Emission rates considered for the thermal power plants for GHG emission computation (EDP, 2008).
\r\n\t
",isbn:"978-1-83969-506-3",printIsbn:"978-1-83969-505-6",pdfIsbn:"978-1-83969-507-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"0e5d67464d929fda6d8c83ec20c4138a",bookSignature:"Dr. Endre Zima",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10704.jpg",keywords:"Anatomy, Physiology, Perioperative, Non-Cardiac Causes, Antiarrhythmic Drugs, Development, SARS-CoV2, Infection, Cardiac Arrest, Resuscitation, PPE, Arrhythmias",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 11th 2021",dateEndSecondStepPublish:"March 11th 2021",dateEndThirdStepPublish:"May 10th 2021",dateEndFourthStepPublish:"July 29th 2021",dateEndFifthStepPublish:"September 27th 2021",remainingDaysToSecondStep:"2 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Prof. Dr. Endre Zima works as the chief of Cardiac ICU at Semmelweis University Heart and Vascular Center. His fields of interest are intensive cardiac care, CPR, post-cardiac arrest care, device therapy of arrhythmias, defibrillator waveform, and AED development.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"201263",title:"Dr.",name:"Endre",middleName:null,surname:"Zima",slug:"endre-zima",fullName:"Endre Zima",profilePictureURL:"https://mts.intechopen.com/storage/users/201263/images/system/201263.jpg",biography:"Prof. Dr. Endre Zima works as the chief of Cardiac ICU at Semmelweis University Heart and Vascular Center. Dr. Zima is specialized in anesthesiology-intensive care and cardiology. He has authored 13 book chapters and more than 130 journal papers, achieved a Hirsch-index of 14, g-index of 22, and more than 650 independent citations. \nHe has been holding graduate and postraduate lectures and practices in anesthesiology since 2006, and in cardiology since 2008. He is a PhD Lecturer in Semmelweis University since 2010. He obtains an accreditation of EHRA on Cardiac Pacing and Implantable Cardioverter Defibrillators, he is accredited AALS Instructor of European Resuscitation Council. \nHe is a Fellow of the European Society of Cardiology, member of the European Heart Rhythm Association and Acute Cardiovascular Care Association, board member of the Hungarian Society of Cardiology (HSC), president of Working Group (WG) on Cardiac Pacing of HSC , board member of WG of Heart Failure. Dr. Zima is also a member the Hungarian Society of Resuscitation, Hungarian Society of Anesthesiology. His fields of interest are acute and intensive cardiac care, CPR and post-cardiac arrest intensive care, heart failure and cardiogenic shock, device therapy of arrhythmias, defibrillator waveform and AED development.",institutionString:"Semmelweis University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Semmelweis University",institutionURL:null,country:{name:"Hungary"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"345821",firstName:"Darko",lastName:"Hrvojic",middleName:null,title:"Mr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"darko@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"38992",title:"Electric Vehicles − Consumers and Suppliers of the Electric Utility Systems",doi:"10.5772/51911",slug:"electric-vehicles-consumers-and-suppliers-of-the-electric-utility-systems",body:'\n\t\tElectric vehicles (EVs) have been gaining attention in the last few years due to growing public concerns about urban air pollution and other environmental and resource problems. The technological evolution of the EVs of different types: Hybrid electric vehicles (HEV), battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV), will probably lead to a progressive penetration of EV´s in the transportation sector taking the place of vehicles with internal combustion engines (ICEV). The interesting feature of EVs (only available for BEVs and PHEVs) is the possibility of plugging into a standard electric power outlet so that they can charge batteries with electric energy from the grid.
While a large penetration of plug-in EVs is expected to increase electricity sales, extra generation capacity is not needed if the EVs are recharged at times of low demand, such as overnight hours. EVs, as a local zero emissions’ vehicle, could only provide a good opportunity to reduce CO2 emissions from transport activities if the emissions that might be saved from reducing the consumption of oil wouldn´t be off-set by the additional CO2 generated by the power sector in providing for the load the EVs represent. Therefore, EVs can only become a viable effective carbon mitigating option if the electricity they use to charge their batteries is generated through low carbon technologies.
In a scenario where a commitment was made to reduce emissions from power generation, the build-up of large amounts of renewable power capacity raises important issues related to the power system operation (Skea, J, et al., 2008), (Halamay et al., 2011), as a result, power system operators need to take measures to balance an increasingly volatile power generation with the demand, and to keep the system reliability. To perform these actions, the SO (system operator) needs to access active and reactive power reserves which are either contractually established with the power generators or traded in the ancillary system market (Estanqueiro, A. et al., 2010). These requirements represent an extra cost for the system which might adequately quantify the negative effect of the variability and uncertainty of each renewable generation technology.
Practically speaking, there are additional external costs of integrating renewable inflexible generation in the power systems, namely in terms of backup capacity, needed to balance power generation and demand when the renewable generation is lower than forecasted, and some kind of storage or demand shift, needed to integrate excesses of renewable generation, especially likely to occur in the off-peak periods.
In this context, electric vehicles can bring techno-economical advantages for the electric power system because of their great load flexibility and increase the system storage capacity. In fact, EVs are parked 93% of their lifetime, making it easy for them to charge either at home, at work, or at parking facilities, hence implying that the time of day in which they charge, can easily vary and, furthermore, for future energy systems, with a high electrification of transportation, Vehicle to Grid (V2G), where the EV works also as an energy supplier, can offer a potential storage capacity and use stored energy in batteries to support the grid in periods of shortage (Kempton and Tomic, 2005). Although each vehicle is small in its impact on the power system, a large number of vehicles can be significant either as an additional charge or a source of distributed generating capacity.
While the aggregate demand for electricity is increasing, decentralized power generation is gaining significance in liberalized electricity markets, and small size electricity consumers are becoming also potential producers. Prosumer is a portmanteau derived by combining the word producer, or provider, with the word consumer. It refers to the evolution of the small size passive consumer towards a more active role in electricity generation and the provision of grid services.
This chapter is concerned with studying how the electric vehicle can work as a “prosumer” (producer and consumer) of electricity. The benefits to the electric utilities and the costs of services provided by EVs in each type of power market will be addressed. The potential impacts of the EVs on the electricity systems, with a great amount of renewable sources in the generation mix will be studied with a focus on the additional power demand and power supply an EV can represent, the role of a new agent on the power market – The EV aggregator – and the economic impacts of EVs on electric utilities.
The analysis of the impact on the electric utilities of large-scale adoption of plug-in electric vehicles as prosumers will be illustrated with a real case study.
Many studies regarding battery electric vehicles and Plug in hybrids have been, and continue to be performed in different countries. In the US, for instance, the capacity of the electric power infrastructure in different regions was studied for the supply of the additional load due to PHEV penetration (Kintner-Meyer et al., 2007) and the economic assessment of the impacts of PHEV adoption on vehicles owners and on electric utilities (Scott et al., 2007). Other studies (Hadley, 2006) considered the scenario of one million PHEVs added to a US sub-region and analyzed the potential changes in demand, impacts on generation adequacy, transmission and distribution and later the same analysis was extended to 13 US regions with the inclusion of GHG estimation for each of the seven scenarios performed for each region (Hadley, 2008). The ability to schedule both charging and very limited discharging of PHEVs could significantly increase power system utilization. The evaluation of the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy by using low-cost off-peak electricity, was also studied (Denholm and Short, 2006). This study was based on existing electricity demand and driving patterns, six geographic regions in the United States were evaluated and found that when PHEVs derive 40% of their miles from electricity, no new electric generation capacity was required under optimal dispatch rules for a 50% PHEV penetration. A similar study was made also by NREL (National Renewable Energy Laboratory) but here the analysis focused only one specific region and four scenarios for charging were evaluated in terms of grid impact and also in terms of GHG emissions (Parks et al., 2007). The results showed that off-peak charging would be more efficient in terms of grid stress and energy costs and a significant reduction on CO2 emissions was expected thought an increase in SO2 emissions was also expected due to the off peak charging being composed of a large amount of coal generation. Studies made for Portugal (Camus et al., 2011) of the impacts in load profiles, spot electricity prices and emissions of a mass penetration of EV showed that reductions in primary energy consumption, fossil fuels use and CO2 emissions of up to 3%, 14% and 10% could be achieved by year 2020 in a 2 million EVs’ scenario, energy prices could range 0.9€ to 3.2€ per 100 km according to the time of charging (peak and off-peak) and the electricity production mix. A recent report (Grunig M. et al., 2011) that analyzed the EV market for the next years concluded that, the market penetration of EVs will remain fairly low compared to conventional vehicles. The estimation based on several government announcements, industry capacities and proliferation projects sees more than five million new Electric Vehicles on the road globally until 2015 (excluding two- and three-wheelers), the majority of these in the European Union. The main markets for Electric Vehicle are in order of importance the EU, the US and Asia (China and Japan). Some further target markets like Israel and the Indian subcontinent are also expected to evolve. In the long term, the share of EVs will most likely increase as additional countries adopt technologies and initiate projects.
The first description of the key concepts of V2G appeared in 1996, in an article (Kempton and Letendre, 1996) written by researchers at the University of Delaware. In this report the approach was to describe the advantages of peak power to be supplied by EDVs connected to the grid. Further work from the same researchers was continued (Kempton and Letendre, 2002) and the possible power services provided for the grid by vehicles were increased by the analysis of spinning reserve and regulation. The formulation of the business models for V2G and the advantages for a grid that supports a lot of intermittent renewable were described specially for the case of wind power shortage (Kempton and Tomic, 2005a; Kempton and Tomic, 2005b). The use of a fleet for providing regulation down and up was studied and how the V2G power could provide a significant revenue stream that would improve the economics of grid-connected electric-drive vehicles and further encourage their adoption were evaluated (Tomic and Kempton, 2007). The potential impact of renewable generation on the ancillary service market, with a focus on the ability of EVs to provide such services via demand response (DR) and V2G were analyzed. The document also presents a revenue model that incorporates potential scenarios regarding EV adoption, electricity prices, and driver behavior. The output of the model determines the overall revenue opportunity for aggregators who plan to provide DR-EV (Leo M. et al., 2011), although, there is a significantly large market for these services, the limited revenue opportunity for aggregators on a per car basis is unlikely to be compelling enough to justify a business model. According to a recent report from Pike Research (Gibson B., Gartner J., 2011), EVs compete with traditional generation sources as well as emerging technologies, such as stationary battery storage, for revenue from ancillary services such as frequency regulation and demand response.
\n\t\tElectricity generation faces nowadays a greater number of challenges related to reliability, sustainability and security of supply. The use of renewable resources in power generation has been adopted in most OECD countries as an answer to the climate change problems originated by the burning of fossil fuels in the traditional thermal plants to supply the ongoing increase in electricity demand.
In this section, a description of the electric power systems demand is done emphasizing its evolution along a day and seasonal profile, the different technologies available for power generation are also presented, their main features and when and how each of them produces and the emissions associated with electricity production from thermal units are also addressed in this section. A description of the renewable sources, identifying the factors that influence the value of each renewable technology for the power system is done. These factors include the variability, uncertainty, complementarities with other sources and with the demand and implications for reserve requirements. The impacts of EVs recharge in the typical load profiles will be assessed and also the effects of EVs working as electricity suppliers.
\n\t\t\tElectric power systems are designed to respond to instantaneous consumer demand. One of the main features of power consumption is the difference in demand along the day hours, the week days and seasons. This evolution along the day, with a valley during the night that represents about 60% of the peak consumption, has great financial consequences with the need of having several power plants that are useless and an underutilized network during the night.
To supply this load, there are a different set of technologies, from renewable sources (hydro, solar, wind, biomass and waves) to conventional thermal units (natural gas, coal, fuel oil and nuclear).
These different technologies, with different load factors (ratio of average load to capacity), supply the system in different periods and power levels. There are mainly two types of power plants in the electric system: base load or peak power plants. Base load plants are used to meet some of a given region\'s continuous energy demand, and produce energy at a constant rate, usually at a low cost relative to other production facilities available to the system. Peak power plants are used few hours a year only to fulfill the peaks at higher unit energy prices.
The intermittent renewable sources like the hydro run-of-river and wind are not included in this definition as they are not controllable, but have to be included in the power supply with the highest priority according to the energy and climate policies established (EC, 2009) so they can be considered as base load power plants.
Sometimes the renewable production has an average production profile that works in opposition with demand. Fig. 1 shows as an example, the average production profile of wind power in Portugal verified in year 2010.
\n\t\t\t\tAverage wind power profile for year 2010 in Portugal (REN, 2011)
In fact, it has been observed along the years that the wind power production has in average this same profile, with more power production during the night hours.
This situation is even sharper in summer months. In Fig. 2 are the average power produced by wind, solar and small hydro in July 2011 in Portugal.
\n\t\t\t\tAverage power production profile of the renewable sources in July 2011 in Portugal
In summer months, the renewable production is lower when the demand is higher.
For this same case study, Fig. 3 shows the July average power profile with the production technologies. The lowest renewable production level coincides with the peak consumption.
This situation gives the opportunity for electric vehicles contribution for levelling the power consumption diagram and allowing the penetration of more renewable production, by increasing the load during the night hours and supplying the system at the peak hours (Fig. 4).
\n\t\t\t\tAverage load profile with production technologies in July 2011 for Portugal.
Example of the effect EVs can produce in the electricity demand profile as consumers and suppliers of electricity through G4V (Grid for Vehicle) and V2G respectively.
As described in the previous sub-section, there are many technologies available for electricity production.
The aim of a power plant in a power system is to supply the load in an economical, reliable and environmentally acceptable way. Different power plants can fulfill these requirements in different ways. Different power plants have different characteristics concerning how they can be controlled in the power system. When operating a power system, the total amount of electricity that is provided has to correspond, at each instant, to a varying load from the electricity consumers. To achieve this in a cost-effective way, the power plants are usually scheduled according to marginal operation costs, also known as merit order. Units with low marginal operation costs will operate almost all the time (base load demand), and the power plants with higher marginal operation costs will be scheduled for additional operation during times with higher demand. Wind power plants as well as other variable sources, such as solar and tidal sources, have very low operating costs. They are usually assumed to be zero therefore these power plants are at the top of the merit order. That means that their power is used whenever it is available.
In parallel with marginal operation costs of the power plants are the environmental costs, nowadays assessed by the GHG emissions, they represent. In Table 1, are the average emission rates considered for the typical thermal power plants to compute the GHG emissions from power generation. Those average values can increase if the power plants are subjected to many start-up cycles.
\n\t\t\t\t\n\t\t\t\t\t\t\t\t\tTechnology\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tEmission rate (kg/MWh)\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t||
\n\t\t\t\t\t\t\t\t\tCO2\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tNOx\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tSO2\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t|
Coal | \n\t\t\t\t\t\t\t900 | \n\t\t\t\t\t\t\t2.8 | \n\t\t\t\t\t\t\t6.3 | \n\t\t\t\t\t\t
Fuel | \n\t\t\t\t\t\t\t830 | \n\t\t\t\t\t\t\t3.9 | \n\t\t\t\t\t\t\t4.5 | \n\t\t\t\t\t\t
Nat gas (Comb. Cycle) | \n\t\t\t\t\t\t\t360 | \n\t\t\t\t\t\t\t0.13 | \n\t\t\t\t\t\t\t0 | \n\t\t\t\t\t\t
Cogeneration (N.Gas) | \n\t\t\t\t\t\t\t600 | \n\t\t\t\t\t\t\t0.5 | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t |
Emission rates considered for the thermal power plants for GHG emission computation (EDP, 2008).
Summarizing, we can dispose of flexible plants, where the power output can be adjusted (within limits), and inflexible plants, where power output cannot be adjusted for technical or commercial reasons. Examples of flexible and inflexible power plants are in Table 2.
As mentioned, the output of the inflexible power plants is treated as given when optimizing the operation of the system.
Not all the flexible power plants can be used the same way to adjust to power demand. The hydro plants with reservoir are the more flexible. Thermal units must be “warmed up” before they can be brought on-line, warming up a unit costs money and start-up cost depends on time unit has been off. There is the need to “balance” start-up costs and running costs. For example a Diesel generator has a low start-up cost but a high running cost, while a Coal plant has a high start-up cost and a low running cost.
\n\t\t\t\tFlexible Plants | \n\t\t\t\t\t\t\t\tInflexible Plants | \n\t\t\t\t\t\t\t
Coal-fired Oil-fired Open cycle gas turbines Combined cycle gas turbines Hydro plants with storage | \n\t\t\t\t\t\t\tNuclear Run-of-the-river hydro Renewable sources (wind, solar,…) Combined heat and power (CHP, cogeneration) | \n\t\t\t\t\t\t
Available power plants for electricity generation.
The percentage of renewable production depends on the location (the endogenous resources available) and the energy policy of the local economy.
Many sources of renewable energy, including solar, wind, and ocean wave, offer significant advantages such as no fuel costs and no emissions from generation. However, in most cases these renewable power sources are variable and non-dispatchable. The utility grid is already able to accommodate the variability of the load and some additional variability introduced by sources such as wind. However, at high penetration levels, the variability of renewable power sources can severely impact the utility reserve requirements.
For instance, at low penetration levels, the variable output of wind power plants is easily absorbed within the variability of the load. However, as the penetration level increases, the added variability of the wind resource can cause greater ramp-rates, greater inter-hour variability, and greater scheduling error. This ultimately increases the amount of generation the system operators must hold in reserve (i.e., the reserve requirement) to accommodate the unplanned excursions in wind generation.
\n\t\t\t\tWind power is now a very mature and established renewable resource throughout the world. However, other renewable power sources such as solar (PV or concentrating/thermal) and ocean wave energy also have significant potential. Each of these renewable power sources can be described by three major characteristics.
1st –Variable. The output power of a large-scale wind, solar, or wave power plant varies over time. The vast majority of the time, the variability from one minute to the next is very small, and even the hourly variation is usually small. However, on occasion the output of a large plant, as high as several hundred MW, may go from full output to low production or vice versa over several hours (Fig. 5);
\n\t\t\t\t\tExample of the consumption and production on the 13th July 2011 in Portugal where, in less than 5 hours, a loss of more than 1000MW in renewable production occurred.
2nd –Non-dispatchable. As implemented now, the system operator has very limited control of the output of large scale renewable generation. In general, the operator must deal with whatever the renewable generation outputs are in much the same manner as dealing with the load. Therefore it is common in the analysis of the impact of renewable power generation to subtract its contribution from the load: renewable power generation appears as a negative load;
3rd – Energy source. Due to the non-dispatchable nature of wind, solar, or wave, they generally have a relatively low capacity credit. That is, they do not make a significant contribution to the power requirements of the grid for planning purposes. However, each Joule of energy converted by a renewable source is one Joule saved for “traditional” generation, such as coal. Therefore, renewable energy sources can make a significant impact on the energy requirements of the grid.
\n\t\t\t\tThe variable, non-dispatchable nature of wind, wave, and solar has a significant impact on the utility reserve requirements. Analyzing the effect of these renewable energy sources on the reserve requirements provides a meaningful and concrete method of characterizing the variability of a given renewable energy source, including its short and long-term correlation with the load.
In order to balance generation with load on a minute-by-minute, hourly, or daily basis, the variability of both the generation and the load must be examined.
With renewable resources like wind, solar, and ocean wave, forecasting of the available generation can present a particular challenge, which, while having a large impact on the hourly or daily reserve requirements, often has less of an impact on the intra-hour requirements. Given the focus on reserve requirements, it readily becomes apparent that a clear understanding of the different types/timescales of reserves is necessary.
Three different timescales are currently used to calculate reserve requirements.
The first, regulation, is defined as the difference between the minute-to-minute power generation/load and the 10-minute average power generation/load. This timescale accounts for small changes in power demand or supply that can be readily met through Automatic Generation Control (AGC) via spinning reserves.
The second timescale of interest, following, is defined as the difference between the 10-minute average power generation/load and the hourly average power generation/load.
This timescale accounts for larger changes in the power demand or supply.
The final timescale, imbalance, is defined as the difference between the hourly average power generation/load and the forecasted generation/load for that hour. The imbalance component of the reserve requirements is directly impacted by the accuracy and frequency of the forecasted generation/load. With the large increase in wind power generation, the imbalance component of the reserve requirement is forecasted to grow rapidly.
In order to calculate imbalance reserve requirements, the scheduled or forecasted power must be determined for both the renewable resource and the load.
\n\t\t\t\tReliability is an important feature of power systems. A reliable power system implies that there is always enough generating capacity to satisfy the power demand. In reality this aim can only be achieved to a certain security level. As the installation of power plants is a long process, future power portfolios and their ability to cover the demand must be assessed in advance. The contribution of wind power to the availability of generating capacity becomes important with increasing wind penetration. The capacity value of wind power is therefore identified for future, potentially large wind power penetration levels.
Capacity value designates the contribution of a power plant to the generation adequacy of the power system. It gives the amount of additional load that can be served in the system at the same reliability level due to the addition of the unit. It is a long established value for conventional power plants. Over recent years similar values have been calculated for wind power. A higher correlation between wind and load will lead to higher capacity values. In the case of low correlation between wind and load, there will be need of more storage capacity to respond to renewable and load in-balances.
The additional requirements and costs of balancing the system on the operational time scale (from several minutes to several hours) are primarily due to the fluctuations in power output generated from wind. A part of the fluctuations is predictable for 2 h to 40 h ahead. The variable production pattern of wind power changes the scheduling of the other production plants and the use of the transmission capacity between regions.
This will cause losses or benefits to the system as a result of the incorporation of wind power. Part of the fluctuation, however, is not predicted or is wrongly predicted. This corresponds to the amount that reserves have to take care of.
The economic, social and political costs of failing to provide adequate capacity to meet demand are so high that utilities have traditionally been reluctant to rely on intermittent resources for capacity. Dimensioning the system for system adequacy usually involves estimations of the LOLP (loss of load probability) index. The risk at system level is the probability (LOLP) times the consequences of the event. For an electricity system, the consequences of a blackout are large, thus the risk is considered substantial even if the probability of the incident is small.
The loss of load expectation (LOLE) is a measure of system adequacy and nominates the expectation of a loss of load event. The required reliability of the system is usually in the order of one larger blackout in 10–50 years.
Since no generating plant is completely reliable, there is always a finite risk of not having enough capacity available. Variable sources may be available at the critical moment when demand is high and many other units fail. Fuel source diversity can also reduce risk.
\n\t\t\t\tIn terms of the economic model, the electricity industry has evolved from a vertically integrated state-owned monopoly company (not subjected to the normal rules of competition) to a liberalized market where generators and consumers have the opportunity to freely negotiate the purchase and sale of electricity. In this section the typical electricity markets are described and the more adequate markets for EVs are addressed.
\n\t\t\tElectric power systems include power plants, consumers of electric energy and transmission and distribution networks connecting the production and consumption sites. This interconnected system experiences a continuous change in demand and the challenge is to maintain at all times a balance between production and consumption of electric energy. In addition, faults and disturbances should be cleared with the minimum effect possible on the delivery of electric energy.
Power systems comprise a wide variety of generating plant types, which have different capital and operating costs. When operating a power system, the total amount of electricity that is provided has to correspond, at each instant, to a varying load from the electricity consumers. To achieve this in a cost-effective way, the power plants are usually scheduled according to marginal operation costs, also known as merit order. Units with low marginal operation costs will operate almost all the time (base load demand), and the power plants with higher marginal operation costs will be scheduled for additional operation during times with higher demand. Wind power plants as well as other variable sources, such as solar and tidal sources, have very low operating costs. They are usually assumed to be zero therefore these power plants are at the top of the merit order. That means that their power is used whenever it is available.
The electricity markets operate in a similar way, at least in theory. The price the producers bid to the market is slightly higher than their marginal cost, because it is cost-effective for the producers to operate as long as they get a price higher than their marginal costs. Once the market is cleared, the power plants that operate at the lowest bids come first.
If the electricity system fails the consequences are far-reaching and costly. Therefore, power system reliability has to be kept at a very high level. Security of supply has to be maintained both short-term and long-term. This means maintaining both flexibility and reserves that are necessary to keep the system operating under a range of conditions, also in peak load situations. These conditions include power plant outages as well as predictable or uncertain variations in demand and in primary generation resources, including intermittent renewable sources.
\n\t\t\tBase-load power is the “bulk” power generation that is running most of the time. Base-load power is typically sold via long term contracts for steady production at a relatively low price and can better be provided by large power plants because they last longer and cost less per kWh.
\n\t\t\tPeak power is used during times of predictable highest demand. Peak power is typically generated by power plants that can be switched on for shorter periods, such as gas turbines and hydro plants with reservoir. Since peak power is typically needed only a few hundred hours per year, it is economically sensible to draw on generators that are low in capital cost, even if each kWh generated is more expensive.
\n\t\t\tSpinning reserves are supplied by generators set-up and ready to respond quickly in case of failures (whether equipment failure or failure of a power supplier to meet contract requirements). They would typically be called, say, 20 times per year; a typical duration is 10 min but must be able to last up to 1 h (spinning reserves are the fastest-response and highest-value component of the more general electric market for “operating reserves”). Operation reserves include several types of reserves in place to respond to short-term unscheduled demand fluctuations, or generator/other system failure. Operating reserve represents generators that can be started or ramped up quickly. There are several categories of operating reserves, often referred to as ancillary services.
Quick-start capacity includes combustion turbines and hydroelectricity, while spinning capacity represents other partly loaded fossil and/or hydroelectric plants. The introduction of wind power into a grid can increase these operation-reserve requirements, due to the variability in wind generation.
\n\t\t\tBalancing or regulation is used to keep the frequency and voltage steady, they are called for only one up to a few minutes at a time, but might be called 400 times per day; Spinning reserves and balancing are paid in part for just being available, a capacity payment per hour available; Base-load and peak are paid only per kWh generated.
The variability in wind generation precludes wind from contributing fully to the reserve margins required by utilities to ensure continuous system reliability.
Planning reserves ensure adequate capacity during all hours of the year. Typical systems require a “peak reserve margin” of 10%-18%. This means a utility must have in place 10%-18% more capacity than their projected peak power demand for the year. This ensures reliability against generator or transmission failure, underestimates of peak demand, or extreme weather events.
Due to the resource variability of wind generation, only a small fraction of a wind farm’s nameplate capacity is usually counted toward the planning reserve margin requirement. In fact, as wind penetrates further into an electric grid, this “capacity credit” for wind generally declines, especially if the wind farms are developed near each other, i.e. if their output is well correlated.
\n\t\t\tTo access to the electricity market means, among other aspects, to have access to the so called “market prices”. Under this concept, an EV does not have individually the capacity to access to the electricity market, as each quantity of energy produced is insignificant when compared with the regular power players’.
There arises then a new element for the interconnection between the micro-generation and the electricity market, that it can be called by “commercial agent” or “aggregator”. The commercial agent or aggregator adds a set of small power producers so that they can became, in a certain way, a fair concurrent in the market by the fact of dealing with a substantial quantity of energy. Under the point of view of the aggregator, there is also the possibility of dealing either with energy generation and/or energy consumption to maximize the economic value of the EV to the consumer and at the same time revenue to the aggregator, it is almost certain that the charging and discharging vehicle will be done in order to allow the vehicle to be charged with the lowest-cost electricity, and also allows the vehicle to provide high-value ancillary services. EVs could be connected to the power system through the aggregator that sells the aggregated demand of many individual vehicles to a utility, regional system operator, or a regional wholesale electricity market. The idea is that EVs respond intelligently to real-time price signals or some other price schedule to buy or sell electricity at the appropriate time so that the vehicles would be effectively “dispatched” to provide the most economical charging and discharging.
\n\t\t\tGiven the nature and physical characteristics of EVs, their integration into the grid is performed at the distribution voltage level. Such an interconnection allows each EV to be plugged into the grid to get the energy to charge up the battery. The EVs, when aggregated in sizeable numbers, constitute a new load that the electricity system must supply. However, an EV can be much more than just a simple load given that bi-directional power transfers are possible once the interconnection is implemented. Indeed, the integration allows the deployment of EVs as a generation resource as well as a storage device for certain periods of time when such deployment aids the system operator to maintain reliable operations in a more economic manner. We refer to the aggregated EVs as a generation/storage device in this case. The entire concept of using the EVs as a distributed resource – load and generation/storage device–by their integration into the grid is known as the vehicle-to-grid (V2G). Under this concept, the EVs become active players in grid operations and play an important role in improving the reliability, economics and environmental attributes of system operations. Such benefits include the provision of capacity and energy-based ancillary services, the reduction of the need for peakers and load levelization.
\n\t\t\tElectric vehicles constitute a variety of vehicle types with different battery capacities, vehicle ranges, and vehicle drive trains. Such differences are important to the electric industry because of their influence on daily vehicle electricity consumption. The common characteristic of EVs and PHEVs is that they require a battery, which is the source of all or part of the energy required for propulsion. For EVs, the original energy consumption unit in kWh and the energy consumption per unit distance in kWh/km is generally used to evaluate the vehicle energy consumption. The battery energy capacity is usually measured in kWh and the driving range per battery charge can be easily calculated.
A typical electric vehicle (EV) traction battery system consists of a chain of batteries connected in a series, forming a battery pack with nominal voltages ranging from 72 to 324 V and capable of discharge/charge rates of several hundred amperes.
As vehicles, EVs are not always stationary and, therefore, may be dispersed over a region at any point in time. In a moving state, EVs may be used for commuting purposes or, possibly for longer trips – if the battery capacity is large or if the EV is a PHEV.
For the EVs used for commuting, we can view, therefore, that the vehicles are idle an average of 22 h a day. We note that as the commuting distance is smaller than the potential range of the EVs, not all the energy in the batteries is consumed by the commute. We may see each EV as a potential source of both energy and available capacity that can be harnessed by the grid in addition to supplying the load of the EV to charge up the battery.
In addition to the storage capacity, there are some other aspects of interest in characterizing the batteries. A critically important one is the state of charge (s.o.c.) of the batteries. It is defined as the ratio of the energy stored in a battery to the capacity of the battery. It varies from 0 when the battery is fully discharged to 1– often expressed in percentages as a variation from 0% to 100% – when the battery is fully charged and provides a measure of how much energy is stored in the battery. The s.o.c. typically decreases when energy is withdrawn from the battery and increases when energy is absorbed by the battery. Thus, for a day during which the EV owner goes to work in the morning, parks the EV, goes back home in the late afternoon and then plugs the EV for charging during the night, the s.o.c. will evolve along a pattern illustrated in Fig. 6.
\n\t\t\t\tS.o.c. evolution for an EV along a typical working day with only home charging
Batteries release energy more easily when their s.o.c. is high or more exactly above a tolerance level. We stipulate 60% to be the tolerance level in the examples of this work. When the s.o.c. is lower than 60%, a more appropriate utilization of this battery is for energy absorption. If the battery releases energy, then the EV acts as a supply-side resource. If it absorbs energy, the EV acts as a demand-side resource. We can view the battery store present supply-and demand-side resources as a function of the s.o.c. The diagram in Fig. 7 summarizes this information.
\n\t\t\t\tRelation between the s.o.c. and the function of the EV
The frequent switching of the s.o.c. may cause a decrease in battery storage capability which is defined as the battery degradation.
\n\t\t\tThe battery storage of an individual EV is too small to impact the grid in any meaningful manner. An effective approach to deal with the negligibly small impact of a single EV is to group together a large number of EVs – from thousands to hundreds of thousands. The aggregation, then, can impact the grid both as a load and a generation/storage device.
The basic idea behind such aggregation is the consolidation of the EVs, so that together they represent a load or a resource of a size appropriate to exploit economic efficiencies in electricity markets. The Aggregator is a new player whose role is to collect the EVs by attracting and retaining them so as to result in a MW capacity that can impact beneficially the grid. The size of the aggregation is indeed the key to ensuring its effective role. In terms of load, an aggregation of EVs represents the total capacity of the batteries, an amount in MWs that constitutes a significant size and allows each EV to benefit from the buying power of a large industrial/commercial customer. There are additional economic benefits that accrue as a result of the economies of scale. The aggregated collection behaves as a single decision maker that can undertake transactions with considerably lower transaction costs than would be incurred by the individual EV owners. So, the aggregated entity can make purchases – be it electricity, batteries or other services – more economically than the individual EV owners can and can pass on the savings to each EV owner. As a resource, the aggregated EVs constitute a significant capacity that may beneficially impact the operations of a system operator. The SO deals directly with the Aggregator, who sells the aggregated capacity and energy services that the collection of EVs can provide. The Aggregator’s role is to effectively collect the distributed resources into a single entity that can act either as a generation/storage device capable of supplying capacity and energy services needed by the grid or as a controllable load to be connected to the ESP to be charged in a way so as to be the most beneficial to the grid. It is the role of the Aggregator to determine which EVs to select to join the aggregation and to determine the optimal deployment of the aggregation. A single aggregation may function either as a controllable load or as a resource, as depicted in Fig. 8.
The charging of the EVs introduces a new load into the system. For every SO, the load has a typical daily shape formed of on- peak and off-peak periods as described in section 2.
The EV aggregation can act as a very effective resource by helping the operator to supply both capacity and energy services to the grid. To allow the operator to ensure that the supply– demand equilibrium is maintained around the clock, the EV aggregation may be used for frequency regulation to control frequency fluctuations that are caused by supply–demand imbalances. The shape of the regulation requirements varies markedly from the on-peak to the off-peak periods. We define regulation down as the absorption of power and regulation up as the provision of power. A battery may provide regulation up or regulation down service as a function of its s.o.c. Depending on its value for each EV in the aggregation, the collection maybe deployed for either regulation up or regulation down at a point in time. Resources that provide regulation services are paid for the capacity they offer.
\n\t\t\t\tEVs working as load and as supplier of electricity
EVs, with their fast response and low capital costs, appear to be a better match for the quick-response, short-duration, electric services, such as spinning reserves and balancing. The equivalent of those markets in the Portuguese Electric sector, are secondary and tertiary regulation (REN, 2012).
Spinning reserves are paid for by the amount of time they are available and ready even though no energy was actually produced. If the spinning reserve is called, the generator is paid an additional amount for the energy that is actually delivered (e.g., based on the market-clearing price of electricity at that time). The capacity of power available for 1 h has the unit MW-h (meaning 1MW of capacity is available for 1 h) and should not be confused with MWh, an energy unit that means 1MW is flowing for 1 h. These contract arrangements are favorable for EVs, since they are paid as “spinning” for many hours, just for being plugged in, while they incur relatively short periods of generating power.
Regulation or balancing, also referred to as automatic generation control (AGC) or frequency control, is used to fine-tune the frequency and voltage of the grid by matching generation to load demand. Some markets split regulation into two elements: one for the ability to increase power generation from a baseline level, and the other to decrease from a baseline. These are commonly referred to as “regulation up” and “regulation down”, respectively. Compared to spinning reserves, it is called far more often, requires faster response, and is required to continue running for shorter durations.
\n\t\t\tCalculating revenue for vehicle owners depend on the market that V2G power is sold into. Equation 1 can be used for markets that pay for available capacity and for energy (Kempton and Tomic, 2005a).
\n\t\t\t\t\tWhere r is the total revenue [€], p\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tcap\n\t\t\t\t\t\t is the market price for capacity [€/kW-h], P is the contracted capacity available less or equal to P\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tV2G\n\t\t\t\t\t\t [kW], t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tplug\n\t\t\t\t\t\t is the time the EV is plugged in and available [h], p\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tel\n\t\t\t\t\t\t is the price of electricity for the plugged in hours [cents/kWh], R\n\t\t\t\t\t\t\n\t\t\t\t\t\t\td-c\n\t\t\t\t\t\t is the dispatch to contract ratio given by E\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tdisp\n\t\t\t\t\t\t\n\t\t\t\t\t\t/(P.t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tplug\n\t\t\t\t\t\t\n\t\t\t\t\t\t).
Capacity payments are an important part of revenue and compensation for energy delivered generally nets out taking into account the energy that must be purchased to charge the vehicle and the cost of batteries depreciation. Furthermore, to compute energy payments, a profile of grid services provided by the vehicle must be defined.
In Portugal, the average capacity prices for regulation between 2007 and 2011 and for the first months of 2012 were shown in Table 3.
\n\t\t\t\t\tYear | \n\t\t\t\t\t\t\t\t\tCapacity Price | \n\t\t\t\t\t\t\t\t\tPower range | \n\t\t\t\t\t\t\t\t\tRegulation [€/MW] | \n\t\t\t\t\t\t\t\t|
[€/MW-h] | \n\t\t\t\t\t\t\t\t\t[MW] | \n\t\t\t\t\t\t\t\t\tup | \n\t\t\t\t\t\t\t\t\tdown | \n\t\t\t\t\t\t\t\t|
2007 | \n\t\t\t\t\t\t\t\t18.5 | \n\t\t\t\t\t\t\t\t188 | \n\t\t\t\t\t\t\t\t45.7 | \n\t\t\t\t\t\t\t\t32.7 | \n\t\t\t\t\t\t\t
2008 | \n\t\t\t\t\t\t\t\t21.4 | \n\t\t\t\t\t\t\t\t158 | \n\t\t\t\t\t\t\t\t63.5 | \n\t\t\t\t\t\t\t\t42.2 | \n\t\t\t\t\t\t\t
2009 | \n\t\t\t\t\t\t\t\t28.9 | \n\t\t\t\t\t\t\t\t197 | \n\t\t\t\t\t\t\t\t48.5 | \n\t\t\t\t\t\t\t\t21.5 | \n\t\t\t\t\t\t\t
2010 | \n\t\t\t\t\t\t\t\t27.2 | \n\t\t\t\t\t\t\t\t290 | \n\t\t\t\t\t\t\t\t53.8 | \n\t\t\t\t\t\t\t\t13.5 | \n\t\t\t\t\t\t\t
2011 | \n\t\t\t\t\t\t\t\t27.8 | \n\t\t\t\t\t\t\t\t286 | \n\t\t\t\t\t\t\t\t73.7 | \n\t\t\t\t\t\t\t\t12.6 | \n\t\t\t\t\t\t\t
2012 | \n\t\t\t\t\t\t\t\t36.3 | \n\t\t\t\t\t\t\t\t291 | \n\t\t\t\t\t\t\t\t64,9 | \n\t\t\t\t\t\t\t\t24,4 | \n\t\t\t\t\t\t\t
Average prices and capacity for regulation services in Portugal (REN, 2012)
In Fig. 9 is depicted the annual average regulation band evolution and the weighed unit capacity price. The average power range for regulation has increased in the last 5 years, representing from 2.8% of average power in 2007 till 5% in 2011.
\n\t\t\t\t\tEvolution of regulation band and unit capacity price (REN, 2012)
Looking at the percentage of wind power production in the same 5 years, it increased from 9.3% in 2007 to 18% in 2011. It can be assumed that the increase of intermittent power sources like wind, in the electricity generation mix, leads to an increase of need of power band reserves to assure the same level of system reliability.
In Fig. 10 it is depicted the evolution of capacity installed and energy production in Portugal among the different technologies.
\n\t\t\t\t\tEvolution of capacity installed in the different technologies (left-side) and of annual production from the different technologies (right-side) (REN, 2012)
The increase needs for ancillary services (spinning reserves and regulation) had been fulfilled by the dispatchable technologies in the proportion described in Table 4.
\n\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tYears\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t2007\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t2008\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t2009\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t2010\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t2011\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tHydro\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t67% | \n\t\t\t\t\t\t\t\t39% | \n\t\t\t\t\t\t\t\t18% | \n\t\t\t\t\t\t\t\t28% | \n\t\t\t\t\t\t\t\t27% | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tCoal\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t10% | \n\t\t\t\t\t\t\t\t3% | \n\t\t\t\t\t\t\t\t16% | \n\t\t\t\t\t\t\t\t12% | \n\t\t\t\t\t\t\t\t14% | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tNat.gas\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t23% | \n\t\t\t\t\t\t\t\t58% | \n\t\t\t\t\t\t\t\t66% | \n\t\t\t\t\t\t\t\t60% | \n\t\t\t\t\t\t\t\t59% | \n\t\t\t\t\t\t\t
Evolution of the contracted power band among the dispatchable available technologies in Portugal (REN, 2012)
From 2007 till 2011 the power band has increased in 100 MW. To fulfil this 100MW needs, about 30000 EVs at a 3.5 kW each should be plugged. If only 20% of total EVs were available to supply this service, 140000 EVs should be necessary (3% of the total actual light duty fleet). For instance considering the average prices occurred in the first 2012 months and depicted in Table 5.
\n\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tCapacity\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tPower range\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tRegulation [€/MW]\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t||||
\n\t\t\t\t\t\t\t\t\t\tPrice\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tValley\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\toff-valley\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t||||
[€/MW-h] | \n\t\t\t\t\t\t\t\t[MW] | \n\t\t\t\t\t\t\t\tup | \n\t\t\t\t\t\t\t\tdown | \n\t\t\t\t\t\t\t\tup | \n\t\t\t\t\t\t\t\tdown | \n\t\t\t\t\t\t\t|
36,3 | \n\t\t\t\t\t\t\t\t291 | \n\t\t\t\t\t\t\t\t64,9 | \n\t\t\t\t\t\t\t\t24,4 | \n\t\t\t\t\t\t\t\t61,3 | \n\t\t\t\t\t\t\t\t35 | \n\t\t\t\t\t\t\t
Average prices and capacity for regulation services in Portugal in 2012 (REN, 2012)
An EV can expect to achieve a daily revenue of 2.3 € for providing ancillary services to the power grid (Table 6).
\n\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\tCapacity\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tEnergy\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t|
\n\t\t\t\t\t\t\t\t\t\tvalley\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tPeak\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t||
\n\t\t\t\t\t\t\t\t\tpcap \n\t\t\t\t\t\t\t\t\t[cents/kW-h] | \n\t\t\t\t\t\t\t\t3.6 | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t |
P [kW] | \n\t\t\t\t\t\t\t\t3.5 | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t |
tplug [h] | \n\t\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\t\t9 | \n\t\t\t\t\t\t\t\t7 | \n\t\t\t\t\t\t\t
Edisp [kWh/day] | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | 3.0 | \n\t\t\t\t\t\t\t\t3.0 | \n\t\t\t\t\t\t\t
Pelup [cents/kWh] | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | 6.5 | \n\t\t\t\t\t\t\t\t6.1 | \n\t\t\t\t\t\t\t
Peldown[cents/kWh] | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | 2.4 | \n\t\t\t\t\t\t\t\t3.5 | \n\t\t\t\t\t\t\t
Rc-d\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | 0.10 | \n\t\t\t\t\t\t\t\t0.12 | \n\t\t\t\t\t\t\t
Revenue [€/day] | \n\t\t\t\t\t\t\t\t2.02 | \n\t\t\t\t\t\t\t\t0.13 | \n\t\t\t\t\t\t\t\t0.14 | \n\t\t\t\t\t\t\t
Expected daily revenues for an EV that provides ancillary services in Portugal
The cost of V2G is calculated from purchased energy, wear and capital cost. The energy and wear for V2G are those incurred above energy and wear for the primary function of the vehicle, transportation. Similarly, the capital cost is that of additional equipment needed for V2G, but not for driving. The general formula for annual cost is (equation 2):
\n\t\t\t\t\t\n\t\t\t\t\t\tc is the total cost per year [€], c\n\t\t\t\t\t\t\n\t\t\t\t\t\t\ten\n\t\t\t\t\t\t the cost per energy unit produced for V2G [€/kWh], E\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tneed\n\t\t\t\t\t\t is the electric energy needed to be dispatched in the year [kWh] considering the conversion’s efficiencies (equation 3).
\n\t\t\t\t\t\n\t\t\t\t\t\tc\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tac\n\t\t\t\t\t\t is the annualized capital cost for additional equipment needed for V2G including also the cost of equipment degradation (wear) due to extra use for V2G (equation 4).
\n\t\t\t\t\t\n\t\t\t\t\t\tc\n\t\t\t\t\t\t\n\t\t\t\t\t\t\td\n\t\t\t\t\t\t represents the annual costs of battery degradation, c\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tc\n\t\t\t\t\t\t, the capital cost of extra equipment, d the discount rate and n the investment’s life time.
The costs for battery degradation depend on the cycling regimes. As V2G extra cycling would increase battery replacement and additional cost for that should be taken into account. For example considering that a lithium-ion battery could have a 3000 cycle life time (Tomic and Kempton, 2007) at a 100% of discharge and could last almost 10 years with less than a daily charge, an extra shallow, 4% cycling for regulation services occurring in average 10 times in a day it would shorten batteries life in 40% so that after 6 years they should have to be replaced. To compare investments with different life times we use the annuity method (equation 5).
\n\t\t\t\t\t\n\t\t\t\t\t\tc\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tbat\n\t\t\t\t\t\t is the cost of battery and n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t1\n\t\t\t\t\t\t and n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t2\n\t\t\t\t\t\t are the expected life times without and with V2G.
The estimated costs for EVs’ owners for providing ancillary services are depicted in Table 7.
\n\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\tCosts\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t
Bat Cap [kWh] | \n\t\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\t
Edisp [kWh] | \n\t\t\t\t\t\t\t\t900 | \n\t\t\t\t\t\t\t
ηconv\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t0,8 | \n\t\t\t\t\t\t\t
Eneed [kWh] | \n\t\t\t\t\t\t\t\t1125 | \n\t\t\t\t\t\t\t
cen [cents/kWh] | \n\t\t\t\t\t\t\t\t7 | \n\t\t\t\t\t\t\t
cbat [€/kWh] | \n\t\t\t\t\t\t\t\t700 | \n\t\t\t\t\t\t\t
cd [€/yr] | \n\t\t\t\t\t\t\t\t754 | \n\t\t\t\t\t\t\t
cc [€] | \n\t\t\t\t\t\t\t\t500 | \n\t\t\t\t\t\t\t
d [%] | \n\t\t\t\t\t\t\t\t8% | \n\t\t\t\t\t\t\t
n1 [yr] | \n\t\t\t\t\t\t\t\t10 | \n\t\t\t\t\t\t\t
n2 [yr] | \n\t\t\t\t\t\t\t\t6 | \n\t\t\t\t\t\t\t
cca [€/yr] | \n\t\t\t\t\t\t\t\t828 | \n\t\t\t\t\t\t\t
c[€/yr] | \n\t\t\t\t\t\t\t\t907 | \n\t\t\t\t\t\t\t
Expected annual costs for an EV that provides ancillary services in Portugal
In this way, estimates for annual profits for EVs’ owners, as a result of capacity payments providing regulation capacity could be computed considering the values in table 8.
\n\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\tRevenue\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tCosts\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t
Capacity [€/yr] | \n\t\t\t\t\t\t\t\t605 | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t |
Reg. Up [€/yr] | \n\t\t\t\t\t\t\t\t43 | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t |
Reg. down [€/yr] | \n\t\t\t\t\t\t\t\t40 | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t |
sav. in recharge [€/yr] | \n\t\t\t\t\t\t\t\t63 | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t |
c [€/yr] | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | 907 | \n\t\t\t\t\t\t\t
Estimation of costs and revenues for V2G providing regulation services in Portugal
As V2G is connected at low voltage this regulation service should be purchased by a distribution company that could act as an aggregator to provide enough regulation power to sell in the power markets subjected to the prices shown in Table 5.
We consider that the EVs provide regulation during valley and off-valley hours. During valley hours they are mainly used for charging for further use (for driving and for grid support) but also could provide regulation up and down during this time. For providing regulation up and down we considered the vehicles are plugged-in daily during at least 7 off-valley hours and 9 valley hours. If the vehicles offer this service for 300 days per year a total of 605€ could be earned only for providing. If an average energy of 3.0 kWh is supplied daily to the grid, an annual revenue of 43.2€ could be expected for regulation up and a total revenue of 40€ for regulation down plus 63€ in savings for recharging (due to energy input). Unfortunately, under the described assumptions, total annual costs exceed total revenues in 156€. This loss is very sensitive to battery degradation, if we consider n2=7 years instead of n2=6 years, total annual costs decrease to 635€ and a result of 116€ could be obtained (318€ with n2=8, table 9).
\n\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\tn2=6\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tn2=7\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tn2=8\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t
Total revenue [€/yr] | \n\t\t\t\t\t\t\t\t751 | \n\t\t\t\t\t\t\t\t751 | \n\t\t\t\t\t\t\t\t751 | \n\t\t\t\t\t\t\t
Total costs [€/yr] | \n\t\t\t\t\t\t\t\t907 | \n\t\t\t\t\t\t\t\t635 | \n\t\t\t\t\t\t\t\t433 | \n\t\t\t\t\t\t\t
Result [€/yr] | \n\t\t\t\t\t\t\t\t-156 | \n\t\t\t\t\t\t\t\t116 | \n\t\t\t\t\t\t\t\t318 | \n\t\t\t\t\t\t\t
Estimation of costs and revenues for V2G for different assumptions of battery life
It should not be forgotten that, it is the aggregator that trades directly to the grid for offering regulation services with V2G and works with the market prices showed in table 5 and so a percentage of the earnings should go to the aggregator. Considering a 4% revenue for the aggregator services, the EV’s owner profits could range from -156€ to 305€.
\n\t\t\t\tElectric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), which obtain their fuel from the grid by charging a battery, are set to be introduced into the mass market and expected to contribute to oil consumption reduction. PHEVs and EVs can also provide a good opportunity to reduce CO2 emissions from transport activities if the electricity they use to charge their batteries is generated through low carbon technologies. In addition to the environmental issue, EVs bring techno-economical challenges for utilities as well, because EVs will have great load flexibility as they are parked 93% of their lifetime, making it easy for them to charge either at home, at work, or at parking facilities, hence implying that the time of day in which they charge, can easily vary. EV aggregations can act as controllable loads that contribute to level the off-peak load at night or as generation/storage devices that can provide up and down regulation service when the vehicles are parked.
This chapter described how the electric vehicle can work as a “prosumer” of electricity. The benefits to the electric utilities and the costs of services provided by EVs in each type of power market were addressed, the role of a new agent on the power market – The EV aggregator – and the economic advantages for EVs owners considered the Portuguese energy market as a case study.
There are still many doubts about the life time of EV batteries and battery degradation when proving V2G. Global costs are very sensitive to battery costs and degradation assumptions so that profits can range from -155€/yr to 305€/yr considering respectively 40% to 20% in batteries life range reduction due to V2G supply.
The pressure to generate electricity from endogenous low carbon resources in the majority of the countries makes naturally transport electrification a solution to lower emissions and fossil fuels use from the transportation sector. On the other hand, the increasing of intermittent renewable sources in the power systems, forces the increase of the regulation power band in order to assure the same level of reliability to the power system which would increase the power installed and fixed costs to the power system.
EVs can be a benefit to the environment by reducing emissions and noise in the cities while, at the same time, by providing ancillary services to the power grid, reduce the investments and operation costs in thermal generation and allows the integration of more renewable production. To provide a 100 MW of band power a total of 30000 EVs at a 3.5 kW each should be plugged-in. If only 20% of total EVs are available to supply this service, 140000 EVs should be necessary which corresponds of 3% of the total actual light duty fleet in the Portuguese case study.
\n\t\tThe authors would like to acknowledge FCT- Fundação para a Ciência e Tecnologia through the national project Power demand estimation and power system impacts resulting of fleet penetration of electric/plug-in vehicles (MIT-Pt/SES-GI/0008/2008).
The authors also thank the REN – Portuguese Energy Networks for supplying up-to-date and valuable data concerning electric power consumption and generation.
\n\t\tUp to now, researchers have developed a variety of micro/Nano driving and positioning platforms based on piezoelectric materials. Among the developed piezoelectric platforms, many of them have been applied for biological cell manipulation, atomic manipulation, micro/nano indentation, aerial photography and other systems with great application results [1, 2] . However, the working stroke of piezoelectric components is quite small, often only a few micrometers or tens of micrometers, which seriously limits the further application of piezoelectric actuators. Therefore, many researchers have done a lot of work to overcome this shortcoming of piezoelectric components, so as to expand the application field of piezoelectric actuators [3]. The inchworm type piezoelectric actuator is one kind of the developed new piezoelectric actuators which is able to ensure a large working stroke and achieve nano-scale accuracy at the same time. It has a wide application demand in the fields which have strict requirements on output accuracy, space size and antielectronmagnetic interference. The study on inchworm piezoelectric actuators has become a hot spot in the application and research field of piezoelectric actuators in recent years [4, 5].
\nThe inchworm type piezoelectric actuator mimics the motion principle of the real inchworm in nature, as is illustrated in Figure 1(a) [6]. Sometimes, it is called one kind of novel bionic actuators. It is found that the natural inchworm moves smoothly by stepping motion form. With the help of the stepping motion form and the piezoelectric technology, large working stroke is easy to be achieved by inchworm actuators through the alternating motion of driving units and clamping units. At the same time, compared with other piezoelectric actuators, the use of clamping unit brings larger output force. The inchworm type piezoelectric actuator usually consists of one driving unit and two clamping units. According to the difference of motion modes, inchworm type piezoelectric actuators could be split into three motion patterns: the “walker” pattern, the “pusher” pattern and hybrid “walker-pusher” pattern.
\nMotion principles: (a) real inchworm [32]; (b) “walker” pattern; (c) “pusher” pattern.
\nFigure 1(b) shows the motion principle of the “walker” pattern piezoelectric actuator, which is essentially similar to the walking mode of the real inchworm in nature. The “walker” mechanism obtains a large working stroke by repeating the following six steps: (1) in the original position, all piezoelectric elements in the driving unit and clamping units do not work, so there is a gap between the clamping device and the base guider; (2) the piezoelectric element in clamping unit 1 obtains the power, and then clamping unit 1 holds the base guide tightly; (3) the driving unit is extending while the piezoelectric element inside it obtains the power; (4) the clamping unit 2 obtains the power to tightly fix the base guider and the clamping unit 1; (5) the clamping unit 1 loses power to release the base guider; (6) the driving unit returns to its original length. Finally, the clamping unit 2 is de energized to release the base guider in the same original position as in step (1). By repeating these six steps, a large working stroke is achieved gradually [7].
\nThe “push” pattern piezoelectric actuator also needs six steps to obtain a step motion, as shown in Figure 1(c): (1) in the original position, all of the driving and clamping units have no power to fix the slider; (2) the clamping unit 2 obtains the power to hold the slider tightly; (3) the driving unit gets power to push the clamping unit 2, and since the slider is hold by clamping unit 2 tightly, it will move forward for small moving distance; (4) the clamping unit 1 holds the slider; (5) the clamping unit 2 is powered off to release the slider; (6) the driving unit returns to the original length when it loses power. At last, the clamping unit 1 releases the slider to the same condition as in the original position [8].
\nHybrid “Walker-pusher” pattern piezoelectric actuator is a hybrid of “Walker” and “pusher” modes. The difference is that the driving unit is inserted into the sliding block, and the clamping unit is assembled in the base in the “Walker-pusher” mode [9].
\nInchworm type piezoelectric actuator has been widely concerned by researchers because it is able to ensure long working stroke, high precision and large output at the same time. Many inchworm driving devices have been developed. According to the different motion forms, they could be divided into the linear actuator, the rotary actuator and the multi-DOF actuator.
\nAs early as in 1964, Stibitz developed the first “pusher” inchworm actuator with magnetostrictive elements to generate driving force, so as to solve the positioning problem of machining tools [10]. Three magnetostrictive elements are utilized as driving and clamping units to generate large stroke linear stepping motion. However, limited by the technical conditions, its performance is not very high, but the driving principle of the inchworm movement provides a new space for the research of precision positioning technology. After that, Hsu et al. proposed the inchworm piezoelectric actuator for the first time [11]. As shown in Figure 2(b), the piezoelectric element is applied to convert the electrical signal into mechanical motion, and two unidirectional clamps are combined to accumulate the movement of the electric element. A piezoelectric tube is inserted into the slider so that it is in the mixed “walker-pusher” mode. In 1968, Brisbane invented the first “walker” type inchworm piezoelectric actuator [12]. Two piezoelectric disks and one piezoelectric tube are assembled inside the slider, which makes it possible to realize the linear motion of the slider by walking which is illustrated in Figure 2(c).
\nInchworm actuators: (a) the first inchworm actuator [10]; (b) the first inchworm type piezoelectric actuator [11]; (c) the first “walker” pattern inchworm piezoelectric actuator [12].
However, due to the immaturity of piezoelectric materials at that time, the development of inchworm type piezoelectric actuators was hindered. For many years, even though there were still some researches on inchworm type piezoelectric actuators, most of them only focused on the theoretical research. Until the end of the 1980s, commercial piezoelectric elements were able to provide an output force of up to several thousand newtons, and the driving voltage dropped from 1000 V to 200 V. All of these provided great opportunities for the further development of piezoelectric actuators. After that many researchers have focused on the development of inchworm type piezoelectric actuators. By using three packaged piezoelectric stacks forming a U-shaped structure, Chen et al. proposed a “pusher” pattern inchworm type piezoelectric actuator [13]. The experimental results show that the maximum driving force is 13.2 N and the maximum speed is 47.6 μm/s. With the help of adding an integrated heterodyne interferometer as feedback device in the servo control system, an inchworm type piezoelectric actuator with fast response is developed by Moon et al. [14]. Based on the fast response characteristics of the servo control system, it can move to the target position quickly and reduce the hysteresis of the piezoelectric actuator.
\nHowever, an important problem is that the extension length of piezoelectric elements is very small, which brings trouble to the clamping unit to clamp the slider tightly. Therefore, many literatures are focusing on different methods to improve the clamping unit. As a typical compliant mechanism, the flexure hinge mechanism has been widely applied in the design of piezoelectric actuators to expand the elongation of piezoelectric elements due to its advantages of fast response, no friction and easy manufacturing. In 1988, Fujimoto firstly proposed an inchworm type piezoelectric actuator with flexible hinge [15]. This “walker” type piezoelectric actuator adopts C-shaped lever type flexible hinge on both clamping units to increase the clamping force, and it has great practical value for the real application of inchworm piezoelectric actuators. The magnification could be adjusted by changing the position of the pivot point. Kim constructed an inchworm platform with an amplification stage, and it utilized the flexure hinge as a lever mechanism to obtain a magnification of 8.4 at a leverage ratio of 3.6 [16].
\nThe research team of Jilin University and Zhejiang Normal University has carried out systematic research on the development of inchworm piezoelectric actuators. After years of experience, it has developed series of Inchworm piezoelectric actuators, and has achieved a series of remarkable research results. For example, Yang et al. proposed a novel linear piezoelectric actuator [17] (Figure 3). The proposed actuator adopts the principle of “pusher” motion pattern, and realizes the passive linear motion of the slider with the help of clamping and driving units. Based on the analysis of the working principle and the mechanical structure of the actuator, a linear driving mathematical model with the piezoelectric stack as the driving element is established, and its structure is analyzed by finite element method (FEM). The proposed inchworm piezoelectric actuator adopts the principle of bidirectional thrust, and realizes the consistency of driving characteristics in the process of forward and reverse directions. Experimental results show that the novel inchworm actuator has the characteristics of firm clamping, high frequency (100 Hz), high step speed (30 mm/min), large stroke (> 10 mm), high resolution (0.05 μm) and large driving force (100 N), which greatly improves the driving performance of the inchworm piezoelectric actuator. It has a broad further application in precision motion, micromanipulation, optical engineering, and precise positioning and so on.
\nInchworm actuator developed by Yang et al. [17].
Besides the inchworm piezoelectric actuators to achieve linear motion, some inchworm actuators which could obtain rotary motion have been developed by researchers. Kim et al. developed a new type of inchworm piezoelectric actuator that uses a combination of flexure hinge and piezoelectric drive technology to achieve rotational movement [18] (Figure 4). The device pioneered the use of linear output piezoelectric stacks to achieve an inchworm-shaped rotary motion, which has extremely high research significance. The device realizes the movement of the flexible hinge by controlling the power-on sequence of the four piezoelectric stacks, thereby driving the belt wound on the rotating shaft to drive the rotating shaft to rotate. The test results show that the resolution of the rotary drive device can reach 2.36 μrad, which is greatly improved compared to the previous rotary drive device.
\nInchworm type piezoelectric actuators with flexible belts by Kim et al. [18].
In view of the shortcomings of the existing inchworm actuators, Li et al. firstly designed an inchworm type piezoelectric actuator based on multi-layer torsional flexure hinges, which is able realize the rotary motion with large working stroke and high precision [4]. The developed actuator utilizes the piezoelectric stack to push the thin-walled flexure hinge structure to carry out relevant clamping. By controlling the working sequence of the clamping units in the first and second layers of the stator, the precise rotary motion around the fixed shaft is realized step by step. Its structure is divided into two main parts: rotor and stator. According to the function, it could be divided into the driving unit, the clamping unit and the preloading unit. The proposed device uses high-precision piezoelectric stack to push the thin-walled flexure hinge structure for relevant clamping. By controlling the clamping sequence of the piezoelectric clamping units in the first and second layers of the stator, the step-by-step ultra-precision rotary motion around the rotating shaft is realized. The stator is packaged with two layers of the self-centering piezoelectric clamping unit, rotary driving unit and preloading unit; the rotor is a variable interface rotating shaft, which can drive different objects by changing the connection style of the interface. The clamping unit is composed of the piezoelectric stack encapsulated in the stator and the self-centering flexure hinge. The preloading unit is utilized to pre tighten the clamping piezoelectric stack, and the clamping pressure is adjusted by adjusting the screw in length to control the engaging wedge block. The driving unit is composed of the driving piezoelectric stack, the driving indenting block and the corresponding parts of stator, which is used to apply rotating torque to the first layer of stator. The maximum diameter of stator is 80 mm and the diameter of rotor is 20 mm. This proposed inchworm type piezoelectric actuator could achieve stable stepping rotation output. The size of the driving voltage will affect the single-step rotation angle of the rotor: as the driving voltage increases, the rotation angle of the rotor also increases; when the driving voltage is less than 20 V, the rotor cannot work stably, so the minimum step angle of the rotor is 4.95 μrad. In the case that the driving voltage is 100 V, the maximum step angle of the rotor is 216.7 μrad. The maximum speed of the rotor is 6508.5 μrad/s, and the driving frequency is 30 Hz. The designed inchworm type piezoelectric actuator has a maximum output torque of 93.1 N·mm. Figure 5 shows that the driving voltage and clamping voltage are maintained at 100 V, and when the driving frequency is 1 Hz, after the rotor rotates 20 steps in the forward and reverse directions, the forward and backward error of the rotor is 0.76 μm. The total error of 20 steps is 38 μrad, so the step angle error of the inchworm type piezoelectric rotary actuator designed in this paper is 1.9 μrad.
\nRotary inchworm type piezoelectric actuators by Li et al. [4].
The disadvantage of the inchworm type piezoelectric actuator is that the structure is relatively complicated. The traditional inchworm type actuator needs to use at least two clamping units and one drive unit. In this way, multiple timing controls will cause the program to be complicated, which makes the inchworm piezoelectric actuator more complicated. The application has brought unfavorable effects. Based on the above work, a simplified inchworm type piezoelectric rotary actuator was designed and manufactured by Li et al., which uses a triangular lever flexure hinge to complete the clamping and driving actions at the same time [19].
\nBy using the triangular lever flexure hinge, one driving unit and one clamping unit could be utilized to realize stepping rotation of the rotor. Its stator is simplified from a two-layer structure to a single-layer structure, which reduces the overall height; the control adopts two-channel voltage control, which reduces the output of one clamp voltage. Figure 6 shows the overall structure of the simplified inchworm piezoelectric actuator, which mainly includes a stator, a rotor, four drive piezoelectric stacks, two clamp piezoelectric stacks and six pre-tightening screws. The stator material is 65Mn, and the drive hinge and clamp hinge are processed by wire cutting. The rotor diameter is 20 mm. The pre-tightening screws are used to adjust the pre-tightening force of the clamping piezoelectric stack and the driving piezoelectric stack. It is seen from Figure 6 that there is a small “jump” in the middle of each step, which is caused by the impact of the clamping unit on the rotor. When the driving voltage is 100 V and the driving frequency is 1 Hz, the maximum output torque of the designed simplified inchworm piezoelectric actuator is 19.6 N·mm. When the output load is greater than 19.6 N·mm, the rotor cannot run stably. When the driving voltage signal increases from 20 V to 100 V, the rotor step angle also increases, which coincides with the approximately proportional relationship between the output displacement of the piezoelectric stack and the driving voltage. The maximum step angle occurs when the drive voltage is 100 V and the drive frequency is fixed at 1 Hz, and the maximum step angle is 1360 μrad. When the drive voltage is less than 20 V, the simplified inchworm piezoelectric actuator cannot operate stably, so its operating resolution is 25 μrad. Contrary to the above, when the drive frequency is increased from 0 Hz to 200 Hz, the rotor step angle decreases rapidly. After 200 Hz, the rotor step angle stabilizes near a small value.
\nSimplified inchworm piezoelectric actuator by Li et al. [19].
How to obtain multi-DOF motion within a compact size is always the pursuing interest for researchers of the actuator field. Generally, same single-DOF actuators are assembled in series to achieve the so called multi-DOF motion, which brings the large structure size and assemble problems. With the help of integral flexure structure, Li et al. firstly proposed the 2-DOF inchworm piezoelectric actuator which could achieve both rotary and linear motions with a compact size, as is shown in Figure 7 [20]. The structure of the proposed 2-DOF actuator is composed of a stator and a slider. The stator and slider are subdivided into upper, middle and lower layers. Four right-angle flexure hinges acting as torsion springs are used to overlap the upper and middle layers of the stator. The linear displacement of the positioning platform relies on four flexure hinges to connect the middle and lower layers of the stator. Moreover, according to the characteristics of PZTs that can be driven by linear motion and rotational motion, four linear driving PZTs and one rotary driving PZT are respectively arranged on the upper and lower layers of the stator. As for the slider, each layer is fixed with a single clamping PZT. Using 65Mn as the material of the stator and slider to obtain higher elasticity, the device needs to be vacuum heat treated.
\nGraphic model of the 2-DOF inchworm piezoelectric actuator [20].
The positioning platform can realize linear movement and rotational movement according to different numbers of piezoelectric ceramics, placement positions and flexible hinges. For the rotary motion, the proposed actuator operates stably under a driving voltage of 100 V to 6 V. In the case that the driving voltage is reduced from 100 V to 6 V, the rotation angle of 10 steps decreases. This result may be that the degree of PZT expansion is directly proportional to the input voltage. In addition, with the lowering of the driving voltage, the amplitude of the first-order oscillation decreases from 28.20μrad to 3.75μrad. During the down-regulation process, it is found that the step displacement of the platform is shortened and the fluctuation amplitude is larger. The platform cannot work stably when the driving voltage is lower than 6 V. According to the total rotation angle of 4.52μrad, 20 steps, the minimum step angle is 0.23μrad. It indicates that this inchworm positioning platform has good performance under constant driving frequency and driving voltage. Under the condition of controlling the driving frequency, the speed increases with the increase of the driving voltage. When f = 21 Hz, the speed reaches the peak value. When f = 20 Hz and U = 100 V, the maximum speed is 3521.70 μrad/s. However, when the frequency is higher than 21 Hz, the mechanical structure of the drive cannot normally respond to the electrical signal. The energy conversion method can be explained as that the structure cannot convert all the electrical energy into mechanical energy due to the high frequency, and there will be a certain energy loss.
\nFor the linear motion, the designed inchworm actuator works continuously under a constant driving voltage of 10 V to 100 V. Under the driving voltage U = 100 V, the total displacement of the actuator in 10 steps is 82.30 μm, and the available single-step displacement is 8.23 μm. In the case that the input voltage is lower than 10 V, the actuator cannot work normally. According to the total rotation angle of 3.05μrad, 20 steps, the minimum step angle is 0.15 μm. The speed characteristics of the linear motion of the actuator under the clamp voltage have been mentioned. According to the experimental data, as the frequency increases, the speed increases. When the frequency is greater than 26 Hz, the speed gradually decreases. When f = 26 Hz and U = 100 V, the maximum speed is 105.31 μm/s.
\nAs shown in Table 1, three types of inchworm actuators all obtain large output force/torque and stroke, high resolution. Previous studies indicate that all types are able to realize the output force/torque of several to dozen newton/newton metre. The resolution scales of them all attain micrometer/microradian and based on its working principle, repeating the displacement output under the periodic signal, their stroke are all very large. Linear inchworm actuator is able to attain a high speed of 30 mm/min and rotary inchworm actuator achieves a high speed of 6508.5 μrad/s while Multi-DOF inchworm actuator is slower. To achieve the aim of multi-DOF, the structure of Multi-DOF inchworm actuator is also more complicated with a slower response.
\nType | \nStructure | \nMotion type | \nOutput speed | \nOutput force/torque | \nStroke | \n
---|---|---|---|---|---|
Linear | \nSimple | \nLinear | \nLarge | \nLarge | \nLarge | \n
Rotary | \nMedium | \nRotary | \nLarge | \nLarge | \nLarge | \n
Multi-DOF | \nComplicated | \nMulti-DOF | \nMedium | \nLarge | \nLarge | \n
Characteristics comparison of different inchworm actuators.
Over the past years, the inchworm actuator has been widely applied in some commercial areas. High resolution is one of the most significant advantages of the inchworm actuator. Therefore, ultra-precision manufacturing technology, precision focusing system and micro-robot obtains wide range use of inchworm actuator as their actuation sources [21, 22]. When coupled with large output force/torque, the inchworm actuator is also widely used in medical engineering areas like drug delivery, cell manipulation, lab on a chip [23, 24]. Compared with other piezoelectric actuators, the advantage of long stroke also employs inchworm actuator in precision position platform [25].
\nOne of the significant shortcomings of inchworm type piezoelectric is the complex structure which brings trouble for the manufacture and control. Figure 8 shows the structure of the proposed simplified piezoelectric actuator based on the parasitic movement of the flexure mechanism by Li et al. [26]. With the help of the parasitic movement of the flexure mechanism, only two piezoelectric elements are needed. It is mainly composed of the base, the slider, piezo-stack 1, piezo-stack 2, flexure mechanism 1, flexure mechanism 2, two wedge blocks, four micrometer knobs and eight screws. Piezo-stack 1 (AE0505D16, 5 × 5 × 20 mm, NEC/TOKIN CORPORATION) is inserted into the flexure mechanism 1 through the wedge block to push the linear slider. The assembly process of the piezoelectric stack 2 and the flexure mechanism 2 are the same. The high-precision four-micron knob (M6 from SHSIWI) is utilized to adjust the preloading force between the flexure mechanism and the slider. The slider is a commercial linear guide with high linearity produced by THK. The flexure mechanism is made of aluminum alloy AL7075 manufactured by WEDM. Screws are applied to stably assemble all components on the base. The overall size of the proposed stepping piezoelectric actuator is 100 mm × 60 mm × 18 mm.
\nStructure of the proposed simplified piezoelectric actuator and motion principle [26].
Two piezoelectric “legs” are required to alternately drive the slider, and this is why they are sometimes called “walking” type piezoelectric actuators. In addition, for traditional “walking” type piezoelectric actuator, in each piezoelectric “leg”, at least two piezoelectric elements are required (one for flexure movement and one for longitudinal movement). The movement principle of the stepping piezoelectric actuator is the “circular movement” of the piezoelectric “legs”. In short, each piezoelectric “leg” should achieve two movements in x and y directions.
\nIn the proposed study by Li et al., the parasitic movement of the flexure mechanism is applied to simplify the entire system. Generally, the piezo-stack could only achieve the one motion in its longitudinal direction. Whereas, as shown in Figure 8(b), with the aid of the asymmetrical flexure mechanism, the piezo-stack will generate an oblique upward force, which causes the motion displacement in both x and y directions. The parasitic movement L\nx in x direction is used to drive the linear movement of the slider. However, only one flexure mechanism cannot achieve walking motion, and at least two flexure mechanisms (“legs”) are required. In addition, during the movement, the input square wave voltages U\n1 and U\n2 have the same magnitude but different phases. The experimental results display that the application of the parasitic motion of the flexure mechanism is able to simplify the inchworm type piezoelectric actuator. The stepping motion of the proposed actuator requires only two piezoelectric elements and two input signals. Additionally, performance of the proposed simplified piezoelectric actuator (stepping performance, speed performance, and load performance) has a certain relationship with the input voltage and frequency. Under the conditions of U = 100 V and f = 1 Hz, the maximum step displacement ΔL = 1.75 μm. Under the condition of U = 30 V and f = 1 Hz, the minimum step displacement ΔL = 0.18 μm. When U = 100 V, f = 20 Hz, the maximum movement speed V\ns = 39.78 μm. This study verifies the feasibility of design and simplification of inchworm type piezoelectric actuators with parasitic motion of flexure mechanisms, and provides a new idea for the research of piezoelectric actuators. Potential applications in optical engineering and cellular operating systems require more work.
\nFor most of the inchworm type piezoelectric actuators, three input signals are necessary for one driving unit and two clamping units, which make the control system also complicated. In order to simplify the control system, Gao et al. proposed one novel piezoelectric inchworm actuator which uses a DC motor to drive the permanent magnet for alternate clamping, applies a laser beam sensor to detect the position of the permanent magnet and generates an excitation signal to drive the piezoelectric stack [27]. The actuator only needs a DC signal to drive and can adjust the frequency by changing the motor speed. The movement mechanism of the actuator is emphatically discussed, and the influence of the permanent magnet structure on the clamp is studied. The flexibility matrix method and COMSOL finite element software are used to simulate and analyze the flexure hinge. The driving signal for the piezoelectric stack is generated by self-sensing and automatically adapts to the frequency change, which simplifies the control signal of the inchworm actuator. The use of the magnetic clamping unit solves the serious friction and wear problems of the current clamping method of piezoelectric inchworm actuators. In addition, the driving unit and clamping unit of the proposed piezoelectric inchworm actuator are tested experimentally. The experimental results confirm the feasibility of the proposed scheme and obtained relevant optimized structural parameters.
\nThe overall structure of the proposed actuator, as shown in Figure 9, is mainly composed of a sensing unit, a driving unit and a clamping unit. As shown in Figure 9(a), the clamping unit is mainly composed of a DC motor, a motor base, a permanent magnet after magnetization (RPM, red), a permanent magnet before magnetization (NRPM, blue), bearings and a bearing housing. As shown in Figure 9(b), the sensing unit includes a cam, a laser beam sensor (OLS) and a bracket. The driving unit includes a flexible hinge mechanism with integrated piezoelectric stack (AE0505D16, NEC/TOKIN CORPORATION), a wedge-shaped adjusting mechanism (built-in a pair of wedges and a pre-tightening bolt) and a slider, as shown in Figure 9(c). The designed slider can slide in the sliding groove of the flexible hinge mechanism. Two clamping modules and cams are fixed at the end of the output shaft of the DC motor, and each clamping module is assembled by a radially polarized permanent magnet RPM and a non-radially polarized permanent magnet NRPM. The piezoelectric stack is preloaded by the wedge-shaped adjusting mechanism and nested in the installation slot of the flexible hinge mechanism. The laser beam sensor is supported by two brackets and generates an excitation signal by detecting the position of the cam. In addition, the support block, the DC motor and the bearing are assembled on the base with eight bolts.
\nStructure of the actuator by Gao et al.: (a) sensing unit; (b) sensing unit; (c) driving unit [27].
The proposed inchworm actuator by Gao et al. utilizes a DC motor to drive the permanent magnet for rotating to achieve alternate clamping. The actuator does not need to input the driving voltage signal of the piezoelectric stack. It only senses the position of the permanent magnet through the laser beam sensor, and generates an excitation signal to drive the piezoelectric stack to achieve precise linear displacement output. Its working principle is shown in Figure 10. Work performance of the proposed actuator was studied carefully. For the important component of the driving unit, the “Z” type flexure hinge, the flexibility matrix method is used to perform theoretical calculations. The error between the simulation results and the theoretical calculation results is about 2.13%, indicating the accuracy of the calculation; for the magnetic clamping unit, when the clamping distance is 1 mm, the magnetic clamping unit has better clamping capability. The experimental results show that the actuator has a good linear displacement. When U\ne = 150 V and f = 40 Hz, its maximum movement speed is 481.43 μm/s, and the maximum load is m = 950 g.
\nWorking principle of the inchworm piezoelectric actuator with simplified control system by Gao et al. [27].
The inchworm type piezoelectric drive device can not only obtain large output stroke, but also ensure high output accuracy and load-carrying capacity, which is favored by many scholars. The research of Inchworm piezoelectric driving device has its own characteristics at home and abroad, which provides a favorable technical basis for the development and application of piezoelectric precision drive technology. Besides the above future directions, the existing inchworm piezoelectric actuator is still in the stage of empirical design and test, lacking of relevant theoretical model guidance, and there are problems of empirical design and repeated attempts. Therefore, it is necessary to establish the dynamic model of the inchworm piezoelectric actuator to guide the design and research of the inchworm piezoelectric drive device. In addition, the miniaturization is always the hot point for piezoelectric actuators which could leads to the real application in many research and industrial fields.
\nRisaku et al. have developed a large stroke and high precision inchworm actuator [28] (Figure 11). With the combination of piezoelectric and electrostatic motion principles, the displacement accuracy of each step reaches tens of nanometers, which can be called ultra-high precision. The displacement accuracy is 59 nm/cycle, but the maximum travel distance is only 600 μm, which needs to be improved.
\nMiniaturized inchworm type actuators: (a) by Risaku et al. [28]; (b) by Mehmet et al. [29].
In order to solve the shortcomings that most inchworm type piezoelectric actuators require larger input voltage, Mehmet et al. took the lead in developing a new type of low voltage, largestroke, and large output inchworm actuator based on the micro-electromechanical systems (MEMS) [29]. It mainly applies the principle of electrostatic motion. Through the amplification of the flexible hinge, it achieves a total displacement of ±18 μm and an output force of ±30 μN at a low voltage of 7 V; a displacement of ±35 μm can be achieved at a voltage of 16 V, ±110 μN output force.
\nThe inchworm movement is a high-precision driving method that imitates the movement form of the inchworm in nature to realize the stepping movement of itself or the holding object. Inchworm movement is a kind of stepping movement, which is different from other continuous movement. Its movement can be regarded as a combination of movement and stop in time, but it is also a continuous movement from the perspective of the overall effect of the movement. Inchworm motion can easily achieve large-stroke step-by-step linear motion. Although scholars in various countries have conducted a number of research work on inchworm-type piezoelectric driving devices, most of their research content is linear inchworm driving devices, which involve rotation. There are few reports on the inchworm actuator, and the existing inchworm-type piezoelectric actuator has complex structure control, lacks relevant theoretical model guidance, and has problems of empirical design and repeated attempts. In the future, there is still a lot of work to be solved for the inchworm piezoelectric actuator to promote the real practical use of the inchworm piezoelectric actuator.
\nThis work is supported by the Natural Science Foundation of Zhejiang Province: LY19E050010, LY20E050009, LGF20E050001; General Research Projects of Zhejiang Provincial Department of Education: Y201943038; Zhejiang Provincial Key Research and Development Project of China: 2021C01181.ADDIN EN.REFLISTX.
\nWe pride ourselves on our belief that scientific progress is generated by collaboration, that the playing field for scientific research should be leveled globally, and that research conducted in a democratic environment, with the use of innovative technologies, should be made available to anyone.
\n\nWe look forward to hearing from individuals and organizations who are interested in new discoveries and sharing their research.
",metaTitle:"Contact us",metaDescription:null,metaKeywords:null,canonicalURL:"/page/contact-us",contentRaw:'[{"type":"htmlEditorComponent","content":"Headquarters
\\n\\n\\n\\n
London
\\n\\nIntechOpen Limited
\\n\\n5 Princes Gate Court,
\\n\\nLondon, SW7 2QJ, UK
\\n\\nPhone: +44 20 8089 5702
\\n\\n\\n\\n
Rijeka
\\n\\nIN TECH d.o.o.
\\n\\nJaneza Trdine 9
\\n\\n51000 Rijeka - Croatia
\\n\\nPhone: +385 (0) 51 770 447
\\n"},{"imagePath":"/media/thumbnail/780x430/3","type":"mediaComponent","mediaType":"image","mimeType":"image/jpeg","caption":"","originalUrl":"/media/thumbnail/600x600/3","alignment":"center"},{"type":"htmlEditorComponent","content":"General Inquires: info@intechopen.com
\\n\\nFunders: funders@intechopen.com
\\n\\n*INTECHOPEN LIMITED is a privately owned company registered in England and Wales, No. 11086078 Registered Office: 5 Princes Gate Court, London, SW7 2QJ, UK
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Headquarters
\n\n\n\n
London
\n\nIntechOpen Limited
\n\n5 Princes Gate Court,
\n\nLondon, SW7 2QJ, UK
\n\nPhone: +44 20 8089 5702
\n\n\n\n
Rijeka
\n\nIN TECH d.o.o.
\n\nJaneza Trdine 9
\n\n51000 Rijeka - Croatia
\n\nPhone: +385 (0) 51 770 447
\n"},{imagePath:"/media/thumbnail/780x430/3",type:"mediaComponent",mediaType:"image",mimeType:"image/jpeg",caption:"",originalUrl:"/media/thumbnail/600x600/3",alignment:"center"},{type:"htmlEditorComponent",content:'General Inquires: info@intechopen.com
\n\nFunders: funders@intechopen.com
\n\n*INTECHOPEN LIMITED is a privately owned company registered in England and Wales, No. 11086078 Registered Office: 5 Princes Gate Court, London, SW7 2QJ, UK
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"160349",title:null,name:null,middleName:null,surname:null,slug:"",fullName:null,position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"25887",title:"Dr.",name:null,middleName:null,surname:"Abbasi",slug:"abbasi",fullName:"Abbasi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"161332",title:"Dr",name:null,middleName:null,surname:"Abu-El Hassan",slug:"abu-el-hassan",fullName:"Abu-El Hassan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"212347",title:"Dr.",name:null,middleName:null,surname:"Abubakar",slug:"abubakar",fullName:"Abubakar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"93806",title:"Dr",name:null,middleName:null,surname:"Adani",slug:"adani",fullName:"Adani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"158756",title:"Dr",name:null,middleName:null,surname:"Adler",slug:"adler",fullName:"Adler",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"63002",title:"Dr.",name:null,middleName:null,surname:"Agius",slug:"agius",fullName:"Agius",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"34637",title:"Dr.",name:null,middleName:null,surname:"Ahmed",slug:"ahmed",fullName:"Ahmed",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"118228",title:"Dr",name:null,middleName:null,surname:"Ahmed",slug:"ahmed",fullName:"Ahmed",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"89784",title:"Dr",name:null,middleName:null,surname:"Ai",slug:"ai",fullName:"Ai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"158540",title:"Dr",name:null,middleName:null,surname:"Al-Jumaily",slug:"al-jumaily",fullName:"Al-Jumaily",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"113521",title:"Dr",name:null,middleName:null,surname:"Alavi Panah",slug:"alavi-panah",fullName:"Alavi Panah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5240},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15812}],offset:12,limit:12,total:118381},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:19},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:21},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:6},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5252},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"540",title:"Wireless Communication Network",slug:"communications-and-security-wireless-communication-network",parent:{title:"Communications and Security",slug:"communications-and-security"},numberOfBooks:10,numberOfAuthorsAndEditors:266,numberOfWosCitations:475,numberOfCrossrefCitations:263,numberOfDimensionsCitations:522,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"communications-and-security-wireless-communication-network",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9219",title:"Recent Trends in Communication Networks",subtitle:null,isOpenForSubmission:!1,hash:"80b5339ac7ae4b7a91fd4e71b4d468e5",slug:"recent-trends-in-communication-networks",bookSignature:"Pinaki Mitra",coverURL:"https://cdn.intechopen.com/books/images_new/9219.jpg",editedByType:"Edited by",editors:[{id:"89103",title:"Prof.",name:"Pinaki",middleName:null,surname:"Mitra",slug:"pinaki-mitra",fullName:"Pinaki Mitra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7322",title:"Wireless Mesh Networks",subtitle:"Security, Architectures and Protocols",isOpenForSubmission:!1,hash:"db5ab870ec11f9d4d1ebb54c7dd6e2bf",slug:"wireless-mesh-networks-security-architectures-and-protocols",bookSignature:"Mutamed Khatib and Samer Alsadi",coverURL:"https://cdn.intechopen.com/books/images_new/7322.jpg",editedByType:"Edited by",editors:[{id:"22273",title:"Dr.",name:"Mutamed",middleName:null,surname:"Khatib",slug:"mutamed-khatib",fullName:"Mutamed Khatib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8662",title:"Data Service Outsourcing and Privacy Protection in Mobile Internet",subtitle:null,isOpenForSubmission:!1,hash:"697eadc7a3390023bb43d1d2406f0ebb",slug:"data-service-outsourcing-and-privacy-protection-in-mobile-internet",bookSignature:"Zhen Qin, Erqiang Zhou, Yi Ding, Yang Zhao, Fuhu Deng and Hu Xiong",coverURL:"https://cdn.intechopen.com/books/images_new/8662.jpg",editedByType:"Authored by",editors:[{id:"101193",title:"Dr.",name:"Hu",middleName:null,surname:"Xiong",slug:"hu-xiong",fullName:"Hu Xiong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"3139",title:"Wireless Ad-Hoc Networks",subtitle:null,isOpenForSubmission:!1,hash:"5a8ce0920ae4a8c48e38a9bc60684aa1",slug:"wireless-ad-hoc-networks",bookSignature:"Hongbo Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/3139.jpg",editedByType:"Edited by",editors:[{id:"154490",title:"Dr.",name:"Hongbo",middleName:null,surname:"Zhou",slug:"hongbo-zhou",fullName:"Hongbo Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1938",title:"Advanced Wireless LAN",subtitle:null,isOpenForSubmission:!1,hash:"e4d4c069bc97e5c0ad97e60e023b6827",slug:"advanced-wireless-lan",bookSignature:"Song Guo",coverURL:"https://cdn.intechopen.com/books/images_new/1938.jpg",editedByType:"Edited by",editors:[{id:"15566",title:"Dr.",name:"Song",middleName:null,surname:"Guo",slug:"song-guo",fullName:"Song Guo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"97",title:"Cellular Networks",subtitle:"Positioning, Performance Analysis, Reliability",isOpenForSubmission:!1,hash:"ca45ba51c623c9aef3c0d25772413039",slug:"cellular-networks-positioning-performance-analysis-reliability",bookSignature:"Agassi Melikov",coverURL:"https://cdn.intechopen.com/books/images_new/97.jpg",editedByType:"Edited by",editors:[{id:"23032",title:"Dr.",name:"Agassi",middleName:null,surname:"Melikov",slug:"agassi-melikov",fullName:"Agassi Melikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"137",title:"Sustainable Wireless Sensor Networks",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"sustainable-wireless-sensor-networks",bookSignature:"Winston Seah and Yen Kheng Tan",coverURL:"https://cdn.intechopen.com/books/images_new/137.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"135",title:"Wireless Sensor Networks",subtitle:"Application - Centric Design",isOpenForSubmission:!1,hash:null,slug:"wireless-sensor-networks-application-centric-design",bookSignature:"Geoff V Merrett and Yen Kheng Tan",coverURL:"https://cdn.intechopen.com/books/images_new/135.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"136",title:"Smart Wireless Sensor Networks",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"smart-wireless-sensor-networks",bookSignature:"Hoang Duc Chinh and Yen Kheng Tan",coverURL:"https://cdn.intechopen.com/books/images_new/136.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3628",title:"Mobile and Wireless Communications",subtitle:"Network Layer and Circuit Level Design",isOpenForSubmission:!1,hash:null,slug:"mobile-and-wireless-communications-network-layer-and-circuit-level-design",bookSignature:"Salma Ait Fares and Fumiyuki Adachi",coverURL:"https://cdn.intechopen.com/books/images_new/3628.jpg",editedByType:"Edited by",editors:[{id:"3125",title:"Dr.",name:"Salma",middleName:null,surname:"Ait Fares",slug:"salma-ait-fares",fullName:"Salma Ait Fares"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,mostCitedChapters:[{id:"9002",doi:"10.5772/7698",title:"Terrestrial Free-Space Optical Communications",slug:"terrestrial-free-space-optical-communications",totalDownloads:7305,totalCrossrefCites:8,totalDimensionsCites:73,book:{slug:"mobile-and-wireless-communications-network-layer-and-circuit-level-design",title:"Mobile and Wireless Communications",fullTitle:"Mobile and Wireless Communications Network Layer and Circuit Level Design"},signatures:"Ghassemlooy Z. and Popoola W. O.",authors:null},{id:"12472",doi:"10.5772/13802",title:"Monitoring of Human Movements for Fall Detection and Activities Recognition in Elderly Care Using Wireless Sensor Network: a Survey",slug:"monitoring-of-human-movements-for-fall-detection-and-activities-recognition-in-elderly-care-using-wi",totalDownloads:14793,totalCrossrefCites:36,totalDimensionsCites:54,book:{slug:"wireless-sensor-networks-application-centric-design",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks: Application - Centric Design"},signatures:"Stefano Abbate, Marco Avvenuti, Paolo Corsini, Janet Light and Alessio Vecchio",authors:[{id:"14025",title:"MSc.",name:"Stefano",middleName:null,surname:"Abbate",slug:"stefano-abbate",fullName:"Stefano Abbate"},{id:"15973",title:"Prof.",name:"Marco",middleName:null,surname:"Avvenuti",slug:"marco-avvenuti",fullName:"Marco Avvenuti"},{id:"15974",title:"Prof.",name:"Paolo",middleName:null,surname:"Corsini",slug:"paolo-corsini",fullName:"Paolo Corsini"},{id:"15975",title:"PhD.",name:"Alessio",middleName:null,surname:"Vecchio",slug:"alessio-vecchio",fullName:"Alessio Vecchio"},{id:"15976",title:"Prof.",name:"Janet",middleName:null,surname:"Light",slug:"janet-light",fullName:"Janet Light"}]},{id:"12418",doi:"10.5772/13062",title:"Review of Energy Harvesting Technologies for Sustainable WSN",slug:"review-of-energy-harvesting-technologies-for-sustainable-wsn",totalDownloads:3882,totalCrossrefCites:2,totalDimensionsCites:49,book:{slug:"sustainable-wireless-sensor-networks",title:"Sustainable Wireless Sensor Networks",fullTitle:"Sustainable Wireless Sensor Networks"},signatures:"Yen Kheng Tan and Sanjib Kumar Panda",authors:[{id:"15547",title:"Dr.",name:"Sanjib Kumar",middleName:null,surname:"Panda",slug:"sanjib-kumar-panda",fullName:"Sanjib Kumar Panda"},{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}]}],mostDownloadedChaptersLast30Days:[{id:"72470",title:"A Mobile Ad Hoc Network Routing Protocols: A Comparative Study",slug:"a-mobile-ad-hoc-network-routing-protocols-a-comparative-study",totalDownloads:419,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"recent-trends-in-communication-networks",title:"Recent Trends in Communication Networks",fullTitle:"Recent Trends in Communication Networks"},signatures:"Alagan Ramasamy Rajeswari",authors:[{id:"320070",title:"Dr.",name:"Rajeswari",middleName:null,surname:"Alagan Ramasamy",slug:"rajeswari-alagan-ramasamy",fullName:"Rajeswari Alagan Ramasamy"}]},{id:"12472",title:"Monitoring of Human Movements for Fall Detection and Activities Recognition in Elderly Care Using Wireless Sensor Network: a Survey",slug:"monitoring-of-human-movements-for-fall-detection-and-activities-recognition-in-elderly-care-using-wi",totalDownloads:14791,totalCrossrefCites:36,totalDimensionsCites:54,book:{slug:"wireless-sensor-networks-application-centric-design",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks: Application - Centric Design"},signatures:"Stefano Abbate, Marco Avvenuti, Paolo Corsini, Janet Light and Alessio Vecchio",authors:[{id:"14025",title:"MSc.",name:"Stefano",middleName:null,surname:"Abbate",slug:"stefano-abbate",fullName:"Stefano Abbate"},{id:"15973",title:"Prof.",name:"Marco",middleName:null,surname:"Avvenuti",slug:"marco-avvenuti",fullName:"Marco Avvenuti"},{id:"15974",title:"Prof.",name:"Paolo",middleName:null,surname:"Corsini",slug:"paolo-corsini",fullName:"Paolo Corsini"},{id:"15975",title:"PhD.",name:"Alessio",middleName:null,surname:"Vecchio",slug:"alessio-vecchio",fullName:"Alessio Vecchio"},{id:"15976",title:"Prof.",name:"Janet",middleName:null,surname:"Light",slug:"janet-light",fullName:"Janet Light"}]},{id:"14756",title:"Call-Level Performance Sensitivity in Cellular Networks",slug:"call-level-performance-sensitivity-in-cellular-networks",totalDownloads:1586,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cellular-networks-positioning-performance-analysis-reliability",title:"Cellular Networks",fullTitle:"Cellular Networks - Positioning, Performance Analysis, Reliability"},signatures:"Felipe A. Cruz-Pérez, Genaro Hernández-Valdez and Andrés Rico-Páez",authors:[{id:"19751",title:"Mr.",name:"Genaro",middleName:null,surname:"Hernández-Valdez",slug:"genaro-hernandez-valdez",fullName:"Genaro Hernández-Valdez"},{id:"20630",title:"Dr.",name:"Felipe A.",middleName:null,surname:"Cruz Pérez",slug:"felipe-a.-cruz-perez",fullName:"Felipe A. Cruz Pérez"},{id:"22692",title:"Mr.",name:"Andres",middleName:null,surname:"Rico-Paez",slug:"andres-rico-paez",fullName:"Andres Rico-Paez"}]},{id:"41427",title:"Reducing Routing Loops Under Link-State Routing in Wireless Mesh Networks",slug:"reducing-routing-loops-under-link-state-routing-in-wireless-mesh-networks",totalDownloads:1997,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"wireless-ad-hoc-networks",title:"Wireless Ad-Hoc Networks",fullTitle:"Wireless Ad-Hoc Networks"},signatures:"Takuya Yoshihiro",authors:[{id:"13453",title:"Dr.",name:"Takuya",middleName:null,surname:"Yoshihiro",slug:"takuya-yoshihiro",fullName:"Takuya Yoshihiro"}]},{id:"12464",title:"Wireless Sensor Networks - An Introduction",slug:"wireless-sensor-networks-an-introduction",totalDownloads:13105,totalCrossrefCites:17,totalDimensionsCites:29,book:{slug:"wireless-sensor-networks-application-centric-design",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks: Application - Centric Design"},signatures:"Qinghua Wang and Ilangko Balasingham",authors:[{id:"13799",title:"Dr.",name:"Qinghua",middleName:null,surname:"Wang",slug:"qinghua-wang",fullName:"Qinghua Wang"},{id:"23809",title:"Prof.",name:"Ilangko",middleName:null,surname:"Balasingham",slug:"ilangko-balasingham",fullName:"Ilangko Balasingham"}]},{id:"12487",title:"Imaging in UWB Sensor Networks",slug:"imaging-in-uwb-sensor-networks",totalDownloads:2516,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"wireless-sensor-networks-application-centric-design",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks: Application - Centric Design"},signatures:"Ole Hirsch, Rudolf Zetik and Reiner Thomä",authors:[{id:"14629",title:"Dr.",name:"Ole",middleName:null,surname:"Hirsch",slug:"ole-hirsch",fullName:"Ole Hirsch"},{id:"14630",title:"Dr.",name:"Rudolf",middleName:null,surname:"Zetik",slug:"rudolf-zetik",fullName:"Rudolf Zetik"},{id:"14632",title:"Prof.",name:"Reiner",middleName:null,surname:"Thomä",slug:"reiner-thoma",fullName:"Reiner Thomä"}]},{id:"70079",title:"MAC Aspects of Millimeter-Wave Cellular Networks",slug:"mac-aspects-of-millimeter-wave-cellular-networks",totalDownloads:259,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"wireless-mesh-networks-security-architectures-and-protocols",title:"Wireless Mesh Networks",fullTitle:"Wireless Mesh Networks - Security, Architectures and Protocols"},signatures:"Hossein S. Ghadikolaei",authors:null},{id:"12466",title:"Wildlife Assessment Using Wireless Sensor Networks",slug:"wildlife-assessment-using-wireless-sensor-networks",totalDownloads:2649,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"wireless-sensor-networks-application-centric-design",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks: Application - Centric Design"},signatures:"Harry Gros-desormeaux, Philippe Hunel and Nicolas Vidot",authors:[{id:"15994",title:"Dr.",name:"Nicolas",middleName:null,surname:"Vidot",slug:"nicolas-vidot",fullName:"Nicolas Vidot"},{id:"15995",title:"Dr.",name:"Philippe",middleName:null,surname:"Hunel",slug:"philippe-hunel",fullName:"Philippe Hunel"},{id:"15996",title:"Dr.",name:"Harry",middleName:null,surname:"Gros-Desormeaux",slug:"harry-gros-desormeaux",fullName:"Harry Gros-Desormeaux"}]},{id:"12457",title:"Security of Wireless Sensor Networks: Current Status and Key Issues",slug:"security-of-wireless-sensor-networks-current-status-and-key-issues",totalDownloads:2401,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"smart-wireless-sensor-networks",title:"Smart Wireless Sensor Networks",fullTitle:"Smart Wireless Sensor Networks"},signatures:"Chun-ta Li",authors:[{id:"13973",title:"Dr.",name:"Chun-Ta",middleName:null,surname:"Li",slug:"chun-ta-li",fullName:"Chun-Ta Li"}]},{id:"41429",title:"Review of Autoconfiguration for MANETs",slug:"review-of-autoconfiguration-for-manets",totalDownloads:1924,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"wireless-ad-hoc-networks",title:"Wireless Ad-Hoc Networks",fullTitle:"Wireless Ad-Hoc Networks"},signatures:"Hongbo Zhou and Matt W. Mutka",authors:[{id:"154490",title:"Dr.",name:"Hongbo",middleName:null,surname:"Zhou",slug:"hongbo-zhou",fullName:"Hongbo Zhou"}]}],onlineFirstChaptersFilter:{topicSlug:"communications-and-security-wireless-communication-network",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/133868/catalin-florea",hash:"",query:{},params:{id:"133868",slug:"catalin-florea"},fullPath:"/profiles/133868/catalin-florea",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()