Approximate fire load calculation for the fire scenario from Scooptram ST7.
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"5392",leadTitle:null,fullTitle:"An Analysis of Contemporary Social Welfare Issues",title:"An Analysis of Contemporary Social Welfare Issues",subtitle:null,reviewType:"peer-reviewed",abstract:"This book offers a sharp critique and a detailed analysis of some pernicious social welfare problems and the wide-ranging causes and consequences of those complex social issues on individuals, families, and communities. Unemployment, health-care disparities, teenage pregnancy, and intimate partner violence constitute the focus of this work. Based on empirical and historical analyses of primary and secondary data, the book provides a conceptual framework that facilitates the reader's understanding of how those social issues are interrelated. Each chapter offers some clear policy recommendations directed to address those social problems. Written by well-published scholars, this work will be of great interest not only to students majoring in the social and political sciences but also to academics and practitioners active in the field of social welfare, social policy, and social work.",isbn:"978-953-51-2719-2",printIsbn:"978-953-51-2718-5",pdfIsbn:"978-953-51-4161-7",doi:"10.5772/62677",price:100,priceEur:109,priceUsd:129,slug:"an-analysis-of-contemporary-social-welfare-issues",numberOfPages:72,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"4a9795772c4001a5a648421ebf11cee7",bookSignature:"Rosario Laratta",publishedDate:"October 26th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5392.jpg",numberOfDownloads:14585,numberOfWosCitations:0,numberOfCrossrefCitations:8,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:11,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:19,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 22nd 2016",dateEndSecondStepPublish:"April 12th 2016",dateEndThirdStepPublish:"July 17th 2016",dateEndFourthStepPublish:"October 15th 2016",dateEndFifthStepPublish:"November 14th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"118227",title:"Dr.",name:"Rosario",middleName:null,surname:"Laratta",slug:"rosario-laratta",fullName:"Rosario Laratta",profilePictureURL:"https://mts.intechopen.com/storage/users/118227/images/2216_n.jpg",biography:'Rosario Laratta is an associate professor of social policy at the School of Governance Studies and the School of Global Governance, Meiji University, Tokyo, & an adjunct faculty at the iCLA (Yamanashi Gakuin University), ICU (International Christian University), Sophia University, Temple University, and recently Toyo University. Before his current appointments, he worked four years for the University of Tokyo. He earned a Postdoctorate in Politics from the University of Tokyo, a PhD and MA in Political Sociology from Warwick University (UK), a MA in Public Policy from Bocconi University, and a BA in Political Science from Calabria University. He is the author of many books such as “Nonprofit Organizations in England and Japan” (2012) and “Empirical Policy Research” (2013), and editor of “Social Welfare” (2012), \\"Social Enterprise\\" (2016), and \\"An Analysis of Contemporary Social Welfare Issues\\" (2016). He has also published over hundred articles, most of which are peer-reviewed papers on leading international journals, such as “Hand in Hand or Under the Thumb?” (Cambridge Journal of Social Policy and Society), “From Welfare State to Welfare Society” (International Journal of Social Welfare), and ““Ethical Climate and Accountability in Nonprofits: a comparative study between Japan and U.K” (Public Management Review). He currently acts as a regular reviewer for fifteen peer-reviewed international journals and as advisory board member for some of those. He is also member of a number of academic associations in Japan and abroad.',institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1336",title:"Social Services",slug:"social-services"}],chapters:[{id:"52455",title:"Introductory Chapter: An Overview of the Book",doi:"10.5772/65717",slug:"introductory-chapter-an-overview-of-the-book",totalDownloads:1493,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Rosario Laratta",downloadPdfUrl:"/chapter/pdf-download/52455",previewPdfUrl:"/chapter/pdf-preview/52455",authors:[{id:"118227",title:"Dr.",name:"Rosario",surname:"Laratta",slug:"rosario-laratta",fullName:"Rosario Laratta"}],corrections:null},{id:"51989",title:"Policy Discussions on LGBTQ Intimate Partner Violence in North America",doi:"10.5772/64965",slug:"policy-discussions-on-lgbtq-intimate-partner-violence-in-north-america",totalDownloads:1724,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:1,abstract:"This chapter delves into social policy and welfare regarding intimate partner violence (IPV) across North America, specifically around research, policies, and treatment interventions for the lesbian, gay, bisexual, transgender, and queer (LGBTQ) community. In this chapter, we outline the problem of intimate partner violence, or IPV, in the USA; analyze IPV policies at the state and national levels; and advocate for more specific treatment interventions to address the unique needs of this community.",signatures:"Clare Cannon and Fred Buttell",downloadPdfUrl:"/chapter/pdf-download/51989",previewPdfUrl:"/chapter/pdf-preview/51989",authors:[{id:"187695",title:"Ph.D. Student",name:"Clare",surname:"Cannon",slug:"clare-cannon",fullName:"Clare Cannon"},{id:"187933",title:"Dr.",name:"Fred",surname:"Buttell",slug:"fred-buttell",fullName:"Fred Buttell"}],corrections:null},{id:"52475",title:"Teenage Pregnancies: A Worldwide Social and Medical Problem",doi:"10.5772/65462",slug:"teenage-pregnancies-a-worldwide-social-and-medical-problem",totalDownloads:8293,totalCrossrefCites:6,totalDimensionsCites:8,hasAltmetrics:1,abstract:"Teenage pregnancies and teenage motherhood are a cause for concern worldwide. From a historical point of view, teenage pregnancies are nothing new. For much of human history, it was absolutely common that girls married during their late adolescence and experienced first birth during their second decade of life. This kind of reproductive behavior was socially desired and considered as normal. Nowadays, however, the prevention of teenage pregnancies and teenage motherhood is a priority for public health in nearly all developed and increasingly in developing countries. For a long time, teenage pregnancies were associated with severe medical problems; however, most of data supporting this viewpoint have been collected some decades ago and reflect mainly the situation of per se socially disadvantaged teenage mothers. According to more recent studies, teenage pregnancies are not per se risky ones. A clear risk group are extremely young teenage mothers (younger than 15 years) who are confronted with various medical risks, such as preeclampsia, preterm labor, and small for gestational age newborns but also marked social disadvantage, such as poverty, unemployment, low educational level, and single parenting. In the present study, the prevalence and outcome of teenage pregnancies in Austria are focused on.",signatures:"Sylvia Kirchengast",downloadPdfUrl:"/chapter/pdf-download/52475",previewPdfUrl:"/chapter/pdf-preview/52475",authors:[{id:"188289",title:"Prof.",name:"Sylvia",surname:"Kirchengast",slug:"sylvia-kirchengast",fullName:"Sylvia Kirchengast"}],corrections:null},{id:"52198",title:"Unemployment and Causes of Hospital Admission Considering Different Analytical Approaches",doi:"10.5772/65021",slug:"unemployment-and-causes-of-hospital-admission-considering-different-analytical-approaches",totalDownloads:1477,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The association between unemployment and hospital admission is known, but the causal relationship is still under discussion. The aim of the present analysis is to compare results of a cross-sectional and a cohort approach considering overall hospital admission and hospital admission due to cancer and circulatory disease. Register-based data were analysed for the period of 2006–2009. In the cross-sectional analysis, a multiple logistic regression model was conducted based on the year 2006, and cohort information from the same year onward up to 2009 was available for a Cox regression model. Social welfare compensated unemployment and both types of disease-specific hospital admission were associated to be statistically significant in the cross-sectional analysis. With regard to circulatory disease, the cohort approach suggests that social welfare compensated unemployment might lead to hospital admission due to the disease. Given the significant results in the cross-sectional analysis for hospital admission due to cancer, the unfound cohort effect might indicate a reverse causation suggesting that the disease caused joblessness, and finally social welfare compensated unemployment and not vice versa. Comparing different study designs allows for a better causal interpretation, which should be recommended in future quantitative social welfare analysis.",signatures:"Gabriele Berg-Beckhoff, Gabriel Gulis, Carsten Kronborg Bak and\nPernille Tanggaard Andersen",downloadPdfUrl:"/chapter/pdf-download/52198",previewPdfUrl:"/chapter/pdf-preview/52198",authors:[{id:"188461",title:"Dr.",name:"Gabriele",surname:"Berg-Beckhoff",slug:"gabriele-berg-beckhoff",fullName:"Gabriele Berg-Beckhoff"},{id:"188463",title:"Dr.",name:"Gabriel",surname:"Gulis",slug:"gabriel-gulis",fullName:"Gabriel Gulis"},{id:"188465",title:"Dr.",name:"Carsten",surname:"Kronborg Bak",slug:"carsten-kronborg-bak",fullName:"Carsten Kronborg Bak"},{id:"188466",title:"Dr.",name:"Pernille",surname:"Tangaard Andersen",slug:"pernille-tangaard-andersen",fullName:"Pernille Tangaard Andersen"}],corrections:null},{id:"52228",title:"An Approach to Social Service Systems in Europe: The Spanish Case",doi:"10.5772/65121",slug:"an-approach-to-social-service-systems-in-europe-the-spanish-case",totalDownloads:1598,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This chapter endeavors to develop an attempt at characterizing the social service system in Europe, serving three areas that we understand to be present in different system models but with different logics. The first has to do with the different denominations and ways of defining social services in each country. The second refers to the logic that legitimizes it, referring to its objects and purposes, as well as the type of needs and population groups that are targeted. The third area addresses issues of governance, the way it structures its devices and the relationships it establishes between the different levels of government and the main actors (the third sector, families, and the market). Having established this characterization (following this logic), we arrive at the Spanish case, trying to analyze its current model from legislative transformations that it has developed as well as trends and processes that the system has been generating as a result of the socioeconomic crisis, which have led to the modification of its profiles and demands. Finally, we take a rudimentary approach to the different challenges that we claim the Spanish Public System of Social Services must cope with in the current context.",signatures:"Auxiliadora González Portillo and Germán Jaraíz Arroyo",downloadPdfUrl:"/chapter/pdf-download/52228",previewPdfUrl:"/chapter/pdf-preview/52228",authors:[{id:"187879",title:"Dr.",name:"Auxiliadora",surname:"González Portillo",slug:"auxiliadora-gonzalez-portillo",fullName:"Auxiliadora González Portillo"},{id:"189164",title:"Dr.",name:"Germán",surname:"Jaraíz Arroyo",slug:"german-jaraiz-arroyo",fullName:"Germán Jaraíz Arroyo"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5145",title:"Social Enterprise",subtitle:"Context-Dependent Dynamics In A Global Perspective",isOpenForSubmission:!1,hash:"ca8890940e640527f9fce7ed5e6a51b1",slug:"social-enterprise-context-dependent-dynamics-in-a-global-perspective",bookSignature:"Rosario Laratta",coverURL:"https://cdn.intechopen.com/books/images_new/5145.jpg",editedByType:"Edited by",editors:[{id:"118227",title:"Dr.",name:"Rosario",surname:"Laratta",slug:"rosario-laratta",fullName:"Rosario Laratta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1848",title:"Social Welfare",subtitle:null,isOpenForSubmission:!1,hash:"67f5dd4197c0618919f6150b7099846b",slug:"social-welfare",bookSignature:"Rosario Laratta",coverURL:"https://cdn.intechopen.com/books/images_new/1848.jpg",editedByType:"Edited by",editors:[{id:"118227",title:"Dr.",name:"Rosario",surname:"Laratta",slug:"rosario-laratta",fullName:"Rosario Laratta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterial",title:"Corrigendum to: Risk Assessment and Health, Safety, and Environmental Management of Carbon Nanomaterials",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/80612.pdf",downloadPdfUrl:"/chapter/pdf-download/80612",previewPdfUrl:"/chapter/pdf-preview/80612",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/80612",risUrl:"/chapter/ris/80612",chapter:{id:"66689",slug:"risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterials",signatures:"Guilherme Lenz e Silva, Camila Viana, Danieli Domingues and Fernanda Vieira",dateSubmitted:null,dateReviewed:"February 26th 2019",datePrePublished:"April 11th 2019",datePublished:"February 19th 2020",book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251730",title:"Dr.",name:"Guilherme",middleName:"Fredeico Bernardo",surname:"Lenz E Silva",fullName:"Guilherme Lenz E Silva",slug:"guilherme-lenz-e-silva",email:"guilhermelenz@usp.br",position:null,institution:null},{id:"286148",title:"Dr.",name:"Camila",middleName:null,surname:"Viana",fullName:"Camila Viana",slug:"camila-viana",email:"camilaoviana@gmail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}},{id:"286149",title:"Dr.",name:"Fernanda",middleName:null,surname:"Vieira",fullName:"Fernanda Vieira",slug:"fernanda-vieira",email:"fevieira2001@gmail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}},{id:"286151",title:"M.Sc.",name:"Danieli",middleName:"Silva",surname:"Domingues",fullName:"Danieli Domingues",slug:"danieli-domingues",email:"danielisilva@ymail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}}]}},chapter:{id:"66689",slug:"risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterials",signatures:"Guilherme Lenz e Silva, Camila Viana, Danieli Domingues and Fernanda Vieira",dateSubmitted:null,dateReviewed:"February 26th 2019",datePrePublished:"April 11th 2019",datePublished:"February 19th 2020",book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251730",title:"Dr.",name:"Guilherme",middleName:"Fredeico Bernardo",surname:"Lenz E Silva",fullName:"Guilherme Lenz E Silva",slug:"guilherme-lenz-e-silva",email:"guilhermelenz@usp.br",position:null,institution:null},{id:"286148",title:"Dr.",name:"Camila",middleName:null,surname:"Viana",fullName:"Camila Viana",slug:"camila-viana",email:"camilaoviana@gmail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}},{id:"286149",title:"Dr.",name:"Fernanda",middleName:null,surname:"Vieira",fullName:"Fernanda Vieira",slug:"fernanda-vieira",email:"fevieira2001@gmail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}},{id:"286151",title:"M.Sc.",name:"Danieli",middleName:"Silva",surname:"Domingues",fullName:"Danieli Domingues",slug:"danieli-domingues",email:"danielisilva@ymail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}}]},book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12424",leadTitle:null,title:"X-linked Recessive Disorders",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"994eb9ea3fd11da881d369c3325b0d24",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12424.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 27th 2022",dateEndSecondStepPublish:"July 18th 2022",dateEndThirdStepPublish:"September 16th 2022",dateEndFourthStepPublish:"December 5th 2022",dateEndFifthStepPublish:"February 3rd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"21 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69186",title:"Introductory Chapter: Wearable Technologies for Healthcare Monitoring",doi:"10.5772/intechopen.89297",slug:"introductory-chapter-wearable-technologies-for-healthcare-monitoring",body:'\n
Wearable technologies are becoming increasingly popular as personal health system, enabling continuous real-time monitoring of human health on a daily basis and outside clinical environments [1, 2, 3]. The wearable device market is currently having a worldwide profit of around $34 billion and is expected to reach above $50 billion by 2022 owing to wearables’ ease of use, flexibility, and convenience [4]. Real-time monitoring, operational efficiency, and fitness tracking are reported as main factors supporting the market growth of health wearable devices such as smart watches, smart glasses, and other wellness gadgets, with expected $12.1 billion world market by 2021 [5].
\nIn the past decade, the recent progress in developing wearable devices was more focused on monitoring physical parameters, such as motion, respiration rate, etc. [3, 6, 7]. Today, there is a great interest in evolving wearable sensors capable of detecting chemical markers relevant to the status of health. Different approaches have been applied by researchers to design and fabricate wearable biosensors for remote monitoring of metabolites and electrolytes in body fluids including tear, sweat, and saliva [3, 8, 9, 10]. A great example would be the development of small and reliable sensors that would allow continuous glucose monitoring in diabetic patients [11, 12]. Diabetes is a chronic disease that can significantly impact on quality of life and reduce life expectancy. However, diabetics can stay one step ahead of the disease by monitoring their blood glucose level to minimize the complication of the disease by proper administration of insulin. Currently, blood analysis is the gold standard method for measuring the level of glucose in patient’s blood. However, this technique cannot be applied without penetrating the skin, which can be painful and inconvenient, and requires user obedience. Therefore, current research focuses on the development of portable and wearable devices capable of continuous glucose sensing through noninvasive detection techniques.
\nA majority of the recent studies in this field have targeted the area of personalized medicine, endeavoring to develop miniaturized wearable devices featuring real-time glucose monitoring in diabetic patients [12, 13, 14, 15]. One great example is contact lens which is an ideal wearable device that can be worn for hours without any pain or discomfort [16]. Integration of glucose biosensors into contact lenses has recently been demonstrated by several research groups [9, 17, 18]. However, the level of glucose in tear fluid is very low (0.1–0.6 mM), requiring a high sensitivity of the sensor for picking up the signal from expected chemical reaction [3, 19]. Yao et al. [16] have fabricated a contact lens with integrated sensor for continuous tear glucose monitoring with wireless communication system over a distance of several centimeters. The sensor demonstrated a fast response of 20 s with a minimum detection of less than 0.01 mM glucose, which is 10–60 times lower than glucose level in human tear [16].
\nIn addition to glucose, lactate is an important metabolite in the human body, which gets converted into l-lactate under hypoxic condition [20]. l-Lactate levels in tear fluid is about 1–5 mmol L−1, which might increase significantly due to some heath conditions including ischemia, inadequate tissue oxygenation, stroke, and different types of cancer [21]. Thomas et al. [22] demonstrated an invasive detection of lactate in human tear by integrating an amperometric lactate sensor with Pt working (WE) and reference (RE) electrodes as well as a counter electrode (CE) as current drain, on a polymer-based contact lens, measuring lactate in situ in human tears without any need for physical sampling [22].
\nVery recently, Park et al. [17] reported a novel approach for fabricating fully transparent and stretchable smart contact lens capable of wirelessly monitoring the level of glucose in the tears of diabetic patients. Figure 1 shows the layout of fabricated devices made of glucose sensors, wireless circuit, and display pixel on soft and transparent contact lens substrate (Figure 1a and b). The circuit diagram of the device is illustrated in Figure 1a, with radio frequency antenna receiving signals from a transmitter and a rectifier converting the signals to DC (Figure 1a and c). A continuous network of ultralong Ag nanofibers was used as stretchable electrodes for the antenna and interconnects (Figure 1d). In the case of any change in the concentration of glucose in tear, the sensor resistance changes resulting in the light-emitting diode (LED) pixel turning on or off. The device was tested in vitro using a live rabbit, providing substantial finding for smart contact lenses as one of the promising wearable devices in healthcare system [17].
\n(a) (i) Schematic illustration and (ii) operation of the soft, smart contact lens and (iii) the circuit diagram of the smart contact lens system. The soft, smart contact lens is composed of (b) a hybrid substrate; (c) functional devices including rectifier, LED, and glucose sensor; and (d) a transparent, stretchable conductor for antenna and interconnects [
In addition to tear, sweat electrolyte concentrations and blood serum are related [2, 8]. As one of the most readily accessible human biofluids, a great deal of information about the human body and its physical performance could be obtained via monitoring sweat electrolyte concentrations [23, 24]. Several groups have reported the key biomarkers in human sweat (e.g., sodium level, pH change, lactate concentration) relevant to human health and well-being, for monitoring athletic performance during sporting activities [25]. Jia et al. fabricated a skin-worn tattoo-based sensor for real-time monitoring of lactate in human sweat, offering substantial benefits for biomedical as well as sport applications [25]. In another approach, Curto et al. [26] fabricated a wearable and flexible microfluidic platform capable of monitoring changes in the sweat pH in real time. Anastasova et al. [27] developed a flexible microfluidic device for real-time monitoring of metabolite such as lactate as well as electrolytes such as pH and sodium in human sweat. Recently, Gao et al. [28] developed a flexible and wearable device (Figure 2) made of arrays of sensors for real-time monitoring of heavy metals, such as Zn, Cu, and Hg in human sweat. The device fabrication method is presented in Figure 2a, showing the deposition and stripping steps on microelectrodes. The sensing mechanism was based on an electrochemical detection of targeted heavy metals through four microelectrodes, including Au and Bi working electrodes, Ag reference electrode, and an Au counter electrode (Figure 2b and c). The fabricated device demonstrated high stability and selectivity toward heavy metals, providing a great platform to advancing the field of wearable biosensors for healthcare application, via monitoring the level of some heavy metals in human sweat [28]. A balanced level of Zn is necessary in the human body as a low and high Zn concentration can lead to pneumonia and liver damages, respectively [29, 30]. High level of Cu in the human body can lead to several diseases including Wilson’s disease and heart, kidney, and liver failures as well as brain diseases [31, 32]. The fabricated device demonstrated high stability and selectivity toward heavy metals, providing a great platform to advancing the field of wearable biosensors for healthcare application [28].
\n(a) A schematic showing the concept of deposition and stripping on microelectrodes. (b) A schematic showing the composition of the microsensor array. (c) Optical image of a flexible sensor array interfacing with a flexible printed circuit connector [
Saliva, as a great diagnostic fluid, can be used in personal health devices for real-time monitoring of chemical markers including salivary lactate analysis [33]. Chai et al. developed a saliva nanosensor with a radio-frequency identification tag, integrated into dental implants for detecting cardiac biomarkers in saliva and predicting close heart attack in patients suffering from cardiovascular diseases [34]. In another approach, an instrumented mouthguard was designed and fabricated by Kim et al. [35] for measuring salivary uric acid levels which could be a biomarker for several diseases including hyperuricemia, gout, physical stress, and renal syndrome. The fabricated device showed high selectivity and sensitivity to low level of uric acid as well as great stability during a 4-h operation period [35]. Mannoor et al. [36] developed a hybrid biosensor made of graphene layers printed onto water-soluble silk, for noninvasive detection of bacteria through body fluids including sweat and saliva. This graphene/silk hybrid device illustrated an extremely high sensitivity to bacteria in body fluid with detection limits down to a single bacterium [36]. In addition, the fabricated device provided the potential users with battery-free operation and wireless communication system via radio frequency [36]. Arakawa et al. [37] designed and fabricated a salivary sensor equipped with a wireless measurement system, embedded onto a mouthguard support, featuring a high sensitivity toward detection of glucose over a range of 5–1000 μmol L−1. The device demonstrated a great stability during a 5-h real-time glucose monitoring period in an artificial saliva with a phantom jaw [37]. In a similar approach, de Castro et al. [38] developed a microfluidic paper-based device integrated into a mouthguard, for continues monitoring of glucose and nitrite in human saliva. The saliva samples were collected from periodontitis and/or diabetes patients as well as healthy individuals. The fabricated device featured a low detection limit of 27 and 7 μmol L−1 for glucose and nitrite, respectively [38].
\nIn summary, there is a great potential for micro- and nanosensors’ integration into healthcare monitoring devices, developing new technologies for noninvasive detection of diseases in the human body. Flexible wearable devices offer promising capabilities in real-time monitoring of body fluids including tear, sweat, and saliva. However, more research is required to expand the use of wearable platforms in continuous analysis of body fluids, providing reliable real-time detection of targeting ions and proteins, among other complex analytes.
\nFires are one of the most serious accidents that can occur in underground mines due to the restricted ability to evacuate quickly from the confined excavations that can be filled quickly with smoke and noxious fumes [1]. The behavior of underground mine fires is difficult to predict due to their dependence on multiple factors that are closely related to the amount of flammable material, ignition location, ventilation system arrangement, time of occurrence, etc. [2]. These uncertainties associated with mine fire scenarios can have unexpected impacts on the evacuation process, firefighting, and rescue strategies and also further complicate the process of design and implementation of fire protection systems.
\nDeveloping effective evacuation plans in case of fire in underground mine is the most important and sometimes the only option for safe evacuation of all involved in the fire scenario. The wide range of possibilities in the process of improving the evacuation plans in case of fire has motivated many researchers to make new or to modify the existing methodologies or procedures for developing effective and optimal evacuation plans.
\nJi et al. [3] developed a visual model to simulate the evacuation process of miners to determine the evacuation time, exit flow rate, and evacuation path and show that simulation is effective technology to establish safe evacuation system. Chen et al. [4] developed 3D CFD model to reconstruct the laneway conveyor belt fire scenes under two ventilating conditions to investigate the influence of smoke movement on miner evacuation behaviors. Wang et al. [5] through example demonstrated the use of their proposed framework for human error risk analysis of coal mine emergency evacuation and also the method to evaluate the reliability of human safety barriers. Wu et al. [6] conducted emergency evacuation simulation and visualized analysis of underground mine water bursting disaster scene, to achieve the simulation of the dynamic process of individual or group behavior and to provide platform for rational evacuation under the situation of mine disaster. Adjiski et al. [7, 8, 9] completed many different manuscripts and projects in the field of simulation and modeling of fire scenarios and evacuation plans in underground mines.
\nTo the authors’ best knowledge and the extensive search of literature, a lack of methodologies and systems that focus on developing evacuation plans in case of fire in underground mines is shown. Due to the large number of factors from which the effective evacuation process depends, this field of research requires continuous upgrading to address all challenges and also to provide optimal evacuation routes that sometimes represent the only option for preventing loss of human lives.
\nThis chapter is an extension and upgrade of the previously published works from the same author and hopefully will contribute to the process that will improve the methodologies and systems for optimal fire evacuations in underground mines.
\nIn underground mines, a fire can occur wherever flammable material is found, but predicting it at all possible locations is practically impossible. So by analyzing this list of fire locations that have potential flammable materials, it is down to those places that have the highest risk of fire occurrence [10]. The process of conducting fire risk assessment is very straightforward and does not need to be considered in any further detail in this research.
\nWhat is new in this study is the proposal of methodology for quickly and efficiently locating and generating fire scenarios ready for simulation on the basis of which optimal evacuation plans will be developed.
\nTo identify possible locations for fire scenarios in underground mines, different approaches can be used, such as [2, 9]:
Fire risk assessment
Historical records of fire incidents in the mine
Analysis of production plans
Analysis of work processes and mechanization, etc.
The dynamics of mining activities to increase and fulfill production capacity generates a constant shift in production sites generally associated with mechanization that is likely to trigger a fire scenario. Due to this fact as a relevant indicator that realistically reflects and constantly updates, the list of possible fire locations would be a detailed analysis of daily or monthly production plans. This step involves a thorough analysis of the daily/monthly production plans that will detect any flammable materials mostly associated with the mechanization needed to achieve the required production capacity.
\nA case study of the “SASA”-R.N. Macedonia mine was used in order to conduct the necessary steps presented on Figure 1.
\nMethodology for developing and locating fire scenarios in underground mines.
The steps shown in Figure 1 are based on a simple analysis of the production plans that can detect all workplaces with the appropriate work cycle together with the related mechanization which is often associated with fire scenarios.
\nTo demonstrate the presented methodology, a 3D model of the underground ventilation network of the mine “SASA”-R.N. Macedonia is prepared on which all the necessary analysis and simulations will be performed (Figure 2). On the ventilation map, the possible fire locations along with the group of mineworkers identified using the proposed methodology on Figure 1 and also the possible exits from the underground mine are also marked.
\nVentilation map of the “SASA” mine with marked possible fire locations, group of mineworkers, and exits.
The process of modeling fire scenarios is closely related to the degree of uncertainty when it comes to the input data, which largely depends on the size of the fire itself [11, 12]. Examples of such input parameters that affect the fire models in underground mines are fire load, fire location, burn rate of materials, heat release rate, ventilation parameters, etc. Due to the stochastic nature of the input parameters related to the fire models, the appropriate results should be treated with caution.
\nFrom the large list of stochastic input parameters, the authors decided to elaborate only on the process of obtaining fire load inputs, which largely depends on the severity of the fire scenario itself. The process of modeling fire load inputs that are closely related to the inability to accurately determine the type and quantity of flammable material covered by a fire scenario is done using the Monte Carlo simulation technique. The reason for selecting and analyzing the fire load parameter is because of its immense contribution in generating the amount of toxic gases from which the complexity of the evacuation process depends. The reason for choosing the Monte Carlo simulation technique is because of its speed and simplicity of implementation and also the ability to generate a large amount of input data sampled randomly from their respective distributions [13, 14, 15].
\nThe process of developing this model that incorporates the Monte Carlo simulation technique associated with the normal distribution defined by mean = 50, and standard deviation = 15, has been previously explained by the same author, and the entire methodology and reasons for selecting the highlighted parameters can be found here [16].
\nWhat is new in this research is the development of a database that includes all fire scenarios in a predetermined location using the abovementioned methodology on Figure 1.
\nAll fire scenarios are analyzed in terms of impact from the fire load input parameters on the evacuation process, that is, how different distribution of combustible materials from the same mechanization (or other composition of combustible materials) will impact the evacuation process.
\nThe introduction of this database aims to select fire scenarios of the same type but with different fire load distribution, from which we can analyze the effects on the evacuation process. The results of this analysis can be used to improve the design of fire systems and evacuation plans and to test them for their effectiveness in different conditions.
\nFrom the simple analysis of the monthly production plan of “SASA” mine, we have extracted all work sites for ore exploitation and development of mining facilities with the appropriate work cycle together with the related mechanization. To present the methodology, we will only analyze fire scenarios generated by only one mechanization and present the optimal evacuation route for only one group of workers.
\nFor the purposes of this analysis, we will present the results of the fire scenarios generated by the mechanization Scooptram ST7, located at the possible fire location 3, from where we will simulate the fire scenarios and calculate the optimal evacuation route for group 1 (Figure 2).
\nThe inputs in the next steps of the proposed methodology are the approximate values of the total fire load for the selected mechanization. To simplify the process of determining this data, we used the technical manual of the Scooptram ST7, from which we approximated the quantities for the tire, hydraulic fluid, and diesel fuel which will be threatened as total fire load (Table 1). Regardless of the fact that the amount of diesel fuel is stochastic in nature, and is dependent on a number of factors, to simplify the model, we will consider it a known value, and we will treat it in a further expansion of the research.
\n\n | Tire [kg] | \nDiesel fuel [L] | \nHydraulic fluid [L] | \n
---|---|---|---|
Scooptram ST7 | \n238 * 4 (tires) = 952 | \n190 | \n111 | \n
Approximate fire load calculation for the fire scenario from Scooptram ST7.
Following the analysis of the approximate amount of fire load, the next step is to model them using the previously mentioned Monte Carlo simulation technique, along with the necessary data for its normal distribution defined by mean and standard deviation [16].
\nFor the purpose of this study using the Monte Carlo simulation model, we have generated 20 scenarios with different fire load distribution, which will give variations in the results from the fire scenarios, and we will analyze their impact on the evacuation process (Figure 3).
\nGenerated scenarios along with the corresponding fire load distribution obtained from the Monte Carlo simulation model.
The purpose of fire models is to describe fire characteristics, such as heat release rate, the burning rate of material, smoke, generating toxic gases, etc., and the results of simulating these models will be as good as the inputs [9, 17]. In order to create a relevant fire model in underground mines, it must be based on an accurate ventilation model. This interconnection and accuracy of the fire and ventilation models will depend on the movement of smoke and toxic gases through the mine facilities from which the evacuation process is based.
\nVarious case studies previously published from the same author are based on the modeling of fire scenarios in a number of different mine ventilation layouts [7, 8, 9].
\nFor this study, i.e., for simulating fire models across the 3D ventilation network, we used the VentSim software along with VentFIRE™ module that are interconnected because they belong to the same software package. With the help of VentSim software a 3D ventilation network with all working parameters is developed, while the VentFIRE™ module is used for simulation and calculation of the fire scenarios previously generated with the Monte Carlo simulation model.
\nThe theoretical and the working principle of the VentSim software together with the VentFIRE™ module can be found here [18]. Fire models in some cases are analyzed by CFD software for the purpose of comparison between the results obtained from simpler computational methods. Due to the size and complexity of the underground mines, it should be emphasized that CFD analysis can only be used to represent a small section of the mine. The results of such CFD analyses that require a large number of computations which will generate only results related to the immediate proximity of the fire scenario cannot realistically represent the full image generated by the fire model [8, 19]. The functionality of the methodology presented in this chapter is based on the modeling and simulation of fire scenarios whose results can fully represent each time interval of the movement of smoke and fire gases through the whole ventilation network from which the evacuation process entirely depends.
\nIn the process of modeling fire scenarios in VentFIRE™ module in addition to the fire load data presented in Figure 3, which was generated with the Monte Carlo simulation model, specific data are also required for each material which is presented in Table 2. For the purpose of providing this data, laboratory tests or fire databases containing such information may be used [20, 21].
\n\n | Tire | \nDiesel fuel | \nHydraulic fluid | \n
---|---|---|---|
Density [kg/m3] | \n1150 | \n832 | \n760 | \n
Simplified chemical hydrocarbon formula | \nC4H6\n | \nC12H23\n | \nC36H74\n | \n
Heat of combustion [MJ/kg] | \n44 | \n45 | \n48 | \n
Burning rate of material [kg/m2\n\n | \n0.062 | \n0.045 | \n0.039 | \n
O2 consumed [kg/kg] | \n3.62 | \n3.33 | \n3.57 | \n
Yield CO2 [kg/kg] | \n0.9 | \n3.2 | \n3.3 | \n
Yield CO min [kg/kg] | \n0.13 | \n0.019 | \n0.1 | \n
Yield CO max [kg/kg] | \n0.23 | \n0.21 | \n0.24 | \n
Yield soot [kg/kg] | \n0.1 | \n0.059 | \n0.1 | \n
Input fire characteristics data for the fire load.
The results of the fire models obtained by the VentFIRE™ module are in the form of a dynamic representation of the real-time fire progression and utilize a graphic visualization of the spread and concentration of combustion products and all the fire-related data throughout the ventilation system (Figure 4).
\nScreenshot from the fire scenario S-1 at 30 minutes from the fire ignition.
Monitoring points that are strategically placed throughout the ventilation network allow the extraction of data in the form of concentrations over time for all fire-related data. In this study, for the evaluation of the evacuation plans, only the CO concentration over time curve will be analyzed throughout the ventilation network. The results from the monitoring points will serve for realistic mapping of the CO inhalation throughout the evacuation route for anyone affected by the fire scenario. Figure 5 shows the CO concentration measured from the monitoring point at the location for the fire scenario S-1.
\nCO concentration over time curve at the fire scenario S-1 location.
\nFigure 6 shows the average values of CO concentration vs. total duration time for all fire scenario variants generated by the Monte Carlo simulation model, measured from the fire location.
\nAverage values of CO concentration at fire location and total time duration of the fire for all scenarios generated by the Monte Carlo simulation model.
These results highlight the impact of different fire load distribution, thus providing additional data for analysis during the process for determining the optimal evacuation routes.
\nStatistical underground mine fire evidence shows that most injuries and deaths are not caused by direct contact with the fire but by way of smoke and toxic gases inhalation [22].
\nWhile the fire scenario may be confined to a localized underground mine area, the smoke produced will rise and with the help of the ventilation system may spread rapidly through the mine.
\nThe spread of smoke and toxic gases through the underground mine network will cause difficulties in the evacuation process, and therefore, there is a need for an effective methodology for planning and developing of optimal evacuation routes.
\nPurser [23] gives extensive review of smoke and toxic gases hazards, including exposure thresholds that can cause incapacitation and even death.
\nIn underground mine fires, the most common asphyxiate is CO, and its effects of incapacitation depend from the gas concentrations and the durations of exposure.
\nThe evacuation management system must be designed and evaluated against a set of criteria to ensure safe evacuation of the mineworkers, which can be achieved by analyzing the fire environments using modeling and simulation.
\nThe proposed method in this book chapter involves the determination of accumulating exposure effect at regular discrete time increments to get the cumulative dosage in terms of FED for the total period of exposure. The exposure doses are calculated as a fraction of incapacitation at every time increment, and the value of FED = 1.0 represents the state of incapacitation in which mineworkers are incapable of completing their own evacuation.
\nPurser [24] suggests mathematical model for estimating toxic hazard from inhalation of CO from fire scenario in terms of time to incapacitation or death in form of FED and is given as follows:
\nwhere CO (carbon monoxide) is the average concentration (ppm) over the time increment Δt in minutes, K and D are constants which depend on the activity of the person (Table 3), %CO2 is the carbon dioxide concentration, and (20,9-%O2) is the oxygen vitiation over the time increment ∆t.
\nActivity | \nK | \nD | \n
---|---|---|
At rest | \n2,81945 \n | \n40 | \n
Light work | \n8,2925 \n | \n30 | \n
Heavy work | \n1,6585 \n | \n20 | \n
Values for different activity levels for the constants K and D.
One of the limitations of this model is the lack of a clear safety margin between the values of the FED in which the transition in the evacuation process from safe to unsafe zone begins. As previously stated, for the evacuation to be considered safe, the FED value should be <1. The question here is how much less than 1?
\nTo improve the methodology in this regard, additional model is introduced that will allow to link the entire evacuation timeline with another parameter in the form of COHb prediction in the blood as a result of the CO inhalation generated by the fire scenario.
\nThe overwhelming hazard in fires is the COHb buildup in the blood as a result of exposures to CO. Inhaled CO acts on the human body by competing with oxygen to combine with hemoglobin molecules in the blood, forming COHb rather than normal oxyhemoglobin (O2Hb) [25]. Exposure to a large concentration of CO is lethal, and the signs and symptoms produced are directly related to the percentage of COHb in the blood (Table 4).
\nCOHb (%) | \nClinical symptoms | \n
---|---|
0,4–1 | \nNormal value for nonsmokers | \n
2,5–4 | \nDecreased exercise performance in patients with angina | \n
5–10 | \nShortness of breath on vigorous exertion, possible tightness across forehead, statistically significant diminution of visual perception, manual dexterity, or ability to learn | \n
11–20 | \nAtypical dyspnea, throbbing headache, dizziness, nausea, confusion and decreased exercise tolerance, dilatation of skin vessels | \n
21–30 | \nSevere headache, pulsation in sides of head, impaired thinking, disturbed vision, fainting, easy fatigability, disturbed judgment | \n
31–40 | \nSevere headache, dizziness, respiratory failure, coma, intermittent convulsions | \n
41–50 | \nBrain damage, lethargy, seizures, syncope, death from severe cellular hypoxia if exposure is prolonged | \n
51–60 | \nSame as above, coma, convulsions, Cheyne-Stokes respiration | \n
>70 | \nSlowing and stopping of respiration and death within short period | \n
Approximate clinical symptoms associated with the blood COHb (%) level [26].
The most widely used mathematical model (Coburn-Forster-Kane (CFK)) was implemented in order to predict COHb (%) blood level from CO exposure on mineworkers during the underground mine fire scenario.
\nPrevious research by several authors validated both linear and nonlinear CFK model against observations made on subjects exposed to variable CO concentrations, and the consensus is that the model predictions works quite well. The CFK nonlinear model is given by the following Equation [27]:
\nwhere:
\n\n\n
\n\n
\n\n
\n\n
\n\n
\n\n
\n\n
\n\n
\n\n
\n\n
\n\n
\n\n
The limitations in the CFK model are located with the physiological variables needed as input to the model which are difficult to measure, such as blood volume, endogenous production of CO, and the pulmonary diffusing capacity [28].
\nFor the purpose of this study, an Excel model based on the CFK equation is built to predict the individual’s COHb formation (%), as a result from CO inhalation. For simplification purposes the abovementioned physiological variables are set as default values (as defined in the equation).
\nThe proposed model for predicting COHb (%) with appropriate clinical symptoms (Table 4) connected with the FED model can better determine the threshold in which the evacuation will be considered safe.
\nTo be able to calculate the optimal evacuation routes in underground mines, details about the tunnels’ parameters should be provided. Each fire scenario generates factors that influence the complexity and the speed of the evacuation itself.
\nBased on extensive literature review, two factors are located that have most influence on the evacuation speed, and these factors are generalized in the form of tunnel slope and smoke visibility [7, 29, 30, 31]. The model framework is shown in Figure 7.
\nMethodology for implementation of the evacuation speed influence model.
These factors that influence mineworkers’ escape speed can increase the exposure time from the fire scenario and thus present very important factors to be considered in the process of determining optimal evacuation routes.
\nWe defined the mineworkers’ normal evacuation speed by \n
The tunnel slope influences the mineworkers’ evacuation (and also walking) speed, and the greater the slope the more influence it will have on the process.
\nThe tunnel slope influence under climbing situation is given by the following Equation [31]:
\nwhere \n
When mineworkers pass down slope tunnels, we will assume no influence on their speed, and the model will treat this as normal evacuation speed \n
The smoke generated by the fire scenario is a major factor in determining tunnel visibility. This visibility factor has important effects on the evacuation speed of the mineworkers who are escaping.
\nBased on the reviewed literature, two threshold values hold a central function during an evacuation in a smoke-filled environment [30, 32]. The first threshold value is the visibility level at which evacuees in general can be expected to start reducing their evacuation speed. This value based on the reviewed experiments of the data presented from the literature was set to 3 meters as corresponding visibility threshold value [30, 33, 34].
\nThe second threshold value is the visibility level at which the mineworkers can be assumed to be evacuating with their slowest speed. Based on the reviewed literature, the slowest speed during an evacuation in a smoke-filled environment is similar to movement in complete darkness which can be expected to be about 0,2 m/s [30]. In this analysis, the value for the slowest speed of evacuation will also be applied when the mineworkers will move through the evacuation stairs in the ventilation raise.
\nPractically, in the process of calculating the reduction of evacuation speed based on the smoke visibility level, the model is set in the following way:
All individuals in the group are assumed to be evacuating with the same speed.
Visibility levels >3 m: mineworkers’ evacuation speed is represented by 1,2 m/s
Visibility levels ≤3 m: mineworkers’ evacuation speed is represented by a relative reduction of 0,34 m/s per meter visibility in a smoke-filled environment down to the previously defined minimum speed of 0,2 m/s.
The correlation in this model is described by the following equation and by Figure 8 [30]:
\nRepresentation of relative reduction of speed in a smoke-filled environment according to the model.
where \n
Determining the optimal routes for evacuation in the case of underground mine fire makes the difference between life and death. In this book chapter, we established a methodology for calculating the optimal routes for evacuation in case of underground mine fire based on simulated scenarios. The methodology shown in Figure 9 provides the necessary steps to assess the potential fire scenarios and to generate the necessary data on the basis of which all evacuation routes will be evaluated and the optimization process implemented.
\nProposed methodology implementation framework.
The methodology consists of three parts, i.e., developing underground mine fire scenarios, modeling and simulation of fire scenarios, and determining the optimal evacuation routes based on the generated results. The parts of the presented methodology and the procedures for their implementation are presented in detail above.
\nFor the purpose of this study, a case study of the “SASA”-R.N. Macedonia mine was used for determining the optimal routes for evacuations.
\nTo present all the steps that the methodology is consists of, we will present the results obtained from only one fire location from which we will calculate the optimal evacuation routes for only one group of workers for all of the 20 fire scenarios generated by the Monte Carlo simulation model.
\nThe results from the Monte Carlo simulation (Figure 3) are used as input fire load data for modeling and simulating fire scenarios in the VentFIRE™ module through the mine ventilation network (Figure 2). Following the simulation of all 20 fire scenarios from the same fire location, all possible evacuation routes for group 1 have been identified (Figure 10).
\nIdentification of possible evacuation routes for group 1 for all generated fire scenarios.
In the process of calculating all the parameters needed to determine the optimal evacuation routes, we will take into account the self-contained self-rescuer (SCSR). The use of SCSR in underground mining is a legal obligation in almost all countries around the world, so its introduction into the process of determining the optimal evacuation routes is a very important factor. The SCSR is a portable device that is used in underground mines to provide breathable air for the mineworkers when the surrounding atmosphere is filed with contaminants after emergency situation.
\nExtensive research on fire reports provides the fact that sometimes this first line of defense from smoke inhalation in the form of SCSR fails to function properly due to technical problems or due to insufficient training of the mineworkers [35]. Because of this fact in this study, we will make two parallel analyses to calculate the optimal evacuation routes in which we will introduce the use of a SCSR with a capacity of 30 minutes and the possibility of its non-functionality. By introducing this parameter in the form of functionality and non-functionality of SCSR, we can provide a detailed analysis that can predict the evacuation routes under different conditions.
\nTo elaborate on the proposed methodology, we will present in details the results of scenario S-1.
\nAfter the development of the underground mine fire scenarios and their modeling and simulation inside the VentFIRE™ module, all the necessary data for the optimization process is gathered.
\nFor the purpose of this analysis, an average evacuation speed of 1,2 m/s is assumed. The average evacuation speed will be affected by the tunnel slope and smoke visibility.
\nTo calculate the impact on the average speed inside the evacuation process, An Excel model was built based on Eqs. 9 and 10. The results from the simulated fire scenario S-1, which are required as inputs for the FED, COHb, and route calculation models, are shown in Tables 5–8.
\nPosition | \nSection length [m] | \nVisibility [m] | \nSlope [o] | \nReduction of evacuation speed (from visibility and slope) [m/s] | \nAverage CO (ppm) | \nEvacuation time in section [s] | \nCumulative time [s] | \n
---|---|---|---|---|---|---|---|
P1-P2 | \n667 | \n5 | \n0 | \n1,2 | \n448 | \n556 | \n556 | \n
P2-P3 | \n232 | \n2 | \n6 | \n0,4 | \n881 | \n580 | \n1136 | \n
P3-P4 | \n495 | \n4,6 | \n6,1 | \n0,3 | \n514 | \n1650 | \n2786 | \n
P4-P5 | \n524 | \n12 | \n5,71 | \n0,29 | \n480 | \n1807 | \n4593 | \n
P5-P6 | \n199 | \n25 | \n5,8 | \n0,55 | \n0 | \n362 | \n4955 | \n
P6-P7 | \n792 | \n25 | \n1 | \n0,66 | \n0 | \n1200 | \n6155 | \n
Results for group 1, evacuated along route 1 for scenario S-1.
Position | \nSection length [m] | \nVisibility [m] | \nSlope [o] | \nReduction of evacuation speed (from visibility and slope) [m/s] | \nAverage CO (ppm) | \nEvacuation time in section [s] | \nCumulative time [s] | \n
---|---|---|---|---|---|---|---|
P1-P2 | \n347 | \n5,1 | \n0 | \n1,2 | \n448 | \n289 | \n289 | \n
P2-P3 | \n80 | \n5,3 | \n75 | \n0,2 | \n450 | \n400 | \n689 | \n
P3-P4 | \n135 | \n4,7 | \n1,4 | \n1 | \n524 | \n135 | \n824 | \n
P4-P5 | \n524 | \n12 | \n5,71 | \n0,29 | \n480 | \n1807 | \n2631 | \n
P5-P6 | \n199 | \n25 | \n5,8 | \n0,55 | \n0 | \n362 | \n2993 | \n
P6-P7 | \n797 | \n25 | \n1 | \n0,65 | \n0 | \n1226 | \n4219 | \n
Results for group 1, evacuated along route 2 for scenario S-1.
Position | \nSection length [m] | \nVisibility [m] | \nSlope [o] | \nReduction of evacuation speed (from visibility and slope) [m/s] | \nAverage CO (ppm) | \nEvacuation time in section [s] | \nCumulative time [s] | \n
---|---|---|---|---|---|---|---|
P1-P2 | \n667 | \n5 | \n0 | \n1,2 | \n448 | \n556 | \n556 | \n
P2-P3 | \n340 | \n2 | \n6 | \n0,34 | \n881 | \n1000 | \n1556 | \n
P3-P4 | \n80 | \n25 | \n75 | \n0,2 | \n0 | \n400 | \n1956 | \n
P4-P5 | \n462 | \n25 | \n0 | \n1,2 | \n0 | \n385 | \n2341 | \n
P5-P6 | \n1689 | \n25 | \n0 | \n1,2 | \n0 | \n1408 | \n3748 | \n
Results for group 1, evacuated along route 3 for scenario S-1.
Position | \nSection length [m] | \nVisibility [m] | \nSlope [o] | \nReduction of evacuation speed (from visibility and slope) [m/s] | \nAverage CO (ppm) | \nEvacuation time in section [s] | \nCumulative time [s] | \n
---|---|---|---|---|---|---|---|
P1-P2 | \n461 | \n5,1 | \n0 | \n1,2 | \n448 | \n384 | \n384 | \n
P2-P3 | \n80 | \n14 | \n75 | \n0,2 | \n344 | \n400 | \n784 | \n
P3-P4 | \n426 | \n22 | \n0 | \n1,2 | \n0 | \n355 | \n1139 | \n
P4-P5 | \n671 | \n25 | \n0 | \n1,2 | \n0 | \n559 | \n1698 | \n
P5-P6 | \n1689 | \n25 | \n0 | \n1,2 | \n0 | \n1408 | \n3106 | \n
Results for group 1, evacuated along route 4 for scenario S-1.
In the calculation process for the CO exposure over the entire evacuation route, we will include the SCSR in its two previously mentioned forms. To calculate the exposure from CO for each of the possible evacuation routes, the results shown in Tables 5–8 are used as inputs to the FED and the COHb model. The results from the CO exposure based on FED and COHb models build inside Excel are shown in Figures 11–14.
\nResults from the FED and COHb models, for inhalation of CO during evacuation along the route 1.
Results from the FED and COHb models, for inhalation of CO during evacuation along the route 2.
Results from the FED and COHb models, for inhalation of CO during evacuation along the route 3.
Results from the FED and COHb models, for inhalation of CO during evacuation along the route 4.
All of the gathered results from the models are stored and arranged in the database. The next step of the proposed methodology is to filter the results inside the database through a route calculation model that will sort out all the evacuation routes according to the level of CO exposure, i.e., the results obtained from the FED and COHb model.
\nThe purpose of the route calculation model is to generate a list of all evacuation routes, which will include the data for route length and cumulative CO exposure in the form of a FED through the evacuation process.
\nThe first step in the optimization model is to group the evacuation routes into five categories:
Group 1 of evacuation routes with a value of FED = 0
Group 2 of evacuation routes with a value of FED>0 ≤ 0,5
Group 3 of evacuation routes with a value of FED>0,5 ≤ 0,8
Group 4 of evacuation routes with a value of FED>0,8 ≤ 1
Group 5 of evacuation routes with a value of FED>1
The values of the FED parameter on which the grouping is based are determined using the COHb model from which COHb (%) concentrations in the blood are predicted for the same CO exposure which in turn are related to the clinical symptoms presented in the Table 4.
\nAfter grouping the routes into the abovementioned categories, they are filtered through a decision support process that applies the parameter optimization objectives. The optimization model is set so that there is no data in the first group to continue to the next one until the last group is reached.
\nFor the routes in the first group in which the level is set to FED = 0, the model will select the shortest route in length which will represent the optimal evacuation route.
\nThe same optimization process is also set for the second and the third group in which the level is set to FED>0 ≤ 0,5 and FED>0,5 ≤ 0,8 accordingly. The reason why this three groups are separated is to give an advantage in the optimization process to the routes with less CO exposure than on those with shorter lengths.
\nFor the routes in the fourth group in which the level is set to FED > 0,8 ≤ 1, the model will select the route with the minimum CO exposure presented in the form of FED. In this group, clinical symptoms of CO exposure predict conditions that can cause difficulties during the evacuation process, and because of this, the optimization is set based on the FED parameter with minimal value. The evacuation routes selected in this group should be treated with caution, and they should be thoroughly analyzed for opportunities to install additional evacuation support systems in certain critical locations.
\nFor the routes in the fifth group in which the level is set to FED > 1, the model will treat all routes as unsafe for evacuation. If the proposed methodology in this study does not generate data which will fall into the first four groups, then an additional analysis should be performed using the developed ventilation model that shows the movement of smoke and toxic gases through the underground mining facilities. These results could serve to plan the action strategy for the rescue teams or for a suggestion of additional systems that could help in the evacuation process for those affected by the fire scenario.
\n\nTable 9 shows the results from the optimization methodology for scenario S-1 in which the routes are sorted by their ranking, taking into account the use of a SCSR.
\n\n | FED | \nRoute length [m] | \n
---|---|---|
Route 3 (rank 1) | \n0 | \n3282 | \n
Route 4 (rank 2) | \n0 | \n3327 | \n
Route 2 (rank 3) | \n0,24 | \n2082 | \n
Route 1 (rank 4) | \n0,84 | \n2912 | \n
Ranked evacuation routes from the optimization process for scenario S-1 with the use of a SCSR.
Considering the use of a SCSR, the optimal evacuation route for scenario S-1 is route 3 which has the best rating according to the present methodology.
\n\nTable 10 shows the results from the optimization methodology taking into account the possibility of malfunction of the SCSR for scenario S-1.
\n\n | FED | \nRoute length [m] | \n
---|---|---|
Route 4 (rank 1) | \n0,18 | \n3327 | \n
Route 2 (rank 2) | \n0,74 | \n2082 | \n
Route 3 (rank 3) | \n0,69 | \n3282 | \n
Route 1 (rank 4) | \n1,5 | \n2912 | \n
Ranked evacuation routes from the optimization process for scenario S-1 without the use of SCSR.
The optimal evacuation route for scenario S-1 in which we assumed the malfunction of the SCSR is route 4 which according to the present methodology has the best rating.
\n\nTable 11 Shows every optimal evacuation route for group 1 based on the fire scenarios generated by the Monte Carlo simulation model. As previously mentioned the simulation process in the VentFIRE™ module is done from the same fire location for each of the generated scenarios.
\n\n | Optimal route with SCSR | \nOptimal route without the use of SCSR | \n||||
---|---|---|---|---|---|---|
Scenario S-2 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 2 | \nFED = 0,421 | \nLength = 2082 m | \n
Scenario S-3 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,115 | \nLength = 3327 m | \n
Scenario S-4 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,112 | \nLength = 3327 m | \n
Scenario S-5 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,175 | \nLength = 3327 m | \n
Scenario S-6 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,168 | \nLength = 3327 m | \n
Scenario S-7 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 2 | \nFED = 0,439 | \nLength = 2082 m | \n
Scenario S-8 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 2 | \nFED = 0,432 | \nLength = 2082 m | \n
Scenario S-9 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,165 | \nLength = 3327 m | \n
Scenario S-10 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,161 | \nLength = 3327 m | \n
Scenario S-10 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,159 | \nLength = 3327 m | \n
Scenario S-11 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,174 | \nLength = 3327 m | \n
Scenario S-12 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,163 | \nLength = 3327 m | \n
Scenario S-13 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 2 | \nFED = 0,448 | \nLength = 2082 m | \n
Scenario S-14 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,170 | \nLength = 3327 m | \n
Scenario S-15 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,169 | \nLength = 3327 m | \n
Scenario S-16 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,162 | \nLength = 3327 m | \n
Scenario S-17 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,156 | \nLength = 3327 m | \n
Scenario S-18 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,171 | \nLength = 3327 m | \n
Scenario S-19 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,144 | \nLength = 3327 m | \n
Scenario S-19 | \nRoute 3 | \nFED = 0 | \nLength = 3282 m | \nRoute 4 | \nFED = 0,173 | \nLength = 3327 m | \n
Optimal evacuation route for every fire scenario generated by the Monte Carlo simulation model.
A methodology for determining optimal evacuation routes in case of underground mine fire has been developed based on the results from simulated fire scenarios. The presented methodology can be consistent with the actual situation of the mine because the development of the fire scenarios is based on the risk analysis generated from the current production plans, and the simulation of the developed scenarios are performed on the ventilation network from the mine.
\nTo address the stochastic nature of the fire scenarios, the methodology implements the Monte Carlo simulation technique to emphasize the fact related to the inability to accurately determine the input parameters for the fire modeling process. From the large list of stochastic input parameters that can have a noticeable effect on the fire scenarios itself, the authors decided to elaborate only on the process of obtaining fire load inputs, from which the size of the fire depends and thus the amount of generated toxic gases. The results of the proposed methodology point to the fact that by treating the stochastic input parameters presented in this chapter in the form of a fire load, the generated conditions influenced the process of determining the optimal evacuation routes.
\nThe Monte Carlo simulation model with the above-defined parameters which follows the normal distribution is implemented on a case study from “SASA”-R.N. Macedonia mine. After the analysis with the proposed methodology, a fire scenario generated by the mechanization Scooptram ST7 is located which represents the total fire load. The stochastic model is set to generate 20 variations from the fire load that are treated as separate scenarios in the process of determining the optimal evacuation routes.
\nThe process of modeling and simulation of the generated fire scenarios is done with the VentFIRE™ module which uses the ventilation network to calculate the movement of the smoke and toxic gases from which the evacuation process depends.
\nThe fire parameters obtained from the simulated scenarios are used to calculate the optimal evacuation routes for each of the generated scenarios.
\nThe proposed methodology as the main factors influencing the evacuation process treats the inhalation of CO through the evacuation route presented in the form of FED and COHb, factors in the form of tunnel slope, and smoke visibility that affect the speed of evacuation and also the SCSR.
\nIn the analysis presented in this chapter, differences in optimal routes for evacuation were located only in the conditions of SCSR malfunction. The results presented in Table 11 highlight the importance of this additional analysis that is possible only by creating multiple variants of one fire scenario which is actually the underlying purpose of the proposed methodology. In the conditions of using the SCSR, the proposed methodology has determined and confirmed route 3 as optimal for evacuation in all variants of the generated fire scenarios. The results obtained from the conditions of SCSR malfunction located the changes in the optimal evacuation between routes 2 and 4 depending on the variable conditions that determined all the fire scenarios. This approach of analyzing fire scenarios offers certainty in the process of confirming the optimal route as well as locating possibilities for its change depending on the variable fire conditions.
\nIn order to further improve the methodology, we need to expand our research by introducing the other stochastic variables that may have impact on the evacuation process such as the physical status of mineworkers that is related to age, gender, exercise ability, and response ability.
\nThis research provides a convenient methodology for improving the accuracy of determining the optimal evacuation routes which significantly can increase the safety in underground mines.
\nThis work was financially supported by the Faculty of Natural and Technical Sciences—Mining Engineering, “Goce Delchev” University, Shtip, R.N. Macedonia.
\n"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13388},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33638}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11867",title:"Echocardiography",subtitle:null,isOpenForSubmission:!0,hash:"d9159ce31733bf78cc2a79b18c225994",slug:null,bookSignature:"Dr. Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",editedByType:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11798",title:"Listeria monocytogenes - Recent Developments and Advances",subtitle:null,isOpenForSubmission:!0,hash:"678ca4185133438014939804bf8a05e6",slug:null,bookSignature:"Prof. Cristina Saraiva, Dr. Sónia Saraiva and Prof. Alexandra Esteves",coverURL:"https://cdn.intechopen.com/books/images_new/11798.jpg",editedByType:null,editors:[{id:"226197",title:"Prof.",name:"Cristina",surname:"Saraiva",slug:"cristina-saraiva",fullName:"Cristina Saraiva"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11876",title:"Esophageal Surgery - Current Principles and Advances",subtitle:null,isOpenForSubmission:!0,hash:"9592bd7a6a3809cdc6a66f6100233aaa",slug:null,bookSignature:"M.D. Andrea Sanna",coverURL:"https://cdn.intechopen.com/books/images_new/11876.jpg",editedByType:null,editors:[{id:"327116",title:"M.D.",name:"Andrea",surname:"Sanna",slug:"andrea-sanna",fullName:"Andrea Sanna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11909",title:"Recent Advances in Gas Chromatography",subtitle:null,isOpenForSubmission:!0,hash:"73aa61a2aa0d9fb663280189a51e7fde",slug:null,bookSignature:"Dr. Serban Moldoveanu and Prof. Victor David",coverURL:"https://cdn.intechopen.com/books/images_new/11909.jpg",editedByType:null,editors:[{id:"91597",title:"Dr.",name:"Serban",surname:"Moldoveanu",slug:"serban-moldoveanu",fullName:"Serban Moldoveanu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11437",title:"Social Media - Risks and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"000e31f2e2f7295805e9a3864158ad63",slug:null,bookSignature:"Dr. Shafizan Mohamed and Dr. Shazleen Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/11437.jpg",editedByType:null,editors:[{id:"302450",title:"Associate Prof.",name:"Shafizan",surname:"Mohamed",slug:"shafizan-mohamed",fullName:"Shafizan Mohamed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:45},{group:"topic",caption:"Environmental Sciences",value:12,count:6},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:74},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:6},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:280},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"125",title:"Earth Science",slug:"earth-science",parent:{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"},numberOfBooks:37,numberOfSeries:0,numberOfAuthorsAndEditors:906,numberOfWosCitations:1430,numberOfCrossrefCitations:894,numberOfDimensionsCitations:2234,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"125",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8485",title:"Weather Forecasting",subtitle:null,isOpenForSubmission:!1,hash:"eadbd6f9c26be844062ce5cd3b3eb573",slug:"weather-forecasting",bookSignature:"Muhammad Saifullah",coverURL:"https://cdn.intechopen.com/books/images_new/8485.jpg",editedByType:"Edited by",editors:[{id:"320968",title:"Associate Prof.",name:"Muhammad",middleName:null,surname:"Saifullah",slug:"muhammad-saifullah",fullName:"Muhammad Saifullah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio",middleName:null,surname:"Lousada",slug:"sergio-lousada",fullName:"Sérgio Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9879",title:"Geochemistry",subtitle:null,isOpenForSubmission:!1,hash:"aebccc07f8ffdf8a0043efc454024292",slug:"geochemistry",bookSignature:"Miloš René, Gemma Aiello and Gaafar El Bahariya",coverURL:"https://cdn.intechopen.com/books/images_new/9879.jpg",editedByType:"Edited by",editors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9864",title:"Hydrology",subtitle:null,isOpenForSubmission:!1,hash:"02925c63436d12e839008c793a253310",slug:"hydrology",bookSignature:"Theodore V. Hromadka II and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9864.jpg",editedByType:"Edited by",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8974",title:"Current Topics in Tropical Cyclone Research",subtitle:null,isOpenForSubmission:!1,hash:"3bf6428d456edbadac595a8417045865",slug:"current-topics-in-tropical-cyclone-research",bookSignature:"Anthony Lupo",coverURL:"https://cdn.intechopen.com/books/images_new/8974.jpg",editedByType:"Edited by",editors:[{id:"18289",title:"Prof.",name:"Anthony",middleName:"Rocco",surname:"Lupo",slug:"anthony-lupo",fullName:"Anthony Lupo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8007",title:"Estuaries and Coastal Zones",subtitle:"Dynamics and Response to Environmental Changes",isOpenForSubmission:!1,hash:"ec140486c42d62e69ef428e6cf71b6d7",slug:"estuaries-and-coastal-zones-dynamics-and-response-to-environmental-changes",bookSignature:"Jiayi Pan and Adam Devlin",coverURL:"https://cdn.intechopen.com/books/images_new/8007.jpg",editedByType:"Edited by",editors:[{id:"179303",title:"Prof.",name:"Jiayi",middleName:null,surname:"Pan",slug:"jiayi-pan",fullName:"Jiayi Pan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7606",title:"Coastal and Marine Environments",subtitle:"Physical Processes and Numerical Modelling",isOpenForSubmission:!1,hash:"dd1227726856d58b88116129b0de8384",slug:"coastal-and-marine-environments-physical-processes-and-numerical-modelling",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/7606.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6982",title:"Arctic Studies",subtitle:"A Proxy for Climate Change",isOpenForSubmission:!1,hash:"6545831965fb2dcef181c46d18fed1ba",slug:"arctic-studies-a-proxy-for-climate-change",bookSignature:"Masaki Kanao, Yoshihiro Kakinami and Genti Toyokuni",coverURL:"https://cdn.intechopen.com/books/images_new/6982.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8476",title:"Earth Crust",subtitle:null,isOpenForSubmission:!1,hash:"ebef9911d87b6db8cb55dad47250a6be",slug:"earth-crust",bookSignature:"Muhammad Nawaz, Farha Sattar and Sandeep Narayan Kundu",coverURL:"https://cdn.intechopen.com/books/images_new/8476.jpg",editedByType:"Edited by",editors:[{id:"269790",title:"Dr.",name:"Muhammad",middleName:null,surname:"Nawaz",slug:"muhammad-nawaz",fullName:"Muhammad Nawaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7767",title:"Rainfall",subtitle:"Extremes, Distribution and Properties",isOpenForSubmission:!1,hash:"9f9b3b7d86cb46e2ce3653587805475d",slug:"rainfall-extremes-distribution-and-properties",bookSignature:"John Abbot and Andrew Hammond",coverURL:"https://cdn.intechopen.com/books/images_new/7767.jpg",editedByType:"Edited by",editors:[{id:"225780",title:"Dr.",name:"John",middleName:null,surname:"Abbot",slug:"john-abbot",fullName:"John Abbot"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7484",title:"Topics in Hydrometerology",subtitle:null,isOpenForSubmission:!1,hash:"8d7e790445c691226a5778a32abd15cf",slug:"topics-in-hydrometerology",bookSignature:"Theodore V Hromadka II and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/7484.jpg",editedByType:"Edited by",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6836",title:"Groundwater",subtitle:"Resource Characterisation and Management Aspects",isOpenForSubmission:!1,hash:"7cad088c49e61c898abc7d7511de42f6",slug:"groundwater-resource-characterisation-and-management-aspects",bookSignature:"Modreck Gomo",coverURL:"https://cdn.intechopen.com/books/images_new/6836.jpg",editedByType:"Edited by",editors:[{id:"185450",title:"Dr.",name:"Modreck",middleName:null,surname:"Gomo",slug:"modreck-gomo",fullName:"Modreck Gomo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:37,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"27305",doi:"10.5772/39363",title:"Water Stress in Plants: Causes, Effects and Responses",slug:"water-stress-in-plants-causes-effects-and-responses",totalDownloads:28493,totalCrossrefCites:71,totalDimensionsCites:170,abstract:null,book:{id:"911",slug:"water-stress",title:"Water Stress",fullTitle:"Water Stress"},signatures:"Seyed Y. S. Lisar, Rouhollah Motafakkerazad, Mosharraf M. Hossain and Ismail M. M. Rahman",authors:[{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman"}]},{id:"53211",doi:"10.5772/66416",title:"Biofloc Technology (BFT): A Tool for Water Quality Management in Aquaculture",slug:"biofloc-technology-bft-a-tool-for-water-quality-management-in-aquaculture",totalDownloads:16960,totalCrossrefCites:64,totalDimensionsCites:148,abstract:"Biofloc technology (BFT) is considered the new “blue revolution” in aquaculture. Such technique is based on in situ microorganism production which plays three major roles: (i) maintenance of water quality, by the uptake of nitrogen compounds generating in situ microbial protein; (ii) nutrition, increasing culture feasibility by reducing feed conversion ratio (FCR) and a decrease of feed costs; and (iii) competition with pathogens. The aggregates (bioflocs) are a rich protein-lipid natural source of food available in situ 24 hours per day due to a complex interaction between organic matter, physical substrate, and large range of microorganisms. This natural productivity plays an important role recycling nutrients and maintaining the water quality. The present chapter will discuss some insights of the role of microorganisms in BFT, main water quality parameters, the importance of the correct carbon-to-nitrogen ratio in the culture media, its calculations, and different types, as well as metagenomics of microorganisms and future perspectives.",book:{id:"5355",slug:"water-quality",title:"Water Quality",fullTitle:"Water Quality"},signatures:"Maurício Gustavo Coelho Emerenciano, Luis Rafael Martínez-\nCórdova, Marcel Martínez-Porchas and Anselmo Miranda-Baeza",authors:[{id:"146126",title:"Dr.",name:"Maurício Gustavo Coelho",middleName:null,surname:"Emerenciano",slug:"mauricio-gustavo-coelho-emerenciano",fullName:"Maurício Gustavo Coelho Emerenciano"},{id:"186970",title:"Prof.",name:"Marcel",middleName:null,surname:"Martínez-Porchas",slug:"marcel-martinez-porchas",fullName:"Marcel Martínez-Porchas"},{id:"186971",title:"Prof.",name:"Anselmo",middleName:null,surname:"Miranda-Baeza",slug:"anselmo-miranda-baeza",fullName:"Anselmo Miranda-Baeza"},{id:"195101",title:"Dr.",name:"Luis Rafael",middleName:null,surname:"Martínez-Córdoba",slug:"luis-rafael-martinez-cordoba",fullName:"Luis Rafael Martínez-Córdoba"}]},{id:"53194",doi:"10.5772/66561",title:"Impact of Wastewater on Surface Water Quality in Developing Countries: A Case Study of South Africa",slug:"impact-of-wastewater-on-surface-water-quality-in-developing-countries-a-case-study-of-south-africa",totalDownloads:7735,totalCrossrefCites:67,totalDimensionsCites:137,abstract:"Wastewater effluents are major contributors to a variety of water pollution problems. Most cities of developing countries generate on the average 30–70 mm3 of wastewater per person per year. Owing to lack of or improper wastewater treatment facilities, wastewater and its effluents are often discharged into surface water sources, which are receptacles for domestic and industrial wastes, resulting to pollution. The poor quality of wastewater effluents is responsible for the degradation of the receiving surface water body. Wastewater effluent should be treated efficiently to avert adverse health risk of the user of surface water resources and the aquatic ecosystem. The release of raw and improperly treated wastewater onto water courses has both short‐ and long‐term effects on the environment and human health. Hence, there should be proper enforcement of water and environmental laws to protect the health of inhabitants of both rural and urban communities. This study reports major factors responsible for the failing state of wastewater treatment facilities in developing countries, which includes poor operational state of wastewater infrastructure, design weaknesses, lack of expertise, corruption, insufficient funds allocated for wastewater treatment, overloaded capacities of existing facilities, and inefficient monitoring for compliance, among others.",book:{id:"5355",slug:"water-quality",title:"Water Quality",fullTitle:"Water Quality"},signatures:"Joshua N. Edokpayi, John O. Odiyo and Olatunde S. Durowoju",authors:[{id:"187867",title:"Dr.",name:"Joshua",middleName:null,surname:"Edokpayi",slug:"joshua-edokpayi",fullName:"Joshua Edokpayi"},{id:"189690",title:"Prof.",name:"John",middleName:null,surname:"Odiyo",slug:"john-odiyo",fullName:"John Odiyo"},{id:"194678",title:"Dr.",name:"Olatunde",middleName:"Samod",surname:"Durowoju",slug:"olatunde-durowoju",fullName:"Olatunde Durowoju"}]},{id:"52639",doi:"10.5772/65744",title:"Metals Toxic Effects in Aquatic Ecosystems: Modulators of Water Quality",slug:"metals-toxic-effects-in-aquatic-ecosystems-modulators-of-water-quality",totalDownloads:4316,totalCrossrefCites:21,totalDimensionsCites:51,abstract:"The topic of this work was based on the assessment of aquatic systems quality related to the persistent metal pollution. The use of aquatic organisms as bioindicators of metal pollution allowed the obtaining of valuable information about the acute and chronic toxicity on common Romanian aquatic species and the estimation of the environment quality. Laboratory toxicity results showed that Cd, As, Cu, Zn, Pb, Ni, Zr, and Ti have toxic to very toxic effects on Cyprinus carpio, and this observation could raise concerns because of its importance as a fishery resource. The benthic invertebrates’ analysis showed that bioaccumulation level depends on species, type of metals, and sampling sites. The metal analysis from the shells of three mollusk species showed that the metals involved in the metabolic processes (Fe, Mn, Zn, Cu, and Mg) were more accumulated than the toxic ones (Pb, Cd). The bioaccumulation factors of metals in benthic invertebrates were subunitary, which indicated a slow bioaccumulation process in the studied aquatic ecosystems. The preliminary aquatic risk assessment of Ni, Cd, Cr, Cu, Pb, As, and Zn on C. carpio revealed insignificant to moderate risk considering the measured environmental concentrations, acute and long-term effects and environmental compartment.",book:{id:"5355",slug:"water-quality",title:"Water Quality",fullTitle:"Water Quality"},signatures:"Stefania Gheorghe, Catalina Stoica, Gabriela Geanina Vasile, Mihai\nNita-Lazar, Elena Stanescu and Irina Eugenia Lucaciu",authors:[{id:"186964",title:"Dr.",name:"Stefania",middleName:null,surname:"Gheorghe",slug:"stefania-gheorghe",fullName:"Stefania Gheorghe"},{id:"194072",title:"Dr.",name:"Catalina",middleName:null,surname:"Stoica",slug:"catalina-stoica",fullName:"Catalina Stoica"}]},{id:"26970",doi:"10.5772/29578",title:"Plant Water-Stress Response Mechanisms",slug:"plant-water-stress-response-mechanisms",totalDownloads:20727,totalCrossrefCites:9,totalDimensionsCites:46,abstract:null,book:{id:"911",slug:"water-stress",title:"Water Stress",fullTitle:"Water Stress"},signatures:"Şener Akıncı and Dorothy M. Lösel",authors:[{id:"78435",title:"Associate Prof.",name:"Sener",middleName:null,surname:"Akinci",slug:"sener-akinci",fullName:"Sener Akinci"},{id:"126728",title:"Dr.",name:"Dorothy M.",middleName:null,surname:"Lösel",slug:"dorothy-m.-losel",fullName:"Dorothy M. Lösel"}]}],mostDownloadedChaptersLast30Days:[{id:"58138",title:"Water Pollution: Effects, Prevention, and Climatic Impact",slug:"water-pollution-effects-prevention-and-climatic-impact",totalDownloads:21542,totalCrossrefCites:18,totalDimensionsCites:38,abstract:"The stress on our water environment as a result of increased industrialization, which aids urbanization, is becoming very high thus reducing the availability of clean water. Polluted water is of great concern to the aquatic organism, plants, humans, and climate and indeed alters the ecosystem. The preservation of our water environment, which is embedded in sustainable development, must be well driven by all sectors. While effective wastewater treatment has the tendency of salvaging the water environment, integration of environmental policies into the actor firms core objectives coupled with continuous periodical enlightenment on the present and future consequences of environmental/water pollution will greatly assist in conserving the water environment.",book:{id:"6157",slug:"water-challenges-of-an-urbanizing-world",title:"Water Challenges of an Urbanizing World",fullTitle:"Water Challenges of an Urbanizing World"},signatures:"Inyinbor Adejumoke A., Adebesin Babatunde O., Oluyori Abimbola\nP., Adelani-Akande Tabitha A., Dada Adewumi O. and Oreofe Toyin\nA.",authors:[{id:"101570",title:"MSc.",name:"Babatunde Olufemi",middleName:null,surname:"Adebesin",slug:"babatunde-olufemi-adebesin",fullName:"Babatunde Olufemi Adebesin"},{id:"187738",title:"Dr.",name:"Adejumoke",middleName:"Abosede",surname:"Inyinbor",slug:"adejumoke-inyinbor",fullName:"Adejumoke Inyinbor"},{id:"188818",title:"Dr.",name:"Abimbola",middleName:null,surname:"Oluyori",slug:"abimbola-oluyori",fullName:"Abimbola Oluyori"},{id:"188819",title:"Mrs.",name:"Tabitha",middleName:null,surname:"Adelani-Akande",slug:"tabitha-adelani-akande",fullName:"Tabitha Adelani-Akande"},{id:"208501",title:"Dr.",name:"Adewumi",middleName:null,surname:"Dada",slug:"adewumi-dada",fullName:"Adewumi Dada"},{id:"208502",title:"Ms.",name:"Toyin",middleName:null,surname:"Oreofe",slug:"toyin-oreofe",fullName:"Toyin Oreofe"}]},{id:"24941",title:"Tsunami in Makran Region and Its Effect on the Persian Gulf",slug:"tsunami-in-makran-region-and-its-effect-on-the-persian-gulf",totalDownloads:7557,totalCrossrefCites:4,totalDimensionsCites:7,abstract:null,book:{id:"406",slug:"tsunami-a-growing-disaster",title:"Tsunami",fullTitle:"Tsunami - A Growing Disaster"},signatures:"Mohammad Mokhtari",authors:[{id:"52451",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mokhtari",slug:"mohammad-mokhtari",fullName:"Mohammad Mokhtari"}]},{id:"24552",title:"Geology and Geotectonic Setting of the Basement Complex Rocks in South Western Nigeria: Implications on Provenance and Evolution",slug:"geology-and-geotectonic-setting-of-the-basement-complex-rocks-in-south-western-nigeria-implications-",totalDownloads:20806,totalCrossrefCites:2,totalDimensionsCites:25,abstract:null,book:{id:"1882",slug:"earth-and-environmental-sciences",title:"Earth and Environmental Sciences",fullTitle:"Earth and Environmental Sciences"},signatures:"Akindele O. Oyinloye",authors:[{id:"68497",title:"Prof.",name:"Akindele",middleName:null,surname:"Oyinloye",slug:"akindele-oyinloye",fullName:"Akindele Oyinloye"}]},{id:"66437",title:"Detection of Underground Water by Using GPR",slug:"detection-of-underground-water-by-using-gpr",totalDownloads:3091,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Water is the human vital requirement for life; in these days, decreasing of the fresh water increases the importance of the aquifer water. However, Upper Egypt is higher than north Egypt, so the water map continually changes daily, and the aquifer water is deeper than 10 m. The ground penetrating radar (GPR) system is used for underground water detection. GPR is a promising technology to detect and identify aquifer water or nonmetallic mines. One of the most serious components for the performance of GPR is the antenna system. The technology of the remote sensing and radar is rapidly developing, and it has led to the ultra-wideband electronic systems. All of these factors, such as miniaturized, low cost, possible compromise solution between depth and resolution, scanning in real time, easy to interpret, and decreased the false alarm, are important in designing the ground penetrating system. The electrical properties of the sand and fresh water layers are investigated using laboratory measurement and EM simulation. Different types of antenna may be used in GPR to operate over a frequency range for different penetration depth. Frequency-modulated continuous wave is also used for GPR and for through-the-wall applications. However, most of these kinds of antennas are limited by their large volume for certain applications. Therefore, a compact Vivaldi antenna with EBG and a compact planar printed quasi-Yagi antenna with meandered ground plane are designed to fulfill all above requirement.",book:{id:"6836",slug:"groundwater-resource-characterisation-and-management-aspects",title:"Groundwater",fullTitle:"Groundwater - Resource Characterisation and Management Aspects"},signatures:"Dalia N. Elsheakh and Esmat A. Abdallah",authors:[{id:"111813",title:"Dr.",name:"Dalia",middleName:null,surname:"Elsheakh",slug:"dalia-elsheakh",fullName:"Dalia Elsheakh"},{id:"111867",title:"Prof.",name:"Esmat",middleName:null,surname:"Abdallah",slug:"esmat-abdallah",fullName:"Esmat Abdallah"}]},{id:"57345",title:"Safe Drinking Water: Concepts, Benefits, Principles and Standards",slug:"safe-drinking-water-concepts-benefits-principles-and-standards",totalDownloads:6183,totalCrossrefCites:11,totalDimensionsCites:25,abstract:"Water is connected to every forms of life on earth. As a criteria, an adequate, reliable, clean, accessible, acceptable and safe drinking water supply has to be available for various users. The United Nation (UN) and other countries declared access to safe drinking water as a fundamental human right, and an essential step towards improving living standards. Access to water was one of the main goal of Millinium Development Goals (UN-MDGs) and it is also one of the main goal of the Sustainable Development Goals (SDGs). The UN-SDG goal 6 states that “Water sustains life, but safe clean drinking water defines civilization”. Despite these facts, there are inequalities in access to safe drinking water in the world. In some countries, sufficient freshwater is not available (physical scarcity); while in other countries, abundant freshwater is available, but it is expensive to use (economic scarcity). The other challenge is the increasing population of the world at an alarming rate, while the available freshwater resources almost remains constant. This chapter presents aspects of safe drinking water - background information, definition of water safety and access, benefits, principles and regulations, factors challenging the sustainable water supply and water quality standards and parameters.",book:{id:"6157",slug:"water-challenges-of-an-urbanizing-world",title:"Water Challenges of an Urbanizing World",fullTitle:"Water Challenges of an Urbanizing World"},signatures:"Megersa Olumana Dinka",authors:[{id:"206964",title:"Dr.",name:"Megersa Olumana",middleName:null,surname:"Dinka",slug:"megersa-olumana-dinka",fullName:"Megersa Olumana Dinka"}]}],onlineFirstChaptersFilter:{topicId:"125",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:"2753-6580",scope:"
\r\n\tThis book series will offer a comprehensive overview of recent research trends as well as clinical applications within different specialties of dentistry. Topics will include overviews of the health of the oral cavity, from prevention and care to different treatments for the rehabilitation of problems that may affect the organs and/or tissues present. The different areas of dentistry will be explored, with the aim of disseminating knowledge and providing readers with new tools for the comprehensive treatment of their patients with greater safety and with current techniques. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This series of books will focus on various aspects of the properties and results obtained by the various treatments available, whether preventive or curative.
",coverUrl:"https://cdn.intechopen.com/series/covers/3.jpg",latestPublicationDate:"August 4th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:2,numberOfPublishedChapters:139,numberOfPublishedBooks:9,editor:{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",fullName:"Sergio Gehrke",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",institutionURL:null,country:{name:"Spain"}}},subseries:[{id:"1",title:"Oral Health",keywords:"Oral Health, Dental Care, Diagnosis, Diagnostic Imaging, Early Diagnosis, Oral Cancer, Conservative Treatment, Epidemiology, Comprehensive Dental Care, Complementary Therapies, Holistic Health",scope:"\r\n\tThis topic aims to provide a comprehensive overview of the latest trends in Oral Health based on recent scientific evidence. Subjects will include an overview of oral diseases and infections, systemic diseases affecting the oral cavity, prevention, diagnosis, treatment, epidemiology, as well as current clinical recommendations for the management of oral, dental, and periodontal diseases.
",annualVolume:11397,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"267724",title:"Prof.",name:"Febronia",middleName:null,surname:"Kahabuka",fullName:"Febronia Kahabuka",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZpJQAW/Profile_Picture_2022-06-27T12:00:42.JPG",institutionString:"Muhimbili University of Health and Allied Sciences, Tanzania",institution:{name:"Muhimbili University of Health and Allied Sciences",institutionURL:null,country:{name:"Tanzania"}}},{id:"70530",title:"Dr.",name:"Márcio",middleName:"Campos",surname:"Oliveira",fullName:"Márcio Oliveira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRm0AQAS/Profile_Picture_2022-08-01T12:34:46.jpg",institutionString:null,institution:{name:"State University of Feira de Santana",institutionURL:null,country:{name:"Brazil"}}}]},{id:"2",title:"Prosthodontics and Implant Dentistry",keywords:"Osseointegration, Hard Tissue, Peri-implant Soft Tissue, Restorative Materials, Prosthesis Design, Prosthesis, Patient Satisfaction, Rehabilitation",scope:"