Relative direct current (DC) breakdown voltages of some fluorination gases [1, 8, 12].
\r\n\t
",isbn:"978-1-83969-561-2",printIsbn:"978-1-83969-560-5",pdfIsbn:"978-1-83969-562-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"65f2a1fef9c804c29b18ef3ac4a35066",bookSignature:"Dr. Luis Loures",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10756.jpg",keywords:"Urban Processes, Urban Patterns, Redevelopment Strategies, Landscape, Land Transformation, Urban Models, Urban Evolution, Urban Organisation, Legislation, Sustainable Development, Green Infrastructure, Regional Planning",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 23rd 2021",dateEndSecondStepPublish:"March 22nd 2021",dateEndThirdStepPublish:"May 21st 2021",dateEndFourthStepPublish:"August 9th 2021",dateEndFifthStepPublish:"October 8th 2021",remainingDaysToSecondStep:"14 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Loures has worked on pioneering research on circular planning applied to post-industrial landscape redevelopment. Since he graduated he has published several peer-reviewed papers at the national and international levels and he has been a guest researcher and lecturer both at Michigan State University (USA) and at the University of Toronto (Canada) where he has developed part of his Ph.D. research with the Financial support from the Portuguese Foundation for Science and Technology (Ph.D. grant).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures",profilePictureURL:"https://mts.intechopen.com/storage/users/108118/images/system/108118.png",biography:"Luís Loures is a Landscape Architect and Agronomic Engineer, Vice-President of the Polytechnic Institute of Portalegre, who holds a Ph.D. in Planning and a Post-Doc in Agronomy. Since he graduated, he has published several peer reviewed papers at the national and international levels and he has been a guest researcher and lecturer both at Michigan State University (USA), and at University of Toronto (Canada) where he has developed part of his Ph.D. research with the Financial support from the Portuguese Foundation for Science and Technology (Ph.D. grant).\nDuring his academic career he had taught in several courses in different Universities around the world, mainly regarding the fields of landscape architecture, urban and environmental planning and sustainability. Currently, he is a researcher both at VALORIZA - Research Centre for Endogenous Resource Valorization – Polytechnic Institute of Portalegre, and the CinTurs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve where he is a researcher on several financed research projects focusing several different investigation domains such as urban planning, landscape reclamation and urban redevelopment, and the use of urban planning as a tool for achieving sustainable development.",institutionString:"Polytechnic Institute of Portalegre",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Polytechnic Institute of Portalegre",institutionURL:null,country:{name:"Portugal"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"61541",title:"Development Prospect of Gas Insulation Based on Environmental Protection",doi:"10.5772/intechopen.77035",slug:"development-prospect-of-gas-insulation-based-on-environmental-protection",body:'Because of its good electrical insulating properties, sulphur hexafluoride (SF6) can satisfy the insulating demands of the electrical apparatus. SF6 is nontoxic and non-combustible, which guarantees the security of its application in the gas insulating apparatus. What is more, the chemical properties of SF6 are stable and it can be compatible with most mental and solid insulating materials. There is little decomposing by-products after discharge or arc, which guarantees the following insulating function and protects apparatus. Nowadays, SF6 has been an important industrial gas with more than 20,000 tons’ produced every year all over the world, and 80% of that is applied as insulating gas in electrical apparatus [1]. With the continuous increase of China’s electrical demand and the expansion of the electrical grid, the demand for insulating gas will continuously increase [2, 3, 4].
Although the characteristics of SF6 can satisfy the requirements as insulation gas in electrical apparatus, such as gas-insulated substations, scientists have recognised that it can influent and aggravate the greenhouse effect in recent years. SF6 is a strong greenhouse gas that will cause serious harm to the environment. The Global Warming Potential GWP of SF6 is 23,900 times stronger than that of CO2 [5], which means that under the computing period of 100 years. Far more serious is that because of the extremely stable chemical properties, it is very hard to decompose SF6 in nature and it can exist for 3200 years in atmosphere [6], which will make the environmental influence and greenhouse effect continuously accumulated.
In the Kyoto Protocol to the United Nations Framework Convention on Climate Change signed in 1997 in Kyoto of Japan [2], SF6 was regarded as one of the six-kinds of greenhouse gas (CO2,CH4,N2O,PFC,HFC and SF6) and it demanded that developed countries should stop and reduce the total emission of greenhouse gas. With signing the Paris Agreement [3], international society are making efforts to reduce carbon emissions, which means that the application of SF6 in industry will be limited more and more [4, 5, 7]. Therefore, researching new method of gas insulating to replace SF6 becomes an urgent work.
It is important to look for environmentally insulating gas with similar insulating characteristics and physicochemical properties of SF6 to replace SF6. SF6 belongs to inorganic fluorinated gases, and its molecular geometry is octahedron with six-fluorine (F) atoms in outer surface and one sulphur (S) atom in centre. Because of fluorine belongs to the halogens, its peripheral electronic layer is occupied by seven electrons and can become stable structure with one more electron, which allows it to strongly attract electron. Moreover, in the molecule of SF6, F atoms and S atom form more stable covalent bonds by sharing electrons. However, F atoms also have the trend to attract electrons so that the entire molecule has a trend to attract electron. Therefore, it has better insulating characteristics than other gaseous molecular without electronegativity. In addition, although the gas characteristics showed by the structure of macro element cannot show the insulation strength of gas exactly, even counterexample existing, researchers have attached importance to that and the researching emphasis of alternative gas is concentrated on the halogenated gas [8]. In 1997, the research report about the insulation characteristics and arc quenching of alternative gas of SF6 written by the National Bureau of Standards of the U.S.A [9] introduced many potential alternative gases. Besides, in this work was studied the breakdown voltage under direct current (DC) uniform field of gases, such as organic fluorinated ones, compared with SF6, and this comparison is shown in Table 1. The result of the report shows that most fluorinated gases have good electronic adsorption, which it is related to the addition of fluorine, but not all the organic fluorinated gases have good insulation characteristics. Besides, it is not correct to evaluate the insulation characteristics just based on the elements that constitute a gas, so it is necessary to analyse different gases in detail for comparison. Because the physicochemical properties of octafluorocyclobutane (c-C4F8) are close to SF6, its cost is low and Greenhouse Warming Potential (GWP) is lower than SF6, the report has specially indicated that c-C4F8 and its mixture can be the study subject for long time [10], so that researchers are focused on the study of this gas.
Gas | Relative breakdown voltage | Remarks |
---|---|---|
SF6 | 1 | As reference of gas Relative breakdown voltage is 1 |
C3F8 | 0.90 | With strong absorption to free electron, especially low-power free electron |
c-C4F8 | About 1.35 | |
2-C4F8 | About 1.75 | |
1,3-C4F6 | About 1.50 | |
Hexafluorobutadiene (2-C4F6) | About 2.3 | |
CHF3 | 0.27 | With weaker absorption to free electron |
CF4 | 0.39 |
Besides c-C4F8, organic halogenated gas, trifluoroiodomethane (CF3I), contains fluorine (F) and iodine (I) has been concentrated by researchers for its much lower GWP and better insulation characteristics. At the same time, ALSTOM company in France and 3M company in US produce an electrical insulation gas mixtures together, named G3, whose main ingredient is heptafluorobutyronitrile (C4F7N), a kind of fluorinated nitrile with Novec 4710 as trade name [11]. Besides, ABB company produces electrical insulation gas mixtures whose main ingredient is fluorinated ketone such as Heptafluoropropyl trifluorovinyl ether (C5F10O) and Undecafluorohexanoyl Fluoride (C6F12O). Properties of some potential alternative gases to SF6 are shown in Table 2.
Gas | Physicochemical properties | Environmental characteristics | Electrical characteristics | ||
---|---|---|---|---|---|
Toxicity | Boiling point (unit: °C) | Relative GWP | Relative insulation characteristics [15] | Relative rising rate of recovery voltage (RRRV) characteristics | |
SF6 | Nontoxic | −64 | 1 | 1.00 | 1.00 |
CF3I | Low-toxicity | −22.5 | ≈0 | 1.20 | 0.90 |
c-C4F8 | Nontoxic | −6 | 0.3 | 1.30 | — |
g3(C4F7N/CO2) | Low-toxicity | 24 (Pure) | 0.02 | 0.85–1 | — |
C5F10O/air | Nontoxic | 26.9 (Pure) | ≈0 | 0.75–0.85 | — |
Hexafluoropropylene (C3F6) | Toxic | −29.6 | ≈0 | 1.01 | — |
Fluorinated 1,3-butadiene (C4F6) | Toxic | 6~7 | ≈0 | 1.4 | — |
Fluorinated 2-butyne (C4F6) | Toxic | −25 | ≈0 | 1.7 | — |
Fluorinated 2-butene (C4F8) | Toxic | 1.2 | — | 1.8 |
Octafluorocyclobutane, c-C4F8 is an important industrial gas. Nowadays, it is used in plasma etching technology or as refrigerant [16]. Similar to SF6 gas, the performance to absorb electron easily of fluorine in c-C4F8 is shown in the characteristics of the whole molecule, so that c-C4F8 has a stronger absorption to free electron. c-C4F8 is colourless, odourless, nontoxic to human bodies at low concentration, non-combustible, nonexplosive and with GWP of about 8700 relative to CO2. Though it belongs to greenhouse, but in the same conditions, its negative effects are just one third of SF6 [17]. In addition, as organic halogenated gas, c-C4F8 does not contain chlorine or bromine, so it is not harmful to the ozone layer. The molecule of c-C4F8 is circular with a stable chemical structure and does no harm to other solid materials in electrical apparatus, such as aluminium alloy, copper contact and epoxy supporting insulators. Recently, the price of c-C4F8 differs with the purity of gas. The price of this gas with 99.9% purity is about 200 RMB/kg [8] (1 RMB ≈ 0.16 dollar≈0.13 euro, the same below), as the price of gas with 99.999% purity is about 500 RMB/kg, and that has obviously reduced compared with the price of about thousand RMB per kilogramme 10 years ago. This is related to more applications, such as refrigerant [18], that are using c-C4F8 and the rise of production. Nowadays, the price of c-C4F8 is only a little bit higher than that of SF6, but if c-C4F8 is applied widely in electrical domain, its price still can be reduced, so the cost is not the obstacle to be applied in electrical apparatus.
Long before, Japanese researchers began to research the electrical properties of c-C4F8 and indicated that it had the feasibility to replace SF6 in electrical apparatus. Then, the researchers of plasma and electric-related domains from the U.S.A. and Mexico began to use Boltzmann equation, calculation of parameter of discharge particle and breakdown test to research the insulation characteristics of c-C4F8. Shanghai Jiao Tong University, Xi’an Jiao Tong University and other high schools in China began the researches about calculation of academic simulation and breakdown test of c-C4F8. The results of researches have shown that the insulation characteristics of pure c-C4F8 are better than SF6, in air pressure at 0.3 MPa and over. The breakdown voltage of the gas mixtures of c-C4F8 and N2 or CO2 is higher than the gas mixtures of SF6 with the same contents, and in low air pressure or atmospheric pressure, the breakdown voltage of the gas mixtures of c-C4F8 can approach the gas mixtures of SF6 with the same contents. In conclusion, c-C4F8 and its gas mixtures have similar insulation characteristics with SF6, and the breakdown voltage differs a little with the composition, mixture ratio and gas pressure, so it can satisfy the demands of actual application.
The relative molecular mass of c-C4F8 is 200, higher than that of SF6 (146.06), and it means that the condensing temperature of c-C4F8 will be high, is about −6°C, higher than −63.6°C of SF6. The insulating gas should exist in gaseous state in the electrical apparatus, thus need to have a low enough liquefaction temperature. One way to reduce its liquefaction point is to add some buffer gas including nitrogen (N2) or carbon dioxide (CO2), which may lead to a weaker insulation strength. So we need to take a balance between the low liquefaction temperature and good insulation property when considering the mixture ratio for c-C4F8gas mixtures. Therefore, c-C4F8 is not suited to be applied in apparatus as pure gas, or it cannot satisfy the demand of arctic alpine regions. Thus, it should be mixed with other gas in some ratios to reduce the condensing temperature of the gas mixtures and be used as gas mixtures.
Trifluoroiodomethane (CF3I) is colourless, odourless, non-combustible and nonexplosive. CF3I is a new industrial gas that can be used as an environmental refrigerant and alternative fire-extinguishing agent. It can be used as additive or mixed composition to replace traditional refrigerant Freon and fire-extinguishing material “Halon.” Because its GWP is very low, about 1–5 relative to CO2 is much lower than most organic halogenated gases, so its influence on greenhouse is very small. At the same time, it does not contain chlorine and bromine that is commonly present in most refrigerants, so it will not damage the ozone layer, thus the United Nations regards it as new refrigerant to replace Freon [19]. This can prove that CF3I is a kind of environmentally friendly gas, and has related basis in industrial application. As a kind of fire-extinguishing material, its efficiency is outstanding and has little negative influence on environment, and it is well compatible with normal industrial materials, so that it will not cause chemical reaction or erosion. Therefore, it has passed some related standards of the U.S.A [20]. and can be used in aerospace and other areas. In addition, it can rise the security of the electrical apparatus by applying CF3I in electrical apparatus such as cubicle gas insulating switchgear (C-GIS) or compact transformer. It is especially appropriate to be used in populous regions of central city in order to reduce the conflagration or explosion caused by the bug of electrical apparatus. The molecular structure of CF3I is shown in Figure 1 RMB. It is affected by halogens such as F and I, so it has strong absorption to free electron. So that it can absorb free electron at the beginning of discharge when electron avalanche forms, and then it can restrain the formation of collision ionisation, which enhances its insulation property. What is worthy to indicate, that the difference between CF3I and SF6, as well as c-C4F8, comes from the asymmetry of its structure, which makes the polarity effect of the molecule stronger. The three-F atoms in the molecule has stronger absorption to electron than I atom, so the electron cloud in the molecule trends to F atoms, and the density of the electron cloud around the carbon-iodine covalent bond formed by I atom and carbon (C) atom is reduced, and the energy barrier to absorb electron is also reduced. Therefore, the whole molecule has a strong ability to absorb electron.
Molecule structure of CF3I.
Because of CF3I is a new industrial gas, its application in China is not widely extended, the production in China is low. Currently, CF3I produced in China costs about 2000 RMB/kg, the price is much higher than SF6 [1]. The main reason why the price of CF3I in China is higher than that for SF6 [1] is that the demand is very low. According to the producers of CF3I (Beijing Yuji Science & Technology Co., Ltd.), after CF3I will be used widely and will be mass-produced, the constant cost of CF3I will reduce a lot with the actual cost lower than 600 RMB/kg. Moreover, by optimising and upgrading, its price will be reduced continuously like that for c-C4F8.
Since year 2000, many researchers in China and abroad begin to research this new insulating gas [21, 22]. Researchers of plasma from Mexico have calculated and measured the ionisation coefficient, attachment coefficient and electron drift velocity during the process of discharge of CF3I and its gas mixtures with N2, SF6 and other gases [23, 24]. The aforementioned work has quantified the reaction between free electron and gas molecule during the process of discharge, and has analysed the insulation strength of gas mixtures from the perspective of the parameters of discharge. Tokyo University of Japan, Tokyo Denki University and Japan Electric Power Company have researched CF3I by testing [25, 26]. They make the breakdown test to CF3I and its gas mixtures with N2, CO2 and air by using lighting impulse. The results show that the insulation strength of pure CF3I is better than that in SF6, about 1.2 times than SF6, and CF3I-CO2 gas mixtures with high content also has better insulation characteristics to be able to replace SF6. Many universities and academies in Europe also research the gas mixtures of CF3I-CO2 and CF3I-N2 in different conditions [24]. The results show that the positive synergistic effect of the gas mixtures of CF3I and N2 is less obvious than that of the gas mixtures of SF6 and N2, which means that in the same mixture ratio, the insulation strength of the gas mixtures of CF3I-CO2 cannot increase with the rising content of CF3I because of the synergistic effect [22]. In addition, the gas mixtures of CF3I and CO2 with low content show better positive synergistic effect. Shanghai Jiao Tong University, Xi’an Jiao Tong University and Chongqing University in China has researched CF3I and its gas mixtures by academic calculation and testing research [27, 28, 29]. Shanghai Jiao Tong University uses Boltzmann’s equation to calculate and analyse the discharge parameters and insulation characteristics of the gas mixtures of CF3I and N2, CO2, He and so on and get the alternating current (AC) breakdown voltage in non-uniform electric field and slightly non-uniform electric field by testing [28, 30]. Other researchers have measured partial discharge voltage and other insulation characteristics of the gas mixtures of CF3I [31, 32]. The results show that CF3I has good electrical insulation characteristics, but the positive synergistic effect of the mixture of CF3I and normal buffering gas is not obvious, so that the insulation characteristics of its gas mixtures are lower than SF6. Therefore, the research about the synergistic effect of CF3I and other gas is the key to be applied in the future.
ALSTOM company in France and 3M company in U.S.A. have joined to research the alternative to SF6 gas. Among many organic fluorinated gases, they choose the gas, which is also alternative refrigerant, and organic chemical compound that contains four-C atoms and seven-F atoms, with a trade name of Novec 4710 [11] and chemical formula of C4F7N, named G3. Besides, its molecular structure is shown in Figure 2. The gas has replaced a fluorine atom with nitrile group (▬C☰N) on the basis of the fluorinated hydrocarbon gas, and becomes fluorinated nitrile gas. This nitrile group containing carbon-nitrogen triple bond has a special chemical structure to make C4F7N have very good insulation performance, which can reach about two-times of that of SF6. The chemical features of this gas are similar to the organic fluorinated gas with stable chemical characteristics and can be well compatible with other materials used in electrical assets. The relative molecular mass of C4F7N is 195, with a high condensing temperature of −4.7°C, so that it cannot replace SF6 as a single gas, it should become gas mixtures with buffering gas such as N2 or CO2. Because of it is a new insulating gas, related testing research is lacking. According to research result obtained by now, the insulation characteristics of its gas mixtures with CO2 is about 90% of the SF6 mixtures with the same amount of CO2, and this gas can also be used as arc quenching medium being applied in circuit-breakers [33]. Nowadays, this gas is researched and produced by 3M company and its cost is dozens of times higher than other gases [33], so the cost is one of the obstacles for its industrial application. With the accomplishment of the production technology of the gas and the development of the producers at home, the price could be reduced.
Molecule structure of C4F7N.
The gas with the chemical formula of C4F7N has two-isomeric compounds, their chemical formulas and element compositions are the same, but for the different positions of nitrile groups, their molecular structures and microcosmic natures are different. For Novec 4710 gas used in G3 gas, its nitrile group is located in the carbon atom in the middle of the organic carbon-chain, and the other isomeric compound has a nitrile group located in the carbon atom at one end of the carbon-chain, which constitute a virulent gas that cannot be used in industry. In addition, during the production of Novec 4710, by avoiding the production and the mixture of the virulent isomeric compound is key to apply this gas in a real environment. What is more, any gas will be decompounded to produce decomposed by-products in the condition of high temperature and pressure during the discharge process. Moreover, it should be continuously researched about how to guarantee that this gas will not produce toxic isomeric compounds or other gases during the process of discharge or arc interruption.
ABB company in Switzerland has supported a method for evaluating the greenhouse effect of SF6 [34, 35], and it is to take advantage of fluorinated ketone gas as the main ingredient of gas mixtures, which contains organic fluorinated gas with carbonyl group (C〓O) such as C5F10O and C6F12O. This kind of gas is similar to fluorinated nitrile gas. It is a chemical compound, which uses the carbonyl group to replace one F atom of fluorinated hydrocarbon based on fluorinated hydrocarbon. Because of carbonyl group has carbon-oxide double bond, which is unsaturated bond as the same as the carbon-nitrogen triple bond, it has good absorption to free electron, and it shows higher insulation characteristics in macro-performance [36]. According to the existing testing data in China and abroad, the insulation characteristics of pure C5F10O and C6F12O are about two-times higher than SF6 and their GWP value approaches zero, physicochemical properties are stable and they have good compatibility with materials and industrial applicability. The fluorinated carbonyl, which ABB has applied in the gas mixtures has more than five-carbon atoms, so its relative molecular mass is bigger than other insulating gases, such as C5F10O with 266 and C6F12O with 316. Besides,the condensing temperature of C5F10O and C6F12O is very high with 24 and 49°C at room condition, which means that they are liquid at normal temperature and gas pressure. Therefore, this gas cannot be used in any electrical insulating domains as single gas, and it can only be applied as gas mixtures. Limited by its high-condensing temperature, it will have low content in the gas mixtures, which causes the limitation of the insulation strength of the whole gas mixtures, so the synergistic effect of this gas and other gas mixtures is very important. Therefore, the use of this kind of gas forming gas mixtures, which allows it keep high insulation characteristics at low concentrations, is the emphasis of research in the future.
The breakdown voltage under AC voltage of the gas mixtures with a constant content of 10% of c-C4F8 and different content of N2 and CO2 has been measured by testing. Figures 3 and 4 show the variety of the AC-breakdown voltage and maximum electric strength of the c-C4F8, N2, CO2 gas mixtures with the variety of gap distance under different air pressure. The gas discharge test chamber and other internal structure are the same with that in Ref. [37]. The method to inflate gas mixtures to test chamber is introduced in Ref. [17]. The gases tested in the present paper are listed in Table 3.
AC-breakdown voltage of c-C4F8, N2, CO2 gas mixtures with different gas pressures.
Maximum electric strength of c-C4F8, N2, CO2 gas mixtures with different gas pressures.
Number | c-C4F8/CF3I mixing ratio (%) | N2 mixing ratio (%) | CO2 mixing ratio (%) |
---|---|---|---|
1 | 10 | 90 | 0 |
2 | 10 | 80 | 10 |
3 | 10 | 60 | 30 |
4 | 10 | 45 | 45 |
5 | 10 | 30 | 60 |
6 | 10 | 10 | 80 |
7 | 10 | 0 | 90 |
Test gas mixtures for power frequency AC breakdown experiments.
From Figures 3 and 4, it can be observed that the behaviour of c-C4F8 mixtures is similar to the SF6 gas mixtures, the AC-breakdown voltage of the c-C4F8, N2, CO2 gas mixtures gets higher values as the gap distance gets bigger, and it shows saturation effect. The maximum electric strength of the gas mixtures gets lower values as the gap distance gets bigger, and it shows that the gas mixtures has some sensitivity to the non-uniformity of the electric field. As the non-uniformity of the electric field increases, the maximum electric field able to be tolerated reduces, and the trend of change is similar to SF6, N2 and CO2 in Appendix Figures A1 and A2.
Figure 5 shows that under different gap distances, the variety of the AC-breakdown voltage of the c-C4F8, N2, CO2 gas mixtures as the gas pressure changes. The AC-breakdown voltage of c-C4F8 gas mixtures increases linearly as the air pressure increases without hump effect, and this trend is the same to SF6 gas mixtures. From Figures 3–5, we can see that the variety of the breakdown voltage of the c-C4F8 gas mixtures with the same content as the air pressure and the electrodes gap changes is the same to SF6 gas mixtures. However, the curves of breakdown voltage of c-C4F8 gas mixtures with different contents in the graphs are more concentrated than SF6. That is to say, the breakdown voltages of gas mixtures have little difference with different contents, at the same time, it shows that the breakdown voltage of the gas mixtures of c-C4F8 and CO2 is the highest and the gas mixtures with N2 is lower, this is different from the properties of SF6 gas mixtures. When the gap distance is 20 mm, the AC-breakdown voltage of 10%c-C4F8+90%CO2 is about 10% higher than that of 10%c-C4F8+90%N2.
AC-breakdown voltage of c-C4F8, N2, CO2 gas mixtures with different electrodes gap distances.
Figure 6 shows under different gas pressures, the variety of the AC-breakdown voltage of the c-C4F8, N2, CO2 gas mixtures as the content changes. If it is make the gas mixtures of 10%c-C4F8 + 90%N2 as the initial matched group, it can be seen that the breakdown voltage of the gas mixtures increases as the content of CO2 increases, and when the content of CO2 exceeds 60%. In other words, with a content of N2 lower than 30%, the increase of the breakdown voltage is more noticeable.
Relationship between AC-breakdown voltage and mixing contents of c-C4F8, N2, CO2 gas mixtures.
Because of during the process of discharge, N2 will make the ionisation probability of CO2 increase as well, when reducing N2 and increasing CO2 of the c-C4F8 gas mixtures, the breakdown voltage of the triple gas mixtures in Figure 6 does not has an obvious increase immediately, and even it has a trend to reduce a little. Only after the content of N2 is lower than 30% and the content of CO2 is higher than 60%, the breakdown voltage can increase significantly.
To CF3I, it has been measured the breakdown characteristics for a constant content of 10% CF3I and with different concentrations of N2 and CO2 under AC-voltage applied during the tests. The test method and experiment setup are similar to that in Section 2. The gas mixtures and mixing ratio are listed in Table 1. Figures 7 and 8 show that under different air pressures, the variety of the AC-breakdown voltage applied and the maximum electric strength of the CF3I, N2, CO2 gas mixtures as the gap changes. From Figure 7, it can be seen that the breakdown voltage of CF3I gas mixtures gets higher as the electrodes gap gets bigger, but curves of different gas mixtures are more approached even closer compared with SF6 and c-C4F8. The breakdown voltage of CF3I gas mixtures has little difference with different contents of N2 and CO2. Moreover, N2, which has better insulation strength, does not perform better than CO2 when it is mixed with CF3I. In Figure 8, the maximum electric strength of CF3I gas mixtures has a trend to reduce as the electrodes gap increases, but the curves are smoother than c-C4F8, which shows that the sensitivity to the electric non-uniformity of CF3I is lower than c-C4F8.
AC-breakdown voltage of CF3I, N2, CO2 gas mixtures with different gas pressures.
Maximum electric strength of CF3I, N2, CO2 gas mixtures with different gas pressures.
Figure 9 shows, under different gaps of electrode, the variety of the AC-breakdown voltage for CF3I, N2, CO2 gas mixtures as the gas pressure changes. Similar to the gas mixtures of SF6 and c-C4F8, the AC-breakdown voltage increases linearly as the air pressure increases, and without hump effect or trend of saturation. Curves in Figure 9 are similar to these in Figure 7, the superposition of the curves of gas mixtures with different contents is very high and the performed insulation characteristics are little different.
AC-breakdown voltage of CF3I, N2, CO2 gas mixtures with different electrodes gap distances.
Figure 10 shows that under different gas pressures, the curves of the variety of the AC-breakdown voltage for CF3I, N2, CO2 gas mixtures changes as the content changes. Generally, with the same mixing ratio of CF3I, the breakdown strength becomes stronger with the increasing ratio of CO2. The same as the judge of the foregoing, the change of the gas mixtures of CF3I is not obvious as the contents of N2 and CO2 change. What is worthy to be concentrated, it is that N2 has higher insulation strength than CO2, but it does not perform in the CF3I gas mixtures.
Relationship between AC-breakdown voltage and mixing contents of CF3I, N2, CO2 gas mixtures.
AC-breakdown characteristics of C4F7CN mixed with CO2 are tested for different concentrations. Figure 11 shows that AC-breakdown voltage of C3F7CN/CO2 gas mixtures varies as the mixture ratio changes between 0 and 10% under different air pressures. Under the same gas pressure, as the mixture ratio of C4F7CN k increases, the AC-breakdown voltage of gas mixtures shows the saturated trend to increase. The lower the gas pressure is, the smaller the growth is. It has to be said that the influence of the mixture ratio k on the C3F7CN/CO2 gas mixtures is less under low gas pressure. In addition, under high-gas pressure, increasing the mixture ratio k can increase the insulation properties of the gas mixtures. When the proportion of C3F7CN increases to 20%, the insulation properties of C3F7CN/CO2 gas mixtures can approach that of pure SF6 under the same condition.
Relationship between power frequency breakdown voltage and mixture ratio of C3F7CN/CO2.
Figures 12 and 13 show the testing curves of the positive lightning impulse voltage of gas mixtures of 10% c-C4F8 with N2 and CO2. The positive lightning impulse voltage increases as the electrodes gap increases without the performance of the trend to saturation in SF6 gas mixtures, and the breakdown voltage increases nearly linearly as the air pressure increases. From the perspective of the excitation energy and the ionisation energy of the microcosmic parameters, c-C4F8 is more appropriate to be mixed with CO2 and the positive lightning impulse breakdown voltage of CO2 is higher than N2. According with Figures 12 and 13, it can be seen that 10%c-C4F8 + 90%CO2 gas mixtures have the highest breakdown voltage and 10%c-C4F8 + 90%N2 gas mixtures have the lowest breakdown voltage.
Positive lightning impulse breakdown voltage of c-C4F8, N2, CO2 gas mixtures with different gas pressures.
Positive lightning impulse breakdown voltage of c-C4F8, N2, CO2 gas mixtures with different electrodes gap distances.
Figure 14 shows the different curves of positive lightning impulse breakdown voltage of the gas mixtures of 10%c-C4F8 with N2 and CO2 as the content of N2 and CO2 changes. Because of CO2 itself has stronger ability to tolerate positive lightning impulse and it will not have obvious ionisation with c-C4F8 compared with N2, the breakdown voltage increases as the content of CO2 in the gas mixtures increases. Because of the high resonance excitation, energy of N2 in the gas mixtures will have negative impact on CO2 when the content of N2 exceeds 30%. The increase of breakdown voltage of the gas mixtures is not obvious, and when the content of N2 is lower than 30%, the positive lightning impulse breakdown voltage shows more obvious trend to increase as the content of CO2 increases. Comparing 10%c-C4F8 + 90%N2 and 10%c-C4F8 + 90%CO2, it is not hard to find that 10%c-C4F8 + 90%CO2 has obviously higher positive lightning impulse breakdown voltage.
Relationship between positive lightning impulse breakdown voltage and mixing contents of c-C4F8, N2, CO2 gas mixtures.
Figures 15 and 16 show the curves of the positive lightning impulse (means that the impulse voltage is applied to sphere electrode, and the plane electrode is connected to ground) breakdown voltage of 10% CF3I with N2 and CO2 of different contents. The positive lightning impulse voltage of CF3I gas mixtures increases with a little saturation as the electrodes gap and air pressure increase. From the difference of breakdown voltages of gas mixtures with different contents and ratios, it can be seen that CF3I has the similar properties with c-C4F8 and it is more appropriate to mix with CO2.
Positive lightning impulse breakdown voltage of CF3I, N2, CO2 gas mixtures with different gas pressures.
Positive lightning impulse breakdown voltage of CF3I, N2, CO2 gas mixtures with different electrodes gap distances.
Figure 17 shows the variation of the positive lightning impulse breakdown voltage of the gas mixtures consisting of 10% CF3I and N2 as well as CO2 as the mixture ratio changes. The curves in Figure 17 have the same change with the c-C4F8 gas mixtures, when the content of N2 is lower than 30%, the excitation energy can weaken the ionisation of CF3I and CO2, and the breakdown voltage of the gas mixtures increases obviously and this is the same with the changing trend of c-C4F8 gas mixtures.
Relationship between positive lightning impulse breakdown voltage and mixing contents of CF3I, N2, CO2 gas mixtures.
1. In the consideration of insulation strength, c-C4F8 gas mixtures with N2, CO2 is prior than current SF6/N2 gas mixtures and pure SF6. Moreover, c-C4F8 gas mixtures can solves the problem of c-C4F8 gas tending to liquefaction and carbon decomposition. Traditional c-GIS is widely used in the range of middle voltage, mainly in electric power substation and among consumers. Vacuum circuit breaker and grounded switchgear are both installed in a gas cavity shell, which is full with gas at 0.1–0.3MPa. Therefore, c-C4F8 gas mixtures can be applied to the gas switchgear of relative low voltage whose working pressure is low and function is not to break current arc, which can not only guarantee the insulation strength, but also greatly reduce the effect of insulation gas on the environment. Therefore, it has a good potential to substitute SF6 and SF6/N2 as insulation media.
Moreover, for the areas with warm climate, electric apparatus such as transformer and high voltage power transmission wire are promising to use c-C4F8 gas mixtures as insulation media forming gas insulation transformer (GIT), gas insulation line (GIL) and cabinet Gas Insulated Switchgear at middle and low voltage (C-GIS).
2. Above comprehensive of analysis, under the same pressure conditions, the insulating strength of CF3I is higher than that of SF6 while ensuring CF3I not to be liquefied. Compared with compressed air or compressed N2 insulated in C-GIS, CF3I can lower the pressure, in order to reduce the sealing technology and easy to manufacture. The shortcomings of high price also can be relief after mixed with buffer gas. Therefore, using CF3I as insulating gas in C-GIS has better comprehensive performance than that of the present C-GIS.
CF3I and N2 mixed gas can be used as replacement of SF6 gas in the C-GIS at a low pressure, which has bigger advantage on the dielectric strength, liquefaction temperature and cost, especially in 30% proportion of CF3I in mixed gases, that is the most likely to be feasible.
As environmentally friendly insulation gas, CF3I and its gas mixtures is a hot-topic on the global scope for gas insulating systems. The application of CF3I and its gas mixtures in high-voltage apparatus not only meets the requirements and current trends on environmental protection in the international community, but also is a new direction in the field of electrical insulation.
To sum up, taking into account environmental characteristics, insulating properties and liquefaction temperature, CF3I gas mixtures can be applied prior to C-GIS in the middle, low voltage system as well as GIL, GIT and other electrical devices in high-voltage system.
3. Power-frequency breakdown voltage of C3F7CN/CO2 gas mixtures increases with the increase of mixing ratio from 0 to 10%. The relative dielectric strength of the gas mixtures showed a trend of saturated growth with the increase of mixing ratio, and power-frequency breakdown voltage of C3F7CN/CO2 gas mixtures when C3F7CN is 8% ratio can reach 75% of that of pure SF6 under the same condition. C3F7CN/CO2 gas mixtures have potential of application of substitute for SF6 in the electric power equipment, and the insulation of the other characteristics need further study. A deep insight into the partial discharge properties and corona stabilisation behaviour under strong inhomogeneous fields is needed for a full understanding.
This work is supported by the National Natural Science Foundation of China (Grant No. 51337006).
In spite of tremendous advances in contemporary anaesthetic practice, advances in airway management continue to be of paramount importance to anaesthesiologists. Till some time ago, the cuffed tracheal tube was considered as the gold standard for providing a safe glottic seal [1]. The disadvantages of tracheal intubation, which involves rigid laryngoscopy, are the concomitant hemodynamic responses and damage to the oropharyngeal structures. Postoperative airway morbidity is also a serious concern. This precluded the global utility of the tracheal tube and there was a perceived need for better alternatives [2].
Dr. Archie Brain, a British anaesthesiologist, introduced the laryngeal mask airway (LMA) in 1983 for the first time, designed to be positioned around the laryngeal inlet. LMA is a supraglottic airway (SGA) device with an inflatable cuff forming a low-pressure seal around the laryngeal inlet and permitting ventilation.
Supraglottic Airways (SGAs) have revolutionised the airway management [3]. Besides serving as a rescue device in the difficult airway, and as a conduit for the endotracheal tube insertion, SGAs provide a less invasive and less traumatic means of securing the airway in surgical patients [4, 5].
Careful observations and clinical experience have led to several modifications of the LMA leading to development of newer supraglottic airway devices with better features for airway maintenance [3]. Over a period of time, new airway devices have been added to the anaesthesiologist‘s armamentarium to address specific needs. A wide variety of airway devices are available today which are employed to protect the airway in both elective as well as emergency situations [6].
In 2001, Dr. Archie Brain came up with a modification of the LMA. This device was called the Proseal-Laryngeal mask airway™ (Teleflex®, USA) [7]. This double lumen, double cuff LMA has some clear advantages over its predecessor. The double tube design separated the respiratory and alimentary tracts, providing a safe escape channel for the regurgitated fluids.
Since then, several devices that are able to accommodate nasogastric tubes have been invented. Newer features like better sealing pressures, reduced risk of pulmonary aspiration by stomach contents, single use devices, integrated bite blocks, and the ability to act as conduits for endotracheal tube (ETT) placement have rendered these devices more reliable for routine use. The last decade has seen a rapid rise in the number of clinical studies evaluating these second-generation SGAs.
LMAs are especially useful when mask fit is difficult as in edentulous or bearded patients. It also frees the hands of the anaesthesia care giver.
The LMA may be used in the spontaneously breathing patient with adequate sedation and topical anaesthesia, or the paralysed, anaesthetised patient with assisted mechanical ventilation.
The indications for use of the supraglottic airway devices are expanding. Their routine use in laparoscopic surgeries has almost replaced the endotracheal tubes. Second generation SGAs have proved to provide adequate sealing pressure required to provide adequate ventilation and maintain airway safety [8]. Also, pharyngolaryngeal morbidity (sore throat, dysphagia, dysphonia) are less as compared to endotracheal tube [9, 10].
In today’s era, the number of obese patients undergoing surgeries is increasing. Intubation is known to be more difficult in obese patients [11, 12]. Closed claims analysis shows that obesity, difficult intubation and intubation by inexperienced personnel are risk factors for severe airway injuries and pharyngo-oesophageal perforation [13].
In such cases, SGAs after successful placement can provide better postoperative pulmonary performance if used in very well selected patients. Hence, SGAs may be a simple alternative to intubation in short-term elective surgery in obese patients, as suggested by some randomised controlled trials (RCTs) [14]. These maybe used as conduits for tracheal intubation in obese patients with failed laryngoscopy and expected/unexpected difficult airways [15].
Maternal morbidity from failed intubation and aspiration remains the biggest concern with general anaesthesia. SGAs can be lifesaving in caesarean deliveries where scenarios of cannot ventilate and cannot intubate is faced. Second generation SGAs have become the gadget of choice in such scenarios [16, 17, 18].
Being user-friendly, SGAs are now more commonly used in children. They obviate the use of ETTs and avoid many complications associated with endotracheal intubation [19, 20]. The LMA Classic™ and the LMA Proseal™ have established their safety and efficacy for routine as well as in emergency cases in paediatric patients [21, 22, 23, 24, 25]. The presence of a drain tube, which helps to empty the stomach in the Second-generation SGAs, has removed the fear of distension of the stomach with gas during controlled or spontaneous ventilation, leading to impairment of respiration, especially in a smaller child.
Surgery performed in the prone position require significant OT time and necessitate additional manpower for proper positioning of the patient. Induction and device placement in the prone position avoids the displacement of OT personnel from other tasks as significantly less number of people is required in shifting the patient. Anaesthetic induction of the patient and SGA insertion can be done in prone position, unlike endotracheal intubation. A large cohort study included 1000 patients undergoing surgery under general anaesthesia in prone position where SGAs were safely used to secure the airway [26].
SGAs can be used as a conduit for blind and fiberoptic-guided intubation for rescue of failed direct laryngoscopy or failed intubation [27, 28, 29]. After inserting the LMA, a well lubricated ETT with deflated cuff is passed over the fiberscope. The fiberscope is then advanced through the LMA. The ETT is advanced around 1.5 cm past the mask aperture. The tip of the ETT lifts the fiberscope away from the bowl of the mask and exposes the glottis. The fiberoptic scope is then advanced up to the distal end of the tracheal tube. The ETT is advanced until the glottis is brought into view and then further advanced into the trachea.
A specific advantage of using an SGA is the ability to continue ventilating and anaesthetising the patient through the SGA until formal tracheal intubation is achieved. The Aintree catheter, a modification of the Cook’s airway exchanger may be used to intubate through the SGA. It is loaded over a fiberoptic bronchoscope (FOB) and the trachea is visualised through the SGA [30, 31]. Leaving the Aintree catheter in place, the SGA is then removed. The ETT is then loaded over the catheter and advanced into the trachea.
The difficult airway algorithm made by the American Society of Anesthesiologists (ASA) has a prominent place for the use of SGAs in airway rescue [32]. The Difficult Airway Society (DAS) 2015 guidelines suggests the use of SGAs as first line rescue airway for management of a failed intubation [33]. Several case reports support the use of SGAs for supporting ventilation in difficult airways with failed intubation [34, 35, 36, 37]. SGAs also aid successful tracheal intubation in situations in which conventional methods have failed.
Flexible bronchoscopies comprise the major airway procedures performed including bronchoalveolar lavage, transbronchial biopsies, and foreign body removal [38]. LMA use during paediatric bronchscopies is associated with ease of insertion during general anaesthesia with spontaneous or assisted ventilation, as well as a net decrease in procedure time.
Certain patients who cannot tolerate the procedure with conscious sedation (i.e., excessive gag response or discomfort) may require general anaesthesia. An LMA is an ideal device in such a scenario.
Percutaneous tracheostomies are increasingly performed in the critical care setting. It is indicated in patients who are ventilator dependent due to acute illnesses, or if duration of ETT use is expected to exceed 2 weeks [39]. Cattano et al. conducted a study on patients undergoing percutaneous tracheostomy using dilating forceps approach where ETT was replaced by an SGA [40]. They concluded that intubation through SGAs offered a superior view of the trachea without the risk of the bronchoscope or the ETT getting needle punctured.
Since SGAs cause less cough and rise in intracranial or intraocular pressures compared to the ETT, they may be used for smooth emergence from anaesthesia. The device may be placed after removal of the ETT. This is helpful in situations in which airway and hemodynamic reflexes are undesirable.
In the field, securing an airway is of paramount importance. SGAs are lifesaving in the “can’t ventilate, can’t intubate” situation. An SGA can be used for transport until a definitive airway can be obtained [41]. The placement of an SGA is easily mastered by the inexperienced hands with minimal training.
During cardio pulmonary resuscitation (CPR), the first part of the secondary survey includes securing an airway device as soon as possible [42]. SGA use during CPR has increased since SGA insertion is easier to learn than tracheal intubation and feasible with fewer and shorter interruptions in chest compression [43]. Use of SGAs during CPR is associated with a lower incidence of regurgitation of gastric contents than bag-mask ventilation [44].
Patients with risk of gastric aspiration (non-fasted, Gastro Oesophageal Reflux Disease, hiatus hernia)
Patients with airway morbidities (Respiratory tract infections, COPD etc.)
Restricted mouth opening (< 2.5 cm)
Distorted airway anatomy and airway obstruction
Prolonged duration of surgery (>2 hrs)
Surgery involving the upper airway
Maxillo facial trauma
Morbidly obese patients
Regurgitation and aspiration
Misplacement of mask and airway obstruction
Malposition or dislodgement of LMA
Upper airway trauma
Inadequate sealing of airway and leaks
Cough and laryngospasm
Gastric insufflation
Vocal cord palsy and nerve injuries (Lingual nerve, Recurrent Laryngeal Nerve, Hypoglossal Nerve, Glossopharyngeal Nerve)
All LMAs consist of four parts, a hollow tube (shaft) continuous with a hollow mask or cuff, inflation line with pilot balloon and drain (gastric access) tube. The broad elliptical inflatable cuff has a smooth upper surface that prevents pharyngeal secretions from entering the airway and an under surface that sits over the larynx to create a seal.
The patient’s neck is flexed and head is extended (sniffing position) (Figure 1). The LMA is partially deflated and the backside of the LMA is lubricated. The shaft is grasped with the dominant hand like a pen, as near to the mask as possible. The deflated flattened mask is inserted against the hard palate downward into the mouth along the curvature of the back of the pharynx. The index finger follows the tube into the mouth to keep pressing “back” and “down” until the aperture faces the laryngeal inlet. If at any time during insertion the mask fails to stay flattened or starts to fold back, it should be withdrawn and reinserted. Another technique is to allow the dominant hand to guide the shaft and use the nondominant hand to push the tube with or without an introducer [45, 46, 47].
Technique of LMA insertion. (a) The deflated and lubricated LMA is held by the index finger and thumb of right hand. (b) The left hand stabilizes the occiput. LMA is inserted in the mouth pressed against the hard palate. (c) Using the index finger, it is advanced behind the tongue. (d) It is further pushed into the hypopharynx with the index finger. (e) After removing the index figure, the airway tube of the LMA is pushed further inside with the left hand till a resistance is felt.
Proper placement of the airway is prudent. Cuff should be inflated to achieve adequate tidal volumes with minimal leaks. The cuff inflation pressure should never exceed 60 mm Hg. Higher Cuff pressures may lead to increased pharyngeal mucosal pressures which may lead to mucosal ischemia and airway morbidities [48].
Marjot showed that intracuff pressure increased as cuff volume increases [49]. The pressure exerted on the pharynx by the SGA is usually higher than that of mucosal capillary perfusion pressure when the cuff is inflated with the recommended maximum volume of air.
However, if the cuff is deflated excessively, it may not protect the airway from soiling, due to the regurgitated fluid from the stomach [50]. Therefore. it is desirable to inflate the cuff of the SGA with minimum volume of air which provides a seal around the mask.
In case of malpositioning of the mask, it may have to be replaced or other manoeuvres may have to be tried. A partially or fully inflated SGA cuff may ease insertion [8, 9, 10]. Wakeling et al. claim that inserting an SGA with a fully inflated cuff causes less mucosal trauma and leads to fewer airway morbidities. If an assistant is available, he can apply a jaw thrust manoeuvre which moves the tongue forward and prevents compression of the epiglottis [14]. In case of a single operator, a tongue depressor or a laryngoscope may be used to assist insertion of the LMA [15].
Weight-based selection as per the manufacturer’s guideline is done. If unsure, check the package cover for size information. More than one size should always be available, because the correct size cannot always be predicted. Weight-based selection has given way to sex-based selection, especially in adults. The consensus seems to be that the correct size would be a size 4 for most adult women and a size 5 for most adult men [51, 52, 53, 54, 55, 56, 57]. Whatever the initial size selected, if malposition or an inadequate seal is present, a larger size LMA should be considered. Alternative formulas based on weight have been proposed [58, 59]. For children, the width of the second to fourth fingers can be matched to the widest part of the mask [60]. If repeated attempts with one type of LMA are unsuccessful, changing to another type may help.
Wait for full recovery from anaesthesia. Do not try to pull out the SGA if the patient is biting down on the shaft. Usually, patients emerge smoothly with SGAs.
It is recommended to use a bite block with the LMA in order to prevent damage to the airway tube or pilot balloon during emergence. Manufacturers usually recommend using a wad of gauze swabs rolled into a cylindrical shape and placed along the LMA. Some anaesthesiologists prefer to place the Guedel’s airway. The LMA should never be removed if patient is in a light plane of anaesthesia as it may precipitate a laryngospasm.
SGAs have been conventionally classified based on the following characteristics by Miller [61].:
Whether it is inflatable or anatomically pre-shaped
Where in the hypopharynx it provides a seal
Whether or not the sealing effect is directional and
Whether or not oesophageal sealing occurs
In recent years, devices with oesophageal sealing (Second Generation SGAs) have gained popularity due to presence of a gastric port which allows drainage of stomach contents and reduces the incidence of regurgitation and aspiration pneumonitis.
Modern classification of SGAs is given in Table 1.
The airway sealing pressure or the oropharyngeal leak pressure (OLP) is the pressure at which gas leak occurs around the device. It indicates the degree of airway protection. After the successful placement of airway device, OLP can be determined by turning off the ventilator and closing the adjustable pressure limiting valve of the circuit. A fixed gas flow of 3 L/min is started and the pressure allowed to rise.
There are various methods of assessment of OLP [62].:
Audible noise over the patient’s mouth
Auscultation just lateral to the thyroid cartilage for an audible noise
Manometer stability test- The fresh gas flow is set at 3 l/minute of oxygen and the adjustable pressure limiting valve of the circle system is closed. As the pressure from the breathing system increases, the aneroid manometer dial is observed to note airway pressure at which the dial attains stability and no further rise in pressure is seen. A maximum pressure of 40 cm H2O is allowed.
Correct placement of the LMA can be checked by a simple test. A soap bubble solution is placed over the tip of the drain tube. If the tip of the LMA is in the laryngopharynx, bubbling or bursting of soap solution column will occur during positive pressure ventilation.
The original Laryngeal Mask Airway (cLMA, Intavent Direct, Maidenhead, UK) was the first SGAs introduced into clinical practice. It was invented by Dr. Archie Brain in the United Kingdom 1981 and was introduced into clinical practice in 1988.
In 1992 a task force was commissioned by the ASA to establish practice guidelines for management of difficult airway scenarios. In 1993, the ASA published the algorithm for difficult airways. They stressed on an early attempt at LMA insertion in case of inadequate face mask ventilation. cLMA has revolutionised anaesthetic practice ever since [63].
The cLMA consists of the following parts (Figure 2):
Curved airway tube (shaft)
Pilot tube
Elliptical mask
Classic LMA.
The angle between the mask and shaft is 30°. The machine end of the shaft has a standard 15-mm adapter. Two flexible vertical bars at the junction of the shaft and mask prevent obstruction of the ventilating lumen by the epiglottis (Figure 3). Reusable devices are constructed of medical grade silicone designed to provide an oval seal around the laryngeal inlet and act as a sleeve joint at the upper oesophagus. The single use devices have a cuff constructed of polyvinyl-chloride.
Classic LMA in-situ.
The classic laryngeal mask is available in eight sizes, as shown in Table 2.
Oesophageal sealing | Pharyngeal sealer | Perilaryngeal sealers |
---|---|---|
None (1st generation) | VBM Laryngeal Tube (VBM, Germany) | LMA Classic (Teleflex, USA) |
Cobra PLA (Pulmodyne, USA) | LMA Unique (Teleflex, USA) | |
LMA Flexible (Teleflex, USA) | ||
AuraOnce LMA (Ambu, Denmark) | ||
Aura-i LMA (Ambu, Denmark) | ||
Air-Q ILA (Mercury Medical, USA) | ||
Gastric channel (2nd generation) | Combitube (Covidien-Nellcor USA) | LMA ProSeal (Teleflex, USA) |
Rusch Easy Tube (Teleflex, USA) | LMA Supreme (Teleflex, USA) | |
VBM LTS II (VBM, Germany) | LMA Guardian (Teleflex, USA) | |
King LTS-D (Ambu, Denmark) | LMA Protector (Teleflex, USA) | |
AuraGain LMA (Ambu, Denmark) | ||
i-gel (Intersurgical, UK) | ||
Gastric channel + self-energising mechanism of seal | Baska mask (Baska Versatile Laryngeal Mask Pvt. Ltd., Australia) |
Classification of supraglottic airways.
LMA: laryngeal mask airway, ILA: intubating laryngeal airway, LTS: Laryngeal Tube Suction, LTS-D: Laryngeal Tube Suction disposable, PLA: perilaryngeal airway.
Mask size | Patient weight | Maximum cuff volume of air (ml) |
---|---|---|
1 | Neonates/infants up to 5 kg | 4 |
1.5 | Infants 5–10 kg | 7 |
2 | Infants/children 10–20 kg | 10 |
2.5 | Children 20–30 kg | 14 |
3 | Children 30–50 kg | 20 |
4 | Adults 50–70 kg | 30 |
5 | Adults 70–100 kg | 40 |
6 | Large adults over 100 kg | 50 |
Available classic LMAs.
Although the cLMA is used in a large number of cases requiring airway management, it has some limitations
It has a moderate pharyngeal seal (∼20 cm H2O)
It may be associated with pulmonary aspiration of regurgitated fluid
First generation SGAs have only a single lumen for ventilation. There is risk of regurgitation of gastric contents and aspiration with positive pressure ventilation. To combat this risk, a separate channel was incorporated into this design to allow for gastric drainage and provide better seal. Several modifications of the Classic LMA were done and lead to the invention of second-generation SGAs.
A second-generation SGA is one with design features (higher oropharyngeal seal pressures and oesophageal drain tubes) specifically intended to reduce the risk of aspiration [33].
The Proseal LMA™ (Teleflex®, USA) designed by Dr. Archie Brain, is based on the cLMA. It was introduced in the year 2001. In comparison to the cLMA, it has a larger and deeper bowl without aperture bars, second drainage tube placed lateral to the airway tube that ends at the tip of the mask, posterior extension of the mask cuff, integral silicone bite block, and an anterior pocket for seating an introducer or finger during insertion.
The pLMA has four main components (Figure 4):
Mask
Inflation line with pilot balloon.
Airway tube
Drain tube.
Parts of Proseal LMA.
The mask conforms to the contours of the hypopharynx. The mask has a main cuff that seals around the glottic aperture. The rear cuff pushes the mask anteriorly which helps to increase the seal. A pilot balloon with valve is used to inflate or deflate the device.
A drain tube (DT) passes parallel and lateral to the airway tube. It continues to enter the cuff bowl and terminates at the mask tip. Cuff tip lies at the origin of the upper oesophageal sphincter if device is positioned correctly. The wire reinforced airway tube prevents collapse and terminates with a standard 15 mm connector [7]. The pLMA can also be used for FOB guided intubation.
Sizes 3 to 5 were introduced in 2000 and sizes 1½-2½ in 2004. Sizes 1½-2½ have no dorsal cuff. Device properties and recommendations for use are given in Table 3. The pLMA is reusable and recommended product life is 40 sterilisations. Not all protein material can be removed by routine cleaning of laryngeal masks and this raises theoretical concerns over cross-infection risk, hence steam autoclaving is the recommended method of sterilising this device.
Mask size | Patient weight | Maximum cuff volume of air (ml) | Gastric tube size (French) | Largest ETT ID (mm) |
---|---|---|---|---|
1 | Neonates/infants up to 5 kg | 4 | 8 | 3.5 |
1.5 | Infants 5–10 kg | 7 | 10 | 4 |
2 | Infants/children 10–20 kg | 10 | 10 | 4.5 |
2.5 | Children 20–30 kg | 14 | 14 | 5 |
3 | Children 30–50 kg | 20 | 16 | 6 |
4 | Adults 50–70 kg | 30 | 16 | 6 |
5 | Adults 70–100 kg | 40 | 18 | 7 |
Available Proseal LMAs.
The pLMA is accompanied by a cuff deflator (Figure 5) and insertion tool (Figures 6 and 7). The cuff deflator assists complete deflation and flattening the device tip before insertion to improve insertion success.
PLMA cuff deflator.
pLMA with insertion tool.
Insertion tool.
LMA Supreme™(Teleflex®, USA) is a second generation, single use, SGA device which facilitate ease of placement and in-situ airway stability. It forms an effective seal first with the oropharynx (oropharyngeal seal) and a second seal with the upper oesophageal sphincter (the oesophageal seal). This devise is designed incorporating features of a cLMA, pLMA, and LMA Fastrach [64, 65, 66]. SLMA delivers measured oropharyngeal leak pressures up to 37 cm H2 O [67].
The SLMA has following components (Figure 8):
Modified cuff
Elliptical airway tube
Drain tube
Integrated bite block
Inflation line with pilot balloon
Fixation tab
Parts of LMA supreme.
The device is preformed and anatomically shaped. The stiffness of SLMA is intended to guide the airway into the correct position during insertion (Figure 9). This also eliminates the need for placing the clinician’s fingers into the patient’s mouth. Also, rotational mal-positioning of the airway becomes unlikely owing to this feature. The integrated bite block reduces the potential for damage to, or obstruction of the airway tube in the event of biting. The airway also has a fixation tab designed to facilitate easy fixation and improve drain tube position. These improvisations render it suited for inexperienced users in an emergency situation.
LMA supreme in-situ.
Primarily, the SLMA has been recommended for securing airway in routine and emergency surgical procedures. It may also be used to secure an immediate airway when tracheal intubation is precluded by lack of available expertise or equipment, or when attempts at tracheal intubation have failed.
There is increasing evidence that suggests that it may be used for airway rescue in emergency situations and in hostile environments, particularly when tracheal intubation may be challenging or may delay oxygenation [68, 69, 70].
Size 1 to 5 are commercially available (Table 4). A weight-based size selection is suggested by the manufacturer. The cuff is inflated with air as recommended for that specific size. The intra-cuff pressure should never exceed 60 cm H₂O. The cuff should be inflated with just enough air to achieve a seal sufficient to permit ventilation without leaks, if no manometer is available.
Mask size | Patient weight | Maximum cuff volume of air (ml) | Gastric tube size (French) |
---|---|---|---|
1 | Neonates/infants up to 5 kg | 5 | 6 |
1.5 | Infants 5–10 kg | 8 | 6 |
2 | Infants/children 10–20 kg | 12 | 10 |
2.5 | Children 20–30 kg | 20 | 10 |
3 | Children 30–50 kg | 30 | 14 |
4 | Adults 50–70 kg | 45 | 14 |
5 | Adults 70–100 kg | 45 | 14 |
Available supreme LMAs.
Some studies advocate an anatomical-related size selection method. The patient’s thyromental distance is measured by the palm side of patient’s hand. If it is four fingers wide (index, middle, ring and little fingers), they suggest size 4 SLMA; If it is three fingers wide (index, middle, ring fingers), they suggest size 3 SLMA [71].
The Guardian laryngeal mask airway™ (GLMA) (Teleflex®, USA) is a new disposable silicone SGA device. The cuff forms a seal with the glottis for ventilation, and with the hypopharynx for airway protection. The gastric drainage port helps to suction the stomach contents. Also, it has a port for suctioning material from the hypopharynx. The pilot balloon valve with pressure logo indicates visual intracuff pressure (Yellow <40 cmH2O, Green 40–60 cmH2O and Red >60 cmH2O) (Figure 10). A study suggests that it provides sealing pressures as high as 32 cm H2o [72, 73].
LMA guardian.
The LMA-Protector™ (Teleflex®, USA) is a novel SGA made of medical-grade silicone (Figure 11). In comparison to other devices made of polyvinylchloride, it is more flexible and less traumatic. Its fixed, anatomically curved shape is elliptical in cross section and aids easier insertion. It has two separate drain channels. At the machine end, they begin as the male and female suction ports. The channels then enter a chamber behind the cuff bowl. At the patient end, the chamber ends at the tip of the cuff. The device is flexible and stays in place if the patient’s head is mobilised. A built-in bite block reduces the potential for damage to, or obstruction of the airway tube in the event of biting. Additionally, the LMA-Protector™ is available with a pilot balloon or the integrated Cuff Pilot™. The Cuff Pilot™ enables constant visualisation of intracuff pressure inside the mask cuff that provides easier adjustment and is colour coded for inflation pressure [74].
LMA protector cuff pilot.
It is commercially available in size 3, 4 and 5. The manufacturer recommends using a size 4 device for normal adults. After insertion, the device is fixed in place and inflated to the recommended pressure. There should be a minimum of a 1 cm gap between the fixation tab and the patient’s upper lip. The cuff should be inflated with sufficient air to prevent a leak with positive pressure ventilation, but it must not exceed either a pressure of 60 cm H2O or the specific device cuff volume maxima. If no manometer is available, inflate with just enough air to achieve a seal sufficient to permit ventilation without leaks. It provides high first attempt and overall insertion success rate. It helps rapidly achieve effective ventilation with reliable airway seal. Additionally, it acts as a conduit for FOB guided intubation [75, 76].
The AuraGain™ (Ambu®, Denmark) is intended for use as an alternative to a face mask for achieving and maintaining control of the airway during routine and emergency anaesthetic procedures. The gastric channel of AuraGain™ may be used as a conduit for passing a gastric tube into the stomach for removal of air and gastric fluids.
It is intended for use as a conduit for an endotracheal tube in “can’t intubate – can’t ventilate” scenarios. It may also be used to establish a clear airway during resuscitation in profoundly unconscious patients with absent glossopharyngeal and laryngeal reflexes who may need artificial ventilation [77].
The parts of AuraGain are as follows (Figures 12 and 13):
Inflatable Mask
Inflation line with pilot balloon.
Airway tube with integrated bite block
Gastric channel
Ambu AuraGain.
FOB guided intubation.
The mask is designed to conform to the contours of the hypopharynx with its lumen facing the laryngeal opening. When correctly inserted, the distal tip of the cuff rests against the upper oesophageal sphincter. It is anatomically shaped with an integrated bite block.
The AuraGain™ comes in eight different sizes for use in patients of different weight (Table 5). This device is meant to be used only once. Studies suggest that AuraGain™ provides adequate sealing of the airway [78, 79, 80].
Mask size | Patient weight | Maximum cuff volume of air (ml) | Gastric tube size (French) | Largest ETT ID (mm) |
---|---|---|---|---|
1 | Neonates/infants up to 5 kg | 4 | 6 | 3.5 |
1.5 | Infants 5–10 kg | 7 | 8 | 4 |
2 | Infants/children 10–20 kg | 10 | 10 | 5 |
2.5 | Children 20–30 kg | 14 | 10 | 5.5 |
3 | Children 30–50 kg | 20 | 16 | 6.5 |
4 | Adults 50–70 kg | 30 | 16 | 7.5 |
5 | Adults 70–100 kg | 40 | 16 | 8 |
6 | Adults more than 100 kg | 50 | 16 | 8 |
Available Auragain LMAs.
The i-gel® (Intersurgical®, UK) is the innovative second generation supraglottic airway device from Intersurgical launched in 2007. Made from a medical grade thermoplastic elastomer, i-gel has been designed to create a non-inflatable, anatomical seal of the pharyngeal, laryngeal and perilaryngeal structures whilst avoiding compression trauma.
The igel has the following parts (Figure 14):
Soft non-inflatable cuff
Gastric channel
Epiglottic rest
Buccal cavity stabiliser
Airway tube
Gastric tube
Parts of i-gel.
A horizontal line (Adult sizes 3,4 and 5 only) at the middle of the integral bite-block represents the correct position of the teeth. The soft design of the i-gel is able to retain its shape to facilitate ease of insertion. In a known difficult or unexpectedly difficult intubation, for intubating the patient, by passing an ETT through the device under fibre optic guidance.
Size selection is done on a weight basis (Table 6). However, individual anatomical variations should always be considered. Patients with cylindrical necks or wide thyroid/cricoid cartilages may require a larger size i-gel than would normally be recommended on a weight basis [81, 82].
Mask size | Patient weight | Largest ETT ID (mm) | Gastric tube size (French) |
---|---|---|---|
1 | Neonates 2-5 kg | 3 | NA |
1.5 | Infants 5–12 kg | 4 | 10 |
2 | Infants/children 10–25 kg | 5 | 12 |
2.5 | Children 25–35 kg | 5 | 12 |
3 | Children, Small adult 30–60 kg | 6 | 12 |
4 | Adults 50–90 kg | 7 | 12 |
5 | Adults >90 kg | 8 | 14 |
Available i-gel LMAs.
The i-gel can be used in difficult or unanticipated difficult intubations. Owing to its ease of insertion, it can quickly establish and maintain a clear airway in a pre-hospital setting [83, 84]. In a study it was observed that hemodynamic parameters, ease of insertion and postoperative complications were comparable among the i-gel, pLMA and cLMA but airway sealing pressure was significantly higher with i-gel [85].
A modification of this device is the i-gel O2. It contains a supplementary oxygen port for passive oxygen administration. It may be utilised for cardiopulmonary resuscitation. The i-gel O2 Resus Pack is a resuscitation pack provided by the manufacturer. It contains the i-gel O2 LMA, an airway support strap to fix and secure the device in place, a suction tube (12 Fr) and a pack of lubricant. The Resus Pack is available in three adult sizes (3, 4 and 5). The presence of a colour coded hook ring on the LMA allows easy identification of the size during resuscitation.
The Combitube® (Covidien-Nellcor®, Pleaseton, USA) is a single use, double-lumen tube that combines the features of a conventional ETT with those of an oesophageal obturator airway.
The Combitube® has the following parts (Figure 15):
A large proximal balloon cuff seals the hypopharynx
A ventilating, proximal lumen terminates at side ports overlying the laryngeal inlet
A distal lumen and its smaller balloon cuff terminate in and seal the upper oesophagus (in >90% of insertions)
Combitube.
The device commonly enters the oesophagus on insertion. Ventilation is achieved through multiple proximal apertures situated above the distal cuff (Figure 16). Both the proximal and distal cuffs have to be inflated to prevent air from escaping through the oesophagus. If the tube enters the trachea, ventilation is achieved through the distal lumen.
Combitube in-situ.
Combitube® is commercially available in two sizes (Table 7). It has a major advantage over conventional ETT as it can be inserted without head and neck movement, which may be an important consideration in trauma patients [86]. Situations where ETT placement is not immediately possible, it is used for emergency airway control [87]. The Combitube® has been used effectively in cardiopulmonary resuscitation [88, 89]. It has been used successfully in difficult airway situations owing to severe facial burns, trauma, upper airway bleeding and vomiting where there was an inability to visualise the vocal cords [90, 91, 92].
Patient’s height | Combitube size |
---|---|
4 to 6 feet tall | 37 French |
5 feet and above | 41 French |
Available combitube.
The King Laryngeal Tube Suction-D™ (Ambu®, Denmark) is a disposable, double-lumen, supralaryngeal device for airway management introduced in 2005. A single pilot tube can be used to inflate both oropharyngeal and oesophageal soft silicon cuff. A ventilating outlet opens in front of the vocal cords. It is present between these cuffs. It is available in six sizes to fit patients from neonates to large adults.
Parts of the LTS-D (Figures 17 and 18):
Proximal cuff.
Distal cuff
Inflation line with pilot balloon
Ventilation holes
Drain tube
Parts of LTS-D.
LTS-D drain tube.
The Proximal cuff stabilises the device and seals the oropharynx. Distal cuff blocks entry of the oesophagus, reducing the possibility of gastric insufflation. Multiple distal ventilatory openings and bilateral ventilation eyelets facilitate air flow. The device has a curvature of 60 degrees. Sealing pressures of 30 cm H20 or more are achievable.
Size selection is done on a weight basis (Table 8). The slim profile allows easy insertion; thus, it can be considered for airway management in patients with restricted mouth opening. Since insertion is relatively easy and guarantees a clear airway in most patients on the first attempt extensive training is not necessary [93].
Size | Patient weight | Maximum cuff volume of air (ml) | Colour of Connector |
---|---|---|---|
0 | Neonates<6 kg | 15 | TRANSPARENT |
1 | Infants 6–15 kg | 40 | WHITE |
2 | Children 15–30 kg | 60 | GREEN |
3 | Small Adult 30–60 kg | 120 | YELLOW |
4 | Medium Adult50–90 kg | 130 | RED |
5 | Large Adults >90 kg | 150 | VIOLET |
Available LTS-D tubes.
It can be used during spontaneous or controlled ventilation. The LTS-D has been recommended as an emergency device to be used in cases of difficult intubation and cannot intubate, cannot ventilate situations while one is preparing to perform a surgical airway [94, 95, 96]. A modification of this device, the Intubating Laryngeal Tube Suction-D(iLTS-D™) is a novel device which may also be used as a conduit for intubation.
The Baska Mask® (Baska Versatile Laryngeal Mask Pty Ltd., Australia) has been designed by Australian anesthesists, Kanag and Meenakshi Baska. It obviates the need of an orogastric tube and replaces this with a sump and two drains. It brings together features of PLMA, SLMA, SLIPA and i-gel. The biggest advantage of Baska mask lies in the fact that cuff deflation or inflation is not required prior to insertion [97].
Parts of the Baska mask® (Figures 19 and 20):
Self-sealing variable pressure cuff
Insertion tab
Integrated bite block
Airway tube
Suction attachment
Sump area
Baska mask-anterior.
Baska mask-posterior.
It is made of medical grade silicone. It differs in several ways from the conventional LMA, including; a cuff-less self-sealing membranous bowl which inflates and deflates with each positive pressure inspiration and expiration respectively, an inbuilt “tab” that permits to increase its angulation for easy negotiation of the oropharyngeal curve during placement, a bite block. It has a dual high flow suction drainage system. The distal aperture at oesophageal end is aspirated using two vents running along the entire length of the stem. One tube is connected to high pressure suction whereas the other is left open.
Size selection is given below (Table 9). Zundert et al. in their study concluded that Baska mask® improves safety when used in both intermittent positive pressure ventilation (IPPV) and spontaneous breathing [98]. Another study found its safety profile comparable to i-gel [99].
Mask size | Patient | Colour coded connector |
---|---|---|
1 | Neonates | PURPLE |
1.5 | Infants 1–2 yrs | ORANGE |
2 | Children 2-5 yrs | DARK BLUE |
2.5 | Large child or small female | WHITE |
3 | Large female or small man | GREEN |
4 | Average adult man | YELLOW |
5 | Large man | RED |
Available Baska LMAs.
The Air-Q® Blocker™ ILA (Cookgas® LLC, Mercury Medical, USA) was introduced by Daniel Cook in 2005. It is a disposable, anatomically shaped device ideal for use in pre-hospital and critical care settings.
Parts of the Air-Q® Blocker™ ILA (Figure 21):
Inflatable cuff with elevation ramp
Built up mask heel
Airway tube
Integrated bite block
Blocker Channel
Thethered Colour Coded connector
Air-Q blocker.
The Air-Q® Blocker™ airway outlet is keyhole-shaped. The anatomical shape facilitates ease of insertion. The soft blocker channel accepts naso-gastric tube to suction stomach contents. Alternatively, a blocker tube may be inserted through the blocker channel and helps to suction the pharynx or suction and block the upper oesophagus. The tethered colour coded connector avoids misplacements. In a known difficult or unexpectedly difficult intubation, it may be used as a conduit for intubation. The elevation ramp directs ETT midline and upward toward the laryngeal inlet. The Air-Q Removal Stylet helps easily remove the Air-Q® Blocker™ after intubation without ETT dislodgement.
Size selection is done on a weight basis (Table 10). It is available in three sizes. Device placement is easy and offers less resistance. The major advantage of the device design is that conventional PVC endotracheal tube can be passed through it without the use of conventional laryngoscope. It is useful in delivery of anaesthesia, resuscitation, critical care and difficult airway management in and out of hospital. It has a self-pressurising cuff which inflates to adequate pressure during positive pressure ventilation. This prevents airway trauma and morbidity associated with excessive cuff inflation [100].
Mask size | Patient ideal body weight(kg) | Internal cuff volume (ml) | Cuff inflation volume (ml) | Largest ETT ID (mm) |
---|---|---|---|---|
2.5 | 30–50 | 12 | 2–3 | 6.5 |
3.5 | 50–70 | 18 | 3–4 | 7.5 |
4.5 | 70–100 | 25 | 4–5 | 8.5 |
Available air-Q blocker LMAs.
The LMA® Gastro™ Airway with Cuff Pilot™ Technology (Teleflex®, USA) is the first SGA designed to enable active management of the airway while facilitating direct endoscopic access via the integrated endoscope channel. It is a soft, disposable, anatomically shaped device made up of silicone.
Parts of the LMA® Gastro™ Airway (Figure 22):
Inflatable cuff
Gastric drain tube or Endoscope channel
Silicone airway tube
Integrated bite block
Adjustable holder and strap
Cuff pilot
Gastro LMA.
Being anatomically shaped, it conforms to the patients’s airway creating a better seal. Cuff Pilot™ Technology prevents cuff over inflation and reduces airway morbidity. The gastric channel provides as a conduit for passage of gastro-duodenoscope.
Size selection is done on a weight basis (Table 11). It is available in three sizes. Moderate to deep sedation if often required for endoscopic procedures. This can lead to hypoxemia and warrants the need of rescue airway. LMA® Gastro™ can be successfully employed as a primary airway technique for such procedures [101].
Mask size | Patient weight (kg) | Maximum intracuff pressure (cm H2O) | Maximum endoscope size (mm) |
---|---|---|---|
3 | 30–50 | 60 | 14 |
4 | 50–70 | 60 | 14 |
5 | 70–100 | 60 | 14 |
Available gastro LMAs.
The first clinically useful SGA was introduced more than 3 decades ago.
The clinical utility of various SGAs has significantly increased over this period. Different designs have specific advantages in different clinical scenarios. Insertion is easy to learn, and with adequate training nonphysicians are capable of securing an airway.
The use of SGAs for expanded indications has been described in many ways. The expanded spectrum of indications including airway instrumentation, surgeries in prone position, paediatric age group and use in critical care settings. The position of SGAs for rescue airway management is prominent in guidelines issued by various authorities. SGAs continue to be an important mode of rescue ventilation in patients in “can’t ventilate can’t intubate” scenarios. The ability to aspirate gastric contents renders them a safe alternative to the conventional ETTs. The ability to act as a conduit for intubation in elective and emergency patients is a valuable rescue technique.
Knowledge about the indications and contraindications of using an SGA is prudent for its appropriate use. SGAs with enough documented evidence of safety and efficacy should be used. Increasing recognition of an SGA’s applications should expand its role in airway management for the anesthesiologist.
The author declares no conflict of interest.
SGA | Supraglottic Airway |
LMA | Laryngeal Mask Airway |
ETT | Endotracheal Tube |
OT | Operation Theatre |
FOB | Fibreoptic Bronchoscopy |
CPR | Cardiopulmonary Resuscitation |
ID | Internal Diameter |
mmHg | millimetres of mercury |
L | Litre |
Min | Minute |
mm | millimetre |
cmH2O | centimetre of water |
Kg | kilogramme |
ml | millilitre |
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"11,24"},books:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!0,hash:"a5308884068cc53ed31c6baba756857f",slug:null,bookSignature:"Dr. Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:null,editors:[{id:"165328",title:"Dr.",name:"Vahid",surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!0,hash:"421757c56a3735986055250821275a51",slug:null,bookSignature:"Dr. Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editedByType:null,editors:[{id:"274242",title:"Dr.",name:"Meng",surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10769",title:"Supercapacitors",subtitle:null,isOpenForSubmission:!0,hash:"dda2f53b2c9ee308fe5f3e0d1638ff5c",slug:null,bookSignature:"Associate Prof. Daisuke Tashima",coverURL:"https://cdn.intechopen.com/books/images_new/10769.jpg",editedByType:null,editors:[{id:"254915",title:"Associate Prof.",name:"Daisuke",surname:"Tashima",slug:"daisuke-tashima",fullName:"Daisuke Tashima"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!0,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:null,bookSignature:"Prof. Hussain Al-Rizzo and Dr. Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Hydropower",subtitle:null,isOpenForSubmission:!0,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:null,bookSignature:"Dr. Yizi Shang, Dr. Ling Shang and Dr. Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:null,editors:[{id:"349630",title:"Dr.",name:"Yizi",surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10681",title:"Biodegradation",subtitle:null,isOpenForSubmission:!0,hash:"9a6e10e02788092872fd249436898e97",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes, Dr. Rodrigo Nogueira de Sousa and Dr. Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10810",title:"Modern Ship Engineering, Design and Operations",subtitle:null,isOpenForSubmission:!0,hash:"579a9da63aca2172c0f0584328ae91c1",slug:null,bookSignature:"Dr. Carlos Alberto Reusser",coverURL:"https://cdn.intechopen.com/books/images_new/10810.jpg",editedByType:null,editors:[{id:"209816",title:"Dr.",name:"Carlos",surname:"Reusser",slug:"carlos-reusser",fullName:"Carlos Reusser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil - New Technologies and Recent Approaches",subtitle:null,isOpenForSubmission:!0,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:null,bookSignature:"Prof. Manar El-Sayed Abdel-Raouf and Dr. Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:null,editors:[{id:"102626",title:"Prof.",name:"Manar El-Sayed",surname:"Abdel-Raouf",slug:"manar-el-sayed-abdel-raouf",fullName:"Manar El-Sayed Abdel-Raouf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10854",title:"Remote Sensing",subtitle:null,isOpenForSubmission:!0,hash:"c77f99db5569e8d0325b856cb7d75b17",slug:null,bookSignature:"Prof. Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/10854.jpg",editedByType:null,editors:[{id:"96666",title:"Prof.",name:"Maged",surname:"Marghany",slug:"maged-marghany",fullName:"Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:21},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"492",title:"Solid-State Chemistry",slug:"chemistry-inorganic-chemistry-solid-state-chemistry",parent:{title:"Inorganic Chemistry",slug:"chemistry-inorganic-chemistry"},numberOfBooks:14,numberOfAuthorsAndEditors:307,numberOfWosCitations:491,numberOfCrossrefCitations:201,numberOfDimensionsCitations:449,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"chemistry-inorganic-chemistry-solid-state-chemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7760",title:"Structure Processing Properties Relationships in Stoichiometric and Nonstoichiometric Oxides",subtitle:null,isOpenForSubmission:!1,hash:"e41f9a3546e36dbf70a36974f74e9845",slug:"structure-processing-properties-relationships-in-stoichiometric-and-nonstoichiometric-oxides",bookSignature:"Speranta Tanasescu",coverURL:"https://cdn.intechopen.com/books/images_new/7760.jpg",editedByType:"Edited by",editors:[{id:"24934",title:"Dr.",name:"Speranta",middleName:null,surname:"Tanasescu",slug:"speranta-tanasescu",fullName:"Speranta Tanasescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7358",title:"Cerium Oxide",subtitle:"Applications and Attributes",isOpenForSubmission:!1,hash:"7d1cd9a9ecf46270e344d15f94bc66ef",slug:"cerium-oxide-applications-and-attributes",bookSignature:"Sher Bahadar Khan and Kalsoom Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/7358.jpg",editedByType:"Edited by",editors:[{id:"245468",title:"Dr.",name:"Sher Bahadar",middleName:null,surname:"Khan",slug:"sher-bahadar-khan",fullName:"Sher Bahadar Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6133",title:"Cobalt",subtitle:null,isOpenForSubmission:!1,hash:"96be0c35234ae3c889e6ce68b218fe04",slug:"cobalt",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/6133.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",middleName:null,surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5829",title:"Rare Earth Element",subtitle:null,isOpenForSubmission:!1,hash:"93922f185a0904a74542fd26ac1e241d",slug:"rare-earth-element",bookSignature:"Jose Edgar Alfonso Orjuela",coverURL:"https://cdn.intechopen.com/books/images_new/5829.jpg",editedByType:"Edited by",editors:[{id:"106069",title:"Dr.",name:"Jose Edgar Alfonso",middleName:null,surname:"Orjuela",slug:"jose-edgar-alfonso-orjuela",fullName:"Jose Edgar Alfonso Orjuela"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6407",title:"Application of Titanium Dioxide",subtitle:null,isOpenForSubmission:!1,hash:"fdb4aecdbffe5d2f4415d8b36d71143d",slug:"application-of-titanium-dioxide",bookSignature:"Magdalena Janus",coverURL:"https://cdn.intechopen.com/books/images_new/6407.jpg",editedByType:"Edited by",editors:[{id:"199458",title:"Dr.",name:"Magdalena",middleName:null,surname:"Janus",slug:"magdalena-janus",fullName:"Magdalena Janus"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5985",title:"Titanium Dioxide",subtitle:null,isOpenForSubmission:!1,hash:"5d5a07758249f9e02ca1b83ee1f8efef",slug:"titanium-dioxide",bookSignature:"Magdalena Janus",coverURL:"https://cdn.intechopen.com/books/images_new/5985.jpg",editedByType:"Edited by",editors:[{id:"199458",title:"Dr.",name:"Magdalena",middleName:null,surname:"Janus",slug:"magdalena-janus",fullName:"Magdalena Janus"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5211",title:"Chemical Vapor Deposition",subtitle:"Recent Advances and Applications in Optical, Solar Cells and Solid State Devices",isOpenForSubmission:!1,hash:"dc03fdc6ad1c27ebfcb54e337cbf03ce",slug:"chemical-vapor-deposition-recent-advances-and-applications-in-optical-solar-cells-and-solid-state-devices",bookSignature:"Sudheer Neralla",coverURL:"https://cdn.intechopen.com/books/images_new/5211.jpg",editedByType:"Edited by",editors:[{id:"128532",title:null,name:"Sudheer",middleName:null,surname:"Neralla",slug:"sudheer-neralla",fullName:"Sudheer Neralla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4783",title:"Apatites and their Synthetic Analogues",subtitle:"Synthesis, Structure, Properties and Applications",isOpenForSubmission:!1,hash:"d435b3984fa4d5d2d6921679511fe384",slug:"apatites-and-their-synthetic-analogues-synthesis-structure-properties-and-applications",bookSignature:"Petr Ptacek",coverURL:"https://cdn.intechopen.com/books/images_new/4783.jpg",editedByType:"Authored by",editors:[{id:"76186",title:"Associate Prof.",name:"Petr",middleName:null,surname:"Ptáček",slug:"petr-ptacek",fullName:"Petr Ptáček"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"4531",title:"Advanced Topics in Crystallization",subtitle:null,isOpenForSubmission:!1,hash:"c1b75a72987c71a8eb02ddb014b99882",slug:"advanced-topics-in-crystallization",bookSignature:"Yitzhak Mastai",coverURL:"https://cdn.intechopen.com/books/images_new/4531.jpg",editedByType:"Edited by",editors:[{id:"41724",title:"Prof.",name:"Yitzhak",middleName:null,surname:"Mastai",slug:"yitzhak-mastai",fullName:"Yitzhak Mastai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2779",title:"Tungsten Carbide",subtitle:"Processing and Applications",isOpenForSubmission:!1,hash:"f0be5d1ab810ad901c2866bc030a903f",slug:"tungsten-carbide-processing-and-applications",bookSignature:"Kui Liu",coverURL:"https://cdn.intechopen.com/books/images_new/2779.jpg",editedByType:"Edited by",editors:[{id:"137537",title:"Dr.",name:"Kui",middleName:null,surname:"Liu",slug:"kui-liu",fullName:"Kui Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1980",title:"Crystallization",subtitle:"Science and Technology",isOpenForSubmission:!1,hash:"b512238b6bad61510871f4871c41dafe",slug:"crystallization-science-and-technology",bookSignature:"Marcello Rubens Barsi Andreeta",coverURL:"https://cdn.intechopen.com/books/images_new/1980.jpg",editedByType:"Edited by",editors:[{id:"114928",title:"Dr.",name:"Marcello",middleName:null,surname:"Andreeta",slug:"marcello-andreeta",fullName:"Marcello Andreeta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2283",title:"Advances in Crystallization Processes",subtitle:null,isOpenForSubmission:!1,hash:"fbac03612cea22d52fd05bd8ebace89c",slug:"advances-in-crystallization-processes",bookSignature:"Yitzhak Mastai",coverURL:"https://cdn.intechopen.com/books/images_new/2283.jpg",editedByType:"Edited by",editors:[{id:"41724",title:"Prof.",name:"Yitzhak",middleName:null,surname:"Mastai",slug:"yitzhak-mastai",fullName:"Yitzhak Mastai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:14,mostCitedChapters:[{id:"39143",doi:"10.5772/35844",title:"Thin Film Growth Through Sputtering Technique and Its Applications",slug:"thin-film-growth-through-sputtering-technique-and-its-applications",totalDownloads:7342,totalCrossrefCites:14,totalDimensionsCites:47,book:{slug:"crystallization-science-and-technology",title:"Crystallization",fullTitle:"Crystallization - Science and Technology"},signatures:"Edgar Alfonso, Jairo Olaya and Gloria Cubillos",authors:[{id:"106069",title:"Dr.",name:"Jose Edgar Alfonso",middleName:null,surname:"Orjuela",slug:"jose-edgar-alfonso-orjuela",fullName:"Jose Edgar Alfonso Orjuela"},{id:"108488",title:"Dr.",name:"Jairo",middleName:null,surname:"Olaya",slug:"jairo-olaya",fullName:"Jairo Olaya"},{id:"108490",title:"MSc.",name:"Gloria",middleName:null,surname:"Cubillos",slug:"gloria-cubillos",fullName:"Gloria Cubillos"}]},{id:"36355",doi:"10.5772/35347",title:"Crystallization Kinetics of Amorphous Materials",slug:"crystallization-kinetics-of-amorphous-materials",totalDownloads:8640,totalCrossrefCites:11,totalDimensionsCites:27,book:{slug:"advances-in-crystallization-processes",title:"Advances in Crystallization Processes",fullTitle:"Advances in Crystallization Processes"},signatures:"Miray Çelikbilek, Ali Erçin Ersundu and Süheyla Aydın",authors:[{id:"104015",title:"Dr.",name:"Miray",middleName:null,surname:"Çelikbilek Ersundu",slug:"miray-celikbilek-ersundu",fullName:"Miray Çelikbilek Ersundu"},{id:"112542",title:"Dr.",name:"Ali Erçin",middleName:null,surname:"Ersundu",slug:"ali-ercin-ersundu",fullName:"Ali Erçin Ersundu"},{id:"112543",title:"Prof.",name:"Suheyla",middleName:null,surname:"Aydin",slug:"suheyla-aydin",fullName:"Suheyla Aydin"}]},{id:"36368",doi:"10.5772/36540",title:"Synthetic Methods for Perovskite Materials; Structure and Morphology",slug:"synthetic-methods-for-perovskite-materials-structure-and-morphology",totalDownloads:5775,totalCrossrefCites:6,totalDimensionsCites:18,book:{slug:"advances-in-crystallization-processes",title:"Advances in Crystallization Processes",fullTitle:"Advances in Crystallization Processes"},signatures:"Ana Ecija, Karmele Vidal, Aitor Larrañaga, Luis Ortega-San-Martín and María Isabel Arriortua",authors:[{id:"108723",title:"Dr.",name:"Aitor",middleName:null,surname:"Larrañaga",slug:"aitor-larraaaga",fullName:"Aitor Larrañaga"},{id:"136538",title:"Mrs.",name:"Ana",middleName:null,surname:"Ecija",slug:"ana-ecija",fullName:"Ana Ecija"},{id:"136539",title:"Dr.",name:"Karmele",middleName:null,surname:"Vidal",slug:"karmele-vidal",fullName:"Karmele Vidal"},{id:"136540",title:"Dr.",name:"Luis",middleName:null,surname:"Ortega-San-Martín",slug:"luis-ortega-san-martin",fullName:"Luis Ortega-San-Martín"},{id:"136541",title:"Prof.",name:"María Isabel",middleName:null,surname:"Arriortua",slug:"maria-isabel-arriortua",fullName:"María Isabel Arriortua"}]}],mostDownloadedChaptersLast30Days:[{id:"55488",title:"DFT-based Theoretical Simulations for Photocatalytic Applications Using TiO2",slug:"dft-based-theoretical-simulations-for-photocatalytic-applications-using-tio2",totalDownloads:1743,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"titanium-dioxide",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide"},signatures:"Yeliz Gurdal and Marcella Iannuzzi",authors:[{id:"202040",title:"Associate Prof.",name:"Yeliz",middleName:null,surname:"Gurdal",slug:"yeliz-gurdal",fullName:"Yeliz Gurdal"},{id:"204361",title:"Dr.",name:"Marcella",middleName:null,surname:"Iannuzzi",slug:"marcella-iannuzzi",fullName:"Marcella Iannuzzi"}]},{id:"55180",title:"Mechanically Activated Rutile and Ilmenite as the Starting Materials for Process of Titanium Alloys Production",slug:"mechanically-activated-rutile-and-ilmenite-as-the-starting-materials-for-process-of-titanium-alloys-",totalDownloads:1254,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"titanium-dioxide",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide"},signatures:"Marcela Achimovičová, Christoph Vonderstein and Bernd Friedrich",authors:[{id:"203174",title:"Dr.",name:"Marcela",middleName:null,surname:"Achimovičová",slug:"marcela-achimovicova",fullName:"Marcela Achimovičová"},{id:"203399",title:"MSc.",name:"Christoph",middleName:null,surname:"Vonderstein",slug:"christoph-vonderstein",fullName:"Christoph Vonderstein"},{id:"203527",title:"Prof.",name:"Bernd",middleName:null,surname:"Friedrich",slug:"bernd-friedrich",fullName:"Bernd Friedrich"}]},{id:"55177",title:"Structural Aspects of Anatase to Rutile Phase Transition in Titanium Dioxide Powders Elucidated by the Rietveld Method",slug:"structural-aspects-of-anatase-to-rutile-phase-transition-in-titanium-dioxide-powders-elucidated-by-t",totalDownloads:1467,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"titanium-dioxide",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide"},signatures:"Alberto Adriano Cavalheiro, Lincoln Carlos Silva de Oliveira\nand Silvanice Aparecida Lopes dos Santos",authors:[{id:"201848",title:"Dr.",name:"Alberto",middleName:"Adriano",surname:"Cavalheiro",slug:"alberto-cavalheiro",fullName:"Alberto Cavalheiro"},{id:"204106",title:"M.Sc.",name:"Silvanice Aparecida Lopes Dos",middleName:null,surname:"Santos",slug:"silvanice-aparecida-lopes-dos-santos",fullName:"Silvanice Aparecida Lopes Dos Santos"},{id:"204107",title:"Dr.",name:"Lincoln Carlos Silva De",middleName:null,surname:"Oliveira",slug:"lincoln-carlos-silva-de-oliveira",fullName:"Lincoln Carlos Silva De Oliveira"}]},{id:"55319",title:"Theoretical Studies of Titanium Dioxide for Dye-Sensitized Solar Cell and Photocatalytic Reaction",slug:"theoretical-studies-of-titanium-dioxide-for-dye-sensitized-solar-cell-and-photocatalytic-reaction",totalDownloads:1315,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"titanium-dioxide",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide"},signatures:"Fu-Quan Bai, Wei Li and Hong-Xing Zhang",authors:[{id:"201719",title:"Prof.",name:"Fu-Quan",middleName:null,surname:"Bai",slug:"fu-quan-bai",fullName:"Fu-Quan Bai"},{id:"206150",title:"Dr.",name:"Wei",middleName:null,surname:"Li",slug:"wei-li",fullName:"Wei Li"},{id:"206151",title:"Prof.",name:"Hong-Xing",middleName:null,surname:"Zhang",slug:"hong-xing-zhang",fullName:"Hong-Xing Zhang"}]},{id:"55832",title:"Advanced Hybrid Materials Based on Titanium Dioxide for Environmental and Electrochemical Applications",slug:"advanced-hybrid-materials-based-on-titanium-dioxide-for-environmental-and-electrochemical-applicatio",totalDownloads:1804,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"titanium-dioxide",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide"},signatures:"Katarzyna Siwińska-Stefańska and Teofil Jesionowski",authors:[{id:"203551",title:"Ph.D.",name:"Katarzyna",middleName:null,surname:"Siwińska-Stefańska",slug:"katarzyna-siwinska-stefanska",fullName:"Katarzyna Siwińska-Stefańska"},{id:"203552",title:"Prof.",name:"Teofil",middleName:null,surname:"Jesionowski",slug:"teofil-jesionowski",fullName:"Teofil Jesionowski"}]},{id:"51808",title:"Plasma-Enhanced Chemical Vapor Deposition: Where we are and the Outlook for the Future",slug:"plasma-enhanced-chemical-vapor-deposition-where-we-are-and-the-outlook-for-the-future",totalDownloads:6628,totalCrossrefCites:7,totalDimensionsCites:15,book:{slug:"chemical-vapor-deposition-recent-advances-and-applications-in-optical-solar-cells-and-solid-state-devices",title:"Chemical Vapor Deposition",fullTitle:"Chemical Vapor Deposition - Recent Advances and Applications in Optical, Solar Cells and Solid State Devices"},signatures:"Yasaman Hamedani, Prathyushakrishna Macha, Timothy J. Bunning,\nRajesh R. Naik and Milana C. Vasudev",authors:[{id:"181604",title:"Dr.",name:"Milana",middleName:null,surname:"Vasudev",slug:"milana-vasudev",fullName:"Milana Vasudev"}]},{id:"55534",title:"Quantum Chemistry Applied to Photocatalysis with TiO2",slug:"quantum-chemistry-applied-to-photocatalysis-with-tio2",totalDownloads:1491,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"titanium-dioxide",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide"},signatures:"Sergio Ricardo de Lazaro, Renan Augusto Pontes Ribeiro and Luis\nHenrique da Silveira Lacerda",authors:[{id:"176017",title:"Prof.",name:"Sergio Ricardo De",middleName:null,surname:"Lazaro",slug:"sergio-ricardo-de-lazaro",fullName:"Sergio Ricardo De Lazaro"},{id:"176358",title:"MSc.",name:"Renan Augusto Pontes",middleName:null,surname:"Ribeiro",slug:"renan-augusto-pontes-ribeiro",fullName:"Renan Augusto Pontes Ribeiro"},{id:"176359",title:"Dr.",name:"Luis Henrique Da Silveira",middleName:null,surname:"Lacerda",slug:"luis-henrique-da-silveira-lacerda",fullName:"Luis Henrique Da Silveira Lacerda"}]},{id:"47969",title:"Advances in Lipids Crystallization Technology",slug:"advances-in-lipids-crystallization-technology",totalDownloads:3579,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"advanced-topics-in-crystallization",title:"Advanced Topics in Crystallization",fullTitle:"Advanced Topics in Crystallization"},signatures:"Maria Aliciane Fontenele Domingues, Ana Paula Badan Ribeiro,\nTheo Guenter Kieckbusch, Luiz Antonio Gioielli, Renato Grimaldi,\nLisandro Pavie Cardoso and Lireny Aparecida Guaraldo Gonçalves",authors:[{id:"104048",title:"Prof.",name:"Lisandro",middleName:"Pavie",surname:"Cardoso",slug:"lisandro-cardoso",fullName:"Lisandro Cardoso"},{id:"172507",title:"Dr.",name:"Ana Paula",middleName:"Badan",surname:"Ribeiro",slug:"ana-paula-ribeiro",fullName:"Ana Paula Ribeiro"},{id:"172508",title:"Dr.",name:"Lireny Aparecida Guaraldo",middleName:null,surname:"Gonçalves",slug:"lireny-aparecida-guaraldo-goncalves",fullName:"Lireny Aparecida Guaraldo Gonçalves"},{id:"172509",title:"Dr.",name:"Renato",middleName:null,surname:"Grimaldi",slug:"renato-grimaldi",fullName:"Renato Grimaldi"},{id:"172511",title:"Dr.",name:"Luiz Antonio",middleName:null,surname:"Gioielli",slug:"luiz-antonio-gioielli",fullName:"Luiz Antonio Gioielli"},{id:"172512",title:"Dr.",name:"Theo Guenter",middleName:null,surname:"Kieckbusch",slug:"theo-guenter-kieckbusch",fullName:"Theo Guenter Kieckbusch"},{id:"173134",title:"Dr.",name:"Maria Aliciane",middleName:null,surname:"Fontenele Domingues",slug:"maria-aliciane-fontenele-domingues",fullName:"Maria Aliciane Fontenele Domingues"}]},{id:"25145",title:"Crystallographic Studies on Autophagy-Related Proteins",slug:"crystallographic-studies-on-autophagy-related-proteins",totalDownloads:2853,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"current-trends-in-x-ray-crystallography",title:"Current Trends in X-Ray Crystallography",fullTitle:"Current Trends in X-Ray Crystallography"},signatures:"Nobuo N. Noda, Yoshinori Ohsumi and Fuyuhiko Inagaki",authors:[{id:"78180",title:"Dr",name:"Nobuo N.",middleName:"N.",surname:"Noda",slug:"nobuo-n.-noda",fullName:"Nobuo N. Noda"},{id:"84498",title:"Prof.",name:"Yoshinori",middleName:null,surname:"Ohsumi",slug:"yoshinori-ohsumi",fullName:"Yoshinori Ohsumi"},{id:"84499",title:"Prof.",name:"Fuyuhiko",middleName:null,surname:"Inagaki",slug:"fuyuhiko-inagaki",fullName:"Fuyuhiko Inagaki"}]},{id:"55276",title:"Mesoporous Titania: Synthesis, Properties and Comparison with Non-Porous Titania",slug:"mesoporous-titania-synthesis-properties-and-comparison-with-non-porous-titania",totalDownloads:1914,totalCrossrefCites:3,totalDimensionsCites:10,book:{slug:"titanium-dioxide",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide"},signatures:"Barbara Bonelli, Serena Esposito and Francesca S. Freyria",authors:[{id:"202875",title:"Associate Prof.",name:"Barbara",middleName:null,surname:"Bonelli",slug:"barbara-bonelli",fullName:"Barbara Bonelli"},{id:"203501",title:"Dr.",name:"Serena",middleName:null,surname:"Esposito",slug:"serena-esposito",fullName:"Serena Esposito"},{id:"203503",title:"Dr.",name:"Francesca",middleName:null,surname:"Freyria",slug:"francesca-freyria",fullName:"Francesca Freyria"}]}],onlineFirstChaptersFilter:{topicSlug:"chemistry-inorganic-chemistry-solid-state-chemistry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/13834/lilian-rosana-faro",hash:"",query:{},params:{id:"13834",slug:"lilian-rosana-faro"},fullPath:"/profiles/13834/lilian-rosana-faro",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()