Distribution of livestock farmers by level of awareness of organic farming practice.
\r\n\t
",isbn:"978-1-83968-930-7",printIsbn:"978-1-83968-929-1",pdfIsbn:"978-1-83968-931-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"f159c09dab49a9bc6239b42660d8e8ec",bookSignature:"Dr. Yongxia Zhou",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10310.jpg",keywords:"Brain Science, Brain-Computer Interface, Imaging of Neural Networks, Brain Networks, Brain Function, Molecular Imaging, Brain and Mind, Functional Imaging, Multimodal Imaging, Neuroplasticity Enhancement, Learning, Memory",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 28th 2020",dateEndSecondStepPublish:"October 26th 2020",dateEndThirdStepPublish:"December 25th 2020",dateEndFourthStepPublish:"March 15th 2021",dateEndFifthStepPublish:"May 14th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Yongxia Zhou had completed her Ph.D. from the University of Southern California in Biomedical imaging (2004) and had been trained and worked as a neuroimaging scientist in several prestigious institutes including Columbia University, New York University, University of Pennsylvania. Her research interest is focused on neuroimaging and neuroscience applications.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a PhD from the University of Southern California in Biomedical Imaging in 2004. Her main research interest is in radiology and neuroscience applications. She had been trained and worked as a medical imaging scientist at several prestigious institutes including Columbia University, University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multimodal neuroimaging integration including MRI/PET and EEG/MEG instrumentation that makes the best use of multiple modalities to help interpret underlying disease mechanisms. She has authored six monograph books, and edited several books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and presentations in many reputed international journals and conferences, and served as reviewer and editor for several well-known associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247041",firstName:"Dolores",lastName:"Kuzelj",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247041/images/7108_n.jpg",email:"dolores@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8125",title:"Medical Imaging",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e0fa3875d6f66d5ccd8cd3f1444c3fb9",slug:"medical-imaging-principles-and-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8125.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7862",title:"Traumatic Brain Injury",subtitle:"Neurobiology, Diagnosis and Treatment",isOpenForSubmission:!1,hash:"247618f9fcfd8e9054e1202968e3387b",slug:"traumatic-brain-injury-neurobiology-diagnosis-and-treatment",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/7862.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68614",title:"Compartmentalization of Human Thymic Medulla: Facts and Hypotheses",doi:"10.5772/intechopen.88588",slug:"compartmentalization-of-human-thymic-medulla-facts-and-hypotheses",body:'In the histological textbooks, the main morphological landmarks of the thymus are (1) the lobulation—like the glands; (2) the darkly and lightly stained cortex and medulla, respectively; and (3) the Hassall’s bodies. The relatively simple structure of the thymus did not help to “decode” the enigmatic thymic function until the middle of the last century. The three morphological landmarks may be supplemented by the keratin-negative area (KNA) [1, 2] or “epithelium-free area” (EFA) [3, 4, 5, 6]. EFA can be found in both the cortex and medulla [6, 7, 8]. In the cortex, the EFA is a nest of double-positive (CD4+, CD8+) T lymphocytes [4] and various macrophages [7]. Others suggest that the cortical EFA is a pathological phenomenon [3, 6].
If the KNA/EFA is a permanent compartment of the human thymic medulla, then it should be added to the general histological features of the thymus of the warm-blooded vertebrates.
In the medulla, the perivascular space (PVS) [7, 9, 10, 11, 12]—that is, the dilated primary septum (PS)—carries the blood vessels, which locate “outside” the basal lamina of the thymus [1, 2, 12, 13], but Foxn-1, which is a thymic epithelial cell-specific transcription factor [14], regulates thymic vascularization [15]. At the cortico-medullary junction, PS merges to the PVS of the medulla [9, 10]. A continuous basal lamina covers the thymic parenchyma toward the capsule and PS, and it becomes discontinuous at the end of the PS (Figure 1) [2, 7] where it turns to be the PVS or KNA/EFA. In the thymic medulla, the lack of blood-thymus barrier [16] may be explained by the discontinuity of the basal lamina on the border of the KNA/EFA [2]. The discontinuity of the basal lamina suggests that the microenvironment of the KNA/EFA and PVS is identical. Silver impregnation shows that both the PS and the KNA/EFA consist of reticular connective tissue [2, 9, 17] and have common extracellular matrix [11]. Secondary septae appear after formation of the cortex and medulla, and they are just small invaginations of the capsule and usually do not reach the medulla and do not receive blood vessels. The medullary EFA occupies about one-fifth of the rat thymus [18]. In chicken our morphometric studies confirm the considerable size of the KNA, that is, close to 50% of the medulla [2]. The border of the keratin-positive network (KPN) and KNA is an epithelial-mesenchymal border that could be the functional cortico-medullary (CM) border of the thymus [2]. The KPN-KNA/EFA border is supported by cellular background, unlike the hematoxylin-eosin-stained, classical CM border, which is based only on lymphocyte density and subsequently stainability. The mesenchymal tissue of the PVS develops from neural crest cells [19, 20, 21, 22]. The PVS is a transit zone of migratory cells between the thymus and circulation [12, 23].
Double staining of chicken thymus: cytokeratin (green) and laminin (red). At the PS, the laminin shows a continuous basal lamina, which becomes discontinuous in the EFA. The KNA/PVS receives the blood vessels.
Anti-cytokeratin immunostaining identifies the KPN and KNA/EFA in both embryonic and postembryonic chicken thymuses. In an 11-day-old chicken embryo, the thymic epithelial anlage shows a starfish-shaped form (Figure 2). Between the 5–6 secondary epithelial cords, the unstained PS(s) consist of mesenchyme. During the next two ED (11 and 13), the cortical epithelial cells rapidly proliferate resulting in enlarged thymic rudiment (Figure 3) which is colonized by hematopoietic cells. In 11-ED-old birds, the wide PS became narrow, and the bottom of the PS is involved into the medulla as the KNA/EFA.
11 ED chicken thymus: anti-cytokeratin. The starfish-shaped epithelial thymic anlage shows the branching of the primary epithelial cord to 5–6 secondary cords. The dashed circle outlines the future medulla.
13 ED chicken thymus: the rapid proliferation of epithelial cells enlarged the thymic cortical epithelium. The bottom of the PS (arrowhead) dilates and becomes the KNA/EFA of medulla (star).
The PS is going on as the KNA/EFA, and both regions consist of reticular connective tissue stained with silver impregnation [2, 6, 17, 24]. Mesenchymal markers desmin and ER-TR7 [6, 25] revealed specific staining in the capsule, septae, and medullary PVS. In the PVS, the neural crest cells differentiate into smooth muscle cells of thymic blood vessels and pericytes of thymic capillaries [21]. These histological findings suggest the common origin of the PS and KNA/EFA: namely, the KNA/EFA develops from the cranial neural crest cells [19, 21, 26].
Mesenchymal cells and fibroblasts express vimentin intermediate filament. Cortical thymocytes and epithelial cells are vimentin negative (Figure 4), but thymic medulla shows homogenous staining pattern, indicating that keratin-positive and keratin-negative compartments cannot be distinguished (Figure 5). The homogenous vimentin staining of the medulla may indicate that the medullary epithelial cells express vimentin intermediate filament. Hassall’s bodies are vimentin negative (Figure 5), like cortical epithelial cells. In the majority of vimentin-positive cells, the immunoreaction appears in the periphery of the cell cytoplasm. The nature of the medullary vimentin-positive cells is not clear, because vimentin can colocalize with other intermediate filaments, like neurofilament, cytokeratin, and desmin; therefore the anti-vimentin immunostaining used for identification of mesenchymal cells is limited [25]. Blood vessels and dendritic cells are the most significant structures of the KNA/EFA. Anti-von Willebrand factor identifies endothelial cells (Figure 6). Transmission electron microscopy shows the organelle-rich cytoplasm of the interdigitating dendritic cell (IDC) (Figure 7). The IDC is located in close association with the blood vessels [2].
Anti-vimentin antibody outlines the capsule and PS. The cortical epithelial cells and T cells are negative, while all medullary cells express vimentin. C, cortex; M, medulla.
Higher magnification of anti-vimentin-stained thymic medulla. The round-shaped Hassall’s body is negative, while the medullary cells show a round-shaped-positive reaction.
Double staining: cytokeratin (red) and von Willebrand factor (green). Blood vessels exclusively locate in the KNA/EFA.
Transmission electron micrograph of a thymic dendritic cell. The cell membrane is outlined. The cytoplasm is rich in organelles and electron-dense granules.
As mentioned above, the PVS consists of mesenchymal cells of neural crest origin; therefore, the supporting tissue of the KNA/EFA is also mesenchyme. The thickness of the PVS is used to be in one or two cell layers, but in chicken thymus, the morphometric studies show that the ratio between keratin-positive and keratin-negative fields is close to one to one [2]. Considerable size of the KNA/EFA (Figure 6) suggests that its functional significance must be more than a passive transit zone for cell migration between circulation and the thymus [4, 10, 11, 12]. Thymic IDC [9] is located in the KNA/EFA [2] and contributes to T-cell selection. In nonobese mouse, autoimmune type I diabetes develops, resulting in abnormal distribution of epithelial cells and consequently giant PVS [11, 17]. After cyclosporin A (CyA) treatment of the rats, the thymic medulla disappeared, and 2 weeks after CyA treatment, the recovery of the medulla took place, but the “holes” were epithelial cell-free [5]. The occurrence and size of the KNA/EFA may be varied from species to species [2] even among the strains of rats [3]. In the CM region of BB rat thymus, the EFA has been reported, but this KNA/EFA is not as complete as in man. In the thymic medulla, the frequency of the KNA/EFA alters by age: in young Wistar rats, the occurrence of the KNA/EFA is higher than in old animals [7]. These changes may be related to acute [5] and/or physiological thymic involution.
The thymic stromal elements develop from the endodermal epithelium and neural crest mesenchyme. Hematopoietic cells colonize the epithelial-mesenchymal anlage. In chicken embryo the KNA/EFA appears when the medulla and cortex differentiate; therefore the epithelial-mesenchymal transition [6] would create a “second” mesenchyme, besides the mesenchyme of cranial neural crest origin. Therefore, in the thymus the epithelial-mesenchymal transition may be redundant.
It was difficult to identify large epithelium-free areas by transmission electron microscopy, and Foxn-1 thymic epithelial cell-specific transcription factor showed positive cells in the KNA/EFA (Figure 8). Foxn-1 expression in the medullary KNA/EFA is a puzzle. In early embryogenesis, Foxn-1 expresses in several mesenchymal and epithelial cells [27]; therefore one of the possibilities for solving the puzzle is that Foxn-1 is maintained in the KNA/EFA after thymus development. The other possibility is that the thymic epithelial cells induce Foxn-1 expression in mesenchymal cells of cranial neural crest origin [28]. Removal of perithymic mesenchyme at ED12 or culture of purified ED14 epithelial cells alone resulted in a threefold reduction in the bromodeoxyuridine incorporation by keratin-positive cells. Proliferation of thymic epithelial cells in the early thymus is regulated by signals from mesenchyme [29]. These mesenchymal cells produce fibroblast growth factors 7 and 10, which stimulate epithelial cell proliferation [20, 30, 31], but differentiation requires Foxn-1 [32]. The KNA/EFA [2, 9, 11] consists of mesenchyme; therefore the term EFA seems to be more appropriate than the KNA that we used [2].
Thymus 5. Age 16 months: Foxn-1 antibody recognizes epithelial nuclei over the entire thymus. Density of Foxn-1-positive cells is higher in the medulla (M) than in the cortex (C). The Foxn-1-positive knots are possibly Hassall’s bodies.
The human thymic cortex shows a fine, dense keratin network that sharply differs from that of the medulla. The medulla has a loose epithelial lattice, with small, irregular-shaped EFA. A ring-shaped, anti-cytokeratin-negative “gap” of the EFA is found between the cortex and medulla (Figures 9 and 10) that seems to be a unique feature for the human thymus. The chicken’s thymic medullary epithelial cells form a 3D network (Figure 11). In some places the ring-shaped “cortico-medullary gap” has small “outpocketing” toward the medulla that shows the connection of medullary EFA with the cortico-medullary gap (CMG). The medullary and cortical epithelial cells are connected, through the CMG, with epithelial bridges of medullary-type epithelial cells. In several places the CMG is not covered by the cortex; therefore the CMG is in contact with the end of the PS. The PS reaches the CM border, widens, and become part of the medulla. Therefore, the human thymic medulla also consists of two sharply separated compartments: a keratin-positive network or lattice and an epithelium-free area. Inside the keratin-positive medullary area, few Hassall’s bodies could be seen as aggregated keratin expression (Figures 9 and 10).
Thymus 1. Age 5 months. Cortical EFA is significant compared with that of the medulla. Medullary EFA is connected with the CMG (arrow).
Thymus 1. Age 5 months. The PS continues with the medullary EFA (arrow).
Thymus 5. Age 16 months: at several places, the medullary epithelial cells, through the CMG, connect the cortex and medulla. Keratin accumulations in the medullary epithelial lattice represent Hassall’s bodies.
In the early embryonic life of chicken, the thymic anlage appears as a primary epithelial cord, which starts to develop from the third branchial pouch of the foregut endoderm. The epithelial cord ramifies, and this ramification area develops to medullary region of the thymus [2]. Between the offshooted secondary cords, the mesenchyme forms the PS and capsule (Figure 2). The cells at the end of the secondary cords rapidly proliferate, and by day 13, the thymic tissue is histologically recognizable (Figure 3). In the KPN of the medulla, several epithelial cells make large surface contact, excluding lymphocytes, from Hassall’s corpuscle. It is surprising that few cells of Hassall’s bodies show surfactant protein B (SPB) immunoreactivity (Figure 12). In the medulla, scattered SPB-positive cells also occur, which like type II pneumocytes might be developed from the foregut epithelium, that is, respiratory diverticulum.
Thymus 2. Age 18 months: the PS ends at the CMG (arrow). In the medulla, Hassall’s bodies appear as solid, keratin-positive knots. Small keratin negative areas are also present in the cortex. The cortical surface of the gap is sharp.
During the last century, the origin of the thymic epithelial anlage created a hot debate: namely, the epithelial rudiment develops either from the epithelium of the endodermal pouch and ectodermal cleft or solely from the endodermal pouch. At the beginning of this century, the debate seemed to be settled: in chicken-quail chimeric experiments [26] and in mouse, transplantation of the third branchial pouch epithelium under the kidney capsule [33] proved that the pouch epithelium developed to functional thymus. Furthermore, mouse chimeras with different haplotypes of class II MHC proved that only one haplotype contributed to thymic epithelial anlage [34]. However, in human thymus the presence of a sharp CMG, among the cortex and medulla, raises again the possibility of double-germ layer origin of thymic epithelial rudiment. Bargman [35], Norris [36], and von Gaudecker [9] studied the development of human thymus and came to the conclusion that the corresponding ectodermal cleft epithelium attaches and unites with the descending third pouch epithelium (Figure 13). Cordier and Hamount [37] compared the thymus development of NMRI and nude mice and studied that either the lack of ectodermal cleft epithelium, which surrounded the endodermal rudiment, or the absence of a secreted substance from cleft epithelium [20] resulted in the dysgenesis of nude mouse thymus. In human thymus the major EFA is represented by the “gap” (Figures 9 and 10).
Thymus 2. Age 18 months: anti-surfactant protein B (SPB) immunostaining recognizes Hassall’s bodies and scattered positive cells in the medulla (M). The cortex (C) is free of SPB.
The debate is going on, but the subject changed over the thymic epithelial stem cell, which may be also connected to the endo- and ectodermal origin. Namely, one epithelial stem cell develops to cortical and medullary progenitors (single-germ layer origin), or there are, sui generis, cortical and medullary epithelial stem cells (ectodermal cleft and endodermal pouch will give raise to cortical and medullary progenitors, respectively). Between cortical and medullary microenvironment, there are many differences that also may be related to the ectodermal and endodermal origin of thymic epithelial rudiment.
The double-germ layer origin of human thymic epithelial cells is supported only by reliable histological studies and functional differences: (1) cortical epithelial cells contribute to T-cell maturation, and the medullary ones participate in T-cell selection. (2) CMG is present in man, but not in birds and mammals studied up to now. (3) Hassall’s bodies and SPB-producing cells are found only in the medulla. (4) Thymus-blood barrier exists only in the cortex [16]. (5) In the rat and mouse thymus, the cortical epithelial cells are keratin K5− K8+ CD205−, and the medullary epithelial cells are K5+ K8null CD205− (in chicken the cortical thymic epithelial cells are CD205+ and the medullary thymic epithelial cells are CD205−). (6) As mentioned above thymic dysgenesis in nude mice is related with the absence of the cleft epithelium and/or cleft-derived biological active substance, which induces branchial pouch epithelial cell proliferation [31]. In mouse and chicken, the experimental data proved that the thymic epithelial anlage develops solely from the third branchial pouch [31, 33, 38, 39, 40]. The differences in the origin of epithelial anlage between man and mouse may be traced back to evolution. In marsupials there is cervical thymus, which is purely of ectodermal origin, while the cervicothoracic thymuses have mixed ecto-endodermal [37]. Evolutionary differences in organ development between man and mouse also occur: in man the allantois has rest of urachus beyond umbilicus, while in mouse the urachus is a small rudiment, and the allantois consists of pure mesenchyme [28, 41]. The relationship between thymic epithelial cells and skin keratinocytes has been supported by serological and immunofluorescence studies in normal [29, 42] and pathological conditions [3]. These investigations provide solid evidence for cross-reactive antigens among some thymic epithelial cells, cells of Hassall’s corpuscles, and some subpopulation of skin keratinocytes [4].
Gupta et al. [43] studied the cytokeratin (CK5 and CK8) expression in human embryos. Before 16 weeks of gestation, the two cytokeratins are homogenously expressed in both the cortex and medulla, but after 16 weeks of gestation, the cortex and medulla show CK8+ and CK5+ staining, respectively. Double-positive (CK5+ and CK8+) epithelial progenitor cells were present only in the cortex at all gestational stages. This finding indirectly suggests that the cortex is the source of the epithelial progenitor cells. Norris [36] was able to show that the branchial cleft epithelium (cervical sinus) rapidly proliferates and surrounds the endodermal thymic rudiment. Thus, the presence of double-positive progenitor cells in the cortex and the rapid proliferation of cleft epithelium support the contribution of ectodermal component to human thymic epithelial anlage.
Hassall’s bodies built up from epithelial cells. The centrally locating cells of Hassall’s bodies gradually keratinized, like the epidermal cells of the skin. Neutrophil granulocytes and macrophages enter the corpuscle and digest the keratinized cells [44]. Norris [36] studied the human fetal thymuses and described migration of ectodermal cells into the medulla. This finding may be confirmed by monoclonal antibodies (mAb(s)) (RCK 105 and RGE5) which recognize cortical epithelial cells and some medullary ones [7]. These experiments may show that cortical epithelial cells enter the medulla. Furthermore, MTS29 mAb stains isolated in medullary epithelial cells. The antigen was also present in the epidermal epithelium [4]. The marginal cells of the corpuscle are alive and perhaps temporarily capable of producing SBP (Figure 12) and/or other biological active substances. If we adopt the double-germ layer origin of thymic epithelial cells, then both type II pneumocytes (SPB-producing cells) and the cortical stellate cells and cells of Hassall’s body are in “foreign environment” of the medulla. The surface of the cell provides important information for the neighboring cell to form tissue and organs. According to the law of thermodynamic stability, if in vitro two types of cells are mixed and the bond among different cells is weaker than among homotypic cells, then the cells are sorting out and the homotypic cells aggregate [45]. Possibly, this is the situation in vivo, in case of Hassall’s body formation. Several cortical cells enter the medulla and sort out, aggregating in the form of Hassall’s body. The SPB-producing type II pneumocytes have got a similar situation as cortical epithelial cells; therefore the SPB-producing cells also sorting out “join” to the Hassall’s bodies, resulting in SPB-positive Hassall’s corpuscles [46].
Thymic epithelial cell-specific transcription factor, Foxn-1, shows scattered positive cells in both the cortex and medulla and line up along the thymic capsule and PS (Figures 8 and 14). The density of Foxn-1-positive cells seems to be higher in the medulla than in the cortex. Double staining with anti-cytokeratin and anti-Foxn-1 antibodies shows that Foxn-1 is expressed in both medullary compartments; namely, Foxn-1 positive cells are present in the EFA (Figure 15).
Thymus 5. Age 16 months: Foxn-1-positive cells outline the thymic lobuli.
Double staining: cytokeratin (red) and Foxn-1 (green). Foxn-1-positive cells are present in both the KPN and EFA of the thymic medulla.
Acute thymic atrophy can be induced by Foxn-1 disruption [29]. Foxn-1 is necessary for the differentiation of both cortical and medullary epithelial cells [27, 47, 48, 49]. By age the number of Foxn-1-expressing epithelial cells seems to decrease [49], and this change may be paralleled with the diminished occurrence of the EFA. In elderly people, the risk of autoimmune disease is increased that may be in connection with the accumulation of Foxn-1-negative epithelial cells [49, 50] or the increased number of Foxn-1-expressing mesenchymal cells and decreased volume of EFA. However, in addition to the increasing number of Foxn-1-negative epithelial cells, Foxn-1 is expressed in the KNA, that is, in non-epithelial cells with unknown consequences (Figure 15).
Scheme: (a) from the ectodermal cervical sinus, the cervical vesicle (dark green) separates and attaches to the corresponding third branchial pouch (red), which descends into the upper mediastinum (b). (I–V, pharyngeal pouches; 1–4, pharyngeal groves). Ventral region of the third pharyngeal pouch (red) gives the endodermal part of the thymus. Part of the cervical vesicle (ectoderm, green) contributes to the thymic anlage.
In the epithelium-free areas, several vessel-associated cells like pericyte and smooth-even-striated muscle cells develop from neural crest cells. It is reasonable to assume that the reticular tissue of epithelium-free area also develops from neural crest cells. In addition to this hypothesis, it is remained also unsolved if the mesenchymal cells or abnormal (keratin-free) epithelial cells express Foxn-1 transcription factor. In mouse and chicken, where the thymus develops solely from the endodermal pouch epithelium, the cortical cells enter the medulla, sort out, and form Hassall’s bodies. In human thymus Hassall’s corpuscles are large (compound structures), while in mouse and chicken, Hassall’s bodies are small. The differences in Hassall’s bodies may be related with the double- and/or single-germ layer origin of the thymic epithelial anlage (Figure 16).
The authors declare no conflict of interest and confirm that all these figures are original.
CyA | cyclosporin A |
CK | cytokeratin |
CM | cortico-medullary |
CMG | cortico-medullary gap |
EFA | epithelium-free area |
Foxn-1 | Forkhead box N1 |
IDC | interdigitating cell |
KNA | keratin negative area |
KPN | keratin positive network |
MHC | major histocompatibility complex |
mAb | monoclonal antibody |
PS | primary septum |
PVS | perivascular space |
SPB | surfactant protein B |
Agriculture is the mainstay of the Nigerian economy. Agriculture in its nature is multifunctional. This multi-functionality nature relates to food production, security and safety, environment and landscape, water management and social and economic focus [1]. Agriculture has the capability to feed its population, serve as a source of revenue to the nation, provide employment and employment opportunities and serve as source of raw materials to agro-allied industries [2]. In recent times however, these functions could not be met given that food production in the nation could no longer meet up with the rapid population growth and thus reduction in exports [2]. In order to address the issues of insufficient food supply to meet the need of the nation’s ever growing population, the use of agro-chemicals was adopted. This led to an increase in crop and animal production through the use of synthetic fertilizers and other agro-chemicals. Nevertheless, a number of side effects from the use of synthetic fertilizers and other agro-chemicals have been recorded and hence has led to the development of organic farming.
\nInorganic fertilizers usually cause water pollution due to the leaching and washing away of such agro-chemicals by erosion in rivers [3]. It argued that most inorganic fertilizers and chemicals used in agriculture are manufactured using non-renewable resources such as fossil fuel which usually contributes to pollution and environmental degradation and hence unsustainable agricultural production [4]. Organic farming is a multifunctional system with benefits which cuts across economic, environmental and social functions. The multifunctional benefits of organic farming includes its contributions to the improvement of livelihoods, food security, resilience to climate change, increase in yields in a long run bases, reducing financial risks, creating market opportunities, improving health and the environment, combating desertification among other numerous benefits [5].
\nOrganic farming represents a deliberate attempt to make the best use of local natural resources and is an environmental friendly system of farming. Organic farming is a production system that excludes the use of synthetically manufactured chemicals like fertilizers, pesticides, growth enhancers/regulators, food additives, fungicides and herbicides [6–8]. Organic farming practices include crop rotation, biological pest control, crop residues, cover crop, legumes, organic fertilizers, animal manures and green manures among others [9]. Organic farming technology is frequently regarded as the solution to environmental problems that are related to agriculture as well as food safety [10]. It usually has “zero impact on the environment” [4, 9, 11].
\nOrganic farming practices has been shown to affects soil microbiological and chemical properties by increasing soil nutrient availability, microbial biomass and microbial activity, which represent a set of sensitive indicators of soil quality [12, 13]. In addition to other benefits especially as it relates to health and food safety, organic farming has shown to be safer and healthy [14, 15]. It also results to increased levels of flavonoids1 when used for the production of fruits and vegetables [14] and protects against cancer and other age related diseases to a lesser extent [16]. Organic farming increases insect pollination and overall specie richness [17]. The major goal of organic farming activities is a sustainable production of food with little or no effect on the environment. This goal and many others have not been achieved by conventional farming hence the need to encourage organic farming which is capable of providing solutions to the current environmental challenges like the climate change and environmental hazards and also help to achieve maximal production of quality food sustainably [18]. Food and Agriculture Organization clearly states that organic agriculture promotes ecological resilience, improves bio-diversity, healthy management of farm and surrounding environment and building community knowledge and strength [19].
\nKeynote address emphasized that in Nigeria and many developing countries, organic agriculture is just developing [15]. As at the ending of 2016, report showed that Africa as a whole contributes to only 3% (i.e., 1.8 million hectares) of the total organic farmlands of the world [20, 21]. This contribution is mostly accounted for from East African countries with little or nothing from Nigeria. These points to the need to fast track organic farming development in Nigeria. Hence, the International Federation of Organic Agriculture Movement (IFOAM) and their members were charged with the responsibilities of developing organic farming in Nigeria during the second national conference on organic agriculture which held in Nigeria [5]. However, literatures argued that the yield from organic agriculture is lower than the yield from the conventional methods [22]. This may be the case but notwithstanding, the net farm income of organic farmers was reported more profitable than that of conventional farmers [23]. Part of the (better) profits from certified OA resulted from the premium paid by contracting companies. The revenue generated from organic farming is higher than that of conventional methods because of the higher product prices generated from it [9].
\nThus, the general objectives of the study are to ascertain the household level of awareness and use of organic farming practices in South-South Nigeria. Specifically, the study determined the level of awareness of organic farming practices among livestock and fish farmers, identified the use of organic farming practices among livestock and fish farmers and determined the level of use of organic farming practices among livestock and fish farmers in the study area.
\nThe area of study is South-South Nigeria which comprises six (6) states namely: Delta, Bayelsa, Edo, Rivers, Cross River and Akwa Ibom as shown in Figure 1.
\nMap of South-South region of Nigeria. Source: [26].
The study population comprises of rural households engaged in livestock and fish farmers. Multistage random selection technique was employed. The first stage was the random selection of three states—Bayelsa, Delta and Akwa-Ibom. The study population is the livestock and fish farmers in Bayelsa, Delta and Akwa-Ibom. Delta state is divided into three agricultural zones—Delta North, Delta South and Delta Central out of which Delta central was selected. Bayelsa state is also classified into three agricultural zones—Brass, Yenagoa and Sagbama out of which brass zone was sampled. Akwa-Ibom is divided into six agricultural zones—Abak, Eket, Etinan, Ikot Ekpene, Oron and Uyo zones. Two zones Uyo and Ikot Ekpene were samples. A total of 99 livestock farmers and 115 fish farmers were sampled. The lists of farmers were gotten from the zonal managers in charge of each zone. Primary data were collected through the use of a questionnaire and interview schedule. Data obtained were analyzed using descriptive statistics as mean and percentages. Four point Likert scale was used to measure the response of famers in terms of their awareness level of organic agriculture and their use and use level of organic farming practices.
\n\nTable 1 shows the result for the level of awareness of organic farming practices among livestock farmers. The mean and percentages of the response were clearly shown.
\nOrganic Farming Practices for livestock | \nNot at all | \nLow | \nModerate | \nHigh | \nMean | \nDecision | \n
---|---|---|---|---|---|---|
Adequate land holding | \n33 (33.3) | \n40 (40.4) | \n14 (14.1) | \n12 (12.1) | \n2.05 | \nNot aware | \n
Farm diversification | \n44 (44.4) | \n29 (29.3) | \n25 (25.5) | \n1 (1.0) | \n1.82 | \nNot aware | \n
Free movement of animals/Provision of fresh air and natural day light | \n61 (61.6) | \n6 (6.1) | \n25 (25.3) | \n7 (7.1) | \n1.77 | \nNot aware | \n
Protection against adverse weather condition | \n57 (57.6) | \n2 (2.0) | \n30 (30.3) | \n10 (10.1) | \n1.92 | \nNot aware | \n
Resting areas | \n57 (57.6) | \n16 (16.2) | \n13 (13.1) | \n13 (13.1) | \n1.81 | \nNot aware | \n
Clean and dry beddings | \n55 (55.6) | \n3 (3.0) | \n29 (29.3) | \n15 (15.2) | \n2.09 | \nNot aware | \n
Enough space for exercise | \n52 (52.5) | \n3 (3.0) | \n29 (29.3) | \n15 (15.2) | \n2.07 | \nNot aware | \n
Access to fresh drinking water by livestock | \n12 (12.1) | \n1 (1.0) | \n59 (59.6) | \n27 (27.3) | \n3.02 | \nAware | \n
Allowing livestock to express natural behaviour | \n29 (29.3) | \n11 (11.1) | \n40 (40.1) | \n19 (19.2) | \n2.50 | \nAware | \n
Use of local breed | \n59 (59.6) | \n2 (2.0) | \n26 (26.3) | \n12 (12.1) | \n1.90 | \nNot aware | \n
Natural reproduction technique | \n53 (53.6) | \n11 (11.1) | \n20 (20.2) | \n15 (15.2) | \n1.96 | \nNot aware | \n
Produce without genetic engineering , ionising radiation or sewage sludge | \n51 (51.5) | \n25 (25.3) | \n15 (15.2) | \n8 (8.1) | \n1.79 | \nNot aware | \n
Adequate feeding | \n16 (16.2) | \n64 (64.6) | \n0 (0.0) | \n19 (19.2) | \n2.86 | \nAware | \n
Animal feeding is 100% organic | \n32 (32.3) | \n3 (3.0) | \n24 (24.2) | \n40 (40.4) | \n2.72 | \nAware | \n
Prompt treatment of sick animals | \n27 (27.3) | \n10 (10.1) | \n51 (51.5) | \n11 (11.1) | \n1.74 | \nNot aware | \n
Manage animals without antibiotics | \n74 (74.7) | \n10 (10.1) | \n7 (7.1) | \n8 (8.1) | \n1.48 | \nNot aware | \n
Traditional/natural treatment of sick animals | \n62 (62.6) | \n11 (11.1) | \n15 (15.2) | \n11 (11.1) | \n1.74 | \nNot aware | \n
Vaccinate only during disease outbreak | \n69 (69.7) | \n16 (16.2) | \n8 (8.1) | \n6 (6.1) | \n1.50 | \nNot aware | \n
Manage without added growth hormones | \n45 (45.5) | \n29 (29.3) | \n15 (15.2) | \n10 (10.1) | \n1.89 | \nNot aware | \n
Accurate record keeping | \n33 (33.3) | \n1 (1.0) | \n40 (40.4) | \n25 (25.3) | \n2.57 | \nAware | \n
Distribution of livestock farmers by level of awareness of organic farming practice.
\nTable 1 showed that farmers were adequately aware of allowing livestock access to fresh drinking water (x ¯ = 3.02), adequate feeding (x ¯ = 2.86), animal feeding of 100% organic (x ¯ = 2.72) and accurate record keeping (x ¯ = 2.57). The four practices above had mean scores above the discriminating index. The other practices were below the discriminating index of 2.50. The grand mean on the level of adoption for livestock farmers was 2.06. This shows that farmer’s level of awareness of organic farming practices for livestock production is low. This is in-line with [24]. They implied that low awareness of organic agriculture was as a result of low coverage. Therefore, this study suggested that the low farmer’s awareness could be as a result of poor extension campaign in organic livestock practices.
\n\nTable 2 shows the level of awareness of organic farming practices among fish farmers in the study area. The mean and percentages of the response were clearly shown.
\nOrganic Farming Practices | \nNot at all | \nLow | \nModerate | \nHigh | \nMean | \nDecision | \n
---|---|---|---|---|---|---|
Eco-friendly design | \n22 (19.1) | \n4 (3.5) | \n51 (44.3) | \n38 (33.0) | \n2.91 | \nAware | \n
Manage without growth Hormone | \n31 (27.0) | \n3 (2.6) | \n61 (53.0) | \n20 (17.4) | \n2.60 | \nAware | \n
Antibiotics is only used in clinical cases where no other treatment would work | \n65 (56.5) | \n2 (1.7) | \n19 (16.5) | \n29 (25.2) | \n2.10 | \nNot Aware | \n
Cultivate without genetic engineering. | \n44 (38.3) | \n5 (4.3) | \n21 (18.3) | \n45 (39.1) | \n2.58 | \nAware | \n
Site is far from polluting substances | \n63 (54.8) | \n4 (3.5) | \n20 (17.4) | \n28 (24.3) | \n2.11 | \nNot Aware | \n
High quality water source (stream, river) | \n31 (27.0) | \n1 (0.9) | \n31 (27.0) | \n52 (45.2) | \n2.90 | \nAware | \n
Organic fertilizer | \n54 (47.0) | \n4 (3.5) | \n20 (17.4) | \n31 (27.0) | \n2.24 | \nNot Aware | \n
Low stock density 10kg/m | \n39 (39.9) | \n6 (5.2) | \n47 (40.9) | \n23 (20.0) | \n2.46 | \nNot Aware | \n
Manage without synthetic appetizer and colouring | \n40 (34.8) | \n15 (13.0) | \n44 (38.3) | \n16 (13.9) | \n2.31 | \nNot Aware | \n
Polyculture | \n70 (60.9) | \n13 (11.3) | \n18 (15.7) | \n14 (12.2) | \n1.79 | \nNot Aware | \n
Proper record keeping | \n65 (56.5) | \n3 (2.6) | \n18 (15.7) | \n29 (25.2) | \n2.09 | \nNot Aware | \n
Pond protection from predators | \n13 (11.3) | \n2 (1.7) | \n36 (31.3) | \n64 (55.7) | \n3.31 | \nAware | \n
Use of resistant species | \n29 (25.2) | \n1 (0.9) | \n34 (29.6) | \n51 (44.3) | \n2.95 | \nAware | \n
Natural treatment (homeopathy) | \n43 (37.4) | \n8 (7.0) | \n11 (9.6) | \n53 (46.1) | \n2.64 | \nAware | \n
Distribution of fish farmers by level of awareness of organic farming practices.
Source: Field survey, 2015
\nTable 2 revealed that farmers were aware of such organic farming practices as eco-friendly design (x ¯ = 2.91), high quality water source (x ¯ = 2.90), pond protection from predators (x ¯ = 3.36), use of resistant species (x ¯ = 2.95, natural treatment (x ¯ = 2.64), cultivation without genetic engineering (x ¯ = 2.58) and management without growth hormones (x ¯ = 2.60). Other practices were below mean score of (x ¯ = 2.50). The grand mean was 2.49. This implies a moderate awareness level which could be as a result of organic fish farming practices being in line with the traditional method of fish farming.
\n\nTable 3 shows the use of organic farming practices by livestock farmers in the study area.
\nOrganic farming practices | \nUse | \n% | \nNon use | \n% | \n
---|---|---|---|---|
Organic Farming Practices for livestock | \n\n | \n | \n | \n |
Adequate land holding | \n44 | \n44.5 | \n55 | \n55.5 | \n
Farm diversification | \n39 | \n39.4 | \n60 | \n60.5 | \n
Free movement of animals Provision of fresh air and natural day light | \n50 | \n50.5 | \n49 | \n49.5 | \n
Protection against adverse weather condition | \n29 | \n29.9 | \n70 | \n70.1 | \n
Resting areas | \n25 | \n25.3 | \n74 | \n74.7 | \n
Clean and dry beddings | \n41 | \n41.4 | \n58 | \n58.6 | \n
Enough space for exercise | \n46 | \n46.6 | \n53 | \n53.4 | \n
Access to Fresh drinking water | \n75 | \n75.8 | \n24 | \n24.2 | \n
Allowing livestock to Express natural behaviour | \n63 | \n63.6 | \n36 | \n36.4 | \n
Use of local breed | \n49 | \n49.5 | \n50 | \n50.5 | \n
Natural reproduction technique | \n57 | \n57.6 | \n42 | \n42.4 | \n
Produce without genetic engineering , ionizing radiation or sewage sludge | \n40 | \n40.4 | \n59 | \n59.6 | \n
Adequate feeding | \n73 | \n73.3 | \n26 | \n26.3 | \n
Animal feeding is 100% organic | \n52 | \n52.5 | \n47 | \n47.5 | \n
Prompt treatment of sick animals | \n60 | \n60.6 | \n39 | \n39.4 | \n
Manage animals without antibiotics | \n21 | \n21.2 | \n78 | \n78.8 | \n
Traditional/natural treatment of sick animals | \n36 | \n36.4 | \n63 | \n63.6 | \n
Vaccinate only during disease outbreak | \n23 | \n23.2 | \n76 | \n76.8 | \n
Manage without added growth hormones | \n31 | \n31.3 | \n68 | \n68.7 | \n
Accurate record keeping. | \n54 | \n54.5 | \n45 | \n45.5 | \n
Distribution of livestock farmers by use of organic farming practices.
According to Table 3, organic farming practices commonly used by livestock farmers includes fresh drinking water (76%), adequate feeding (73%), allowing livestock to express natural behavior (64%), prompt treatment of sick animals (61%), natural reproduction technique (58%), accurate record keeping (55%), animal feed is 100% organic (53%), free movement of animals/provision of fresh air and natural day light (51%) and use of local breed (50%). Out of 20 organic livestock practices, only 9 were above average and this is not up to 50% rating. This is not surprising since most livestock farmers are yet to be abreast with what organic livestock entails hence the low awareness level.
\n\nTable 4 shows the result for the use of organic farming practices by fish farmers in the study area.
\nOrganic Farming Practices | \nUse | \n% | \nNon use | \n% | \n
---|---|---|---|---|
Eco-friendly design | \n91 | \n79.1 | \n24 | \n20.9 | \n
Manage without growth Hormone | \n84 | \n73.0 | \n31 | \n27.0 | \n
Antibiotics is only used in clinical cases where no other treatment would work | \n70 | \n60.9 | \n45 | \n39.1 | \n
Cultivate without genetic engineering. | \n64 | \n55.7 | \n51 | \n44.3 | \n
Site is far from polluting substances | \n87 | \n75.7 | \n28 | \n24.3 | \n
High quality water source (stream, river) | \n63 | \n54.8 | \n52 | \n45.2 | \n
Organic fertilizer | \n56 | \n48.7 | \n59 | \n51.3 | \n
Low stock density 10k/m | \n35 | \n30.4 | \n80 | \n69.6 | \n
Manage without synthetic appetizer and colouring | \n46 | \n40.0 | \n69 | \n60.0 | \n
Poly-culture | \n59 | \n51.3 | \n56 | \n48.7 | \n
Proper record keeping | \n53 | \n46.1 | \n62 | \n53.9 | \n
Pond protection from predators | \n93 | \n80.9 | \n22 | \n19.1 | \n
Use of resistant species | \n80 | \n69.6 | \n35 | \n30.4 | \n
Natural treatment (homeopathy) | \n65 | \n66.5 | \n50 | \n43.5 | \n
Distribution of fish farmers by use of organic farming practices.
The use of organic farming practices among fish farmers varied slightly in percentages as shown in Table 4. However, the commonly used organic farming practices includes pond protection from predators (81%), eco-friendly design (79%), site protection far from polluting substances (76%), manage without growth hormones (73%), use of resistant varieties had (70%), natural treatment (67%), antibiotics is used in clinical cases where no other treatment would work (61%), cultivated without genetic engineering (56%), high quality water source (55%) and poly-culture (51%). The use of organic farming practices by fish farmers was relatively high compared to organic farming practices by livestock farmers. This could be attributed to the fact that most of the organic practices are in line with the traditional practices of the people.
\n\nTable 5 shows the result for the level of use of organic farming practices among livestock farmers.
\nOrganic Farming Practices for livestock | \nNever | \nRarely | \nRegularly | \nVery regularly | \nMean | \nDecision | \n
---|---|---|---|---|---|---|
Adequate land holding | \n55 (55.5) | \n9 (9.1) | \n25 (25.3) | \n10 (10.1) | \n1.89 | \nNU | \n
Farm diversification | \n60 (60.5) | \n9 (9.1) | \n20 (20.2) | \n10 (10.1) | \n1.79 | \nNU | \n
Free movement of animals/Provision of fresh air and natural day light | \n49 (49.5) | \n16 (16.2) | \n34 (34.3) | \n0 (0.00) | \n1.84 | \nNU | \n
Protection against adverse weather condition | \n70 (70.1) | \n1 (1.0) | \n28 (28.3) | \n0 (0.00) | \n1.57 | \nNU | \n
Resting areas | \n74 (74.7) | \n5 (5.1) | \n20 (20.2) | \n0 (0.00) | \n1.45 | \nNU | \n
Clean and dry beddings | \n58 (58.6) | \n1 (1.0) | \n39 (39.4) | \n1 (1.0) | \n1.83 | \nNU | \n
Enough space for exercise | \n53 (53.4) | \n15 (15.2) | \n20 (20.2) | \n11 (11.1) | \n1.89 | \nNU | \n
Access to fresh drinking water | \n24 (24.2) | \n1 (1.0) | \n48 (48.5) | \n26 (26.3) | \n2.77 | \nU | \n
Allowing livestock to Express natural behaviour | \n36 (36.4) | \n3 (3.0) | \n57 (57.6) | \n3 (3.0) | \n2.27 | \nNU | \n
Use of local breed | \n50 (50.5) | \n1 (1.0) | \n37 (37.4) | \n11 (11.1) | \n2.09 | \nNU | \n
Natural reproduction technique | \n42 (42.4) | \n1 (1.0) | \n46 (46.5) | \n10 (10.1) | \n2.24 | \nNU | \n
Produce without genetic engineering , ionizing radiation or sewage sludge | \n59 (59.6) | \n4 (4.0) | \n32 (32.3) | \n4 (4.0) | \n1.81 | \nNU | \n
Adequate feeding | \n26 (26.3) | \n1 (1.0) | \n54 (54.5) | \n18 (18.2) | \n2.65 | \nU | \n
Animal feeding is 100% organic | \n47 (47.5) | \n3 (3.0) | \n34 (34.3) | \n15 (15.2 | \n2.17 | \nNU | \n
Prompt treatment of sick animals | \n39 (39.4) | \n1 (1.0) | \n57 (57.6) | \n2 (2.0) | \n2.22 | \nNU | \n
Manage animals without antibiotics | \n78 (78.8) | \n3 (3.0) | \n17 (17.2) | \n1 (1.0) | \n1.40 | \nNU | \n
Traditional/natural treatment of sick animals | \n63 (63.6) | \n8 (8.1) | \n27 (27.3) | \n1 (1.0) | \n1.65 | \nNU | \n
Vaccinate only during disease outbreak | \n76 (76.8) | \n11 (11.1) | \n11 (11.1) | \n1 (1.0) | \n1.36 | \nNU | \n
Manage without added growth hormones | \n68 (68.7) | \n2 (2.0) | \n29 (29.3) | \n0 (0.00) | \n1.60 | \nNU | \n
Accurate record keeping | \n45 (45.5) | \n3 (3.0) | \n50 (50.5) | \n1 (1.0) | \n2.07 | \nNU | \n
Distribution of livestock farmers by level of use of organic practices.
Source: Field survey, 2015
From Table 5, organic livestock production practices’ in South-South Nigeria is low (grand mean = 1.93) as only 2 (10%) out of 20 outlined practices had mean score of 2.50 (discriminating index) and above. That is access to fresh drinking water (mean score = 2.77) and adequate feeding (mean score = 2.65). This result implied that the level of use is rare.
\n\nTable 6 shows the level of use of organic farming practices among fish farmers in the study area.
\nOrganic Farming Practices | \nNever | \nRarely | \nRegularly | \nVery. regularly | \nMean | \nDecision | \n
---|---|---|---|---|---|---|
Eco-friendly design | \n24 (20.9) | \n6 (5.2) | \n81 (70.4) | \n4 (3.5) | \n2.56 | \nU | \n
Manage without growth hormone | \n31 (27.0) | \n5 (4.3) | \n79 (68.7) | \n0 (0.0) | \n2 41 | \nNU | \n
Antibiotics is only used in clinical cases where no other treatment would work | \n45 (39.1) | \n29 (25.2) | \n40 (34.8) | \n1 (0.9) | \n1.97 | \nNU | \n
Cultivate without genetic engineering. | \n51 (44.3) | \n7 (6.1) | \n38 (33.0) | \n19 (16.5) | \n2.21 | \nNU | \n
Site is far from polluting substances | \n28 (24.3) | \n9 (7.8) | \n62 (53.9) | \n16 (13.9) | \n2.57 | \nU | \n
High quality water source (stream, river, | \n52 (45.2) | \n2 (1.7) | \n53 (46.1) | \n8 (7.0) | \n2.14 | \nNU | \n
Organic fertilizer | \n59 (51.3) | \n11 (9.6) | \n43 (37.4) | \n2 (1.7) | \n1.89 | \nNU | \n
Low stock density 10k/m | \n80 (69.6) | \n2 (1.7) | \n29 (25.2) | \n4 (3.5) | \n1.62 | \nNU | \n
Manage without synthetic appetizer and colouring | \n69 (60.0) | \n1 (0.9) | \n30 (26.1) | \n15 (13.0) | \n1.92 | \nNU | \n
Polyculture | \n56 (48.7) | \n7 (6.1) | \n50 (43.5) | \n2 (1.7) | \n1.98 | \nNU | \n
Proper record keeping | \n62 (53.9) | \n1 (0.9) | \n44 (38.3) | \n8 (7.0) | \n1.98 | \nNU | \n
Pond protection from predators | \n22 (19.1) | \n1 (0.9) | \n81 (70.4) | \n11 (9.6) | \n2.70 | \nU | \n
Use of resistant species | \n35 (30.4) | \n3 (2.6) | \n69 (60.0) | \n8 (7.0) | \n2.43 | \nNU | \n
Natural treatment (homeopathy) | \n50 (43.5) | \n35 (30.4) | \n26 (22.6) | \n4 (3.5) | \n1.86 | \nNU | \n
Distribution of fish farmers by level of use of organic farming practices.
The results from Table 6 revealed that out of the fourteen (14) practices outlined, fish farmers regularly engaged in the use of three of such practices which are the use of eco-friendly design (x ¯ = 2.56), site being far from polluting substances (x ¯ = 2.57) and pond protection from predators (x ¯ = 2.70). From the result, the others were considered not being used. The grand mean of 1.99 indicates that the level of use of organic farming practices by fish farmers in the study area is low.
\nThis could be associated with some challenges or difficulties in carrying out such practices and lack of awareness of the dangers associated with the conventional practices. This does not augur well for the quest for healthy living. There was a positive relationship between knowledge of agricultural practice and innovativeness of farmers [25]. Thus the need to improved awareness of such practices to farmers.
\nThe study concludes that the level of awareness of farmers to organic farming practices is low. However, fish farmers are better aware of such practices than livestock farmers. The justification between these major differences in the level of awareness of organic practices in farming activities could reflect on the livelihood of the southern communities in Nigeria. It is known that the major occupation is fishing. Therefore, it is only normal to be better aware of existing and improved techniques to improve fish farming other than the livestock counterpart. The study recommends that in the campaign for increased awareness of organic agriculture, special attention should be taken to create awareness to farmers on how organic farming practices can be applied for livestock production as well since this sector had shown a lower level of awareness.
\nConclusion is also drawn on the use of organic farming practices among farmers. The use of organic farming practices is higher for fish farmers relative to livestock farmers. The rationale to this difference is drawn from the observation that some of the indigenous knowledge and traditional practices of fish farmers were similar to identified organic practices. However for livestock farmers, the opposite was observed and thus the low use of organic practices for production. It is recommended that extension personnel should educate farmers on the adoption of organic farming methods in production with special interest on livestock farmers. This is believed to contribute to the improvement in the use of organic farming methods for fish and livestock production. Particularly, livestock farmers should be educated on the use of such practices as: no antibiotics used, vaccination only during disease outbreak, protection of animals from adverse weather conditions and farm diversification. Likewise, fish fishers should be educated on such practices as: low stock density, no synthetic appetizer and coloring, proper record keeping and use of organic fertilizers.
\nIn spite of the observation that fish farmers used more of organic farming methods relative to livestock farmers, the level of use of organic farming practices among both groups of farmers is low, despite the importance drawn from using organic methods for agricultural production. This draws to the need for increased extension campaign to sensitize farmers and sustain the interest in organic agriculture. It is also recommended that policymakers should create more windows of opportunities and incentives as well as the enabling environment to encourage more farmers to participate in organic farm production. This is believed to contribute to the increase in the level of awareness, use and practices of organic agriculture in South-South Nigeria.
\nEdited by Jan Oxholm Gordeladze, ISBN 978-953-51-3020-8, Print ISBN 978-953-51-3019-2, 336 pages,
\nPublisher: IntechOpen
\nChapters published March 22, 2017 under CC BY 3.0 license
\nDOI: 10.5772/61430
\nEdited Volume
This book serves as a comprehensive survey of the impact of vitamin K2 on cellular functions and organ systems, indicating that vitamin K2 plays an important role in the differentiation/preservation of various cell phenotypes and as a stimulator and/or mediator of interorgan cross talk. Vitamin K2 binds to the transcription factor SXR/PXR, thus acting like a hormone (very much in the same manner as vitamin A and vitamin D). Therefore, vitamin K2 affects a multitude of organ systems, and it is reckoned to be one positive factor in bringing about "longevity" to the human body, e.g., supporting the functions/health of different organ systems, as well as correcting the functioning or even "curing" ailments striking several organs in our body.
\\n\\nChapter 1 Introductory Chapter: Vitamin K2 by Jan Oxholm Gordeladze
\\n\\nChapter 2 Vitamin K, SXR, and GGCX by Kotaro Azuma and Satoshi Inoue
\\n\\nChapter 3 Vitamin K2 Rich Food Products by Muhammad Yasin, Masood Sadiq Butt and Aurang Zeb
\\n\\nChapter 4 Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet by Barbara Walther and Magali Chollet
\\n\\nChapter 5 The Impact of Vitamin K2 on Energy Metabolism by Mona Møller, Serena Tonstad, Tone Bathen and Jan Oxholm Gordeladze
\\n\\nChapter 6 Vitamin K2 and Bone Health by Niels Erik Frandsen and Jan Oxholm Gordeladze
\\n\\nChapter 7 Vitamin K2 and its Impact on Tooth Epigenetics by Jan Oxholm Gordeladze, Maria A. Landin, Gaute Floer Johnsen, Håvard Jostein Haugen and Harald Osmundsen
\\n\\nChapter 8 Anti-Inflammatory Actions of Vitamin K by Stephen J. Hodges, Andrew A. Pitsillides, Lars M. Ytrebø and Robin Soper
\\n\\nChapter 9 Vitamin K2: Implications for Cardiovascular Health in the Context of Plant-Based Diets, with Applications for Prostate Health by Michael S. Donaldson
\\n\\nChapter 11 Vitamin K2 Facilitating Inter-Organ Cross-Talk by Jan O. Gordeladze, Håvard J. Haugen, Gaute Floer Johnsen and Mona Møller
\\n\\nChapter 13 Medicinal Chemistry of Vitamin K Derivatives and Metabolites by Shinya Fujii and Hiroyuki Kagechika
\\n"}]'},components:[{type:"htmlEditorComponent",content:'This book serves as a comprehensive survey of the impact of vitamin K2 on cellular functions and organ systems, indicating that vitamin K2 plays an important role in the differentiation/preservation of various cell phenotypes and as a stimulator and/or mediator of interorgan cross talk. Vitamin K2 binds to the transcription factor SXR/PXR, thus acting like a hormone (very much in the same manner as vitamin A and vitamin D). Therefore, vitamin K2 affects a multitude of organ systems, and it is reckoned to be one positive factor in bringing about "longevity" to the human body, e.g., supporting the functions/health of different organ systems, as well as correcting the functioning or even "curing" ailments striking several organs in our body.
\n\nChapter 1 Introductory Chapter: Vitamin K2 by Jan Oxholm Gordeladze
\n\nChapter 2 Vitamin K, SXR, and GGCX by Kotaro Azuma and Satoshi Inoue
\n\nChapter 3 Vitamin K2 Rich Food Products by Muhammad Yasin, Masood Sadiq Butt and Aurang Zeb
\n\nChapter 4 Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet by Barbara Walther and Magali Chollet
\n\nChapter 5 The Impact of Vitamin K2 on Energy Metabolism by Mona Møller, Serena Tonstad, Tone Bathen and Jan Oxholm Gordeladze
\n\nChapter 6 Vitamin K2 and Bone Health by Niels Erik Frandsen and Jan Oxholm Gordeladze
\n\nChapter 7 Vitamin K2 and its Impact on Tooth Epigenetics by Jan Oxholm Gordeladze, Maria A. Landin, Gaute Floer Johnsen, Håvard Jostein Haugen and Harald Osmundsen
\n\nChapter 8 Anti-Inflammatory Actions of Vitamin K by Stephen J. Hodges, Andrew A. Pitsillides, Lars M. Ytrebø and Robin Soper
\n\nChapter 9 Vitamin K2: Implications for Cardiovascular Health in the Context of Plant-Based Diets, with Applications for Prostate Health by Michael S. Donaldson
\n\nChapter 11 Vitamin K2 Facilitating Inter-Organ Cross-Talk by Jan O. Gordeladze, Håvard J. Haugen, Gaute Floer Johnsen and Mona Møller
\n\nChapter 13 Medicinal Chemistry of Vitamin K Derivatives and Metabolites by Shinya Fujii and Hiroyuki Kagechika
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5717},{group:"region",caption:"Middle and South America",value:2,count:5179},{group:"region",caption:"Africa",value:3,count:1696},{group:"region",caption:"Asia",value:4,count:10260},{group:"region",caption:"Australia and Oceania",value:5,count:890},{group:"region",caption:"Europe",value:6,count:15670}],offset:12,limit:12,total:117458},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:11},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:17},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:51},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5156},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10062",title:"Forecasting in Mathematics",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"9a3ad05fef0502040d2a238ad22487c0",slug:"forecasting-in-mathematics-recent-advances-new-perspectives-and-applications",bookSignature:"Abdo Abou Jaoude",coverURL:"https://cdn.intechopen.com/books/images_new/10062.jpg",editedByType:"Edited by",editors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoude",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editedByType:"Edited by",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10116",title:"Nano- and Microencapsulation",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"8d92c5999718734b36a0cc3a6af7c7f6",slug:"nano-and-microencapsulation-techniques-and-applications",bookSignature:"Nedal Abu-Thabit",coverURL:"https://cdn.intechopen.com/books/images_new/10116.jpg",editedByType:"Edited by",editors:[{id:"308436",title:"Associate Prof.",name:"Nedal",middleName:null,surname:"Abu-Thabit",slug:"nedal-abu-thabit",fullName:"Nedal Abu-Thabit"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9881",title:"Perovskite and Piezoelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"8fa0e0f48567bbc50fbb3bfdde6f9a0b",slug:"perovskite-and-piezoelectric-materials",bookSignature:"Someshwar Pola, Neeraj Panwar and Indrani Coondoo",coverURL:"https://cdn.intechopen.com/books/images_new/9881.jpg",editedByType:"Edited by",editors:[{id:"177037",title:"Dr.",name:"Someshwar",middleName:null,surname:"Pola",slug:"someshwar-pola",fullName:"Someshwar Pola"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9394",title:"Genotoxicity and Mutagenicity",subtitle:"Mechanisms and Test Methods",isOpenForSubmission:!1,hash:"9ee7e597358dbbfb5e33d0beb76e6fff",slug:"genotoxicity-and-mutagenicity-mechanisms-and-test-methods",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/9394.jpg",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"757",title:"Semiotics",slug:"electrical-and-electronic-engineering-semiotics",parent:{title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:1,numberOfAuthorsAndEditors:19,numberOfWosCitations:13,numberOfCrossrefCitations:22,numberOfDimensionsCitations:36,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"electrical-and-electronic-engineering-semiotics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3240",title:"Soundscape Semiotics",subtitle:"Localization and Categorization",isOpenForSubmission:!1,hash:"2591f42f72b6e851e6cd65911ec93cb7",slug:"soundscape-semiotics-localisation-and-categorisation",bookSignature:"Herve Glotin",coverURL:"https://cdn.intechopen.com/books/images_new/3240.jpg",editedByType:"Edited by",editors:[{id:"23522",title:"Dr.",name:"Hervé",middleName:null,surname:"Glotin",slug:"herve-glotin",fullName:"Hervé Glotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"45589",doi:"10.5772/56872",title:"Clusterized Mel Filter Cepstral Coefficients and Support Vector Machines for Bird Song Identification",slug:"clusterized-mel-filter-cepstral-coefficients-and-support-vector-machines-for-bird-song-identificatio",totalDownloads:1540,totalCrossrefCites:9,totalDimensionsCites:15,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Olivier Dufour, Thierry Artieres, Hervé Glotin and Pascale Giraudet",authors:[{id:"23523",title:"Prof.",name:"Pascale",middleName:null,surname:"Giraudet",slug:"pascale-giraudet",fullName:"Pascale Giraudet"},{id:"169025",title:"Dr.",name:"Olivier",middleName:null,surname:"Dufour",slug:"olivier-dufour",fullName:"Olivier Dufour"},{id:"169026",title:"Dr.",name:"Thierry",middleName:null,surname:"Artieres",slug:"thierry-artieres",fullName:"Thierry Artieres"},{id:"169027",title:"Dr.",name:"Hervé",middleName:null,surname:"Glotin",slug:"herve-glotin",fullName:"Hervé Glotin"}]},{id:"45262",doi:"10.5772/56040",title:"Automatic Identification and Interpretation of Animal Sounds, Application to Livestock Production Optimisation",slug:"automatic-identification-and-interpretation-of-animal-sounds-application-to-livestock-production-opt",totalDownloads:1709,totalCrossrefCites:4,totalDimensionsCites:11,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Vasileios Exadaktylos, Mitchell Silva and Daniel Berckmans",authors:[{id:"20140",title:"Dr.",name:"Daniel",middleName:null,surname:"Berckmans",slug:"daniel-berckmans",fullName:"Daniel Berckmans"},{id:"20246",title:"Dr.",name:"Vasileios",middleName:null,surname:"Exadaktylos",slug:"vasileios-exadaktylos",fullName:"Vasileios Exadaktylos"},{id:"20391",title:"Mr.",name:"Mitchell",middleName:null,surname:"Silva",slug:"mitchell-silva",fullName:"Mitchell Silva"}]},{id:"45612",doi:"10.5772/56907",title:"Head-Related Transfer Functions and Virtual Auditory Display",slug:"head-related-transfer-functions-and-virtual-auditory-display",totalDownloads:2024,totalCrossrefCites:7,totalDimensionsCites:7,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Xiao-li Zhong and Bo-sun Xie",authors:[{id:"155754",title:"Prof.",name:"Bo-Sun",middleName:null,surname:"Xie",slug:"bo-sun-xie",fullName:"Bo-Sun Xie"},{id:"155755",title:"Associate Prof.",name:"Xiao-Li",middleName:null,surname:"Zhong",slug:"xiao-li-zhong",fullName:"Xiao-Li Zhong"}]}],mostDownloadedChaptersLast30Days:[{id:"45612",title:"Head-Related Transfer Functions and Virtual Auditory Display",slug:"head-related-transfer-functions-and-virtual-auditory-display",totalDownloads:2024,totalCrossrefCites:7,totalDimensionsCites:7,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Xiao-li Zhong and Bo-sun Xie",authors:[{id:"155754",title:"Prof.",name:"Bo-Sun",middleName:null,surname:"Xie",slug:"bo-sun-xie",fullName:"Bo-Sun Xie"},{id:"155755",title:"Associate Prof.",name:"Xiao-Li",middleName:null,surname:"Zhong",slug:"xiao-li-zhong",fullName:"Xiao-Li Zhong"}]},{id:"45589",title:"Clusterized Mel Filter Cepstral Coefficients and Support Vector Machines for Bird Song Identification",slug:"clusterized-mel-filter-cepstral-coefficients-and-support-vector-machines-for-bird-song-identificatio",totalDownloads:1540,totalCrossrefCites:9,totalDimensionsCites:15,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Olivier Dufour, Thierry Artieres, Hervé Glotin and Pascale Giraudet",authors:[{id:"23523",title:"Prof.",name:"Pascale",middleName:null,surname:"Giraudet",slug:"pascale-giraudet",fullName:"Pascale Giraudet"},{id:"169025",title:"Dr.",name:"Olivier",middleName:null,surname:"Dufour",slug:"olivier-dufour",fullName:"Olivier Dufour"},{id:"169026",title:"Dr.",name:"Thierry",middleName:null,surname:"Artieres",slug:"thierry-artieres",fullName:"Thierry Artieres"},{id:"169027",title:"Dr.",name:"Hervé",middleName:null,surname:"Glotin",slug:"herve-glotin",fullName:"Hervé Glotin"}]},{id:"45338",title:"Contribution of Precisely Apparent Source Width to Auditory Spaciousness",slug:"contribution-of-precisely-apparent-source-width-to-auditory-spaciousness",totalDownloads:1424,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Chiung Yao Chen",authors:[{id:"154975",title:"Prof.",name:"Chiung Yao",middleName:null,surname:"Chen",slug:"chiung-yao-chen",fullName:"Chiung Yao Chen"}]},{id:"43951",title:"Evaluation of an Active Microphone with a Parabolic Reflection Board for Monaural Sound-Source-Direction Estimation",slug:"evaluation-of-an-active-microphone-with-a-parabolic-reflection-board-for-monaural-sound-source-direc",totalDownloads:1027,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Tetsuya Takiguchi, Ryoichi Takashima and Yasuo Ariki",authors:[{id:"2093",title:"Dr.",name:"Tetsuya",middleName:null,surname:"Takiguchi",slug:"tetsuya-takiguchi",fullName:"Tetsuya Takiguchi"},{id:"5503",title:"Dr.",name:"Yasuo",middleName:null,surname:"Ariki",slug:"yasuo-ariki",fullName:"Yasuo Ariki"},{id:"17095",title:"Mr.",name:"Ryoichi",middleName:null,surname:"Takashima",slug:"ryoichi-takashima",fullName:"Ryoichi Takashima"}]},{id:"45170",title:"Source Separation and DOA Estimation for Underdetermined Auditory Scene",slug:"source-separation-and-doa-estimation-for-underdetermined-auditory-scene",totalDownloads:1460,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Nozomu Hamada and Ning Ding",authors:[{id:"155108",title:"Prof.",name:"Nozomu",middleName:null,surname:"Hamada",slug:"nozomu-hamada",fullName:"Nozomu Hamada"}]},{id:"45262",title:"Automatic Identification and Interpretation of Animal Sounds, Application to Livestock Production Optimisation",slug:"automatic-identification-and-interpretation-of-animal-sounds-application-to-livestock-production-opt",totalDownloads:1709,totalCrossrefCites:4,totalDimensionsCites:11,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Vasileios Exadaktylos, Mitchell Silva and Daniel Berckmans",authors:[{id:"20140",title:"Dr.",name:"Daniel",middleName:null,surname:"Berckmans",slug:"daniel-berckmans",fullName:"Daniel Berckmans"},{id:"20246",title:"Dr.",name:"Vasileios",middleName:null,surname:"Exadaktylos",slug:"vasileios-exadaktylos",fullName:"Vasileios Exadaktylos"},{id:"20391",title:"Mr.",name:"Mitchell",middleName:null,surname:"Silva",slug:"mitchell-silva",fullName:"Mitchell Silva"}]},{id:"45332",title:"Application of Iterative Reverse Time Migration Procedure on Transcranial Thermoacoustic Tomography Imaging",slug:"application-of-iterative-reverse-time-migration-procedure-on-transcranial-thermoacoustic-tomography-",totalDownloads:1213,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Zijian Liu and Lanbo Liu",authors:[{id:"156358",title:"Dr.",name:"Zijian",middleName:null,surname:"Liu",slug:"zijian-liu",fullName:"Zijian Liu"},{id:"157065",title:"Prof.",name:"Lanbo",middleName:null,surname:"Liu",slug:"lanbo-liu",fullName:"Lanbo Liu"}]},{id:"43711",title:"Auditory Distance Estimation in an Open Space",slug:"auditory-distance-estimation-in-an-open-space",totalDownloads:1647,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"soundscape-semiotics-localisation-and-categorisation",title:"Soundscape Semiotics",fullTitle:"Soundscape Semiotics - Localization and Categorization"},signatures:"Kim Fluitt, Timothy Mermagen and Tomasz Letowski",authors:[{id:"157339",title:"Ms.",name:"Kim",middleName:null,surname:"Fluitt",slug:"kim-fluitt",fullName:"Kim Fluitt"},{id:"157340",title:"Dr.",name:"Tomasz",middleName:null,surname:"Letowski",slug:"tomasz-letowski",fullName:"Tomasz Letowski"}]}],onlineFirstChaptersFilter:{topicSlug:"electrical-and-electronic-engineering-semiotics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/135853/rajasekhar-anumolu",hash:"",query:{},params:{id:"135853",slug:"rajasekhar-anumolu"},fullPath:"/profiles/135853/rajasekhar-anumolu",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()