Summary of the performance characteristics of the proposed one-stage filtennas.
\r\n\tAnimal food additives are products used in animal nutrition for purposes of improving the quality of feed or to improve the animal’s performance and health. Other additives can be used to enhance digestibility or even flavour of feed materials. In addition, feed additives are known which improve the quality of compound feed production; consequently e.g. they improve the quality of the granulated mixed diet.
\r\n\r\n\tGenerally feed additives could be divided into five groups:
\r\n\t1.Technological additives which influence the technological aspects of the diet to improve its handling or hygiene characteristics.
\r\n\t2. Sensory additives which improve the palatability of a diet by stimulating appetite, usually through the effect these products have on the flavour or colour.
\r\n\t3. Nutritional additives, such additives are specific nutrient(s) required by the animal for optimal production.
\r\n\t4.Zootechnical additives which improve the nutrient status of the animal, not by providing specific nutrients, but by enabling more efficient use of the nutrients present in the diet, in other words, it increases the efficiency of production.
\r\n\t5. In poultry nutrition: Coccidiostats and Histomonostats which widely used to control intestinal health of poultry through direct effects on the parasitic organism concerned.
\r\n\tThe aim of the book is to present the impact of the most important feed additives on the animal production, to demonstrate their mode of action, to show their effect on intermediate metabolism and heath status of livestock and to suggest how to use the different feed additives in animal nutrition to produce high quality and safety animal origin foodstuffs for human consumer.
",isbn:"978-1-83969-404-2",printIsbn:"978-1-83969-403-5",pdfIsbn:"978-1-83969-405-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"8ffe43a82ac48b309abc3632bbf3efd0",bookSignature:"Prof. László Babinszky",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",keywords:"Technological Feed Additives, Feed Industry, Quality of Compound Feed, Non-Antibiotic Growth Promoter, Product Quality, Additive Enzymes, Digestibility of Nutrients, NSP Enzymes, Farm Animals, Livestock, Immunity, Microbiome",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 24th 2020",dateEndSecondStepPublish:"December 22nd 2020",dateEndThirdStepPublish:"February 20th 2021",dateEndFourthStepPublish:"May 11th 2021",dateEndFifthStepPublish:"July 10th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Professor Emeritus from the University of Debrecen, Hungary who authored 297 publications (papers, book chapters) and edited 3 books. Member of various committees and chairman of the World Conference of Innovative Animal Nutrition and Feeding (WIANF).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.jpg",biography:"László Babinszky is Professor Emeritus of animal nutrition at the University of Debrecen, Hungary. From 1984 to 1985 he worked at the Agricultural University in Wageningen and in the Institute for Livestock Feeding and Nutrition in Lelystad (the Netherlands). He also worked at the Agricultural University of Vienna in the Institute for Animal Breeding and Nutrition (Austria) and in the Oscar Kellner Research Institute in Rostock (Germany). From 1988 to 1992, he worked in the Department of Animal Nutrition (Agricultural University in Wageningen). In 1992 he obtained a PhD degree in animal nutrition from the University of Wageningen.He has authored 297 publications (papers, book chapters). He edited 3 books and 14 international conference proceedings. His total number of citation is 407. \r\nHe is member of various committees e.g.: American Society of Animal Science (ASAS, USA); the editorial board of the Acta Agriculturae Scandinavica, Section A- Animal Science (Norway); KRMIVA, Journal of Animal Nutrition (Croatia), Austin Food Sciences (NJ, USA), E-Cronicon Nutrition (UK), SciTz Nutrition and Food Science (DE, USA), Journal of Medical Chemistry and Toxicology (NJ, USA), Current Research in Food Technology and Nutritional Sciences (USA). From 2015 he has been appointed chairman of World Conference of Innovative Animal Nutrition and Feeding (WIANF).\r\nHis main research areas are related to pig and poultry nutrition: elimination of harmful effects of heat stress by nutrition tools, energy- amino acid metabolism in livestock, relationship between animal nutrition and quality of animal food products (meat).",institutionString:"University of Debrecen",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"185543",firstName:"Maja",lastName:"Bozicevic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/185543/images/4748_n.jpeg",email:"maja.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,isOpenForSubmission:!1,hash:"75cdacb570e0e6d15a5f6e69640d87c9",slug:"veterinary-anatomy-and-physiology",bookSignature:"Catrin Sian Rutland and Valentina Kubale",coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"36326",title:"Tektono-Stratigraphy as a Reflection of Accretion Tectonics Processes (on an Example of the Nadankhada-Bikin Terrane of the Sikhote-Alin Jurassic Accretionary Prism, Russia Far East)",doi:"10.5772/35216",slug:"tektono-stratigraphy-as-a-reflection-of-accretion-tectonics-processes-on-an-example-of-the-nadankha",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/36326.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/36326",previewPdfUrl:"/chapter/pdf-preview/36326",totalDownloads:2043,totalViews:116,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,dateSubmitted:"May 10th 2011",dateReviewed:"September 22nd 2011",datePrePublished:null,datePublished:"April 27th 2012",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/36326",risUrl:"/chapter/ris/36326",book:{slug:"stratigraphic-analysis-of-layered-deposits"},signatures:"Igor V. Kemkin",authors:[{id:"103490",title:"Prof.",name:"Igor'",middleName:null,surname:"Kemkin",fullName:"Igor' Kemkin",slug:"igor'-kemkin",email:"kemkin@fegi.ru",position:null,institution:{name:"Far East Geological Institute",institutionURL:null,country:{name:"Russia"}}}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"1550",title:"Stratigraphic Analysis of Layered Deposits",subtitle:null,fullTitle:"Stratigraphic Analysis of Layered Deposits",slug:"stratigraphic-analysis-of-layered-deposits",publishedDate:"April 27th 2012",bookSignature:"Ömer Elitok",coverURL:"https://cdn.intechopen.com/books/images_new/1550.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"47123",title:"Dr.",name:"Ömer",middleName:null,surname:"Elitok",slug:"omer-elitok",fullName:"Ömer Elitok"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"36316",title:"Medium to Shallow Depth Stratigraphic Assessment Based on the Application of Geophysical Techniques",slug:"medium-to-shallow-depth-stratigraphic-assessment-based-on-the-application-of-geophysical-techniques",totalDownloads:1903,totalCrossrefCites:0,signatures:"Roberto Balia",authors:[{id:"105389",title:"Prof.",name:"Roberto",middleName:null,surname:"Balia",fullName:"Roberto Balia",slug:"roberto-balia"}]},{id:"36317",title:"Seismic Stratigraphy and Marine Magnetics of the Naples Bay (Southern Tyrrhenian Sea, Italy): The Onset of New Technologies in Marine Data Acquisition, Processing and Interpretation",slug:"seismic-stratigraphy-and-marine-magnetics-of-the-naples-bay-southern-tyrrhenian-sea-italy-the-on",totalDownloads:3026,totalCrossrefCites:0,signatures:"Gemma Aiello, Laura Giordano, Ennio Marsella and Salvatore Passaro",authors:[{id:"100661",title:"Dr.",name:"Gemma",middleName:null,surname:"Aiello",fullName:"Gemma Aiello",slug:"gemma-aiello"},{id:"101886",title:"Dr.",name:"Ennio",middleName:null,surname:"Marsella",fullName:"Ennio Marsella",slug:"ennio-marsella"},{id:"101900",title:"Dr.",name:"Laura",middleName:null,surname:"Giordano",fullName:"Laura Giordano",slug:"laura-giordano"},{id:"101901",title:"Dr.",name:"Salvatore",middleName:null,surname:"Passaro",fullName:"Salvatore Passaro",slug:"salvatore-passaro"}]},{id:"36318",title:"Ground Penetrating Radar: A Useful Tool for Shallow Subsurface Stratigraphy Characterization",slug:"ground-penetrating-radar-a-useful-tool-for-shallow-subsurface-stratigraphy-characterization",totalDownloads:3902,totalCrossrefCites:2,signatures:"Giovanni Leucci",authors:[{id:"106172",title:"Dr.",name:"Giovanni",middleName:null,surname:"Leucci",fullName:"Giovanni Leucci",slug:"giovanni-leucci"}]},{id:"36319",title:"Orbital Control on Carbonate-Lignite Cycles in the Ptolemais Basin, Northern Greece - An Integrated Stratigraphic Approach",slug:"orbital-control-on-carbonate-lignite-cycles-in-the-ptolemais-basin-northern-greece-an-integrate",totalDownloads:2265,totalCrossrefCites:1,signatures:"M.E. Weber, N. Tougiannidis, W. Ricken, C. Rolf, I. Oikonomopoulos and P. Antoniadis",authors:[{id:"104271",title:"Dr.",name:"Michael E.",middleName:null,surname:"Weber",fullName:"Michael E. Weber",slug:"michael-e.-weber"}]},{id:"36320",title:"The Muhi Quarry: A Fossil-Lagerstätte from the Mid-Cretaceous (Albian-Cenomanian) of Hidalgo, Central México",slug:"the-muhi-quarry-a",totalDownloads:2146,totalCrossrefCites:1,signatures:"Victor Manuel Bravo Cuevas,, Katia A. González Rodríguez, Rocío Baños Rodríguez and Citlalli Hernández Guerrero",authors:[{id:"108938",title:"Dr.",name:"Victor",middleName:null,surname:"Bravo-Cuevas",fullName:"Victor Bravo-Cuevas",slug:"victor-bravo-cuevas"},{id:"109673",title:"Dr.",name:"Katia",middleName:null,surname:"González-Rodríguez",fullName:"Katia González-Rodríguez",slug:"katia-gonzalez-rodriguez"},{id:"109689",title:"Prof.",name:"Rocio",middleName:"Elizabeth",surname:"Baños-Rodríguez",fullName:"Rocio Baños-Rodríguez",slug:"rocio-banos-rodriguez"},{id:"109690",title:"BSc.",name:"Citlalli",middleName:null,surname:"Hernández-Guerrero",fullName:"Citlalli Hernández-Guerrero",slug:"citlalli-hernandez-guerrero"}]},{id:"36321",title:"Pliocene Mediterranean Foraminiferal Biostratigraphy: A Synthesis and Application to the Paleoenvironmental Evolution of Northwestern Italy",slug:"pliocene-mediterranean-foraminiferal-biostratigraphy-a-synthesis-and-application-to-the-paleoenviro",totalDownloads:2387,totalCrossrefCites:4,signatures:"Donata Violanti",authors:[{id:"103001",title:"Prof.",name:"Donata",middleName:null,surname:"Violanti",fullName:"Donata Violanti",slug:"donata-violanti"}]},{id:"36322",title:"The Paleogene Dinoflagellate Cyst and Nannoplankton Biostratigraphy of the Caspian Depression",slug:"the-paleogene-dinoflagellate-cyst-and-nannoplankton-biostratigraphy-of-the-caspian-depression",totalDownloads:2005,totalCrossrefCites:1,signatures:"Olga Vasilyeva and Vladimir Musatov",authors:[{id:"98322",title:"Dr.",name:"Olga",middleName:"N.",surname:"Vasilyeva",fullName:"Olga Vasilyeva",slug:"olga-vasilyeva"},{id:"136891",title:"Dr.",name:"Vladimir",middleName:null,surname:"Musatov",fullName:"Vladimir Musatov",slug:"vladimir-musatov"}]},{id:"36323",title:"Late Silurian-Middle Devonian Miospores",slug:"late-silurian-middle-devonian-miospores",totalDownloads:3099,totalCrossrefCites:0,signatures:"Adnan M. Hassan Kermandji",authors:[{id:"103410",title:"Prof.",name:"Adnan",middleName:"Mohamed",surname:"M. Hassan Kermandji",fullName:"Adnan M. Hassan Kermandji",slug:"adnan-m.-hassan-kermandji"}]},{id:"36324",title:"Paleocene Stratigraphy in Aqra and Bekhme Areas, Northern Iraq",slug:"paleocene-stratigraphy-in-aqra-and-bekhme-areas-northern-iraq",totalDownloads:3443,totalCrossrefCites:0,signatures:"Nabil Y. Al-Banna, Majid M. Al-Mutwali and Zaid A. Malak",authors:[{id:"105926",title:"Prof.",name:"Nabil Yousif",middleName:"Yousif",surname:"Al-Banna",fullName:"Nabil Yousif Al-Banna",slug:"nabil-yousif-al-banna"},{id:"111588",title:"Prof.",name:"Majed",middleName:null,surname:"Al-Mutwali",fullName:"Majed Al-Mutwali",slug:"majed-al-mutwali"},{id:"111590",title:"Dr.",name:"Zaid",middleName:"Abdulwahab",surname:"Malak",fullName:"Zaid Malak",slug:"zaid-malak"}]},{id:"36325",title:"Sedimentary Tectonics and Stratigraphy: The Early Mesozoic Record in Central to Northeastern Mexico",slug:"sedimentary-tectonics-and-straigraphy-the-early-mesozoic-record-in-central-to-northeastern-mexico",totalDownloads:2232,totalCrossrefCites:0,signatures:"Jose Rafael Barboza-Gudino",authors:[{id:"103498",title:"Dr.",name:"José Rafael",middleName:null,surname:"Barboza-Gudiño",fullName:"José Rafael Barboza-Gudiño",slug:"jose-rafael-barboza-gudino"}]},{id:"36326",title:"Tektono-Stratigraphy as a Reflection of Accretion Tectonics Processes (on an Example of the Nadankhada-Bikin Terrane of the Sikhote-Alin Jurassic Accretionary Prism, Russia Far East)",slug:"tektono-stratigraphy-as-a-reflection-of-accretion-tectonics-processes-on-an-example-of-the-nadankha",totalDownloads:2043,totalCrossrefCites:0,signatures:"Igor V. Kemkin",authors:[{id:"103490",title:"Prof.",name:"Igor'",middleName:null,surname:"Kemkin",fullName:"Igor' Kemkin",slug:"igor'-kemkin"}]}]},relatedBooks:[{type:"book",id:"7392",title:"New Insights into the Stratigraphic Setting of Paleozoic to Miocene Deposits",subtitle:"Case Studies from the Persian Gulf, Peninsular Malaysia and South-Eastern Pyrenees",isOpenForSubmission:!1,hash:"594f4fbefe32dfe2375e4153b30235aa",slug:"new-insights-into-the-stratigraphic-setting-of-paleozoic-to-miocene-deposits-case-studies-from-the-persian-gulf-peninsular-malaysia-and-south-eastern-pyrenees",bookSignature:"Gemma Aiello",coverURL:"https://cdn.intechopen.com/books/images_new/7392.jpg",editedByType:"Edited by",editors:[{id:"100661",title:"Dr.",name:"Gemma",surname:"Aiello",slug:"gemma-aiello",fullName:"Gemma Aiello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"66315",title:"Introductory Chapter: An Introduction to the Stratigraphic Setting of Paleozoic to Miocene Deposits Based on Paleoecology, Facies Analysis, Chemostratigraphy, and Chronostratigraphy - Concepts and Meanings",slug:"introductory-chapter-an-introduction-to-the-stratigraphic-setting-of-paleozoic-to-miocene-deposits-b",signatures:"Gemma Aiello",authors:[{id:"100661",title:"Dr.",name:"Gemma",middleName:null,surname:"Aiello",fullName:"Gemma Aiello",slug:"gemma-aiello"}]},{id:"63981",title:"Paleoecology and Sedimentary Environments of the Oligo-Miocene Deposits of the Asmari Formation (Qeshm Island, SE Persian Gulf)",slug:"paleoecology-and-sedimentary-environments-of-the-oligo-miocene-deposits-of-the-asmari-formation-qesh",signatures:"Seyed Hadi Sajadi and Roya Fanati Rashidi",authors:[null]},{id:"66289",title:"Chemostratigraphy of Paleozoic Carbonates in the Western Belt (Peninsular Malaysia): A Case Study on the Kinta Limestone",slug:"chemostratigraphy-of-paleozoic-carbonates-in-the-western-belt-peninsular-malaysia-a-case-study-on-th",signatures:"Haylay Tsegab and Chow Weng Sum",authors:[null]},{id:"63930",title:"High Resolution Chronostratigraphy from an Ice-Dammed Palaeo-Lake in Andorra: MIS 2 Atlantic and Mediterranean Palaeo-Climate Inferences over the SE Pyrenees",slug:"high-resolution-chronostratigraphy-from-an-ice-dammed-palaeo-lake-in-andorra-mis-2-atlantic-and-medi",signatures:"Valenti Turu",authors:[null]}]}]},onlineFirst:{chapter:{type:"chapter",id:"64631",title:"Compact, Efficient, and Wideband Near-Field Resonant Parasitic Filtennas",doi:"10.5772/intechopen.82305",slug:"compact-efficient-and-wideband-near-field-resonant-parasitic-filtennas",body:'\nA filtenna is a co-designed antenna which integrates a radiating element and filter to be a single device. Due to its self-contained filtering characteristic, filtenna possesses several main properties compared with other general antennas while receiving a signal. First of all, the interconnection losses could be decreased, which emerge while a common receiving antenna is assembled to a filter in the fabrication process. In addition, it restrains unwanted signals which occur out of the operational band. Finally, from the aspect of practice, it promoted a RF front-end system with more compact and lower cost features. Consequently, more attention has been seized to propose all kinds of filtennas into engineering practice.
\nIn this chapter, three main sorts of filtennas are introduced to demonstrate their design methods and performance characteristics. For the first sort, band-pass or band-stop filtennas focus on introducing band-notch filters into ultra-wideband (UWB)/wideband antennas using a variety of high-Q band-stop structures or embedding band-pass filter structures into various types of basic antennas [1, 2, 3, 4]. Two printed planar ultrawideband (UWB) antennas are designed and fabricated. To further improve its high frequency characteristics, a multimode-resonator filter consisting of a single-wing element is combined with the slot-modified UWB antenna. These filtennas would be depicted in Section 2 in detail. For the second sort, multi-resonator-cascaded filtennas are obtained by altering the coupled-resonators in the last stages of the filters to act as the radiating elements [5, 6]. In Section 3, two planar efficient wideband electrically small monopole filtennas are proposed. The first one is directly evolved from a common planar capacitively loaded loop (CLL)-based filter. The second filtenna consists of a driven element augmented with a CLL structure and with slots etched onto its ground plane. Both the filtennas are electrically small. For the third sort, near-field resonant parasitic (NFRP), bandwidth-enhanced filtennas are accomplished through organically combining radiator and filtering structures. In Section 4, a filtenna possessing compact geometry with bandwidth enhancement is developed by a novel design method. It expanded an impedance bandwidth which is over three times improvement compared to its component near-field resonant parasitic (NFRP) monopole antenna alone. Then, a set of compact filtennas with the NFRP element is simulated, fabricated, and analyzed to validate the filtennas’ reliability.
\nThe degradation of the radiation pattern at higher frequency of the UWB range reveals a serious drawback for the planar design. For the purpose of decreasing this defect, some design methods have been published, such as adding electromagnetic band gaps (EBGs) [7], varying the radiating patches [8], reconstructing the ground planes [9], and turning to a trident-shaped strip integrated with a tapered impedance transformer connected to the feedline [10].
\nAlternatively, through assembling an asymmetrical single-wing filter into a feedline section of a modified arc-slot UWB antenna, the broadside gain of the antenna in the upper portion of the UWB band is increased. For example, the simulated broadside gains at 10 GHz are increased from −3.89 to 4.16 dBi for the single-wing antenna. Moreover, integrating a filter element into the antenna strengthens the sharp cutoff performance at both edges of the frequency range for the UWB. Additionally, the developed co-design method makes the size compact for the whole system constituted by the filter and antenna effectively. Eventually, the experiment results in good agreement with simulations that could validate the proposed strategy.
\nThe geometries of a traditional patch UWB monopole antenna as a reference together with its arc-slot modified case are illustrated in Figure 1. The reference antenna is evolved from the reported printed planar UWB monopole antenna designs [11]. Its radiating patch is elliptical in shape, and its ground plane is designed with a rectangular slot at its upper edge for impedance matching. As its modified case, an arc-shaped slot is engineered to be symmetric within the radiating patch and to be close to the throat of the microstrip-feed strip. Both the reference antenna and the antenna with an arc-shaped slot have their comparison on S-parameters, and broadside realized gains are shown in Figure 2. It is shown that the reference antenna has a very wide −10 dB impedance bandwidth from 2.855 up to 14.0 GHz in the simulation. In contrast, the simulated (measured) bandwidth of the antenna with the arc-slot is shown to be from 2.615 (2.775 GHz) up to 14.0 GHz. Moreover, by etching the arc-shaped slot, the antenna with the arc-shaped slot achieves improved broadside realized gains, particularly at the high frequency side of the UWB band, e.g., a 6 dB increase in the realized gain near 10 GHz. The reason is that the arc-shaped slot produces a parasitic element to resonate at TM10 mode around 10 GHz to remedy the radiation performance. However, as shown in Figure 3, the arc-shaped slot modification could ensure the broadside gain improvement in the upper portion of the UWB band. But there is no corresponding improvement in the H-plane, i.e., it does not exhibit an omni-directional radiation pattern.
\nThe printed planar UWB antenna with an arc-shaped slot and its reference design. (a) Reference antenna, (b) top view, (c) side view, and (d) the fabricated prototype.
Comparisons between the reference antenna and the antenna with the arc-shaped slot. (a) |S11| values and (b) broadside realized gain.
Realized gain of the arc-slot modified UWB antenna at (a) 3.0, (b) 6.5, and (c) 10 GHz.
Numerous stub-loaded multimode-resonator-based UWB bandpass filters have been reported in recent years [12, 13]. We found one compact filter design that has several attractive features, including simple designs, compact sizes, low losses, flat group delays, enhanced out-of-band rejection, and easy integration with other microwave components in the UWB frequency range.
\nFirst, based on these advantages, a circular stub-loaded single-wing filter was designed, fabricated, and measured. In detail, its layout and the equivalent circuit network, together with the fabricated prototype and S-parameters, are shown in Figure 4. The filter is composed of a single-wing resonator and a pair of interdigital-coupled lines. The resonator creates and adjusts several sequential modes within the UWB passband [13]. The interdigital-coupled lines are equivalent to two pairs of single transmission lines attached in their middle to a J-inverter susceptance. The simulated (measured) results demonstrate that the single-wing filter provides 3 dB passband bandwidth from 2.806 (2.824) to 10.892 GHz (10.760 GHz), which covers the entire UWB band. Moreover, the +10 dB return loss bandwidth is from 3.025 (2.989) to 11.010 GHz (10.842 GHz). Two transmission zeros are generated at 2.12 GHz (2.085 GHz) and at 11.5 GHz (11.449 GHz).
\nThe circular stub-based single-wing multimode-resonator filter. (a) Design layout of the filter and its equivalent circuit network, (b) fabricated prototype, and (c) its simulated and measured |S11|.
The single-wing filter was integrated into the arc-slot antenna as shown in Figure 5. The filter was connected directly to the microstrip feedline section. As shown in Figure 5, the UWB filter-antenna design was optimized, fabricated, and measured. As depicted, the simulated (measured) −10 dB impedance bandwidth of the antenna with the single-wing filter is from 2.995 (2.949) to 11.047 GHz (10.817 GHz). Clearly, the measured lower frequency bound is downshifted by ∼46 MHz, and its upper frequency edge is downshifted by ∼230 MHz.
\nThe UWB antenna with both the arc-slot and the multimode resonator filter T. (a) Design model of the antenna, (b) fabricated prototype, and (c) its simulated and measured |S11|.
The far-field realized gain patterns are presented in Figures 6 and 7. By comparing the results in Figure 7, it is clear that the integration of the single-wing filter further increases the broadside gain values in the higher frequency range, while maintaining its original radiation patterns in the lower frequency range. The broadside realized gain values of the single-wing version increase to 4.16 dBi in simulation and to 4.25 dBi in experiment. It must be noted that the single-wing filter antenna has very good omnidirectional radiation performance in the H-plane and exhibits some improvements in the cross-polarization values.
\nRealized gain of the arc-slot modified UWB antenna with the single-wing filter at (a) 3.0, (b) 6.5, and (c) 10 GHz.
The maximum simulated and measured realized gain values in the broadside direction and any direction for the three UWB antennas.
Two electrically small, efficient planar monopole filtennas based on capacitively loaded loop (CLL) resonators are presented. Taking advantage of the characteristics of filters that are based on a pair of electrically coupled CLL resonators, the filtenna is designed, fabricated, and measured. The experimental results demonstrate that this electrically small system had a 6.27% fractional impedance bandwidth, high out-of-band rejection, and stable omnidirectional radiation patterns. An additional CLL structure, as a near-field resonant parasitic (NFRP) element, is then integrated systematically into the system to achieve a wider operational bandwidth. The resulting filtenna owns a 7.9% fractional bandwidth, together with a flat gain response, stable omnidirectional radiation patterns, and high out-of-band rejection characteristics.
\nA bandpass filter with a 0° feed structure based on rectangular microstrip CLL [14] is revealed in Figure 8(a). The plane is symmetrical about the dashed lines O–O′ and T–T′ along the x- and y-axis, respectively. The Rogers substrate modeled 4350B, with permittivity εr = 3.48, dielectric loss tangent tan σ = 0.0037, and permeability μr = 1, was chosen to construct the filter. The total size of it is 29 × 27 × 1 mm. For this design, two square CLLs oriented with each other gap to gap were etched on the substrate. This geometry introduced an electrical coupling between the two components [14, 15, 16], for instance, which has been exploited previously to efficiently improve the microwave field transmission by a metallic aperture with subwavelength [17]. As depicted in Figure 8(a), the two feed ports of the filter, which were connected to 50-Ω microstrip lines (with the width 2.2 mm), are placed to be centrally symmetric about the midpoint of line O–O′, so as to create another two transmission zeros in the stopband, and the passband response remains the same. As presented in [14], 0° feed geometry is superior to having two CLLs on one side.
\nFilter with electrically coupled resonators. (a) Design layout. (b) Equivalent circuit network [15].
Figure 8(b) correspondingly reveals the equivalent circuit with lumped elements. Its L and C values represent the natural self-inductance and self-capacitance of the uncoupled resonators alone. Notation Cm denotes the two resonators’ mutual capacitance. When the symmetrical line T–T′ is substituted by an electric wall (a short circuit), the corresponding circuit has a lower resonant frequency fe = 1/{2π [L(C + Cm)]1/2}. In the same way, when it is replaced by a magnetic wall (an open circuit), the corresponding circuit has a higher resonant frequency fm = 1/{2π [L(C − Cm)]1/2} [14].
\nFigure 9 demonstrates the simulated S-parameters of the filter, while varying the distance between the two resonators (d1) from 1.1 to 0.3 mm. The results show that when the distance d1 increases large enough (e.g., larger than 1.1 mm), the resonant frequency f0 remains unchanged, and also the resonant intensity (|S11| dip) at f0 presents slight variation. Because of the slight mutual coupling between the resonators, it hardly impacts the resonant frequency f0, and the mutual capacitance approaches zero, i.e., Cm ≈ 0. Therefore, in this scarcely coupled condition, fe ≈ fm ≈ f0 = 1/[2π(LC)1/2] is achieved. For comparison, when the distance d1 decreases more enough (e.g., smaller than 0.7 mm), the resonant frequency f0 results to be completely divided into two adjacent frequencies, i.e., fe and fm, which contribute to enhance the passband. It could be attained from the simulations that the surface currents of the two CLLs are in phase at the lower resonant frequency fe. This conclusion agrees well with the selection of the electric wall substituting the plane labeled T–T′. For another, at higher resonance frequency fm, the surface currents of the split rings are out of phase. The magnetic wall agrees well to replace the symmetrical line labeled T–T′. Furthermore, through decreasing the distance d1 continually, it produced even stronger mutual coupling, generating an even larger Cm value. As a result, both fe and fm departed each other away from f0 as shown in Figure 9. Thus, with a narrower distance d1 for the filter configuration in Figure 8(a), a much stronger coupling between the CLL resonators could be observed, and this case causes the corresponding two poles to depart from each other, leading to an enhanced bandwidth.
\nS-parameters of the simulation for the electrically coupled filter while the separate distance d1 varying from 1.1 to 0.3 mm, together with the surface current distribution behaviors on the resonance at fe and fm.
This can be verified by calculating the electric coupling coefficient (ke) between two resonators. It is readily obtained using the expression [15].
\nwhere f1 and f2 indicate the resonance frequencies of each independent CLL resonator. Because the capacitance Cm in Figure 8 is positive, the plus sign is selected. Furthermore, because the two CLL resonators are identical, one knows that f1 = f2. Thus, Eq. (1) reduces to the following:
\nConsequently, as expected for the uncoupled, weak coupling, and strong coupling cases given in Figure 9, ke is, respectively, 0, 0.14, and 0.49.
\nA filtenna having a second-order filter was co-designed and optimized. It is shown in Figure 10. Figure 10(a) indicates that one CLL element acts as the directly driven element. A fan-shaped radiator with no ground plane on the back side of it acts as a NFRP element in the presence of the monopole (CLL-based) antenna [18]. The choice of this special fan-shaped radiator establishes an even smoother impedance transition over the desired wider bandwidth. Simply starting with the resonance frequencies near to each other facilitates a straightforward numerical approach to optimize and finalize the actual antenna design. Note that the fan-shaped part of the NFRP element is placed on the opposite side of the feed port. This arrangement facilitates the creation of dual transmission zeros on the two edges of the passband. This arrangement enhances the out-of-band rejection level.
\nFirst electrically small filtenna. (a) Top and (b) side views of the HFSS simulation model. (c) Front and back views of the fabricated prototype.
The measured and simulated |S11| values are presented in Figure 11. The measured values confirmed that the filtenna had a −10 dB impedance bandwidth from 2.24 to 2.385 GHz (6.27% fractional impedance bandwidth) in good agreement with the simulated values 2.252–2.398 GHz (6.28% fractional impedance bandwidth). The electrical size of the measured prototype is ka ∼ 0.93, while its simulated value was ∼0.935. Figure 11 demonstrates that the prototype filtenna has a flat realized gain response within its passband. The measured (simulated) peak value was 1.15 (1.41) dBi. The simulated radiation efficiency was higher than 80.93% throughout the operational band. This realized filtenna prototype clearly has very good band-edge selectivity and stopband suppression.
\nMeasured and simulated |S11| and realized gain values of the first filtenna as functions of the source frequency.
For many applications, it is desirable to have an even wider bandwidth. Consequently, the second design shown in Figure 12 was considered. In order to improve the flatness of the transmission performance within the passband while maintaining its wideband operation and steep skirts, a third resonator was introduced without increasing the total overall dimension of the filtenna.
\nEnhanced bandwidth filtenna with slots in its ground strip. (a) Top and (b) back views of the HFSS simulation model. (c) Front and back views of the fabricated prototype.
The third resonator is an additional CLL element, shown in blue in Figure 12(a). Its gap position coincides with the driven CLL element, and it has an arm included to facilitate its coupling to the NFRP element. This collocated arrangement of the two CLLs provides a means to control the mutual coupling, further expanding the bandwidth without increasing the total overall dimensions of the filtenna. Three slots were etched in the ground strip directly beneath the two CLL elements to achieve a smoother realized gain curve. The length of the additional CLL element is set nearly equal to the driven CLL’s size to make their resonance frequencies close to one another.
\nThe simulated and measured |S11| and realized gain values of the second filtenna with the ground strip slots are given in Figure 13. The simulated (measured) realized gain values indicate that the simulated peak realized gain value is improved from 1.659 to 1.75 dBi. The corresponding measured value is 1.376 dBi, revealing more losses than expected in fabrication. For the simulated |S11| values exhibited in Figure 13, the impedance bandwidth ranges from 2.264 to 2.46 GHz (about 8.3% fractional bandwidth, i.e., a 32.2% improvement) and was from 2.261 to 2.447 GHz (7.9% fractional bandwidth, i.e., a 26% improvement) in the measurement. Similarly, the simulated ka ∼ 0.94 and measured ka ∼ 0.938 values verify that the filtenna is electrically small. Furthermore, the simulated radiation efficiency across the entire operational bandwidth is higher than 82.87%. Again, very good agreement between the simulated and measured performance characteristics was obtained.
\nMeasured and simulated |S11| and realized gain values as functions of the source frequency for the enhanced bandwidth filtenna with slots in its ground strip.
Two filtennas are proposed by a design strategy with the merits of both a compact structure and enhanced bandwidth. The reliability of the filtennas is verified though simulations and analysis of a compact NFRP filtenna which is proposed and fabricated. The reported design employs a Rogers 4350B substrate with relative permittivity εr = 3.48, relative permeability μr = 1.0, and dielectric loss tangent tan σ = 0.0037.
\nA well-designed compact NFRP antenna is selected as the radiator [19, 20]. Then a compact NFRP antenna is designed, which consists of a traditional monopole and a rectangular microstrip capacitively loaded loop (CLL)-based band-pass filter [21, 22].
\nThe elaborate geometry of the filtenna is shown in Figure 14. As depicted in Figure 14(a) and (e), the compact electrically small antenna (ESA) with NFRP was chosen as the radiating element. The NFRP element is proposed to etch upon one side of the semi-circle board, while the monopole microstrip is located on the other side, with the design principle corresponding to the reported NFRP ESAs [23, 24, 25]. The composite structure of this radiator element and filtering element, which is based on CLL resonators, is well shown in Figure 14(a)–(d). The enlarged filter is shown in Figure 14(b). This filter structure is a typical band-pass design [21, 26, 27], and is set to be symmetric about the S–S′ line. One end is connected to the printed monopole and the other to the SMA.
\nPrototype of miniaturized filtenna with a NFRP structure. (a) 3D graphic of the NFRP filtenna. (b) Filtering structure. (c) Side views of the ESA and filtenna. (d) Fabricated module of the filtenna in various side views. (e) 3D graphic of the ESA with a NFRP structure.
Figure 15(a) demonstrates the simulated and measured |S11| and peak realized gain values versus the source frequency of the optimized filtenna. As a reference, the simulated reflection coefficient of the optimized NFRP ESA alone (depicted in Figure 14(e)), is shown in Figure 15(b). The Agilent E8361A PNA vector network analyzer (VNA) is exploited to quantify the impedance matching. With regard to the NFRP ESA, a 30.3 MHz −10 dB impedance bandwidth is realized corresponding to the center frequency which is located at 1.26 GHz (corresponding to FBW of 2.4%) and with karad calculated to be 0.81 (while arad represents the smallest radius for the sphere which could entirely cover the radiating structure at the lowest operation frequency fL, then k = 2π/λL = 2πfL/c represents the number of relevant waves in free space). It is worth noting that the ground size is R1 = 75 mm, i.e., kaground ∼ 1.96. Although the ground size has a certain influence on the gain and front-to-back ratio, its effect on the impedance matching level and bandwidth is deemed slight.
\nThe simulated and measured |S11| and peak realized gain values versus the source frequency (a) for the filtenna design shown in Figure 14(a) and (b) for the CLL-based NFRP ESA alone in Figure 14(e).
Within the operational band, the realized gain (along +z axis) and radiation efficiency ranges in 5.73–5.94 dBi and 94–95%, respectively. The expected two overlapping resonances are depicted in the result of the fabricated filtenna. As exhibited in Figure 15(a), the measured (simulated) |S11|min is respectively situated at 1.23 (1.24) and 1.265 (1.272) GHz. Then −10 dB bandwidth is expanded to 49 (50) MHz, ranging in 1.223 (1.23)–1.272 (1.28) GHz, i.e., the proposed filtenna processes a 3.93% (4.2%) FBW. It is comparably flat for the peak realized gain values in this operational band, which ranges from 4.73 (4.25) to 5.43 (5.23) dBi. This fairly flat realized gain curve indicates that an essentially stable response is obtained through the whole operational band. As observed, the measured ones shifted a little to the lower band.
\nFigure 16 indicates the measured (simulated) E- and H-plane peak realized gain patterns for the proposed filtenna at the lower resonance frequency of 1.230 (1.240) GHz. The measured (simulated) peak gain was 5.12 (5.36) dBi. On the whole, the measured results of our proposed filtenna are in good agreement with the simulated ones.
\nThe simulated (measured) peak realized gain patterns in the E- and H-planes at the lower resonance frequency of the filtenna shown in Figure 14—1.24 (1.230) GHz.
As shown in Figure 17, by altering the orientation, position, and configuration of the filter element, certain advantages could be obtained. In contrast with the filtenna depicted in Figure 14, the configurations of the NFRP element, the printed monopole unit and the CLL resonator part shown in Figure 17(a)–(c) were all left the same. The results of the corresponding simulation are presented in Figure 18.
\nExploring variations of the filtenna design shown in Figure 17. Change in the filter (a) position, (b) orientation, and (c) structure.
The simulated |S11| and peak realized gain values as functions of the source frequency for the three cases shown in Figure 17.
Figure 18 exhibits any of the three proposed filtennas that could introduce two adjacent resonance frequencies and thus reveals an expected, notably enhanced operation bandwidth. As is depicted, there is nearly no fluctuation for the values for peak realized gain traced with the +z-axis over the whole operation band. Furthermore, the improved suppression along the edges of the band remains unchanged as well. Table 1 summarizes the performance properties of the various filtenna designs. In addition, Table 1 reveals that it is electrically small (i.e., ka < 1) for all of the new simulated geometries which are composed of the radiating and filtering elements, and also the fractional bandwidth remains two times broader than the electrically small CLL-based NFRP antenna alone.
\nReported filtennas | \nFBW−10dB (%) | \nka Radiator & filter | \nRealized gain (dBi) | \nRadiation efficiency (%) | \n
---|---|---|---|---|
Figure 17(a) | \n6.07 | \n0.79 | \n4.85–5.83 | \n76–86 | \n
Figure 17(b) | \n6.32 | \n0.89 | \n5.04–6.04 | \n78–88 | \n
Figure 17(c) | \n6.13 | \n0.90 | \n4.92–5.89 | \n77–86 | \n
ESA alone | \n2.4 | \n0.81 | \n5.73–5.94 | \n94–95 | \n
Summary of the performance characteristics of the proposed one-stage filtennas.
A wider impedance bandwidth could be obtained by adding more stages to the filter structure. As shown in Figure 19, this filtenna is evolved from the design in Figure 14. It is composed of the NFRP ESA and a two-stage filtering structure. The filter structure consists of two rectangular CLLs etched on the substrate with a gap-to-gap orientation. This arrangement produces a known electrical coupling between the two elements.
\nThe NFRP filtenna with two filter stages. (a) The geometry of the two filter stages and (b) fabricated prototype of the filtenna.
The details of the design parameters of the filtenna shown in Figure 19 are listed in Table 2. Referring to the inset figure, the microstrip transmission line is placed on the right side of the upper CLL. It has a 50 Ω characteristic impedance and is connected directly to the center conductor of the coaxial feedline. A straight coupling line, which lies between the two CLLs along the y-axis, is utilized to further tune the coupling levels between the two CLLs. The impedance matching and far-field radiation performance characteristics of this two-stage NFRP filtenna were also studied experimentally. The simulated (measured) results shown in Figure 20 demonstrate that the addition of the second CLL resonator introduces another resonance and produces a 55 (50) MHz impedance bandwidth, from 1.321 (1.29) to 1.376 (1.34) GHz, i.e., a 4.0% (3.8%) fractional bandwidth. The measured operational frequency range exhibits only a slight red shift from the simulated one. A flat realized gain response and excellent band-edge selectivity are again witnessed. The measured and simulated realized gain curves demonstrate that the two-stage NFRP filtenna also exhibits an essentially uniform and stable radiation performance over its entire operational bandwidth.
\nR1 = 75 | \nR2 = 20.7 | \nR3 = 16.8 | \nW1 = 2.5 | \nW2 = 1.4 | \n
W3 = 12.73 | \nW4 = 12.3 | \nW5 = 1.7 | \nW6 = 4.3 | \nW7 = 9.01 | \n
W8 = 0.49 | \nW9 = 1.0 | \nW10 = 14.4 | \nW11 = 0.2 | \nW12 = 0.3 | \n
W13 = 0.3 | \nL1 = 0.9 | \nL2 = 7.7 | \nL3 = 3.0 | \nL4 = 8.7 | \n
L5 = 0.3 | \nL6 = 0.13 | \nL7 = 0.76 | \nL8 = 7.95 | \nL10 = 18.52 | \n
L11 = 2.52 | \nL12 = 6.0 | \nL13 = 0.2 | \nL14 = 6.0 | \nh1 = 9.6 | \n
h2 = 1.0 | \nh3 = 0.762 | \nh4 = 0.017 | \nh1 = 0.762 | \nNull | \n
The simulated and measured |S11| and realized gain values as functions of the source frequency for the two-stage NFRP filtenna shown in Figure 19.
IntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"5,12"},books:[{type:"book",id:"10748",title:"Fishery",subtitle:null,isOpenForSubmission:!0,hash:"ecde44e36545a02e9bed47333869ca6f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10748.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10738",title:"Molluscs",subtitle:null,isOpenForSubmission:!0,hash:"a42a81ed3f9e3dda6d0daaf69c26117e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10738.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10760",title:"Steppe Biome",subtitle:null,isOpenForSubmission:!0,hash:"982f06cee6ee2f27339f3c263b3e6560",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10760.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10768",title:"Bryology and Lichenology",subtitle:null,isOpenForSubmission:!0,hash:"2188e0dffab6ad8d6c0f3afce29ccce0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10768.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10766",title:"Landscape Architecture",subtitle:null,isOpenForSubmission:!0,hash:"a0a54a9ab661e4765fee76ce580cd121",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10766.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10895",title:"Grasses and Grassland",subtitle:null,isOpenForSubmission:!0,hash:"4abcdc7f2d889b2c8c96f7066899e974",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10895.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10846",title:"Stormwater",subtitle:null,isOpenForSubmission:!0,hash:"9bfae8caba192ce3ab6744c9cbefa210",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10846.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10834",title:"Invertebrate Neurophysiology",subtitle:null,isOpenForSubmission:!0,hash:"d3831987f0552c07015057f170cab45c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10834.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10885",title:"Snake Biology",subtitle:null,isOpenForSubmission:!0,hash:"78f81673958ec92284b94aee280896bf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10885.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems",subtitle:null,isOpenForSubmission:!0,hash:"b369ac809068d2ebf1f8c26418cc6bec",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:"Dr. John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:28},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1028",title:"Hemodynamics",slug:"hemodynamics",parent:{title:"Hematology",slug:"hematology"},numberOfBooks:2,numberOfAuthorsAndEditors:16,numberOfWosCitations:12,numberOfCrossrefCitations:2,numberOfDimensionsCitations:7,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"hemodynamics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7042",title:"Highlights on Hemodynamics",subtitle:null,isOpenForSubmission:!1,hash:"ab4cb86baa2cadb67630b31257cb04b2",slug:"highlights-on-hemodynamics",bookSignature:"Theodoros Aslanidis",coverURL:"https://cdn.intechopen.com/books/images_new/7042.jpg",editedByType:"Edited by",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1653",title:"Hemodynamics",subtitle:"New Diagnostic and Therapeutic Approaches",isOpenForSubmission:!1,hash:"2cf4b686414a77f0c867007f5062914f",slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",bookSignature:"A. Seda Artis",coverURL:"https://cdn.intechopen.com/books/images_new/1653.jpg",editedByType:"Edited by",editors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"36116",doi:"10.5772/36263",title:"The Evaluation of Renal Hemodynamics with Doppler Ultrasonography",slug:"the-evaluation-of-renal-hemodynamics-with-renal-doppler-ultrasonography",totalDownloads:11001,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Mahir Kaya",authors:[{id:"107675",title:"Dr.",name:"Mahir",middleName:null,surname:"Kaya",slug:"mahir-kaya",fullName:"Mahir Kaya"}]},{id:"36121",doi:"10.5772/34272",title:"Carnosine and Its Role on the Erythrocyte Rheology",slug:"carnosine-and-its-role-on-the-erythrocyte-rheology",totalDownloads:1872,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"A. Seda Artis and Sami Aydogan",authors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"},{id:"110016",title:"Prof.",name:"Sami",middleName:null,surname:"Aydogan",slug:"sami-aydogan",fullName:"Sami Aydogan"}]},{id:"36119",doi:"10.5772/36876",title:"How Ozone Treatment Affects Erythrocytes",slug:"how-ozone-treatment-affects-erythrocytes",totalDownloads:3902,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Sami Aydogan and A. Seda Artis",authors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"},{id:"110016",title:"Prof.",name:"Sami",middleName:null,surname:"Aydogan",slug:"sami-aydogan",fullName:"Sami Aydogan"}]}],mostDownloadedChaptersLast30Days:[{id:"62838",title:"Introductory Chapter: Hemodynamic Management. The Problem of Monitoring Choice",slug:"introductory-chapter-hemodynamic-management-the-problem-of-monitoring-choice",totalDownloads:537,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Theodoros Aslanidis",authors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}]},{id:"36119",title:"How Ozone Treatment Affects Erythrocytes",slug:"how-ozone-treatment-affects-erythrocytes",totalDownloads:3900,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Sami Aydogan and A. Seda Artis",authors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"},{id:"110016",title:"Prof.",name:"Sami",middleName:null,surname:"Aydogan",slug:"sami-aydogan",fullName:"Sami Aydogan"}]},{id:"36116",title:"The Evaluation of Renal Hemodynamics with Doppler Ultrasonography",slug:"the-evaluation-of-renal-hemodynamics-with-renal-doppler-ultrasonography",totalDownloads:10998,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Mahir Kaya",authors:[{id:"107675",title:"Dr.",name:"Mahir",middleName:null,surname:"Kaya",slug:"mahir-kaya",fullName:"Mahir Kaya"}]},{id:"62847",title:"Cerebral Hemodynamics in Pediatric Hydrocephalus: Evaluation by Means of Transcranial Doppler Sonography",slug:"cerebral-hemodynamics-in-pediatric-hydrocephalus-evaluation-by-means-of-transcranial-doppler-sonogra",totalDownloads:455,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Branislav Kolarovszki",authors:[{id:"92436",title:"Associate Prof.",name:"Branislav",middleName:null,surname:"Kolarovszki",slug:"branislav-kolarovszki",fullName:"Branislav Kolarovszki"}]},{id:"63370",title:"Functioning of the Cardiovascular System of Women in Different Phases of the Ovarian-Menstrual Cycle",slug:"functioning-of-the-cardiovascular-system-of-women-in-different-phases-of-the-ovarian-menstrual-cycle",totalDownloads:389,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Olena Lutsenko",authors:[{id:"225667",title:"Mrs.",name:"Olena Ivanivna",middleName:null,surname:"Lutsenko",slug:"olena-ivanivna-lutsenko",fullName:"Olena Ivanivna Lutsenko"}]},{id:"62523",title:"Influence of Branching Patterns and Active Contractions of the Villous Tree on Fetal and Maternal Blood Circulations in the Human Placenta",slug:"influence-of-branching-patterns-and-active-contractions-of-the-villous-tree-on-fetal-and-maternal-bl",totalDownloads:339,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Yoko Kato",authors:[{id:"249827",title:"Prof.",name:"Yoko",middleName:null,surname:"Kato",slug:"yoko-kato",fullName:"Yoko Kato"}]},{id:"36122",title:"Soluble Guanylate Cyclase Modulators in Heart Failure",slug:"soluble-guanylate-cyclase-modulators-in-heart-failure",totalDownloads:1598,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Veselin Mitrovic and Stefan Lehinant",authors:[{id:"111559",title:"Dr.",name:"Stefan",middleName:null,surname:"Lehinant",slug:"stefan-lehinant",fullName:"Stefan Lehinant"}]},{id:"62149",title:"3D Numerical Study of Metastatic Tumor Blood Perfusion and Interstitial Fluid Flow Based on Microvasculature Response to Inhibitory Effect of Angiostatin",slug:"3d-numerical-study-of-metastatic-tumor-blood-perfusion-and-interstitial-fluid-flow-based-on-microvas",totalDownloads:356,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Gaiping Zhao",authors:[{id:"172001",title:"Ph.D.",name:"Gaiping",middleName:null,surname:"Zhao",slug:"gaiping-zhao",fullName:"Gaiping Zhao"}]},{id:"36118",title:"Hemodynamics Study Based on Near-Infrared Optical Assessment",slug:"hemodynamics-study-based-on-near-infrared-optical-assessment",totalDownloads:2352,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Chia-Wei Sun and Ching-Cheng Chuang",authors:[{id:"116138",title:"Dr",name:"Chia-Wei",middleName:null,surname:"Sun",slug:"chia-wei-sun",fullName:"Chia-Wei Sun"}]},{id:"36120",title:"Regulation of Renal Hemodyamics by Purinergic Receptors in Angiotensin II -Induced Hypertension",slug:"regulation-of-renal-hemodynamics-by-purinergic-receptors-in-angiotensin-ii-induced-hypertension",totalDownloads:1323,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Martha Franco, Rocío Bautista-Pérez and Oscar Pérez-Méndez",authors:[{id:"113134",title:"Dr.",name:"Martha",middleName:null,surname:"Franco",slug:"martha-franco",fullName:"Martha Franco"}]}],onlineFirstChaptersFilter:{topicSlug:"hemodynamics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/135573/michael-mirbach",hash:"",query:{},params:{id:"135573",slug:"michael-mirbach"},fullPath:"/profiles/135573/michael-mirbach",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()