\r\n\t1. Emphasizing the unique power of the molecular docking method in new drug discovery;
\r\n\t2. Demonstration of how the molecular docking technique has led to the discovery of new molecules in cancer therapy, proteasome, and STAT3 inhibition, and the treatment of Alzheimer's disease;
\r\n\t3. Underlining the importance of molecular docking-based modeling methods in the various branches of biotechnology
\r\n\tWe hope that this book will be a common point where researchers working in the fields of life sciences and drug development will eventually meet.
",isbn:"978-1-80356-468-5",printIsbn:"978-1-80356-467-8",pdfIsbn:"978-1-80356-469-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"8c918a1973786c7059752b28601f1329",bookSignature:"Dr. Erman Salih Istifli",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",keywords:"Protein-Ligand Interaction, Lead Discovery, Molecular Recognition, Enzyme-Ligand Interaction, Mutant Enzymes, Alanine Screening, Proteasome Inhibitors, Signal Transducers, Transcription Activators (STATs), DNA Recognition Motifs, Neoplastic Cells, Amyloid-Beta Proteins",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 3rd 2022",dateEndSecondStepPublish:"May 4th 2022",dateEndThirdStepPublish:"July 3rd 2022",dateEndFourthStepPublish:"September 21st 2022",dateEndFifthStepPublish:"November 20th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"23 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A multidisciplinary researcher working in the fields of cytogenetics, molecular genetics, and bioinformatics-based molecular modeling (currently on the structural biology of COVID-19 and the treatment of Alzheimer’s disease). Dr. Istifli previously joined the molecular cytogenetics group at the Max Planck Institute for Molecular Genetics in Berlin, Germany where he contributed experimentally to the identification of four candidate genes (GRIA2, GLRB, NPY1R, and NPY5R).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",middleName:null,surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli",profilePictureURL:"https://mts.intechopen.com/storage/users/179007/images/system/179007.JPG",biography:"Dr. Erman Salih İstifli received his Ph.D. from Biology Department of Cukurova University, Insitute of Science and Letter. In his doctoral study, Dr. İstifli focused on the elucidation of the genotoxic and cytotoxic effects of a commonly used anticancer agent (antifolate) on human lymphocytes. During his period of doctoral research, he joined the molecular cytogenetics group at the Max Planck Institute for Molecular Genetics in Berlin, Germany, and he focused there on investigating the molecular cytogenetic causes of some human rare diseases. During these studies, he contributed experimentally to the identification of four candidate genes (GRIA2, GLRB, NPY1R, and NPY5R) responsible for intelligence and obesity. He was assigned as an expert and rapporteur on eight candidate projects in the Marie-Sklodowska Curie-Actions Innovative Training Networks in 2016. In 2017, he completed the online theoretical and practical course 'Introduction to Biology - The Secret of Life', run by the Massachusetts Institute of Technology (MIT) on the edX platform. In April 2019, within the framework of Erasmus+ staff mobility program, he gave seminars on 'DNA microarrays and their use in genotoxicity' at Tirana University in Tirana, Albania. He is a published author of several articles in journals covered by the SCI and SCI-E, and has manuscripts in other refereed scientific journals. He currently serves as a referee in several journals covered by the SCI and SCI-E. His studies mainly fall into the field of genetic toxicology. He continues his current research on the structural biology of COVID-19 as well as identification of novel plant-based hit compounds in the treatment of Alzheimer’s disease.",institutionString:"Çukurova University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8068",title:"Cytotoxicity",subtitle:"Definition, Identification, and Cytotoxic Compounds",isOpenForSubmission:!1,hash:"20a09223d92829b5478b5f241f6a03ce",slug:"cytotoxicity-definition-identification-and-cytotoxic-compounds",bookSignature:"Erman Salih Istifli and Hasan Basri Ila",coverURL:"https://cdn.intechopen.com/books/images_new/8068.jpg",editedByType:"Edited by",editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6969",title:"Lymphocytes",subtitle:null,isOpenForSubmission:!1,hash:"1aa8ac01c934ebdeedd5d7813036beef",slug:"lymphocytes",bookSignature:"Erman Salih Istifli and Hasan Basri İla",coverURL:"https://cdn.intechopen.com/books/images_new/6969.jpg",editedByType:"Edited by",editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"72060",title:"Fiber Composites Made of Low-Dimensional Carbon Materials",doi:"10.5772/intechopen.92092",slug:"fiber-composites-made-of-low-dimensional-carbon-materials",body:'\nAmong all kinds of low-dimensional materials [1, 2, 3, 4, 5, 6, 7, 8], using carbon-based low-dimensional materials to improve their physical, mechanical, and electrical properties has become a trend [9]. These carbon-based nano/micron additives include carbon fibers (CF), single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) [10, 11, 12], graphene oxide (GO) [13, 14, 15], and graphene nanoplates (GNP) [16]. The results show that the composites with high strength ductility, dimensional stability, and economy can be produced. They have an attractive application prospect in the fields of microelectronic devices, aerospace, energy, chemical industry, etc.
\nDifferent carbon material units have various structures and mechanical, thermal, and electrical properties. By combining with different material composite methods, carbon composite materials with different structures can be prepared. Through the optimization of material structure, carbon composite materials with high performance can be obtained [17, 18]. This chapter mainly introduces the preparation methods, properties, and application fields of carbon-based nanomaterials, such as CNTs, CF, and GBFs, which are commonly used to assemble macro carbon composites. The preparation methods of GBFs and their composite fibers, as well as their applications in sensors, energy storage, energy conversion, and other aspects, such as supercapacitors, lithium-ion batteries (LIBs), actuators, and solar cells, are mainly introduced. Finally, the existing problems and future development of carbon-matrix composites are summarized.
\nCNTs were first discovered under TEM in 1991. It is a one-dimensional tubular material made of SP2 hybrid carbon atoms. Its diameter ranges from several nanometers to tens of nanometers, and its length can reach centimeter-level at most. According to the wall layer, it can be divided into single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) (Figure 1). It is the most commercialized nanofiber with the highest strength and the smallest diameter [19, 20, 21]. Moreover, CNTs have good toughness, which can withstand 40% of tensile strain without brittle behavior or fracture phenomenon, thus improving the toughness of matrix composite [22]. CNTs with super high aspect ratio and excellent mechanical and physical properties, such as high strength, high thermal conductivity, high conductivity, and low thermal expansion coefficient, are regarded as the ideal functional modifier for preparing high-performance composite materials [23, 24, 25].
\nSchematic diagrams of fullerene single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) [
The preparation methods of CNTs include chemical vapor deposition (CVD), arc discharge (AD), and laser ablation (LA) [26]. CVD is the most commonly used method to prepare CNTs in the laboratory. Generally, CNTs are grown under the action of the catalyst after carbon source cracking at a certain temperature. This method has a series of advantages, such as simple equipment, fast preparation speed, large output, and controllable quality. The catalysts are generally transition metals such as iron, cobalt, and nickel, and the carbon sources are generally carbon-containing organics such as methane, ethylene, acetylene, ethanol, and xylene. The morphology (diameter, wall layer, length, density, curvature, crystallinity, etc.) of CNTs can be tuned by controlling the type and concentration of catalyst, the ratio of carbon source and injection speed, the temperature, pressure, and time of CVD [27, 28, 29, 30].
\nThe AD method is also the main method to produce CNTs. Usually, in the low-pressure arc chamber of inert gas, hydrogen, or other gases, the graphite material is used as the electrode to generate a continuous arc between the electrodes, which makes the graphite react with the catalyst to generate CNTs. The AD method has a high yield, and the CNT’s crystal structure is relatively complete [31, 32].
\nLaser ablation is a method to prepare CNTs by bombarding the surface of graphite target doped with iron, cobalt, nickel, and other transition metals in an inert gas environment at 1200°C [33]. The advantage of this method is that the CNTs produced are of high purity and convenient for continuous production, but this method is not suitable for large-scale macro production due to its high energy consumption, complex equipment, and high preparation cost [34, 35]. In addition to the above three main preparation methods, CNTs can also be prepared by template method, flame method, solar energy method, and electrolytic alkali metal halide method [36].
\nBecause of its special tubular structure and the strong binding force between SP2 hybrid carbon atoms, CNTs have high strength, fracture toughness, and elastic modulus, which are superior to any one-dimensional fiber [37]. The tensile strength of CNTs can reach 50–800 GPa, nearly 100 times of that standard steel, about 200 times higher than that of other polymer fibers, and its structure can be kept intact under 1 million atmospheric pressure. CNTs will not break obviously under large bending, while graphite fiber will break when bending 1% (volume fraction). The maximum elastic modulus of CNTs is 1 TPa, which is equivalent to that of diamond and about five times to that of steel. Due to defects, the actual elastic modulus of MWCNTs is in the range of 20–50 GPa [38, 39, 40]. Fiber is usually used to strengthen composite materials. In addition to its own strength, a high aspect ratio (>20) is also a key factor to obtain high-strength composite materials. The aspect ratio of CNTs is generally >1000. Therefore, through CNT-reinforced composite materials, it can show good mechanical strength and fatigue resistance [10, 41].
\nThe carbon atoms in CNTs are arranged in a six-membered ring network structure, which is very conducive to phonon vibration. Therefore, CNTs have good thermal conductivity. Due to the anisotropy of the structure, the thermal conductivity of CNTs along the length direction is much higher than that in the vertical direction. Theoretically, the thermal conductivity of SWCNTs can reach 10,000 W/mK at room temperature. Due to the presence of impurities, the highest experimental values of SWCNTs and MWCNTs are 3500 and 3000 W/mK, respectively [42, 43, 44]. Theoretical calculation and experimental results show that with the increase of CNT diameter, the thermal conductivity of CNTs shows a downward trend (Figure 2) [45]. This is because the increase of diameter inevitably increases the defect content, which leads to more phonon scattering.
\nThe relationship between thermal conductivity and diameter of CNTs [
CNTs are widely used in various electronic devices due to their high conductivity and chemical stability [46]. For SWCNTs, the specific surface area of SWNTs can reach 240–1250 m2 · g−1, which can generate 180 F · g−1 specific capacitance, 20 kW · kg−1 power density, and 6.5–7 Wh · kg−1 energy density. At the same time, high-temperature heat treatment can reduce the electrode impedance and increase the specific capacitance of SWNTs. The increase of capacitance is considered to be caused by the increase of specific surface area and a large number of 3–5 nm pore distribution [47, 48]. For MWCNTs, they usually have a high specific surface area (about 430 m2 · g−1), a specific capacitance of up to 180 F · g−1, a power density of 8 kW · kg−1, and an energy density of 0.56 Wh · kg−1. CNTs of different shapes (such as direct growth, porous, array, and crimp) have been tested as electrodes. The array CNT is the most suitable electrode because of its small internal resistance, good reaction rate, regular gap structure, and stable conductive channel [49, 50, 51].
\nCarbon fiber is a kind of fiber material with high strength and high modulus. Its carbon content is more than 90%, and CF with carbon content more than 99% is also called graphite fiber, which is mainly composed of disordered graphite microcrystals stacked along the axial direction of the fiber [52]. CF is not only flexible and acid and alkali resistant but also stronger than steel, which makes it an important material for national defense, military industry, and civil use [53].
\nCF can be classified into polyacrylonitrile-based (PAN-based) CF, asphalt-based CF, viscose-based CF, and gas-phase growth CF according to the source of precursors [52]. As shown in Figure 3, according to the basic morphology, it can be divided into filament CF and short CF, wherein filament CF can be woven into two-dimensional CF fabric and three-dimensional CF fabric. Based on the mechanical properties, it can be divided into general CF and high-performance CF which can also be divided into high-strength type (strength >2000 MPa) and high model type (modulus >300 GPa) CF. With the rapid development of aerospace, automobile manufacturing, and sports facilities, the performance of CF has been increased, and the outputs have been improved continuously. Currently, the largest amount of polyacrylonitrile-based CF is used in the real world [54].
\nThe pictures of (a) filament CF, (b) short CF, (c) CF cloth, and (d) 3D CF braid.
The industrial production of CF mainly includes polyacrylonitrile-based CF, asphalt-based CF, and viscose-based CF. Among them, the preparation process of viscose-based CF must be graphitized by high-temperature stretching. Because of its complex equipment and technical difficulties, it has not been effectively developed. The production process of polyacrylonitrile-based CF mainly includes two processes: raw silk production and carbonization. The production process of raw silk mainly consists of polymerization of acrylonitrile monomer, solution defoaming, wire spraying, traction, water washing, oiling, drying, and reeling. Moreover, the carbonization process mainly includes pre-oxidation, low-temperature carbonization, high-temperature carbonization, surface treatment, sizing and drying, winding, and other processes. Note that the pre-oxidation refers to heating the precursor fiber in the air to about 270°C, holding for a period of time, so that the polyacrylonitrile linear polymer will be oxidized, pyrolyzed, cross-linked, and cyclized to form a heat-resistant ladder polymer. In order to prevent melting and deformation of polyacrylonitrile fiber during high-temperature carbonization, the color of polyacrylonitrile fiber gradually changes from white to yellow, then brown, and finally black. The pre-oxidized fiber is carbonized in inert gas with high temperature, and then the cross-linking reaction arises further. With the removal of hydrogen, nitrogen, and oxygen atoms, CF with disordered graphite structure is formed.
\nThe raw material of asphalt-based CF is petroleum asphalt or coal asphalt. The preparation process mainly includes refining, spinning, pre-oxidation, carbonization, or graphitization of asphalt. Among them, mesophase asphalt is a kind of nematic liquid crystal (LC) material composed of disk-shaped or rod-shaped molecules formed by heavy aromatics during heat treatment. The asphalt-based CF prepared by mesophase asphalt is easy to graphitize and usually has a high modulus [52, 55, 56, 57].
\nDue to the carbonization and orientation at high temperatures, the carbon atoms of CF are arranged very closely, and the disordered graphite is closely connected. In addition, the diameter of CF is smaller, which can reduce the content of defects, so it has very high mechanical strength and modulus. The tensile strength and modulus of CF can reach 7 and 700 GPa, which are much higher than those of glass fiber and Kevlar fiber. CF can withstand high temperature above 3000°C without contact with air. Therefore, CF has outstanding heat-resistant performance. The higher is the temperature, the greater is the fiber strength. After graphitization, the density of mesophase asphalt-based CF increases, and the carbon content exceeds 99%. Most of the carbon atoms in the fiber form a large area of graphite sheet structure along the fiber axis by SP2 hybridization, which is very conducive to the phonon vibration. Therefore, the thermal conductivity of the graphite fiber can reach up to 1000 W/mK [45, 58, 59]. It is worth noting that the electrical properties of CF are not ideal, because of the inherent polycrystalline structure and a large number of grain boundaries inevitably formed during the pyrolysis of organic precursors [21].
\nGraphene is a two-dimensional (2D) crystalline sheet with a monolayer of carbon atoms densely packed in an SP2-bonded honeycomb lattice and can be considered as a single layer of the graphitic film in graphite. Thus, graphene is the thinnest nanomaterial known [60, 61]. As shown in Figure 4, the length of carbon–carbon bond in graphene is about 0.142 nm; all carbon atoms are connected with three surrounding carbon atoms by σ bond; the remaining P electron orbit is perpendicular to the plane of graphene to form delocalized π bond because π electron can move freely in the plane, rendering graphene holding excellent electrical properties [62, 63].
\n(a) Schematic diagram of a honeycomb crystal lattice of graphene, and (b) a single-layer suspended graphene sheet exhibits intrinsic microscopic roughening.
Since graphene was found in 2004 [61], because of its unique physical and chemical characteristics, such as extraordinary thermal conductivity [64], mechanical strength (\n
At present, the manufacturing methods of GBFs are mainly influenced by traditional synthetic fiber production methods, including melt spinning and solution spinning [63]. However, due to the high-temperature stability of graphene, its melting temperature is even higher than that of fullerene and carbon nanotubes. Therefore, melt spinning is not the choice for manufacturing GBFs, while solution spinning is [81, 82]. Solution spinning mainly includes wet spinning, dry jet wet spinning, and dry spinning. In addition to these traditional solution spinning methods, some new methods, including electrophoresis, template hydrothermal method, and chemical vapor deposition-assisted assembly, have been developed recently. In this part, the common methods of preparing GBFs will be introduced in detail.
\nWet spinning is one of the main methods to prepare chemical fiber. The important step is to prepare a spinning solution. Because graphene is not easily dispersed in water or other organic solvents, it is difficult to prepare a spinning solution, so it is not possible to prepare fibers from graphene by wet spinning [83, 84, 85]. As an important precursor of graphene, graphene oxide can be well dispersed in polar solvents (such as water), so it is expected to prepare fibers by wet spinning [86]. The steps of preparing GBFs by wet spinning are as follows: first, GO dispersions are injected into a stable aqueous solution to form GO spinning dope and then injected into the coagulation bath to form a gel-like fiber to prepare GO dope. After solidification for a period of time, GO fiber can be obtained by extracting colloidal fiber and drying, and then GO fiber can be reduced to produce GBFs, as shown in Figure 5. An rGO fiber can be further produced by reducing the GO fiber when needed [86, 87]. To ensure uniform and continuous formation of gelatinous fibers, the fibers after solidification should be kept at a certain speed. They can be drawn through a rotating bath or using a collecting unit, as shown in Figure 5. The highest strength rGO fiber is made by the method shown in Figure 5a. This method includes an easy spin of a small amount of fiber, but it lacks accurate control of fiber moving speed. In contrast, the method shown in Figure 5b can provide constant traction and determined moving speed to synthesize fibers, so the method is more suitable for producing fibers with accurate tensile ratio and good scalability [88].
\n(a) The synthesis of graphene oxide fiber by wet spinning in rotating coagulation bath and (b) collection unit [
Zhen et al. prepared liquid crystal GO aqueous solution for the first time in 2011, taking NaOH/methanol solution as coagulation bath, obtaining GO fiber through wet spinning, and then reducing GO fiber in hydroiodic acid to produce GBFs. This method can make GO sheets form liquid crystals, which can enhance the strength and flexibility of GBFs. The tensile strength of the fiber is 140 MPa, and the conductivity is 2.5 × 104 S · m−1 [86]. Then, Zhen et al. further tried to increase the lamella of the raw material GO, using N,N-dimethylformamide (DMF) as the solvent, acetone, and ethyl acetate mixture as the coagulation bath. After that, the mechanical ability of GBFs was improved by spinning drafting and high-temperature treatment at 3000°C, making its strength reach 1.45 GPa [89]. On the other hand, the conductivity of GBFs can be improved by ion doping, and the conductivity of potassium doped GBFs can reach 2.24 × 107 S · m−1 [90]. In addition, Shaohua et al. prepared non-liquid crystal GO aqueous solution to achieve a high concentration of spinning solution to improve the fiber yield. The concentration of a spinning solution can reach 2%, and then GBFs were obtained through a similar wet spinning process and reduction by hydrocodone. The mechanical and electrical properties of the fiber were 208 MPa and 1.53 × 103 S · m−1 [91], respectively.
\nIn addition to GBFs, graphene composite fibers can also be prepared by wet spinning, so as to effectively improve the fiber performance and expand the application field. Conducting polymer monomers are polymerized in situ during spinning to prepare composite fibers [92, 93], or oxides or other materials are added directly into the spinning solution to increase the capacity of fiber-shaped supercapacitors [94, 95]. Wujun et al. used GO to disperse the water-insoluble activated carbon in the aqueous solution, spinning and reducing to obtain graphene/activated carbon composite fiber. The fiber has a specific surface area of 1476.5 m2 · g−1 and a capacity of 43.8 F · g−1 [96]. Similarly, the graphene/manganese dioxide composite fiber can be spun by a similar process, and the capacity of the supercapacitor can reach 66.1 F · cm−3 [97]. In addition to inorganic materials, GO and polyvinyl alcohol (PVA) also have good compatibility. Adding sodium hydroxide to non-liquid crystal GO aqueous solution for a pH = 11. Then, adding PVA can significantly increase the affinity between fiber and electrolyte [98]. Similarly, the surface of the fiber with a large number of hydroxyl groups can significantly increase the hydrophilicity and strength of the fiber, which is caused by a large number of oxygen-containing functional groups on its surface [99]. Mochen et al. developed a method to improve the strength of graphene fiber. They spun GO and phenolic resin together. After carbonization under the condition on 1000°C, the C–C covalent bond was formed between graphene sheets, and the fiber strength reached 1.45 GPa [100]. The tensile strength and elongation at break of graphene fiber with 10% phenolic resin are 1.45 GPa and 1.8%, respectively, which are better than most GBFs reported before. The increase of strength, toughness, and elongation can be attributed to the formation of a C–C bond between the graphene sheet and phenolic carbon, which provides sliding space for the graphene sheet before fracture. Yang et al. developed a simple but effective method for continuous manufacturing of neat, morphologically defined, graphene-based hollow fibers (HFs) with coaxial capillary spinning strategy. As shown in Figure 6, the preparation method of GO-HFs is to use coaxial capillary spinneret to spray silk in 3 mol · L−1 KCl methanol solution and use compressed air to replace the internal fluid of KCl/methanol solution to successfully prepare GO-HFs with necklace structure (nGO-HF). Experiments show that nGO-HF has a large elongation of about 6% when it breaks, which indicates that nGO-HF has a strong ability to bear compression, which is caused by the elastic deformation of hollow microspheres [101]. Therefore, the physical properties of GBFs can be controlled by adjusting the spinning conditions.
\nSchematic of the setup that used a dual-capillary spinneret to directly spin GO-HFs [
In the dry spinning of GBFs, GO dispersion (mainly dispersed in water) is also used as a spinning assistant rather than a coagulation bath. Instead, the GO dispersion is injected and sealed in a pipe, and the GO dispersion is precipitated in the form of gel state fiber at high temperature by heating or chemical reduction, and then dried rGO fibers can be obtained by further solvent removal. GO dispersions are considered to be colloids with large-size dispersants [102, 103, 104]. The study of Dong et al. and Yu et al. shows that high temperature can promote the rapid movement of GO dispersant and increase the possibility of collision and precipitation of GO plate. At the same time, high temperature or chemical reduction can also separate the oxygen-containing groups in GO and reduce the zeta absolute potential of GO dispersion. Finally, due to the lack of sufficient electrostatic repulsion, GO sheets’ precipitate is assembled into fibers. The fibers in the gelatinous state expand in the solvent, but the diameter of the fibers can be reduced by about 80% after drying [105, 106].
\nIn the process of dry spinning, the precipitate of GO sheet under the condition of 220–230°C is actually a solvothermal process (the water is used as the solvent to disperse GO). The process flow is shown in Figure 7 [107], and the fibers made in this way are actually rGO fibers. It is reported that 27% of oxygen in GO can be removed at 180°C and most hydroxyl, epoxy, and carboxyl groups begin to separate at 200°C [108, 109]. Therefore, GBFs synthesized by the hydrothermal method has considerable conductivity, without post-reduction treatment [105, 110]. In addition to the hydrothermal method, Jihao et al. also use the chemical reduction method of CO to produce rGO fiber. First, the GO and vitamin C (VC) solution was injected into the polypropylene (PP) tube, then heated to 80°C, and kept for 1 h, while GO was reduced and assembled into gel-like rGO fibers. After extraction and drying, the fiber diameter decreased by 95–97%, which was due to the shrinkage of the fiber due to the removal of moisture. Finally, the conductivity of the rGO fiber is about 8 S · cm−1 [111].
\nSchematic illustration of the dry spinning process with a concentrated organic dispersion of GO [
In the dry spinning process, GO dispersion does not necessarily exist in the form of liquid crystal [106]. The randomly dispersed low-concentration GO dopes (8 mg · ML−1) composed of small-diameter GO (
Dry jet wet spinning is another important spinning method of conventional synthetic fiber. The results show that PAN-based carbon fibers can be spun with high concentration coating by this method and the mechanical properties of the fiber are better than that of wet spinning [52, 114]. Shayan et al. use dry jet wet spinning to improve the strength of the fiber. The existence of the air layer effectively reduces the speed gradient of the spinning liquid from the spinneret to the coagulation bath, so that the fiber has a better arrangement. However, if the air layer is too long, it will affect the tensile property of the fiber and control the diameter of the needle and the distance of the air layer. Then, the high-strength GBFs with circular cross section can be spun (Figure 8a) [115].
\n(a) A digital photo showing the setup for dry jet wet spinning of GBFs [
\nFigure 8b and c shows the surface and cross-sectional images of dry jet wet spinning fiber, which indicates that the GBFs with smooth surface and circular cross section can be produced by dry jet wet spinning with proper solvent coalescent pair (chlorosulfonic acid and diethyl ether), which is not realized in both wet spinning and dry spinning.
\nIn the production of graphene made by chemical vapor deposition, the composition of graphene can be easily changed by changing the composition of the gas phase. Xinming et al. reported in 2011 a method of self-assembly of two-dimensional CVD grown films into one-dimensional GBFs in ethanol, acetone, and other organic solvents through the change of surface tension. The resulting fibers have a high conductivity of about 1000 S · m−1 [116]. Seyed et al. reported another method of film assembly. They first scraped and coated the GO dispersion into multiple film strips, dried and twisted it to get GO fiber, and then put it through thermal reduction to get GBFs. The GO fiber made by this method has high elongation at break (8.3–78.3%) and excellent fracture toughness (1.3–17.4 J · m−3), but its strength is low (9.7–85.9 MPa) due to many defects in the fiber section [117]. Jiali et al. also developed a method for preparing GBFs by film shrinkage, as shown in Figure 9. First, graphene was produced on copper foil by CVD with methane as a carbon source. In order to obtain a complete and independent graphene film, a layer of polymethyl methacrylate (PMMA) is spin-coated on the surface of graphene. The copper foil is etched with 1 M ammonium persulfate solution, and the PMMA layer is washed off with acetone to obtain the laminated graphene film. Second, the film is pulled out of the solution with tweezers to shrink to form GBFs with uniform diameter [118]. The graphene film can be directly used to prepare GBFs by film shrinkage method, and the obtained fiber generally has more pores. However, the CVD method needs a lot of instrument investment and strict gas conditions, and the cost is high, so it is difficult to promote.
\nSchematic illustration of GBFs prepared by film assembly [
Zelin et al. reported a template hydrothermal method to prepare GBFs. GO dispersion was injected into the stripping pipe, sealed at both ends, and then heat-treated in water at 230°C for 2 h to form continuous GBFs. The structure of GBFs can be adjusted by controlling the concentration of GO dispersion and the inner diameter of a glass tube. The graphene fiber has a porous structure, has a density of only 0.23 g · cm−3, and has a good flexibility [105]. Yunming et al. used a simple low-temperature-induced self-assembly method to synthesize GBFs. They mixed GO and ascorbic acid evenly and sealed them in a specific straight glass tube. They carried out the hydrothermal reaction at 90°C and 120°C, respectively, until the fiber was completely formed and then obtained GBFs with layered porous structure. Its conductivity can reach 1.3 × 104 S · m−1. After heating, it has excellent mechanical properties and can be easily woven into the spinning products [119]. Lizhi et al. further developed on the basis of previous methods, and the specific preparation process is shown in Figure 10.
\nSchematic illustration of graphene hybrid fibers prepared by hydrothermal method [
First, the dispersion of GO is sprayed into liquid nitrogen through a spout to prepare a layer bridging GO dispersion - interconnected graphene oxide ribbons (IGOR). Then, a certain concentration of GO dispersion is uniformly mixed with IGOR dispersion and injected into a quartz capillary with an inner diameter of 0.4 mm. The two ends are sealed, heated at 230°C for 2 h, and finally dried in air for 12 h. The GBFs show higher strength and toughness [120].
\nIn order to increase the length of GBFs prepared by the hydrothermal method, Dingshan et al. improved the above methods. The authors replaced the brittle glass tube with the flexible and high-temperature-resistant fused silica capillary column, injected the GO dispersion containing ethylenediamine into it, and sealed it. After that, they put it in the furnace at 220°C for 6 h, extruded it with nitrogen to form the fiber, dried it, and collected the long enough GBFs [106]. Although the GBFs with porous structure can be prepared by the hydrothermal method, it is difficult to achieve continuous production because of the need of closed space and long reaction time.
\nThe conductive substrate-induced spontaneous reduction and self-assembly of GO generally proceeds by putting metal substrates (e.g., Al, Fe, Cu) into GO solution for GBF preparation. As shown in Figure 11, Junjie et al. take copper wire as the substrate and adopt the three-electrode method to make the GO sheet continuously deposit on the surface of copper wire under the double induction of electrochemistry and template. Both GO and copper are simultaneously restored. Then, they etch and remove the copper wire in the FeCl3 solution to obtain the graphene hollow fiber with an oriented structure. The controllable preparation of the hollow fiber can be realized by controlling the diameter, length of the substrate, and the time of electrochemical deposition. The graphene hollow fiber has excellent flexibility and conductivity and can be used as the electrode material of supercapacitor [121].
\nScheme of spontaneous reduction and assembly of graphene hollow fiber on active metals substrates [
The electrophoretic phenomenon occurs in a colloidal solution because charged particles can move under the action of electric field. Lianlian et al. developed a method for preparing GBFs with electrophoretic self-assembly. The graphite probe was used as a positive electrode to invade the GO dispersion. Under constant potential, the graphite probe was extracted slowly and uniformly, and self-assembled GO fibers were formed at the tail of the cathode. After drying and heating, GBFs with a smooth surface and circular cross section can be obtained [122]. Because the electrode moving speed is only 0.1 mm · mm−1, it takes 1 week to get 1-m-long fiber. The yield of GBFs obtained by this method is too low to scale production.
\nThanks to graphene’s superior electrical, mechanical, and thermal properties and good flexibility, GBFs have great potential in sensor, energy storage, energy conversion, and other fields.
\nWith the continuous development of flexible equipment, intelligent devices, including electricity, humidity, force, and temperature, can rapidly make structural changes in the environment and be increasingly concerned by people. The GBFs shows excellent performance in this regard.
\nZhao et al. successfully developed a graphene-based multifunctional optical fiber sensor, which can respond to three different stimulations. They deposited GCN on GF (GF and GCN) and twisted it with another GF to form a double helix GBFs. In the twisted structure, the contact interface of the two fibers has a sandwich-like graphene/GCN/graphene structure. Under different external voltage controls, GF and GCN can show three different stimulus modes. Each mode can respond to temperature fluctuation, mechanical interaction, and humidity change and has a high sensitivity to specific stimulation [123]. Yanhong and his team electroplated polypyrrole on half of the surface of GBFs, which changes the current transmission rate on both sides of the fiber. With different types of current, the fiber has different bending states. The prepared electric GBFs are expected to be applied in the multi-arm tweezers and mesh driver [124]. Chunfei et al. used twisted GBFs to realize temperature sensing. With the increase of temperature, the fiber resistance decreases. This is mainly due to the transition of semiconductor characteristics between graphene sheets. The fiber has similar sensing characteristics for temperature under different stretching conditions and has a wide application prospect [125].
\nIn addition, GO fiber is partially restored by laser method, which is sensitive to humidity. By changing the position, the fiber can be transformed into various shapes. Taking advantage of the hydrophilic characteristics of GO in a humid environment, the distance between sheets is increased, while graphene is non-hydrophilic. Hence, the bending degree of the fiber changes with the humidity. Meanwhile, the fiber is woven into fabric shape, which still has sensitive response performance [126]. After twisting the spinning GO fiber, the twisted fiber will rotate repeatedly as the humidity changes periodically. When the humidity increase, a large number of oxygen-containing functional groups on the surface of GO will absorb water, and the distance between layers will increase. Otherwise, the distance between layers will decrease. A magnet is added at the lower end of the fiber to prepare a humidity sensing electric motor. The speed of the motor reaches 5190 r · min−1. The motor can convert the change of environmental humidity into electric energy and realize the collection of energy [127].
\nThe GBFs and the GBFs coated with a layer of carbon nitride on the surface are wound together. The middle carbon nitride layer is equivalent to a buffer layer. Its conductivity is related to the layer spacing. With the pressure increase, the distance decreases and the conductivity is, in turn, to increase, which can realize the stress sensing [123].
\nWith the development of science and society, a portable energy storage device is becoming smaller and more flexible. Lithium-ion batteries are a new type of energy storage device, which has the advantages of high energy density, environmental friendliness, long cycle life, and high working voltage. However, the traditional LIBs cannot meet the needs of wearable electronic devices due to its large usage, rigidity, and weight. Therefore, it is necessary to develop new batteries with small volume, lightweight, and high flexibility. GBFs maintain the unique characteristics of the graphene nanosheet. When GBFs are used in the fiber lithium battery, it can realize the series connection with flexible electronic devices and drive them to work stably, achieving high energy density and holding a good commercial prospect [128, 129].
\nJung et al. of the Korea Institute of Chemistry used pure GBFs as the negative electrode material of lithium-ion batteries. The battery circulates 100 times in the range of 0.005–3 V under the current density of 100 mA · g−1, and the capacity is still 224 mAh · g−1 [130]. Minsu et al. obtained hollow GBFs by coaxial spinning and increased specific surface area and active site, and its capacity remained 196 mAh · g−1 in the range of 0.005–1.5 V for 100 cycles under the current density of 0.2C [131]. Due to the low capacity of pure GBF battery, Jong et al. added MnO2 active material in graphene; the addition of MnO2 increased the distance between graphene sheets and gave lithium-ion fast transfer channel. Moreover, the battery made by MnO2 coating of graphene has good cycle stability, and the cycle capacity of 100 times remained 560 mA · g−1 . Minsu et al. filled the inner space with Si/Ag nanoparticles, and the outer graphene well controlled the volume expansion of the inner silicon during charging and discharging, providing a smooth electronic channel. Compared with the simple mixing process, it has better cycle stability and rate performance, and the capacity of 100 cycles remains 766 mAh · g−1 [131].
\nThe GBFs prepared by the above method have low strength, and it is difficult to form a macroscopical fiber battery. In one report, a fiber battery electrode comprised of 2D/2D layered titania sheets/rGO sheets (titania/rGO) composites was prepared through wet spinning method [132]. By assembling the cathode of titania/rGO fiber with the anode of lithium wire in parallel, a fiber-shaped half-cell was fabricated. This hybridized fiber electrode had an ordered stacking structure, high linear density of active materials, and abundance of exposed active sites, which endows the fiber electrode with prominent mechanical flexibility combined with excellent battery performances of high linear capacity of 168 mAh · g−1, good rate capability, and outstanding cyclic behavior. Woon et al. used wet spinning to construct graphene/carbon tube/sulfur electrode as positive material of Li-S battery. Graphene has high conductivity and can transfer electrons rapidly. Meanwhile, GO fiber as a matrix can obtain light fiber with certain mechanical strength for wearable equipment, as shown in Figure 12a and b [133].
\n(a) Schematic of fiber-shaped lithium-ion battery. (b) Schematic illustration of synthetic route of rGO/CNTs/S fiber [
Compared with wet spinning, the diameter of the nanofiber film obtained by electrospinning is smaller. As the electrode material of lithium battery, it can significantly reduce the migration distance of lithium-ion and increase the specific surface area of the electrode material and improve the electrochemical performance of the battery [134, 135, 136]. Xiaoxin et al. obtained the Si-graphene-C structure which is similar to the coronary artery based on bionics. Graphene can effectively control the volume expansion of Si, and high conductivity is also conducive to the rapid transfer of ions. Meanwhile, the inclusion of graphene also avoids direct contact between Si and electrolyte and avoids the formation of a large number of SEI films. After 200 cycles, the capacity retention rate is still 86.5% [137]. Jian et al. continued to wrap a layer of graphene outside SnO2 and GO nanofibers with a double-layer protection method to inhibit the volume expansion and agglomeration of active materials. This method is applicable to almost all oxide and graphene nanofiber electrodes obtained by electrospinning, with good universality [138].
\nAt present, there are few researches on the application of GBFs in LIB and the assembly of woven fiber batteries. Compared with the traditional button batteries, the assembly process of GBFs is relatively complex, so it is unable to achieve continuous production.
\nIn addition to the application in LIB, GBFs are also widely used in the field of supercapacitors. Supercapacitor, also known as a double electric layer capacitor or electrochemical capacitor, is a new energy storage device that uses the rapid adsorption–desorption of electrolyte ions with electrode materials or the reversible oxidation–reduction reaction on the surface of electrode materials to realize electric energy storage [139, 140]. With the continuous development of wearable devices, flexible supercapacitors have become the preferred energy source for various electronic devices due to their fast charge and discharge ability and long cycle life. Among them, fiber supercapacitors have attracted much attention due to their lightweight, small size, high flexibility, and good wearability. GBFs have excellent conductivity and super high specific surface area, so it has been widely used in the field of fiber supercapacitor [141].
\nChen et al. prepared pure GBFs with a non-liquid crystal method and further assembled the fibers into flexible supercapacitors. The capacitance of the supercapacitor is 39.1 F · g−1 when the current density is 0.2 A · g−1. At the same time, it is found that the electrochemical performance of GBFs can be greatly improved by immersing it into 6 M KOH for 10 min before the electrochemical performance test. At the current density of 0.2 A · g−1, the specific capacitance is 185 F · g−1 (226 F · cm−3), and the energy density is 5.76 Wh · kg−1 (power density is 47.3 W · kg−1) [91]. The capacitor has good toughness and can be woven into fabric and light LED after charging. Hu and Zhao integrated two electrodes (the upper and lower part of rGO) and separator (the middle part of GO) into the GO optical fiber, as shown in Figure 13a, and made a kind of all-in-one fiber graphene supercapacitor (rGO-GO-rGO) without any adhesive. The diameter of the rGO-GO-rGO fiber is 50 μm, and the rGO part is about 1/4 of the fiber width. The rGO-GO-rGO fiber supercapacitor shows remarkable mechanical flexibility, which can bend to various curvature while maintaining high capacitance (Figure 13b) [142, 143].
\n(a) Scheme of supercapacitor supported by two electrodes. (b) Capacity decrease with increasing bending cycles [
At present, the specific capacitance of pure GBFs is far less than the theoretical capacitance of graphene. How to improve the capacitance of GBFs is still a big challenge. Currently, an effective method that has been proven and widely used is the hybridization strategy, including doping and compounding with other substances.
\nDoping increases the active region on the surface of graphene and further improves its catalytic activity for a redox reaction. Among all kinds of atom doping, nitrogen atom doping is the most common. Doping nitrogen atoms with extra valence electrons into graphene will introduce new energy into the low energy region of the carbon conduction band. The introduction to this new energy can improve the catalytic activity and electrochemical performance of graphene materials. Yunzhen et al. extruded the GO dispersion into the substrate of hydroxylamine ethanol solution as a network, dried it, and heat it to obtain the nitrogen-doped rGO network fabric. Then, the PT foil was used as the collector to assemble the supercapacitor. The specific capacity was 188 F · g−1 when the scanning rate was 5 mV · s−1 in 25% KOH electrolyte. When the scanning rate was increased to 1 and 10 V · s−1, the specific capacity was kept at 74.2 and 48.4%, respectively, showing very excellent rate performance [144]. Guan et al. constructed nitrogen-doped porous GBF supercapacitors with high energy density output, large-scale weaving, and flexible wearable application prospects by means of self-assembly of the liquid–liquid interface and molecular functional doping pore formation in the micro-reaction system. The area-specific capacitance of the fiber supercapacitor prepared by this method is as high as 1132 mF · cm−2, which has excellent cycle stability and bending durability [145].
\nGraphene can be compounded with other carbon nanomaterials, conducting polymers, metal oxides/sulfides, and other materials to form graphene composite fibers. The high specific capacitance of the additives can be used to improve the electrochemical performance of the composite fibers.
\nYu et al. constructed a graphene/CNT composite fiber. Due to the high conductivity of CNTs, the conductivity of the composite fiber can reach 102 S · cm−1, and the specific surface area can reach 396 m2 · g−1. The volume-specific capacitance of the fiber electrode is 305 F · cm−3, and the mass-specific capacitance is 508 F · g−1 [106]. Yuning et al. mixed GO and pyrrole monomers as spinning solution and extruded them into FeCl3 solution to solidify and polymerize pyrrole in situ, and the PPy/GO composite fiber was obtained after reduction by hydroiodic acid. The fiber has a skin core structure, and its capacitance performance is greatly improved compared with pure rGO fiber. The area-specific capacitance is 107.2 mF · cm−2 (73.4 F · g−1), and the energy density is between 6.6 and 9.7 μ Wh · cm−2 [146]. Bingjie et al. synthesized the graphene/molybdenum disulfide composite fiber electrode with the one-step hydrothermal method. The electrode has a new intercalation nanostructure, which effectively combines the excellent conductivity of the graphene sheet layer with the high pseudocapacitance of molybdenum disulfide. The final assembled fiber-like super electric container shows a volume-specific capacitance of up to 368 F · cm−3 [147]. Qiuyan et al. overcame the problem of poor interaction between MXene layers and prepared MXene/graphene composite fiber. The orientation distribution of MXene sheets among GO liquid crystal templates realized high load (95 w/w%). The composite fiber shows excellent conductivity (2.9 × 104 S · m−1) and ultrahigh-volume-specific capacitance (586.4 F · cm−3), far exceeding the value of pure GBFs [148].
\nIn addition, the structure optimization of GBFs is also an effective way to improve the performance of GBF supercapacitor, which mainly lies in the improvement of specific surface area and the regulation of the layer arrangement structure. The porous GO fiber reported by Seyed et al. in 2014 was transformed into porous rGO fiber after thermal reduction at 220°C, as shown in Figure 14.
\nPorous graphene fiber and its supercapacitor. (a) SEM image of porous fibers. (b) Schematic illustration of the structure of supercapacitor. (c) CV curves of graphene fibers prepared in different coagulation baths.
The specific surface area of the fiber is 2210 m2 · g−1, and the conductivity is about 25 S · cm−1, and the specific capacity of the fiber is 409 F · g−1 when the current density is 1 A · g−1. The specific capacitance of 56 F · g−1 still exists when the current density is increased to 100 A · g−1 [117]. Chen et al. used cellulose nanocrystals (CNC) to adjust the structure of GBFs. CNC nanorods can not only improve the serious accumulation of graphene sheets in GBFs but also inhibit the possible bending and folding of graphene sheets in the process of fiber-forming, so as to form ordered nanopore structure. The composite GBFs were assembled into a supercapacitor with a conductivity of 64.7 S · cm−1 and a specific capacitance of 208.2 F · cm−3, which has excellent electrochemical performance [99]. In addition, they also use graphene hollow fiber prepared by the electrochemical method as the electrode of fiber-like supercapacitor [121], and the additional inner surface of hollow fiber can provide more contact area with electrolyte. Under the current density of 0.1 A · g−1, the specific capacitance of the assembled solid-state supercapacitor can reach 178 F · g−1, and it has good rate performance and cycle stability. Guoxing et al. prepared graphene/conductive polymer composite hollow fiber with the hydrothermal method. The combination of hollow structure and pseudocapacitance provided by conductive polymer greatly improved the capacity of the capacitor and provided a new idea for the improvement of supercapacitor capacitance [149].
\nActuators are a kind of stimuli-sensitive device that can respond to external stimuli, such as humidity, temperature, and electrical changes, and transfer the stimulus into deformation or motion [126, 127]. Due to quantum mechanics and electrostatic double-layer effect, graphene may cause space warping or plane expansion under the charge injection. In addition, the intercalation or removal of ions or molecules in graphene products under external stimulation will also lead to the bending, twisting, and even reversible change of the interlayer spacing. In this way, the type and degree of deformation can be controlled by the composition and surface chemical state of graphene [150, 151].
\nJia et al. showed an electrochemical fiber driver with high driving activity and durability based on GF/polypyrrole (GF/PPY) double-layer structure, as shown in Figure 15. Because of the asymmetry of the structure, GF/PPY fiber shows reversible bending deformation under the condition on positive and negative charges. As shown in Figure 15, when a positive voltage is applied to GF/PPY fiber, graphene will shrink and expand due to anion discharged from PPY, and the fiber will bend to the left. When a negative voltage is applied, GF/PPY fiber can bend to the right [152].
\nSchematic illustration of the expansion-contraction mechanisms of the GF/PPY bilayer structure. Charges in each electrode are completely balanced by ions from the electrolyte.
Compared with rGO, GO has more oxygen functional groups, so it is more sensitive to water. Based on this principle, Huhu et al. fabricated an asymmetric rGO/GO fiber by region-selective laser reduction along the GO fiber. When exposed to humid air, the rGO/GO fiber can bend to the rGO side and then return to its original state after air moisture dispersion. After that, they made a twisted GO fiber by rotating the GO hydrogel fibers in the direction of rotation. The spiral geometry inside them was the main reason for the reversible rotation in the moist air.
\nWearable solar cells can supply power to flexible smart devices at any time, while GBFs can be used as electrode materials to achieve this new function. Peng et al. obtained GBFs by wet spinning and then made its surface loaded with Pt metal particles by electrodeposition to the obtained counter electrode. The titanium wire with titanium dioxide microtubules on the surface is used as the working electrode; the dye-sensitized solar cell (DSSC) has an energy conversion efficiency of 8.45%, which is much higher than other linear photovoltaic devices. The continuous collection of energy can be realized by putting linear solar cells into conventional clothes [153]. The high surface properties and good electrical and electrochemical properties of graphene are the important reasons to improve the performance of fiber DSSC.
\nThis chapter mainly summarizes the main preparation methods, properties, and application fields of CNT, CF, and GBF materials. Among them, CNTs have unique one-dimensional nanostructures and excellent mechanical, electrical, and optical properties. Through various methods of modification, researchers continue to prepare CNT composite nanomaterials with excellent performance, which has a good application prospect. Starting from the needs of the application field, it is the trend to study the carbon nanotube composite materials in the future to expect to obtain the high-efficiency structure which is corresponding to the application performance. Although some progress has been made in the preparation and properties of carbon nanotube composites, the mechanism of improving the properties of composites and the dispersion of carbon nanotubes still need to be explored.
\nCF is a new type of fiber material with high strength and high modulus, which contains more than 95% carbon. Its quality is lighter than that of aluminum, but its strength is higher than that of steel, and it has the characteristics of corrosion resistance and high-temperature resistance. It is an important material in the military industry and civil use. With the rapid development of CF composite and the continuous improvement of molding technology, its application scope is expanding day by day, and it shows good application potential in many fields. However, the physical and chemical properties of CF composites are complex, so it is necessary to study the basic theories of physical and chemical properties, mechanics, and heat, so as to improve the performance of CF composites.
\nGBFs have achieved great success in functional application, and it is far more amazing than CF. So far, various preparation methods have been studied and used in large-scale production of GBFs, which provides a positive impetus for the future application of GBFs. GBFs have been given new performance and function and provide new opportunities for various applications, including fiber-optic actuators, batteries, super electric containers, dye-sensitized solar cells, and sensors.
\nGBFs are a kind of graphene nanosheet assembled in one-dimensional space. At present, the structure of GBFs can be regulated in the following aspects: (1) Diameter. Generally, the diameter of GBFs is 10–100 μm. If it is prepared by electrospinning, its diameter can be controlled below 500 μm. (2) Porosity. On the one hand, it can be prepared by self-assembly, rolling, graphitization, and sintering; on the other hand, it can be prepared by freeze-drying, air spinning, and other methods. In addition, graphene hollow fiber can also be prepared. (3) Orientation. The arrangement of graphene sheets has a great influence on the properties of GBFs. The GBFs with a high degree of orientation can be obtained by the stress field orientation effect in the wet spinning process, the self-assembly in the electrochemical deposition process, and the second phase auxiliary orientation effect in the composite fiber. (4) Section morphology. It is difficult to maintain the circular cross section of the fiber, which is generally irregular. At present, the conventional method is to adjust the fiber cross-sectional shape by adjusting the spinneret hole shape, but the research progress is slow.
\nIn order to meet the needs of different applications, graphene composite fibers appear. The additive materials include metal, inorganic, and polymer materials, such as silver nanowires, silicon nanoparticles, molybdenum disulfide nanoparticles, polypyrrole nanoparticles, etc. Basically, any nanomaterial can be added to GBFs to get graphene composite fiber. But one of the key problems is to control the structure of the composite fiber. The main control factor is the morphology of the second phase and its distribution in the fiber. For GBFs and its composite fiber, the main problems are as follows: (1) Compared with the graphene nanoflakes, the properties of GBFs are greatly cracked. (2) GBFs are composed of layers, which are very different from the chain structure of the traditional chemical fiber, so its flexibility is poor. (3) It is difficult to realize continuous production. Even with the most suitable wet spinning method for continuous production, its continuous production is very difficult, and the yield is very low.
\nAlthough GBFs are faced with many problems, remarkable achievements have been made. Compared with CF, GBFs have the characteristics of high strength, high modulus, conductivity, and certain flexibility, which have developed into a new type of high-performance fiber. On the other hand, graphene composite fiber is committed to develop into a new type of multifunctional intelligent fiber. This kind of fiber starts from modifying the traditional general-purpose fiber to improve some aspects of the performance of the general-purpose fiber and to develop new kinds of fiber, such as graphene/nano titanium oxide composite fiber. It can also develop new fiber performance and functions, such as energy storage, and finally realize multiple functions such as perception, judgment, correspondence, information transmission, etc. on the fiber and become a new type of intelligent material. Therefore, GBFs and its composite fiber will be widely used in aerospace, energy sensing, intelligent life, and other fields in the future.
\nThe authors thank the support of Stevens startup fund.
\nThe authors declare no conflict of interest.
A house represents one of the primary material conditions of human existence. It is created to protect people from the effects of unfavorable meteorological factors (cold, heat, wind, atmospheric precipitation) and take care of leisure, work, and living needs [1]. The human settlement perspective must outline a precise vision for sustainable human settlements “everyone enjoys adequate housing, a healthy and safe environment, basic services, and productive and freely chosen work.” Sustainable development is essential to the development of human settlements [2]. It must include the following two aspects:
Everyone must have a suitable house; It refers to an appropriate place where individuals are not disturbed; appropriate space; proper security; legal guarantees during the land use period; proper lighting, heating, and ventilation; right infrastructure such as water supply, sanitation, and garbage management facilities; good quality of the environment and health-related factors.
Residential areas must be supported by the relevant infrastructure and services; It refers to “safe water supply, environmental sanitation, waste management, social welfare, mass transportation and communication facilities, energy, health and emergency services, schools and public safety, and green space management, etc. Adequate essential services are one of the critical factors for housing [3].
“Sustainable Human Settlements in an Urbanization Process” and “Sustainable Human Settlements in an Appropriate Housing” (Sustainable Human Settlements in an Urbanizing World, Adequate Shelter for All) [4]. In the transformation, renewal, reconstruction and new construction of public housing, excessive savings and blindly lowering the cost of Inside once occupied a dominant position. This tendency appeared in the 1950s and 1970s of the former Soviet Union in the late 1970s and Sweden to end the housing shortage once and for all, the Swedish parliament decided that a million new dwellings should be built in the period 1965 to 1974 and this was achieved [5]. Many suggestions for blindly pursuing cost reduction It needs attention. That affected on the essential quality of housing and hit households with insufficient spending power particularly hard.
In recent years, sustainability as a concept in housing has taken on an increasingly prominent role. This role is made clear in all layers of housing components, from the ministerial to the institutions and to the individual consultant, contractor, and manufacturer [6]. As the concept in the sustainable housing context is still relatively new, the discipline of designing sustainable housing is correspondingly new. In the past, in many contexts, there have been similarities between efficient housing and sustainable housing [7].
The term “quality of life” is often used by city planners to reflect all aspects of the physical environment that are closely related to the productivity, satisfaction, and happiness of residents. Improving residents’ quality of life is essential for regions to meet the needs of existing residents and attract and retain new businesses, employees, and other talents [8]. Cities are critical to people. Those who live, work or visit them, and those who depend on the growth that cities generate for both the city and the surrounding area [9]. However, the realities of each country form a specific local perception of what social housing means. The solution is not always offered in the form of a physical structure, sometimes more favorable conditions can be created for having a home. At the same time, in most parts of the world, the term is directly related to a problem called the affordable housing crisis. In our reality, most people are facing a “housing problem” [10]. In the modern world, housing is the most significant asset most individuals or families will ever have. Given the scale of this global problem, when the study debates social housing, it required to understand the housing stock, which will be protected by the layers of price regulation, property security, quality, and stability policies. Environmental sustainability, which helps reduce utility costs, is not the only aspect of sustainability that should be considered in such projects. The housing types are conditioned by the level of development of the country’s productive forces, social relations, forms of family life, cultural and household traditions, and geographical environment. In recent years, the term “social housing” has become popular. Many texts, projects, programs have been produced under the name of this idea.
In architecture, “vernacular” is the term used to refer to famous constructions, made by people whose main activity is not necessarily in the field of construction [11]. It is based on empirical knowledge of materials, gained over time, through repeated trials (and failures). Knowledge is passed down from generation to generation, orally. Today, when the need for authenticity is so great, the word “traditional” seems worn out and abused [12]. It is increasingly difficult to distinguish between authentic and inauthentic. If for food there is a clear definition of what is and what is not traditional, things are not as clear and regulated in the case of architecture. The rural environment is full of boarding houses that call themselves traditional but have nothing to do with the architecture of the place [13].
An architect will say that the traditional is related to vernacular architecture - that is, the place itself. It has been developed and passed down from generation to generation, which does not mean that it has not evolved over time [14]. On the contrary, the traditional architecture has developed and refined, adapting to the times and needs, but permanently reflecting the environmental, cultural, technological, economic, and historical conditions of the local context. Although the phrases of vernacular architecture, and traditional architecture are considered synonymous, there are differences in nuance between them [15]. While vernacular architecture is created without the contribution of construction professionals, ie without architects, vernacular architecture can use craftsmen specialized in the construction process (but not architects) and is also based on local techniques and materials [16]. Traditional architecture denotes, first, the mode of transmission, from generation to generation and orally, but this is a valuable feature in the case of the first two forms.
Houses in India are rooted in its history, culture, and religion. Tamil Nadu: The traditional architecture of South India is sometimes considered synonymous with the Agrahara-style of Tamil Nadu. The traditional house of Tamil Nadu Agrahara or Agraham reflects the primary Hindu roots of the state [17]. The Brahmins’ home is considered a perfect example of this architecture. The name itself derives from the way it was placed in a village, which was like a garland. It is included in the houses leading to the primary temple of the village which are either dedicated to one deity or to different gods.
Mohenjo-Daro, city is the best-preserved and most extensive city, estimated to have had a population of 40,000. Mohenjo-Daro has a planned layout with rectilinear buildings arranged on a grid plan [18]. ln contrast to both Mesopotamia and Egypt, the Indus settlements seem to have been relatively egalitarian societies. There are neither palaces nor royal tombs, and no great temple complexes to indicate a concentration of power and wealth (Figure 1) [19].
Mohenjo-Daro city.
Buildings were durable, being constructed of fired bricks of uniform size throughout the region, and houses were provided with underground drains connected to a well planned sewer system (see Figure 2) [20]. The houses organized around intern al courtyards that were open to the sky for light and air.
A traditional house from Mohenjo Daro city.
The plans vary, but all houses presented virtually complete facades to the street. Most were built of fired and mortared brick, some combined sun-dried mudbrick, and wooden structures [21]. While the buildings do not seem elegant in terms of architectural refinement, the clear urban layout, careful provision of a water supply [22]. Rooms were small, perhaps because there was a scarcity of wood to serve as beams for second floors and roof framing (Figure 3).
Semiotics in Indian traditional building.
Ancient cultures in Greece, Ancient Egypt, Babylonia, Japan, and India had all similar lists, sometimes referring in local languages to “air” as “wind” and the fifth element as “void” the classification of the material world, these five are earth, water, fire, wind/air, and void. These came from Indian Vastu shastra philosophy and Buddhist beliefs. The system of “five great elements”, of Hinduism are Bhūmi – earth, Ap – water, Tejas – fire, Pavan - air or wind, Shunya (space or zero) void.
Chinese dwellings are folk dwellings designed and built by residents with a certain degree of representativeness and rich local characteristics [23]. Among the houses in China, the most characteristic residences include Beijing courtyard houses, cave dwellings on the Loess Plateau in Northwest China, ancient dwellings in Anhui, Hakka earth buildings in Fujian and Guangdong, and Mongolian yurts [24]. The Hakka Weilong House, Beijing’s “siheyuan”, Shaanxi’s “cave dwelling”, Guangxi’s “bar-style” and Yunnan’s “one seal”, are collectively referred to as the five most rural traditional residential architectural forms in China [25]. It is called one of the five major characteristics of China’s residential architecture in the field of architecture.
Houses in China reflects the most essential and representative things in the ethnic area in historical practice, especially the characteristics closely related to the life and production methods, customs, and esthetic concepts of the people of all ethnic groups [26]. Typical Chinese houses used “JIAN” – a structured bay as a standard unit to construct all buildings. The “Jian” represents the basic unit for wooden construction. “JIAN” was a rectangular space marked by adjacent structural frame. A modular unit called the Jian (about 3 m - 4.5 m) was defined as the primary measure in construction. “Jian”, as the primary interior unit, can be expanded or repeated along the architectural plan axis to join to create a hall, then a building [27]. For example, two rows of four columns make three “JIAN”. The “JIAN” is like room, in that it is a restricted space, but various a room, a “JIAN” does not necessarily have walls on all sides. Most dwellings are three to five “JIAN” in size. See Figure 4.
The diagram of a typical Chinese house configuration.
One of the great religious beliefs that influenced the design of the classical Chinese city and Chinese architecture is Confucianism [28]. To create a stable social order. Confucianism established the strict principles putting the society in order with rules and filial piety.
The experience of the nation mainly refers to the experience of how the residential houses meet the needs of life and production and the struggle against the natural environment under the social conditions at the time [29, 30]. For example, the experience of combining the use of the terrain, the experience of adapting to the climate, the experience of using local materials, and the experience of adapting to the environment. And so on, this is what is commonly referred to as the experience of adapting measures to local conditions and adapting to materials. The folk houses are distributed all over the country [31]. Due to the differences in national historical traditions, living customs, humanistic conditions, and esthetic concepts, as well as the different natural conditions and geographical environments of various places, the plane layout, structural methods, modeling, and detailed characteristics of traditional houses are also different. Different, showing simplicity and nature, but with their own characteristics. Especially in residential buildings, people of all ethnic groups often reflect their wishes, beliefs, and esthetic concepts, and use natural or symbolic methods to reflect their wishes, beliefs, and esthetic ideas to the decoration, patterns, colors and styles of residential buildings. Wait for the structure to go. Such as cranes, deer, bats, magpies, plums, bamboo, lilies, Ganoderma, Wanzi pattern, Hui pattern of Han nationality, lotus of Yunnan Bai nationality, elephant, peacock, betel nut tree pattern of Dai nationality, etc. In this way, the dwellings of various ethnic groups in multiple regions show a colorful and colorful ethnic characteristic. The mainstream of traditional houses in the various areas of China is the structured houses, which is represented by the “BEIJING SIHEYUAN”, which adopts a symmetrical layout in the central axis [32]. The “BEIJING SIHEYUAN” is divided into two courtyards. The main house system in the center is the most respected. It is a place for family etiquette and meeting distinguished guests. Each building faces the courtyard and is connected by a verandah. Although “BEIJING SIHEYUAN” is a concrete manifestation of Chinese feudal society’s patriarchal concept and family system in residential buildings, the courtyard is expansive, suitable in scale, quiet, friendly, and well-organized, making it an ideal outdoor living space. Residential houses in North China and Northeast China are mostly such spacious courtyards [33]. A SIHEYUAN is a historical type of residence that was commonly found in Beijing and rural Shanxi. The SIHEYUAN composition was the basic pattern used for homes, palaces, temples, monasteries, family businesses, and government offices (Figure 5).
The “BEIJING SIHEYUAN” house (courtyard house).
Residential buildings do not have a set of procedural rules and practices like official buildings. They can build houses according to local natural conditions, their own economic level, and the characteristics of building materials [34].
Houses in Japan have a short lifespan, so even if they are remodeled, they are structurally strong and will not get tired of the design, which can be inherited by the second and third generations [35]. The floor plan can be flexibly changed according to changes in the family structure and lifestyle of the residents. Barrier-free so that you can live with peace of mind even as you grow older. By devising the color and finish of the outer wall and roof, the appearance is unified and continuous in a group of housing complexes, or the traditional landscape that is transmitted to the land is preserved and conveyed. When building, it protects the environment by minimizing the impact on the surrounding natural environment. The houses in Japan have been influenced by the climate. They were derived from China but maintained its own unique characteristics of lightness as fragility. The “KEN” is a traditional Japanese unit of length, equal to six Japanese feet “SHAKU”, and equal to 1.8 m. ‘KEN’ is known as standard measurement of inter spaces [36] (see Figure 6).
“KEN” in Japan standards measurement.
Using materials produced in the land or in Japan, designing on the premise of living longer, making the structure easy to repair, remodeling, partial demolition, etc., and using the same material repeatedly will enrich the local industry. In addition, production, consumption, and waste material disposal can be circulated in the area. There are many types of house roofs, IRIMOYA, KIRIZUMA, YASEMUNÈ, and HOGYO as shown in Figure 7 [37].
Japan roof types in traditional houses.
In traditional city forming many architectural elements, represent an essential symbol in city configurations and composition [38], for example, A torii is a traditional Japanese gate most found at the entrance of or within a Shinto monument, where it symbolically marks the transition from the normal to the sacred (see Figure 8) [39].
Torii in traditional Japan city elements symbols.
A vital house form and composition in architecture from Japan. Yoshimura House is one of the traditional houses located in Saga Prefecture. It was constructed in 1620 [40]. This house was used to be the prosperous farmer because it has bigger musts and beams to make this house substantial and significant, see Figure 9.
“YUSHIMURA” house near Osaka – 1620.
A Palace – mansion was a house style from the Heian period, which was a very similar to the Western European’s Italian Renaissance, for this was a time for art and poetry to flourish in Japan. A “SHINDEN-ZUKURI” was an architectural style house that flourished during the Heian period [41] (see Figure 10).
A layout of a “HEIAN MANSION”.
A “HANOK” is a traditional house using traditional Korean architecture. It is a traditional house of the Joseon Dynasty that reflects the ideal of building with the mountain facing the back and facing the water in the south. It is a traditional house of the “JOSEON DYNASTY”.The origin of “HANOK” is a hut in the early Neolithic period around 6,000 BC, and it is considered that traditional “HANOK” was completed in the late Joseon period [42]. During this period, the ondol, floor, and kitchen, which are the basic units of space composition, were wholly combined to form a close relationship with each yard, and “HANOK” was differentiated into various regional types.
It has various characteristics that have been developed according to the environment of the Korean Peninsula and the traditional food, clothing, and shelter patterns of Koreans, and although the wooden structure tiled house in the photos is often thought of, thatched houses made of rice straw and ocher also fall within the scope of “HANOK”. In modern Korea, the number has decreased due to Western-style buildings, but it continues to exist through the construction of temples. There is a theory that the word “HANOK” itself was derived from the opening of the door in the late Han Dynasty and modernization after liberation and the rapid spread of ‘western-style houses’, which is a contrasting meaning to traditional houses called ‘HANOK’ [43]. From a foreigner’s point of view, it refers to a house in which the Koreans living on the Korean Peninsula live (see Figure 11). Originally, “HANOK” itself was a form of residence, so today, it was called “JUJU” and “JETAEK” as if it were just a house. It would have been divided into tile-tiled houses and thatched-roof houses as if they were divided into houses. The essential materials are the window and square that connect the front and rear columns in a straight line, the beam that connects the front and rear columns back and forth, and the rafters and the ribs that support them. When you think of “HANOK”. that you can see often, you think of a “HANOK” house with an octagonal roof.
An example of “HANOK” house in Korea.
Houses in Iraq were, compact with interior courtyard. The streets are sinuous and pass-through building volumes. In the meantime, between yard and street at least a wall or a building is constantly interrupted (see Figure 12) [44]. This isolation from the road indicates concerns for defense. The architectural elements are intensely decorated, reproducing typologies and traditional houses [45].
A specific urban texture.
The patio is for the traditional dwelling the outside space that creates a microclimate and the most efficient form of using the inside space [46]. The shady interior courtyard has the effect that the rooms do not communicate directly with the overheated air outside, but through intermediate buffer spaces. The windows are small sized, located in the upper part and wooden framed (Figure 13).
A traditional Iraqi dwelling [
“SHANASHIL” is a wooden decorative element piece or made from tiny wooden fragments allowing the inside [47]. ventilation and lighting and preventing the penetration of the outside excessive heat because wood. The thermal role of those elements is also a reflection of the sunlight and changing the current of air direction (Figure 14) [48].
The “SHANASHIL” in traditional Iraqi dwelling.
Outside decoration are profiled elements of large volumes under various forms play the role of creating pronounced shadows on the sun-warmed facades [47]. Ventilation gaps, this element is opening located at the upper part of the houses, which is decorated with a grid network under the form of a drilled screen wall and used for ventilation and lighting [47, 48].
In this region a part of the old Islamic civilization developed, in which the architecture of the residential buildings is distinguished by the ingenious way in which it offers protection against excessive horses. Although the predominant type of housing is the one with an inner courtyard, an inner courtyard closed on all sides, either with buildings or with high walls. Here several variants coexist. The streets and buildings that border them form an organic unit, with the aim of thermal protection. There are different specific spaces with a thermal role. TAKURE, the area of Iran and Central Asia, RAWAQUL SHURFA, etc. [49]. All these spaces being enriched with interior and exterior decorations. The windows are replaced with sanasil, so that the partitions on the ground floor and first floor are permanently cooled by the shadow left by them Courtyards are the center of the plans of houses in south turkey. Courtyard houses, which represent the cultural layers of the Middle East, also characterize the traditional dwellings in some neighboring countries, such as Syria, Iraq, and Iran (see Figure 15). However, it is impossible to separate this plan type from the Anatolian cultural layers, like house plans [50].
The house types from Iran, Syria, and Central Asia.
Houses in Mexico have currently been influenced by various styles, from the traditional pre-Columbian style, with its intense colors, rough textures, and thick walls, to functional modern architecture with simple straight lines. Land and housing are part of one thing [51]. The traditional vernacular dwelling becomes one more element of the same territory. The houses were made of wood and marl, the roofs were made of reeds, although the pyramids, temples and palaces were generally made of stone. The homes have a dwelling function, a cellar, and a stable, which are separated by thick structural walls and few openings (see Figure 16). Inside the divisions are few, some wall to isolate the kitchen, which sometimes moves towards the corridor in the simplest homes.
Different traditional Mexican houses.
Most of the Mexican house style is inspired by the old famous Spanish architecture of the 18th and 19th centuries, better known as “Mission” or “Colonial” style houses, where the typical stone or white walls stucco, with red-tiled roofs and triangular ceilings but low, since it does not rain, or with small vaults. Plants, especially
Rooms in houses from this area are not communicate directly with the overheated air from outside, but through a buffer space. At the same time, between the yard and the street there is at least one wall, or a building, often with several cores [54]. This isolation from the road indicates defense concerns (see Figure 17).
Typical house from the north of Africa.
The cities of North Africa are compact with inner courtyards, winding streets between the built volumes. In this way the surrounding streets have the role of a cold air reserve and similarly the air in the inner courtyard will replace the air in the surrounding spaces [55]. This phenomenon occurs in the following cases:
The surrounding streets are narrow, planted and mostly shaded with irregular profiles.
In the shaded and chained inner courtyards, a colder microclimate is created compared to the surrounding areas from the same perimeter. This fact determines a reciprocal conditioning between the type of traditional construction and its neighborhoods on the one hand and the inner courtyard and the spaces that surround it on the other.
Houses in Balkan has been traditionally labeled either an “Ottoman house” or a “Balkan house.” The focus here is on constructing national interpretations of the vernacular residential architecture in question, meaning symbolic appropriations or “nationalizations” of a shared cultural heritage from the Ottoman era 8 see Figure 18). Although dedicated to a particular form of traditional architecture, this text does not present the outcome of research in the field of art/architectural history or ethnography [56]. The house area dominates by simplicity and modesty, functional and natural elements, fabrics made with care and attention to detail, and solid furniture made to last. Each component of the traditional houses is justified by the owner’s lifestyle, by the traditions he respects, and by the relationship with nature.
The characteristic houses in Balkan.
The traditional Balconies house is not unitary but differs depending on the area. Specialists classify these as distinct ethnographic areas. Among the most critical ethnographic regions, which have preserved mainly their local specificity today. In other areas, traditional architecture can only be found in the village museums. Even if these areas have a distinct character of their own, there are still some common features. The peasant houses had few rooms, and the oldest were single rooms. The house usually consisted of a porch, a space, and a pantry. The access to the house was made through the porch, after which one entered the hall, and from the hall one entered the room. The porch, sometimes called porch or porch, is the open and covered space that mediates the interior-exterior relationship and is also the most ornate area of the house. The decorative elements usually covered the porch pillars, also called slippers or forks; their role was both esthetic and magical, protecting the home from evil. The porch was not just a passageway but sometimes served as a place to store snacks or household utensils. At other times, there was a hearth in the hall and thus, this space became the kitchen and living room of the house. Most of the time, however, the room was the place where the hearth was and the place where it was cooked, eaten, and slept. This is not accidental, because the fire was also used to prepare food and heat the building.
Therefore, the oldest houses had a single room, also called “house”. In the summer, on hot days when the fire was not lit inside, the hearth in the yard or a summer kitchen was used for cooking. or the “cellar” or “file” (so named because it was in the back of the house) was the storage space for food, tools, or small tools. The main food storage space was either the attic of the house or the cellar. The attic was used to store grain and smoke meat, and in the cellar were kept fruits, vegetables, pickled pots, and barrels of brandy or wine. The roof of the house was usually high and in four glasses of water. Multi-room houses appeared a little later, in the 19th and 20th centuries, and in this case, one of the rooms was kept for special days. In the “beautiful room”, the “good house” or the “house before” guests were received at the big holidays, important family events were held. Here were placed the most precious furniture and decorative objects and here were kept the holiday clothes. Because it was used only occasionally, the beautiful room rarely had a heating system. Today there is so much talk about vernacular architecture because it is the condition for the sustainable development of rural communities. Vernacular architecture has the quality of being ecologically sustainable by adapting to the climate and relief of a particular place and by using the natural building materials available in that area [57]. Thus, vernacular architecture has a minimal impact on the natural environment, being sustainable from a social point of view, because it is based on the science of construction (local know-how) and local labor. This stimulates the feeling of belonging to people in that space, makes them feel that their place has something unique and that they share the specifics of the area. The brick was used sporadically in some areas of the country, for example in Saxon villages from southern Transylvania or Banat, and this happens under the influence of culture urban. Brick became a material favorite construction with the era of industrial. Clay or adobe was used in older times, being easy to find and by the process. They are still found today, mainly in the houses on the plain, where it has been kept construction system with clay reinforced with twigs woven, specific to Neolithic architecture [58]. The predominant decorations in most houses in the country have religious themes or depict flora, fauna, or anthropomorphic elements. The fabrics are adorned with decorative motifs with definite meanings, and the colors are usually bright.
Many cities and villages in South-West Friesland are built on what is called terpen. It is an artificial dwelling mound found on the North European Plain that has been created to provide safe ground during storm surges, high tides, and sea or river flooding [59]. There are incredibly many terpenes in Friesland, and now there are about 400 of them. The front door was in a narrow pediment and led to the utility part [60]. The hearth was still almost in the center of the room, but its transition was already outlined closer to the rear wall and the residential part’s allocation. The stalls located behind the pillars were divided by low wicker partitions (see Figure 19).
The characteristic of the Southern Netherlands, Belgium, and Germany houses.
Vernacular Houses from the Southern Netherlands and Belgium were of a different type. Although here and there were also rectangular semi-dugouts like the northern ones, all the same for these areas, starting from the Neolithic, round or oval-shaped huts, deepened 1.5–2 m into the ground, were characteristic. The walls were very low or completely absent, only the roof towered above the ground. It was built of long poles, had a cone shape, and was covered with straw and leaves [61]. Such a dugout is characterized by a roof structure with a DAKZUl - one pillar supporting the roof. There was an open hearth near the pillar. These houses bear a resemblance to the places of the ancient Celts in the British Isles. Apparently, in the Belgian and Dutch lands, the evolution of the house proceeded in the same way as in Britain - from a round hut through an oval to a rectangular single-chamber dwelling with an open hearth in the middle. An interesting type of dwelling, often found at the same time as round huts, in the eastern regions of Belgium: elongated buildings with an open canopy “VOORHALLE” over the main entrance from the narrow pediment. Two pillars supported the roof of the shed. The ridge beam of the gable roof was reinforced on several posts located on the centerline of the house. The area of homes varies from 20 to 84 m. Some of these dwellings have a three-chamber plan: for example, in North Limburg, dating back to the 1st century. n. e. the “VORHALLE” building was an elongated building made up of three rooms of the same size. Unfortunately, it is difficult to judge their purpose since not even the remains of the hearth have survived development of rural dwelling in the Netherlands and Belgium.
The Longhouse is the traditional primary habitat in the Scandinavian region, dating back to the Iron Age, 2000 BC. This study examines the influence of climate on the conformation of habitats. Climate had a substantial impact on the conceptions of habitat form and internal space [62]. The climate′s role in the conformation of the vernacular houses of the Scandinavian region was notable and can be observed clearly in the urban texture in the following:
Roads, ways and moving arteries were east and west.
The long facades of houses were designed to be north and south.
The courtyard is essential in forming habitat units, combatting the adverse effects of high winds.
The walls of habitats in vast areas of Scandinavia define the edge between public spaces and private spaces and physically and perceptually explain the public roads and squares, the spaces in which communal life occurs (see Figure 20) [40].
Environmental answer to vernacular habitat conformation from Scandinavia.
Establishing a sustainable housing concept will point out the purpose, direction, and means for future housing planning, architectural design, improvement, and innovation of human settlements. It is essential to establish proper architectural and planning guidelines that conform to the laws of objective development. it required reforming and innovating to create a good and comfortable living environment for residents, benefit the people, and enable them to live and work in peace and contentment [63]. Housing is a crucial issue for any sustainable development. In recent years, under the strong organization and promotion of the government, excellent pilot projects, demonstration projects, and housing projects have emerged one after another, enabling people to obtain comfortable, convenient, safe, and sanitary housing. These pilots and demonstrations have already had a lot of good experience in implementing sustainable development strategies, such as energy-saving, land saving, water saving, new technology, new material application, etc. A sustainable framework for housing policy should focus on the future and have a strong contemporary focus, as otherwise it quickly becomes intangible in everyday inhabitants’ lives. Therefore, the vision for a new framework for sustainable housing policy can be about methods by which sustainable solutions are made an attractive and advantageous alternative for all [64]. The intention is that sustainable solutions must be based on the city inhabitants’ daily needs. For example, it is not required to cycle solely because it is environmentally friendly and healthy, but perhaps rather because it is easy, fast, cheap, and accessible. This principle can also be advantageously transferred to sustainable housing development. Everyday life must not become more complex with a sustainable change, then there is a risk that the broad popular support will be lacking. The shift in sustainable residential areas forbids an individual and collective project that can strongly support the city strategy in sustainable development. Housing strategies given the complexity of the challenges considered, there is a need for an overall housing strategy policy framework for how they are addressed, and the potentials exploited. By thinking about social-cultural conditions, environment, and economy together, the probability of being able to implement coherent solutions is improved. Sustainable housing strategy must be social - culturally viable, while at the same time considering climate adaptation, energy and resource efficiency, environment, architectural quality, and social security. In this way, the traditions and the environment can generate added value when they are considered together in holistic considerations [65]. A healthy environment should have indispensable intrinsic value. Humans and the entire natural environment are ecologically interdependent, and the persistence of this interdependence requires all aspects to establish a partnership, equal and balanced relationship. Urbanization based on residences’ dreams can contribute to a more sustainable society by linking different urban functions in housing development strategies. Architectural design requirements are increased. To the standard of sustainable design, sustainable design should comprehensively consider the use of resources and energy, the use of healthy buildings and materials, land that is sensitive to ecology and society, and an esthetic that can inspire, affirm, and cultivate Sensitivity.
On the one hand, continuous design can significantly reduce the negative impact of humans on the natural environment, and on the other hand, it can improve the quality of life and improve living standards. Therefore, architectural design should pay more attention to ecological and environmental issues. Architecture has entered the era of “ecological architecture” (or “green building”). Sustainable development is proposed from the relationship between environmental pollution and human survival and growth. Still, sustainable development should also pay attention to the relationship between economy, population, society, and resources. Coordinated development with the five aspects of the environment [66].
Since the Rio Declaration, which is also the origin of the Environmental Summit, the term sustainable has become used to refer to economic activities that consider the global environment. Sustainable housing is a long-lived housing that is easy to live in and will be passed down to the next generation of children. Human beings will create homes that use natural clean energy such as solar heat and wind power, without using petroleum energy that causes global warming. In addition, because it is a residence that considers the cycle of tree growth and regeneration, it also leads to the effective use of recycled materials such as demolished old folk houses. In addition to making the house last longer, sustainable housing is also characterized by consideration for building a home that can reduce waste when dismantled and reuse building materials. Structure and performance with ruggedness and comfort. The critical point in the system is robustness. It is assumed that the suitable material is used in the right place and that a sturdy frame is assembled. In the case of a wooden house, not only is it a sturdy house with a structure, but it also has the advantage of being easy to remodel, such as extension and renovation, so you can continue to live without rebuilding. The interpretation of housing in construction, economy, society, and politics is also different. He summarized the meaning of housing: sheltered places, private Space, a product of location, a combination of buildings and neighborhood facilities, investment tools, a symbol of wealth and socio-economic status; also summarized. It has the characteristics of immovability, indivisibility, longevity, heterogeneity, expensiveness, investment products, and consumer products. Harsman and Quigley [67] also pointed out the characteristics of housing which is different from other commodities.
Housing is a complex commodity, for It is difficult for both parties to trade effectively.
Housing is fixed in space. Choosing accommodation means choosing a neighborhood environment.
Housing is costly, so it is common to rent houses, mortgage loans are generally required to purchase homes, housing accounts for a large proportion of expenditure, and new house construction is a large part of the new investment every year.
The life cycle of housing is extended, new housing only accounts for a small part of the housing service supply, and small changes in housing demand have a major impact on housing construction activities.
Housing is a necessity. They emphasized that it is these characteristics that together determine the high transaction costs of the housing market.
In the construction idea, design, and design phase the framework for large parts of the building is laid out future, both in relation to the architectural and functional, but equally so in regard to the building’s environmental, social and economic footprint. The personal impressions depend in height degree of what choices and opt-outs are made in these and later phases [68]. This release is aimed at to make the parties to the construction aware of the dilemmas often encountered and the considerations one must therefore do in connection with design and design of sustainable building.
Residential buildings are the most basic type of architecture, appearing the earliest in the history of world architecture, the most widespread, and the most significant number. Due to world vast territory, many ethnic groups, and a long history, the geographical and climatic conditions and lifestyles vary from place to place. Therefore, specific residential buildings’ architectural styles and styles are relatively rare in the history of world vernacular architecture. The vernacular architecture had a rich and beautiful element symbol and a solid philosophical charm. It fully complies with the laws of nature and cleverly integrates the natural scene. That can be a solid basis to modern architecture which focuses on the pursuit of humanized characteristics, while traditional architectural culture advocates the harmony and unity of man and nature. Traditional architectural culture can provide connotative reference materials and broad thinking space for modern architectural design and further highlight the individual characteristics of architectural design and enhance the connotation of art and culture. The integration of traditional architectural culture into the field of modern architectural design can inherit national culture, highlight modern scientific features, demonstrate characteristic humanistic feelings, and reflect the new style of the development of the times. A sustainable house where people can live comfortably forever while being a friendly house to the global environment in future home building, the idea of sustainable housing will be strongly required. In sustainable housing, it is considered to create a house that is friendly to people and the earth everywhere, such as the structure, floor plan, equipment, and building materials used. Combining modern architectural design theories with traditional culture and creating a series of works that were in line with national conditions, adapted to nature, and recognized by the public, making modern architecture famous It is a model of new vernacular architecture. Citizen involvement is a central element in the housing development of the future and helps maintain the vision for human and diverse cities. It provides vibrant and sustainable housing strategies where everyone has a place and can have a say. It places different and new demands on both the individual, architects, and companies, but it also provides a wide range of opportunities for new collaborations across traditional structures. Housing strategy should include three aspects: first, it has changed in the size, density, and design of the population in different regions; second, it includes There are fundamental changes in the socio- economic structure; finally, it is the changes in people’s behavior that need to be pointed out. Architects should pay more attention to the application of traditional housing systems, deepen the cognition and understanding of national culture, and enhance modern architecture’s cultural connotation and artistic value. In modern architectural design, to seek the integration of cultural characteristics of different times, traditional cultural symbols will be summarized, refined, and refined. Local features will be added based on retaining essential values and then reshaped to achieve the inheritance and spread of traditional culture. At the same time, it can also improve the modern architectural design and highlight the connotation. Today, the worldwide urbanization process has reached a turning point. Its main manifestations are as follows: the population is highly concentrated in the cities, and the rural areas are highly concentrated. A good housing strategy should include a good connection with the local traditional housing system with a concordance of a metropolitan and global city, an attractive and inclusive opportunity, a green area, and a livable and resilient residential area, have a significant grade to regenerate, and reflect the fragrant history and cultural heritage of the local areas. That is the first step to sustainable housing.
The Internet has irrevocably changed the dynamics of scholarly communication and publishing. Consequently, we find it necessary to indicate, unambiguously, our definition of what we consider to be a published scientific work.
",metaTitle:"Prior Publication Policy",metaDescription:"Prior Publication Policy",metaKeywords:null,canonicalURL:"/page/prior-publication-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"A significant number of working papers, early drafts, and similar work in progress are openly shared online between members of the scientific community. It has become common to announce one’s own research on a personal website or a blog to gather comments and suggestions from other researchers. Such works and online postings are, indeed, published in the sense that they are made publicly available. However, this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\nThe significance of Peer Review cannot be overstated when it comes to defining, in our terms, what constitutes a published scientific work. Peer Review is widely considered to be the cornerstone of modern publishing processes and the key value-adding contribution to a scholarly manuscript that a publisher can make.
\\n\\nOther than the issue of originality, research misconduct is another major issue that all publishers have to address. IntechOpen’s Retraction & Correction Policy and various publication ethics guidelines identify both redundant publication and (self)plagiarism to fall within the definition of research misconduct, thus constituting grounds for rejection or the issue of a Retraction if the work has already been published.
\\n\\nIn order to facilitate the tracking of a manuscript’s publishing history and its development from its earliest draft to the manuscript submitted, we encourage Authors to disclose any instances of a manuscript’s prior publication, whether it be through a conference presentation, a newspaper article, a working paper publicly available in a repository or a blog post.
\\n\\nA note to the Academic Editor containing detailed information about a submitted manuscript’s previous public availability is the preferred means of reporting prior publication. This helps us determine if there are any earlier versions of a manuscript that should be disclosed to our readers or if any of those earlier versions should be cited and listed in a manuscript’s references.
\\n\\nSome basic information about the editorial treatment of different varieties of prior publication is laid out below:
\\n\\n1. CONFERENCE PAPERS & PRESENTATIONS
\\n\\nGiven that conference papers and presentations generally pass through some sort of peer or editorial review, we consider them to be published in the accepted scholarly sense, particularly if they are published as a part of conference proceedings.
\\n\\nAll submitted manuscripts originating from a previously published conference paper must contain at least 50% of new original content to be accepted for review and considered for publication.
\\n\\nAuthors are required to report any links their manuscript might have with their earlier conference papers and presentations in a note to the Academic Editor, as well as in the manuscript itself. Additionally, Authors should obtain any necessary permissions from the publisher of their conference paper if copyright transfer occurred during the publishing process. Failure to do so may prevent Us from publishing an otherwise worthy work.
\\n\\n2. NEWSPAPER & MAGAZINE ARTICLES
\\n\\nNewspaper and magazine articles usually do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense. Articles appearing in newspapers and magazines rarely possess the depth and structure characteristic of scholarly articles.
\\n\\nSubmitted manuscripts stemming from a previous newspaper or magazine article will be accepted for review and considered for publication. However, Authors are strongly advised to report any such publication in an accompanying note to the External Editor.
\\n\\nAs with the conference papers and presentations, Authors should obtain any necessary permissions from the newspaper or magazine that published the work, and indicate that they have done so in a note to the External Editor.
\\n\\n3. GREY LITERATURE
\\n\\nWhite papers, working papers, technical reports and all other forms of papers which fall within the scope of the ‘Luxembourg definition’ of grey literature do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense.
\\n\\nAlthough such papers are regularly made publicly available via personal websites and institutional repositories, their general purpose is to gather comments and feedback from Authors’ colleagues in order to further improve a manuscript intended for future publication.
\\n\\nWhen submitting their work, Authors are required to disclose the existence of any publicly available earlier drafts in a note to the Academic Editor. In cases where earlier drafts of the submitted version of the manuscript are publicly available, any overlap between the versions will generally not be considered an instance of self-plagiarism.
\\n\\n4. SOCIAL MEDIA, BLOG & MESSAGE BOARD POSTINGS
\\n\\nWe feel that social media, blogs and message boards are generally used with the same intention as grey literature, to formulate ideas for a manuscript and gather early feedback from like-minded researchers in order to improve a particular piece of work before submitting it for publication. Therefore, we do not consider such internet postings to be publication in the scholarly sense.
\\n\\nNevertheless, Authors are encouraged to disclose the existence of any internet postings in which they outline and describe their research or posted passages of their manuscripts in a note to the Academic Editor. Please note that we will not strictly enforce this request in the same way that we would instructions we consider to be part of our conditions of acceptance for publication. We understand that it may be difficult to keep track of all one’s internet postings in which the researcher´s current work might be mentioned.
\\n\\nIn cases where there is any overlap between the Author´s submitted manuscript and related internet postings, we will generally not consider it to be an instance of self-plagiarism. This also holds true for any co-Author as well.
\\n\\nFor more information on this policy please contact permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-03-20
\\n"}]'},components:[{type:"htmlEditorComponent",content:'A significant number of working papers, early drafts, and similar work in progress are openly shared online between members of the scientific community. It has become common to announce one’s own research on a personal website or a blog to gather comments and suggestions from other researchers. Such works and online postings are, indeed, published in the sense that they are made publicly available. However, this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\nThe significance of Peer Review cannot be overstated when it comes to defining, in our terms, what constitutes a published scientific work. Peer Review is widely considered to be the cornerstone of modern publishing processes and the key value-adding contribution to a scholarly manuscript that a publisher can make.
\n\nOther than the issue of originality, research misconduct is another major issue that all publishers have to address. IntechOpen’s Retraction & Correction Policy and various publication ethics guidelines identify both redundant publication and (self)plagiarism to fall within the definition of research misconduct, thus constituting grounds for rejection or the issue of a Retraction if the work has already been published.
\n\nIn order to facilitate the tracking of a manuscript’s publishing history and its development from its earliest draft to the manuscript submitted, we encourage Authors to disclose any instances of a manuscript’s prior publication, whether it be through a conference presentation, a newspaper article, a working paper publicly available in a repository or a blog post.
\n\nA note to the Academic Editor containing detailed information about a submitted manuscript’s previous public availability is the preferred means of reporting prior publication. This helps us determine if there are any earlier versions of a manuscript that should be disclosed to our readers or if any of those earlier versions should be cited and listed in a manuscript’s references.
\n\nSome basic information about the editorial treatment of different varieties of prior publication is laid out below:
\n\n1. CONFERENCE PAPERS & PRESENTATIONS
\n\nGiven that conference papers and presentations generally pass through some sort of peer or editorial review, we consider them to be published in the accepted scholarly sense, particularly if they are published as a part of conference proceedings.
\n\nAll submitted manuscripts originating from a previously published conference paper must contain at least 50% of new original content to be accepted for review and considered for publication.
\n\nAuthors are required to report any links their manuscript might have with their earlier conference papers and presentations in a note to the Academic Editor, as well as in the manuscript itself. Additionally, Authors should obtain any necessary permissions from the publisher of their conference paper if copyright transfer occurred during the publishing process. Failure to do so may prevent Us from publishing an otherwise worthy work.
\n\n2. NEWSPAPER & MAGAZINE ARTICLES
\n\nNewspaper and magazine articles usually do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense. Articles appearing in newspapers and magazines rarely possess the depth and structure characteristic of scholarly articles.
\n\nSubmitted manuscripts stemming from a previous newspaper or magazine article will be accepted for review and considered for publication. However, Authors are strongly advised to report any such publication in an accompanying note to the External Editor.
\n\nAs with the conference papers and presentations, Authors should obtain any necessary permissions from the newspaper or magazine that published the work, and indicate that they have done so in a note to the External Editor.
\n\n3. GREY LITERATURE
\n\nWhite papers, working papers, technical reports and all other forms of papers which fall within the scope of the ‘Luxembourg definition’ of grey literature do not pass through any extensive peer or editorial review and we do not consider them to be published in the scholarly sense.
\n\nAlthough such papers are regularly made publicly available via personal websites and institutional repositories, their general purpose is to gather comments and feedback from Authors’ colleagues in order to further improve a manuscript intended for future publication.
\n\nWhen submitting their work, Authors are required to disclose the existence of any publicly available earlier drafts in a note to the Academic Editor. In cases where earlier drafts of the submitted version of the manuscript are publicly available, any overlap between the versions will generally not be considered an instance of self-plagiarism.
\n\n4. SOCIAL MEDIA, BLOG & MESSAGE BOARD POSTINGS
\n\nWe feel that social media, blogs and message boards are generally used with the same intention as grey literature, to formulate ideas for a manuscript and gather early feedback from like-minded researchers in order to improve a particular piece of work before submitting it for publication. Therefore, we do not consider such internet postings to be publication in the scholarly sense.
\n\nNevertheless, Authors are encouraged to disclose the existence of any internet postings in which they outline and describe their research or posted passages of their manuscripts in a note to the Academic Editor. Please note that we will not strictly enforce this request in the same way that we would instructions we consider to be part of our conditions of acceptance for publication. We understand that it may be difficult to keep track of all one’s internet postings in which the researcher´s current work might be mentioned.
\n\nIn cases where there is any overlap between the Author´s submitted manuscript and related internet postings, we will generally not consider it to be an instance of self-plagiarism. This also holds true for any co-Author as well.
\n\nFor more information on this policy please contact permissions@intechopen.com.
\n\nPolicy last updated: 2017-03-20
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",topicId:"20"},books:[{type:"book",id:"11857",title:"Updates on Excitons",subtitle:null,isOpenForSubmission:!0,hash:"8a2fd9bbbbae283bf115881d9d5cc47a",slug:null,bookSignature:"Dr. Ashim Kumar Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11857.jpg",editedByType:null,editors:[{id:"277477",title:"Dr.",name:"Ashim",surname:"Dutta",slug:"ashim-dutta",fullName:"Ashim Dutta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12014",title:"Aerodynamics of Sports",subtitle:null,isOpenForSubmission:!0,hash:"a15f5d35a75d3dfee7d27e19238306b0",slug:null,bookSignature:"Dr. Rakhab Mehta",coverURL:"https://cdn.intechopen.com/books/images_new/12014.jpg",editedByType:null,editors:[{id:"56358",title:"Dr.",name:"Rakhab",surname:"Mehta",slug:"rakhab-mehta",fullName:"Rakhab Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11499",title:"Nonlinear Systems - Recent Developments and Advances",subtitle:null,isOpenForSubmission:!0,hash:"22a4fb880337aaa9899a7bddcdde52eb",slug:null,bookSignature:"Dr. Bo Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11499.jpg",editedByType:null,editors:[{id:"234525",title:"Dr.",name:"Bo",surname:"Yang",slug:"bo-yang",fullName:"Bo Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11861",title:"Redefining Standard Model Particle Physics",subtitle:null,isOpenForSubmission:!0,hash:"085d4f6e00016fdad598675f825d6775",slug:null,bookSignature:"Prof. Brian Albert Robson",coverURL:"https://cdn.intechopen.com/books/images_new/11861.jpg",editedByType:null,editors:[{id:"102886",title:"Prof.",name:"Brian Albert",surname:"Robson",slug:"brian-albert-robson",fullName:"Brian Albert Robson"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12013",title:"Plasma Science - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"0261ac62d10563bf93735982748e3a2e",slug:null,bookSignature:"Dr. Sukhmander Singh",coverURL:"https://cdn.intechopen.com/books/images_new/12013.jpg",editedByType:null,editors:[{id:"282807",title:"Dr.",name:"Sukhmander",surname:"Singh",slug:"sukhmander-singh",fullName:"Sukhmander Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11494",title:"Electric Field in Advancing Science and Technology",subtitle:null,isOpenForSubmission:!0,hash:"6dcb071a2e978694b6b1cb9c20afc1a3",slug:null,bookSignature:"Prof. Hai-Zhi Song",coverURL:"https://cdn.intechopen.com/books/images_new/11494.jpg",editedByType:null,editors:[{id:"196114",title:"Prof.",name:"Hai-Zhi",surname:"Song",slug:"hai-zhi-song",fullName:"Hai-Zhi Song"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11862",title:"The Essence of Large-Eddy Simulations",subtitle:null,isOpenForSubmission:!0,hash:"45f71667f509dc3d62f6650fd3a1060e",slug:null,bookSignature:"Dr. Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/11862.jpg",editedByType:null,editors:[{id:"288354",title:"Dr.",name:"Aamir",surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11860",title:"Holography - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"dc0d34170f033ec1ab982bd15773bb2d",slug:null,bookSignature:"Prof. Joseph Rosen",coverURL:"https://cdn.intechopen.com/books/images_new/11860.jpg",editedByType:null,editors:[{id:"16544",title:"Prof.",name:"Joseph",surname:"Rosen",slug:"joseph-rosen",fullName:"Joseph Rosen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11496",title:"Quantum Field Theory",subtitle:null,isOpenForSubmission:!0,hash:"ec9dae0c7f2dcd5581423dfd8dba81f2",slug:null,bookSignature:"Dr. Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/11496.jpg",editedByType:null,editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11497",title:"Microfluidics and Nanofluidics - Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"c13b60a29b20349f816a6ab71ba35e42",slug:null,bookSignature:"Prof. Mingzhou Yu",coverURL:"https://cdn.intechopen.com/books/images_new/11497.jpg",editedByType:null,editors:[{id:"188972",title:"Prof.",name:"Mingzhou",surname:"Yu",slug:"mingzhou-yu",fullName:"Mingzhou Yu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11495",title:"Fundamentals and Application of Femtosecond Optics",subtitle:null,isOpenForSubmission:!0,hash:"949e69c6b2120eab3174d0a7e6b1c655",slug:null,bookSignature:"Dr. Sulaiman Wadi Harun",coverURL:"https://cdn.intechopen.com/books/images_new/11495.jpg",editedByType:null,editors:[{id:"14201",title:"Dr.",name:"Sulaiman Wadi",surname:"Harun",slug:"sulaiman-wadi-harun",fullName:"Sulaiman Wadi Harun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11498",title:"Boundary Layer Flows - Modelling, Computation, and Applications of Laminar, Turbulent Incompressible and Compressible Flows",subtitle:null,isOpenForSubmission:!0,hash:"8b8e61e6c07b01be3a148d3f1d2f4fa2",slug:null,bookSignature:"Dr. Vallampati Ramachandra Prasad, Dr. Valter Silva and Dr. João Cardoso",coverURL:"https://cdn.intechopen.com/books/images_new/11498.jpg",editedByType:null,editors:[{id:"146601",title:"Dr.",name:"Vallampati",surname:"Ramachandra Prasad",slug:"vallampati-ramachandra-prasad",fullName:"Vallampati Ramachandra Prasad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:12},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"465",title:"Brand Management",slug:"brand-management",parent:{id:"74",title:"Marketing",slug:"marketing"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:9,numberOfWosCitations:4,numberOfCrossrefCitations:8,numberOfDimensionsCitations:11,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"465",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7489",title:"Product Lifecycle Management",subtitle:"Terminology and Applications",isOpenForSubmission:!1,hash:"4cd1c0770949d5fe717936f01c4a1c61",slug:"product-lifecycle-management-terminology-and-applications",bookSignature:"Razvan Udroiu and Paul Bere",coverURL:"https://cdn.intechopen.com/books/images_new/7489.jpg",editedByType:"Edited by",editors:[{id:"13146",title:"Prof.",name:"Razvan",middleName:null,surname:"Udroiu",slug:"razvan-udroiu",fullName:"Razvan Udroiu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"64050",doi:"10.5772/intechopen.81281",title:"Recycling of Polymeric Composite Materials",slug:"recycling-of-polymeric-composite-materials",totalDownloads:1600,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"This chapter treats studies about the methods and technologies used to recycle the polymeric composite materials and develop new recipes using waste of polymer composite materials resulted from recycling. Composite materials obtained from recycling are presented, with a complete recovery of waste glass fibers. Also, the mechanical properties for new structures of polymeric composite materials, containing additional materials were presented. These were obtained from the recycling of composite waste. A morphology analysis of fracture area of composites samples was done. At present, the polymeric composite materials present a great scientific and technical interest, which justify both the development of research in this field, and the expansion of production of such materials. The author treats aspects regarding a current problem due to the large number of polymeric composite materials waste, and reduced of environmental impact. This field is representing one of the top viable research directions.",book:{id:"7489",slug:"product-lifecycle-management-terminology-and-applications",title:"Product Lifecycle Management",fullTitle:"Product Lifecycle Management - Terminology and Applications"},signatures:"Emilia Sabău",authors:[{id:"248080",title:"Dr.Ing.",name:"Emilia",middleName:null,surname:"Sabau",slug:"emilia-sabau",fullName:"Emilia Sabau"}]},{id:"63080",doi:"10.5772/intechopen.80364",title:"Testing and PLM: Connecting Process and Product Models in Product Development",slug:"testing-and-plm-connecting-process-and-product-models-in-product-development",totalDownloads:1347,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"The product lifecycle management (PLM) is the process of managing the entire lifecycle of a product from the idea generation, through the design, development and manufacturing to service and disposal of the product. Testing often is considered to be an activity to perform during the product design and development phase. However, the information about how a product is designed and tested is useful for designing the maintenance and the monitoring and maintenance data can provide useful information in developing the next generation of a new product. The main objective of this chapter is to understand how testing process in integrated into the product lifecycle. This chapter reports a case study in a UK based manufacturing company and based on that develops a framework to highlight the importance of testing. Also, proposes a conceptual model of how testing activities can be managed in the product lifecycle management process.",book:{id:"7489",slug:"product-lifecycle-management-terminology-and-applications",title:"Product Lifecycle Management",fullTitle:"Product Lifecycle Management - Terminology and Applications"},signatures:"Khadija Tahera and Christopher Earl",authors:[{id:"248549",title:"Dr.",name:"Khadija",middleName:null,surname:"Tahera",slug:"khadija-tahera",fullName:"Khadija Tahera"},{id:"266187",title:"Prof.",name:"Christopher",middleName:null,surname:"Earl",slug:"christopher-earl",fullName:"Christopher Earl"}]},{id:"64121",doi:"10.5772/intechopen.81272",title:"PLM for Supply Chain Optimization",slug:"plm-for-supply-chain-optimization",totalDownloads:1079,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Technological advances in science and technology information and communication in recent years have completely changed the way the enterprise functions. It works toward a collaborative relationship between the different partners of its supply chain. Thus, enterprises need to exploit the benefits of integrating supply chain actors and information sharing to improve their performances. This has led to the development of a collaborative product lifecycle management commonly known as PLM. The objective of this chapter is to propose a decision support tool based on PLM for supply chain optimization. Through this work, we conciliate two scientific communities: the one dedicated to PLM and the one relating to the problems relating to supply chain optimization.",book:{id:"7489",slug:"product-lifecycle-management-terminology-and-applications",title:"Product Lifecycle Management",fullTitle:"Product Lifecycle Management - Terminology and Applications"},signatures:"Imane Bouhaddou",authors:[{id:"249855",title:"Dr.Ing.",name:"Imane",middleName:null,surname:"Bouhaddou",slug:"imane-bouhaddou",fullName:"Imane Bouhaddou"}]},{id:"62655",doi:"10.5772/intechopen.79523",title:"Configuration of a Customized Product",slug:"configuration-of-a-customized-product",totalDownloads:1306,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The chapter discusses problems of the product configuration process and application of chosen methods to represent the knowledge related to this process. One of the most important issues in product life-cycle management is to identify customer needs and combine them with product’s technical and trade characteristics. The main tasks related to product configuration are focused on identifying the most suitable product to a particular customer, product decomposition, and estimating product characteristics. In the presented approach, identification of customer needs was discussed, and a product decomposition method was presented. The quality function deployment (QFD) method was suggested to be applied as a product and production process data integration tool, where engineering characteristics of a product are combined with its trade characteristics.",book:{id:"7489",slug:"product-lifecycle-management-terminology-and-applications",title:"Product Lifecycle Management",fullTitle:"Product Lifecycle Management - Terminology and Applications"},signatures:"Izabela Kutschenreiter-Praszkiewicz",authors:[{id:"218951",title:"Associate Prof.",name:"Izabela",middleName:null,surname:"Kutschenreiter-Praszkiewicz",slug:"izabela-kutschenreiter-praszkiewicz",fullName:"Izabela Kutschenreiter-Praszkiewicz"}]},{id:"63867",doi:"10.5772/intechopen.80345",title:"Product Development and Management Strategies",slug:"product-development-and-management-strategies",totalDownloads:2926,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The chapter seeks to discuss and describe the concept of product from the marketing perspective, how companies come about new product, product development options, and the various strategies available to a company to manage new and existing products. It is a conceptual paper which reviews relevant literatures from various sources. In essence, the proposed chapter will be divided into three main sections. Section 1 will introduce the concept of product, its meaning, and core components from the marketing point of view. It will also contain discussion on the various connotations of the term product, what constitute a new product, and new product adoption. Section 2 will dwell on the options available to a company on how to come up with new products including mergers, acquisition, and licensing, franchising, and proactive new product development. It will also explain the two product development strategies that companies adopt in the market place. The last section will discuss the product management strategies available to a firm either from the product life cycle way or the individual product management strategies or both. At the end, conclusions and the general context of the paper are drawn.",book:{id:"7489",slug:"product-lifecycle-management-terminology-and-applications",title:"Product Lifecycle Management",fullTitle:"Product Lifecycle Management - Terminology and Applications"},signatures:"Musa Gambo Kasuwar Kuka",authors:[{id:"248588",title:"Ph.D.",name:"Musa",middleName:null,surname:"Gambo K.K.",slug:"musa-gambo-k.k.",fullName:"Musa Gambo K.K."}]}],mostDownloadedChaptersLast30Days:[{id:"63867",title:"Product Development and Management Strategies",slug:"product-development-and-management-strategies",totalDownloads:2929,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The chapter seeks to discuss and describe the concept of product from the marketing perspective, how companies come about new product, product development options, and the various strategies available to a company to manage new and existing products. It is a conceptual paper which reviews relevant literatures from various sources. In essence, the proposed chapter will be divided into three main sections. Section 1 will introduce the concept of product, its meaning, and core components from the marketing point of view. It will also contain discussion on the various connotations of the term product, what constitute a new product, and new product adoption. Section 2 will dwell on the options available to a company on how to come up with new products including mergers, acquisition, and licensing, franchising, and proactive new product development. It will also explain the two product development strategies that companies adopt in the market place. The last section will discuss the product management strategies available to a firm either from the product life cycle way or the individual product management strategies or both. At the end, conclusions and the general context of the paper are drawn.",book:{id:"7489",slug:"product-lifecycle-management-terminology-and-applications",title:"Product Lifecycle Management",fullTitle:"Product Lifecycle Management - Terminology and Applications"},signatures:"Musa Gambo Kasuwar Kuka",authors:[{id:"248588",title:"Ph.D.",name:"Musa",middleName:null,surname:"Gambo K.K.",slug:"musa-gambo-k.k.",fullName:"Musa Gambo K.K."}]},{id:"64024",title:"Product Design Process and Methods",slug:"product-design-process-and-methods",totalDownloads:2744,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Suitable design procedures and methods will lead to twice the result with half the work. Hence, good products need a good beginning in the design process. The design procedure is the basis for guiding the steps of design process, while the design method is the guarantee for effectively developing the design process and improving its quality. A clear and reasonable process can lead to a simple and smooth way in design, while the proper use of creating techniques can let the designer find a better way to solve the problems in a wider range, so as to develop and design a good product.",book:{id:"7489",slug:"product-lifecycle-management-terminology-and-applications",title:"Product Lifecycle Management",fullTitle:"Product Lifecycle Management - Terminology and Applications"},signatures:"Jinxia Cheng",authors:[{id:"251440",title:"Mrs.",name:"Jinxia",middleName:null,surname:"Cheng",slug:"jinxia-cheng",fullName:"Jinxia Cheng"}]},{id:"64122",title:"Introductory Chapter: Product Lifecycle Management - Terminology",slug:"introductory-chapter-product-lifecycle-management-terminology",totalDownloads:1501,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"7489",slug:"product-lifecycle-management-terminology-and-applications",title:"Product Lifecycle Management",fullTitle:"Product Lifecycle Management - Terminology and Applications"},signatures:"Razvan Udroiu and Paul Bere",authors:[{id:"13146",title:"Prof.",name:"Razvan",middleName:null,surname:"Udroiu",slug:"razvan-udroiu",fullName:"Razvan Udroiu"}]},{id:"62655",title:"Configuration of a Customized Product",slug:"configuration-of-a-customized-product",totalDownloads:1307,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The chapter discusses problems of the product configuration process and application of chosen methods to represent the knowledge related to this process. One of the most important issues in product life-cycle management is to identify customer needs and combine them with product’s technical and trade characteristics. The main tasks related to product configuration are focused on identifying the most suitable product to a particular customer, product decomposition, and estimating product characteristics. In the presented approach, identification of customer needs was discussed, and a product decomposition method was presented. The quality function deployment (QFD) method was suggested to be applied as a product and production process data integration tool, where engineering characteristics of a product are combined with its trade characteristics.",book:{id:"7489",slug:"product-lifecycle-management-terminology-and-applications",title:"Product Lifecycle Management",fullTitle:"Product Lifecycle Management - Terminology and Applications"},signatures:"Izabela Kutschenreiter-Praszkiewicz",authors:[{id:"218951",title:"Associate Prof.",name:"Izabela",middleName:null,surname:"Kutschenreiter-Praszkiewicz",slug:"izabela-kutschenreiter-praszkiewicz",fullName:"Izabela Kutschenreiter-Praszkiewicz"}]},{id:"64050",title:"Recycling of Polymeric Composite Materials",slug:"recycling-of-polymeric-composite-materials",totalDownloads:1600,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"This chapter treats studies about the methods and technologies used to recycle the polymeric composite materials and develop new recipes using waste of polymer composite materials resulted from recycling. Composite materials obtained from recycling are presented, with a complete recovery of waste glass fibers. Also, the mechanical properties for new structures of polymeric composite materials, containing additional materials were presented. These were obtained from the recycling of composite waste. A morphology analysis of fracture area of composites samples was done. At present, the polymeric composite materials present a great scientific and technical interest, which justify both the development of research in this field, and the expansion of production of such materials. The author treats aspects regarding a current problem due to the large number of polymeric composite materials waste, and reduced of environmental impact. This field is representing one of the top viable research directions.",book:{id:"7489",slug:"product-lifecycle-management-terminology-and-applications",title:"Product Lifecycle Management",fullTitle:"Product Lifecycle Management - Terminology and Applications"},signatures:"Emilia Sabău",authors:[{id:"248080",title:"Dr.Ing.",name:"Emilia",middleName:null,surname:"Sabau",slug:"emilia-sabau",fullName:"Emilia Sabau"}]}],onlineFirstChaptersFilter:{topicId:"465",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:289,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:18,paginationItems:[{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 8th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:5,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:25,group:"subseries"}],publishedBooks:{paginationCount:0,paginationItems:[]},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"4",type:"subseries",title:"Fungal Infectious Diseases",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11400,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"302145",title:"Dr.",name:"Felix",middleName:null,surname:"Bongomin",slug:"felix-bongomin",fullName:"Felix Bongomin",profilePictureURL:"https://mts.intechopen.com/storage/users/302145/images/system/302145.jpg",institutionString:null,institution:{name:"Gulu University",institutionURL:null,country:{name:"Uganda"}}},{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi",profilePictureURL:"https://mts.intechopen.com/storage/users/45803/images/system/45803.jpg",institutionString:"Islamic Azad University, Tehran",institution:{name:"Islamic Azad University, Tehran",institutionURL:null,country:{name:"Iran"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:0,paginationItems:[]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/135686",hash:"",query:{},params:{id:"135686"},fullPath:"/profiles/135686",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()