Different fungi reported as plant growth promoting fungi (PGPF) with their original source of isolation.
\r\n\t• Role of technological innovation and corporate risk management
\r\n\t• Challenges for corporate governance while launching corporate environmental management among emerging economies
\r\n\t• Demonstrating the relationship between environmental risk management and sustainable management
\r\n\t• Contemplating strategic corporate environmental responsibility under the influence of cultural barriers
\r\n\t• Risk management in different countries – the international management dimension
\r\n\t• Global Standardization vs local adaptation of corporate environmental risk management in multinational corporations.
\r\n\t• Is there a transnational approach to environmental risk management?
\r\n\t• Approaches towards Risk management strategies in the short-term and long-term.
On 25th of August, 2017, Hurricane Harvey made the first landfall in Texas. Although Houston, a city of approximately 6.5 million inhabitants, lays above sea level, it experienced massive floods over the following days due to the extreme amounts of rain and wind and storm surge [1]. Simultaneously, Nepal, India, and Bangladesh are struck by heavy monsoon rains, causing Mumbai’s streets to turn into rivers and more than 1200 deaths throughout the entire region [2]. Houston’s extreme floods were caused by the combination of heavy rains causing interior waterways to overflow, a storm surge that prevented them from emptying out in the ocean, and a general lack of pervious surface in the city [3]. Mumbai vulnerability lays in its rapid expansion that is accompanied by construction and development on floodplains as well as clogged waterways due to an excess of plastic waste [2].
The contemporary urban water system is under extreme pressure of rapid urbanization, growing demand, climate change, and social inequality. It has become apparent that water is no longer a free endless resource and that waste cannot just be transported to other places, because water systems are globally connected [4]. Unless the competing demands are addressed in holistic manners, we will soon lack access to good-quality water, and extreme flooding, droughts, and tsunamis will increasingly affect the planet and its people, with most severe consequences for those already living in marginal conditions. Disempowered communities, minorities, and the poor are at the frontlines [5].
The urgency of this has been recognized at the recent Climate Summit in Paris. Commitments have been made by governments and other stakeholders, but the tensions underlying our failure to address these issues in the past have not been resolved, and the implementation of radical policies and integrated innovations remains to be seen. Interventions and implementations are challenged by the uncertainty of climate models, cycles of capital investment and governmental risk aversion, fragmentation of governmental responsibility and inclusion of knowledge, the definition of innovation, and scale.
We can think of transforming the urban water ecologies to meet the needs of our future cities as a wicked problem, a term first introduced by Horst Rittel, a German scholar, in the 1960s [6]. Wicked problems are not easy to formulate or to reach a consensus on a solution. Actions taken to mitigate the problems are often inadequate and temporary, even when they are the result of the public debate and shared concerns [7]. Rittel defines some characteristics of wicked problems. First, one cannot understand the problem without understanding its context. There is no way of first understanding and then solving since the existing pieces might shift in a solution.
Second, there is no stopping rule. In the case of a wicked problem, it is not clear when a solution is found. The intervention does not stop when the problem is solved but is limited by external factors such as time or money.
Third, there are no true or false answers since the criteria to determine that do not exist. Any judgment by actors is determined by the values and objectives of the group that they are part of, the place they take within the realm of the existing problem.
Finally, there is no test (except for real-life implementation) to a wicked problem. Every attempt will have consequences that are either desirable or not, which will then trigger another set of consequences. Every implemented “solution” will leave its mark in the system [6].
For example, the Dutch and the storm surge barrier they decided to build in the 1960s after a devastating storm with 5-m waves broke the existing dikes and had affected many lives in the South of Holland in 1953. Holland had lost the battle with water in a storm that was beyond their expectation. This called for an intervention outside of what they already knew. During the process of implementing the barrier, all types of issues arose such as a changing hydrology causing strong tides as the project proceeded, complicating further intervention. Although, until this day, that levee has protected the low-lying south of the country, it is a continuous train of intervention that has been implemented to secure the Dutch with dry feet [8].
The current urban water system has reached a critical threshold, but how can innovative urban water design or planning solutions be implemented when there is so much at stake? This chapter will first briefly discuss the value of water. Second, it will address the urban waterscape and its contemporary challenges. What are contemporary urban centers facing in terms of water pressures, and what can we expect in future climate conditions. Furthermore, we will discuss contemporary design and planning of solutions as well as highlight the sociopolitical, economic, and ecological barriers to their implementation. To illustrate the challenges as well as the range of solutions, we will present the algal blooms in Lake Erie, USA, as a case study. The chapter will end with an elaboration on how to innovate in the case of wicked problems.
There is a certain dualism at stake when thinking about water and cities. Water needs to get into our urban systems and flow through them, for otherwise urban populations cannot exist; think about drinking water or water needed for urban industries. On the other side, we also need to be protected against it. Too much water, in the form a natural hazard or a polluted body like sewage, is a constant threat to society resulting in inadequate attempts of controlling the flows.
Water has multiple physical attributes that affect its relation to the human body and environment and that shape its use [9]. Its fluidity and plurality are reflected in the ways we refer to it. Water is experienced (tasteless, odorless, cold, salty), and it is volatile in its form (rain, ice, and gas). It moves at different speed (current, wave, mirror), has a carrying capacity (of nutrients and pollutants), and is an active agent (flows, shapes, erodes, moisturizes), which can also be contained (in soil pores, pathways, and rivers).
The fluidity and plural attributes of water are at the core of distribution of quality and quantity of water that is of key importance to maintain the integrity of ecosystems and that will preserve their ability to provide services valuable to humans [10]. Natural water supplies vary over times as these flows cause scarcity and in other places floods. The fact that water has a certain carrying capacity allows it to carry nutrients, but it also allows it to erode our coasts resulting in turbid currents. Large technical infrastructures, such as dams, reservoirs, and artificial storages, shield us from the variability of the resource and protect us against floods [10].
Historically, all large urban centers were built in the proximity of water for it to survive. When ancient Rome around 300 BC grew beyond its capacity to provide fresh water to its citizens locally, the Romans engineered an extensive system, including large aqueducts, underground pipes, as well as measures to control the velocity of the water to import water into the city [11]. This infrastructure had a combined length of over 400 km and brought water from places as far away as 80 km [12]. There was one major pitfall to their ingenious water system; many of the pipes were made from lead, a strong neurotoxin, which contaminated the water and poisoned Rome’s inhabitants [13]. Some scholars advocate that lead poisoning was at the base of the fall of the Roman empire [14]. Lead poisoning is not only a problem of the past as was seen in Flint Michigan in 2015. The local government switched their water resource to a more affordable but corrosive option, the Flint River, which caused the pipes to leak lead into the drinking water [15].
All water is connected and so are the issues surrounding our water systems. What are the pressures threatening our urban centers exactly? As mentioned before urban areas face issues regarding the quantity and quality of water manifesting itself in scarcity, pollution, and flood events.
First, flooding events are caused by a multitude of factors, including water body flooding and heavy rains, but also factors that are related to the urban fabric itself such as clogging of drainage systems and land use change. Although there is no exact prediction of what will happen in the light of climate change, most scientists agree that extreme weather events such as hurricanes will occur more frequently and will be of higher intensity. Additionally, more extremes in precipitation will occur (both droughts and excess) and a rise of sea level which will most rapidly affect coastal cities and small island communities [16]. At the same time, rapid urbanization leads to expansion of the urban surface which often results in a lack of stormwater retention space due to imperviousness of the surface that simultaneously accelerates stormwater flow, keeping the water in the streets. Excess waste is at the base of clogging the existing man-made drainage channels and natural systems such as mangroves or wetlands [17].
Jongman and colleagues [18] address the rise of costs (infrastructure, housing, businesses, etc.) as a result of flooding throughout Europe. They suggest that by 2050, those annual costs will rise from 4.5 Billion to 23 Billion Euros, under the anticipated climate change and socioeconomic development [18].
An abundance of water can be problematic but so is scarcity. In some cases, cities experience both. Cities often rely on sources in their hinterlands to supply their population, industries, and agriculture with fresh water. However, our fresh water resources are decreasing. We have consumed water without limits under the assumption that it is a renewable resource. Moreover, growing cities along with a growing population increase the need for fresh water. In response, cities have created complex large-scale infrastructures trying to reach new sources of underground water or surface water [19]. When surface water is insufficient for the demand, cities often turn to groundwater; however, when more water is consumed than what is refilling the source, this will not only result in depletion and water stress in the future but also to saltwater intrusion and soil subsidence of lower lying areas as well as to negative effects on natural streamflows and depended ecosystems [20, 21]. In a capitalist society, consuming less water is hard to achieve, since it is in direct opposition to the principles on which such society is based [22].
Furthermore, human activities such as irrigation and industrial use threaten the global water systems. The benefits of our water use to economic growth go hand in hand with degradation of our (aquatic) ecosystems that will result in major costs in the future [23]. Think about micro plastic that enters the water system through our waste systems. These fragmented particles are almost impossible to filter out of the systems, and we have yet to understand the largely unknown long-term consequences [24].
Apart from synthetic pollution, pollution can also occur by a disbalance of nutrients in the water. An example is Toledo, a city of a little over 500,000 inhabitants in the US. The drinking water source for the city is the adjacent Lake Erie, but in 2014 the inhabitants had to close their taps because of the presence of microcystin, a toxin that emerged from algae blooms occurring in the lake [25]. These blooms are caused by nutrient runoff, phosphorus, in particular, that flows from urban sewage overflow (point source) and predominantly agricultural runoff (nonpoint source) through the watershed into the lake and are intensified by heavy rain. Climate change, extreme weather events, and hot summers will cause harmful algae blooms to occur more often and more intense within the following years [26]. We will review this more in-depth in the following sections.
Summarizing, floods, pollution, and scarcity are all interconnected, e.g., in the case of floods, it can pollute water bodies when hitting a chemical factory. Pollution in its turn leads to scarcity of freshwater.
How can we secure healthy water system on our planet in a changing world?
Stable socio-environmental ecosystems do not exist; these systems are always on the move. Society wants to influence the ecological system by implementing measures to alter the hydrological response and to keep it at its highest stage of productivity, preventing it from collapse [27]. The implementation measures are often incentivized from an economic efficiency agenda and are predominantly technocratic as they often fail to fully integrate social dimensions of water. Furthermore, they are often narrow solutions that are unsynchronized with the dynamics of the physical landscape.
Mollinga distinguishes three dimensions at the heart of water control: technical/physical, organizational/managerial, and a socioeconomic and regulatory [28].
Historically, water infrastructure and projects to alter the hydrological response have been created by scientific and technical experts, emphasizing rational science and economic efficiency. With the increase of tension between social, environmental, and economic elements in urban areas, this is no longer viable. Implemented infrastructures have more often redirected the system than stopped it from developing. Again and again, the effect of one intervention has asked for another one as systems are successional and dynamic [29].
There are four dominant ways of altering the hydrological response through physical implementations:
inverting the course of the water flow to get water supply (e.g., irrigation);
altering the stream network (wetlands);
altering the drainage basin (dams); and
changing the global climate (overusing water) [28].
Furthermore, innovation in urban water systems comes in three ways: (1) new technologies (desalination or new waste water systems), (2) new management approaches (business models, policy implementations), and (3) techniques to increase the functioning of the current system (monitoring, etc.) [30].
The large-scale infrastructure-engineering approach was overtaken by more recent notions of conservation or restoration. In both, system ecology remains entrenched within the same modern paradigm that many argue is the structural cause of environmental and social decline, as Corner puts it “whereas conservation utilizes ecology to facilitate further control over the human environment, restoration uses it to provide rhetorical force to emotional feelings about the primacy of nature and the errors of the Anthropocene” [31]. Thus, conservation aims at keeping the same ecosystem services of a system and tries to keep a system from moving away from its current state. It has faith that adaptive and transformative measures will save the day [32].
In both the large infrastructure/engineering and conservation/restoration trains of thought, the symptoms of ecological distress are dealt with, while causal and cultural foundations—the social structures that underlie at these problems—are often not addressed.
The problematic at stake with the drinking water systems of Toledo, Ohio, provides a good case study of proposed interventions and barriers while working with unprecedented issues and wicked problems. In 2016, as part of Enaegon, a collaborative urban design company with a focus on water, we proposed an implementation that would contribute to diverting the algae blooms in Lake Erie. We took as a point of departure that wicked problems can be challenged throughout the journey toward a design intervention that can change the interactions in the systems. The outcome is not necessarily a solution but can help better understand the wickedness of the problem and form the basis of new experiments.
In the first weekend of August 2014, the residents of Toledo, Ohio, were advised not to drink the water from their faucets due to high levels of microcystin, a toxin that is caused by algae blooms in the source of their drinking water, Lake Erie. People prepared for days without water, standing in lines at grocery stores. Some even crossing the border to Canada, packed with as many empty containers as they could find [33].
When the local authorities announced the drinking water ban, no indication of its duration was given—local government simply did not know. They had to wait for the US Environmental Protection Agency (EPA) to run tests and approve the drinking water. This was problematic since there was no standard for what was a safe amount of microcystin in the water. The only standard that did exist was the outdated standard instituted by the World Health Organization [34].
This process that causes harmful algal blooms in Lake Erie is called eutrophication, which can be defined as an increase of organic carbon production (this is basically everything that is alive from plants to animals to humans) in an ecosystem [35]. Although higher production is often seen as a good thing (as it is sometimes referred to as nutrient enrichment), in this case, its side effect is algal blooms that in the end lead to hypoxia, the death of a water body.
Eutrophication is caused by nutrient runoff from farming operations that involve intensive fertilization with both manure and chemical fertilizer, as well as sewer overflow from adjacent urban areas. The International Joint Commission (IJC), a binational advisory body on the great lakes water quality agreement, estimates that 61–84% of the nutrient runoff is caused by agricultural runoff whereas only 16% flows from combined sewers of the surrounding cities [36].
Most of the runoff happens in spring due to extreme rain events, flushing the phosphorus into the agricultural fields and drainage ditches due to surface and subsurface flow. In the case of Lake Erie, it is the Maumee watershed that is the main tributary due to extensive farming operations (80% of the land is under cultivation) in the region. All the ditches in one watershed flow toward the same point, the Maumee River, and then into Lake Erie at the Toledo waterfront [36].
Although 2014 was the first time that drinking water system got severely affected, algal blooms have been happening for decades. Due to ongoing urbanization and the dumping of untreated sewage around the lake’s shoreline, more extreme algal blooms started to emerge in the 1950s and 1960s. Lake Erie’s oxygen-depleted waters and its changing ecosystems even caused it to be declared dead by the beginning of the 1970s [37].
It is not only drinking water that is jeopardized. Algal blooms will trigger economic losses through a decrease in tourism (who wants to swim in a toxic lake?) and a declining fishing sector since these algal blooms pretty much affect the whole ecosystem by depleting oxygen, killing other species and ultimately “killing” the lake [38].
Thus, the main problem lays with the farming practices and farming policy, but the consequences lay in the drinking water supply for the communities that are reliant on Lake Erie as their drinking water source.
So what is the plan? The Ohio Sea Grant on Social Network Analysis of Lake Erie HAB’s Stakeholder Groups has identified more than 150 stakeholders that are more or less involved (and yes we are only talking about the Maumee Watershed) [39].
The International Joint Commission (IJC), a collaborative advisory body between Canada and the USA, existing of a variety of experts ranging from scholars to politicians to experts from the private sector, has stressed the urgency of a 41% decrease in nutrient runoff to alleviate future algal blooms and safeguard drinking water quality. The majority of agricultural runoff is generated by farmers in the Maumee Watershed which borders the states of Indiana, Michigan, and Ohio; the IJC has designated this watershed the number one area of concern [36].
However, this is a concern without a solid action plan or timeframe for its resolution.
The federal government claims to have acted on the urgency with a response through bilateral agreements and complex funding mechanisms. In 2012, the US EPA and Environment Canada signed an updated version of the in Great Lakes Water Quality Act (GLWQA); the agreement bound them to develop detailed commitments in 2016 [40].
Strangely enough, these new commitments have been made to achieve the 41% reductions in nutrients but fail to put a deadline to the proposed action and therefore also lack sanctions if the deadline is not met. The agreement does specify that “domestic action plans” are being developed. However, it is the question of what kind of measures they will propose.
Historically, many different control measures to divert the algal blooms have been mechanical, varying from bio-manipulation, aeration of the lake, liming (a process where limestones alter the pH of the lake, creating a more hostile environment for algal), and dredging to improve water flows. These techniques are incredibly expensive and therefore not resilient, as they do not solve the problem—they are merely attempts at mopping with the tap open [41].
The following strategies are currently existing in the Maumee watershed:
Over the last 2 years, there has been some movement in terms of legislation. The Governor of Ohio (John Kasich) has passed a Farm Bill in 2015 that regulates the application of fertilizer and manure by farmers. The law limits application on snow-covered soil, saturated soil, and when the weather forecast predicts rain within the next 12 h [42].
Another bill that was adopted is Farm Bill 150; it requires all farmers that apply fertilizer to undergo a certification process that educates them in fertilizer application, encourages the adoption of nutrient management plan, and allows the Ohio Department of Agriculture to better track fertilizer distribution [42].
Although the impact of this legislation is hard to measure, it does seem a step in the right direction.
The 4R strategy was put forward by the global fertilizer industry in 2009. The Ohio Department of Agriculture has adopted this strategy and now enforces the training under farm bill 150 [43].
Farmers earn the certification by earning 5 h of education credits. This training is organized by a provider that needs to have at least the level of certified crop advisor. This provider then needs to keep track of the amount of participants and document the progress of these farms in their use of fertilizer [43]. As expected, the strategy involves 4Rs regarding applying manure and fertilizer in the right way (right source, right rate, right time, right place). This is the main strategy that is adopted by the US Department of Agriculture (USDA), the National Resources and Conservation Council (NRCS), and the Ohio Department of Agriculture (ODA) through funding by the Great Lakes Restoration Initiative, a funding mechanism instituted by the federal government, which is the main source of funding for algal bloom mitigation projects instituted by governmental agencies.
There is funding available for farmers who want to take land out of production and use it for strategies such as crop rotations or buffers, two-stage ditches, or other water management installations that will catch the phosphorus before it runs off. Farmers can apply for farm adaptations that will lead to a reduction in nutrient runoff. This is the largest source of funding available and is based on the number of farm acres; it is a set amount of funding each year. It works through a 3–5-year contract that is more likely a mortgage and is competitive. When a farmer applies, they get a technical report from the Soil and Water Conservation District. The farmer then gets a 50–100% match to their own funding proposed. This is a fund that comes from congress and exists until the money is finished [44].
Currently, Toledo’s drinking water is monitored every 10 min, and people have the option of getting an alert from the water company in case of a threat.
Monitoring also exists in the water surface water bodies going into the lake. The Great Lakes Restoration Initiative differentiates between sensors on different scales in the larger Lake system, the tributaries of the Maumee as well as Edge of field monitoring, which is in collaboration with local farmers. Since there is a lot of skepticism about where the nutrients actually come from, which farmer is contributing and how much, this is a key component. Monitoring is a big part of assessing which strategies could work, as it provides the grounds for a solid impact analysis [45].
In the 1980s the municipal governments of the urban centers surrounding Lake Erie pushed back the phosphorus loading levels by implementing retrofits to the wastewater treatment plants. An investment of eight billion dollars was made [46]. Currently, the city is a new phase of retrofitting the drinking water plant [47]. Although there is funding available both governmental and nongovernmental and there is a definite need for systemic change, an integrated response to the algal bloom has yet to be seen. In the summer of 2017, more algal blooms occurred in Lake Erie although the drinking water was safe this time [48].
Enaegon proposed to build of the existing incentive of creating edge-of-field buffers for farmers. Through a productive ditch filter of efficient crops with high phosphorus uptake, the nutrient runoff can be decreased intensively. Participating farmers will profit from the sale of the phosphorus-rich crop. The ditch can be implemented through existing mechanisms such as funding and distribution, enabling a farmer to shift the problem of overfertilization into an economic opportunity. Simultaneously, the relationships between rural and urban populations will be strengthened through documentation. The project entailed an interwoven system design of an environmental strategy, economic strategy, and a social strategy and built of existing funding, monitoring, research, and relationship.
The complex process of trying to implement this project provided us with many insights into the Lake Erie algal bloom and the barriers to implementing any integral innovation.
Farmers are skeptical of their share of the problem. Who is the actual source of the nutrient runoff causing the blooms, is it the Concentrated Animal Feeding Operations or the regular farming operation, and if so, which farmers are to blame? The percentage of farming contribution to the issue of nutrient pollution depends on to which stakeholder you talk too. In terms of advice, farmers take it rather from industry actors such as fertilizer companies and their consultants, instead of the government, e.g., their local soil and water district. Also, Toledo residents are skeptical of the water that comes out of their taps. Since microcystin toxin does color the water. Public cases like Flint, Michigan, further induce governmental mistrust.
When there is a perceived source, you may identify the polluter and hold him responsible, i.e. the polluter pays structure. Monitoring is a timely and expensive manner; only watching is and not acting is a problem in the public perception. Although Heidelberg University and other individual researchers are installing edge-of-field monitoring, this practice can be used for impact analysis, but wide implementation for finding out the exact source at this point seems unattainable. Furthermore, using models to predict the flow of nutrients or predict future weather is covered in uncertainty. How do we plan the measures that will also be a fit for future conditions?
Whereas we have identified four main funding sources (the Ohio Sea Grant, EQIP, CRP, and GLRI), there are barriers to these mechanisms. First is the uncertainty of continuation of this funding source; Ohio’s department of higher education might stop funding the Ohio Sea Grant, which would decrease research done on this subject. Also, with the change of office in 2017, the Great Lakes Restoration Initiative could very well dry up, taking away funding for projects for local governments. Then there is the question of yield. Farmers are reluctant to adopt because it might affect the yield of their land. We must not forget that farming is a for-profit business.
There are more than 150 stakeholders involved in only the Maumee Watershed. One of the main problems is the fact that commitments have been made on federal and state level, but the actual action, besides policy, needs to be undertaken on micro level, at the level of county or municipal government. Furthermore, conflicting and overlapping administrative boundaries further trouble implementation of meaningful policy. Lack of communication leads to an abundance of reports, covering the same topics, just slightly changing the scope. It is important to notice that an important part of this entanglement lays at the many different types of actors that are trying to work together in different ways and their diverse sets of values and objectives. Finally, it seems that the core issue is the lack of overview of existing incentive and organization.
Land ownership is a crucial component of this system. Not only is the land fragmented by different types of land use or administrative boundaries but the quantity of owners mostly fragments it. The water that carries the nutrients travels through these different sheds of ownership. One important takeaway is that both ditch and buffer strip are owned and maintained by the farmer but have to meet EPA regulations. However, there are minor parts where county governments have jurisdiction over the ditches and streams.
There seems to be a serious lack of media coverage. Farmers are not aware of all the progress that has been made by the municipality, and the media is not willing to cover it. In many conversations I had, the fact that farmers will only implement if they know that something will have an impact, seeing is believing. Incentives such as demonstration farms, no-tillage breakfasts, and research demonstration, as well as word of mouth between farmers, cater toward adaptation.
The Maumee Watershed and surrounding areas are overwhelmed by the amount of industrial corn that has been planted, induced by the era of intensification and industrialization. Federal subsidies on mono-crop corn production are maintaining this system, and farmers will take action if the benefits of taking action outweigh the benefits of not taking action. In the long run, changing the system will probably only happen when the intensity of production lowers in the area.
These barriers are specific to the Maumee Watershed, Toledo, and the Lake Erie algal blooms, but thinking of this as a wicked problem, can we place them in a wider context? Which high-level challenges can we define that apply to innovating for systemic change while dealing with a wicked problem?
Extreme weather events are not disasters; they become social disasters when they affect people [5]. Often the extremity of the consequences of a natural event is caused by deep-rooted societal problematic. There is a lack of integrated responses that link to geo-physical understandings of water systems with political, social, and cultural analyses and vice versa. We try to control the entire earth system to ensure the ecosystem services we need for growth, but society is still dependent on the geophysical processes that are in place. In our attempts to optimize our benefits and resource availability, we alter the cycles that inform our system hydrology (sediment, carbon, nutrient, and water) to our disadvantage. These cycles are what inform the hydrological movements within the geophysical fabric of time and space.
What challenges are at the base of societies’ inability to plan for future conditions?
First, hydrological and climate models have increasingly become agents that inform that policy landscape, by putting the spatiotemporal dynamics of the geophysical system into a data model. However, most climate models do not accurately represent risk since they are often based upscaling of scenarios or historical events [49, 50]. Edwards (2003) identifies a scale of force that runs through the human body into the geo-physical sphere. The force of water can only be controlled within a certain range of natural variability. In other words, we cannot plan or predict for forces of strength or character that we have yet to experience and do not understand. As a political issue, climate change represents the dawning awareness that geophysical scales of force must be included in any complete analysis of infrastructure. However, we must realize and account for our limitations in predicting future ecosystem states [51].
Second, every implementation has an investment associated with it. A challenge in implanting large-scale water innovations is that investment cycles of capital are often too short, e.g., a government that is in place for 4 years [52]. Furthermore, governments are often risk averse; they are likely to invest in proven technologies that have guidelines and projections. After all experimentation with new measures can result in catastrophic social implications and loss of economic resources [50]. However, the solution for a wicked problem is not one that has been tested before.
Additionally, which institution is responsible, how are decisions being made, and based on what knowledge are they made? Edwards (2003) points out that multilevel governance slows down the implementation of measures, as different institutions get entangled with each other in decision-making and responsibility. Furthermore, administrative boundaries and the fact that water flows require collaboration between different regimes complicate the response. Watershed borders are different borders than administrative borders [51]. Then, legal control of water resources can be a constraint to innovation (e.g., water supply, permits) [50]. Finally, the political waterscape is largely influenced by the knowledge that is available. There are multiple, sometimes conflicting, disciplines through which water is studied. What scientific practices, infrastructures, and organizations shape water in different places? Several sociopolitical infrastructures have been built to address water issues such as the Environmental Protection Agency in the USA or the Waterboards in the Netherlands; it is important to consider which knowledge disciplines and actors are included and how these models shape the system (e.g., local knowledge). What historical, social, and cultural factors shape the development and use of scientific research and governance styles? After all, what counts as science and how are these disciplines framed changes through the decades?
Fourth, what are actual innovations and what is re-branding? Green infrastructure is a good example. One of the issues with the urban fabric is the fact that it covers what is underneath, limiting the infiltration of water. In some cities, hard surfaces can account for as much as 84% of the total surface [53]. Andersson et al. ([54], p. 156) define green infrastructure as “an interconnected network of multifunctional green-spaces that are strategically planned and managed to provide a range of ecological, social, and economic benefits.” Examples include green roofs, public parks, urban wetlands, green streets, and bioswales [54]. The high-level benefits of green infrastructure are twofold; they regulate stormwater runoff as well as decrease the heat island effect but also allow for recreational benefits [55]. A key challenge regarding the implementation of green infrastructure lays in its perception. How can urban planners utilize green infrastructure to mitigate pressures on the urban ecosystem instead of merely using them to re-brand existing incentive as being “green” [56]?
Finally, although we attempt to shape the geophysical influences in our human time frame, these efforts will in the end not shape the geophysical indefinitely, as the system over millennia will evolve to different states. Current infrastructures on geophysical scale are fragile structures. Although we try to control the geophysical system within an era, we call the Anthropocene, in order to get water to our taps, we still rely on the cycles that make up the geophysical systems. What are scalable solutions, and do these even exist [50]?
So how do we move forward? How can we overcome these wicked problems and create resilient urban centers that will be able to deal with the pressure of climate change and rapid urbanization stake? How can we accomplish real innovation with visible results?
Wicked problems pose serious challenge to the conventional view on innovation. The convention comprehension of an innovation process starts with the definition of clear ideas for solutions and go-no go decision-making in five subsequent main steps, sometimes subdivided into more. In this view, researchers elaborate on specified issue, and engineers define workable concepts. This research and development phase should deliver inventions. Then, the proof of concept is demonstrated, pilot production starts, and product is commercialized. This business development phase should deliver an innovation. The decisions are made in the selection process, referred to as a funnel. All costs of this process can be covered only if each step is successfully fulfilled; it is if the researchers elaborated on right questions, designers attained a novelty, customer are satisfied with it, pilot delivered sufficient quality, and sales generated profit. This demand-pull model is vested in the public administration and management handbooks [57]. It can reflect processes in large public institutions and corporations but rarely applies to small- and medium-scale businesses and individual experts who usually develop by trial and error using their knowledge and picking ideas available for free. Nevertheless, they are main sources of innovations, particularly when environmental issues are addressed [58]. Since the wicked problems are contextual, they can only be mitigated case by case without claim of applications to many other cases; the demand-pull model is rarely practical in such cases.
A different train of thought is embraced in the entrepreneurial model of innovations. Uncertainty, herewith, is considered a source of entrepreneurial operations and necessary for discoveries. The essential entrepreneurial skill is scanning and finding opportunities for discoveries due to differences in information and understanding between interests. Errors of some decision-makers are resources of innovation for others [59]. The innovating can be comprehended as an individual capability in using knowledge and skills that are available in society for creating new practical solutions. This use of knowledge and skills refers to knowledge spillovers being a metaphor for valuable interactions about the knowledge issues and solutions between people, which can vary from exchange about a cooking receipt to space travels. Although the value of interactions is rarely predictable, the conditions for knowledge spillovers can be fostered through education, cultural diversity, creativity, freedom of expressions, and suchlike, and the entrepreneurial skills in discovering opportunities for innovations can be enhanced through engagement of interests in networks, awarding of outstanding ideas and suchlike social relations [60]. In this view, creating conditions for the knowledge spillover and risk bearing is advocated rather than creating bureaucracy with the aim to reduce uncertainties through more specific selection of innovators, which is close to gambling and deplores innovation. Taleb wrote “Innovation is precisely something that gains from uncertainty: and some people sit around and wait for uncertainty and using it as raw material, just as our ancestral hunters” [61]. This notion of unpredictable innovation processes, meanwhile, entered into the mainstream of management theory, referred to as the effectuation theory [62]. Herewith, the entrepreneur is not striving toward a clearly defined goal based on the probabilities of success deliberated with regard to all relevant factors but has a multiple options to choose at a time depending on entrepreneurial personal preferences and given external conditions. Wicked problems, herewith, are tackled based on concepts of possible solutions designed for the specific situations and tested in cooperation with relevant interests. The successful solutions can be adapted and applied in other contexts. This trial-and-error process evolves when broad knowledge basis can be used.
The world’s population exceeded ~7 billion just after 2010, and still continues to grow fast. Roughly, 83 million people are added to the world’s population every year and with this pace of growth, the global population is projected to reach around 9.7 billion by 2050, ~24% higher than today [1]. In order to feed this large population, crop production must increase by approximately 25–70% above current production levels [2]. Intensification of agriculture is considered a potential solution. By relying on intensive use of fertilizers, pesticides and other inputs, agricultural intensification increases the productivity of existing farmland and delivers more food to the added population. However, the chemical-based crop intensification produces more food in a way that the future production potential of farmland is being undermined and the environment is being affected. An increasingly degraded soil, overwhelming health hazards from soil and water pollution, disturbed natural microbial populations are a few of the direct implications in chemical-intensive agriculture. To avoid these potentially harmful effects of agrochemicals in agriculture, alternative approaches must be persuaded. An ecocentric approach that provides both environmental and economic benefits is increasingly needed. Organic farming is one of many such approaches that promote agroecosystem health, ensuring sustainable intensification in agriculture.
\nThe uniqueness of microorganisms and the dynamic part played by them in sustaining agricultural ecosystems have made them likely candidates for playing a central role in organic-based modern agriculture. Fortunately, plant roots harbor an abundant association of beneficial microorganisms. Root exudates are the largest source of carbon that attracts the microbial populations and allow them to forge an intimate association with host plants [3]. In response, the rhizosphere microbial populations play versatile roles in transforming, mobilizing and solubilizing soil nutrients, which are crucial for plant growth and development. Among the diverse rhizosphere microbial population, fungi known as plant growth promoting fungi (PGPF) are receiving a growing attention in recent days. Over the decades, varieties of PGPF have been studied including those belong to genera Trichoderma, Penicillium, Phoma and Fusarium [4]. Studies have shown that PGPF modulate plant growth and enhance resilience to plant pathogens without environmental contamination [5]. The positive effects of PGPF on plant and environment make them well fitted to organic agriculture.
\nThe course of plant growth promotion by PGPF is a complex process and often cannot be attributed to a single mechanism. A variety of direct and indirect mechanisms, including solubilization of minerals, synthesis of phytohormones, production of volatile organic compounds, exploitation of microbial enzymes, increases in nutrient uptake, amelioration of abiotic stresses and suppression of deleterious phytopathogens are involved. These wide arrays of interconnected mechanisms help PGPF maintaining rhizosphere competence and stability in host performance. Compared to the large number of PGPF identified in the laboratory, only a small fraction of them is in agricultural practice worldwide. Inconsistent performance of the inoculated PGPF under field conditions limits the commercial application of them. Development of appropriate formulation could improve the performance in the field and pave the way for commercialization of the PGPF. An ideal formulation of PGPF should fit with existing application technologies, protect biological actives from stress, ensure viability, remains unaffected after storage under ambient conditions, ensure microbial actives in the field and be cost effective [6].
\nConsidering the aspects discussed above, the need for superior PGPF to supplement inorganic chemical fertilizers as one of the crucial steps of moving toward organic farming practices has been highlighted. Inclusion of new techniques in these processes has been vital to the development of novel PGPF applications. This review will therefore attempt to shed light on the recent findings related to the impact of PGPF on plant growth and yield, duration of their effects, host specificity of the cooperation, root colonization mechanisms, their modes of action and commercial formulation for enhancement of plant growth and yield. The knowledge produced from this review could be very useful to those who are apprehensive about environmental protection and agricultural sustainability.
\nPlants have intricate relationships with an array of microorganisms, particularly rhizosphere fungi and bacteria, which can lead to an increase in plant vigor, growth and development as well as changes in plant metabolism [7]. The group of rhizosphere fungi that colonize plant roots and enhance plant growth is referred to as PGPF [4]. PGPF are heterogeneous group of nonpathogenic saprotroph fungi. They can be separated into endophytic, whereby they live inside roots and exchange metabolites with plants directly, and epiphytic, whereby they live freely on the root surface and free-living PGPF, which live outside plant cells, i.e., in the rhizosphere [5]. PGPF establish a non-obligate mutualism with a broader range of host plants. That is why symbiotic mycorrhizal fungi are not considered as PGPF, although they are known to improve growth of the plants [8]. Moreover, PGPF encompass a diverse taxonomic group in comparison to mycorrhiza. They are often involved in a range of complex interactions with plants and develop distinct strategies to mediate improvements in seed germination, seedling vigor, plant growth, flowering and productivity of host plants (Figure 1). PGPF are not only associated with the root to mediate positive effects on plant growth and development but also have beneficial effects on suppressing phytopathogenic microorganisms [9]. Not every organism identified as PGPF will improve plant growth under all conditions or in association with all plant hosts [10]. Some PGPF biocontrol inoculants usually contain necrotrophic mycoparasites such as Trichoderma spp. [11], while a limited number such as Sphaerodes mycoparasitica is biotrophic mycoparasitic agent [12]. Therefore, PGPF are considered one of the potential active ingredients in both biofertilizer and mycofungicide formulation.
\nBeneficial interaction between plant and plant growth promoting fungi (PGPF). PGPF can modulate plant growth and development through the production of phytohormones and volatile compounds. PGPF also influence plant nutrition via solubilization of phosphorus and mineralization of organic substrates. PGPF modify plant functioning against biotic and abiotic stresses by negating their harmful effects.
PGPF are common root-associated and soil-borne fungi from diverse genera. Fungi reported as PGPF include Ascomycetes, Basidiomycetes and Oomycetes [5]. Some strains of hypovirulent binucleate Rhizoctonia (HBNR) are known to be PGPF [13]. PGPF also include isolates of mycelial fungi that do not produce any spores, generally known as sterile black fungus (SBF), sterile dark fungus (SDF) and sterile red fungus (SRF) [14]. The non-sporulating PGPF are often difficult to identify and mostly lack formal taxonomic status. Among the PGPF Aspergillus, Fusarium, Penicillium, Phoma and Trichoderma have a wide distribution and are, by far, the most extensively reported (Table 1). Each of the genera has a variety of species. Aspergillus, Fusarium, Penicillium and Phoma were frequently found in the rhizosphere or in the roots of plants. Instead, Trichoderma were mostly isolated from soil. Among the rhizosphere population, PGPF have a high relative abundance. A total of 619 (44%) out of 1399 fungal isolates collected from rhizosphere of six different plants were PGPF, while frequency of occurrence of PGPF in zoysiagrass, wheat, corn and eggplant rhizosphere were 46, 47, 38 and 10%, respectively [4]. This indicates that abundance of PGPF varies largely according to the host rhizosphere. Similarly, the dominating fungal genus is not necessarily the dominating PGPF in the rhizosphere population. The order of the frequency of the main genera among 1399 fungal isolates was Fusarium > Trichoderma > sterile fungi > Penicillium > Pythium > Rhizoctonia > Mucor, while that of PGPF from each plant genus was: Trichodema (~82%) > Pythium (~75%) > Penicillium (~69%) > Alternaria (~63%) > Fusarium (~44%) > sterile fungi (40%) > Mucor (~38%) [4]. The important characteristics of these fungi are their high rhizosphere competence and ability to promote plant growth.
\nPGPF | \nOriginal source of isolation | \nReferences | \n
---|---|---|
\nAlternaria sp. | \n\nZoysia tenuifolia, Rosa rugosa, Camellia japonica, Delonix regia, Dianthus caryophyllus, Rosa hybrid\n | \n[4, 15] | \n
\nAspergillus sp., As. fumigatus, As. niger, As. terreus, As. ustus, As. clavatus\n | \n\nCapsicum annuum, Glycine max, Cicer arietinum, Elymus mollis, Solanum tuberosum, Nymphoides peltata\n | \n[16, 17, 18, 19, 20, 21] | \n
\nAureobasidium pullulans\n | \nDark chestnut soil | \n[22] | \n
\nChaetomium globosum\n | \n\nCapsicum annuum\n | \n[23] | \n
\nCladosporium sp., Cladosporium sphaerospermum\n | \n\nCucumis sativus, Glycine max\n | \n[24, 25] | \n
Colletotrichum sp. | \n\nRosa rugosa, Camellia japonica, Delonix regia, Dianthus caryophyllus, Rosa hybrid\n | \n[15] | \n
\nExophiala sp.\n | \n\nCucumis sativus\n | \n[26] | \n
\nFusarium sp., F. equiseti, F. oxysporum, F. verticillioides\n | \n\nCynodon dactylon, Lygeum spartum, Zoysia tenuifolia, Musa sp. and other environment | \n[27, 28, 29, 30, 31, 32] | \n
Non-sporulating sterile fungi | \n\nZoysia tenuifolia\n | \n[14] | \n
\nPenicillium sp., Pe. chrysogenum, Pe. citrinum, Pe. kloeckeri, Pe. menonorum, Pe. resedanum, Pe. simplicissimum, Pe. janthinellum, Pe. viridicatum\n | \nHalophyte, Ixeris repenes, Cicer arietinum, Elymus mollis, Capsicum annuum, Zoysia tenuifolia\n | \n[9, 16, 22, 33, 34, 35, 36, 37, 38, 39, 40] | \n
\nPhoma sp., Phoma herbarum, Phoma multirostrata\n | \n\nG. max, Rosa rugosa, Camellia japonica, Delonix regia, Dianthus caryophyllus, Rosa hybrid, Zoysia tenuifolia\n | \n[4, 14, 15, 34, 41, 42] | \n
\nPhomopsis sp., Phomopsis liquidambari\n | \n\nRosa rugosa, Camellia japonica, Delonix regia, Dianthus caryophyllus, Rosa hybrid, Bischofia polycarpa bark | \n[15, 43] | \n
\nPurpureocillium lilacinum\n | \nSoil | \n[44] | \n
\nRhizoctonia spp.\n | \nOrchid, Lycopersicon lycopersicum, and soil | \n[13, 45, 46] | \n
\nRhodotorula mucilaginosa\n | \nSoil | \n[22] | \n
\nTalaromyces wortmannii\n | \nSoil | \n[40] | \n
\nTrichoderma asperellum, T. atroviride, T. hamatum, T. harzianum, T. longibrachiatum, T. pseudokoningii, T. viride, T. virens\n | \nSoil, wood and damaged building | \n[34, 47, 48, 49, 50, 51, 52] | \n
Different fungi reported as plant growth promoting fungi (PGPF) with their original source of isolation.
Initial search for identification of PGPF was concentrated to rhizosphere fungi. Recent studies have demonstrated the potential of phyllosphere fungi as PGPF. The phyllosphere, which consists of the above ground surfaces of plants, is one of the most prevalent microbial habitats on earth. Phyllosphere fungi can act as mutualists promoting plant growth and tolerance of environmental stressors [53]. A few of other fungi isolated from tree bark, decorticated wood and water damaged building functioned as PGPF [43, 49]. More interestingly, the fungal entomopathogens also show potential to be PGPF and promote plant growth [54]. PGPF seem to have a cosmopolitan occurrence.
\nPGPF exhibit traits beneficial to plant and as such, their capacity to enhance plant growth and development is well founded. PGPF mediate both short- and long-term effects on germination and subsequent plant performance. Improvement in germination, seedling vigor, shoot growth, root growth, photosynthetic efficiency, flowering, and yield are the most common effects decreed by PGPF. A particular PGPF may condition plant growth by exerting all or one or more of these effects.
\nSeed germination and germinant growth are critical developmental periods of the young plantlet until it begins producing its own food by photosynthesis. Treatment with PGPF, particularly of the genus Aspergillus, Alternaria, Trichoderma, Penicillium, Fusarium, Sphaerodes and Phoma has been reported to improve seed germination and seedling vigor in different agronomic and horticultural crops (Table 2). Scarified seeds inoculated with spores from Aspergillus and Alternaria had significant increases in germination of Utah milkvetch (Astragalus utahensis) in vitro, and in greenhouse and fall-seeded plots near Fountain Green and Nephi [55]. The Aspergillus-treated seeds performed out seeds inoculated with Alternaria. An increase of 30% in seedling emergence was observed in cucumber plant raised upon the treatment of T. harzianum [47]. Application of T. harzianum also significantly increased seed germination, emergence index, seedling vigor and successful transplantation percentage in muskmelon compared to the untreated controls [59]. Early seedling emergence and enhanced vigor were observed in bacterial wilt susceptible tomato cultivar treated with T. harzianum, Phoma multirostrata, and Penicillium chrysogenum compared to untreated controls [34]. The culture filtrate of Penicillium was as effective as the living inocula in improving seed germination of tomato [70]. Significantly, higher germination and vigor index were observed in Indian spinach, when seeds were sown in sterilized field soil amended with wheat grain inoculum of Fusarium spp. PPF1 [27]. Sphaerodes mycoparasitica, a biotrophic mycoparasite of Fusarium species, improved wheat seed germination and seedling growth in vitro compared to T. harzianum, while under phytotron conditions, both S. mycoparasitica and T. harzianum had positive impact on wheat seedlings growth in the presence of F. graminearum [12]. These results show the positive impact of PGPF on seed germination and seedlings growth of a wide arrays of hosts.
\nTest crop | \nPGPF strain | \nImprovement | \nReferences | \n
---|---|---|---|
\nArabidopsis thaliana\n | \n\nTrichoderma virens Gv. 29-8\n | \nBiomass, lateral root development | \n[48] | \n
\nPenicillium janthinellum GP16-2 | \nShoot biomass, leaf number | \n[33] | \n|
\nPe. simplicissimum GP17-2 | \nShoot biomass, leaf number | \n[9] | \n|
\nFusarium oxysporum NRRL 38499, NRRL 26379 and NRRL 38335, | \nShoot-root growth | \n[28] | \n|
\nAspergillus ustus\n | \nShoot growth, lateral root, root hair numbers | \n[20] | \n|
\nAstragalus utahensis\n | \n\nAspergillus spp., Alternaria spp. | \nSeed germination | \n[55] | \n
\nBasella alba\n | \n\nFusarium spp. PPF1 | \nGermination, seedling vigor, shoot-root growth, leaf area, leaf chlorophyll content | \n[27] | \n
\nBrassica campestris\n | \n\nTalaromyces wortmannii FS2 | \nShoot fresh weight | \n[40] | \n
\nB. chinensis\n | \n\nA. niger 1B and 6A | \nPlant dry weight, N and P content | \n[56] | \n
\nB. oleracea var. capitata\n | \n\nT. longipile, T. tomentosum\n | \nShoot dry weight, leaf area | \n[57] | \n
\nCapsicum annuum\n | \n\nPe. resedanum LK6 | \nShoot length, biomass, chlorophyll content, photosynthesis | \n[39] | \n
\nChaetomium globosum CAC-1G | \nPlant biomass, root-shoot growth | \n[23] | \n|
\nCicer arietinum\n | \n\nA. niger BHUAS01, Pe. citrinum BHUPC01, T. harzinum\n | \nPlant growth | \n[16] | \n
\nT. harzianum T-75 | \nYield | \n[58] | \n|
\nCucumis melo\n | \n\nT. harzianum Bi | \nGermination, seedling health, vigor | \n[59] | \n
\nCucumis sativus\n | \n\nPe. simplicissimum GP17-2 | \nRoot-shoot growth | \n[4] | \n
\nPe. viridicatum GP15-1 | \nRoot-shoot length, biomass | \n[35] | \n|
\nT. harzianum GT3-2 | \nRoot-shoot growth | \n[60] | \n|
\nF. equiseti GF19-1 | \nRoot-shoot growth | \n[61] | \n|
\nAspergillus spp. PPA1 | \nRoot-shoot length, biomass, leaf area, chlorophyll content | \n[17] | \n|
\nExophiala sp. LHL08\n | \nPlant growth under drought and salinity | \n[26] | \n|
\nPhoma sp. | \nRoot-shoot growth, yield in the field | \n[62] | \n|
\nPhoma sp. GS8-2, GS8-3 | \nRoot-shoot growth | \n[63] | \n|
GiSeLa6® (Prunus cerasus × P. canescens) | \n\nT. harzianum T-22 | \nRoot growth, development | \n[64] | \n
\nGlycine max\n | \n\nA. fumigatus HK-5-2 | \nShoot growth, biomass, leaf area, chlorophyll contents, photosynthetic rate | \n[65] | \n
\nA. fumigatus LH02\n | \nShoot growth, biomass, leaf area, chlorophyll contents, photosynthetic rate | \n[18] | \n|
\nPhoma herbarumTK-2-4 | \nPlant length, biomass | \n[41] | \n|
\nGossypium arboreum L\n | \n\nT. viride\n | \nRoot-shoot length, plant dry weight | \n[66] | \n
\nHelianthus annuus\n | \n\nTrichoderma sp., Aspergillus sp., Penicillium sp., Phoma sp., Fusarium sp. | \nSeed germination, seedling vigor | \n[67] | \n
\nLactuca sativus\n | \n\nF. oxysporum MSA 35 | \nRoot-shoot growth, chlorophyll content | \n[68] | \n
\nLycopersicon lycopersicum\n | \n\nT. harzianum TriH_JSB27, Phoma multirostrata PhoM_JSB17, T. harzianum TriH_JSB36, Pe. chrysogenum PenC_JSB41 | \nSeedling emergence, vigor | \n[34] | \n
\nT. harzianum T-22 | \nSeed germination under stress | \n[69] | \n|
\nPenicillium spp. | \nSeed germination, root-shoot growth | \n[70] | \n|
\nF. equiseti GF19-1 | \nPlant biomass, root-shoot growth | \n[71] | \n|
\nMusa sp. | \n\nF. oxysporum V5W2, Eny 7.11o, Emb 2.4o | \nYield | \n[29] | \n
\nNicotiana tabacum\n | \n\nAlternaria sp., Phomopsis sp., Cladosporium sp., Colletotrichum sp., Phoma sp. | \nRoot-shoot growth, chlorophylls, soluble sugars, plant biomass | \n[15] | \n
\nPinus sylvestris var. mongolica\n | \n\nT. harzianum E15, T. virens ZT05 | \nSeedling biomass, root structure, soil nutrients, soil enzyme activity | \n[72] | \n
\nSaccharum officinarum\n | \n\nT. viride\n | \nYield | \n[73] | \n
\nSesamum indicum\n | \n\nPenicillium spp. NICS01, DFC01 | \nRoot-shoot growth, chlorophylls, proteins, amino acids, lignans | \n[74] | \n
\nSolanum tuberosum\n | \n\nA. ustus\n | \nRoot-shoot growth, lateral root, root hair numbers | \n[20] | \n
\nSpinacia oleracea\n | \n\nF. equiseti\n | \nPlant biomass, root-shoot growth | \n[75] | \n
\nSuaeda japonica\n | \n\nPenicillium sp. Sj-2-2 | \nPlant length | \n[38] | \n
\nCladosporium sp. MH-6 | \nShoot length | \n[24] | \n|
\nPe. citrinum IR-3-3 | \nRoot-shoot length | \n[37] | \n|
\nPhoma herbarum TK-2-4 | \nPlant length | \n[41] | \n|
\nTriticum aestivum\n | \n\nT. harzianum, T. koningii\n | \nPlant biomass, root-shoot growth. | \n[4] | \n
\nSphaerodes mycoparasitica\n | \nSeed germination, seedling growth | \n[12] | \n|
\nA. niger NCIM | \nShoot and total plant length ratio | \n[76] | \n|
\nVinca minor\n | \n\nT. harzianum\n | \nFlowering, plant height, weight | \n[77] | \n
\nZea mays\n | \n\nT. harzianum T22 | \nShoot growth, area and size of main and secondary roots | \n[78] | \n
Effect of different plant growth promoting fungi (PGPF) on seed germination, plant growth and yield in various plants.
The most common form of growth promotion by PGPF is the augmented shoot in colonized plants. Shoot growth promotion has been shown by a great diversity of PGPF across a large number of plant species. Isolates of Aspergillus, Trichoderma, Penicillium, and Fusarium were capable of enhancing the shoot growth in model plant Arabidopsis [9, 20, 28, 33, 48]. Different species of Aspergillus are known to support shoot growth in chickpea [16], Chinese cabbage [56], cucumber [17], soybean [18, 65] and wheat [76]. Species of nonpathogenic Fusarium were reported to stimulate shoot growth in Indian spinach [27] and banana [29]. Application of barley grain inoculum of Penicillium viridicatum GP15-1 to the potting medium resulted in 26–42% increase in stem length, 37–46% increase in shoot fresh weight and 100–176% increase in shoot dry weight of cucumber plants [35]. Similarly, inoculation of cucumber plants with Pe. menonorum KNU3 increased cucumber shoot dry biomass by as much as 52% [36]. Stimulated shoot growth by Penicillium spp. was also reported in tomato [69], Waito-c rice [37, 38], chili [23, 39] and sesame [74]. Application of T. longipile and T. tomentosum increased shoot dry weight of cabbage seedlings by 91–102% in glasshouse trials [57]. Likewise, cottonseeds pretreated with T. viride showed four-fold increases in shoot length elongation and an almost 40-fold increase in plant dry weight compared to the control [66]. Augmented shoot growth by Trichoderma has also been reported in chickpea [16], wheat [79], maize [78], cucumber [60] and other plant species (Table 2). Isolates of Phoma were found to be an efficient stimulator of plant shoot [15, 41, 62]. A few hypovirulent Rhizoctonia isolates were able to induce significantly higher fresh leaves and stems weights in tomato plants grown in greenhouse [13]. Enhancement of shoot growth was also observed by Talaromyces wortmannii in cabbage [40], Chaetomium globosum in chili [23], Colletotrichum sp. in tobacco and Exophiala sp. in cucumber [26]. The results from these studies are consistent with numerous field and growth chamber experiments that have shown that PGPF inoculants can mediate shoot growth improvement.
\nThe plant growth promotion in some plant-PGPF interaction is occasionally associated with improvement in state and function of the photosynthetic apparatus of plants. Treatment with T. longipile and T. tomentosum increased leaf area of cabbage by 58–71% in glasshouse trials [57]. Tomato plants grown with HBNR isolates had significantly higher leaf fresh weight than control plants in greenhouse [13]. Arabidopsis grown in soil amended with Pe. simplicissimum GP17-2 and Pe. janthinellum GP16-2 were more greener and had approximately 1 more leaflet per plant than control plants 4 weeks after treatment [9]. Penicillium spp. also enhanced leaf chlorophyll content in cucumber and chili [36, 39]. Soil amendment with Aspergillus spp. PPA1 and Fusarium spp. PPF1 significantly increased leaf area and leaf chlorophyll content in cucumber and Indian spinach, respectively [27]. Improvement in leaf number, leaf area and leaf chlorophyll levels would contribute to increases in photosynthesis rate and net accumulation of carbohydrate in plants.
\nRoots are vital plant organs that remain below the surface of the soil. The root system is important for plant fitness because it facilitates the absorption of water and nutrients, provides anchorage of the plant body to the ground and contributes to overall growth of plants. Root functions as the major interface between the plant and the microbes in the soil environment. The bulk of previous studies have evidenced the immense ability of PGPF in enhancement of root growth in different plants (Table 2). Plants forming association with PGPF show faster and larger root growth resulting in a rapid increase in the root biomass [27, 35, 50, 57]. Moreover, root length, root surface area, root diameter and branch number are under direct influence of intimate interaction with PGPF. Application of T. virens ZT05 increased root length, root surface area, average root diameter, root tip number and root branch number of pines by 25.11, 98.19, 5.66, 45.89 and 74.42%, respectively [72]. A. ustus is known to cause alterations in the root system architecture by promoting the formation of secondary roots in Arabidopsis and potato [20]. In maize (Zea mays), Trichoderma inoculation enhanced root biomass production and increased root hair development [78]. The abundance in root hair formation significantly increases root surface area, suggesting that PGPF inoculants could enhance the potential for plant roots to acquire nutrients under nutrient-limited conditions.
\nThe application of PGPF may influence the number, size and timing of flower in flowering plants. Tagetes (marigolds) grown with companion of Pe. simplicissimum flowered earlier and had greater flower size and weight [80]. Steamed or raw soil infested with T. harzianum hastened flowering of periwinkle and increased the number of blooms per plant on chrysanthemums [77]. Under greenhouse conditions, T. harzianum TriH_JSB27 and Pe. Chrysogenum PenC_JSB41 accelerated the flowering time in tomato [34]. Similarly, root colonization by the nematophagous fungus Pochonia chlamydosporia hurried flowering in Arabidopsis thaliana [81]. Root colonization by Piriformospora indica also results in early flowering in Coleus forskohlii, bottle gourd and Nicotiana tabacum [82]. Flowering time has commercial significance for crops and ornamental plants by shortening crop duration and improving productivity. A short duration crop would have several advantages over a long duration crop, even with equal total yields such as require less water, expose less to stresses and increase the availability of the land for subsequent cropping. This indicates that PGPF improve the plasticity of complex plant traits.
\nPGPF show promising ability to promote growth through extensive improvements and betterment of fundamental processes operating in the plants, all of which directly and indirectly contributes to the crop yield increase. Inoculation of banana (cv. Giant Cavendish and Grand Nain) with F. oxysporum resulted in 20–36% yield increase in the field [29]. Soil treatment with T. harzianum alone or in combination with organic amendment and fungicide significantly improved seed yield in pea [83] and chickpea [58]. Similarly, soil treatment with T. viride produced significantly the highest number of fruits per plant, number of seeds per fruit, fruit weight and dry weight of 100 seeds as compared to untreated control [84]. The beneficial association of plants with nonpathogenic binucleate Rhizoctonia spp. resulted in increase in yield of carrot, lettuce, cucumber, cotton, radish, wheat, tomato, Chinese mustard and potato [13, 45, 46]. These results demonstrate that PGPF hold great promise in the improvement of agriculture yields.
\nThe duration of biofunctional activities of PGPF in plants is a key factor for their effective application in the field. Naturally, a legitimate question may arise whether PGPF isolates that have shown promising effects on early growth stage of plants, could also affect the middle or late ontogenetic stages and ultimately contribute to yield increases at harvest. As for potato, an increase in leaf, shoot, and tuber weight was observed by a nonpathogenic isolate (No. 521, AG-4) of Rh. solani 63–70 days after planting, while it was not expressed in yield at harvest [85]. Conversely, increased growth responses of wheat plants treated with PGPF were observed during seedling (2 weeks after sowing), vegetative (4 weeks), pre-flowering (6 weeks), flowering (10 weeks) and seed maturation stages (14 weeks) [4]. The isolates of Phoma sp. (GS6-1, GS7-4) and non-sporulating fungus (GU23-3), increased plant height, ear-head length and weight, seed number and plant biomass at harvest [79]. Again, isolates of Phoma sp. and non-sporulating fungus significantly increased plant length, dry biomass, leaf number and fruit number of cucumber cv. Jibai until 10 weeks post planting in greenhouse trials [62]. These isolates were equally effective in promoting growth and increasing yield of cucumber at 6 and 10 weeks post planting in the field [62]. There are other PGPF, which as well have shown the ability to confer long-term growth benefits to different plants. Rice and pea plants inoculated with Westerdykella aurantiaca FNBR-3, T. longibrachiatum FNBR-6, Lasiodiplodia sp. FNBR-13 and Rhizopus delemar FNBR-19 showed a stimulatory increase of growth for 8 weeks in the greenhouse [86]. Similarly, a single inoculation with inoculum of Penicillium and Pochonia affected the whole life cycle of tomato and Arabidopsis, respectively, accelerating the growth rate, shortening their vegetative period and enhancing seed maturation [34, 81]. As such, majority of PGPF strains are able to induce sustained beneficial effects on plant growth. The basis of sustained effects of PGPF on plants is not fully understood. One possibility is that the fungus continues to colonize the root system and establishes a life-long colonization with crop roots. The ability of PGPF to confer sustained benefit to plant is of great agriculture importance in terms of improving crop yield.
\nAlthough plants harbor a diverse community of fungi, a preferential interaction exists between certain PGPF and a particular host. Once a particular host mutualizes this fungus, it undergoes host-specific adaptations. The outcome of such adaptations is a highly specialized and finely tuned mutualism, leading to improved responsiveness to each other needs. Evidences show that PGPF that induce growth in one plant species do not necessarily have the same effect in other species [5]. Some PGPF exert general growth promotion effects in several plant species, other fungi only do so in specific host plant. A field study showed that most of eight non-sporulating PGPF isolates enhanced the growth of one wheat variety, whereas a few isolates enhanced the growth of the other variety [87]. Moreover, at least four isolates increased yields of both varieties. Thus, the efficacy of the PGPF isolates depended upon the wheat variety in addition to their inherent growth promoting abilities. Similarly, many of the zoysiagrass PGPF isolates promoted growth of bentgrass [4], in contrast to a few isolates enhanced growth in soybean [88]. Similarly, nine isolates belonging to Phoma sp. and one non-sporulating fungus caused consistent plant length enhancement in cucumber cv. Shogoin fusiharii compared to nine isolates except the non-sporulating fungus in cv. Aodai Kyuri. Again, plant length enhancement in cv. Jibai was shown by eight Phoma sp. and one non-sporulating fungus compared to five Phoma sp. isolates in cv. Ociai fushinari [62]. Identically, Pe. simplicissimum GP17-2 and F. equiseti 19–1 demonstrated sufficient growth-promoting effects on different host plants [4, 9, 60], but did not have effect on Lotus japonicas [89]. The outcome of the plant-PGPF interaction, therefore, depends on the plant and PGPF species. It is likely that the specific interaction develops during long-term co-evolution, as it has been observed for compatible and incompatible interactions of pathogens with plants [90]. Moreover, certain components of root exudates may attract and interact microbe specifically and allow it colonize the roots.
\nThe course of plant growth promotion by PGPF is complex and often cannot be attributed to a single mechanism. Various mechanisms that are known to modulate plant growth and development can be either direct or indirect. Direct growth promotion occurs when substances produced by the fungi or nutrient available by them facilitate plant growth. On the other hand, the ability of fungi to suppress plant pathogens and to ameliorate stress are considered major indirect mechanisms of plant growth promotion by PGPF. A particular PGPF may affect growth and development of plants using one or more of these mechanisms (Table 3).
\nMechanisms | \nSpecific activities | \nPGPF strain | \nReferences | \n
---|---|---|---|
Phosphate solubilization | \nSolubilized P by acid phosphatase and alkaline phosphatase | \n\nF. verticillioides RK01, Humicola sp. KNU01 | \n[30] | \n
Solubilized P from rock phosphate and Ca-P by organic acid | \n\nA. niger 1B and 6A | \n[56] | \n|
Solubilize P from tricalcium phosphate (TCP) | \n\nA. niger BHUAS01, Pe. citrinum BHUPC01, T. harzinum\n | \n[16] | \n|
Solubilized P by organic acid activities | \n\nPe. oxalicum NJDL-03, Aspergillus niger NJDL-12 | \n[91] | \n|
Phytase-mediated improvement in phytate phosphorus | \n\nA. niger NCIM | \n[76] | \n|
Increased HCO3-extractable P (23% increase) | \n\nPe. bilaiae RS7B-SD1 | \n[92] | \n|
Mineralization of organic substrate | \nIncreased production of NH4-N and NO2-N in soil | \n\nT. harzianum GT2-1, T. harzianum GT3-1 | \n[4] | \n
Increased availability of ammonium nitrogen from barley grain | \n\nPhoma sp.GS6-1, GS6-2, GS7-3, GS7-4, GS8-6, GS10-1, GS10-2, sterile fungus GU23-3 | \n[87] | \n|
Solubilize minerals such as MnO2 and metallic zinc | \n\nT. harzianum Rifai 1295-22 | \n[93] | \n|
Increased availability of ammonium nitrogen from barley grain | \n\nPhoma sp. GS8-1, GS8-2, GS8-3, Sterile fungus GU21-1 | \n[62] | \n|
Increased concentration of Cu, P, Fe, Zn, Mn and Na in roots Increased concentration of Zn, P and Mn in shoot | \n\nT. harzianum strain T-203 | \n[47] | \n|
Increased soil organic carbon, N, P and K content | \n\nT. viride\n | \n[73] | \n|
Increased availability of macro and micronutrients and organic carbon | \n\nT. harzianum strain Th 37 | \n[94] | \n|
Phytohormone and enzyme production | \nAuxin-related compounds (indole-3-acetic acid, IAA) | \n\nT. virensGv. 29-8\n | \n[48] | \n
Gibberellins (GA1 and GA4) production | \n\nA. fumigatus HK-5-2 | \n[65] | \n|
GAs production | \n\nPe. resedanum LK6 | \n[39] | \n|
GAs production | \n\nPenicillium sp. Sj-2-2 | \n[38] | \n|
GAs production | \n\nCladosporium sp.MH-6 | \n[24] | \n|
GAs production | \n\nPe. citrinum IR-3-3 | \n[37] | \n|
GAs and IAA production | \n\nChaetomium globosumCAC-1G | \n[23] | \n|
GAs production | \n\nExophiala sp. LHL08\n | \n[26] | \n|
GAs production | \n\nPhoma herbarum TK-2-4 | \n[41] | \n|
GAs production | \n\nA. fumigatus HK-5-2 | \n[65] | \n|
GAs production | \n\nA. fumigatus LH02 | \n[18] | \n|
IAA production | \n\nT. harzianum T-22 | \n[64] | \n|
Zeatin (Ze), IAA, 1-aminocyclopropane-1-carboxylic acid (ACC) | \n\nT. harzianum\n | \n[95] | \n|
Suppression of deleterious pathogens | \nSuppressed damping off caused by Pythium irregular, Pythium sp., Pythium paroecandrum, Pythium aphanidermatum and Rhizoctonia solani AG4 | \nSterile fungus GSP102, T. harzianum GT3-2, F. equiseti GF19-1, Pe. simplicissimum GP17-2 | \n[4] | \n
Induced systemic resistance against Colletotrichum graminicola\n | \n\nT. harzianum T22 | \n[78] | \n|
Suppressed bacterial wilt disease caused by Ralstonia solanacearum\n | \n\nT. harzianum TriH_JSB27, Phoma multirostrata PhoM_JSB17, T. harzianum TriH_JSB36, Pe. chrysogenum PenC_JSB41 | \n[34] | \n|
Suppressed Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris\n | \n\nT. harzianum T-75 | \n[58] | \n|
Suppressed Fusarium graminearum\n | \n\nSphaerodes mycoparasitica\n | \n[12] | \n|
Suppressed damping off caused by Rhizoctonia solani AG4 | \n\nPe. viridicatum GP15-1 | \n[35] | \n|
Suppressed nematodes Pratylenchus goodeyi and Helicotylenchus multicinctus\n | \n\nF. oxysporumV5W2, Eny 7.11o and Emb 2.4o | \n[29] | \n|
Suppressed seedling mortality by Rhizoctonia solani\n | \n\nT. harzianum isolate T-3 | \n[83] | \n|
Amelioration of abiotic stress | \nIncreased tolerance to salt stress | \n\nT. harzianum T-22 | \n[69] | \n
Mitigation of oxidative stress due to NaOCl and cold stress | \n\nT. harzianum Rifai strain 1295-22 | \n[96] | \n|
Enhanced maize seedling copper stress tolerance | \n\nChaetomium globosum\n | \n[97] | \n|
Minimized Cu-induced electrolytic leakage and lipid peroxidation | \n\nPe. funiculosum LHL06 | \n[98] | \n|
Increased tolerance to drought stress | \n\nT. atroviride ID20G\n | \n[99] | \n|
Volatile organic compounds (VOCs) | \nProduced abundant classes of VOCs (sesquiterpenes and diterpenes) | \n\nF. oxysporum NRRL 26379, NRRL 38335 | \n[28] | \n
Produced mainly terpenoid-like volatiles including β-caryophyllene | \n\nTalaromyces wortmannii FS2 | \n[40] | \n|
Produced 2-methyl-propanol and 3-methyl-butanol | \n\nPhoma sp. GS8-3 | \n[100] | \n|
Produced abundant amount of isobutyl alcohol, isopentyl alcohol, and 3-methylbutanal | \n\nT. viride\n | \n[101] | \n
Different mechanisms of plant growth promotion used by various plant growth promoting fungi (PGPF).
Phosphorus is the second most important and frequently limiting macronutrient for plant growth and productivity. It is an important component of the key macromolecules in living cells and thereby, required for wide array of functions necessary for the survival and growth of living organisms. Despite the abundance of phosphorus in agricultural soils, the majority occurs in an insoluble form. Phosphorus forms complex compounds by reacting with iron, aluminum or calcium depending on the soil types and becomes insoluble and unavailable to plants [102]. To circumvent this problem, phosphate-solubilizing PGPF can play an important role dissolving insoluble P into the soluble form and making it available for plants. PGPF produce phosphate-solubilizing enzymes such as phytases and phosphatases and organic acids, which liberate P from insoluble phosphates. The most efficient phytase and phosphatase producing PGPF belong to the genera Aspergillus, Trichoderma, and Penicillium [103]. The order in terms of phytate hydrolysis efficacy was Aspergillus > Penicillium > Trichoderma [104]. Fusarium verticillioides RK01 and Humicola sp. KNU01 solubilized phosphate by increasing activities of acid phosphatase and alkaline phosphatase, and promoted soybean growth significantly [30]. The phosphate solubilizing fungi possess greater phosphorus solubilization ability than bacteria, especially under acidic soil conditions [105]. The main reason is most fungi are eosinophilic, and have relatively higher growth in acidic environments than bacteria [106]. The acidity has significant influence on organic acid-mediated phosphate solubilizing activities of Pe. oxalicum NJDL-03 and A. niger NJDL-12 [91]. However, acidification is not always the major mechanism of P solubilization by T. harzianum Rifai 1295-22 (T-22), where pH of cultures never fell below 5.0 and no organic acids were detected [93]. Some of the reported PGPF such as Aspergillus niger has twin abilities of P mineralization and solubilization [104]. The fungus releases P both from organic and inorganic sources. These suggests that specific PGPF may have specific activity in solubilizing phosphate and making it available for crop growth.
\nMicroorganisms primarily mediate soil nutrient pathways. Microbial mineralization of nutrients from organic matter is crucial for plant growth. Some PGPF promote plant growth, but do not produce plant hormones or solubilize fixed phosphate. Among Pe. radicum, Pe. bilaiae (strain RS7B-SD1) and Penicillium sp. strain KC6-W2, the strongest growth promotion in wheat, medic, and lentil was shown by Penicillium sp. KC6-W2, while the only significant P increase (~23% increase) was found in Pe. bilaiae RS7B-SD1-treated plants [92]. Similarly, seven Trichoderma isolates significantly improved the growth of bean seedlings; despite some of them do not possess any of the assessed growth-promoting traits such as soluble P, indole acetic acid (IAA) and siderophores [107]. These PGPF are believed to encourage plant growth by accelerating mineralization in the soil. Fungi have better substrate assimilation efficiency than any other microbes and are able to break down complex polyaromatic compounds such lignin and humic or phenolic acids [108]. A close relationship was found between the cellulose and starch degradation activity of PGPF for decomposing barley grain and their subsequent growth promotion effect in plants [109]. Application of T. harzianum strain Th 37 increased the availability of macro and micronutrients and organic carbonate in the ratoon initiation stage in sugarcane [94]. Colonization of T. harzianum in cucumber roots enhanced the availability and uptake of nutrients by the plants [47]. Cucumber plants grew better and produced more marketable fruits due to an increase in soil nutrients caused by PGPF, and accumulated more inorganic minerals like Ca, Mg, and K in aerial shoots [62]. PGPF are also directly involved the degradation of the nitrogenous organic materials through ammonization and nitrification. Formation of NH4-N and NO2-N in soil was accelerated during soil amendment with PGPF-infested barley grains [109]. More interestingly, the fungal entomopathogen Metarhizium robertsii, when established as a root endophyte, was shown to translocate nitrogen from a dead insect to a common bean plant host, suggesting this PGPF’s potential to acquire mineral nutrients from organic matter and promote plant growth [54]. Nutrient release by mineralization could explain why PGPF other than mycorrhizae improve plant growth when added to soil.
\nPhytohormones are involved in many forms of plant-microbe interactions and also in the beneficial interactions of plants with PGPF. The commonly recognized classes of phytohormones produced by PGPF are the auxins (IAA) and gibberellins (GAs) (Table 3). IAA, the most studied auxin, regulates many aspects of plant growth, in particular, root morphology by inhibiting root elongation, increasing lateral root production, and inducing adventitious roots [48]. The T. harzianum T-22-mediated root biomass production and root hair development in maize is believed to operate through a classical IAA response pathway [78]. Similarly, a direct correlation exists between increased levels of fungal IAA and lateral root development in Arabidopsis seedlings inoculated with T. virens [48].
\nGAs are well known for their role in various developmental processes in plants, including stem elongation. Shoot elongation of waito-c rice seedlings by culture filtrates of Pe. citrinum IR-3-3 and A. clavatus Y2H0002 was attributed to the activity of physiologically active GAs existing in the culture filtrates [19, 37]. Biochemical analyses of Penicillium sp. LWL3 and Pe. glomerata LWL2 culture filtrates that enhanced the growth of Dongjiin beyo rice cultivar and in GA-deficient mutant Waito-C revealed the presence of IAA and various GAs [110]. Similarly, production of bioactive GAs correlated with enhanced growth of Waito-C under salinity by Penicillium sp. Sj-2-2 [38]. GA also played key roles during root colonization by P. indica in pea roots [111].
\nAnother phytohormone through which PGPF mediate plant growth is cytokinin, especially the Zeatin. Zeatin production has been documented in Piriformospora indica, T. harzianum and Phoma sp., and the fungi that also produce other phytohormones [95, 112, 113]. P. indica produces low amounts of auxins, but high levels of cytokinins. Trans-Zeatin cytokinin biosynthesis was found crucial for P. indica-mediated growth stimulation in Arabidopsis [112]. This evidence suggests that PGPF often mediate the various growth and developmental processes in plants by influencing the balance of various plant hormones.
\nPGPF produces a crucial enzyme ACC (1-aminocyclopropane-1-carboxylic acid) deaminase. ACC deaminase cleaves the ethylene precursor, I-aminocyclopropane-1-carboxylic acid (ACC), into NH3 (ammonia) and α-ketobutyrate [114]. The ACC deaminase regulates the plant growth by cleaving ACC produced by plants and thereby minimizing the ethylene level in the plant, which when present in high concentrations can lead to a reduced plant growth [115]. ACC deaminase is an inducible enzyme encoded by acdS genes of fungi and bacteria [116]. ACC deaminase appears to be central to the functional interactions of some plant-PGPF. T. asperellum T203 produced high levels of ACC deaminase and showed an average 3.5-fold induction of the acds gene [117]. When ACC deaminase expression is impaired in the fungus T. asperellum T203, the plant growth promotion abilities of this organism are also decreased [51]. The root colonizing bacteria T. harzianum T22 no longer promote canola root elongation after its acdS gene is knocked out [64]. Production of ACC deaminase was reported in some other fungi, which include Issatchenkia occidentalis [118], and Penicillium citrinum and a stramnopile, Phytophthora sojae [119, 120]. The ACC deaminase-producing microbes have competitive advantages in the rhizosphere over nonproducing microorganisms because the enzyme acts as a nitrogen source for them [116]. Moreover, bacteria and fungi that express ACC deaminase can lower the impact of a range of different stresses that affect plant growth and development [114]. These show that ACC deaminase is not only related to plant growth promotion abilities of the microbes, but also play additional roles in the rhizosphere.
\nThe key indirect mechanism of PGPF-mediated plant growth promotion is through their activities as biocontrol agents. PGPF protect and empower plants to resist harmful pathogens and ensure their better growth. The mechanisms by which PGPF suppress growth or activity of invading pathogens in crop plants include antibiosis, competition for nutrient and space, mycoparasitism and induced systemic resistance (ISR) [121]. PGPF of diverse genera promoted growth of field-soil grown cucumber by counteracting damping off pathogen Pythium sp. through microbial antagonism [4]. Banana plants inoculated with PGPF F. oxysporum significantly suppressed nematode pathogens Pratylenchus goodeyi and Helicotylenchus multicinctus resulting in up to ~20 to 36% increase in banana yields [29]. The mycoparasite Sphaerodes retispora has been reported to improve the plant dry weight and to decrease plant mortality in the presence of F. oxysporum [122]. Similarly, under phytotron conditions, seed germination, root biomass, total biomass, root length, and total length of F. graminearum-infected wheat were noticeably increased with the treatments of S. mycoparasitica and T. harzianum, as compared to inoculation with F. graminearum alone. Both mycoparasites prevented colonization and reduction in root growth by the pathogen [12]. PGPF compete with the pathogen for colonization niche on roots [79]. Other mechanisms of disease suppression by PGPF are, therefore, likely to include competition with pathogens for infection sites on the root surface. Moreover, there is a long and growing list of PGPF such as Trichoderma, Penicillium, Fusarium, Phoma, and non-sporulating fungi, which can protect crop plants against pathogens by eliciting ISR [14, 31, 123, 124]. Although many fungal strains to act as PGPF and elicit ISR, it is not clear how far both mechanisms are connected. These microbes may use some of the same mechanisms to promote plant growth and control plant pathogens.
\nThe microbial association of plants has a major influence on plant adaptation to abiotic stresses such as salinity, drought, heavy metal toxicity, extreme temperatures and oxidative stress. Recent studies indicate that fitness benefits conferred by certain PGPF contribute plant adaption to stresses [125]. There are reports of enhanced plant growth because of the association of PGPF with plants, even when plants are under suboptimal conditions [126]. Root colonization by T. atroviride ID20G increased fresh and dry weight of maize roots under drought stress [99]. Supplementation of T. harzianum to NaCl treated mustard seedlings showed elevation by 13.8, 11.8, and 16.7% in shoot, root length and plant dry weight, respectively as compared to plants treated with NaCl (200 mM) alone [127]. The fungus Pe. funiculosum significantly increased the plant biomass, root physiology and nutrients uptake to soybean under copper stress [98]. These fungi have been known to produce plant growth regulators (like GAs and auxins) and extend plant tolerance to abiotic and biotic stresses [23, 125]. Recurrently, T. harzianum T22 has little effect upon seedling performance in tomato, however, under stress; treated seeds germinate consistently faster and more uniformly than untreated seeds [69]. A few other fungi like Microsphaeropsis, Mucor, Phoma, Alternaria, Peyronellaea, Steganosporium, and Aspergillus are known to grow well in polluted medium and protect plants from adverse effects of metal stress [128]. There are numerous similar examples of PGPF ameliorating abiotic stresses and promoting plant growth. Despite significant differences between different stresses, cellular responses to them share common features. Enhanced resistance of PGPF-treated plants to abiotic stresses is explained partly due to higher capacity to scavenge ROS and recycle oxidized ascorbate and glutathione [99, 127]. The increase in proline content is found to be very useful in providing tolerance to these plants under stress [129]. Both enzymatic (peroxidase, catalase, superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, glutathione S-sransferase and gaucol peroxidase), and non-enzymatic (ascorbic acid, reduced glutathione, oxidized glutathione) antioxidants are induced by PGPF further enhance the synthesis of these phytoconstituents and defend the plants from further damage [127].
\nMicroorganisms produce various mixtures of gas-phase, carbon-based compounds called volatile organic compounds (VOCs) as part of their normal metabolism. The comparative analysis of experimental data has shown that volatile metabolites make a much greater contribution to the microbial interactions than non-volatile ones [130]. Recent studies reveal that VOC emission is indeed a common property of a wide variety of soil fungi, including PGPF. Some of these VOCs produced by PGPF exert stimulatory effects on plants. A PGPF, Talaromyces wortmannii emits a terpenoid-like volatile, β-caryophyllene, which significantly promoted plant growth and induced resistance in turnip [40]. The identified VOCs emitted by Phoma sp. GS8-3 belonged to C4-C8 hydrocarbons, where 2-methyl-propanol and 3-methyl-butanol formed the main components and promoted the growth of tobacco seedlings [100]. These two components were also extracted from PGPR [131]. On the other hand, 3-methyl-butanal has been reported from T. viride [101]. The other most abundant VOCs from T. viride were isobutyl alcohol, isopentyl alcohol, farnesene and geranylacetone. Arabidopsis cultured in petri plates in a shared atmosphere with T. viride, without direct physical contact was taller with more lateral roots, bigger with augmented total biomass (~45%) and earlier flowered with higher chlorophyll concentration (~58%) [101]. Moreover, volatile blends showed better growth promotion than individual compounds [132]. Volatile compounds produced by PGPF are also heavily involved in induce systemic resistance toward pathogens [100].
\nRoot colonization is considered as an important strategy of PGPF for plant growth promotion. Root colonization is the ability of a fungus to survive and proliferate along growing roots in the presence of the indigenous microflora over a considerable period [35]. The fungus that colonizes plant root effectively is more rhizosphere competent than others [107]. Rhizosphere competence is a necessary condition for a fungus to be an efficient PGPF. Re-isolation frequency of the fungus from the colonized roots is an indirect measure of its root colonizing ability and thereby, its rhizosphere competence. In such studies, Pe. simplicissimum GP17-2 and Pe. viridicatum GP15-1 were re-isolated from Arabidopsis Col-0 roots 3 weeks after planting at high frequencies which were found to be >90% (Figure 2). Similarly, the re-isolation frequency of Pe. janthinellum GP16-2 from the roots of Col-0 plants was recorded to be, on average, 85% [33]. Aspergillus spp. PPA1 was re-isolated from the roots of cucumber plants at a frequency of 95–100% 3 weeks after planting [17], indicating a rapid and efficient root colonization by the PGPF. However, a slow root colonization by PGPF was also reported, as it was the case with Phoma sp. GS8-2, which achieved maximum colonization on cucumber roots at 10 weeks [62]. The relative growth rate of the fungi and roots seems to determine the length of time required for maximum root colonization.
\nRe-isolation of Penicillium simplicissimum GP17-2 and Penicillium viridicatum GP15-1 at higher frequencies from colonized roots of Arabidopsis thaliana ecotype Col-0 3 weeks after sowing.
Some PGPF selectively colonize host roots and promote growth. Isolates of Phoma and sterile fungi showed poor ability to colonize the soybean roots and were unable to enhance the growth of soybean [79]. Similarly, T. koningi colonized roots and enhanced growth of Lotus japonicas, but Pe. simplicissimum and F. equiseti did not [89]. It was observed that T. koningi induced a transient and decreased level of defense gene expression in L. japonicas during its entry into the roots, while a stimulated expression of these genes was induced by Pe. simplicissimum and F. equiseti [89]. T. koningi resembles symbiotic fungi, while Pe. simplicissimum and F. equiseti act similar to fungal pathogens in activating host defense. This shows that legumes selectively avoid some PGPF and thus allow only specific PGPF to interfere.
\nThere are also PGPF, in particular, the non-sporulating sterile fungi that lack root colonization ability, but they are able to promote growth and yield of plants [62, 133]. This indicates that root colonization is not an indispensable condition for growth promotion by all PGPF. Some chemical factor(s) produced by them might be responsible for growth promotion.
\nThe colonization of the root system of by PGPF is not always homogenous; the density of PGPF varies in different parts of the root system. The colonization of roots by the majority of PGPF appears to be higher in the upper than in the middle and lower root parts of roots, [35, 133]. The lower part was always less colonized by PGPF, especially during first 2 weeks of colonization. This is probably due to the faster growth of the roots than of the hyphae. Moreover, the main zone of root exudation is located behind the apex [134]. However, some PGPF can keep up with root growth and colonize the entire root system [35]. Only fungi with large nutrient reserves can move to the root and along the root over larger distances [135].
\nAnatomical data show that PGPF may colonize root tissues internally and establish a mutualistic relationship with host. F. equiseti GF19-1 produced abundant hyphal growth on the root surface, formed appressoria-like structures and grew in the intercellular space, not inside the cell [31]. T. harzianum CECT 2413 exhibited profuse adhesion of hyphae to the tomato roots and colonized the epidermis and cortex. Intercellular hyphal growth and the formation of plant-induced papilla-like hyphal tips were also observed [136]. Hyphae of T. koningi penetrated the epidermis and entered the intercellular inner cortex tissues [89]. Sterile red fungus has been also demonstrated to invade the inner root regions that helped plants derive nutrients from the soil and protected roots from pathogens [137].
\nPGPF, especially Trichoderma, have many success stores as plant growth promoting agents and appear to have much potential as a commercial formulation. Different organic and inorganic carrier materials have been studied for effective delivery of bioinoculants. A talc-based formulation was developed for T. harzianum to supply concentrated conidial biomass of the fungus with high colony forming units (CFU) and long shelf life [138]. The concentrated formulation provided an extra advantage of smaller packaging for storage and transportation, and low product cost as compared to other carriers such as charcoal, vermiculite, sawdust and cow dung. Seed application of the formulation recorded significant increase in growth promotion in chickpea [138]. Corn and sugarcane bagasse were used as potential carriers for Trichoderma sp. SL2 inoculants. The corn formulation of SL2 significantly enhanced rice seedlings root length, wet weight and biomass compared to inoculum mixed with sugarcane bagasse and control [139]. A spray-dried flowable powder formulation was developed for biostimulant Trichoderma strains using a CO2 generating dispersant system, based on polyacrylic acid, citric acid and sodium bicarbonate, polyvinyl alcohol as adhesives and lecithin as wetting agent [140]. Hydrolytic amino acids derived from pig corpses were used in the preparation of T. harzianum T-E5-containing bioorganic fertilizer. The resulting bioorganic fertilizer supported higher densities of T. harzianum T-E5 and substantially enhanced plant growth when applied as a soil amendment [141]. A composted cattle manure-based Trichoderma biofertilizer was developed and tested in the field. Plots fertilized with biofertilizer had the greatest aboveground biomass of any treatment and were significantly more productive than non-amended plots and plots fertilized with any rate of organic fertilizer [142]. Effective formulation of P. indica was prepared in talcum powder or vermiculite with 20% moisture. The talcum-based formulations performed significantly better as bioinoculant over vermiculite-based formulations in glasshouse experiments [143]. These show the feasibility of commercial level production and applicability of different PGPF formulations for plant growth promotion in the field.
\nBecause of current concerns over the adverse effects of agrochemicals, there is a growing interest in improving our understanding of the role and application of beneficial microbes in agriculture. The plant-associated growth promoting fungi show excellent potential for wider use in sustainable agriculture as they improve plant growth and yield in an ecofriendly and cost-effective manner. However, the PGPF continue to be greatly underutilized, primarily due to some practical problems such as the inconsistency in field performance, which appears to be the greatest challenge in the development of microbial inoculants for plant growth until now and well into the future. If our understanding of complex rhizosphere environment, of the mechanisms of action of PGPF and of the practical aspects of mass production, inoculant formulation and delivery increase, more PGPF products will become available. Knowledge of multiple microbial interaction with different or complementary mode of actions is also of extreme value for development of bio-formulation.
\nRecent advances in biotechnological tools and reliable transformation system could be useful in engineering of the PGPF to confer improved benefits to the crop. Genetic transformation and overexpression of one or more of the plant growth promoting traits that act synergistically may lead to enhanced performance by the inoculant. Research may be required periodically in order to evaluate the genetic stability and ecological persistence of the genetically modified strain. Efforts should be strengthened to foster linkage between investigators and entrepreneurs in facilitating technology transfer, promotion and acceptance by end users.
\nIntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}},{id:"105795",title:"Prof.",name:"Abdel Ghani",middleName:null,surname:"Aissaoui",slug:"abdel-ghani-aissaoui",fullName:"Abdel Ghani Aissaoui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105795/images/system/105795.jpeg",biography:"Abdel Ghani AISSAOUI is a Full Professor of electrical engineering at University of Bechar (ALGERIA). He was born in 1969 in Naama, Algeria. He received his BS degree in 1993, the MS degree in 1997, the PhD degree in 2007 from the Electrical Engineering Institute of Djilali Liabes University of Sidi Bel Abbes (ALGERIA). He is an active member of IRECOM (Interaction Réseaux Electriques - COnvertisseurs Machines) Laboratory and IEEE senior member. He is an editor member for many international journals (IJET, RSE, MER, IJECE, etc.), he serves as a reviewer in international journals (IJAC, ECPS, COMPEL, etc.). He serves as member in technical committee (TPC) and reviewer in international conferences (CHUSER 2011, SHUSER 2012, PECON 2012, SAI 2013, SCSE2013, SDM2014, SEB2014, PEMC2014, PEAM2014, SEB (2014, 2015), ICRERA (2015, 2016, 2017, 2018,-2019), etc.). His current research interest includes power electronics, control of electrical machines, artificial intelligence and Renewable energies.",institutionString:"University of Béchar",institution:{name:"University of Béchar",country:{name:"Algeria"}}},{id:"99749",title:"Dr.",name:"Abdel Hafid",middleName:null,surname:"Essadki",slug:"abdel-hafid-essadki",fullName:"Abdel Hafid Essadki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Nationale Supérieure de Technologie",country:{name:"Algeria"}}},{id:"101208",title:"Prof.",name:"Abdel Karim",middleName:"Mohamad",surname:"El Hemaly",slug:"abdel-karim-el-hemaly",fullName:"Abdel Karim El Hemaly",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/101208/images/733_n.jpg",biography:"OBGYN.net Editorial Advisor Urogynecology.\nAbdel Karim M. A. El-Hemaly, MRCOG, FRCS � Egypt.\n \nAbdel Karim M. A. El-Hemaly\nProfessor OB/GYN & Urogynecology\nFaculty of medicine, Al-Azhar University \nPersonal Information: \nMarried with two children\nWife: Professor Laila A. Moussa MD.\nSons: Mohamad A. M. El-Hemaly Jr. MD. Died March 25-2007\nMostafa A. M. El-Hemaly, Computer Scientist working at Microsoft Seatle, USA. \nQualifications: \n1.\tM.B.-Bch Cairo Univ. June 1963. \n2.\tDiploma Ob./Gyn. Cairo Univ. April 1966. \n3.\tDiploma Surgery Cairo Univ. Oct. 1966. \n4.\tMRCOG London Feb. 1975. \n5.\tF.R.C.S. Glasgow June 1976. \n6.\tPopulation Study Johns Hopkins 1981. \n7.\tGyn. Oncology Johns Hopkins 1983. \n8.\tAdvanced Laparoscopic Surgery, with Prof. Paulson, Alexandria, Virginia USA 1993. \nSocieties & Associations: \n1.\t Member of the Royal College of Ob./Gyn. London. \n2.\tFellow of the Royal College of Surgeons Glasgow UK. \n3.\tMember of the advisory board on urogyn. FIGO. \n4.\tMember of the New York Academy of Sciences. \n5.\tMember of the American Association for the Advancement of Science. \n6.\tFeatured in �Who is Who in the World� from the 16th edition to the 20th edition. \n7.\tFeatured in �Who is Who in Science and Engineering� in the 7th edition. \n8.\tMember of the Egyptian Fertility & Sterility Society. \n9.\tMember of the Egyptian Society of Ob./Gyn. \n10.\tMember of the Egyptian Society of Urogyn. \n\nScientific Publications & Communications:\n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Asim Kurjak, Ahmad G. Serour, Laila A. S. Mousa, Amr M. Zaied, Khalid Z. El Sheikha. \nImaging the Internal Urethral Sphincter and the Vagina in Normal Women and Women Suffering from Stress Urinary Incontinence and Vaginal Prolapse. Gynaecologia Et Perinatologia, Vol18, No 4; 169-286 October-December 2009.\n2- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nFecal Incontinence, A Novel Concept: The Role of the internal Anal sphincter (IAS) in defecation and fecal incontinence. Gynaecologia Et Perinatologia, Vol19, No 2; 79-85 April -June 2010.\n3- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nSurgical Treatment of Stress Urinary Incontinence, Fecal Incontinence and Vaginal Prolapse By A Novel Operation \n"Urethro-Ano-Vaginoplasty"\n Gynaecologia Et Perinatologia, Vol19, No 3; 129-188 July-September 2010.\n4- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n5- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n6- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n7-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n8-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n9-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n10-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n11-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n12- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n13-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n14- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n15-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n\n16-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n17- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis\n\n18-Maternal Mortality in Egypt, a cry for help and attention. The Second International Conference of the African Society of Organization & Gestosis, 1998, 3rd Annual International Conference of Ob/Gyn Department � Sohag Faculty of Medicine University. Feb. 11-13. Luxor, Egypt. \n19-Postmenopausal Osteprosis. The 2nd annual conference of Health Insurance Organization on Family Planning and its role in primary health care. Zagaziz, Egypt, February 26-27, 1997, Center of Complementary Services for Maternity and childhood care. \n20-Laparoscopic Assisted vaginal hysterectomy. 10th International Annual Congress Modern Trends in Reproductive Techniques 23-24 March 1995. Alexandria, Egypt. \n21-Immunological Studies in Pre-eclamptic Toxaemia. Proceedings of 10th Annual Ain Shams Medical Congress. Cairo, Egypt, March 6-10, 1987. \n22-Socio-demographic factorse affecting acceptability of the long-acting contraceptive injections in a rural Egyptian community. Journal of Biosocial Science 29:305, 1987. \n23-Plasma fibronectin levels hypertension during pregnancy. The Journal of the Egypt. Soc. of Ob./Gyn. 13:1, 17-21, Jan. 1987. \n24-Effect of smoking on pregnancy. Journal of Egypt. Soc. of Ob./Gyn. 12:3, 111-121, Sept 1986. \n25-Socio-demographic aspects of nausea and vomiting in early pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 35-42, Sept. 1986. \n26-Effect of intrapartum oxygen inhalation on maternofetal blood gases and pH. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 57-64, Sept. 1986. \n27-The effect of severe pre-eclampsia on serum transaminases. The Egypt. J. Med. Sci. 7(2): 479-485, 1986. \n28-A study of placental immunoreceptors in pre-eclampsia. The Egypt. J. Med. Sci. 7(2): 211-216, 1986. \n29-Serum human placental lactogen (hpl) in normal, toxaemic and diabetic pregnant women, during pregnancy and its relation to the outcome of pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:2, 11-23, May 1986. \n30-Pregnancy specific B1 Glycoprotein and free estriol in the serum of normal, toxaemic and diabetic pregnant women during pregnancy and after delivery. Journal of the Egypt. Soc. of Ob./Gyn. 12:1, 63-70, Jan. 1986. Also was accepted and presented at Xith World Congress of Gynecology and Obstetrics, Berlin (West), September 15-20, 1985. \n31-Pregnancy and labor in women over the age of forty years. Accepted and presented at Al-Azhar International Medical Conference, Cairo 28-31 Dec. 1985. \n32-Effect of Copper T intra-uterine device on cervico-vaginal flora. Int. J. Gynaecol. Obstet. 23:2, 153-156, April 1985. \n33-Factors affecting the occurrence of post-Caesarean section febrile morbidity. Population Sciences, 6, 139-149, 1985. \n34-Pre-eclamptic toxaemia and its relation to H.L.A. system. Population Sciences, 6, 131-139, 1985. \n35-The menstrual pattern and occurrence of pregnancy one year after discontinuation of Depo-medroxy progesterone acetate as a postpartum contraceptive. Population Sciences, 6, 105-111, 1985. \n36-The menstrual pattern and side effects of Depo-medroxy progesterone acetate as postpartum contraceptive. Population Sciences, 6, 97-105, 1985. \n37-Actinomyces in the vaginas of women with and without intrauterine contraceptive devices. Population Sciences, 6, 77-85, 1985. \n38-Comparative efficacy of ibuprofen and etamsylate in the treatment of I.U.D. menorrhagia. Population Sciences, 6, 63-77, 1985. \n39-Changes in cervical mucus copper and zinc in women using I.U.D.�s. Population Sciences, 6, 35-41, 1985. \n40-Histochemical study of the endometrium of infertile women. Egypt. J. Histol. 8(1) 63-66, 1985. \n41-Genital flora in pre- and post-menopausal women. Egypt. J. Med. Sci. 4(2), 165-172, 1983. \n42-Evaluation of the vaginal rugae and thickness in 8 different groups. Journal of the Egypt. Soc. of Ob./Gyn. 9:2, 101-114, May 1983. \n43-The effect of menopausal status and conjugated oestrogen therapy on serum cholesterol, triglycerides and electrophoretic lipoprotein patterns. Al-Azhar Medical Journal, 12:2, 113-119, April 1983. \n44-Laparoscopic ventrosuspension: A New Technique. Int. J. Gynaecol. Obstet., 20, 129-31, 1982. \n45-The laparoscope: A useful diagnostic tool in general surgery. Al-Azhar Medical Journal, 11:4, 397-401, Oct. 1982. \n46-The value of the laparoscope in the diagnosis of polycystic ovary. Al-Azhar Medical Journal, 11:2, 153-159, April 1982. \n47-An anaesthetic approach to the management of eclampsia. Ain Shams Medical Journal, accepted for publication 1981. \n48-Laparoscopy on patients with previous lower abdominal surgery. Fertility management edited by E. Osman and M. Wahba 1981. \n49-Heart diseases with pregnancy. Population Sciences, 11, 121-130, 1981. \n50-A study of the biosocial factors affecting perinatal mortality in an Egyptian maternity hospital. Population Sciences, 6, 71-90, 1981. \n51-Pregnancy Wastage. Journal of the Egypt. Soc. of Ob./Gyn. 11:3, 57-67, Sept. 1980. \n52-Analysis of maternal deaths in Egyptian maternity hospitals. Population Sciences, 1, 59-65, 1979. \nArticles published on OBGYN.net: \n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n2- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n3- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n4-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n5-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n6-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n7-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n8-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n9- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n10-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n11- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n12-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n13-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n14- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis",institutionString:null,institution:{name:"Al Azhar University",country:{name:"Egypt"}}},{id:"113313",title:"Dr.",name:"Abdel-Aal",middleName:null,surname:"Mantawy",slug:"abdel-aal-mantawy",fullName:"Abdel-Aal Mantawy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ain Shams University",country:{name:"Egypt"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5684},{group:"region",caption:"Middle and South America",value:2,count:5166},{group:"region",caption:"Africa",value:3,count:1682},{group:"region",caption:"Asia",value:4,count:10211},{group:"region",caption:"Australia and Oceania",value:5,count:887},{group:"region",caption:"Europe",value:6,count:15616}],offset:12,limit:12,total:1689},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"9"},books:[{type:"book",id:"10260",title:"E-Service",subtitle:null,isOpenForSubmission:!0,hash:"11dab65781b3c4347022c56477311f46",slug:null,bookSignature:"Dr. Kyeong Kang",coverURL:"https://cdn.intechopen.com/books/images_new/10260.jpg",editedByType:null,editors:[{id:"2114",title:"Dr.",name:"Kyeong",surname:"Kang",slug:"kyeong-kang",fullName:"Kyeong Kang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9226",title:"Intelligent User Interfaces",subtitle:null,isOpenForSubmission:!0,hash:"2540a73b78f2f13158366ac0ab9d62a1",slug:null,bookSignature:"Dr. Rüdiger Heimgärtner",coverURL:"https://cdn.intechopen.com/books/images_new/9226.jpg",editedByType:null,editors:[{id:"135236",title:"Dr.",name:"Rüdiger",surname:"Heimgärtner",slug:"rudiger-heimgartner",fullName:"Rüdiger Heimgärtner"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9980",title:"Vision Sensors",subtitle:null,isOpenForSubmission:!0,hash:"fc472f04a4214bf13db3f693a2c7c323",slug:null,bookSignature:"Dr. Vasanth Iyer",coverURL:"https://cdn.intechopen.com/books/images_new/9980.jpg",editedByType:null,editors:[{id:"301000",title:"Dr.",name:"Vasanth",surname:"Iyer",slug:"vasanth-iyer",fullName:"Vasanth Iyer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10517",title:"Swarm Intelligence",subtitle:null,isOpenForSubmission:!0,hash:"c184136bf5b833b19f7e12ace5531773",slug:null,bookSignature:"Dr. Mehmet Emin Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/10517.jpg",editedByType:null,editors:[{id:"148497",title:"Dr.",name:"Mehmet",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10576",title:"Factoring Ethics in Technology, Policy Making and Regulation",subtitle:null,isOpenForSubmission:!0,hash:"eff20787f4c5417ea12367e8a6d72e92",slug:null,bookSignature:"Prof. Ali G. Hessami and Dr. Patricia Shaw",coverURL:"https://cdn.intechopen.com/books/images_new/10576.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali G.",surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10394",title:"Blockchain Potential in AI",subtitle:null,isOpenForSubmission:!0,hash:"700eff7270bae63fd214974a0bd8e77f",slug:null,bookSignature:"Dr. Tiago M. Fernández-Caramés and Dr. Paula Fraga-Lamas",coverURL:"https://cdn.intechopen.com/books/images_new/10394.jpg",editedByType:null,editors:[{id:"186818",title:"Dr.",name:"Tiago M.",surname:"Fernández-Caramés",slug:"tiago-m.-fernandez-carames",fullName:"Tiago M. Fernández-Caramés"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10452",title:"Computer-Mediated Communication",subtitle:null,isOpenForSubmission:!0,hash:"ed2d494d96079740341956fe830814ac",slug:null,bookSignature:"Dr. Indrakshi Dey",coverURL:"https://cdn.intechopen.com/books/images_new/10452.jpg",editedByType:null,editors:[{id:"321151",title:"Dr.",name:"Indrakshi",surname:"Dey",slug:"indrakshi-dey",fullName:"Indrakshi Dey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10403",title:"Recent Advances on Numerical Simulations",subtitle:null,isOpenForSubmission:!0,hash:"d74c4bc8f3f49c49eb2e80810d938611",slug:null,bookSignature:"Dr. Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10403.jpg",editedByType:null,editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10522",title:"Coding Theory - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:null,bookSignature:"Dr. Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:null,editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:10},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5131},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1090",title:"Radiation Oncology",slug:"radiation-oncology",parent:{title:"Oncology",slug:"medicine-oncology"},numberOfBooks:3,numberOfAuthorsAndEditors:100,numberOfWosCitations:56,numberOfCrossrefCitations:17,numberOfDimensionsCitations:50,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"radiation-oncology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"2693",title:"Frontiers in Radiation Oncology",subtitle:null,isOpenForSubmission:!1,hash:"5761829d7f0e5eb06b7337751b38b23c",slug:"frontiers-in-radiation-oncology",bookSignature:"Tejinder Kataria",coverURL:"https://cdn.intechopen.com/books/images_new/2693.jpg",editedByType:"Edited by",editors:[{id:"141684",title:"Dr.",name:"Tejinder",middleName:null,surname:"Kataria",slug:"tejinder-kataria",fullName:"Tejinder Kataria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1561",title:"Brachytherapy",subtitle:null,isOpenForSubmission:!1,hash:"8c7f5404e634a5e233e051cdace59aa5",slug:"brachytherapy",bookSignature:"Kazushi Kishi",coverURL:"https://cdn.intechopen.com/books/images_new/1561.jpg",editedByType:"Edited by",editors:[{id:"100002",title:"Dr.",name:"Kazushi",middleName:null,surname:"Kishi",slug:"kazushi-kishi",fullName:"Kazushi Kishi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1553",title:"Modern Practices in Radiation Therapy",subtitle:null,isOpenForSubmission:!1,hash:"f7bffcd98f458c5b6cd80615834f2b34",slug:"modern-practices-in-radiation-therapy",bookSignature:"Gopishankar Natanasabapathi",coverURL:"https://cdn.intechopen.com/books/images_new/1553.jpg",editedByType:"Edited by",editors:[{id:"97379",title:"Dr.",name:"Gopishankar",middleName:null,surname:"Natanasabapathi",slug:"gopishankar-natanasabapathi",fullName:"Gopishankar Natanasabapathi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"34246",doi:"10.5772/34314",title:"Intra-Operative Radiotherapy with Electron Beam",slug:"intra-operative-radiotherapy-with-electron-beam",totalDownloads:3981,totalCrossrefCites:4,totalDimensionsCites:11,book:{slug:"modern-practices-in-radiation-therapy",title:"Modern Practices in Radiation Therapy",fullTitle:"Modern Practices in Radiation Therapy"},signatures:"Ernesto Lamanna, Alessandro Gallo, Filippo Russo, Rosa Brancaccio, Antonella Soriani and Lidia Strigari",authors:[{id:"99609",title:"Prof.",name:"Ernesto",middleName:null,surname:"Lamanna",slug:"ernesto-lamanna",fullName:"Ernesto Lamanna"},{id:"104872",title:"Dr.",name:"Rosa",middleName:null,surname:"Brancaccio",slug:"rosa-brancaccio",fullName:"Rosa Brancaccio"},{id:"104881",title:"PhD.",name:"Alessandro",middleName:null,surname:"Gallo",slug:"alessandro-gallo",fullName:"Alessandro Gallo"},{id:"104899",title:"Dr.",name:"Filippo",middleName:null,surname:"Russo",slug:"filippo-russo",fullName:"Filippo Russo"},{id:"104910",title:"Dr.",name:"Antonella",middleName:null,surname:"Soriani",slug:"antonella-soriani",fullName:"Antonella Soriani"},{id:"104912",title:"Dr.",name:"Lidia",middleName:null,surname:"Strigari",slug:"lidia-strigari",fullName:"Lidia Strigari"}]},{id:"35967",doi:"10.5772/34172",title:"Progress in Californium-252 Neutron Brachytherapy",slug:"progress-in-cf-252-based-neutron-brachytherapy",totalDownloads:1829,totalCrossrefCites:1,totalDimensionsCites:9,book:{slug:"brachytherapy",title:"Brachytherapy",fullTitle:"Brachytherapy"},signatures:"C.-K. Chris Wang",authors:[{id:"99025",title:"Prof.",name:"C-K",middleName:null,surname:"Wang",slug:"c-k-wang",fullName:"C-K Wang"}]},{id:"34244",doi:"10.5772/34974",title:"The Stopping Power of Matter for Positive Ions",slug:"the-stopping-power-of-matter-for-positive-ions-",totalDownloads:5998,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"modern-practices-in-radiation-therapy",title:"Modern Practices in Radiation Therapy",fullTitle:"Modern Practices in Radiation Therapy"},signatures:"Helmut Paul",authors:[{id:"102453",title:"Dr.",name:"Helmut",middleName:null,surname:"Paul",slug:"helmut-paul",fullName:"Helmut Paul"}]}],mostDownloadedChaptersLast30Days:[{id:"35967",title:"Progress in Californium-252 Neutron Brachytherapy",slug:"progress-in-cf-252-based-neutron-brachytherapy",totalDownloads:1829,totalCrossrefCites:1,totalDimensionsCites:9,book:{slug:"brachytherapy",title:"Brachytherapy",fullTitle:"Brachytherapy"},signatures:"C.-K. Chris Wang",authors:[{id:"99025",title:"Prof.",name:"C-K",middleName:null,surname:"Wang",slug:"c-k-wang",fullName:"C-K Wang"}]},{id:"45389",title:"Applications to Radiotherapy Using Three Different Dosimetric Tools: MAGIC-f Gel, PENELOPE Simulation Code and Treatment Planning System",slug:"applications-to-radiotherapy-using-three-different-dosimetric-tools-magic-f-gel-penelope-simulation-",totalDownloads:1524,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"frontiers-in-radiation-oncology",title:"Frontiers in Radiation Oncology",fullTitle:"Frontiers in Radiation Oncology"},signatures:"Thatiane Alves Pianoschi and Mirko Salomón Alva-Sánchez",authors:[{id:"146061",title:"MSc.",name:"Thatiane",middleName:null,surname:"Pianoschi",slug:"thatiane-pianoschi",fullName:"Thatiane Pianoschi"},{id:"146080",title:"MSc.",name:"Mirko",middleName:null,surname:"Alva-Sánchez",slug:"mirko-alva-sanchez",fullName:"Mirko Alva-Sánchez"}]},{id:"45390",title:"Effects of Radiotherapy on Pharyngeal Reconstruction After Pharyngo-Laryngectomy",slug:"effects-of-radiotherapy-on-pharyngeal-reconstruction-after-pharyngo-laryngectomy",totalDownloads:1875,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"frontiers-in-radiation-oncology",title:"Frontiers in Radiation Oncology",fullTitle:"Frontiers in Radiation Oncology"},signatures:"Jimmy Yu-Wai Chan and Gregory Ian Siu Kee Lau",authors:[{id:"145457",title:"Prof.",name:"Jimmy Yu Wai",middleName:null,surname:"Chan",slug:"jimmy-yu-wai-chan",fullName:"Jimmy Yu Wai Chan"}]},{id:"35968",title:"Theoretical, Manufacturing and Clinical Application Aspects of a Prostate Brachytherapy I-125 Source in Brazil",slug:"theoretical-manufacturing-and-clinical-application-aspects-of-a-prostate-brachytherapy-i-125-source",totalDownloads:5006,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"brachytherapy",title:"Brachytherapy",fullTitle:"Brachytherapy"},signatures:"Carlos A. Zeituni, Carla D. Souza, Eduardo S. Moura, Roberto Kenji Sakuraba, Maria Elisa C.M. Rostelato, Anselmo Feher, João A. Moura, Samir Somessari and Osvaldo L. Costa",authors:[{id:"105031",title:"BSc",name:"Carla",middleName:null,surname:"Daruich De Souza",slug:"carla-daruich-de-souza",fullName:"Carla Daruich De Souza"},{id:"109988",title:"Dr.",name:"Maria Elisa",middleName:null,surname:"Rostelato",slug:"maria-elisa-rostelato",fullName:"Maria Elisa Rostelato"},{id:"109991",title:"Dr.",name:"Carlos A.",middleName:null,surname:"Zeituni",slug:"carlos-a.-zeituni",fullName:"Carlos A. Zeituni"},{id:"110002",title:"MSc.",name:"Eduardo",middleName:null,surname:"Santana De Moura",slug:"eduardo-santana-de-moura",fullName:"Eduardo Santana De Moura"},{id:"110005",title:"BSc.",name:"Roberto",middleName:null,surname:"Kenji Sakuraba",slug:"roberto-kenji-sakuraba",fullName:"Roberto Kenji Sakuraba"},{id:"137965",title:"MSc.",name:"Anselmo",middleName:null,surname:"Feher",slug:"anselmo-feher",fullName:"Anselmo Feher"},{id:"137966",title:"MSc.",name:"João Augusto",middleName:null,surname:"Moura",slug:"joao-augusto-moura",fullName:"João Augusto Moura"},{id:"137967",title:"MSc.",name:"Samir",middleName:null,surname:"Somessari",slug:"samir-somessari",fullName:"Samir Somessari"},{id:"137968",title:"MSc.",name:"Osvaldo L. Da",middleName:null,surname:"Costa",slug:"osvaldo-l.-da-costa",fullName:"Osvaldo L. Da Costa"}]},{id:"45391",title:"Locally Advanced Esophageal Cancer",slug:"locally-advanced-esophageal-cancer",totalDownloads:2908,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"frontiers-in-radiation-oncology",title:"Frontiers in Radiation Oncology",fullTitle:"Frontiers in Radiation Oncology"},signatures:"Hend Ahmed El-Hadaad and Hanan Ahmed Wahba",authors:[{id:"143598",title:"Dr.",name:"Hend",middleName:null,surname:"El-Hadaad",slug:"hend-el-hadaad",fullName:"Hend El-Hadaad"},{id:"155356",title:"Dr.",name:"Hanan",middleName:null,surname:"Wahba",slug:"hanan-wahba",fullName:"Hanan Wahba"}]},{id:"45393",title:"Reduction Mammaplasty and Intra-Operative Radiotherapy (IORT) in Conservative Surgery",slug:"reduction-mammaplasty-and-intra-operative-radiotherapy-iort-in-conservative-surgery",totalDownloads:1886,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"frontiers-in-radiation-oncology",title:"Frontiers in Radiation Oncology",fullTitle:"Frontiers in Radiation Oncology"},signatures:"Simonetta Franchelli, Paolo Meszaros, Michela Massa,\nMarina Guenzi, Renzo Corvò, Davide Pertile, Giorgia Timon,\nFerdinando Cafiero and Pierluigi Santi",authors:[{id:"143796",title:"Dr.",name:"Simonetta",middleName:null,surname:"Franchelli",slug:"simonetta-franchelli",fullName:"Simonetta Franchelli"},{id:"168420",title:"Prof.",name:"Pier Luigi",middleName:null,surname:"Santi",slug:"pier-luigi-santi",fullName:"Pier Luigi Santi"}]},{id:"35970",title:"Stereotactic Brachytherapy for Brain Tumors",slug:"stereotactic-brachytherapy-for-brain-tumors",totalDownloads:2289,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"brachytherapy",title:"Brachytherapy",fullTitle:"Brachytherapy"},signatures:"Maximilian I. Ruge, Stefan Grau, Harald Treuer and Volker Sturm",authors:[{id:"112924",title:"Dr.",name:"Maximilian I.",middleName:null,surname:"Ruge",slug:"maximilian-i.-ruge",fullName:"Maximilian I. Ruge"},{id:"112926",title:"Dr.",name:"Stefan",middleName:null,surname:"Grau",slug:"stefan-grau",fullName:"Stefan Grau"},{id:"112927",title:"Dr.",name:"Harald",middleName:null,surname:"Treuer",slug:"harald-treuer",fullName:"Harald Treuer"},{id:"148156",title:"Prof.",name:"Volker",middleName:null,surname:"Sturm",slug:"volker-sturm",fullName:"Volker Sturm"}]},{id:"45387",title:"3D Dosimetric Tools in Radiotherapy for Photon Beams",slug:"3d-dosimetric-tools-in-radiotherapy-for-photon-beams",totalDownloads:2514,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"frontiers-in-radiation-oncology",title:"Frontiers in Radiation Oncology",fullTitle:"Frontiers in Radiation Oncology"},signatures:"Mirko Salomón Alva-Sánchez and Thatiane Alves Pianoschi",authors:[{id:"145569",title:"PhD.",name:"Mirko",middleName:null,surname:"Alva-Sánchez",slug:"mirko-alva-sanchez",fullName:"Mirko Alva-Sánchez"},{id:"146070",title:"MSc.",name:"Thatiane",middleName:null,surname:"Pianoschi",slug:"thatiane-pianoschi",fullName:"Thatiane Pianoschi"}]},{id:"34255",title:"Digital Filtering Techniques to Reduce Image Noise and Improve Dose Resolution in X-Ray CT Based Normoxic Gel Dosimetry",slug:"digital-filtering-techniques-to-reduce-image-noise-and-improve-dose-resolution-in-x-ray-ct-based-nor",totalDownloads:2531,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"modern-practices-in-radiation-therapy",title:"Modern Practices in Radiation Therapy",fullTitle:"Modern Practices in Radiation Therapy"},signatures:"N. Gopishankar, S. Vivekanandhan, A. Jirasek, S. S. Kale, G. K. Rath Sanjay Thulkar, V. Subramani, S. Senthil Kumaran and R. K. Bisht",authors:[{id:"97379",title:"Dr.",name:"Gopishankar",middleName:null,surname:"Natanasabapathi",slug:"gopishankar-natanasabapathi",fullName:"Gopishankar Natanasabapathi"},{id:"97398",title:"Dr.",name:"A",middleName:null,surname:"Jirasek",slug:"a-jirasek",fullName:"A Jirasek"},{id:"97399",title:"Dr.",name:"S",middleName:null,surname:"Vivekanandhan",slug:"s-vivekanandhan",fullName:"S Vivekanandhan"},{id:"97400",title:"Dr.",name:"S S",middleName:null,surname:"Kale",slug:"s-s-kale",fullName:"S S Kale"},{id:"130042",title:"Prof.",name:"G K",middleName:null,surname:"Rath",slug:"g-k-rath",fullName:"G K Rath"},{id:"130043",title:"Dr.",name:"Sanjay",middleName:null,surname:"Thulkar",slug:"sanjay-thulkar",fullName:"Sanjay Thulkar"},{id:"130044",title:"Dr.",name:"S",middleName:null,surname:"Senthilkumaran",slug:"s-senthilkumaran",fullName:"S Senthilkumaran"},{id:"130062",title:"Dr.",name:"V",middleName:null,surname:"Subramani",slug:"v-subramani",fullName:"V Subramani"},{id:"130063",title:"Mr.",name:"R K",middleName:null,surname:"Bisht",slug:"r-k-bisht",fullName:"R K Bisht"}]},{id:"45392",title:"Nutrition Intervention Improves Nutritional Status and Quality of Life Outcomes in Patients Undergoing Radiotherapy",slug:"nutrition-intervention-improves-nutritional-status-and-quality-of-life-outcomes-in-patients-undergoi",totalDownloads:3223,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"frontiers-in-radiation-oncology",title:"Frontiers in Radiation Oncology",fullTitle:"Frontiers in Radiation Oncology"},signatures:"Elisabeth Isenring",authors:[{id:"140941",title:"Dr.",name:"Elisabeth",middleName:null,surname:"Isenring",slug:"elisabeth-isenring",fullName:"Elisabeth Isenring"}]}],onlineFirstChaptersFilter:{topicSlug:"radiation-oncology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/139278/yasushige-mori",hash:"",query:{},params:{id:"139278",slug:"yasushige-mori"},fullPath:"/profiles/139278/yasushige-mori",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()