Thermophysical properties of some common PCMs with high latent heat.
\r\n\tmolecular and imaging methods for detection and identification of plant diseases have many limitations that will be discussed in this book. This sparked interest in the development of minimally invasive and substrate general spectroscopic
\r\n\ttechniques that can be used directly in the field for confirmatory plant disease diagnostics.
\r\n\tThis book will also discuss recent progress in development of reflectance, infrared, Raman and surface-enhanced Raman
\r\n\tspectroscopy for detection and identification of plant diseases. It will also present advantages and disadvantages of these optical spectroscopy methods compared to the most common molecular and imaging techniques.
\r\n\tThe book also aims to discuss specific plant diseases, their symptoms and available methods of treatment.
",isbn:"978-1-83962-516-9",printIsbn:"978-1-83962-515-2",pdfIsbn:"978-1-83962-517-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"daef7c0ea5e568cfc5ae1613a74634b3",bookSignature:"Dr. Dmitry Kurouski",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10113.jpg",keywords:"PCR, ELISA, UAV, Satellite, Spectroscopic Diagnostics, Wheat, Sorghum, Rice, Corn, Fungal Pathogens, Viral Pathogens, Bacterial Pathogens",numberOfDownloads:285,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 10th 2020",dateEndSecondStepPublish:"September 15th 2020",dateEndThirdStepPublish:"November 14th 2020",dateEndFourthStepPublish:"February 2nd 2021",dateEndFifthStepPublish:"April 3rd 2021",remainingDaysToSecondStep:"5 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Assistant Professor Kurouski obtained his Ph.D. at the State University of New York. He is an Assistant Professor at Texas A&M University. His experience includes working as a Senior Research Scientist at Boehringer-Ingelheim Pharmaceuticals and at Chemistry Department at Northwestern University, USA.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"264297",title:"Dr.",name:"Dmitry",middleName:null,surname:"Kurouski",slug:"dmitry-kurouski",fullName:"Dmitry Kurouski",profilePictureURL:"https://mts.intechopen.com/storage/users/264297/images/system/264297.jpeg",biography:"Dr. Dmitry Kurouski obtained his Ph.D. in Analytical/Physical Chemistry at State University of New York, Albany, USA. He is an Assistant Professor at Texas A&M University, at Department of Biochemistry & Biophysics. His experience includes working as a Senior Research Scientist at Boehringer-Ingelheim Pharmaceuticals and at Chemistry Department at Northwestern University, USA. He received numerous honors and awards for his continuous work in the field.",institutionString:"Texas A&M University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Texas A&M University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:[{id:"74757",title:"The Trends in the Evaluation of Fusarium Wilt of Chickpea",slug:"the-trends-in-the-evaluation-of-fusarium-wilt-of-chickpea",totalDownloads:112,totalCrossrefCites:0,authors:[null]},{id:"74639",title:"Diagnosis of Fungal Plant Pathogens Using Conventional and Molecular Approaches",slug:"diagnosis-of-fungal-plant-pathogens-using-conventional-and-molecular-approaches",totalDownloads:65,totalCrossrefCites:0,authors:[null]},{id:"74600",title:"Blister Blight Disease of Tea: An Enigma",slug:"blister-blight-disease-of-tea-an-enigma",totalDownloads:108,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"184402",firstName:"Romina",lastName:"Rovan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/184402/images/4747_n.jpg",email:"romina.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7059",title:"Amyloid Diseases",subtitle:null,isOpenForSubmission:!1,hash:"d9a197d34d3d6006af726d577060f928",slug:"amyloid-diseases",bookSignature:"Dmitry Kurouski",coverURL:"https://cdn.intechopen.com/books/images_new/7059.jpg",editedByType:"Edited by",editors:[{id:"264297",title:"Dr.",name:"Dmitry",surname:"Kurouski",slug:"dmitry-kurouski",fullName:"Dmitry Kurouski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"53075",title:"LTCC-Based System-in-Package (SiP) Technology for Microwave System Integration",doi:"10.5772/66327",slug:"ltcc-based-system-in-package-sip-technology-for-microwave-system-integration",body:'\nIn general, the final stage for implementation of microwave systems is system integration. It could be either integrated circuit (IC) die-level integration or package level one. And also, how to integrate microwave systems should be considered at the first stage of its development. Roughly, there are two categories for an integration technology of microwave systems: on-chip technology and in-package one. The progress in these integration technologies has been formidable over the past decade for microwave applications. In these technologies, the main key issue is antenna integration on the chip or in the package, because its integration can provide several advantages such as low cost, compact size, high reliability and high reproducibility.
\nIn the case of on-chip integration technologies based on complementary metal-oxide-semiconductor (CMOS), bipolar CMOS (BiCMOS) and silicon germanium (SiGe) BiCMOS, various researches have been explored up to recently. However, due to high permittivity (~11.7) and low resistivity (~10 Ω cm) [1, 2] of the Si-based substrate, integrated antennas have been suffered from low radiation efficiency and matching bandwidth. In order to modify properties of the substrate, although several novel techniques such as air cavity [3], artificial magnetic conductor [4], suspended membrane [5], ion implantation [6] and meta-surface [7] have been investigated; high-gain and broadband requirements are still below expectations, compared to those of package-based integration technologies [1, 8, 9].
\nIn the package-based integration technologies, aside from highly integrated radio dies, almost passive components such as antenna, BPF and others are monolithically realized in the package substrate, thanks to three-dimensional (3D) stacking capability using via, multilayer and cavity. Very compact and high-performance microwave modules have been recently presented by using multilayer ceramic or printed circuit board (PCB) [10] technologies. Low-temperature co-fired ceramic (LTCC) [11–13] is a representative multilayer ceramic technology. For the past two decades, several LTCC modules involving antennas and other passive circuits with microwave radio chips have been developed and also it is possible to integrate high-gain antennas because of its properties of low-loss substrate and metallization (Ag).
\nIn this chapter, highly integrated monolithic SiP modules have been presented for microwave system applications. In order to integrate radio systems in the single LTCC package module, key technologies such as suppressing parasitic resonant modes, low-loss transitions and compact and high-performance passive devices have been investigated after definition of monolithic SiP module. Finally, a 61 GHz transmitter (Tx) LTCC SiP module and a 60 GHz ASK transceiver one have been implemented in a size of 36 × 12 × 0.9 and 17.8 × 17.9 × 0.6 mm3, respectively and they have been characterized in terms of an output power, spectrum and link test.
\nFigure 1 shows a three-dimensional (3D) schematic concept of the monolithic LTCC SiP module integrating a whole radio system consisting of active ICs and passive components in the single LTCC substrate. The filter and antenna are monolithically integrated in the LTCC dielectric and on its top layer, respectively. Active ICs are also mounted on the top of the LTCC multilayers. For miniaturization of the SiP module, passive circuits such as filters, antenna, surface mounted technology (SMT) pads, DC bias feedings and transmission lines are vertically or horizontally deployed by using vertical via interconnections, internal ground plane (I-GND) and signal line transitions in the substrate. Several transmission lines such as a strip line (SL), conductor-backed coplanar waveguide (CB-CPW), or microstrip line (MSL) are utilized within the LTCC block or on its top layer. By considering device and interconnection structures to be integrated in the SiP module, suitable transmission line is designed.
\nThree-dimensional (3D) schematic concept of a monolithic SiP module.
However, because various integrated transmission lines, passive devices and transitions are compactly integrated in the small area of the monolithic LTCC SiP module, they can make parasitic propagating structures and lead to unwanted cross talk issue. So, suppression of the parasitic resonant modes is one of the key issues in the design of SiP module. In addition, attenuation in interconnections between different signal lines or inter layers should be minimized for power efficiency and noise performance of the SiP module. And also, high-performance and compact passive devices should be designed.
\nA CB-CPW and SL are in general used as signal lines of a SiP module because of their low dispersion and radiation. The CB-CPW consists of a lower and upper ground plane, embedded vias and a signal line (W) and the SL as shown in Figure 2A. However, these ground planes and vias can make parasitic resonant circuits such as rectangular waveguide (R-W/G), a parallel-plate waveguide and a patch antenna [14, 15] and they cause undesired resonant modes. An input signal is coupled by the gap of the CB-CPW, propagates through the parallel plate and finally radiates due to a parasitic patch resonator. In the case of the SL as shown in Figure 2B, it is basically a buried device and its structure is also composed of a lower and upper ground plane, vias and a strip. The ground planes and vias generate the parasitic R-W/G, which is analogous to that of the CB-CPW.
\nStructure of a CB-CPW (A) and SL (B) involving parasitic resonant circuits.
The resonant frequency (fWG) due to the R-W/G is given by Pozar [16],
\nwhere D is the spacing between vias and it is the same as a horizontal dimension of a rectangular waveguide, εo is the permittivity of free space, μo is the permeability of free space and εr is the relative dielectric constant of the substrate.
\nThe resonant frequency (fpr) due to the surface ground planes is similar to that of the simple patch antenna [14, 15],
\nwhere Wg is a width of a rectangular patch and c is the speed of light.
\nFigure 3 shows measured insertion loss characteristics of a 50 Ω CB-CPW line (A) and a SL BPF (B) fabricated in the LTCC substrate. Unwanted resonant modes are distinctly observed in the CB-CPW and SL BPF. In the case of the CB-CPW as shown in Figure 3A, its width, gap and length are 300, 150 and 3260 μm, respectively and its substrate height is 400 μm. Vias in order to short the lower and upper ground planes are placed at the both sides with a distance (D) of 1620 μm. The parasitic R-W/G is generated in the CB-CPW due to the ground planes and vias. In these dimensions of the CB-CPW, a propagation mode of the parasitic R-W/G is generated at 34 GHz. Resonances at 19.5 and 39 GHz are due to a parasitic patch antenna mode and its harmonic, respectively. Some input signal in the CB-CPW propagates to the parasitic R-W/G by coupling through its gap, passes through a parallel-plate W/G and finally radiates from the parasitic patch antenna. Figure 3B presents tested insertion losses of the 40 GHz SL BPF. The BPF was realized with six-stacked LTCC layers. Among the six-stacked layers, the SL filter was placed on the third layer and the CPW pads are on the top layer for on-wafer probing. Both top and bottom ground planes were connected to each other through ground vias to equalize the electric potential. The inset of Figure 3B shows the critical two dimensions (DCPW and DSL), which cause resonant phenomena. DCPW of 1.15 mm is the distance between embedded vias. The lower and upper ground planes of the SL are shorted by using via blocks. The distance of DSL is 2.32 mm. Two parasitic R-W/Gs with the lengths of DCPW and DSL are created in this SL BPF. Therefore, its performances are degraded due to spurious responses at 36 and 47.6 GHz, which are the parasitic R-W/G modes of TE20 generated by DSL of 2.32 mm and DCPW of 1.15 mm, respectively.
\nUnwanted resonance modes due to parasitic structures in the fabricated CB-CPW (A) [an inset: the top view of the CB-CPW] and the fabricated SL BPF (B) [the inset: the layout of the BPF].
Resonance-free CB-CPW (the inset: the top view of the CB-CPW) (A) and SL BPF (the inset: X-ray photo of the fabricated SL BPF) (B).
The parasitic R-W/G modes (fWG) in operating frequency band can be successfully suppressed by placing the vias within shorter distance than the calculated value from Eq. (1), because parasitic propagating modes are generated in the higher frequency than that of an interesting band. By using this method, the CB-CPW and SL BPF were modified and fabricated. Their measured characteristics are indicated in Figure 4. The modified via placement for the CB-CPW and the SL BPF is presented in each inset of Figure 4A and B, respectively. The parasitic resonant modes are clearly suppressed in the operation frequency region [17]. In the CB-CPW, the distance (D) of 1620 μm is shortened to 700 μm and its layout and measured results are shown in Figure 4A. For the SL BPF, DCPW of 1.15 mm is modified to 760 μm, which corresponds to the parasitic rectangular WG mode of TE10 at 76 GHz. One of the two GND-via blocks facing each other is deleted in order not to make the parasitic R-W/G in the SL structure. The X-ray photo of the fabricated SL BPF and the measured loss characteristics are presented in Figure 4B.
\nFor the 3D integration of microwave radio systems, several vertical transitions such as CPW-to-SL transition [18, 19], MSL-to-SL transition [20, 21], CPW-to-CPW transition [18, 22] and coaxial-like surface mount technology (SMT) pad transition [23] have been developed. These transitions allow the integration of passive and active circuits to be placed in inner layers or mounted on the top layer. The main issue for 3D interconnection using transitions is to reduce attenuation and discontinuity. In particular, radiation due to structural discontinuity causes cross talk issue. Therefore, several attempts have been tried in order to remedy problems due to discontinuities. In order to improve impedance matching or compensate parasitics, the coaxial-like transition and intermediate ground planes have been utilized [18–23].
\nIn the vertical via transitions, the total physical height of the directly stacked vias has a decisive effect on their RF performance besides capacitive or inductive effects in the
Figure 5 shows proposed SL-to-CPW transition and its simulated performances [24]. A cross-sectional structure of the proposed SL-to-CPW via transition is shown in Figure 5A. Each LTCC layer is 100 μm high. The CPW on the top layer is connected with the embedded SL on the 4th layer (L4) by using vertical vias, which are subdivided into three-stepped one. Because of the proposed three-stepped via structure, the critical dimension, which mainly causes the physical discontinuity, is decreased from 300 to 100 μm. The wavelength (λ) on the LTCC CPW with relative dielectric constant of 7.0 is 2.56 mm at 60 GH. Its rate of the critical dimension to λ is decreased from 11 to 3.9%, respectively. However, it leads to the increase in the shunt capacitance between the vias and SL ground planes. For reduction in the increased shunt capacitance, the embedded air cavities are inserted below the stepped vias. In order to evaluate the proposed vertical via transition, the SL-to-CPW vertical transition is designed in back-to-back type as shown in Figure 5B. The ground planes of the CPWs and SL are connected by shielding vias. In order to design the 50 Ω CPW and SL, the CPW with the width of 250 μm and gap of 99 μm is designed and the width of the SL is 135 μm. For comparison purposes, the conventional transition using the directly stacked vias is also designed. For the conventional transition, two 526 μm-long CPW lines are connected with the 2650 μm-long SL. In the proposed one, two 526 μm-long CPW lines and 2050 μm-long SL are used. The air cavities are embedded through the 2nd to 5th layer below the 7th layer via and through the 2nd to 3rd layer below the 5th layer via. By using a 3-D finite integration technique (FIT) simulator [25], all transitions have been designed and analyzed. Calculated results of the proposed transition in comparison with the conventional one are presented in Figure 5C and D. The proposed transition shows better performance in terms of return and insertion loss than that of the conventional one because of reduced via discontinuities. For quantitative analysis of improved performance, radiation losses (1-|S11|2-|S21|2) of the SL-to-CPW vertical transitions are calculated by using the simulated insertion and return loss and are illustrated in Figure 5D. At 60 GHz, radiation of the proposed transition is reduced by 23 and 62% by using the three-stepped via structure and embedded air cavities, respectively, compared to the conventional one.
\nProposed SL-to-CPW via transition and its simulated performances [(A): its cross-sectional view (Lx: the number of LTCC layers), (B): its layout in a back-to-back structure, (C): return and insertion loss characteristics and (D): radiation loss ones].
The designed transitions in the back-to-back structure were fabricated using seven-layered LTCC substrate and the fabricated ones were characterized by using a probing method as shown in Figure 6. For the proposed transition, embedded air cavities are clearly formed below the 5th and 7th layer via as shown in an inset of Figure 6B and also its S11 and S21 characteristics are improved compared to the conventional one. The measured S11 and S21 of the CPW-SL-CPW are less than −10 dB and −2.0 dB, respectively, from 50 to 65 GHz. In particular, its low S21 of −1.6 dB is achieved at 60 GHz. These values represent all losses along the three-segment transmission lines and the two vertical via transitions. Considering the total loss of transmission lines with −0.19 dB, which is calculated by using a conventional line calculator, the transition loss per a ST transition is 0.7 dB at 60 GHz.
\nMeasured return losses (A) and insertion ones (B) of the fabricated vertical via transitions in the back-to-back type using the proposed transition and the conventional one (an inset: cross-sectional views of the fabricated proposed one).
In general, LTCC SiP modules have been developed in type of SMT package because of low cost and easy assembly. In order to mount LTCC SiP modules on the main board, the low-loss transition between the signal port and SMT pad is required. In addition, the excitation of package modes [26] should be investigated for millimeter-wave applications. Typical transitions from I/O (input and output) port to the SMT pad in the SiP module have been designed by using vertical via structures [18–24]. In the case of long transition with several stacked vias over seven layers (>0.7 mm), it is difficult to control discontinuities and radiation. Therefore, by using a coaxial-line structure, the SMT pad has been implemented for the SMT LTCC SiP applications.
\nIn order to suppress radiation in the long transition with several stacked vias, a SMT pad transition using a coaxial-line structure is proposed. By using a commercial tool [25], a CPW-to-coaxial line-to-SMT pad transition in a nine-layer LTCC substrate has been designed and its structure and designed results are presented in Figure 7A, B and C, respectively. The relative dielectric constant of the LTCC substrate is 7.8 at 20 GHz. Each layer is 100 μm thick. The total height of the vertical vias in the transition region is 700 μm. Because of a bulky structure of a 50 Ω coaxial line, an inner and outer diameter is optimized in terms of its transition loss and size. Considering losses in the transition, the impedance of the coaxial line of 37 Ω is determined. The diameter of the inner conductor (via) is fixed in 135 μm. The diameter and width of the outer conductor are 695 and 235 μm, respectively. The CPW line is designed in the cavity on L7 for interconnection with other devices or measurement. An embedded CPW (ECPW) between the coaxial line and CPW is designed on the same layer for their interconnection. The CPW line is with a 144 μm wide strip and a gap of 83 μm. The width and gap of the ECPW are 90 and 95 μm, respectively. Because of the overlapped part between the outer conductors of the coaxial line and the CPW line on the PCB board, E-fields are concentrated and consequently, a significant amount of reflection can be generated. The overlapped part, which is coaxial-line outer conductor to the left of the SMT pad, is cut off. In addition, in order to suppress the radiation at the bending part of interconnection between the coaxial line and CPW, a semicircular cap on the 9th layer (L9) of the LTCC substrate is designed. It radius is 928 μm. The modified SMT pad transition is shown in Figure 7A. Its E-field distribution at its cross section and its designed characteristics, comparing the effect of the cap are illustrated in Figure 7B and C, respectively. E-fields of the pad transition with a cap (WC) are confined between the cap and coaxial cable in the LTCC substrate in Figure 7B. From 8 to 20 GHz, the return losses (S11 and S22) and insertion losses (S21 and S12) of the pad transition with the cap (WC) are clearly improved compared with the pad transition without the cap (WOC).
\nPerspective view (A) of the SMT pad transition using a modified coaxial-line structure, E-field distribution at its cross section (B) and its designed characteristics, comparing the effect of the cap on the top layer (C).
Measured results of the fabricated SMT pad transition, compared to the simulated ones (the inset: the fabricated SMT pad transition on the PCB board, M: measurement and S: simulation).
The modified SMT pad transition was fabricated by using LTCC standard fabrication process. Its measured characteristics are presented in Figure 8, compared with simulated ones. Poles of both return (S11 and S22) and insertion loss (S21) make a difference between the simulated and measured results. This difference comes from parasitic components due to soldering works. The measured insertion loss of 0.9 dB is achieved at 15 GHz. The return losses of S11 and S22 are below −14 dB at the same frequency. This SMT pad can be used for X- or Ku-band applications or LO-frequency ports for millimeter-wave SiP applications.
\nFor compact radio system SiP module applications, the key components are the band-pass filter (BPF) and antenna, because they cover significant space and are difficult to be integrated in the RF ICs by using semiconductor technology. In general, they have been implemented in types of planar structures. However, planar structured circuits are usually bulky and are prone to unwanted radiation. Therefore, compact size, shielded electromagnetic cross talk and low-loss 3D interconnection have been considered as the most important issues for passive device integration in the RF system SiP module.
\nA SL structured BPF using a dual-mode patch resonator can satisfy key issues for filter integration such as miniaturization and suppressed cross talk, because the dual-mode patch resonator offers a very compact structure [27] and radiation of the SL structure buried between upper and lower ground planes is negligible. However, in order to interconnect it with other circuits on the surface, the low-loss vertical via transition is required.
\nFigure 9A, B and C shows a fully embedded SL dual-mode BPF, its perspective view and a layout of two CPW-to-CPW planar transitions, respectively. The BPF is designed on seven-layer LTCC substrate with a relative dielectric constant of 7.0. The dual mode can be generated by adding a perturbation (cut) at a point that is 45° from the axes of coupling to the patch resonator (P-R). Two resonators are used on the 3rd and 5th layer for wide bandwidth characteristics and two P-R blocks are 684 μm away. The feed lines, external coupling between the resonators on the 3rd and 5th layers and internal coupling between their two blocks are on the 4th layer. Its center frequency (fc) and bandwidth (BW) are 61 GHz and 4.5%, respectively. The side length of the resonator is about half a wavelength (613 μm). The widths of the feed lines are 135 μm. By changing the depth of the cut, the coupling coefficients can be controlled and the calculated optimum cut length is 150 μm. The external coupling distances on the 4th layer are 140 μm and the internal coupling is realized by an overlap of 40 μm between two resonators on the 3rd and 5th layer. By using the low-loss CPW-to-SL transitions described in Section 4.1, the 600 μm-thick SL BPF is interconnected with 100 μm-thick RFICs mounted in the SiP module. However, the steep height difference between their GND planes can cause radiation problems. Therefore, by using CPW planar transition, GND planes are gradually transited from the 1st layer to the 3rd and 5th layers as shown in Figure 9B. This CPW planar transition consists of three CPW lines and two transitions (TR1 and TR2). Their width and the gap for 50 Ω impedance CPW lines are designed. The width of a CPW1 (=CPW2) and CPW3 is 244 and 100 μm, respectively. Its corresponding gap is 90, 140 and 90 μm, respectively. The transition length of TR1 and TR2 is 40 and 144 μm, respectively. LCPW1, LCPW2 and LCPW3 for each CPW length are 500, 430 and 500 μm, respectively.
\nPerspective view (A) of a 60 GHz SL LTCC BPF involving CPW-to-SL stepped via transitions embedding air cavities, its cross-sectional view (B) and CPW-to-CPW planar transitions (C) [P-R: a patch resonator, f_o: an input and output feed line, f_i: an inter coupling feed line, I-GND: an internal ground plane].
The SL 60 GHz BPF fabricated in seven LTCC dielectric layers and its measured results are presented in Figure 10. Its total size including the entire transitions is 3.2 × 6.5 × 0.7 mm3. By using the on-wafer probing method, the implemented BPF was tested. The comparison of the simulated and measured results is presented. While the measurement shows a lower center frequency and narrower BW than the simulation results, two results coincide rather well in the pass band from 60.075 to 61.925 GHz. The misalignment among feed lines and resonators results in different coupling coefficients, compared to the designed ones. Therefore, its frequency characteristics are a little different from the simulated results. The measured fc and fractional BW are 60.8 GHz and 4.1%, respectively. The return loss is less than −10.0 dB at the pass band. Its insertion loss including two vertical and four planar transitions is 4.98 dB. Considering the insertion loss of the transitions, its insertion loss is 3.74 dB.
\nIn order to eliminate harmonics or analog components among output signals, in general, a LPF has been used. The LPF based on the Chebyshev LPF prototype [16] as shown in Figure 11 is designed in order to fully embed in this LTCC SiP module [28]. It has a cutoff frequency of 1.5 GHz, ripple of 0.05 dB and order of 5. In order to improve its return loss characteristics, values of capacitance (C1–C3) and inductance (L1, L2) in the designed basic LPF circuit are optimized.
\nMeasured performance of the fabricated SL BPF, compared to the simulated one (the inset: the photo of the fabricated BPF, S: simulation and M: measurement).
A prototype circuit of the 5th order Chebyshev LPF.
These capacitors and inductors are vertically designed within the six-layered LTCC dielectric whose permittivity is 7.2 at 2 GHz. In the case of the capacitor, three parallel-plate capacitors are interconnected in parallel by using vertical vias. Its capacitance value (C1 and C2) is controlled by an overlapped area among plates. The overlapped area of the C1 (=C3) and C2 is 400 × 500 and 600 × 1100 μm2, respectively. In the case of the inductor, a 10,175 um-long line is coiled in the six-layer LTCC dielectric. The number of turn is 4.5. Its width of a metal strip is 170 μm. The number of turn and inner opening area of the helical inductor is 4.5 and 600 × 330 μm2, respectively. The 5th order LPF is designed by integrating these elements in the size of 4.0 × 3.2 × 0.68 mm3. It was fabricated using a LTCC commercial foundry. In Figure 12A, B and C, 3D structures of the LPF elements (C1, C2 and L1), the designed LPF and measured results of the fabricated LPF are presented. The measured insertion loss (S21) and return losses (S11, S22) are less than −0.46 and −11 dB, respectively. They are similar to simulated results.
\nPerspective views of the elements (A) and LPF integrating them (B) and measured results compared to the simulated ones (C) [the inset: the fabricated LPF].
The 2 × 2 patch array antenna is designed with a LTCC MSL structure. Figure 13A and B shows the 3-D structure of the LTCC antenna and an embedded MSL (EMSL) power divider, respectively. Three layers from L6 to L8 are for the antenna and additional layers from L1 to L5 are used for internal and outer ground planes. The radiating patches are placed on the 8th layer (L8) and their size is the same as 645 × 1299 μm2. The EMSL structured feeding network is designed on the 7th layer (L7) using a T-divider (power divider). In this structure, 70.7 Ω-quarter-wavelength (λg/4) transformers are required. However, it is impossible to implement them because limitation of the line width is 90 μm in the LTCC design rule. Therefore, the additional λg/4 transformers with low impedance (Z) are designed at the common port as shown in Figure 16B. The width of high-Z lines is 90 μm and their impedance is 47 Ω. For the low-Z lines, their width and length are optimized considering overall characteristics. The optimized width and its impedance are 130 μm and 40 Ω, respectively. The GND plane is on the 5th layer. The antenna size is as small as 10 × 10 × 0.3 mm3.
\nFigure 14A and B shows the measured return loss characteristic and beam patterns of the fabricated antenna, respectively. Its X-ray photo is in the left inset of Figure 14A. In order to test a return loss and beam patterns, a WR15 waveguide (WG)-to-MSL transition was used as shown in the right insets of (A). A −10 dB bandwidth is 6.3 GHz from 56.5 to 62.8 GHz. At 61 GHz, the measured E- and H-plane radiation patterns are presented in Figure 14B. A gain of 7 dBi and a 3-dB beam width of 36° in H-plane pattern are obtained. The E-plane pattern is wider because of spurious generated in the E-plane direction of the feeding network.
\nLayer structure of the 2 × 2 array LTCC antenna (A) and its feeding network and radiating patches (B).
Measured return loss characteristic of the fabricated 2 × 2 array LTCC antenna (the left and right inset: its X-ray photo and the antenna assembled with a WR15 WG-to-MSL transition, respectively) (A) and its measured beam patterns (B).
In this chapter, a typical heterodyne 61 GHz transmitter (Tx) and a highly integrated 60 GHz amplitude shift-keying (ASK) transceiver (TRx) SiP module are presented in detail [29–31]. They have been designed and implemented by using the key technologies such as suppression unwanted resonant modes, low-loss vertical transitions and compact passive devices presented in the previous chapters.
\nA block diagram of a typical heterodyne 61 GHz transmitter (Tx) is shown in Figure 15. This Tx is comprised of a BPF, a antenna, a up-converting mixer, two frequency multipliers (MTLs), a drive amplifier (DA) and a power amplifier (PA). The local oscillation (LO) signal (59.15 GHz) of the mixer is supplied by multiplying the external LO source of 14.79 GHz by 4.
\n\n\nThe 61 GHz Tx is monolithically integrated into the single SiP module as shown in Figure 16. This SiP module consists of a nine-layer LTCC dielectric. The BPF, which is implemented in the previous subchapter 5.1, is fully embedded through L2 to L7 by using the CPW-to-SL vertical transition and the CPW-to-CPW planar transition. The BPF is connected with a driver amplifier and mixer IC. The 2 × 2 array MSL patch antenna is integrated in L6 through L8. In order to mount the 61 GHz Tx LTCC SiP module on a printed circuit board (PCB), a SMT package is adopted. Therefore, using SMT pads, all the ports of the module are designed on its bottom side. In particular, the SMT pad for a LO port is integrated by using the transition implemented in Section 4.2. Pad dimensions for DC ports, IF ports of 1.85 GHz and LO ports of 14.79 GHz are 700 × 700, 320 × 550, 560 × 560 μm2, respectively. Five active chips mounted in the cavity of the L7 are isolated from each other using isolation cavities structure, which consists of L8 and L9. The DC bias lines and long IF feed lines are shielded using isolating ground planes and vias.
\nBlock diagram of the 61 GHz heterodyne transmitter.
A cross-sectional view of the monolithic 61 GHz Tx LTCC SiP module integrating a BPF, an antenna, MMICs and DC bias circuits (ECPW: the embedded CPW, EMSL: the embedded MSL, P_R: the patch resonator and Lx: the layer number of the LTCC multilayer).
Designed SiP module was implemented in nine-LTCC multilayers using the standard LTCC process. Figure 17A shows the fabricated monolithic LTCC SiP module of the 61 GHz Tx. The whole size of the transmitter is as small as 36 × 12 × 0.9 mm3. Figure 17B shows its bottom side with SMT pads.
\nImplemented monolithic 61 GHz Tx LTCC SiP module [36 × 12 × 0.9 mm3, (A) and (B): top and bottom side].
The fabricated LTCC Tx module was mounted on the PCB. At the output port of the power amplifier of the module, the output power and frequency spectrum were measured using on-wafer probing. Figure 18A plots the RF output power and the power gain as a function of the IF input power of 1.85 GHz. A measured output power at a 1-dB gain compression point (P1dB) and up-conversion gain is 10.2 dBm and 7.3 dB, respectively, at 61 GHz. Output spectrums such as a LO, RF and spurious signals are shown in Figure 18B. The isolation level between the LO and RF and the spurious one are less than 26.4 and 22.4 dBc, respectively. The measured output performance demonstrates that the integrated BPF suppresses effectively the LO and spurious signal.
\nMeasured output performance of the fabricated module (A) output power and conversion gain and (B) output frequency spectrum.
The amplitude shift-keying (ASK) modulation has been utilized in various microwave systems [32]. In particular, several millimeter-wave systems have adopted it for high-speed applications, because of circuit simplicity and high power efficiency. In addition, an analog-digital converter (ADC) is hard to be implemented and it is easy to demodulate ASK noncoherently by using an envelope detector.
\n\nIn this work, the 60-GHz ASK transceiver (TRx) is designed and implemented. Figure 19A, B and C shows its block diagram, its layout for a LTCC SiP module and its cross-sectional structure, respectively. The Rx part consists of a high-gain and low-noise amplifier (LNA) block, detector, low-pass filter (LPF) and attenuator (ATT), which is inserted for the impedance buffering in the high-gain budget. The Tx part is composed of an up-converting mixer, two frequency multipliers (MTLs) and a power amplifier. The LO signal of the Tx is supplied to the mixer by multiplying the external LO source of 7.78 GHz by eight times. The carrier frequencies of the Tx and Rx link are 62.24 and 58.75 GHz, respectively. The whole 60-GHz ASK TRx is integrated into the six-layered LTCC SiP module in the size of 17.8 × 17.9 × 0.6 mm3 as shown Figure 19B. In the conceptual vertical structure in Figure 19C, a LPF, isolation via fence and DC bias components are embedded. RFICs are mounted on cavities in L6. Each LTCC layer is 84 μm high. A via diameter is 120 μm before co-firing process. The main signal line is a 50 Ω CPW line, whose width and gap are 123 and 100 μm, respectively. The five-order Chebyshev LPF with a cutoff frequency of 1.5 GHz inserted in the ASK de-modulator (Rx part) in order to eliminate harmonics and analog components at its output. The previously implemented LPF in Section 5.2 was utilized. The ground plane in the bottom side of the Tx and Rx part is also separated for eliminating return path.
\nA block diagram of a 60 GHz ASK transceiver (TRx) (A), the layout of the ASK TRx LTCC SiP module (B) and its conceptual vertical structure (C) embedding a LPF, via fence, RFICs and DC bias components in the 6-layer LTCC dielectrics [Lx: the number of the LTCC dielectric layer].
The high-isolation via fence between Tx and Rx part is investigated by using a 3-D electromagnetic (EM) tool [25] as shown in Figure 20A. In general, the isolation of over 80 dBc is required between the ASK modulator and demodulator. In order to confine the EM-fields within each Tx or Rx area, the via fence is designed between 50 Ω CPW lines, which can be assumed as the signal path of the Tx (P1–P2) and Rx (P3–P4) part. The spacing between them is 8 mm, which is the same that between the Tx and Rx port in the diplexer of the main system. The diameter of vias and spacing between their edges are 120 and 250 μm, respectively. The E-field distribution of the designed model at 60 GHz is presented in Figure 20A. This result shows that E-fields inputted from a port 1 (P1) can be effectively confined within one path (Tx) due to the via fence. Simulated isolation characteristics between two lines from DC to 100 GHz are presented in Figure 20B. It clearly shows that the isolation better than 80 dBc is obtained.
\n\n\nThe designed ASK TRx LTCC SiP module was fabricated using a six-layer LTCC substrate in the commercial Foundry [33]. The implemented ASK TRx LTCC SiP module is as small as 17.8 × 17.9 × 0.6 mm3 as shown in the inset of Figure 21A and it was assembled into a metal housing with DC bias boards. Figure 21B and C shows the measured RF and IF spectrum in the Tx and Rx part, respectively, of the ASK TRx LTCC SiP module. In Figure 21B, the measured output power (Pout) is 12.8 dBm at the LO of 62.24 GHz and IF frequency swept from 10 MHz to 1.5 GHz. By inserting a 20 dB attenuator between the Tx and Rx parts considering the free space path loss, the IF spectrum of the Rx part was tested. By changing the IF signal from 10 MHz to 1.5 GHz at the Tx part with the LO signal of 58.752 GHz, the flat IF output signal less than −2 dBm is obtained up to 1.25 GHz as shown in Figure 21C. The conversion gain is 38 dB at the IF output of 1.25 GHz.
\nAn assumed model for evaluation of isolation between the Tx and Rx and its E-field distribution (A) and simulated results (B).
Fabricated ASK TRx LTCC SiP module (A), its measured spectrum at the output port of the Tx part (B) and the IF port of the Rx one (C).
In this chapter, highly integrated monolithic LTCC SiP modules have been presented for microwave applications. Almost passive circuits of the whole radio system have been monolithically embedded in the LTCC multilayer dielectric substrate. The main key technologies for the monolithic SiP module are suppressing parasitic resonant modes, low-loss transitions and compact and high-performance passive devices. In general, the parasitic rectangular waveguide consisting of via, upper ground plane and lower one is easily and frequently formed in the SiP module and also effectively suppressed by reducing its horizontal dimension, spacing between vias. The low-loss SL-to-CPW vertical via transition using the stepped via structure and embedded air cavity achieves −0.7 dB transition loss at 60 GHz. By using the modified coaxial line, the SMT pad transition is developed and demonstrates 0.9 dB loss at 15 GHz. By using the developed SL-to-CPW transition, the dual-mode four-pole 60 GHz SL BF is fully embedded in the LTCC substrate in the size of 3.2 × 6.5 × 0.7 mm3 and the insertion loss of 3.74 dB and the BW of 4.1% are obtained. The fully embedded 5th order LPF composed of vertical plate capacitors and helical inductors is implemented as small as 4.0 × 3.2 × 0.6 mm3. Its measured insertion and return losses are −0.46 dB and less than −11 dB, respectively. The 2 × 2 array patch antenna with the gain of 7 dBi and beam width of 36° has been developed. By utilizing the well analyzed and developed key technologies, 61 GHz transmitter and 60 GHz ASK transceiver LTCC SiP modules have been implemented. The 61 GHz Tx LTCC SiP module achieves an output power of 10.2 dBm at 61 GHz and the conversion gain of 7.3 dB. Because of the integrated SL BPF, the LO and spurious signals are suppressed below 26.4 dBc and 22.4 dBc, respectively. Using the off-shelf receiver, the wireless link is verified. In the case of the 60 GHz ASK LTCC SiP module, in order to achieve 80 dBc isolation between the Tx and Rx part, the high isolated substrate using the via fence is proposed and used in the SiP design. The 60 GHz ASK TRx LTCC SiP module is fabricated as small as 17.8 × 17.9 × 0.6 mm3 and it achieves the output power of 12.8 dBm at LO of 62.24 GHz and the flat IF output signal less than −2 dBm up to 1.25 GHz.
\nThese works were financially supported by the Ministry of Science and Technology of Korea and KISTEP from 2002 to 2006 and by Telecom Malaysia Research & Development (TMRND) from 2008 to 2009.
\nThere may not be a precise background to the first discovery and application of phase change materials (PCMs). Perhaps, from the earliest days where human has acquired the intellect, he has realized the existence of these substances or, maybe, has used them without recognizing their nature. Throughout science and technology evolution, more precisely, since the heat capacity of materials and sensible or latent heats have been known, their ability to store and release thermal energy has also been considered. However, A. T. Waterman submitted the first report of discovery in the early 1900s. In recent years, scientists have paid particular attention to these materials, and their commercialization began from those years.
Perhaps the main reason for this attention was the problems caused by energy mismanagement and improper use of it. Today, inadequate energy management, especially fossil fuels, has caused many environmental and economic problems. Therefore, the necessity of efficient energy demand as well as development of renewable energies and energy storage systems is highly significant. One of the important topics in this field is the design of special energy storage equipment to other types. Energy storage not only reduces the discrepancy between energy supply and demand but also indirectly improves the performance of energy generation systems as well as plays a vital role in saving of energy by converting it into other reliable forms. Hence, this matter saves high-quality fuels and reduces energy wastes [1, 2, 3].
Energy storage is one of the important parts of renewable energies. Energy can be stored in several ways such as mechanical (e.g., compressed air, flywheel, etc.), electrical (e.g., double-layer capacitors), electrochemical (e.g., batteries), chemical (e.g., fuels), and thermal energy storages [4].
Among several methods of energy storage, thermal energy storage (TES) is very crucial due to its advantages. TES is accomplished by changing the internal energy of materials, such as sensible heat, chemical heat, latent heat, or a combination of them.
In sensible heat storage (SHS) systems, heat can be stored by increasing the temperature of a material. Hence, this system exploits both the temperature changes and the heat capacity of the material to store energy. The amount of heat stored in this system depends on the specific heat, temperature differences, and amount of material; thus it requires a large amount of materials, whereas Latent heat storage (LHS) is generally based on the amount of heat absorbed or released during the phase transformation of a material. Lastly, In the chemical heat storage (CHS), heat is stored by enthalpy change of a chemical reaction.
Among the aforementioned heat storage systems, the LHS is particularly noteworthy. One of the special reasons is its ability to store large amount of energy at an isothermal process [5, 6, 7].
Any high-performance LHS system should contain at least one of the following terms:
Appropriate PCM with optimum melting temperature range
Desirable and sufficient surface area proportional to the amount of heat exchange
Optimal capacity compatible with PCM
Phase change materials perform energy storage in LHS method. In this case, a material during the phase change absorbs thermal energy from surrounding to change its state, and in the reverse process, the stored energy is released to the surrounding. PCMs initially behave likewise to other conventional materials as the temperature increases, but energy is absorbed when the material receives heat at higher temperatures and close to the phase transformation. Unlike conventional materials, in PCMs absorption or release of thermal energy is performed at a constant temperature. A PCM normally absorbs and releases thermal energy 5–14 times more than other storage materials such as water or rock [8, 9].
PCMs can store thermal energy in one of the following phase transformation methods: solid-solid, solid-liquid, solid-gas, and liquid-gas. In the solid-solid phase change, a certain solid material absorbs heat by changing a crystalline, semicrystalline, or amorphous structure to another solid structure and vice versa [10]. This type of phase change, usually called phase transitions, generally has less latent heat and smaller volume change comparing to the other types. Recently, this type of PCM has been used in nonvolatile memories [11].
Solid-liquid phase change is a common type of commercial PCMs. This type of PCM absorbs thermal energy to change its crystalline molecular arrangement to a disordered one when the temperature reaches the melting point. Unlike solid-solid, solid-liquid PCMs contain higher latent heat and sensible volumetric change. Solid-gas and liquid-gas phase changes contain higher latent heat, but their phase changes are associated with large volumetric changes, which cause many problems in TES systems [8]. Although the latent heat of solid-liquid is less than liquid-gas, their volumetric change is much lower (about 10% or less). Therefore, employing PCMs based on solid-liquid phase change in TES systems would be more economically feasible.
The overall classification of energy storage systems as well as phase change materials is given in Figure 1.
Overview of energy storage and classification of phase change materials.
As mentioned in the previous section, despite the high thermal energy absorption capacity, PCMs in liquid-gas and solid-gas transitions have extremely high volume changes. On the other hand, solid-solid PCMs also have a lower thermal energy storage capacity. Therefore, the abovementioned PCMs, with the exception of specific cases, have not received much attention to commercialization. Currently, the most common type of transition that has been mass-marketed is solid-liquid PCMs. The classification of phase change materials is schematically given in Figure 1. Solid-liquid PCMs are generally classified as three general organics, inorganic, and eutectics [12, 13]. However, in some references they are classified into two major organics and inorganics.
Inorganic PCMs mainly have high capacity for thermal energy storage (about twice as much as organic PCMs) as well as have higher thermal conductivity. They are often classified as salt hydrates and metals.
Salt hydrates are the most important group of inorganic PCMs, which is widely employed for the latent heat energy storage systems. Salt hydrates are described as a mixture of inorganic salts and water (AB × nH2O). The phase change in salt hydrates actually involves the loss of all or plenty of their water, which is roughly equivalent to the thermodynamic process of melting in other materials.
At the phase transition, the hydrate crystals are subdivided into anhydrous (or less aqueous) salt and water. Although salt hydrates have several advantages, some deficiencies make restrictions in their application. One of these problems is incongruent melting behavior of salt hydrates. In this problem the released water from dehydration process is not sufficient for the complete dissolution of the salts. In this case, the salts precipitate and as a result phase separation occurs. In order to prevent this problem, an additional material such as thickener agent is added to salt hydrates. Another major problem with salt hydrates is the supercooling phenomenon. In this phenomenon, when crystallization process occurs, the nucleus formation is delayed; therefore, even at temperatures below freezing, the material remains liquid [7, 11, 14].
Overall, the most attractive properties of salt hydrate are (i) high alloy latent temperature, (ii) relatively high thermal conductivity (almost two to five times more than paraffin), and (iii) small volume changes in melting. They are also very low emitting and toxic, adaptable to plastic packaging, and cheap enough to use [15].
Metalsare another part of the inorganic PCMs. Perhaps the most prominent advantages of metals are their high thermal conductivity and high mechanical properties. Metals are available over a wide range of melting temperatures. They are also used as high-temperature PCMs.
Some metals such as indium, cesium, gallium, etc. are used for low-temperature PCMs, while others such as Zn, Mg, Al, etc. are used for high temperatures. Some metal alloys with high melting points (in the range of 400–1000°C) have been used for extremely high temperature systems. These metal alloys as high-temperature PCMs can be used in the field of solar power systems [16, 17]. They can also be used in industries that require temperature regulation in furnaces or reactors with high operating temperatures.
Perhaps the most important fragment is the organic PCMs. Organic PCMs show no change in performance or structure (e.g., phase separation) over numerous phase change cycles. In addition, supercooling phenomena cannot be observed in organic PCMs. The classification of organic PCMs is unique. This division is mainly based on their application contexts. In general, they are classified into two major paraffin and non-paraffin sections.
Paraffins are the most common PCMs. Since this book is about paraffin, to avoid duplication, this section will briefly discuss the chemistry (structure and properties) of paraffin, but their ability as phase change materials will be reviewed in detail.
Non-paraffinic organic PCMs are known to be the most widely used families. In addition to their different properties compared to paraffins, they have very similar properties to each other. Researchers have used various types of ether, fatty acid, alcohol, and glycol as thermal energy storage materials. These materials are generally flammable and less resistant to oxidation [18, 19, 20].
Although non-paraffin organic PCMs have high latent heat capacity, they have weaknesses such as flammability, low thermal conductivity, low combustion temperatures, and transient toxicity. The most important non-paraffinic PCMs are fatty acids, glycols, polyalcohols, and sugar alcohols.
Fatty acids [CH3(CH2)2nCOOH] also have high latent heat. They can be used in combination with paraffin. Fatty acids exhibit high stability to deformation and phase separations for many cycles and also crystallize without supercooling. Their main disadvantages are their costs. They are 2–2.5 times more expensive than technical grade paraffins. Unlike paraffins, fatty acids are of animal or plant origin. Their properties are similar to those of paraffins, but the melting process is slower. On the other hand, they are moderately corrosive as well as generally odorous [21].
A eutectic contains at least two types of phase change materials. Eutectics have exceptional properties. In eutectics, the melting-solidification temperatures are generally lower than the constituents and do not separate into the components through the phase change. Therefore, phase separation and supercooling phenomena are not observed in these materials.
Eutectics typically have a high thermal cycle than salt hydrates. Inorganic-inorganic eutectics are the most common type of them. However, in recent studies, organic-inorganic and organic-organic varieties have received more attention. The major problem of eutectics is their commercialization. Their cost is usually two to three times higher than commercial PCMs [22, 23].
Some of the above PCMs and their thermal properties, which are competitive with paraffins in terms of latent heat capacity, are summarized in Table 1.
Type of PCMs | Materials | Melting point (°C) | Latent heat (kJ/kg) | Density* (kg/m3) | Thermal conductivity (W/mK)** | Ref. | |
---|---|---|---|---|---|---|---|
Inorganic salt hydrates | LiClO3·3H2O | 8 | 253 | 1720 | [24, 25] | ||
K2HPO4·6H2O | 14 | 109 | [24] | ||||
Mn(NO3)2·6H2O | 25.8 | 126 | 1600 | [14, 25] | |||
CaCl2·6H2O | 29.8 | 191 | 1802 | 1.08 | [24, 25] | ||
Na2CO3·10H2O | 32–34 | 246–267 | [14, 24] | ||||
Na2SO4·10H2O | 32.4 | 248, 254 | 1490 | 0.544 | [14, 26] | ||
Na2HPO4·12H2O | 34–35 | 280 | 1522 | 0.514 | [15, 26] | ||
FeCl3·6H2O | 36–37 | 200, 226 | 1820 | [25, 26] | |||
Na2S2O3·5H2O | 48–49 | 200, 220 | 1600 | 1.46 | [15, 26] | ||
CH3COONa·3H2O | 58 | 226, 265 | 1450 | 1.97 | [15, 26] | ||
Non-paraffinic organic PCMs | Fatty acids | Formic acid | 8.3 | 247 | 1220 | — | [1, 25] |
n-Octanoic acid | 16 | 149 | 910 | 0.148 | [21, 27] | ||
Lauric acid | 43.6 | 184.4 | 867 | [21, 25] | |||
Palmitic acid | 61.3 | 198 | 989 | 0.162 | [21, 27] | ||
Stearic acid | 66.8 | 259 | 965 | 0.172 | [21, 25] | ||
Polyalcohols | Glycerin | 18 | 199 | 1250 | 0.285 | [1, 25] | |
PEG E600 | 22 | 127.2 | 1126 | 0.189 | [27] | ||
PEG E6000 | 66 | 190 | 1212 | [27] | |||
Xylitol | 95 | 236 | 1520 | 0.40 | [28] | ||
Erythritol | 119 | 338 | 1361 | 0.38 | [28] | ||
Others | 2-Pentadecanone | 39 | 241 | [1, 25] | |||
4-Heptadekanon | 41 | 197 | [1, 25] | ||||
D-Lactic acid | 52–54 | 126, 185 | 1220 | [1, 25] | |||
Eutectics | O-O, O-I, I-I *** | CaCl2·6H2O + MgCl2·6H2O | 25 | 127 | 1590 | [27] | |
Mg(NO3)2·6H2O + MgCl2·6H2O | 59 | 144 | 1630 | 0.51 | [27] | ||
Trimethylolethane + urea | 29.8 | 218 | [21] | ||||
CH3COONa·3H2O + Urea (60:40) | 31 | 226 | [27] | ||||
Metals | Mg-Zn (72:28) | 342 | 155 | 2850 | 67 | [16, 17] | |
Al-Mg-Zn (60:34:6) | 450 | 329 | 2380 | [16, 17] | |||
Al-Cu (82:18) | 550 | 318 | 3170 | [16, 17] | |||
Al-Si (87.8:12.2) | 580 | 499 | 2620 | [16, 17] |
Thermophysical properties of some common PCMs with high latent heat.
At 20°C.
Just above melting point (liquid phase).
Inorganic-inorganic (I-I), organic-inorganic (O-I), and organic-organic (O-O).
Paraffin is usually a mixture of straight-chain n-alkanes with the general formula CH3-(CH2)n-CH3. However, in some cases, paraffin is used as another name for alkanes. Gulfam R. et al. in their article have classified paraffins based on the number of carbon atoms as well as their physical states. According to this classification, at room temperature, 1–4 numbers of carbons refer to pure alkanes in a gas phase, 5–17 carbons are liquid paraffins, and more than 17 is known as solid waxes. These waxy solids refer to a mixture of saturated hydrocarbons such as linear, iso, high branched, and cycloalkanes [29]. Generally, paraffin-based PCMs are known as waxy solid paraffins. Commercial paraffins contain mixture of isomers, and therefore, they have a range of melting temperatures.
Paraffins typically have high latent heat capacity. If the length of the chain increases, the melting ranges of waxes also increase, while the latent heat capacity of melting is not subject to any particular order (Table 2).
Materials | Melting point (°C) | Latent heat (kJ/kg) | Density* (kg/m3) | Thermal conductivity** (W/mK) |
---|---|---|---|---|
n-Tetradecane (C14) | 6 | 228–230 | 763 | 0.14 |
n-Pentadecane (C15) | 10 | 205 | 770 | 0.2 |
n-Hexadecane (C16) | 18 | 237 | 770 | 0.2 |
n-Heptadecane (C17) | 22 | 213 | 760 | 0145 |
n-Octadecane (C18) | 28 | 245 | 865 | 0.148 |
n-Nonadecane (C19) | 32 | 222 | 830 | 0.22 |
n-Eicosane (C20) | 37 | 246 | ||
n-Henicosane (C21) | 40 | 200, 213 | 778 | |
n-Docosane (C22) | 44.5 | 249 | 880 | 0.2 |
n-Tricosane (C23) | 47.5 | 232 | ||
n-Tetracosane (C24) | 52 | 255 | ||
n-Pentacosane (C25) | 54 | 238 | ||
n-Hexacosane (C26) | 56.5 | 256 | ||
n-Heptacosane (C27) | 59 | 236 | ||
n-Octacosane (C28) | 64.5 | 253 | ||
n-Nonacosane (C29) | 65 | 240 | ||
n-Triacontane (C30) | 66 | 251 | ||
n-Hentriacontane (C31) | 67 | 242 | ||
n-Dotriacontane (C32) | 69 | 170 | ||
n-Triatriacontane (C33) | 71 | 268 | 880 | 0.2 |
Paraffin C16-C18 | 20–22 | 152 | ||
Paraffin C13-C24 | 22–24 | 189 | 900 | 0.21 |
RT 35 HC | 35 | 240 | 880 | 0.2 |
Paraffin C16-C28 | 42–44 | 189 | 910 | |
Paraffin C20-C33 | 48–50 | 189 | 912 | |
Paraffin C22-C45 | 58–60 | 189 | 920 | 0.2 |
Paraffin C21-C50 | 66–68 | 189 | 930 | |
RT 70 HC | 69–71 | 260 | 880 | 0.2 |
Paraffin natural wax 811 | 82–86 | 85 | 0.72 (solid) | |
Paraffin natural wax 106 | 101–108 | 80 | 0.65 (solid) |
In general, paraffin waxes are safe, reliable, inexpensive, and non-irritating substances, relatively obtained in a wide range of temperatures. As far as economic issues are concerned, most technical grade waxes can be used as PCMs in latent heat storage systems. From the chemical point of view, paraffin waxes are inactive and stable. They exhibit moderate volume changes (10–20%) during melting but have low vapor pressure.
The paraffin-based PCMs usually have high stability for very long crystallization-melting cycles. Table 2 illustrates the thermal properties of some paraffin waxes.
Besides the favorable properties, paraffins also show some undesirable properties such as low thermal conductivity, low melting temperatures, and moderate-high flammability. Some of these disadvantages especially thermal conductivity and flammability can be partially eliminated with the help of additives or paraffin composites.
Measures must be taken to make the solid-liquid PCMs usable. For this purpose, there are several methods for stabilizing the shapes of paraffinic PCMs. Two main methods of them are discussed below.
Encapsulation is generally a worthy method to protect and prevent leakage of PCMs in the liquid state. The capsules consist of two parts, the shell and the core. The core part contains PCMs, whereas the shell part is usually composed of polymeric materials with improved mechanical and thermal properties. The shell part plays the role of protection, heat transfer, and sometimes preventing the release of toxic materials into the environment. In these cases, the shell must have appropriate thermal conductivity. Polymeric shells are also commonly used in encapsulating PPCMs. The choice of core part depends on its application field. The encapsulation of PPCMs is classified into three major parts: bulk or macroencapsulation, microencapsulation, and nano-encapsulation.
Macroencapsulation is one of the simplest ways to encapsulate paraffins. This method has a lower cost than other methods. These products are used in transportation, buildings, solar energy storage systems, and heat exchangers. Sometimes metals are also used as shell materials [30].
In order to increase the efficiency of heat transfer in these types of capsules, either the size of the capsules should be appropriately selected or suitable modifiers should be used. In general, the smaller the diameter of spherical capsules or cylinders, the better the heat transfer. In some cases, metal foams are used to improve the heat transfer properties of paraffin. Aluminum and copper open-cell foams are among the most studied, whereas, in other cases metal oxides, metals and graphite are used [30, 31].
There are various forms of macroencapsulation, such as ball shape, spherical shape, cylindrical, flat sheets, tubular, etc. [31]. Cylindrical tubes are one of the famous forms of macroencapsulated PPCMs. This type of encapsulation is most commonly used in buildings or in solar energy storage systems.
Most of the research carried out on macroencapsulated PPCMs has been focused on improving their thermal conductivity. In one of these studies, different metal oxide nanoparticles such as aluminum oxide, titanium oxide, silicon oxide, and zinc oxide were used to improve the thermal conductivity of paraffin. The results show that titanium oxide performs better under the same conditions than the other oxides [32]. In a similar study, copper oxide nanoparticles were used to improve thermal conductivity and performance of paraffin in solar energy storage systems [33]. In some studies, graphite flakes and expanded graphite have also been used as improving agent for heat conductivity [31].
Hong et al. have used polyethylene terephthalate pipes as a shell for paraffin. In this macroencapsulated system, introduced as cylinder modules, float stone has been added to paraffin as an enhancer of thermal conductivity. In this study, the effect of various parameters such as pipe diameter on heat transfer is investigated, and the results of experimental section are compared with modeling [34].
D. Etansova et al. studied numerical computation and heat transfer modeling of paraffin-embedded stainless steel macroencapsulates for use in solar energy storage systems. In this study, the effect of geometric size and shape on heat transfer was investigated [35].
Microencapsulation of PCMs is another suitable way to improve efficiency and increase thermal conductivity. The size of the microencapsulates usually ranges from 1 μm to 1 mm. Microencapsulation of paraffins is a relatively difficult process, but it performs better than macroencapsulates. This is due to increased contact surface area, shorter discharge and loading times, and improved thermal conductivity. Different materials are used for the shell part of the microencapsulates.
In general, there are two major physical and chemical methods for microencapsulation. The most important physical methods are fluidized bed, spray dryer, centrifuge extruder, and similar processes. However, chemical methods are often based on polymerization. The most important techniques include in situ suspension and emulsion polymerization, interfacial condensation polymerization, and sol-gel method. The latter is sometimes known as the physicochemical method [12, 29].
In the suspension or emulsion polymerization method, the insoluble paraffin is first emulsified or suspended in a polar medium, which is predominantly aqueous phase, by means of high-speed stirring. Surfactants are used to stabilize the particles. Then, lipophilic monomers are added to the medium, and the conditions are prepared for polymerization. This polymer, which is insoluble in both aqueous and paraffin phases, is formed on the outer surface of paraffin particles and finally, after polymerization, encapsulates the paraffin as a shell. The size of these capsules depends on the size of emulsion or suspension of paraffin droplets. Sometimes certain additives are added to the medium to improve some of the polymer properties. For instance, in some studies, polyvinyl alcohol (PVA) has been added to the medium with methyl-methacrylate monomer, which is known as one of the most important shell materials. As a result, paraffin has been encapsulated by PVA modified polymethyl methacrylate (PMMA). Adding this modifier forms a smooth surface of the microencapsulates [36, 37].
In the interfacial method, soluble monomers in the organic phase with other monomers in the aqueous phase at the droplet interface form a polymer that precipitates on the outer layer of the organic phase.
The sol-gel method is a multi-step procedure. In this method, firstly, an organosilicon compound such as tetraethoxysilane (TEOS) is hydrolyzed in an acidic medium at low pH. The prepared homogenous solution is known as the sol part. Then, the paraffin emulsion is prepared in an aqueous medium and stabilized by special emulsifiers. Actually, these emulsifiers are the first layer of the shell. Subsequently, the sol solution is slowly added to the aqueous phase containing paraffin. The silicon compounds containing OH groups (silanols) form hydrogen bonding with polar side of emulsifiers, and finally the condensation process is carried out on the first layer interface. As a result, paraffin microencapsulates with an inorganic material that is often silica. Silica is one of the significant materials used as a shell for micro and nano-encapsulation. Silica has high thermal conductivity and on the other hand has better mechanical properties than some polymers [38, 39, 40, 41].
As mentioned, most of the materials used to microencapsulation are polymers. The main polymers used as shell materials are polymethyl methacrylate [42], polystyrene [43], urea-formaldehyde [44], urea-melamine-formaldehyde [45], polyaniline [46], etc. However, in many cases, these polymers are used in modified form. For example, polymethyl methacrylate modified with polyvinyl alcohol or with other methacrylates [36, 37], polystyrene copolymers [47], and melamine modified-formaldehyde with methanol [48] can be considered. Table 3 shows the most common polymers used as shell materials.
Core material PPCM | Shell material | Encapsulation method | Particle size (μm) | Recommended application | Ref |
---|---|---|---|---|---|
n-Nonadecane | Polymethyl methacrylate | Emulsion | ~ 8 | Smart building and textiles | [42] |
n-Heptadecane | Polystyrene | Emulsion | <2 | General fields | [43] |
Commercial paraffin wax | Polystyrene-co-PMMA | Suspension | ~ 20 | [50] | |
Commercial RT21 | PMMA | Suspension | 20–40 | [36] | |
Commercial RT21 | PMMA modified with PVA | Emulsion | 15 | Building | [37] |
Commercial paraffin wax | Polyaniline | Emulsion | <1 | [46] | |
Commercial paraffin wax | Urea-formaldehyde | In situ | ~ 20 | [44] | |
n-Octadecane, n-nonadecane | Urea-melamine-formaldehyde | In situ | 0.3-0.6 | [45] | |
Commercial paraffin wax | Methanol-melamine-formaldehyde | In situ | 10–30 | Building | [48] |
Commercial paraffin wax | Silica | Sol-gel | 4–10 | Textile | [38] |
Commercial paraffin wax | Silica | Sol-gel | 0.2–0.5 | [39] | |
n-Octadecane | Silica | Sol-gel | 7–16 | [40] | |
n-Pentadecane | Silica | Sol-gel | 4–8 | [41] |
Common materials for microencapsulation of PPCMs.
In addition to the aforementioned microencapsulation approaches, which mainly form polymeric materials as shells, other materials have been also recommended. For example, Singh and colleagues have used silver metal as a shell for paraffin microencapsulates. They first emulsified paraffin into small particles in water and then converted silver salts to metallic silver via an in situ reduction reaction. The average particle size of 329 μm has been reported, and the thermal properties of paraffin have been investigated using DSC and TGA. This type of metal shell microencapsulates has been suggested for use in microelectronics heat management systems [49].
There are several techniques to study the properties of micro and nano-encapsulates. In all studies, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have been used to determine the thermal properties of PPCMs, such as enthalpy of fusion, melting temperature, weight loss, degradation, etc. Various methods such as XRD, FTIR, and 12C NMR have been used to study the structure and chemical composition of PPCMs. The morphology and diameters of the microcapsules have often been studied by scanning electron microscopy (SEM) and particle size analyzer.
The latter technique is used to study the influence of different variables on the diameter of the microcapsules. One of these variables is the effect of stirring speed on emulsification of paraffin. The results of some studies show that higher stirring speed of emulsification process leads to decrease of the mean size of paraffin droplets [48].
Along with studies on the type of microcapsules, many studies have been conducted to improve thermal conductivity and mechanical properties of microencapsulates. Part of these studies has been dedicated to the effect of graphene and graphene oxide on the improvement of thermal conductivity [51]. L. Zhang et al. investigated the effect of graphene oxide on improving the mechanical properties and leakage protection as well as improving the thermal conductivity of melamine-formaldehyde as shell materials of PPCM microencapsulates [52]. In another part of studies, metals and metal oxides have been used. For example, 10 and 20 wt% of nanomagnetite (Fe3O4) with particle size from 40 to 75 nm increase the thermal conductivity by 48 and 60%, respectively [53]. Also, addition of TiO2 and Al2O3 nanoparticles in a mass fraction of 5% with respect to PPCM at the size range of 30–60 nm increases the thermal conductivity by 40 and 65%, respectively [54].
Nano-encapsulation of PPCM is very similar to the microencapsulation process. However, these types of encapsulation specific techniques, such as ultrasonic, are used to adjust the size of the paraffin droplets to less than 1 micron. In the next step, using the chemical methods mentioned in the microencapsulation method, the shell formation is performed. The most common method for nano-encapsulation is the emulsion polymerization method. However, although limited, interfacial and sol-gel methods have also been reported.
In recent years, research on polymeric matrix-based shape-stable PCMs has gained great importance. Among these types of phase change materials, the paraffin-polymer composite is particularly attractive. The combination of paraffin and polymers as new PCMs with a unique controllable structure can be widely used. This compound remains solid at paraffin melting point and even above without any softening, which is why this type of PCM is called shape-stable. These materials are well formed and have high-energy absorption capacity; hence they can be widely used as stable PCMs with specific properties. On the other hand, some problems such as high cost and difficulty of encapsulating processes could be resolved. Despite these advantages, some common disadvantages such as low thermal stability, low thermal conductivity, and relatively high flammability can restrict their application, particularly in building materials. For this reason, further studies are required to eliminate these disadvantages and improve the properties of these materials. A large part of research is relevant to increase or improve their thermal conductivity, flame retardation, and thermophysical and mechanical properties. Suitable additives are proposed to improve these properties [55, 56].
In some articles, a simple method involves mixing-melting of polyethylene and paraffin, consequently cooling the composite, or using a simple twin extruder to prepare a shape-stable PCM has been reported [57, 58]. When this compound contains sufficient polymer, a homogeneous mixture remains solid at temperatures above the melting point of paraffin and below the polymer melting point. During the preparation of these composites, no chemical reaction or chemical bonds are formed between the polymers and paraffin; therefore these types of compounds are considered as physical mixtures. Shape-stable PPCMs can be used in all previously described areas. Due to the thermoplastic properties of these composites, it is possible to melt and crystalize them for many cycle numbers. Shape-stable PPCMs have several advantages over other PCMs. They are also nontoxic and do not require high-energy consumption during production process.
Inaba and Tu [59] developed a new type of shape-stable PPCM and determined their thermophysical properties. These materials can be used without encapsulation. Feldman et al. [60] prepared plates of shape-stable PCM and determined their high thermal energy storage capacity when used in small chambers. In this type of polymer-based plates, fatty acids are used as PCMs that absorb or releases large amounts of heat during melting and solidification, without altering the composition of the shape-stable PCM. The same researchers determined the role of polymer-PCM sheets in stabilizing the shape and size of the plates when PCM was liquefied. The composition of paraffin and high-density polyethylene (HDPE) has been studied by Lee and Choi [61] and has been introduced as a shape-stable energy storage material. In this study, the amount of energy stored by the mentioned composites is also studied. They also studied the morphology of the high-density polyethylene crystal lattice (HDPE) and its effect on paraffin through scanning electron microscopy and optical microscopy (OM) analysis. On the other hand, they also reported of high thermal energy storage capacity of the prepared paraffin/HDPE-based shape-stable PCMs. Hong and Xin-Shi [62] synthesized polyethylene-paraffin as a shape-stable PCM and characterized its morphology and structure by scanning electron microscopy and its latent heat of melting by differential scanning calorimetry. In this study, a composition consisting of 75% paraffin as a cheap, effective, easy-to-prepare, low-temperature shape-stable PPCM is recommended. In another study, Xiao et al. [63] prepared a shape-stable PCM based on the composition of paraffin with a thermoplastic elastomer (styrene butadiene rubber) and determined its thermal properties. The obtained results show that the stable mixture has the phase changing property and the amount of latent heat of melting stored in this compound is estimated to be 80% of pure paraffin. In another part of this study, the thermal conductivity of PCMs was significantly increased by using graphite.
Despite the above benefits, some disadvantages of shape-stable PPCMs are also reported. One of the major problems is the softening and paraffin leakage phenomenon at elevated temperatures. Seiler partly resolved this problem by adding a different ratio of silica and copolymers to the polyethylene-paraffin composition [64]. Another problem is the low thermal conductivity of the polyethylene-paraffin compound. A lot of research has been conducted to increase this property. A. Sari [65] prepared two types of paraffin with different melting temperatures (42–44°C and 56–58°C) and combined each with HDPE as phase modifier. By addition of 3% expanded graphite, the thermal conductivity of composites increased by 14 and 24%, respectively. Zhang et al. [66] developed new PCMS based on graphite and paraffin with high thermal energy storage capacity and high thermal conductivity. Zhang and Ding et al. [67] have used various additives such as diatomite, Wollastonite, organic modified bentonite, calcium carbonate, and graphite to improve the thermal conductivity of shape-stable PCMs.
It should be noted that metal particles and metal oxides due to their higher thermal conductivity are widely used to improve this property of PCMs. One of the materials that has received more attention in recent years is alumina. Aluminum oxide nanoparticles were added to paraffin to increase its thermal conductivity in both liquid and solid states [57, 68]. This compound coupled with its high thermal conductivity is cheaper and more abundant than other metal oxides.
Another problem with shape-stable PPCMs is their flammability. The effect of various additives has been studied by scientists to eliminate this problem. One of the most effective of these substances is halogenated compounds, but they cause environmental pollution and also release toxic compounds while burning. Researchers have used hybrid and environmentally friendly materials to enhance the durability of flame retardant materials. They studied the effect of clay nanoparticles and organo-modified montmorillonite. Adding these materials not only increases their resistance to burning but also increases their mechanical and thermal properties [69, 70, 71]. In another study, Y. Cai et al. added paraffin, HDPE, and graphite, then added ammonium polyphosphate and zinc borate separately, and studied their resistance to burning. The results show that the addition of ammonium polyphosphate decreases flammability, while zinc borate increases the flammability risk [72]. One of the most interesting and harmless fire retardant compounds is metal hydroxides, especially aluminum hydroxide, magnesium hydroxide, or their combination [73, 74, 75].
Some researchers have used other advanced materials as supporting materials to prepare shape-stable PPCMs instead of using the polymer matrix [76, 77, 78]. Rawi et al. used acid-treated multi-walled carbon nanotubes (A-CNT). They reported that adding 5% by weight A-CNT to paraffin decreases 25% of the latent heat while increasing heat conductivity up to 84% [79]. Y. Wan et al. used pinecone biochar as the supporting matrix for PCMs. They prepared shape-stable PCM materials at different ratios and studied the leakage behavior. The optimal ratio is suggested as 60% of the PCM. For the above ratio, no PCM leakage was observed after the melting temperature. The results showed that the thermal conductivity of the same ratio shape-stable PCM increased by 44% compared to the pure PCM [80].
PCMs are available in a wide range of desired temperature ranges. Obviously, a PCM may not have all the properties required to store heat energy as an ideal material. Therefore, it would be more appropriate to use these materials in combination with either other PCMs or various additives to achieve the required features. However, as latent heat storage materials, while using PCMs, the thermodynamic, kinetic, and chemical properties as well as the economic and availability issues of them must be taken into account. Employed PCMs must have the optimum phase change temperature. On the other hand, the higher the latent heat of the material, the lower its physical size. High thermal conductivity also helps to save and release energy. From the physical and kinetic point of view, the phase stability of PCMs during melting and crystallization contributes to optimum thermal energy storage. Their high density also enables high storage at smaller material sizes. During phase change, smaller volume changes and lower vapor pressures are appropriate for continuous applications.
H. Nazir et al. in their review article [12] have explained the criteria for selection of PCMs as a pyramid. In this pyramid, at the bottom, known as the fundamentals, there are several items such as cost, regularity compliance, and safety. In the next section, the thermophysical properties such as energy storage capacity and runtime are discussed. In the upper section, reliability and operating environment consist of degradation, cycle life, shelf life, and thermal limits are reflected. Finally, at the top section of pyramid, user perception and convenience are located. These criteria help us to find a proper PCM for certain application fields.
These criteria may also be extended to paraffinic PCMs. Nowadays, paraffinic PCMs (PPCMs) are widely used as thermal energy storage materials, including solar energy storage systems, food industries, medical fields, electrical equipment protection, vehicles, buildings, automotive industries, etc. [24, 29, 81, 82, 83, 84, 85].
Generally, application fields of PPCMs can be considered in two main sections: thermal protection and energy storage purposes. The major difference between these two areas of application is in thermal conductivity of the PPCMs.
Protection and transportation of temperature-sensitive materials is one the mentioned area. Sometimes a certain temperature is required to transport sensitive medicines, medical equipment, food, etc. In all cases, using of PPCMs would be appropriate as they can regulate and stabilize the temperature over a given range. Similarly, in sensitive electrical equipment, these materials are also essential to prevent the maximum operating temperature. On the other hand, they can be used to prevent possible engine damage at high temperatures [86, 87].
One of the studies related to these issues is the use of paraffin containing heavy alkanes to protect electronic devices against overheating. In this study, paraffin has been used as a protective coating for the resistor chip, and its effect on cooling of the devices has been investigated. Experimental results show that paraffin coating increases the relative duration of overheating by 50 to 150% over the temperature range of 110–140°C [88]. In another study, a mixture of paraffin and polypropylene has been used as an overheating protector in solar thermal collectors [89].
However, energy storage purposes are the most important part of PPCM application. In general, PCMs act as passive elements and therefore do not require any additional energy source. Most studies on the application of energy storage properties of PPCMs have been confined to buildings, textiles, and solar systems. In the following, building applications will be further attended.
One of the main drawbacks of lightweight building materials is their low thermal storage capacity, which results in extensive temperature fluctuations as a result of intense heating and cooling. Therefore, PPCMs have been used in buildings due to their ability to regulate and stabilize indoor temperatures at higher or lower outdoor temperatures [90].
Generally, PPCMs in buildings are used as thermal energy storage at daytime peak temperature, and they released the stored energy at night when temperatures are low. The result of this application is to set the comfort condition for a circadian period. This application minimizes the amount of energy consumed for cooling during the day and warming up at night.
In contrast, in order to stabilize the ambient conditions at low temperatures, some special PCMs are also used in air conditioner systems. In this case, cool air is stored during the night and released into the warm hours of the day.
Y. Cui et al. [91] in a review article categorized PPCM application methods based on their location of use such as PCMs in walls, floor heating systems, ceiling boards, air-based solar heating systems, free cooling systems (with ventilation systems), and PCM shutter (in windows). Both types of encapsulation and shape-stable PPCMs could be used in all of the above classification of building applications. Sometimes these materials can be added directly to concrete, gypsum, etc. [90, 92, 93, 94, 95].
In order to increase the performance of PPCMs in this application field, great deals of studies have also been done on improving their thermal conductivity. On the other hand, extensive research into safety issues has been done to reduce the flammability of PPCMs by adding flame retardants to these materials.
Overall, these studies cover the importance of using PPCMs in heating and cooling as well as indicate the general characteristics, advantages, and disadvantages of these materials used for thermal storage in buildings.
It is clear that at this time, where renewable energy is particularly important, the use of PPCMs is on the rise. As it has been mentioned, PPCMs have many application fields due to their advantages. For example, they can be used in the construction, pharmaceutical and medical industries, textiles, automobiles, solar power systems, transportation, thermal batteries, heat exchangers, and so on.
This chapter of the book has attempted to focus more on how to use paraffins. For this reason, two methods, namely, encapsulation and shape-constant, have been widely discussed. In addition, improving their weak properties such as thermal conductivity and flammability has also been studied. Depending on the benefits of paraffins, new applications are suggested every day. Extensive studies are underway on other new applications in recent years.
IntechOpen publishes different types of publications
",metaTitle:"Types of publications",metaDescription:"IntechOpen publishes different types of publications",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\\n\\nEdited Volumes can be comprised of different types of chapters:
\\n\\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\\n\\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\\n\\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\\n\\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\\n\\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\\n\\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\\n\\nTYPES OF MONOGRAPHS:
\\n\\nSingle or multiple author manuscript
\\n\\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\\n\\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\\n\\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\\n"}]'},components:[{type:"htmlEditorComponent",content:"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\n\nEdited Volumes can be comprised of different types of chapters:
\n\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\n\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\n\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\n\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\n\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\n\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\n\nTYPES OF MONOGRAPHS:
\n\nSingle or multiple author manuscript
\n\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\n\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\n\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5763},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10365},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15784}],offset:12,limit:12,total:118187},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"6,16"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10725",title:"Paranasal Sinuses Anatomy and Conditions",subtitle:null,isOpenForSubmission:!0,hash:"7373bad684eb0c956ad2725227cd7227",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10725.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10709",title:"Heart Valve Surgery",subtitle:null,isOpenForSubmission:!0,hash:"cb3479fd272d968ee7eee95ae09ea9db",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10709.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10723",title:"Brachial Plexus Injury",subtitle:null,isOpenForSubmission:!0,hash:"441fb315d751efcdc4ae3fdb03808b46",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10723.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10730",title:"Extracorporeal Membrane Oxygenation",subtitle:null,isOpenForSubmission:!0,hash:"2ac3ed12d9db14ee4bc66d7808c82295",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10707",title:"Primary Care",subtitle:null,isOpenForSubmission:!0,hash:"bdb1aeb61b1eb116c1bdb09d25593686",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10707.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10712",title:"Thrombectomy",subtitle:null,isOpenForSubmission:!0,hash:"853e71d74c3dd5007277d3770e639d47",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10712.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10719",title:"Diverticulum and its Related Diseases",subtitle:null,isOpenForSubmission:!0,hash:"87a9b5a36a9ddb31f3281d5e5961fede",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10719.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10715",title:"Brain MRI",subtitle:null,isOpenForSubmission:!0,hash:"6d56c88c53776966959f41f8b75daafd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10715.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10731",title:"Cannabinoids",subtitle:null,isOpenForSubmission:!0,hash:"1d2e090ecf2415b8d3c9fba15856b7b1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10731.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10703",title:"Cardiovascular Risk Factors",subtitle:null,isOpenForSubmission:!0,hash:"74951b49bbb62ec0de58ef39b777256b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10703.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10783",title:"Huntington's Disease",subtitle:null,isOpenForSubmission:!0,hash:"014e040c96e46bcafb2a4f3610ed1883",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10783.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:7},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:64},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5221},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"26",title:"Agricultural Engineering",slug:"agricultural-and-biological-sciences-agricultural-engineering",parent:{title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:4,numberOfAuthorsAndEditors:97,numberOfWosCitations:10,numberOfCrossrefCitations:27,numberOfDimensionsCitations:50,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"agricultural-and-biological-sciences-agricultural-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8939",title:"Urban Horticulture",subtitle:"Necessity of the Future",isOpenForSubmission:!1,hash:"5db1ff90f7e404baf4e42cdfbe0b9755",slug:"urban-horticulture-necessity-of-the-future",bookSignature:"Shashank Shekhar Solankey, Shirin Akhtar, Alejandro Isabel Luna Maldonado, Humberto Rodriguez-Fuentes, Juan Antonio Vidales Contreras and Julia Mariana Márquez Reyes",coverURL:"https://cdn.intechopen.com/books/images_new/8939.jpg",editedByType:"Edited by",editors:[{id:"210702",title:"Dr.",name:"Shashank Shekhar",middleName:null,surname:"Solankey",slug:"shashank-shekhar-solankey",fullName:"Shashank Shekhar Solankey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8308",title:"Agricultural Economics",subtitle:"Current Issues",isOpenForSubmission:!1,hash:"138b8e4117a40c74fc41ec72d552fa9f",slug:"agricultural-economics-current-issues",bookSignature:"Surendra N. Kulshreshtha",coverURL:"https://cdn.intechopen.com/books/images_new/8308.jpg",editedByType:"Edited by",editors:[{id:"37057",title:"Dr.",name:"Surendra N.",middleName:null,surname:"Kulshreshtha",slug:"surendra-n.-kulshreshtha",fullName:"Surendra N. Kulshreshtha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6265",title:"Automation in Agriculture",subtitle:"Securing Food Supplies for Future Generations",isOpenForSubmission:!1,hash:"397d9aa9d63ecac6048c1c2274f35704",slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",bookSignature:"Stephan Hussmann",coverURL:"https://cdn.intechopen.com/books/images_new/6265.jpg",editedByType:"Edited by",editors:[{id:"6250",title:"Prof. Dr.-Ing.",name:"Stephan",middleName:null,surname:"Hussmann",slug:"stephan-hussmann",fullName:"Stephan Hussmann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5227",title:"Urban Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"722ebe60b63f7c01577d063a3e39c36a",slug:"urban-agriculture",bookSignature:"Mohamed Samer",coverURL:"https://cdn.intechopen.com/books/images_new/5227.jpg",editedByType:"Edited by",editors:[{id:"175050",title:"Prof.",name:"Mohamed",middleName:null,surname:"Samer",slug:"mohamed-samer",fullName:"Mohamed Samer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"57703",doi:"10.5772/intechopen.71582",title:"The Fourth Industrial Revolution and Precision Agriculture",slug:"the-fourth-industrial-revolution-and-precision-agriculture",totalDownloads:2117,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Jehoon Sung",authors:[{id:"210240",title:"Dr.",name:"Jehoon",middleName:null,surname:"Sung",slug:"jehoon-sung",fullName:"Jehoon Sung"}]},{id:"69221",doi:"10.5772/intechopen.89279",title:"Social Value of Urban Rooftop Farming: A Hong Kong Case Study",slug:"social-value-of-urban-rooftop-farming-a-hong-kong-case-study",totalDownloads:463,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"agricultural-economics-current-issues",title:"Agricultural Economics",fullTitle:"Agricultural Economics - Current Issues"},signatures:"Ting Wang and Mathew Pryor",authors:[{id:"289674",title:"Ph.D. Student",name:"Ting",middleName:null,surname:"Wang",slug:"ting-wang",fullName:"Ting Wang"},{id:"289677",title:"Prof.",name:"Mathew",middleName:null,surname:"Pryor",slug:"mathew-pryor",fullName:"Mathew Pryor"}]},{id:"50067",doi:"10.5772/62301",title:"Urban Gardening: From Cost Avoidance to Profit Making — Example from Ljubljana, Slovenia",slug:"urban-gardening-from-cost-avoidance-to-profit-making-example-from-ljubljana-slovenia",totalDownloads:1783,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"urban-agriculture",title:"Urban Agriculture",fullTitle:"Urban Agriculture"},signatures:"Matjaž Glavan, Majda Černič Istenič, Rozalija Cvejić and Marina\nPintar",authors:[{id:"61187",title:"Prof.",name:"Marina",middleName:null,surname:"Pintar",slug:"marina-pintar",fullName:"Marina Pintar"},{id:"82604",title:"Dr.",name:"Matjaž",middleName:null,surname:"Glavan",slug:"matjaz-glavan",fullName:"Matjaž Glavan"},{id:"178797",title:"Dr.",name:"Rozalija",middleName:null,surname:"Cvejić",slug:"rozalija-cvejic",fullName:"Rozalija Cvejić"},{id:"179170",title:"Prof.",name:"Majda",middleName:null,surname:"Černič Istenič",slug:"majda-cernic-istenic",fullName:"Majda Černič Istenič"}]}],mostDownloadedChaptersLast30Days:[{id:"57703",title:"The Fourth Industrial Revolution and Precision Agriculture",slug:"the-fourth-industrial-revolution-and-precision-agriculture",totalDownloads:2113,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Jehoon Sung",authors:[{id:"210240",title:"Dr.",name:"Jehoon",middleName:null,surname:"Sung",slug:"jehoon-sung",fullName:"Jehoon Sung"}]},{id:"70662",title:"Automation and Robotics Used in Hydroponic System",slug:"automation-and-robotics-used-in-hydroponic-system",totalDownloads:1544,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"urban-horticulture-necessity-of-the-future",title:"Urban Horticulture",fullTitle:"Urban Horticulture - Necessity of the Future"},signatures:"Alejandro Isabel Luna Maldonado, Julia Mariana Márquez Reyes, Héctor Flores Breceda, Humberto Rodríguez Fuentes, Juan Antonio Vidales Contreras and Urbano Luna Maldonado",authors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",middleName:null,surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"},{id:"215230",title:"Dr.",name:"Juan Antonio",middleName:null,surname:"Vidales Contreras",slug:"juan-antonio-vidales-contreras",fullName:"Juan Antonio Vidales Contreras"},{id:"220744",title:"MSc.",name:"Héctor",middleName:null,surname:"Flores Breceda",slug:"hector-flores-breceda",fullName:"Héctor Flores Breceda"},{id:"252026",title:"Dr.",name:"Humberto",middleName:null,surname:"Rodríguez-Fuentes",slug:"humberto-rodriguez-fuentes",fullName:"Humberto Rodríguez-Fuentes"},{id:"299825",title:"Dr.",name:"Julia Mariana",middleName:null,surname:"Márquez Reyes",slug:"julia-mariana-marquez-reyes",fullName:"Julia Mariana Márquez Reyes"},{id:"303920",title:"Prof.",name:"Urbano",middleName:null,surname:"Luna Maldonado",slug:"urbano-luna-maldonado",fullName:"Urbano Luna Maldonado"}]},{id:"71186",title:"Application of Nanotechnology Solutions in Plants Fertilization",slug:"application-of-nanotechnology-solutions-in-plants-fertilization",totalDownloads:593,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"urban-horticulture-necessity-of-the-future",title:"Urban Horticulture",fullTitle:"Urban Horticulture - Necessity of the Future"},signatures:"Daniela Predoi, Rodica V. Ghita, Simona Liliana Iconaru, Carmen Laura Cimpeanu and Stefania Mariana Raita",authors:[{id:"50919",title:"Dr.",name:"Rodica V.",middleName:null,surname:"Ghita",slug:"rodica-v.-ghita",fullName:"Rodica V. Ghita"},{id:"183930",title:"Prof.",name:"Daniela",middleName:null,surname:"Predoi",slug:"daniela-predoi",fullName:"Daniela Predoi"},{id:"313256",title:"Dr.",name:"Simona Liliana",middleName:null,surname:"Iconaru",slug:"simona-liliana-iconaru",fullName:"Simona Liliana Iconaru"},{id:"313258",title:"Dr.",name:"Carmen Laura",middleName:null,surname:"Cimpeanu",slug:"carmen-laura-cimpeanu",fullName:"Carmen Laura Cimpeanu"},{id:"313260",title:"Dr.",name:"Stefania Mariana",middleName:null,surname:"Raita",slug:"stefania-mariana-raita",fullName:"Stefania Mariana Raita"}]},{id:"70957",title:"Nutrients for Hydroponic Systems in Fruit Crops",slug:"nutrients-for-hydroponic-systems-in-fruit-crops",totalDownloads:586,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"urban-horticulture-necessity-of-the-future",title:"Urban Horticulture",fullTitle:"Urban Horticulture - Necessity of the Future"},signatures:"Pramod Kumar and Simran Saini",authors:[{id:"253238",title:"Dr.",name:"Pramod",middleName:null,surname:"Kumar",slug:"pramod-kumar",fullName:"Pramod Kumar"},{id:"316834",title:"Ms.",name:"Simran",middleName:null,surname:"Saini",slug:"simran-saini",fullName:"Simran Saini"}]},{id:"59402",title:"Robotic Harvesting of Fruiting Vegetables: A Simulation Approach in V-REP, ROS and MATLAB",slug:"robotic-harvesting-of-fruiting-vegetables-a-simulation-approach-in-v-rep-ros-and-matlab",totalDownloads:1864,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Redmond R. Shamshiri, Ibrahim A. Hameed, Manoj Karkee and\nCornelia Weltzien",authors:[{id:"182449",title:"Prof.",name:"Ibrahim",middleName:null,surname:"A. Hameed",slug:"ibrahim-a.-hameed",fullName:"Ibrahim A. Hameed"},{id:"203413",title:"Dr.",name:"Redmond Ramin",middleName:null,surname:"Shamshiri",slug:"redmond-ramin-shamshiri",fullName:"Redmond Ramin Shamshiri"},{id:"241193",title:"Dr.",name:"Manoj",middleName:null,surname:"Karkee",slug:"manoj-karkee",fullName:"Manoj Karkee"},{id:"241194",title:"Dr.",name:"Cornelia",middleName:null,surname:"Weltzien",slug:"cornelia-weltzien",fullName:"Cornelia Weltzien"}]},{id:"50248",title:"Relationship between Population and Agricultural Land in Amasya",slug:"relationship-between-population-and-agricultural-land-in-amasya",totalDownloads:1530,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"urban-agriculture",title:"Urban Agriculture",fullTitle:"Urban Agriculture"},signatures:"Mustafa Ergen",authors:[{id:"166961",title:"Dr.Ing.",name:"Mustafa",middleName:null,surname:"Ergen",slug:"mustafa-ergen",fullName:"Mustafa Ergen"}]},{id:"58805",title:"The German Vision of Industry 4.0 Applied in Organic Farming",slug:"the-german-vision-of-industry-4-0-applied-in-organic-farming",totalDownloads:1005,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"F. J. Knoll and V. Czymmek",authors:[{id:"211093",title:"M.Sc.",name:"Florian Johannes",middleName:null,surname:"Knoll",slug:"florian-johannes-knoll",fullName:"Florian Johannes Knoll"},{id:"221049",title:"BSc.",name:"Vitali",middleName:null,surname:"Czymmek",slug:"vitali-czymmek",fullName:"Vitali Czymmek"}]},{id:"50063",title:"Urban Agriculture Case Studies in Central Texas: From the Ground to the Rooftop",slug:"urban-agriculture-case-studies-in-central-texas-from-the-ground-to-the-rooftop",totalDownloads:1730,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"urban-agriculture",title:"Urban Agriculture",fullTitle:"Urban Agriculture"},signatures:"Bruce D. Dvorak and Ahmed K. Ali",authors:[{id:"178373",title:"Dr.",name:"Ahmed K.",middleName:"Kamal",surname:"Ali",slug:"ahmed-k.-ali",fullName:"Ahmed K. Ali"},{id:"179542",title:"Prof.",name:"Bruce",middleName:null,surname:"Dvorak",slug:"bruce-dvorak",fullName:"Bruce Dvorak"}]},{id:"59129",title:"The Effect of Vermicompost and Other Fertilizers on the Growth and Productivity of Pepper Plants in Guyana",slug:"the-effect-of-vermicompost-and-other-fertilizers-on-the-growth-and-productivity-of-pepper-plants-in-",totalDownloads:1455,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Vasnie Ganeshnauth, Sirpaul Jaikishun, Abdullah A Ansari and\nOudho Homenauth",authors:[{id:"206474",title:"Prof.",name:"Abdullah",middleName:null,surname:"Ansari",slug:"abdullah-ansari",fullName:"Abdullah Ansari"},{id:"206476",title:"Mr.",name:"Sirpaul",middleName:null,surname:"Jaikishun",slug:"sirpaul-jaikishun",fullName:"Sirpaul Jaikishun"},{id:"210300",title:"Ms.",name:"Vasnie",middleName:null,surname:"Ganaeshnauth",slug:"vasnie-ganaeshnauth",fullName:"Vasnie Ganaeshnauth"},{id:"210301",title:"Dr.",name:"Oudho",middleName:null,surname:"Homenauth",slug:"oudho-homenauth",fullName:"Oudho Homenauth"}]},{id:"71024",title:"Implication of Urban Agriculture and Vertical Farming for Future Sustainability",slug:"implication-of-urban-agriculture-and-vertical-farming-for-future-sustainability",totalDownloads:670,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"urban-horticulture-necessity-of-the-future",title:"Urban Horticulture",fullTitle:"Urban Horticulture - Necessity of the Future"},signatures:"Anwesha Chatterjee, Sanjit Debnath and Harshata Pal",authors:[{id:"312477",title:"Dr.",name:"Harshata",middleName:null,surname:"Pal",slug:"harshata-pal",fullName:"Harshata Pal"},{id:"316680",title:"Dr.",name:"Anwesha",middleName:null,surname:"Chatterjee",slug:"anwesha-chatterjee",fullName:"Anwesha Chatterjee"},{id:"316681",title:"Dr.",name:"Sanjit",middleName:null,surname:"Debnath",slug:"sanjit-debnath",fullName:"Sanjit Debnath"}]}],onlineFirstChaptersFilter:{topicSlug:"agricultural-and-biological-sciences-agricultural-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/133414/tove-bostrom",hash:"",query:{},params:{id:"133414",slug:"tove-bostrom"},fullPath:"/profiles/133414/tove-bostrom",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()