mr.",name:"Hassina",middleName:null,surname:"Boukerbout",fullName:"Hassina Boukerbout",slug:"hassina-boukerbout"},{id:"44454",title:"Mr.",name:"Seid",middleName:null,surname:"Bourouis",fullName:"Seid Bourouis",slug:"seid-bourouis"},{id:"44455",title:"Mr.",name:"Mohamed",middleName:null,surname:"Ayache",fullName:"Mohamed Ayache",slug:"mohamed-ayache"}]},{id:"17659",title:"Tunisian Transtensive Basins in Tethyan Geodynamic Context and Their Post-Tortonian Inversion",slug:"tunisian-transtensive-basins-in-tethyan-geodynamic-context-and-their-post-tortonian-inversion",totalDownloads:4780,totalCrossrefCites:3,signatures:"Adel Rigane and Claude Gourmelen",authors:[{id:"32726",title:"Dr.",name:"Adel",middleName:null,surname:"Rigane",fullName:"Adel Rigane",slug:"adel-rigane"},{id:"55908",title:"Prof.",name:"Claude",middleName:null,surname:"Gourmelen",fullName:"Claude Gourmelen",slug:"claude-gourmelen"}]},{id:"17660",title:"The Chotts Fold Belt of Southern Tunisia, North African Margin: Structural Pattern, Evolution, and Regional Geodynamic Implications",slug:"the-chotts-fold-belt-of-southern-tunisia-north-african-margin-structural-pattern-evolution-and-regio",totalDownloads:4830,totalCrossrefCites:10,signatures:"Taher Zouaghi, Rihab Guellala, Marzouk Lazzez,\nMourad Bédir, Mohamed Ben Youssef, Mohamed Hédi Inoubli and Fouad Zargouni",authors:[{id:"16932",title:"Prof.",name:"Mohamed Hédi",middleName:null,surname:"Inoubli",fullName:"Mohamed Hédi Inoubli",slug:"mohamed-hedi-inoubli"},{id:"39860",title:"Dr.",name:"Taher",middleName:null,surname:"Zouaghi",fullName:"Taher Zouaghi",slug:"taher-zouaghi"},{id:"48922",title:"Dr.",name:"Rihab",middleName:null,surname:"Guellala",fullName:"Rihab Guellala",slug:"rihab-guellala"},{id:"48923",title:"Dr.",name:"Marzouk",middleName:null,surname:"Lazzez",fullName:"Marzouk Lazzez",slug:"marzouk-lazzez"},{id:"48924",title:"Dr.",name:"Mourad",middleName:null,surname:"Bédir",fullName:"Mourad Bédir",slug:"mourad-bedir"},{id:"48925",title:"Mr.",name:"Mohamed",middleName:null,surname:"Ben Youssef",fullName:"Mohamed Ben Youssef",slug:"mohamed-ben-youssef"}]},{id:"17661",title:"Interplay between Tectonics and Mount Etna’s Volcanism: Insights into the Geometry of the Plumbing System",slug:"interplay-between-tectonics-and-mount-etna-s-volcanism-insights-into-the-geometry-of-the-plumbing-sy",totalDownloads:5046,totalCrossrefCites:5,signatures:"Domenico Patanè, Marco Aliotta, Andrea Cannata, Carmelo Cassisi, Mauro Coltelli, Giuseppe Di Grazia,\nPlacido Montalto and Luciano Zuccarello",authors:[{id:"52257",title:"Dr.",name:"Domenico",middleName:null,surname:"Patanè",fullName:"Domenico Patanè",slug:"domenico-patane"},{id:"61247",title:"Mr.",name:"Marco",middleName:null,surname:"Aliotta",fullName:"Marco Aliotta",slug:"marco-aliotta"},{id:"61248",title:"Dr",name:"Andrea",middleName:null,surname:"Cannata",fullName:"Andrea Cannata",slug:"andrea-cannata"},{id:"61249",title:"Mr.",name:"Giuseppe",middleName:null,surname:"Di Grazia",fullName:"Giuseppe Di Grazia",slug:"giuseppe-di-grazia"},{id:"61250",title:"Mr.",name:"Placido",middleName:null,surname:"Montalto",fullName:"Placido Montalto",slug:"placido-montalto"},{id:"87759",title:"Dr.",name:"Mauro",middleName:null,surname:"Coltelli",fullName:"Mauro Coltelli",slug:"mauro-coltelli"},{id:"87762",title:"Dr.",name:"Carmelo",middleName:null,surname:"Cassisi",fullName:"Carmelo Cassisi",slug:"carmelo-cassisi"},{id:"87763",title:"Dr.",name:"Luciano",middleName:null,surname:"Zuccarello",fullName:"Luciano Zuccarello",slug:"luciano-zuccarello"}]},{id:"17662",title:"Transtensional Tectonics Played a Key Role During the Variscan Cycle in the Sardinia-Corsica Massif",slug:"transtensional-tectonics-played-a-key-role-during-the-variscan-cycle-in-the-sardinia-corsica-massif",totalDownloads:2598,totalCrossrefCites:0,signatures:"Nello Minzoni",authors:[{id:"17686",title:"Prof.",name:"Nello",middleName:null,surname:"Minzoni",fullName:"Nello Minzoni",slug:"nello-minzoni"}]},{id:"17663",title:"Relationships between Lithospheric Flexure, Thrust Tectonics and Stratigraphic Sequences in Foreland Setting: the Southern Apennines Foreland Basin System, Italy",slug:"relationships-between-lithospheric-flexure-thrust-tectonics-and-stratigraphic-sequences-in-foreland-",totalDownloads:3364,totalCrossrefCites:10,signatures:"Salvatore Critelli, Francesco Muto,\nVincenzo Tripodi and Francesco Perri",authors:[{id:"55590",title:"Prof.",name:"Salvatore",middleName:null,surname:"Critelli",fullName:"Salvatore Critelli",slug:"salvatore-critelli"},{id:"55592",title:"Prof.",name:"Francesco",middleName:null,surname:"Muto",fullName:"Francesco Muto",slug:"francesco-muto"},{id:"55593",title:"Prof.",name:"Vincenzo",middleName:null,surname:"Tripodi",fullName:"Vincenzo Tripodi",slug:"vincenzo-tripodi"},{id:"85117",title:"Dr.",name:"Francesco",middleName:null,surname:"Perri",fullName:"Francesco Perri",slug:"francesco-perri"}]},{id:"17664",title:"Two Tectonic Geomorphology Studies on the Landscape and Drainage Network of Chain and Piedmont Areas of the Abruzzi Region (Central Apennines, Italy)",slug:"two-tectonic-geomorphology-studies-on-the-landscape-and-drainage-network-of-chain-and-piedmont-areas",totalDownloads:3845,totalCrossrefCites:0,signatures:"Miccadei Enrico and Piacentini Tommaso",authors:[{id:"33172",title:"Dr.",name:"Tommaso",middleName:null,surname:"Piacentini",fullName:"Tommaso Piacentini",slug:"tommaso-piacentini"},{id:"48880",title:"Prof.",name:"Enrico",middleName:null,surname:"Miccadei",fullName:"Enrico Miccadei",slug:"enrico-miccadei"}]},{id:"17665",title:"Neogene Tectonics in Croatian Part of the Pannonian Basin and Reflectance in Hydrocarbon Accumulations",slug:"neogene-tectonics-in-croatian-part-of-the-pannonian-basin-and-reflectance-in-hydrocarbon-accumulatio",totalDownloads:2836,totalCrossrefCites:7,signatures:"Tomislav Malvić and Josipa Velic",authors:[{id:"42521",title:"Prof.",name:"Tomislav",middleName:null,surname:"Malvić",fullName:"Tomislav Malvić",slug:"tomislav-malvic"},{id:"44372",title:"Prof.",name:"Josipa",middleName:null,surname:"Velic",fullName:"Josipa Velic",slug:"josipa-velic"}]},{id:"17666",title:"Architecture of Kinematics and Deformation History of the Tertiary Supradetachment Thrace Basin: Rhodope Province (NE Greece)",slug:"architecture-of-kinematics-and-deformation-history-of-the-tertiary-supradetachment-thrace-basin-rhod",totalDownloads:3560,totalCrossrefCites:0,signatures:"Adamantios Kilias, George Falalakis, Aristides Sfeikos, Eleftheria Papadimitriou, Agni Vamvaka and Chara Gkarlaouni",authors:[{id:"38215",title:"Prof.",name:"Adamantios",middleName:null,surname:"Kilias",fullName:"Adamantios Kilias",slug:"adamantios-kilias"},{id:"38312",title:"Dr",name:"George",middleName:null,surname:"Falalakis",fullName:"George Falalakis",slug:"george-falalakis"},{id:"38313",title:"Dr.",name:"Aristides",middleName:null,surname:"Sfeikos",fullName:"Aristides Sfeikos",slug:"aristides-sfeikos"},{id:"38314",title:"Prof.",name:"Eleftheria",middleName:null,surname:"Papadimitriou",fullName:"Eleftheria Papadimitriou",slug:"eleftheria-papadimitriou"},{id:"38315",title:"Dr.",name:"Agni",middleName:null,surname:"Vamvaka",fullName:"Agni Vamvaka",slug:"agni-vamvaka"},{id:"38316",title:"Dr.",name:"Chara",middleName:null,surname:"Garlaouni",fullName:"Chara Garlaouni",slug:"chara-garlaouni"}]},{id:"17667",title:"The North Anatolian Fault Zone: an Evaluation of Earthquake Hazard Parameters",slug:"the-north-anatolian-fault-zone-an-evaluation-of-earthquake-hazard-parameters",totalDownloads:5336,totalCrossrefCites:3,signatures:"Yusuf Bayrak, Hakan Çınar and Erdem Bayrak",authors:[{id:"28834",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bayrak",fullName:"Yusuf Bayrak",slug:"yusuf-bayrak"},{id:"42671",title:"Mr.",name:"Hakan",middleName:null,surname:"Çınar",fullName:"Hakan Çınar",slug:"hakan-cinar"},{id:"82645",title:"Mr.",name:"Erdem",middleName:null,surname:"Bayrak",fullName:"Erdem Bayrak",slug:"erdem-bayrak"}]},{id:"17668",title:"Tectonic Escape Mechanism in the Crustal Evolution of Eastern Anatolian Region (Turkey)",slug:"tectonic-escape-mechanism-in-the-crustal-evolution-of-eastern-anatolian-region-turkey-",totalDownloads:4131,totalCrossrefCites:4,signatures:"Ömer Elitok and M. Nuri Dolmaz",authors:[{id:"47123",title:"Dr.",name:"Ömer",middleName:null,surname:"Elitok",fullName:"Ömer Elitok",slug:"omer-elitok"},{id:"47136",title:"Dr.",name:"M. Nuri",middleName:null,surname:"Dolmaz",fullName:"M. Nuri Dolmaz",slug:"m.-nuri-dolmaz"}]},{id:"17669",title:"Early-to-mid Pleistocene Tectonic Transition Across the Eastern Mediterranean Influences the Course of Human History",slug:"early-to-mid-pleistocene-tectonic-transition-across-the-eastern-mediterranean-influences-the-course-",totalDownloads:3028,totalCrossrefCites:0,signatures:"Uri Schattner",authors:[{id:"37496",title:"Dr.",name:"Uri",middleName:null,surname:"Schattner",fullName:"Uri Schattner",slug:"uri-schattner"}]},{id:"17670",title:"The Qatar–South Fars Arch Development (Arabian Platform, Persian Gulf): Insights from Seismic Interpretation and Analogue Modelling",slug:"the-qatar-south-fars-arch-development-arabian-platform-persian-gulf-insights-from-seismic-interpreta",totalDownloads:7198,totalCrossrefCites:14,signatures:"C.R. Perotti, S. Carruba, M. Rinaldi, G. Bertozzi, L. Feltre and M. Rahimi",authors:[{id:"38310",title:"Dr.",name:"Stefano",middleName:null,surname:"Carruba",fullName:"Stefano Carruba",slug:"stefano-carruba"},{id:"42459",title:"Prof.",name:"Cesare",middleName:null,surname:"Perotti",fullName:"Cesare Perotti",slug:"cesare-perotti"},{id:"42460",title:"Dr.",name:"Marco",middleName:null,surname:"Rinaldi",fullName:"Marco Rinaldi",slug:"marco-rinaldi"},{id:"42465",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Bertozzi",fullName:"Giuseppe Bertozzi",slug:"giuseppe-bertozzi"},{id:"42466",title:"Dr.",name:"Luca",middleName:null,surname:"Feltre",fullName:"Luca Feltre",slug:"luca-feltre"},{id:"42467",title:"Dr.",name:"Mashallah",middleName:null,surname:"Rahimi",fullName:"Mashallah Rahimi",slug:"mashallah-rahimi"}]}]},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"36273",title:"Introduction to Infrared Spectroscopy",slug:"introduction-to-infrared-spectroscopy",signatures:"Theophile Theophanides",authors:[{id:"37194",title:"Dr.",name:"Theophanides",middleName:null,surname:"Theophile",fullName:"Theophanides Theophile",slug:"theophanides-theophile"}]},{id:"36166",title:"Using Infrared Spectroscopy to Identify New Amorphous Phases - A Case Study of Carbonato Complex Formed by Mechanochemical Processing",slug:"using-infrared-spectroscopy-to-identify-new-amorphous-phases-a-case-study-of-carbonato-complexes-fo",signatures:"Tadej Rojac, Primož Šegedin and Marija Kosec",authors:[{id:"25116",title:"Prof.",name:"Marija",middleName:null,surname:"Kosec",fullName:"Marija Kosec",slug:"marija-kosec"},{id:"105876",title:"Dr.",name:"Tadej",middleName:null,surname:"Rojac",fullName:"Tadej Rojac",slug:"tadej-rojac"},{id:"111754",title:"Prof.",name:"Primoz",middleName:null,surname:"Segedin",fullName:"Primoz Segedin",slug:"primoz-segedin"}]},{id:"36167",title:"Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites",slug:"application-of-infrared-spectroscopy-to-analysis-of-chitosan-clay-nanocomposites",signatures:"Suédina M.L. Silva, Carla R.C. Braga, Marcus V.L. Fook, Claudia M.O. Raposo, Laura H. Carvalho and Eduardo L. Canedo",authors:[{id:"104808",title:"Prof.",name:"Suedina Maria",middleName:"De Lima",surname:"Silva",fullName:"Suedina Maria Silva",slug:"suedina-maria-silva"},{id:"111910",title:"Prof.",name:"Carla",middleName:"Lima",surname:"R. C. Braga",fullName:"Carla R. C. Braga",slug:"carla-r.-c.-braga"},{id:"142933",title:"Prof.",name:"Marcus Vinícius",middleName:null,surname:"Lia Fook",fullName:"Marcus Vinícius Lia Fook",slug:"marcus-vinicius-lia-fook"},{id:"142934",title:"Prof.",name:"Claudia Maria",middleName:null,surname:"De Oliveira Raposo",fullName:"Claudia Maria De Oliveira Raposo",slug:"claudia-maria-de-oliveira-raposo"},{id:"142936",title:"Prof.",name:"Laura",middleName:null,surname:"Hecker De Carvalho",fullName:"Laura Hecker De Carvalho",slug:"laura-hecker-de-carvalho"},{id:"142939",title:"Dr.",name:"Eduardo Luis",middleName:null,surname:"Canedo",fullName:"Eduardo Luis Canedo",slug:"eduardo-luis-canedo"}]},{id:"36168",title:"Structural and Optical Behavior of Vanadate-Tellurate Glasses Containing PbO or Sm2O3",slug:"structural-and-optical-behavior-of-vanadate-tellurate-glasses",signatures:"E. Culea, S. Rada, M. Culea and M. Rada",authors:[{id:"114650",title:"Dr",name:"Eugen",middleName:null,surname:"Culea",fullName:"Eugen Culea",slug:"eugen-culea"},{id:"114653",title:"Dr.",name:"Simona",middleName:null,surname:"Rada",fullName:"Simona Rada",slug:"simona-rada"}]},{id:"36169",title:"Water in Rocks and Minerals - Species, Distributions, and Temperature Dependences",slug:"water-in-rocks-and-minerals-species-distributions-and-temperature-dependences",signatures:"Jun-ichi Fukuda",authors:[{id:"105384",title:"Dr.",name:"Jun-Ichi",middleName:null,surname:"Fukuda",fullName:"Jun-Ichi Fukuda",slug:"jun-ichi-fukuda"}]},{id:"36170",title:"Attenuated Total Reflection - Infrared Spectroscopy Applied to the Study of Mineral - Aqueous Electrolyte Solution Interfaces: A General Overview and a Case Study",slug:"attenuated-total-reflection-infrared-spectroscopy-applied-to-the-study-of-mineral-aqueous-el",signatures:"Grégory Lefèvre, Tajana Preočanin and Johannes Lützenkirchen",authors:[{id:"108416",title:"Dr.",name:"Johannes",middleName:null,surname:"Lützenkirchen",fullName:"Johannes Lützenkirchen",slug:"johannes-lutzenkirchen"},{id:"111675",title:"Dr.",name:"Gregory",middleName:null,surname:"Lefevre",fullName:"Gregory Lefevre",slug:"gregory-lefevre"},{id:"111676",title:"Prof.",name:"Tajana",middleName:null,surname:"Preocanin",fullName:"Tajana Preocanin",slug:"tajana-preocanin"}]},{id:"36171",title:"Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy",slug:"research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy",signatures:"Liga Berzina-Cimdina and Natalija Borodajenko",authors:[{id:"110522",title:"Prof.",name:"Liga",middleName:null,surname:"Berzina-Cimdina",fullName:"Liga Berzina-Cimdina",slug:"liga-berzina-cimdina"},{id:"112181",title:"MSc.",name:"Natalija",middleName:null,surname:"Borodajenko",fullName:"Natalija Borodajenko",slug:"natalija-borodajenko"}]},{id:"36172",title:"FTIR Spectroscopy of Adsorbed Probe Molecules for Analyzing the Surface Properties of Supported Pt (Pd) Catalysts",slug:"ftir-spectroscopy-of-adsorbed-probe-molecules-for-analyzing-the-surface-properties-of-supported-pt-p",signatures:"Olga B. Belskaya, Irina G. Danilova, Maxim O. Kazakov, Roman M. Mironenko, Alexander V. Lavrenov and Vladimir A. Likholobov",authors:[{id:"107715",title:"Dr.",name:"Olga",middleName:null,surname:"Belskaya",fullName:"Olga Belskaya",slug:"olga-belskaya"},{id:"140198",title:"Dr.",name:"Irina",middleName:null,surname:"Danilova",fullName:"Irina Danilova",slug:"irina-danilova"},{id:"140200",title:"Dr.",name:"Maxim",middleName:null,surname:"Kazakov",fullName:"Maxim Kazakov",slug:"maxim-kazakov"},{id:"140202",title:"Mr.",name:"Roman",middleName:"Mikhailovich",surname:"Mironenko",fullName:"Roman Mironenko",slug:"roman-mironenko"},{id:"140203",title:"Dr.",name:"Alexander",middleName:null,surname:"Lavrenov",fullName:"Alexander Lavrenov",slug:"alexander-lavrenov"},{id:"140204",title:"Prof.",name:"Vladimir",middleName:null,surname:"Likholobov",fullName:"Vladimir Likholobov",slug:"vladimir-likholobov"}]},{id:"36173",title:"Hydrothermal Treatment of Hokkaido Peat - An Application of FTIR and 13C NMR Spectroscopy on Examining of Artificial Coalification Process and Development",slug:"hydrothermal-treatment-of-hokkaido-peat-an-application-of-ftir-and-13c-nmr-spectroscopy-on-examinin",signatures:"Anggoro Tri Mursito and Tsuyoshi Hirajima",authors:[{id:"104786",title:"Dr.",name:"Anggoro Tri",middleName:null,surname:"Mursito",fullName:"Anggoro Tri Mursito",slug:"anggoro-tri-mursito"},{id:"110978",title:"Prof.",name:"Tsuyoshi",middleName:null,surname:"Hirajima",fullName:"Tsuyoshi Hirajima",slug:"tsuyoshi-hirajima"}]},{id:"36174",title:"FTIR - An Essential Characterization Technique for Polymeric Materials",slug:"ftir-an-essential-characterization-technique-for-polymeric-materials",signatures:"Vladimir A. Escobar Barrios, José R. Rangel Méndez, Nancy V. Pérez Aguilar, Guillermo Andrade Espinosa and José L. Dávila Rodríguez",authors:[{id:"12709",title:"Dr.",name:"Jose Rene",middleName:null,surname:"Rangel-Mendez",fullName:"Jose Rene Rangel-Mendez",slug:"jose-rene-rangel-mendez"},{id:"12711",title:"Dr.",name:"Vladimir Alonso",middleName:null,surname:"Escobar Barrios",fullName:"Vladimir Alonso Escobar Barrios",slug:"vladimir-alonso-escobar-barrios"},{id:"112164",title:"Dr",name:"Guillermo",middleName:null,surname:"Andrade-Espinosa",fullName:"Guillermo Andrade-Espinosa",slug:"guillermo-andrade-espinosa"},{id:"112165",title:"Dr.",name:"José Luis",middleName:null,surname:"Dávila-Rodríguez",fullName:"José Luis Dávila-Rodríguez",slug:"jose-luis-davila-rodriguez"},{id:"112167",title:"Dr.",name:"Nancy Verónica",middleName:null,surname:"Pérez-Aguilar",fullName:"Nancy Verónica Pérez-Aguilar",slug:"nancy-veronica-perez-aguilar"}]},{id:"36175",title:"Preparation and Characterization of PVDF/PMMA/Graphene Polymer Blend Nanocomposites by Using ATR-FTIR Technique",slug:"preparation-and-characterization-of-pvdf-pmma-graphene-polymer-blend-nanocomposites-by-using-ft-ir-t",signatures:"Somayeh Mohamadi",authors:[{id:"108556",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohamadi",fullName:"Somayeh Mohamadi",slug:"somayeh-mohamadi"}]},{id:"36176",title:"Reflectance IR Spectroscopy",slug:"fundamental-of-reflectance-ir-spectroscopy",signatures:"Zahra Monsef Khoshhesab",authors:[{id:"111629",title:"Dr.",name:"Zahra",middleName:null,surname:"Monsef Khoshhesab",fullName:"Zahra Monsef Khoshhesab",slug:"zahra-monsef-khoshhesab"}]},{id:"36177",title:"Evaluation of Graft Copolymerization of Acrylic Monomers Onto Natural Polymers by Means Infrared Spectroscopy",slug:"evaluation-of-graft-copolymerization-of-acrylic-monomers-onto-natural-polymers-by-means-infrared-spe",signatures:"José Luis Rivera-Armenta, Cynthia Graciela Flores-Hernández, Ruth Zurisadai Del Angel-Aldana, Ana María Mendoza-Martínez, Carlos Velasco-Santos and Ana Laura Martínez-Hernández",authors:[{id:"37761",title:"Prof.",name:"Ana Laura",middleName:null,surname:"Martinez-Hernandez",fullName:"Ana Laura Martinez-Hernandez",slug:"ana-laura-martinez-hernandez"},{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",fullName:"Jose Luis Rivera Armenta",slug:"jose-luis-rivera-armenta"},{id:"108894",title:"MSc.",name:"Cynthia Graciela",middleName:null,surname:"Flores-Hernández",fullName:"Cynthia Graciela Flores-Hernández",slug:"cynthia-graciela-flores-hernandez"},{id:"108896",title:"MSc.",name:"Ruth Zurisadai",middleName:null,surname:"Del Angel Aldana",fullName:"Ruth Zurisadai Del Angel Aldana",slug:"ruth-zurisadai-del-angel-aldana"},{id:"108898",title:"Dr.",name:"Carlos",middleName:null,surname:"Velasco-Santos",fullName:"Carlos Velasco-Santos",slug:"carlos-velasco-santos"},{id:"108905",title:"Dr.",name:"Ana Maria",middleName:null,surname:"Mendoza-Martínez",fullName:"Ana Maria Mendoza-Martínez",slug:"ana-maria-mendoza-martinez"}]},{id:"36178",title:"Applications of FTIR on Epoxy Resins - Identification, Monitoring the Curing Process, Phase Separation and Water Uptake",slug:"applications-of-ftir-on-epoxy-resins-identification-monitoring-the-curing-process-phase-separatio",signatures:"María González González, Juan Carlos Cabanelas and Juan Baselga",authors:[{id:"107857",title:"Prof.",name:"Juan",middleName:null,surname:"Baselga",fullName:"Juan Baselga",slug:"juan-baselga"},{id:"138113",title:"Dr.",name:"María",middleName:null,surname:"González",fullName:"María González",slug:"maria-gonzalez"},{id:"138114",title:"Dr.",name:"Juan C.",middleName:null,surname:"Cabanelas",fullName:"Juan C. Cabanelas",slug:"juan-c.-cabanelas"}]},{id:"36179",title:"Use of FTIR Analysis to Control the Self-Healing Functionality of Epoxy Resins",slug:"use-of-ft-ir-analysis-to-control-the-self-healing-functionality-of-epoxy-resins",signatures:"Liberata Guadagno and Marialuigia Raimondo",authors:[{id:"106836",title:"Prof.",name:"Liberata",middleName:null,surname:"Guadagno",fullName:"Liberata Guadagno",slug:"liberata-guadagno"}]},{id:"36180",title:"Infrared Analysis of Electrostatic Layer-By-Layer Polymer Membranes Having Characteristics of Heavy Metal Ion Desalination",slug:"infrared-analysis-of-electrostatic-layer-by-layer-polymer-membranes-having-characteristics-of-heavy",signatures:"Weimin Zhou, Huitan Fu and Takaomi Kobayashi",authors:[{id:"110384",title:"Dr.",name:"Takaomi",middleName:null,surname:"Kobayashi",fullName:"Takaomi Kobayashi",slug:"takaomi-kobayashi"}]},{id:"36181",title:"Infrared Spectroscopy as a Tool to Monitor Radiation Curing",slug:"infrared-spectroscopy-as-a-tool-to-monitor-radiation-curing",signatures:"Marco Sangermano, Patrick Meier and Spiros Tzavalas",authors:[{id:"112286",title:"Dr.",name:"Spiros",middleName:null,surname:"Tzavalas",fullName:"Spiros Tzavalas",slug:"spiros-tzavalas"},{id:"114382",title:"Prof.",name:"Marco",middleName:null,surname:"Sangermano",fullName:"Marco Sangermano",slug:"marco-sangermano"},{id:"114384",title:"Dr",name:"Patrick",middleName:null,surname:"Meier",fullName:"Patrick Meier",slug:"patrick-meier"}]},{id:"36182",title:"Characterization of Compositional Gradient Structure of Polymeric Materials by FTIR Technology",slug:"characterization-of-compositional-gradient-structure-of-polymeric-materials-by-ft-ir-technology",signatures:"Alata Hexig and Bayar Hexig",authors:[{id:"20867",title:"Dr.",name:"Bayar",middleName:null,surname:"Hexig",fullName:"Bayar Hexig",slug:"bayar-hexig"},{id:"111986",title:"Dr.",name:"Alata",middleName:null,surname:"Hexig",fullName:"Alata Hexig",slug:"alata-hexig"}]},{id:"36183",title:"Fourier Transform Infrared Spectroscopy - Useful Analytical Tool for Non-Destructive Analysis",slug:"fourier-trasform-infrared-spectroscopy-useful-analytical-tool-for-non-destructive-analysis",signatures:"Simona-Carmen Litescu, Eugenia D. Teodor, Georgiana-Ileana Truica, Andreia Tache and Gabriel-Lucian Radu",authors:[{id:"24425",title:"Dr.",name:"Simona Carmen",middleName:null,surname:"Litescu",fullName:"Simona Carmen Litescu",slug:"simona-carmen-litescu"},{id:"24429",title:"Prof.",name:"Gabriel-Lucian",middleName:null,surname:"Radu",fullName:"Gabriel-Lucian Radu",slug:"gabriel-lucian-radu"},{id:"108318",title:"Dr.",name:"Eugenia D.",middleName:null,surname:"Teodor",fullName:"Eugenia D. Teodor",slug:"eugenia-d.-teodor"},{id:"108323",title:"Dr.",name:"Georgiana-Ileana",middleName:null,surname:"Badea",fullName:"Georgiana-Ileana Badea",slug:"georgiana-ileana-badea"},{id:"136337",title:"Ms.",name:"Andreia",middleName:null,surname:"Tache",fullName:"Andreia Tache",slug:"andreia-tache"}]},{id:"36184",title:"Infrared Spectroscopy in the Analysis of Building and Construction Materials",slug:"infrared-spectroscopy-of-cementitious-materials",signatures:"Lucia Fernández-Carrasco, D. Torrens-Martín, L.M. Morales and Sagrario Martínez-Ramírez",authors:[{id:"107401",title:"Dr.",name:"Lucia J",middleName:null,surname:"Fernández",fullName:"Lucia J Fernández",slug:"lucia-j-fernandez"}]},{id:"36185",title:"Infrared Spectroscopy Techniques in the Characterization of SOFC Functional Ceramics",slug:"infrared-spectroscopy-techniques-in-the-characterization-of-sofc-functional-ceramics",signatures:"Daniel A. Macedo, Moisés R. Cesário, Graziele L. Souza, Beatriz Cela, Carlos A. Paskocimas, Antonio E. Martinelli, Dulce M. A. Melo and Rubens M. Nascimento",authors:[{id:"102015",title:"MSc.",name:"Daniel",middleName:null,surname:"Macedo",fullName:"Daniel Macedo",slug:"daniel-macedo"},{id:"112309",title:"MSc",name:"Moisés",middleName:"Romolos",surname:"Cesário",fullName:"Moisés Cesário",slug:"moises-cesario"},{id:"112310",title:"Ms.",name:"Graziele",middleName:null,surname:"Souza",fullName:"Graziele Souza",slug:"graziele-souza"},{id:"112311",title:"MSc.",name:"Beatriz",middleName:null,surname:"Cela",fullName:"Beatriz Cela",slug:"beatriz-cela"},{id:"112312",title:"Prof.",name:"Carlos",middleName:null,surname:"Paskocimas",fullName:"Carlos Paskocimas",slug:"carlos-paskocimas"},{id:"112314",title:"Prof.",name:"Antonio",middleName:null,surname:"Martinelli",fullName:"Antonio Martinelli",slug:"antonio-martinelli"},{id:"112315",title:"Prof.",name:"Dulce",middleName:null,surname:"Melo",fullName:"Dulce Melo",slug:"dulce-melo"},{id:"112316",title:"Dr.",name:"Rubens",middleName:"Maribondo Do",surname:"Nascimento",fullName:"Rubens Nascimento",slug:"rubens-nascimento"}]},{id:"36186",title:"Infrared Spectroscopy of Functionalized Magnetic Nanoparticles",slug:"infrared-spectroscopy-of-functionalized-magnetic-nanoparticles",signatures:"Perla E. García Casillas, Claudia A. Rodriguez Gonzalez and Carlos A. Martínez Pérez",authors:[{id:"104636",title:"Dr.",name:"Perla E.",middleName:null,surname:"García Casillas",fullName:"Perla E. García Casillas",slug:"perla-e.-garcia-casillas"},{id:"112440",title:"Dr.",name:"Carlos A.",middleName:null,surname:"Martínez Pérez",fullName:"Carlos A. Martínez Pérez",slug:"carlos-a.-martinez-perez"},{id:"112441",title:"Dr.",name:"Claudia A.",middleName:null,surname:"Rodriguez Gonzalez",fullName:"Claudia A. Rodriguez Gonzalez",slug:"claudia-a.-rodriguez-gonzalez"}]},{id:"36187",title:"Determination of Adsorption Characteristics of Volatile Organic Compounds Using Gas Phase FTIR Spectroscopy Flow Analysis",slug:"determination-of-adsorption-characteristics-of-volatile-organic-compounds-using-gas-phase-ftir-spect",signatures:"Tarik Chafik",authors:[{id:"107310",title:"Prof.",name:"Tarik",middleName:null,surname:"Chafik",fullName:"Tarik Chafik",slug:"tarik-chafik"}]},{id:"36188",title:"Identification of Rocket Motor Characteristics from Infrared Emission Spectra",slug:"identification-of-rocket-motor-characteristics-from-infrared-emission-spectra",signatures:"N. Hamp, J.H. Knoetze, C. Aldrich and C. Marais",authors:[{id:"112229",title:"Prof.",name:"Chris",middleName:null,surname:"Aldrich",fullName:"Chris Aldrich",slug:"chris-aldrich"},{id:"112232",title:"Prof.",name:"Hansie",middleName:null,surname:"Knoetze",fullName:"Hansie Knoetze",slug:"hansie-knoetze"},{id:"135327",title:"Ms.",name:"Corne",middleName:null,surname:"Marais",fullName:"Corne Marais",slug:"corne-marais"}]},{id:"36189",title:"Optical Technologies for Determination of Pesticide Residue",slug:"optical-technology-for-determination-of-pesticide-residue",signatures:"Yankun Peng, Yongyu Li and Jingjing Chen",authors:[{id:"113343",title:"Prof.",name:"Yankun",middleName:null,surname:"Peng",fullName:"Yankun Peng",slug:"yankun-peng"},{id:"116636",title:"Dr.",name:"Yongyu",middleName:null,surname:"Li",fullName:"Yongyu Li",slug:"yongyu-li"},{id:"116637",title:"Dr.",name:"Jingjing",middleName:null,surname:"Chen",fullName:"Jingjing Chen",slug:"jingjing-chen"}]},{id:"36190",title:"High Resolution Far Infrared Spectra of the Semiconductor Alloys Obtained Using the Synchrotron Radiation as Source",slug:"high-resolution-spectra-of-semiconductor-s-alloys-obtained-using-the-far-infrared-synchrotron-radi",signatures:"E.M. Sheregii",authors:[{id:"102655",title:"Prof.",name:"Eugen",middleName:null,surname:"Sheregii",fullName:"Eugen Sheregii",slug:"eugen-sheregii"}]},{id:"36191",title:"Effective Reaction Monitoring of Intermediates by ATR-IR Spectroscopy Utilizing Fibre Optic Probes",slug:"effective-reaction-monitoring-of-intermediates-by-atr-ir-spectroscopy-utilizing-fibre-optic-probes",signatures:"Daniel Lumpi and Christian Braunshier",authors:[{id:"109019",title:"Dr.",name:"Christian",middleName:null,surname:"Braunshier",fullName:"Christian Braunshier",slug:"christian-braunshier"},{id:"111798",title:"MSc.",name:"Daniel",middleName:null,surname:"Lumpi",fullName:"Daniel Lumpi",slug:"daniel-lumpi"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"73694",title:"Regulation of Angiogenesis Using Nanomaterial Based Formulations: An Emerging Therapeutic Strategy to Manage Multiple Pathological Conditions",doi:"10.5772/intechopen.94151",slug:"regulation-of-angiogenesis-using-nanomaterial-based-formulations-an-emerging-therapeutic-strategy-to",body:'
1. Introduction
Angiogenesis is an important biological process which involves the development of new capillary network from the pre-existing vasculature [1, 2]. The process of angiogenesis is indispensable in supplying oxygen and nutrients to cells under hypoxia, and it has been implicated in different physiological processes such as wound healing, embryogenesis etc. It has also been reported to play key role in many pathologies including diabetic retinopathy and cancer [3]. Angiogenesis is a multi-step process, which commences when the primary, pro angiogenic cytokine, VEGF, is secreted by the cells experiencing hypoxia. Thereafter the interaction of VEGF with its receptor (VEGFR2) on the nearby endothelial cells (EC), leads to EC activation, proliferation, migration, extra cellular matrix (ECM) remodeling, tube formation followed by loop formation leading finally to neo vessel formation and vascular stabilization [4, 5].
The process of angiogenesis is regulated by multiple factors, which may be pro- or anti-angiogenic in nature. The endogenous pro angiogenic factors include growth factors like VEGF, PDGF, FGF, EGF, angiopoietin-1, interleukin-8, placental growth factor, angiogenin etc. The anti- angiogenic factors include endostatin, angiostatin, prolactin, fibronectin, vasostatin, interleukin-12, platelet factor 4 etc. [6, 7]. An equilibrium exists between the pro- and anti-angiogenic factors under physiological conditions, and any disturbance in that equilibrium would result in pathological manifestations [3]. Targeting angiogenesis therefore has drawn huge attention with respect to the therapeutics of pathologies were excessive or insufficient angiogenesis prevails [7]. One of the major approaches in angiogenesis targeted therapy involves targeting VEGF signaling pathway. Humanized monoclonal antibody targeting VEGFA, namely, Bevacizumab, with the approval of US Food and Drug Administration (FDA), has been employed in a combination therapy for the treatment of metastatic colorectal cancer [8]. In addition, an aptamer which inhibits VEGF 165, namely, Pegaptanib has been approved by FDA to treat Age related macular degeneration [9]. In spite of all such interventions, targeting angiogenesis demands much more explorations due to a variety of unresolved issues such as development of resistance to antiangiogenic therapy, lack of adequate treatment for ischaemic disorders etc. [10].
In an urge to overcome the limitations of conventional angiogenic therapy, researchers globally have focused on developing ‘nanomedicines’ for the treatment and diagnosis of various diseases associated with aberrant angiogenesis [11]. The field of nanomedicine involves the use of nanomaterials for biological and medicinal applications by virtue of their ability to interact with nucleic acids, proteins and membrane receptors effortlessly [10]. In this chapter, we have therefore focused on various research achievements pertaining to candidate nanomaterials that can be developed as potential drugs for angiogenic therapy.
2. Nanomaterials
The class of substances having at least one dimension less than 100 nano meters are called nanoscale materials and the field of science that deals with the synthesis, study of structure, physical and chemical properties and applications of various types of nanoscale materials is referred as Nanotechnology [12]. Nanomaterials usually occur as zero, one, two and three-dimensional structures. Generally, the nanoparticles are comprised of three layers called the surface layer, the shell layer and the core. The core is the central portion of the materials surrounded by the shell and surface layer. The shell layer is chemically different from the core and the outer layer. The surface layer permits surface modification with a variety of moieties like polymers, metal ions, and surfactants [13]. The physical and chemical properties of bulk materials are independent of their size, however, when converted into nano scale materials their optical, physical, mechanical and chemical properties vary according to their size [14]. Such properties include solubility, color, toxicity etc. The major reason for these improved properties of nanomaterials are due to their high surface mass ratio as compared with the bulk [15]. Due to their unique size, shape, structure and solubility they have found application in the biomedical, optical, sensor, electric and energy harvesting fields. Many nanomaterials are already being explored for their use in biomedical imaging [16], bio/chemical sensing [17], targeted gene and drug delivery [18]. We here focus on candidate nanomaterials which are potential nanomedicines in the field of therapeutic angiogenesis.
2.1 Classification of nanomaterials according to chemical composition
Based on the origin, size, morphology and chemical composition, nanomaterials are divided into various categories. In the present chapter we are focusing on some of the important classes that have found applications in biological field.
2.1.1 Metal nanoparticles
Metal nanoparticles are those particles which may be the pure metal or metal compounds like metal oxide, hydroxides, sulphides etc., exhibit size in the submicron scale. A variety of metal nanoparticles has been synthesized with varied structural morphology, size and compositions [19]. These metal nanoparticles can be synthesized from various metal precursors and can be functionalized with several groups [20]. The metal nanoparticles permit surface modification with various chemical functional groups and further allow them to be conjugated with polymers, ligands, antibodies etc. The improved surface mass ratio, shape, morphology and functionality, quantum confinement and plasmon excitation make them suitable for the applications in the field of energy, catalysis, electronics, and medicine [21]. However, they show some demerits such as tendency to get agglomerate and chances of formation of impurities due to their high reactivity. Many of the nanomaterials except gold, silver, and platinum exhibits high cyto-toxicity.
2.1.2 Carbon-based nanomaterials
Among the various carbonaceous nanomaterials, the zero-dimensional carbon-based quantum dots (CQDs and GQDs), one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene (GR) are currently the most popular nanocarbon representatives in biological applications [22]. Carbon-based QDs are the recent extension in the nano carbon family with fascinating properties like biocompatibility, resistance to photobleaching and attractive photoluminescence. These outstanding properties make them smart candidates for bioimaging, sensing, drug delivery and cancer therapy [23, 24]. CNTs have a unique 1D nanostructure, with sp2 hybridized carbon atoms rolled up to design a cylindrical shape. They exist as both single-walled CNTs and multi-walled CNTs depending on the number rolled-up graphene sheets. Due to their exceptional structural, mechanical, and electrical diversities, they deliver remarkable flexibility, strength, and electrical properties suitable for various biological applications like medical diagnostics, sensing and treatment of diseases. Graphene represents the 2D nano allotrope of carbon illustrating a planar graphitic structure with sp2 hybridized carbon network. Its surpassingly large surface area, easy functionalization and chemical purity makes it a potential candidate for drug delivery. Moreover, it is also widely explored for in vivo imaging and cancer detection.
2.1.3 Polymeric nanoparticles
Polymeric nanoparticles are constructed with the aid of natural or synthetic polymers. As compared to other nanoparticles, they offer advantages like non-toxicity and biocompatibility suited for specific biological applications. Although they are used for biosensing and bioimaging, the major purpose of polymeric nanoparticles lies in the field of drug delivery [25]. Biomolecules or drugs are encapsulated into polymeric nanoparticles to obtain a gradual and continuous release of the drugs at the specifically targeted sites.
2.1.4 Ceramic nanoparticles
Nanoscale ceramics, which include various ceramic nanoparticles of zirconia, hydroxyapatite, alumina and titanium oxide have also found potential biological applications. Some of the distinct features like high load capacity, stability and effortless incorporation to hydrophilic and hydrophobic systems enhance their efficiency in the field of biomedicine, however, work on scaling down its cytotoxicity remains to be addressed before its full-fledged use in the biological system [26].
2.1.5 Semiconductor nanoparticles
Semiconductor nanoparticles, particularly QDs have been heavily explored for a wide variety of biological applications like biosensing, molecular imaging, live-cell labelling and drug delivery. They possess unique optical properties like a long fluorescence lifetime and low photobleaching when correlated with conventional organic dyes and fluorescent polymers [27]. Although, the toxicity of the traditional semiconductor QDs is a typical concern that has to be addressed for in vivo applications.
2.1.6 Lipid-based nanoparticles
Lipid-based nanoparticles, consisting of liposomes, nanostructured lipid carriers and solid lipid nanoparticles have gained tremendous attention in the field of cancer treatment and drug delivery. These nanoparticles exhibit very low toxicity, can act as a carrier for both hydrophilic and hydrophobic molecules and ensures controlled release of drugs. Due to its versatility and biocompatibility, liposomes are the extensively utilized lipid-based nanoparticles [28].
3. Nanomaterial mediated therapy for pathologies with aberrant angiogenesis
Abnormal or excessive angiogenesis has been reported to be involved in the progression of a wide variety of diseases affecting different organs. For example, aberrant angiogenesis has been implicated to promote diseases like tumor, auto immune disorders and infectious diseases caused by the pathogens inducing angiogenesis and such diseases have been reported to affect multiple organ systems [29]. Further, it has also been reported to be involved in the advancement of skin tissue associated diseases like psoriasis, allergic dermatitis, blistering disease, scar keloids etc. In addition, it has been reported to be the major cause for diabetic retinopathy and choroidal neovascularization associated with wet type AMD, which affect the eyes [29]. Abnormal angiogenesis has also been reported to be involved in the progression of blood vessel associated disorders like atherosclerosis, transplant arteriopathy etc. [30]. The involvement of angiogenesis has also been reported in the progression of primary pulmonary hypertension, asthma and nasal polyps [29]. In addition, it has also been reported in the progression of diseases that affect the reproductive system, which include ovarian hyper stimulation, endometriosis etc. [31]. Aberrant angiogenesis has also been the leading cause for the progression of diseases like osteomyelitis which is characterized by impaired osteogenesis [29]. It has also been reported to promote nerve system associated diseases like diabetic neuropathy and amyotrophic lateral sclerosis, which are characterized by nerve tissue degeneration [32]. The process of angiogenesis has also been reported to promote physiological processes like wound healing and discrepancy associated with that could lead to complications like development of chronic wounds [33]. Different candidate disorders associated with aberrant angiogenesis and the candidate nanomaterials that can be developed as potential drugs for the treatment of such disorders have been detailed below.
3.1 Tumor
The essentiality of angiogenesis in the progression of tumor growth was a breakthrough finding by Judah Folkman way back in 1971, which opened up an era of investigations, concerned with targeting angiogenesis for cancer therapeutics. It has been established that a tumor cannot grow beyond 2 mm in diameter without a steady supply of oxygen and nutrients by means of angiogenesis [34, 35, 36]. Therefore, preventing the neovascularisation has been suggested as one of the key strategies for cancer therapeutics. Angiogenesis in a tumor micro environment, unlike that under physiological conditions, is characterized by the formation of immature, leaky blood vessels, resulting in a continual state of inflammation. This happens mainly due to the increased expression of a variety of pro angiogenic factors including VEGF, angiopoietin, integrins etc. and such factors are being targeted for anti-angiogenic therapy. Anti-angiogenic agents targeting VEGF, such as Bevacizumab has been approved by FDA, however, release of other pro angiogenic factors over ruled the efficiency of such mono-therapies [37, 38, 39, 40]. Therefore, combination therapies using multiple anti-angiogenic agents were more appreciated to quick fix resistance to angiogenic monotherapy.
Nanoparticles (NPs) could be employed as a vehicle to deliver multiple drugs, targeting different molecules and pathways associated with tumor angiogenesis [37, 41]. The therapeutic drugs are generally loaded on to the NPs either by chemical conjugation or by encapsulation [38]. The NP-based drug delivery can either be passive or active in mode. The presence of leaky blood vessels in the vicinity of tumors facilitates the passive extravasation of NPs with size less than 200 nm into the tumor site by the Enhanced Permeability and Retention effect (EPR) and such NPs are later on cleared by the liver [39, 42]. In addition, limited lymphatic drainage facilitates the retention of NPs at the site of tumors which in turn promotes sustained drug delivery [39]. It has been reported that NP conjugated Doxorubicin [43, 44] and small molecule inhibitors of angiogenesis [45] could accumulate in the tumor micro environment by EPR effect, which lead to the stoppage of tumor angiogenesis and tumor growth [38]. Further, Caplostatin (TNP-470), an angiogenic inhibitor, has been reported to get selectively piled up in the blood vessels associated with tumors by EPR effect which in turn blocked tumor associated vascular hyperpermeability [46, 47]. The Active targeting of tumor vasculature by NPs is achieved by means of ligands presented on NP surfaces. The ligands would selectively bind to receptors which are over expressed on tumor cells as well as on tumor associated ECs, such receptors include VEGFRs, αvβ3 integrins etc. [38, 48].
NP mediated targeting of different miRNAs have also been tested for their therapeutic efficacy [49]. For instance, treatment with NP containing anti-miR-21 (CTX-SNALP-anti miR-21) has been reported to silence miR-21 in patients with glioblastoma resulting in an increase in the levels of its target gene RhoB both at mRNA and protein levels. Further, NP mediated administration of anti-miR-21 has been reported to inhibit tumor proliferation, induce apoptosis and promote survival rate in the animal model [49]. Exosomes are endogenous lipid-based NPs which are involved in the transfer of biomolecules like RNA and proteins between cells. It has been reported that miR-23a encapsulated exosomes could effectively induce angiogenesis in CAM model as well as in in ovo xenograft model by regulating the expression of SIRT1 gene [50].
Different metal NPs like gold and silver NPs have been reported to be effective for anti-angiogenic therapy. It has been reported that gold NPs (AuNPs) are capable of binding to the heparin binding domains of various growth factors like VEGF165 and bFGF leading to the conformational changes associated with the impaired functioning of such growth factors. AuNP mediated inhibition of VEGF was found to be negatively regulating the phosphorylation of VEGFR2. The inhibitory effect of AuNPs on Heparin binding growth factors (HB-GFs) was found to be greatly depended on the size of AuNPs, further, AuNPs with 20 nm in diameter exhibited maximum inhibitory effect. In addition, AuNP with bare surface was found to be essential for the inhibitory effect on HB-GFs. Further, AuNPs have been reported to block of MAPK pathway in tumor cells which lead to the inhibition of epithelial to mesenchymal transition (EMT) and thence, the process of metastasis [51, 52].
AuNP has also been used as the carrier tool for drug delivery. It has been used to deliver an anti-EMT agent, Quercetin (Qu) and AuNP-Qu was found to be more effective when compared to free Qu, in inhibiting cell migration in MDA-MB-23 and MCF-7 cell lines [53]. In addition, recombinant human endostatin (rhES), an anti- angiogenic molecule, which in conjugation with AuNP-PEG (rhES-AuNPs-PEG), when administrated, targeted tumor cells more efficiently and exhibited better performance when compared to rhES. Moreover, the administration of rhES-AuNPs-PEG in combination with 5-flouro uracil (5-FU) facilitated improved localization of 5-FU on to the tumor site with subsequent reduction in tumor size than that in case of mono therapeutic administration of 5FU [54].
Silver NPs (AgNPs) have been reported to inhibit VEGF induced cell proliferation, migration and tube formation in bovine retinal endothelial cells (BRECs). It has also been reported to inhibit vessel formation in matrigel plug assay system. AgNP mediated anti angiogenic effect was found to involve negative regulation of PI3K/Akt pathway [55, 56]. According to a different study, AgNP has been reported to exert anti angiogenic effect by inhibiting HIF-1 in a dose dependant manner [57].
In addition to metal NPs, NPs based on cationic polysaccharides like chitosan has also been explored for biomedical applications taking an advantage of their relatively low toxic nature and high biodegradability and biocompatibility. Chitosan NPs (CNPs) showed anti-cancer effect in the xenograft model of hepatocellular carcinoma by inhibiting the expression of VEGFR2 and thereby negatively regulating the process of tumor angiogenesis [58]. Further, CNPs in conjugation with Ursolic acid (CH-UA-NPs) have been shown to inhibit cell migration and tube formation in human umbilical vein endothelial cells (HUVECs) in-vitro. In addition, CH-UA-NPs have also been reported to inhibit the expression of VEGF in hepatoma cell xenografts [59]. CNPs have also been utilized as a vehicle for the co delivery of psiRNA VEGF and pIL-4 in MCF-7 cells which caused relatively huge reduction in the levels of VEGF protein when compared to the cases where the plasmids were used individually [60].
Ruthenium modified selenium NPs (Ru-SeNPs) have also been reported to exhibit anti angiogenic properties, in CAM model as well as in HUVEC cells, mainly by inhibiting the phosphorylation of Akt, FGFR1 and Erk1/2. Further, it has been shown that SeNPs protected with Ru (II)-thiols (Ru-MUA@Se) was endocytosed by the cells by clathrin mediated mechanism [61]. SeNPs have also been used as a carrier tool for siRNA delivery. A pH sensitive, modified SeNP carrying VEGF-siRNA, namely, G2/PAH-Cit/SeNPs@siRNA, has been shown to exhibit high efficiency in terms of cellular uptake, drug release and gene silencing [62].
The cerium oxide NPs (CONPs) have been reported to exhibit anti-oxidant activity and they are characterized by a cerium core and a shield with an oxygen lattice. Chen et al., have shown that CONPs are capable of inhibiting reactive oxygen species (ROS) induced angiogenic signaling pathways [63]. In addition, the nanoceria conjugated with heparin was reported to inhibit the proliferation of human coronary artery endothelial cells (HCAECs) in a better way than that by unconjugated nanoceria [64]. Nanoceria has also been reported to inhibit the proliferation of ovarian cancer cells in xenograft model in-vivo [65]. Further, the nanoceria conjugated with folic acid has also been reported to inhibit proliferation and angiogenesis in xenografts of ovarian cancer cells in vivo [66]. The anti-angiogenic effect imparted by nanoceria was reported to involve the inhibition of VEGF signaling pathway leading to the decreased phosphorylation of VEGFR2 at Tyr1173 and Y951 [65]. However, a report by Das et al., have suggested that nanoceria might exhibit pro angiogenic effect also [67], making the use of these NPs as anti-angiogenic molecules doubtful under clinical setup.
Silica based NPs have also been reported to exhibit anti angiogenic properties. Silicate NPs (SiO2 NPs) have been reported to inhibit VEGFR2 phosphorylation and ERK1/2 activation in human micro vascular retinal endothelial cells (HMRECs), thereby inhibiting angiogenesis [68]. Mesoporous silica based nanoparticles (MSNs) have been used as a vehicle for the targeted delivery of chemotherapeutic agent, doxorubicin hydrochloride (MSNs@DOX). MSNs@DOX has been reported to suppress the metastasis of lung cancer cells by inhibiting VEGF induced angiogenesis [69]. Further RGD (Arg-Gly-Asp) modified MSN has been used as a carrier tool for the targeted delivery of anti-angiogenic agent, NAMI-A [70].
Further, MoS2 nanoflakes containing ZnO NPs were found to inhibit tumor growth in in-ovo xenograft model by inducing apoptosis and by negatively regulating the processes of angiogenesis as well as EMT [71]. Similarly, the Tetraiodothyroacetic acid (Tetrac) based NPs have also been reported to be anti-angiogenic in nature in CAM model and in xenograft model of renal cancer cells [72]. Shereema et al., have formulated a green luminescent CQDs, which inhibited angiogenesis in CAM model by negatively regulating the expression levels of pro angiogenic factors including VEGF and FGF. The CQDs showed anti-cancer property in vitro, suggesting it to be a potential drug candidate for targeting tumor angiogenesis [73]. The applications of nanomaterials for anti tumor therapy have been represented schematically in Figure 1.
Figure 1.
Applications of nanomaterials in anti-tumor therapy. Many candidate nanomaterials possess intrinsic anti-angiogenic property and few could be used as vehicles for targeted drug delivery. Nanoparticles encapsulated/conjugated with anti- angiogenic drugs or nanoparticle based anti-angiogenic scaffolds, when administrated in in vivo models, precisely target tumor vasculature and inhibit tumor growth.
3.2 Cardio vascular diseases
Cardio vascular diseases (CVDs), which refer to a class of ailments encompassing coronary artery disease (CHD), peripheral arterial disease, cerebrovascular disease etc., account for the leading cause of death worldwide [74, 75]. Atherosclerosis is the most prevalent pathology behind CVDs, which involves the local accumulation of cholesterol within the walls of medium and large arteries leading to the emergence of atherosclerotic plaque [76, 77]. The process of angiogenesis has been implicated to play key role in plaque growth and intra plaque hemorrhage leading to plaque rapture [78, 79]. The application of nanomaterials has found its way in the diagnosis as well as treatment of CVDs. Integrin αvβ3 has been found to be over expressed in ECs actively involved in angiogenesis, thus, it has been targeted using NPs for CVD diagnosis [80]. For instance, in a murine model of hind limb ischemia, 76Br- labeled multivalent dendrimers conjugated with integrin αvβ3 targeting peptides, were utilized for the detection of angiogenesis by positron emission tomography-computed tomography (PET-CT) [81]. In a different experiment using murine model of hind limb ischemia, a natriuretic peptide receptor C- targeted, 64Cu labeled NP probe was used for the detection of angiogenesis [82]. Further, gadolinium-loaded perfluorocarbon (PFC) NP conjugated with a vitronectin antagonist peptide mimic, has been suggested to be a promising candidate for the detection of atherosclerotic lesions [83]. In addition, PFC NPs incorporated with anti-angiogenic drug, Fumagillin, have been implicated for the treatment of plaque angiogenesis [84].
3.3 Chronic wounds
Wounds are the disruption of the normal physiology of the skin, mucosal surfaces or organs, which occur as a part of a disease or etiology. The process of wound healing is divided into four distinct stages: hemostasis, inflammation, proliferation, and tissue remodeling. Injuries that show delayed healing up to 12 weeks after the initial insult are termed chronic wounds, often it happens because of various reasons such as persistent pathological inflammation [85], complications of ischemia, diabetes mellitus, or chronic venous insufficiency [86]. The application of growth factors has been employed to improve wound healing by promoting angiogenesis, but it possessed some drawbacks like rapid degradation of the candidate growth factors and the lack of controlled and localized delivery system.
Different NPs have been reported to promote wound healing, and many of them were implicated as drug carriers. Studies have shown that different metal ions-based nanomaterials possess the ability to promote angiogenesis and thereby induce wound healing [87, 88]. The metal ions such as Sr2+ and Co2+ when combined with nano bioactive glass showed pro angiogenic activity [89]. Colloidal AuNPs have been widely studied for biomedical applications due to their unique surface characteristics as well as optical and electronic properties [90]. AuNPs combined with epigallocatechin gallate and α-lipoic acid, reduced oxidative stress and inflammation and augmented angiogenesis, which led to cutaneous wound healing in rodent models [91]. The increased surface area of spherical AuNP helps in electron acceptance and also in scavenging reactive oxygen species that cause oxidative stress and impaired wound healing [92]. Formulation of AuNPs and scrambled peptides were reported to be suitable for angiogenic modulation in in vivo and in vitro models [93]. Moreover, NPs encapsulated in a microparticle developed by the microfluidic method provided a way to introduce a wide range of proteins including pro angiogenic agents to the injury site [94].
Low expression levels of angiogenic growth factors lead to impaired angiogenesis and wound healing. Heparin mimetic peptide nanofiber scaffolds have been used to overcome this situation, which showed improved vascular development associated with enhanced VEGF production in the treated animals. Also, hierarchically micro-patterned nanofibrous scaffolds with a surface modified nanosized bio-glass have been implicated in improving wound healing [95]. Xie et al. have developed an electrospun fiber nano composites containing different components such as antibacterial polymer chitosan, poly (ethylene oxide), VEGF and PDGF-BB loaded poly (lactic-co-glycolic acid) NPs. They have demonstrated that the application of such a nano composite would prevent bacterial attack in the vicinity of wound. In addition, they have demonstrated that the nano composite facilitated the early delivery of VEGF from the nanofiber and sustained delivery of PDGF-BB from the NPs, thereby accelerating tissue regeneration and remodeling in a full-thickness rat skin wound model [96]. Lino et al. have shown that light-responsive plasmonic gold nanocarrier could be used as a carrier vehicle for the delivery of microRNAs such as miR-302a and miR-155, which regulated the proliferation and survival of ECs thereby promoting wound healing [97].
Carbon nanotubes were functionalized with different side-chain moieties and they were applied for diagnosis as well as drug delivery purposes [98]. It has been shown that the Multi-Walled Carbon Nanotube (MWCNT) supports angiogenesis as the macrophages engulfing MWCNT, produce angiogenic cytokines such as VEGF and MMP9 [99]. Liu et al. have constructed a composite scaffold of VEGF165 loaded functionalized MWCNT, for the prolonged and sustained delivery of VEGF165, and it promoted tissue remodeling and repairing in the in vivo models [100].
Graphene based NPs have also been implicated to have massive applications in angiogenesis-based therapeutics [101]. Graphene, graphene oxide (GO) and reduced graphene oxide (rGO) have received great attraction as inorganic additive in biopolymers for developing biomaterial composites [102]. The Gelatin-methacryloyl (GelMA) hydrogel containing rGO has been indicated to promote cell proliferation and migration in in-vitro model of wound healing and it has also been implicated to promote angiogenesis in chick embryo model [103]. In addition, ZnO nanoflower based nanomaterials [104] and water-soluble CONPs [105] were also implicated to exhibit wound healing properties by modulating the process of angiogenesis. The candidate nanomaterials which possess the ability to promote wound healing, by promoting angiogenesis have been indicated schematically in Figure 2.
Figure 2.
Pro-angiogenic nanomaterials promote wound healing. Nanomaterials like cerium oxide nanoparticles, zinc oxide nanoflowers, multi walled carbon nanotubes, reduced graphene oxide nanoparticles and metal ion based nanoparticles like strontium ions and cobalt ions, promote wound healing in different in vitro and in vivo models by promoting the process of angiogenesis.
3.4 Diabetic retinopathy and age-related macular degeneration
Diabetic retinopathy (DR) is one of the critical leading causes of blindness and it is a secondary complication associated with Diabetic Mellitus. Diabetes affects the entire neurovascular regions of the retina, with ongoing neurodegeneration, gliosis, neuroinflammation, edema, angiogenesis, and fibrosis [106]. The changes in the vasculature cause perceptible abnormality in vision and lead to blindness. VEGFA, which gets upregulated in response to hypoxia, plays a central role in the initiation of DR. In addition to that, MMP9 has also been implicated to play key role in the onset and severity of DR [107].
The Age-related macular degeneration (AMD) is another complication where pathological angiogenesis is involved. AMD has been classified into two types. The type of AMD which is characterized by yellowish deposits in the macula is known as the Dry AMD, whereas, the AMD with characteristic choroidal neovascularisation (CNV) is termed as the wet type or neovascular AMD [108].
Laser photocoagulation and multiple intra ocular injections are the treatment strategies adopted for the diseases that affect the vascular structure of the posterior eye. It has complications like the destruction of healthy tissues. Though ‘introducing protein drugs’, was put forth as one of the treatment strategies, it possessed drawbacks like drug instability due to proteases action followed by drug injection. It therefore warranted novel treatment strategies to conquer these drawbacks. So, in an effort to develop alternative therapeutic strategies for ocular diseases, the efficacy of different candidate NPs, exhibiting innate anti angiogenic property or possessing the ability to carry drug, growth factors etc., to specific tissue sites, have been tested by different groups [109, 110].
The AuNPs, as mentioned earlier, possess anti angiogenic properties in addition to their unique electronic, biocompatible, and molecular-recognition properties [111]. It has been reported to induce the nano structural reorganization of VEGFR2 in HUVECs and consequently suppressed angiogenesis [112]. AuNPs have also been reported to suppress VEGF induced cell migration by negatively regulating the phosphorylation of Akt and eNOS in retinal endothelial cells [113]. It has also been reported to obstruct the proliferation of VEGF treated retinal endothelial cells by suppressing Src signaling pathways [114].
Kringle 5 (K5), a proteolytic fragment of plasminogen possessing 80 amino acids, has been shown to be highly effective in the inhibition of EC growth [115]. It has also been reported to inhibit ischemia-stimulated retinal neovascularization in the oxygen-induced retinopathy (OIR) model [116]. But it possessed the drawback of a short life span. An expression plasmid of K5 was encapsulated with PLGA polymer to form nanoparticles (K5-NP) which effectively inhibited VEGF expression and attenuated ischemia-induced retinal vascular leakage and retinal neovascularization in the OIR rat model [117]. Biodegradable NPs loaded with Fenofibrate (Feno-NPs) have been reported to be particularly useful for the targeted delivery and treatment of DR and neovascular AMD. Fenofibrate is a peroxisome proliferator-activated receptor α (PPARα) agonist, which is effective against DR. In diabetic rat models, at 8 weeks after the administration of Feno-NP by one intravitreal injection, the vascular leakage in the retina was found to be reduced. In addition to that the retinal leukostasis was inhibited, and further, the expression of VEGF and ICAM-1 were down regulated [118].
Octreotide (OCT), an analog of somatostatin, is an established neuroprotective and anti-angiogenic agent that targets VEGF. The intra ocular delivery of OCT combined with Magnetic NPs (MNP-OCT) has been suggested to improve the half-life and bio activity of OCT [119]. Polliner et al. have checked the possibility of receptor mediated targeting of NPs to capillary endothelial cells in the retina, and they have demonstrated that Cyclo (RGDfC)-modified QDs specifically bind to the αvβ3 integrin receptors on the ECs and the cellular uptake mediated by receptor binding led to the accumulation of the NPs in the choriocapillaris and intraretinal capillaries [120].
Yandrapu et al. have formulated ‘Nanoparticles in Porous Micropaticles (NPinPMP)’, by encapsulating bevacizumab coated poly lactic acid NPs into porousifying PLGA microparticles (NPinPMP) using supercritical carbon dioxide (SC CO2). Bevacizumab is a protein drug used to treat neovascular AMD and it was necessary to inject once in a month intravitreally. The in vitro studies revealed that, NPinPMP showed a sustained release of bevacizumab for a period of 4 months. In addition, bevacizumab has been detected for a period of 2 months after intravitreal injection of NPinPMP in rat model, while it was detected only for 2 weeks upon its intravitreal administration in individual form [121].
Likewise, Luo et al. have used, biodegradable PLGA nanoparticles conjugated with integrin-binding linear RGD peptide, as a carrier tool for the delivery of recombinant tFlt23k intraceptor plasmid possessing VEGF binding domains. The nontoxic RGD-functionalized NP delivery system was observed to be getting targeted directly to the choroidal neovascularization lesions after intravenous injection, and exhibited excellent vision restoration in both primate and murine AMD models [122].
Celecoxib is a cyclooxygenase-2 inhibitor, exhibiting anti-inflammatory and anti-angiogenic properties. Celecoxib-loaded poly (ortho ester) NPs were found to be highly effective against AMD and DR [123]. Interleukin-12 (IL-12) has been reported to exhibit anti-angiogenic property by reducing the levels of MMP9 and VEGFA [124]. Zheng and colleagues combined IL-12 with PLGA nanoparticles (IL-12-PNP) and proved it to be exhibiting better efficacy in terms of inhibition of VEGFA and MMP9 expressions in DR mouse retina and rat ECs. Further, the intra ocular administration of IL-12-PNPs showed reduced retinal damage in mice model with DR [125].
3.5 Impaired osteogenesis
Osteogenesis is referred to the process of regeneration of bones, which involves multiple steps such as the activation, migration and differentiation of different cell types [126]. The process of angiogenesis is crucial for the supply of growth factors, hormones, cytokines, chemokines, and metabolites required for osteogenesis. Any aberrancy associated with the vascular supply to the bone tissues would lead to different pathologies such as osteonecrosis [127], osteomyelitis [128], and osteoporosis [129, 130]. Discrepancy in angiogenesis has also been reported as one of the main reasons for the failure of osteogenesis after implantation. VEGF and HIFα are the major angiogenesis related factors that promote osteoblast differentiation and osteogenesis. So, it has been suggested that restoring angiogenesis would promote bone function and defect repair in pathologies with impaired osteogenesis.
Many candidate nanomaterials have been reported to be effective in improving the repair of bone tissues [131]. For example, synthesized chitin–CaSO4–nano-fibrin based injectable gel system showed enhanced osteo-regeneration via enhanced angiogenesis [132]. Further, the β CaSiO3/PDLGA composite has been reported to induce the phosphorylation and activation of Akt and eNOS respectively in HUVECs with a resultant increase in the synthesis and release of NO and VEGF. Further the bone regeneration study in the rabbit femur defect model using β CaSiO3/PDLGA composite has shown enhanced angiogenesis and osteogenesis [133]. Nano-hydroxyapatite has been reported to regulate the PI3K/Akt pathway for inhibiting migration and tube formation in HUVECs via inhibiting NO synthesis and eNOS phosphorylation [134]. Similarly, calcium phosphate combined with electro spun poly (lactic acid) has been reported to promote VEGF expression in endothelial cells. It has also been reported to support vascular development and bone regeneration when injected subcutaneously in mice, by promoting the expression of proangiogenic factors like VEGF, IGF-2, GM-CSF, IL-1 beta, IL-6, IL-12p70 etc. [135]. Similarly, Nano bioactive glass, characterized by higher surface area and three-dimensional channel structure, is another material that could promote angiogenesis and bone regeneration [136, 137].
Nanomaterials can also act as carrier tools for different pro angiogenic small molecules and proteins like deferoxamine, adrenomedullin, VEGF etc. For example, Mesoporous silicate nanoparticles (MSNs) incorporated-3D nanofibrous gelatin (GF) scaffold has been employed for the dual-delivery of bone morphogenetic protein-2 (BMP2) and deferoxamine (DFO). DFO, being a hypoxia-mimetic drug, could trigger the stabilization of HIF-1α, and initiate subsequent angiogenesis. Further, it has been shown that DFO could significantly enhance BMP2 induced osteogenic differentiation in mouse and human stem cell models [138].
Ionic components have been utilized for the modification of vascularized bone tissue engineering scaffold. The Copper based nanomaterials could promote the expression level of VEGF, which in turn promoted the proliferation of ECs. Nano-structured surfaces on the Hydroxyapatite scaffolds in copper ion (Cu2+) containing solutions under hydrothermal conditions could affect EC proliferation. Further, the nano-structured surfaces on the Hydroxyapatite scaffolds, promoted angiogenesis and bone regeneration. Dexamethasone (DEX), an osteogenic inducer combined with biphasic calcium phosphate nanoparticle (BCP NPs) scaffold, was found to induce the expression of VEGF and VEGFR2 and supported bone regeneration. The micro-grooves present in the scaffolds managed the assembly of HUVECs into tubular structures and promoted angiogenesis [139]. The gene encapsulated magnetic microspheres have also been used as a promising delivery system. For instance, introduction of VEGF165 with superparamagnetic (nano-Fe3O4) chitosan, induced in vitro and in vivo angiogenesis and bone regeneration [140].
The AuNPs have also been reported to induce angiogenesis during osteogenesis. AuNPs exhibited differences in angiogenic activity based on their surface charges and the presence of functional groups. The Gene profiling data revealed that in comparison with the cells (hMSCs) treated with AuNPs possessing amine or hydroxyl functional groups (AuNPeNH2 or AuNPeOH), the cells treated with carboxyl group containing AuNPs (AuNPeCOOH) showed augmented expression levels of TGFβ and FGF-2, which in turn promoted cell proliferation over osteogenic differentiation [141].
3.6 Nerve tissue degeneration
Nerve tissue degeneration is a critical clinical challenge that leads to diseases like trauma or permanent paralysis, so research advancement in the field of nerve tissue regeneration is quite necessary. In the recent years, the applications of nanomaterials have received much attention from the research community focusing on nerve tissue repair.
The process of angiogenesis plays key role in supplying nutrients to the nerve tissue which in turn helps to repair segmental nerve defects. Recently, Lopez-Dolado et al. have designed a 3D scaffold containing partially reduced graphene oxide, which when implanted in the injured site in the spinal cord of a rat model, a remarkable induction in angiogenesis and axon regeneration was observed [142].Further, GO/polycaprolactone (PCL) nano scaffolds have been implicated to promote angiogenesis by modulating Akt-eNOS-VEGF signaling pathway and it facilitated peripheral nerve regeneration in-vivo [143].
In addition, Xu et al. have formulated an acellular spinal cord scaffold (ASCS), namely, V-ASCS, for the sustained delivery of VEGF, and it was composed of VEGF165 encapsulated PLGA nanoparticles conjugated with ASCS. When V-ASCS was implanted at the injury site in a rat spinal cord hemisection model, it rendered significant progress in neovascularization [144]. Wen et al. fabricated a hyaluronic acid scaffold with brain-derived neurotrophic factor and VEGF loaded PLGA microspheres, which promoted angiogenesis and nerve fiber regeneration when implanted at the injured site in the spinal cord of rat model [145]. Yu and his co-workers have formulated PLGA microspheres encapsulated with VEGF, angiopoietin-1 and bFGF, and these angiogenic microspheres could release the angiogenic factors in a sustained fashion, which then induced angiogenesis and neurogenesis when administered at the injured site in the spinal cord of rat model [146].
Jian et al. have fabricated a nanohybrid hydrogel containing sulfated glycosaminoglycan-based polyelectrolyte complex nanoparticles (PCN), and it could accelerate neurogenesis and angiogenesis in in-vivo ischemic stroke model [147]. Amorphous non-fibrous hydrogel comprised of hyaluronic acid containing high cluster VEGF, when injected directly within the stroke cavity, stimulated the formation of a vascular and neuronal structures, that preceded to behavioral improvement in vivo [148].
Delivery of superparamagnetic iron oxide nanoparticle labeled Endothelial progenitor cells (EPCs) was found to induce the formation of vessel-like structures by the production of VEGF and FGF [149]. Similarly, superparamagnetic iron oxide (SPIO)-Au core-shell NPs incorporated with nerve growth factor (NGF) have been implicated to promote neuron growth and differentiation [150].
4. Conclusion
Aberrancy associated with angiogenesis pave the way for the progression of a number of diseases like tumor, cardio vascular diseases, diabetic retinopathy, age related macular degeneration etc. So, targeting angiogenesis presents itself as one of the key therapeutic strategies to tackle such complications. The currently available therapies though beneficial, do possess some limitations like acquisition of drug resistance by cells, fast decay of protein drugs by protease action, off target effects leading to decreased drug efficacy etc. Different candidate nanomaterials were implicated to possess anti- angiogenic properties, which were tested in vitro and in vivo to explore their additional properties like precise targeting of pathological angiogenesis, cellular uptake, efficacy etc. Nanoparticles have also been utilized as carrier tools for drug delivery. Surface modification of nanoparticles with RGD, VEGF etc. has reinforced them with specific targeting, internalization and sustained drug delivery. Growth factor encapsulated nanoparticle-based scaffolds were fabricated by different groups, to effectuate wound healing, osteogenesis and nerve tissue regeneration in in vivo models. On the whole, the application of nanomaterial-based formulations in pro or anti angiogenic therapy is a rewarding strategy for the treatment of complications associated with aberrant angiogenesis, which however, requires more explorations for translating from bench to bedside. The candidate disorders associated with aberrant angiogenesis and various applications of nanomaterials for the treatment of such disorders have been represented schematically in Figure 3.
Figure 3.
Nanomaterial based formulations for the treatment of pathological conditions with aberrant angiogenesis. Abnormal angiogenesis promotes the progression of different diseases like tumor, cardiovascular disease, chronic wounds, diabetic retinopathy, wet type age related macular regeneration, bone and nerve tissue degeneration etc. nanomaterials possessing intrinsic pro- or anti- angiogenic property could be utilized individually or as a part of biodegradable polymer based-scaffolds for the treatment of such disorders. Different candidate nanoparticles with surface modifications with peptides like arginine-glycine-aspartate (RGD) and vascular endothelial growth factor (VEGF), could be utilized as carrier tools for targeted drug delivery.
\n',keywords:"angiogenesis, nanomaterials, tumor, cardiovascular diseases, diabetic retinopathy, age related macular degeneration, chronic wounds, osteogenesis, nerve tissue degeneration",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/73694.pdf",chapterXML:"https://mts.intechopen.com/source/xml/73694.xml",downloadPdfUrl:"/chapter/pdf-download/73694",previewPdfUrl:"/chapter/pdf-preview/73694",totalDownloads:125,totalViews:0,totalCrossrefCites:0,dateSubmitted:"July 26th 2020",dateReviewed:"September 22nd 2020",datePrePublished:"October 21st 2020",datePublished:null,dateFinished:"October 21st 2020",readingETA:"0",abstract:"Angiogenesis is an indispensable biological process, any aberrancy associated with which can lead to pathological manifestations. To manage different pathological conditions associated with abnormal angiogenesis, Nanomaterial based formulations have been tested in in vitro and in vivo models by different groups. The research advancements pertaining to the applications of major candidate nanomaterials for the treatment of pathologies like tumor, cardiovascular diseases, diabetic retinopathy, age related macular degeneration, chronic wounds, impaired osteogenesis and nerve tissue degeneration, have been briefed in this chapter.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/73694",risUrl:"/chapter/ris/73694",signatures:"Aswini Poyyakkara, Sruthi Thekkeveedu, Sharath S. Shankar and V.B. Sameer Kumar",book:{id:"10232",title:"Theranostics - An Old Concept in New Clothing",subtitle:null,fullTitle:"Theranostics - An Old Concept in New Clothing",slug:null,publishedDate:null,bookSignature:"Dr. Elisabeth Eppard",coverURL:"https://cdn.intechopen.com/books/images_new/10232.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-83962-788-0",printIsbn:"978-1-83962-783-5",pdfIsbn:"978-1-83962-789-7",editors:[{id:"245845",title:"Dr.",name:"Elisabeth",middleName:null,surname:"Eppard",slug:"elisabeth-eppard",fullName:"Elisabeth Eppard"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Nanomaterials",level:"1"},{id:"sec_2_2",title:"2.1 Classification of nanomaterials according to chemical composition",level:"2"},{id:"sec_2_3",title:"2.1.1 Metal nanoparticles",level:"3"},{id:"sec_3_3",title:"2.1.2 Carbon-based nanomaterials",level:"3"},{id:"sec_4_3",title:"2.1.3 Polymeric nanoparticles",level:"3"},{id:"sec_5_3",title:"2.1.4 Ceramic nanoparticles",level:"3"},{id:"sec_6_3",title:"2.1.5 Semiconductor nanoparticles",level:"3"},{id:"sec_7_3",title:"2.1.6 Lipid-based nanoparticles",level:"3"},{id:"sec_10",title:"3. Nanomaterial mediated therapy for pathologies with aberrant angiogenesis",level:"1"},{id:"sec_10_2",title:"3.1 Tumor",level:"2"},{id:"sec_11_2",title:"3.2 Cardio vascular diseases",level:"2"},{id:"sec_12_2",title:"3.3 Chronic wounds",level:"2"},{id:"sec_13_2",title:"3.4 Diabetic retinopathy and age-related macular degeneration",level:"2"},{id:"sec_14_2",title:"3.5 Impaired osteogenesis",level:"2"},{id:"sec_15_2",title:"3.6 Nerve tissue degeneration",level:"2"},{id:"sec_17",title:"4. Conclusion",level:"1"}],chapterReferences:[{id:"B1",body:'Ribatti D. The discovery of tumor angiogenesis factors: a historical overview. In: Ribatti. D, editor. Tumor Angiogenesis Assays: Methods and Protocols. New York: Springer New York. 2016; 1464:1-12.'},{id:"B2",body:'Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000; 6:389-395.'},{id:"B3",body:'Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003; 9:653-660.'},{id:"B4",body:'Ellis LM and Fidler IJ. Angiogenesis and metastasis. European Journal of Cancer.1996; 32: 2451-2460'},{id:"B5",body:'Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci.1997; 22:251-256.'},{id:"B6",body:'Mousa SA, Arias HR, Davis PJ. Role of non-neuronal nicotinic acetylcholine receptors in angiogenesis modulation. In: Mousa SA, Davis PJ, editors. Angiogenesis Modulations in Health and Disease: Practical Applications of Pro- and Anti-angiogenesis Targets. Dordrecht: Springer Netherlands. 2013:55-75.'},{id:"B7",body:'Gacche RN and Meshram RJ. Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta Rev Cancer. 2014; 1846:161-179.'},{id:"B8",body:'Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004; 350:2335-2342.'},{id:"B9",body:'Gragoudas ES, Adamis AP, Cunningham ET, Feinsod M, Guyer DR. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 2004; 351: 2805-2816.'},{id:"B10",body:'Barui AK, Nethi SK, Haque S, Basuthakur P, Patra CR. Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS Appl. Bio Mater. 2019; 2:5492-5511.'},{id:"B11",body:'Min YZ, Caster JM, Eblan MJ, Wang AZ. Clinical Translation of Nanomedicine. Chem. Rev. 2015; 115:11147-11190.'},{id:"B12",body:'Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018; 9: 1050-1074.'},{id:"B13",body:'El-Toni AM, Habila MA, Labis JP, Alothman ZA, Alhoshan M, Elzatahry AA, Zhang F. Design, synthesis and applications of core–shell, hollow core, and nano rattle multifunctional nanostructures. Nanoscale. 2016;8: 2510-2531.'},{id:"B14",body:'Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10: 12871-12934.'},{id:"B15",body:'Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry.2019;12: 908-931.'},{id:"B16",body:'Nune SK, Gunda P, Thallapally PK, Lin Y-Y, Forrest mL, Berkland CJ. Nanoparticles for biomedical imaging. Expert Opin Drug Deliv. 2009;6: 1175-1194.'},{id:"B17",body:'Shereema RM, Sankar V, Raghu KG, Rao TP, Shankar SS. One step green synthesis of carbon quantum dots and its application towards the bioelectroanalytical and biolabeling studies, Electrochimica Acta. 2015; 182: 588-595.'},{id:"B18",body:'Mohammadi MR, Nojoomi A, Mozafari M, Dubnika A, Inayathullah M, Rajadas J. Nanomaterials engineering for drug delivery: a hybridization approach, J. Mater. Chem. B. 2017;5: 3995-4018.'},{id:"B19",body:'Shereema RM, Nambiar SR, Shankar SS, Rao TP. ceo2–MWCNT nanocomposite based electrochemical sensor for acetaldehyde. Anal. Methods. 2015; 7: 4912-4918.'},{id:"B20",body:'Neouze M-A and Schubert U. Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands, Monatshefte für Chemie. 2008; 139:183-195.'},{id:"B21",body:'Ali A, Zafar H, Zia M, Haq I, Phull AR, Ali JS, Hussain A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications. 2016; 9: 49-67.'},{id:"B22",body:'Patel KD, Singh RK, Kim HW, Carbon-based nanomaterials as an emerging platform for theranostics. Mater. Horiz. 2019; 6: 434-469.'},{id:"B23",body:'Notarianni M, Liu J, Vernon K, Motta N. Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J. Nanotechnol. 2016; 7: 149-196.'},{id:"B24",body:'Shereema RM, Rao TP, Kumar SVB, Sruthi TV, Vishnu R, Prabhu GRD, Shankar SS. Individual and simultaneous electrochemical determination of metanil yellow and curcumin on carbon quantum dots based glassy carbon electrode. Materials Science & Engineering C. 2018; 93:21-27.'},{id:"B25",body:'Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Nanomed Nanobiotechnol. 2016, 8:271-299.'},{id:"B26",body:'Thomas SC, Harshita, Mishra PK, Talegaonkar S. Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr Pharm Des. 2015; 21: 6165-6188.'},{id:"B27",body:'Jung D-R, Kim J, Nahm C, Choi H, Nam S, Park B. Review Paper: Semiconductor Nanoparticles with Surface Passivation and Surface Plasmon. Electronic Materials Letters. 2011; 7:185-194.'},{id:"B28",body:'Feng L and Mumper RJ. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Letters. 2012; 334:157-175.'},{id:"B29",body:'Carmeliet P. Angiogenesis in health and disease. Nature Medicine. 2003; 9: 653-660.'},{id:"B30",body:'Van Belle E, Rivard A, Chen D, Silver M, Bunting F, Ferrara N, Symes JF, Bauters C, Isner JM. Hypercholesterolemia Attenuates Angiogenesis but Does Not Preclude Augmentation by Angiogenic Cytokines. Circulation. 1997; 96: 2667-2674.'},{id:"B31",body:'LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L, Frantz G, Rangell L, DeGuzman L, Keller GA, Peale F, Gurney A, Hillan KJ, Ferrara N. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature. 2001; 412: 877-884.'},{id:"B32",body:'Oosthuyse B, Moons L, Storkebaum E et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet.2001; 28:131-138.'},{id:"B33",body:'Jenkinson L, Bardhan KD, Atherton J, Kalia N. Helicobacter pylori prevents proliferative stage of angiogenesis in vitro: role of cytokines. Dig.Dis.Sci. 2002; 47: 1857-1862.'},{id:"B34",body:'Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971; 285:1182-1186.'},{id:"B35",body:'Folkman J: Incipient angiogenesis 1. J Natl Cancer Inst. 2000; 92:94-95'},{id:"B36",body:'Naumov GN, Akslen LA, Folkman J: Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle. 2006; 5:1779-1787'},{id:"B37",body:'Hashemi Goradel N, Ghiyami-Hour F, Jahangiri S, et al. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol. 2018; 233:2902-2910.'},{id:"B38",body:'Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. Vasc Cell. 2011; 3: 3.'},{id:"B39",body:'Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R: Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007; 2:751-760.'},{id:"B40",body:'Ferrara N: VEGF as a therapeutic target in cancer. Oncology. 2005; 69:11-16.'},{id:"B41",body:'Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews. 2002; 54:631-651.'},{id:"B42",body:'Couvreur P, Vauthier C: Nanotechnology: intelligent design to treat complex disease. Pharm Res. 2006; 23:1417-1450.'},{id:"B43",body:'Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R: Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005; 436:568-572.'},{id:"B44",body:'Chaudhuri P, Harfouche R, Soni S, Hentschel DM, Sengupta S: Shape effect of carbon nanovectors on angiogenesis. ACS Nano. 2010; 4:574-582.'},{id:"B45",body:'Harfouche R, Basu S, Soni S, Hentschel DM, Mashelkar RA, Sengupta S. Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis. 2009; 12:325-338.'},{id:"B46",body:'Satchi-Fainaro R, Mamluk R, Wang L, Short SM, Nagy JA, Feng D, Dvorak AM, Dvorak HF, Puder M, Mukhopadhyay D, Folkman J: Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell. 2005; 7:251-261.'},{id:"B47",body:'Satchi-Fainaro R, Puder M, Davies JW, Tran HT, Sampson DA, Greene AK, Corfas G, Folkman J: Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med. 2004; 10:255-261.'},{id:"B48",body:'Xie J, Shen Z, Li KC, Danthi N: Tumor angiogenic endothelial cell targeting by a novel integrin-targeted nanoparticle. Int J Nanomedicine. 2007; 2:479-485.'},{id:"B49",body:'Costa PM, Cardoso AL, Custodia C, Cunha P, Pereira de Almeida L, Pedroso de Lima MC. MiRNA-21 silencing mediated by tumortargeted nanoparticles combined with sunitinib: A new multimodal gene therapy approach for glioblastoma. Journal of Control Release. 2015; 207:31-39.'},{id:"B50",body:'Sruthi TV, Edatt L, Raji GR, Kunhiraman H, Shankar SS, Shankar V, Ramachandran V, Poyyakkara A, Kumar SVB. Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis. J Cell Physiol. 2018; 233:3498-3514.'},{id:"B51",body:'Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello VM, Mukherjee P. Mechanism of anti-angiogenic property of gold nanoparticles: Role of nanoparticle size and surface charge. Nanomedicine: Nanotechnology, Biology and Medicine. 2011; 7:580-587.'},{id:"B52",body:'Arvizo, RR, Saha S, Wang E, Robertson JD, Bhattacharya R, Mukherjee P. Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. Proceedings of the National Academy of Sciences. 2013; 110:6700-6705.'},{id:"B53",body:'Balakrishnan S, Bhat F, Raja Singh P, et al. Gold nanoparticle–conjugated quercetin inhibits epithelial mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Proliferation. 2016; 49:678-697.'},{id:"B54",body:'Li W, Zhao X, Du B, et al. Gold nanoparticle-mediated targeted delivery of recombinant human endostatin normalizes tumour vasculature and improves cancer therapy. Scientific Reports. 2016; 6: 30619.'},{id:"B55",body:'Baharara J, Namvar F, Mousavi M, Ramezani T, Mohamad R. Anti-angiogenesis effect of biogenic silver nanoparticles synthesized using saliva officinalis on chick chorioalantoic membrane (CAM). Molecules. 2014; 19:13498-13508.'},{id:"B56",body:'Khandia R, Munjal A, Bangrey R, Mehra R, Dhama K, Sharma N. Evaluation of silver nanoparticle mediated reduction of neovascularisation (angiogenesis) in chicken model. Advances in Animal and Veterinary Sciences. 2015; 3:372-376.'},{id:"B57",body:'Yang T, Yao Q, Cao F, Liu Q, Liu B, Wang X-H. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: Insight into the cytotoxicity and antiangiogenesis. International Journal of Nanomedicine. 2016; 11:6679.'},{id:"B58",body:'Xu Y, Wen Z, Xu Z. Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism. Anticancer Research. 2009; 29:5103-5109.'},{id:"B59",body:'Jin H, Pi J, Yang F, et al. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor. Applied Microbiology and Biotechnology. 2016; 100:6643-6652.'},{id:"B60",body:'Şalva E, Turan SO, Kabasakal L, Alan S, Özkan N, Eren F, Akbuğa J. Investigation of the therapeutic efficacy of codelivery of psiRNA-Vascular endothelial growth factor and pIL-4 into chitosan nanoparticles in the Breast tumor model. Journal of Pharmaceutical Sciences. 2014; 103:785-795.'},{id:"B61",body:'Sun D, Liu Y, Yu Q, et al. Inhibition of tumor growth and vasculature and fluorescence imaging using functionalized ruthenium-thiol protected selenium nanoparticles. Biomaterials. 2014; 35:1572-1583.'},{id:"B62",body:'Yu Q, Liu Y, Cao C, Le F, Qin X, Sun D, Liu J. The use of Ph sensitive functional selenium nanoparticles shows enhanced in vivo VEGF-siRNA silencing and fluorescence imaging. Nanoscale. 2014; 6: 9279-9292.'},{id:"B63",body:'Chen J, Patil S, Seal S, McGinnis JF. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nature Nanotechnology. 2006; 1:142-150.'},{id:"B64",body:'Lord MS, Tsoi B, Gunawan C, Teoh WY, Amal R, Whitelock JM. Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles. Biomaterials. 2013; 34:8808-8818.'},{id:"B65",body:'Giri S, Karakoti A, Graham RP, et al. Nanoceria: A rare-earth nanoparticle as a novel antiangiogenic therapeutic agent in ovarian cancer. PLoS ONE. 2013; 8: e54578.'},{id:"B66",body:'Hijaz M, Das S, Mert I, et al. Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer. BMC Cancer. 2016; 16:220.'},{id:"B67",body:'Das S, Singh S, Dowding JM, et al. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials. 2012; 33: 7746-7755.'},{id:"B68",body:'Jo DH, Kim JH, Yu YS, Lee TG, Kim JH. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine: Nanotechnology, Biology and Medicine. 2012; 8:784-791.'},{id:"B69",body:'Zhang M and Jiang L. Doxorubicin hydrochloride-loaded mesoporous silica nanoparticles inhibit non-Small cell lung cancer metastasis by suppressing VEGF-Mediated angiogenesis. Journal of Biomedical Nanotechnology. 2016; 12:1975-1986.'},{id:"B70",body:'Hu H, You Y, He L, Chen, T. The rational design of NAMI-A loaded mesoporous silica nanoparticles as antiangiogenic nanosystems. Journal of Materials Chemistry B. 2015; 3:6338-6346.'},{id:"B71",body:'Chako L, Poyyakkara A, Kumar VBS, Aneesh PM. MoS2-ZnO nano composites as highly functional agents for anti-angiogenic and anti-cancer theranostics. J. Mater. Chem. B. 2018; 6:3048-3057.'},{id:"B72",body:'Yalcin M, Dyskin E, Lansing L, et al. Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid. The Journal of Clinical Endocrinology & Metabolism. 2010; 95:1972-1980.'},{id:"B73",body:'Shereema RM, Sruthi TV, Kumar VBS, Rao TP, Shankar SS. Angiogenic profiling of synthesized Carbon Quantum Dotes. Biochemistry. 2015; 54:6352-6356.'},{id:"B74",body:'Namara KM, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract. 2019; 8: 1-11'},{id:"B75",body:'Stewart J, Manmathan G, Wilkinson P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc Dis. 2017; 6: 2048004016687211.'},{id:"B76",body:'Gallino A, Aboyans V, Diehm C, et al. European Society of Cardiology Working Group on Peripheral Circulation. Non-coronary atherosclerosis. Eur Heart J. 2014; 35:1112-1119.'},{id:"B77",body:'Ross R. Atherosclerosis–an inflammatory disease.N Engl J Med. 1999; 340:115-126.'},{id:"B78",body:'Sueishi K, Yonemitsu Y, Nakagawa K, Kaneda Y, Kumamoto M, Nakashima Y. Atherosclerosis and angiogenesis. Its pathophysiological significance in humans as well as in an animal model induced by the gene transfer of vascular endothelial growth factor. Ann. NY Acad. Sci.1997; 811: 322-324.'},{id:"B79",body:'Moreno PR, Purushothaman KR, Sirol M, Levy AP, Fuster V. Neovascularization in human atherosclerosis. Circulation. 2006; 113: 2245-2252.'},{id:"B80",body:'Stupack DG, Cheresh DA. Integrins and angiogenesis. Curr. Top. Dev. Biol. 2004; 64: 207-238.'},{id:"B81",body:'Almutairi A, Rossin R, Shokeen M, et al. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA. 2009; 106:685-690.'},{id:"B82",body:'Liu Y, Pressly ED, Abendschein DR, et al. Targeting angiogenesis using a C-type atrial natriuretic factor-conjugated nanoprobe and PET. J Nucl Med. 2011; 52:1956-1963.'},{id:"B83",body:'Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3- integrin-targeted nanoparticles. Circulation. 2003; 108: 2270-2274.'},{id:"B84",body:'Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, Schmieder AH, Hu G, Allen JS, Lacy EK, Zhang H, Wickline SA, Lanza GM. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2006; 26: 2103-2109.'},{id:"B85",body:'Singh S, Young A, McNaught CE. The physiology of wound healing. Surgery. 2017; 35:473-477.'},{id:"B86",body:'Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomedicine & Pharmacotherapy. 2019; 112:108615.'},{id:"B87",body:'Vargas GE, Durand LAH, Cadena V, et al. Effect of nano-sized bioactive glass particles on the angiogenic properties of collagen based composites. J Mater Sci Mater Med. 2013; 24:1261-1269.'},{id:"B88",body:'Kargozar S, Baino F, Hamzehlou S, Hill RG, Mozafari M. Bioactive glasses: sprouting angiogenesis in tissue engineering. Trends Biotechnol. 2018; 36:430-444.'},{id:"B89",body:'Kargozar S, Lotfibakhshaiesh N, Ai J, et al. Strontium and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities. Acta Biomater. 2017; 58: 502-514.'},{id:"B90",body:'Danieland MC and Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004; 104: 293-346.'},{id:"B91",body:'Leu JG, Chen SA, Chen HM, et al. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and alpha-lipoic acid. Nanomedicine. 2012; 8:767-775.'},{id:"B92",body:'Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013; 2013:956792.'},{id:"B93",body:'Roma-Rodrigues C, Heuer-Jungemann A, Fernandes AR, Kanaras AG, Baptista PV. Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo. International journal of nanomedicine. 2016; 11:2633-2639.'},{id:"B94",body:'Zarubova J, Hasani-Sadrabadi MM, Bacakova L, Li S. Nano-in-Micro Dual Delivery Platform for Chronic Wound Healing Applications. Micromachines. 2020; 11:158.'},{id:"B95",body:'Xu H, Lv F, Zhang Y, Yi Z, Ke Q, Wu C, Liu M, Chang J. Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing. Nanoscale. 2015; 7:18446-18452.'},{id:"B96",body:'Xie Z, Paras CB, Weng H, Punnakitikashem P, Su LC, Vu K, Tang L, Yang J, Nguyen KT. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta biomaterialia. 2013; 9:9351-9359.'},{id:"B97",body:'Lino MM, Simões S, Vilaça A, Antunes H, Zonari A, Ferreira L. Modulation of angiogenic activity by light-activatable miRNA-loaded nanocarriers. ACS nano. 2018; 12:5207-5220.'},{id:"B98",body:'Battigelli A, Menard-Moyon C, Da Ros T, Prato M, Bianco A. Endowing Carbon Nanotubes with Biological and Biomedical Properties by Chemical Modifications. Adv. Drug Delivery Rev. 2013; 65:1899-1920.'},{id:"B99",body:'Meng J, Li X, Wang C, Guo H, Liu J, Xu H. Carbon nanotubes activate macrophages into a M1/M2 mixed status: recruiting naive macrophages and supporting angiogenesis. ACS applied materials & interfaces. 2015; 7:3180-3188.'},{id:"B100",body:'Liu Z, Feng X, Wang H, Ma J, Liu W, Cui D, Gu Y, Tang R. Carbon nanotubes as VEGF carriers to improve the early vascularization of porcine small intestinal submucosa in abdominal wall defect repair. International journal of nanomedicine. 2014; 9:1275'},{id:"B101",body:'Zhao H, Ding R, Zhao X, et al. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov Today. 2017; 22: 1302-1317.'},{id:"B102",body:'Terzopoulou Z, Kyzas GZ, Bikiaris DN. Recent advances in nanocomposite materials of graphene derivatives with polysaccharides. Materials. 2015; 8:652-683.'},{id:"B103",body:'Ur Rehman SR, Augustine R, Zahid AA, Ahmed R, Tariq M, Hasan A. Reduced Graphene Oxide Incorporated GelMA Hydrogel Promotes Angiogenesis For Wound Healing Applications. International Journal of Nanomedicine. 2019; 14:9603-9617.'},{id:"B104",body:'Barui AK, Veeriah V, Mukherjee S, Manna J, Patel AK, Patra S, Pal K, Murali S, Rana RK, Chatterjee S, Patra CR . Zinc oxide nanoflowers make new blood vessels. Nanoscale. 2012; 4:7861-7869.'},{id:"B105",body:'Chigurupati S, Mughal MR, Okun E, Das S, Kumar A, McCaffery M, Seal S, Mattson MP. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials. 2013; 34:2194-2201.'},{id:"B106",body:'Abcouwer SF. Angiogenic factors and cytokines in diabetic retinopathy. J Clin Cell Immunol. 2013; 1: 1-12.'},{id:"B107",body:'Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW, Hartnett ME. Vascular endothelial growth factor in eye disease. Progress in retinal and eye research. 2008; 27:331-371.'},{id:"B108",body:'Salvi SM, Akhtar S, Currie Z. Ageing changes in the eye. Postgraduate Medical Journal. 2006;82:581-587.'},{id:"B109",body:'Amato R, Catalani E, Dal Monte M, et al. Autophagy-mediated neuroprotection induced by octreotide in an ex vivo model of early diabetic retinopathy. Pharmacol. 2018; 128:167-178.'},{id:"B110",body:'Bisht R, Mandal A, Jaiswal JK, Rupenthal ID. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018; 10:10.1002/wnan.1473.'},{id:"B111",body:'Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int. J. Nanomedicine. 2019; 14:1633-1657.'},{id:"B112",body:'Cai J and Du B. Gold nanoparticles induce nanostructural reorganization of VEGFR2 to repress angiogenesis. J. Biomed. Nanotechnol. 2013; 9:1746-1756.'},{id:"B113",body:'Chan CM, Hsiao CY, Li HJ, Fang JY, Chang DC, Hung CF. The Inhibitory Effects of Gold Nanoparticles on VEGF-A-Induced Cell Migration in Choroid-Retina Endothelial Cells. International Journal of Molecular Sciences. 2020; 21:109.'},{id:"B114",body:'Kim JH, Kim MH, Jo DH, Yu YS, Lee TG, Kim JH. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials. 2011; 32:1865-1871.'},{id:"B115",body:'Cao Y, Chen A, An SS, Ji RW, Davidson D, Llinas M. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem. 1997; 272:22924-22928.'},{id:"B116",body:'Zhang D, Kaufman PL, Gao G, Saunders RA, Ma JX: Intravitreal injection of plasminogen kringle 5, an endogenous angiogenic inhibitor, arrests retinal neovascularization in rats. Diabetologia. 2001; 44:757-765.'},{id:"B117",body:'Park K, Chen Y, Hu Y, Mayo AS, Kompella UB, Longeras R, Ma JX. Nanoparticle-mediated expression of an angiogenic inhibitor ameliorates ischemia-induced retinal neovascularization and diabetes-induced retinal vascular leakage. Diabetes. 2009; 58:1902-1913.'},{id:"B118",body:'Qiu F, Meng T, Chen Q, Zhou K, Shao Y, Matlock G, Ma X, Wu W, Du Y, Wang X, Deng G. Fenofibrate-loaded biodegradable nanoparticles for the treatment of experimental diabetic retinopathy and neovascular age-related macular degeneration. Molecular pharmaceutics. 2019; 16:1958-1970.'},{id:"B119",body:'Amato R, Giannaccini M, Dal Monte M, Cammalleri M, Pini A, Raffa V, Lulli M, Casini G. Association of the Somatostatin Analog Octreotide with Magnetic Nanoparticles for Intraocular Delivery: A Possible Approach for the Treatment of Diabetic Retinopathy. Frontiers in Bioengineering and Biotechnology. 2020; 8:144.'},{id:"B120",body:'Pollinger K, Hennig R, Ohlmann A, Fuchshofer R, Wenzel R, Breunig M, Tessmar J, Tamm ER, Goepferich A. Ligand-functionalized nanoparticles target endothelial cells in retinal capillaries after systemic application. Proceedings of the National Academy of Sciences. 2013; 110:6115-6120.'},{id:"B121",body:'Yandrapu SK, Upadhyay AK, Petrash JM, Kompella UB. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. Molecular pharmaceutics. 2013; 10:4676-4686.'},{id:"B122",body:'Luo L, Zhang X, Hirano Y, Tyagi P, Barabás P, Uehara H, Miya TR, Singh N, Archer B, Qazi Y, Jackman K. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS nano. 2013; 7:3264-3275.'},{id:"B123",body:'Palamoor M and Jablonski MM. Synthesis, characterization and in vitro studies of celecoxib-loaded poly (ortho ester) nanoparticles targeted for intraocular drug delivery. Colloids and Surfaces B: Biointerfaces. 2013; 112: 474-482.'},{id:"B124",body:'Roupakia E, Markopoulos GS, Kolettas E. IL-12-mediated transcriptional regulation of matrix metalloproteinases. Biosci Rep. 2018; 38:BSR20171420.'},{id:"B125",body:'Zeng L, Ma W, Shi L, Chen X, Wu R, Zhang Y, Chen H, Chen H. Poly (lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy. International journal of nanomedicine. 2019; 14: 6357-6369.'},{id:"B126",body:'Colnot C, Romero DM, Huang S, Helms JA. Mechanisms of action of demineralized bone matrix in the repair of cortical bone defects. Clin Orthop Relat Res.2005; 435: 69-78.'},{id:"B127",body:'Childs SG. Osteonecrosis: death of bone cells. Orthopaedic Nursing. 2005; 24:295-301.'},{id:"B128",body:'Lazzarini L, De Lalla F, Mader JT. Long bone osteomyelitis. Current infectious disease reports. 2002; 4:439-445.'},{id:"B129",body:'Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, Frisch B, Mallmann B, Eisenmenger W, Gilg T. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone. 1987; 8:157-164.'},{id:"B130",body:'Alagiakrishnan K, Juby A, Hanley D, Tymchak W, Sclater A. Role of vascular factors in osteoporosis. J Gerontol A Biol Sci Med Sci. 2003; 58:362-366.'},{id:"B131",body:'Holmes B, Bulusu K, Plesniak M, Zhang LG. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology. 2016; 27:064001.'},{id:"B132",body:'Kumar RA, Sivashanmugam A, Deepthi S, Bumgardner JD, Nair SV, Jayakumar R. Nano-fibrin stabilized CaSO4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & osteogenesis. Carbohydrate polymers. 2016; 140:144-153.'},{id:"B133",body:'Wang C, Lin K, Chang J, Sun J. Osteogenesis and angiogenesis induced by porous β-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials. 2013; 34: 64-77.'},{id:"B134",body:'Shi X, Zhou K, Huang F, Wang C. Interaction of hydroxyapatite nanoparticles with endothelial cells: internalization and inhibition of angiogenesis in vitro through the PI3K/Akt pathway. International journal of nanomedicine. 2017; 12:5781-5795.'},{id:"B135",body:'Oliveira H, Catros S, Boiziau C, Siadous R, Marti-Munoz J, Bareille R, Rey S, Castano O, Planell J, Amédée J, Engel E. The proangiogenic potential of a novel calcium releasing biomaterial: Impact on cell recruitment. Acta biomaterialia. 2016; 29:435-445.'},{id:"B136",body:'Kang MS, Lee NH, Singh RK, Mandakhbayar N, Perez RA, Lee JH, Kim HW. Nanocements produced from mesoporous bioactive glass nanoparticles. Biomaterials. 2018; 162:183-199.'},{id:"B137",body:'Tian T, Xie W, Gao W, Wang G, Zeng L, Miao G, Lei B, Lin Z, Chen X. Micro-nano bioactive glass particles incorporated porous scaffold for promoting osteogenesis and angiogenesis in vitro. Frontiers in chemistry. 2019; 7:186.'},{id:"B138",body:'Yao Q, Liu Y, Selvaratnam B, Koodali RT, Sun H. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. Journal of Controlled Release. 2018; 279: 69-78.'},{id:"B139",body:'Chen Y, Chen S, Kawazoe N, Chen G. Promoted angiogenesis and osteogenesis by dexamethasone-loaded calcium phosphatenanoparticles/collagen composite scaffolds with microgroove networks. Scientific reports. 2018; 8:1-12.'},{id:"B140",body:'Luo C, Yang X, Li M, Huang H, Kang Q, Zhang X, Hui H, Zhang X, Cen C, Luo Y, Xie L. A novel strategy for in vivo angiogenesis and osteogenesis: magnetic micro-movement in a bone scaffold. Artificial cells, nanomedicine, and biotechnology. 2018; 46:636-645.'},{id:"B141",body:'Kawazoe N and Chen G. Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials. 2015; 54:226-236.'},{id:"B142",body:'López-Dolado E, González-Mayorga A, Gutiérrez MC, Serrano MC. Immunomodulatory and angiogenic responses induced by graphene oxide scaffolds in chronic spinal hemisected rats. Biomaterials. 2016; 99:72-81.'},{id:"B143",body:'Qian Y, Song J, Zhao X, et al. 3D fabrication with integration molding of a graphene oxide/polycaprolactone nanoscaffold for neurite regeneration and angiogenesis. Adv Sci. 2018; 5:1700499.'},{id:"B144",body:'Xu ZX, Zhang LQ, Wang CS, Chen RS, Li GS, Guo Y, Xu WH. Acellular spinal cord scaffold implantation promotes vascular remodeling with sustained delivery of VEGF in a rat spinal cord hemisection model. Current Neurovascular Research. 2017; 14:274-289.'},{id:"B145",body:'Wen Y, Yu S, Wu Y, et al. Spinal cord injury repair by implantation of structured hyaluronic acid scaffold with PLGA microspheres in the rat. Cell Tissue Res. 2016; 364:17-28.'},{id:"B146",body:'Yu S, Yao S, Wen Y, Wang Y, Wang H, Xu Q. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats. Scientific reports. 2016; 6:1-13.'},{id:"B147",body:'Jian W-H, Wang H-C, Kuan C-H, Chen M-H, Wu H-C, Sun J-S, Wang T-W. Glycosaminoglycan-based hybrid hydrogel encapsulated with polyelectrolyte complex nanoparticles for endogenous stem cell regulation in central nervous system regeneration. Biomaterials. 2018; 174:17-30.'},{id:"B148",body:'Nih LR, Gojgini S, Carmichael ST, Segura T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nature materials. 2018; 17:642-651.'},{id:"B149",body:'Carenza E, BarcelóV, Morancho A, Levander L, Boada C, Laromaine A, Roig A, Montaner J, Rosell A. In vitro angiogenic performance and in vivo brain targeting of magnetized endothelial progenitor cells for neurorepair therapies. Nanomedicine: Nanotechnology, Biology and Medicine. 2014; 10:225-234.'},{id:"B150",body:'Yuan M, Wang Y, Qin Y-X. Promoting neuroregeneration by applying dynamic magnetic fields to a novel nanomedicine: Superparamagnetic iron oxide (SPIO)-gold nanoparticles bounded with nerve growth factor (NGF). Nanomedicine. 2018; 14:1337-1347.'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Aswini Poyyakkara",address:null,affiliation:'
Department of Biochemistry and Molecular Biology, Central University of Kerala, India
Department of Biochemistry and Molecular Biology, Central University of Kerala, India
'}],corrections:null},book:{id:"10232",title:"Theranostics - An Old Concept in New Clothing",subtitle:null,fullTitle:"Theranostics - An Old Concept in New Clothing",slug:null,publishedDate:null,bookSignature:"Dr. Elisabeth Eppard",coverURL:"https://cdn.intechopen.com/books/images_new/10232.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-83962-788-0",printIsbn:"978-1-83962-783-5",pdfIsbn:"978-1-83962-789-7",editors:[{id:"245845",title:"Dr.",name:"Elisabeth",middleName:null,surname:"Eppard",slug:"elisabeth-eppard",fullName:"Elisabeth Eppard"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"140518",title:"Dr.",name:"Cristina",middleName:null,surname:"Go",email:"cristina.go@sickkids.ca",fullName:"Cristina Go",slug:"cristina-go",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{title:"Clinical MEG Analyses for Children with Intractable Epilepsy",slug:"clinical-meg-analyses-for-children-with-intractable-epilepsy",abstract:null,signatures:"Ayako Ochi, Cristina Y. Go and Hiroshi Otsubo",authors:[{id:"69469",title:"Dr.",name:"Ayako",surname:"Ochi",fullName:"Ayako Ochi",slug:"ayako-ochi",email:"ayako.ochi@sickkids.ca"},{id:"140518",title:"Dr.",name:"Cristina",surname:"Go",fullName:"Cristina Go",slug:"cristina-go",email:"cristina.go@sickkids.ca"},{id:"140519",title:"Dr.",name:"Hiroshi",surname:"Otsubo",fullName:"Hiroshi Otsubo",slug:"hiroshi-otsubo",email:"hiroshi.otsubo@sickkids.ca"}],book:{title:"Magnetoencephalography",slug:"magnetoencephalography",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"72115",title:"Dr.",name:"Annalisa",surname:"Pascarella",slug:"annalisa-pascarella",fullName:"Annalisa Pascarella",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Parma",institutionURL:null,country:{name:"Italy"}}},{id:"72629",title:"Dr",name:"Maher A.",surname:"Quraan",slug:"maher-a.-quraan",fullName:"Maher A. Quraan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"75342",title:"Dr.",name:"Garreth",surname:"Prendergast",slug:"garreth-prendergast",fullName:"Garreth Prendergast",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of York",institutionURL:null,country:{name:"United Kingdom"}}},{id:"76618",title:"Dr.",name:"Sandra",surname:"Moses",slug:"sandra-moses",fullName:"Sandra Moses",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Hospital for Sick Children",institutionURL:null,country:{name:"Canada"}}},{id:"77505",title:"Dr.",name:"Jennifer",surname:"Ryan",slug:"jennifer-ryan",fullName:"Jennifer Ryan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rothman Institute",institutionURL:null,country:{name:"United States of America"}}},{id:"80565",title:"Dr.",name:"Mark",surname:"Hymers",slug:"mark-hymers",fullName:"Mark Hymers",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of York",institutionURL:null,country:{name:"United Kingdom"}}},{id:"84822",title:"Prof.",name:"Alexandre",surname:"Castro-Caldas",slug:"alexandre-castro-caldas",fullName:"Alexandre Castro-Caldas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Catholic University of Portugal",institutionURL:null,country:{name:"Portugal"}}},{id:"121176",title:"Dr.",name:"Faith",surname:"Hanlon",slug:"faith-hanlon",fullName:"Faith Hanlon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"140477",title:"Dr.",name:"Maria Vânia",surname:"Rocha da Silva Nunes",slug:"maria-vania-rocha-da-silva-nunes",fullName:"Maria Vânia Rocha da Silva Nunes",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"140478",title:"Dr.",name:"Fernando",surname:"Maestú",slug:"fernando-maestu",fullName:"Fernando Maestú",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"horizon-2020-compliance",title:"Horizon 2020 Compliance",intro:'
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"
Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\n
Metadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\n
In other words, publishing with IntechOpen guarantees compliance.
When choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\n
IntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\n
Authors requiring additional information are welcome to send their inquiries to funders@intechopen.com
Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\n
Metadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\n
In other words, publishing with IntechOpen guarantees compliance.
When choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\n
IntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\n
Authors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15932}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"6"},books:[{type:"book",id:"10801",title:"Uric Acid",subtitle:null,isOpenForSubmission:!0,hash:"d947ab87019e69ab11aa597edbacc018",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10800",title:"Ligase",subtitle:null,isOpenForSubmission:!0,hash:"1f10ff112edb1fec24379dac85ef3b5b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10800.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10837",title:"Peroxisomes",subtitle:null,isOpenForSubmission:!0,hash:"0014b09d4b35bb4d7f52ca0b3641cda1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!0,hash:"64617cf21bf1e47170bb2bcf31b1fc37",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:null,isOpenForSubmission:!0,hash:"339199f254d2987ef3167eef74fb8a38",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10741",title:"Synthetic Genomics - From Natural to Synthetic Genomes",subtitle:null,isOpenForSubmission:!0,hash:"eb1cebd0b9c4e7e87427003ff7196f57",slug:null,bookSignature:"Dr. Miguel Fernández-Niño and Dr. Luis H. Reyes",coverURL:"https://cdn.intechopen.com/books/images_new/10741.jpg",editedByType:null,editors:[{id:"158295",title:"Dr.",name:"Miguel",surname:"Fernández-Niño",slug:"miguel-fernandez-nino",fullName:"Miguel Fernández-Niño"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10886",title:"Genetic Polymorphisms - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"a71558dd7dfd16ad140168409f887f7e",slug:null,bookSignature:"Prof. Mahmut Çalışkan",coverURL:"https://cdn.intechopen.com/books/images_new/10886.jpg",editedByType:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10794",title:"Potassium in Human Health",subtitle:null,isOpenForSubmission:!0,hash:"0fbab5c7b5baa903a6426e7bbd9f99ab",slug:null,bookSignature:"Dr. Jie Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",editedByType:null,editors:[{id:"181267",title:"Dr.",name:"Jie",surname:"Tang",slug:"jie-tang",fullName:"Jie Tang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!0,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:null,bookSignature:"Prof. Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editedByType:null,editors:[{id:"40482",title:"Prof.",name:"Rizwan",surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!0,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:null,bookSignature:"Prof. Yusuf Tutar and Dr. Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:null,editors:[{id:"158492",title:"Prof.",name:"Yusuf",surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:13},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"20",title:"Physics",slug:"physics",parent:{title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:143,numberOfAuthorsAndEditors:3401,numberOfWosCitations:3946,numberOfCrossrefCitations:1614,numberOfDimensionsCitations:3509,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"physics ",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9984",title:"Geophysics and Ocean Waves Studies",subtitle:null,isOpenForSubmission:!1,hash:"271d086381f9ba04162b0dc7cd57755f",slug:"geophysics-and-ocean-waves-studies",bookSignature:"Khalid S. Essa, Marcello Di Risio, Daniele Celli and Davide Pasquali",coverURL:"https://cdn.intechopen.com/books/images_new/9984.jpg",editedByType:"Edited by",editors:[{id:"102766",title:"Prof.",name:"Khalid S.",middleName:null,surname:"Essa",slug:"khalid-s.-essa",fullName:"Khalid S. Essa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10042",title:"Noise and Environment",subtitle:null,isOpenForSubmission:!1,hash:"11e8fca2f0f623d87dfbc3cf2b185e0d",slug:"noise-and-environment",bookSignature:"Daniela Siano and Alice Elizabeth González",coverURL:"https://cdn.intechopen.com/books/images_new/10042.jpg",editedByType:"Edited by",editors:[{id:"9960",title:"Dr.",name:"Daniela",middleName:null,surname:"Siano",slug:"daniela-siano",fullName:"Daniela Siano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10074",title:"Recent Techniques and Applications in Ionizing Radiation Research",subtitle:null,isOpenForSubmission:!1,hash:"129deeec2186f6392f154ed41f64477a",slug:"recent-techniques-and-applications-in-ionizing-radiation-research",bookSignature:"Ahmed M. Maghraby and Basim Almayyahi",coverURL:"https://cdn.intechopen.com/books/images_new/10074.jpg",editedByType:"Edited by",editors:[{id:"102209",title:"Dr.",name:"Ahmed M.",middleName:null,surname:"Maghraby",slug:"ahmed-m.-maghraby",fullName:"Ahmed M. Maghraby"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8679",title:"Inverse Heat Conduction and Heat Exchangers",subtitle:null,isOpenForSubmission:!1,hash:"a994b17ac471c6d414d63c74a7ab74de",slug:"inverse-heat-conduction-and-heat-exchangers",bookSignature:"Suvanjan Bhattacharya, Mohammad Moghimi Ardekani, Ranjib Biswas and R. C. Mehta",coverURL:"https://cdn.intechopen.com/books/images_new/8679.jpg",editedByType:"Edited by",editors:[{id:"233630",title:"Dr.",name:"Suvanjan",middleName:null,surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya"}],equalEditorOne:{id:"56358",title:"Dr.",name:"R. C.",middleName:null,surname:"Mehta",slug:"r.-c.-mehta",fullName:"R. C. Mehta",profilePictureURL:"https://mts.intechopen.com/storage/users/56358/images/system/56358.jpeg",biography:"R. C. Mehta obtained his Ph.D. from the Indian Institute of Technology, Madras. He has worked as the Head of Aerodynamics\nDivision of Vikram Sarabhai Space Centre/Indian Space Research\nOrganization. He has participated in the design of launch and\nreentry vehicles. He has served as a Senior Fellow in the School\nof Mechanical and Aerospace Engineering at Nanyang Technological University, Singapore. He is the recipient of the Life Time\nAchievement Award from the Flow Physics Society of India. He is a senior member\nof AIAA. He has published over 120 papers in peer-reviewed national and international journals. He has published five chapters and co-authored two books. He is a\nreviewer for many international journals. He is presently Dean in the Noorul Islam\nCentre for Higher Education, Kumaracoil, India.",institutionString:"Noorul Islam University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Noorul Islam University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8490",title:"Selected Topics in Plasma Physics",subtitle:null,isOpenForSubmission:!1,hash:"0fe936bfad77ae70ad96c46de8b7730d",slug:"selected-topics-in-plasma-physics",bookSignature:"Sukhmander Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8490.jpg",editedByType:"Edited by",editors:[{id:"282807",title:"Dr.",name:"Sukhmander",middleName:null,surname:"Singh",slug:"sukhmander-singh",fullName:"Sukhmander Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9211",title:"Single Photon Manipulation",subtitle:null,isOpenForSubmission:!1,hash:"567ddcc14b68fa14e54df3bce2f51acc",slug:"single-photon-manipulation",bookSignature:"Keyu Xia",coverURL:"https://cdn.intechopen.com/books/images_new/9211.jpg",editedByType:"Edited by",editors:[{id:"210723",title:"Prof.",name:"Keyu",middleName:null,surname:"Xia",slug:"keyu-xia",fullName:"Keyu Xia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10076",title:"Quantum Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"78f2b316d6bb97464dbbf9b683164aff",slug:"quantum-mechanics",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/10076.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7965",title:"Liquid Crystals and Display Technology",subtitle:null,isOpenForSubmission:!1,hash:"eb83772cea6200bdd685b8a1b93ee35d",slug:"liquid-crystals-and-display-technology",bookSignature:"Morteza Sasani Ghamsari and Irina Carlescu",coverURL:"https://cdn.intechopen.com/books/images_new/7965.jpg",editedByType:"Edited by",editors:[{id:"64949",title:"Prof.",name:"Morteza",middleName:null,surname:"Sasani Ghamsari",slug:"morteza-sasani-ghamsari",fullName:"Morteza Sasani Ghamsari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9276",title:"Computational Fluid Dynamics Simulations",subtitle:null,isOpenForSubmission:!1,hash:"03a2501c6fc0ac90a8b328850b712da7",slug:"computational-fluid-dynamics-simulations",bookSignature:"Guozhao Ji and Jiujiang Zhu",coverURL:"https://cdn.intechopen.com/books/images_new/9276.jpg",editedByType:"Edited by",editors:[{id:"190139",title:"Dr.",name:"Guozhao",middleName:null,surname:"Ji",slug:"guozhao-ji",fullName:"Guozhao Ji"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10162",title:"A Diffusion Hydrodynamic Model",subtitle:null,isOpenForSubmission:!1,hash:"a8c90b653db4fa7a59132d39cca185d8",slug:"a-diffusion-hydrodynamic-model",bookSignature:"Theodore V. Hromadka II, Chung-Cheng Yen and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/10162.jpg",editedByType:"Authored by",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"compact",authoredCaption:"Authored by"}}],booksByTopicTotal:143,mostCitedChapters:[{id:"32842",doi:"10.5772/34901",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:73518,totalCrossrefCites:29,totalDimensionsCites:58,book:{slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"49652",doi:"10.5772/61720",title:"Sample Preparations for Scanning Electron Microscopy – Life Sciences",slug:"sample-preparations-for-scanning-electron-microscopy-life-sciences",totalDownloads:8115,totalCrossrefCites:25,totalDimensionsCites:54,book:{slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mogana Das Murtey and Patchamuthu Ramasamy",authors:[{id:"176330",title:"Dr.",name:"Mogana",middleName:"Das",surname:"Murtey",slug:"mogana-murtey",fullName:"Mogana Murtey"},{id:"181159",title:"Mr.",name:"Patchamuthu",middleName:null,surname:"Ramasamy",slug:"patchamuthu-ramasamy",fullName:"Patchamuthu Ramasamy"}]},{id:"26791",doi:"10.5772/28067",title:"Optical Vortices in a Fiber: Mode Division Multiplexing and Multimode Self-Imaging",slug:"optical-vortices-in-a-fiber-mode-division-multiplexing-and-multimode-self-reproducing",totalDownloads:3952,totalCrossrefCites:18,totalDimensionsCites:39,book:{slug:"recent-progress-in-optical-fiber-research",title:"Recent Progress in Optical Fiber Research",fullTitle:"Recent Progress in Optical Fiber Research"},signatures:"S.N. Khonina, N.L. Kazanskiy and V.A. Soifer",authors:[{id:"72613",title:"Prof.",name:"Svetlana",middleName:null,surname:"Khonina",slug:"svetlana-khonina",fullName:"Svetlana Khonina"}]}],mostDownloadedChaptersLast30Days:[{id:"71926",title:"An Overview of Polymer-Dispersed Liquid Crystals Composite Films and Their Applications",slug:"an-overview-of-polymer-dispersed-liquid-crystals-composite-films-and-their-applications",totalDownloads:561,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"liquid-crystals-and-display-technology",title:"Liquid Crystals and Display Technology",fullTitle:"Liquid Crystals and Display Technology"},signatures:"Anuja Katariya Jain and Rajendra R. Deshmukh",authors:[{id:"34437",title:"Dr.",name:"Rajendrasing",middleName:"Rajesing",surname:"Deshmukh",slug:"rajendrasing-deshmukh",fullName:"Rajendrasing Deshmukh"},{id:"318245",title:"Dr.",name:"Anuja",middleName:null,surname:"Katariya-Jain",slug:"anuja-katariya-jain",fullName:"Anuja Katariya-Jain"}]},{id:"72824",title:"Applications of Diffusion Hydrodynamic Model",slug:"applications-of-diffusion-hydrodynamic-model",totalDownloads:312,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"a-diffusion-hydrodynamic-model",title:"A Diffusion Hydrodynamic Model",fullTitle:"A Diffusion Hydrodynamic Model"},signatures:"Theodore V. Hromadka II and Chung-Cheng Yen",authors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}]},{id:"49537",title:"Electron Diffraction",slug:"electron-diffraction",totalDownloads:8488,totalCrossrefCites:6,totalDimensionsCites:22,book:{slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mohsen Asadi Asadabad and Mohammad Jafari Eskandari",authors:[{id:"176352",title:"Dr.",name:"Mohsen",middleName:null,surname:"Asadi Asadabad",slug:"mohsen-asadi-asadabad",fullName:"Mohsen Asadi Asadabad"},{id:"177600",title:"Dr.",name:"Mohammad",middleName:null,surname:"Jafari Eskandari",slug:"mohammad-jafari-eskandari",fullName:"Mohammad Jafari Eskandari"}]},{id:"32842",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:73518,totalCrossrefCites:29,totalDimensionsCites:58,book:{slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"71638",title:"Plasma Antennas",slug:"plasma-antennas",totalDownloads:300,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"selected-topics-in-plasma-physics",title:"Selected Topics in Plasma Physics",fullTitle:"Selected Topics in Plasma Physics"},signatures:"Theodore Anderson",authors:null},{id:"50866",title:"Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution",slug:"effects-of-different-laser-pulse-regimes-nanosecond-picosecond-and-femtosecond-on-the-ablation-of-ma",totalDownloads:4902,totalCrossrefCites:5,totalDimensionsCites:17,book:{slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Abubaker Hassan Hamad",authors:[{id:"183494",title:"Dr.",name:"Abubaker",middleName:"Hassan",surname:"Hamad",slug:"abubaker-hamad",fullName:"Abubaker Hamad"}]},{id:"68746",title:"Optically Clear Adhesives for OLED",slug:"optically-clear-adhesives-for-oled",totalDownloads:1490,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"luminescence-oled-technology-and-applications",title:"Luminescence",fullTitle:"Luminescence - OLED Technology and Applications"},signatures:"Joel T. Abrahamson, Hollis Z. Beagi, Fay Salmon and Christopher J. Campbell",authors:null},{id:"59379",title:"Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors",slug:"graphene-transition-metal-dichalcogenides-and-perovskite-photodetectors",totalDownloads:1643,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"two-dimensional-materials-for-photodetector",title:"Two-dimensional Materials for Photodetector",fullTitle:"Two-dimensional Materials for Photodetector"},signatures:"Zhi Yang, Jinjuan Dou and Minqiang Wang",authors:[{id:"225612",title:"Dr.",name:"Zhi",middleName:null,surname:"Yang",slug:"zhi-yang",fullName:"Zhi Yang"},{id:"238944",title:"MSc.",name:"Jinjuan",middleName:null,surname:"Dou",slug:"jinjuan-dou",fullName:"Jinjuan Dou"},{id:"238946",title:"Prof.",name:"Minqiang",middleName:null,surname:"Wang",slug:"minqiang-wang",fullName:"Minqiang Wang"}]},{id:"70578",title:"Gallium-68: Radiolabeling of Radiopharmaceuticals for PET Imaging - A Lot to Consider",slug:"gallium-68-radiolabeling-of-radiopharmaceuticals-for-pet-imaging-a-lot-to-consider",totalDownloads:717,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"medical-isotopes",title:"Medical Isotopes",fullTitle:"Medical Isotopes"},signatures:"Michael Meisenheimer, Yury Saenko and Elisabeth Eppard",authors:null},{id:"58452",title:"Transition Metal Dichalcogenide Photodetectors",slug:"transition-metal-dichalcogenide-photodetectors",totalDownloads:1545,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"two-dimensional-materials-for-photodetector",title:"Two-dimensional Materials for Photodetector",fullTitle:"Two-dimensional Materials for Photodetector"},signatures:"Inturu Omkaram, Young Ki Hong and Sunkook Kim",authors:[{id:"210186",title:"Dr.",name:"Inturu",middleName:null,surname:"Omkaram",slug:"inturu-omkaram",fullName:"Inturu Omkaram"}]}],onlineFirstChaptersFilter:{topicSlug:"physics ",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"76308",title:"Quarks Mixing in Chiral Symmetries",slug:"quarks-mixing-in-chiral-symmetries",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.95233",book:{title:"Quantum Chromodynamic"},signatures:"Zbigniew Szadkowski"},{id:"76271",title:"Double Pole Method in QCD Sum Rules for Vector Mesons",slug:"double-pole-method-in-qcd-sum-rules-for-vector-mesons",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.97421",book:{title:"Quantum Chromodynamic"},signatures:"Mikael Souto Maior de Sousa and Rômulo Rodrigues da Silva"},{id:"76259",title:"Paramagnetic Transitions Ions as Structural Modifiers in Ferroelectrics",slug:"paramagnetic-transitions-ions-as-structural-modifiers-in-ferroelectrics",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.95983",book:{title:"Paramagnetism - Fundamentals, New Perspectives and Applications"},signatures:"Veronica Lucero Villegas Rueda"}],onlineFirstChaptersTotal:35},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/140518/cristina-go",hash:"",query:{},params:{id:"140518",slug:"cristina-go"},fullPath:"/profiles/140518/cristina-go",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()