Mohammed Khalid

Taif University

Mohammed Khalid received his B.S. degree in chemistry in 2000 and Ph.D. degree in physical chemistry in 2007 from the University of Khartoum, Sudan. He moved to School of Chemistry, Faculty of Science, University of Sydney, Australia in 2009 and joined Dr. Ron Clarke as a postdoctoral fellow where he worked on the interaction of ATP with the phosphoenzyme of the Na+/K+-ATPase and dual mechanisms of allosteric acceleration of the Na+/K+-ATPase by ATP; then he went back to Department of Chemistry, University of Khartoum as an assistant professor, and in 2014 he was promoted as an associate professor. In 2011, he joined the staff of Department of Chemistry at Taif University, Saudi Arabia, where he is currently an assistant professor. His research interests include the following: P-Type ATPase enzyme kinetics and mechanisms, kinetics and mechanisms of redox reactions, autocatalytic reactions, computational enzyme kinetics, allosteric acceleration of P-type ATPases by ATP, exploring of allosteric sites of ATPases, and interaction of ATP with ATPases located in cell membranes.

2books edited

1chapters authored

Latest work with IntechOpen by Mohammed Khalid

Redox reactions are central to the major element cycling, many cell cycles, many chemisorption and physisorption processes, trace element mobility from rocks and sediments toward wells, aquifers, trace element toxicity toward life forms, and most remediation schemes including water treatments; over the last three decades, the field has attracted a lot of scientists, and a great deal of researches has been done in redox chemistry. This book provides a very broad overview of the state of the art of understanding redox processes, which starts with giving a concise introduction that describes the origin, historical background, and the development of the redox definitions. The book is organized into two sections that include ten chapters and introduces, in Section 1, generalized electron balance theory and its applications in electrolytic redox systems, redox-active molecules and its applications in device memory, fundamentals and applications of flow batteries and their integration into antidirect current, and donor acceptor titrations of displacement and electronic transference. Section 2 introduces redox in biological processes, including roles of reactive oxygen species in respiration, metabolism, and regulations, and redox in physiological processes as redox-sensitive TRP channels TRPA1 and TRPM2. All chapters are written by different authors (with the exception of Chapter 1 [Introduction]). This clearly reflects the broad range of topics that have been covered by experts in the field.

Go to the book