\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"5419",leadTitle:null,fullTitle:"Virtual Learning",title:"Virtual Learning",subtitle:null,reviewType:"peer-reviewed",abstract:"The first chapter provides an overview of the popular systems for distance learning. In the second chapter, a review of all major social and economic activities in order to improve the system of virtual learning is given. The third chapter deals with the influence of technology in the management of educational institutions. The fourth chapter provides an overview of the graphic communication. The fifth chapter confirms that quality assurance remains an integral and indispensable part of the process of virtual learning. The sixth and seventh chapters are dedicated to health and mutual communication about health problems and causes. The eighth and ninth chapters are dedicated to massive open online courses (MOOC). The tenth chapter refers to the widespread use of virtual reality in industrial environments.",isbn:"978-953-51-2823-6",printIsbn:"978-953-51-2824-3",pdfIsbn:"978-953-51-4136-5",doi:"10.5772/62799",price:119,priceEur:129,priceUsd:155,slug:"virtual-learning",numberOfPages:184,isOpenForSubmission:!1,isInWos:1,hash:"5ec59dce356b02297b7dc3bd56eec0df",bookSignature:"Dragan Cvetkovic",publishedDate:"December 14th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5419.jpg",numberOfDownloads:15619,numberOfWosCitations:13,numberOfCrossrefCitations:9,numberOfDimensionsCitations:15,hasAltmetrics:1,numberOfTotalCitations:37,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 31st 2016",dateEndSecondStepPublish:"April 21st 2016",dateEndThirdStepPublish:"July 26th 2016",dateEndFourthStepPublish:"October 24th 2016",dateEndFifthStepPublish:"November 23rd 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,8",editedByType:"Edited by",kuFlag:!1,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković",profilePictureURL:"https://mts.intechopen.com/storage/users/101330/images/system/101330.jpg",biography:"Dragan Cvetković graduated in Aeronautics from the Faculty of Mechanical Engineering, University of Belgrade, in 1988. He defended his doctoral dissertation in December 1997.\n\nHe has published 64 books, scripts and practicums about computers and computer programs, aviation weapons and flight mechanics. He has also published a large number of scientific papers, both nationally and internationally.\n\nIn 2014, he became a full professor in the field of Informatics and Computing at Singidunum University, Belgrade. Previously he had served as an assistant professor. He has been Vice Rector for Teaching at the same university since 2019.",institutionString:"Singidunum University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"8",institution:{name:"Singidunum University",institutionURL:null,country:{name:"Serbia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1315",title:"Distance Education",slug:"distance-education"}],chapters:[{id:"52577",title:"A Review of Distance Learning and Learning Management Systems",doi:"10.5772/65222",slug:"a-review-of-distance-learning-and-learning-management-systems",totalDownloads:1915,totalCrossrefCites:1,totalDimensionsCites:5,signatures:"Mümine Kaya Keleş and Selma Ayşe Özel",downloadPdfUrl:"/chapter/pdf-download/52577",previewPdfUrl:"/chapter/pdf-preview/52577",authors:[{id:"190444",title:"Dr.",name:"Mümine",surname:"Kaya Keleş",slug:"mumine-kaya-keles",fullName:"Mümine Kaya Keleş"},{id:"190656",title:"Associate Prof.",name:"Selma Ayşe",surname:"Özel",slug:"selma-ayse-ozel",fullName:"Selma Ayşe Özel"}],corrections:null},{id:"52213",title:"Social Collaboration Style Preferences and Cognitive Receptivity to Technological Change and Innovation in Open and Distance e-Learning",doi:"10.5772/65220",slug:"social-collaboration-style-preferences-and-cognitive-receptivity-to-technological-change-and-innovat",totalDownloads:1133,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Melinde Coetzee",downloadPdfUrl:"/chapter/pdf-download/52213",previewPdfUrl:"/chapter/pdf-preview/52213",authors:[{id:"188011",title:"Prof.",name:"Melinde",surname:"Coetzee",slug:"melinde-coetzee",fullName:"Melinde Coetzee"}],corrections:null},{id:"52243",title:"Digital Transformation in School Management and Culture",doi:"10.5772/65221",slug:"digital-transformation-in-school-management-and-culture",totalDownloads:1317,totalCrossrefCites:3,totalDimensionsCites:3,signatures:"Fahriye Altınay, Gokmen Dagli and Zehra Altınay",downloadPdfUrl:"/chapter/pdf-download/52243",previewPdfUrl:"/chapter/pdf-preview/52243",authors:[{id:"189778",title:"Dr.",name:"Fahriye",surname:"Altınay",slug:"fahriye-altinay",fullName:"Fahriye Altınay"},{id:"189780",title:"Dr.",name:"Gokmen",surname:"Dagli",slug:"gokmen-dagli",fullName:"Gokmen Dagli"},{id:"189781",title:"Dr.",name:"Zehra",surname:"Altınay",slug:"zehra-altinay",fullName:"Zehra Altınay"}],corrections:null},{id:"53091",title:"Usage of 3D Computer Modelling in Learning Engineering Graphics",doi:"10.5772/65217",slug:"usage-of-3d-computer-modelling-in-learning-engineering-graphics",totalDownloads:1313,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Zorana Jeli, Branislav Popokonstantinovic and Misa Stojicevic",downloadPdfUrl:"/chapter/pdf-download/53091",previewPdfUrl:"/chapter/pdf-preview/53091",authors:[{id:"189704",title:"Associate Prof.",name:"Zorana",surname:"Jeli",slug:"zorana-jeli",fullName:"Zorana Jeli"},{id:"194655",title:"Prof.",name:"Branislav",surname:"Popkonstantinovic",slug:"branislav-popkonstantinovic",fullName:"Branislav Popkonstantinovic"}],corrections:null},{id:"53292",title:"Quality Assurance in Virtual Learning Environments for Open Distance Learning",doi:"10.5772/65746",slug:"quality-assurance-in-virtual-learning-environments-for-open-distance-learning",totalDownloads:1381,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Victor J. Pitsoe and Matsephe M. Letseka",downloadPdfUrl:"/chapter/pdf-download/53292",previewPdfUrl:"/chapter/pdf-preview/53292",authors:[{id:"187812",title:"Prof.",name:"Victor",surname:"Pitsoe",slug:"victor-pitsoe",fullName:"Victor Pitsoe"},{id:"195883",title:"Dr.",name:"Matsephe M.",surname:"Letseka",slug:"matsephe-m.-letseka",fullName:"Matsephe M. Letseka"}],corrections:null},{id:"52988",title:"‘Women on a Wiki’: Social Constructivist Analysis of the Effectiveness of Online Collaborative Spaces for Reflective Learning in Women‘s Health Studies",doi:"10.5772/65298",slug:"-women-on-a-wiki-social-constructivist-analysis-of-the-effectiveness-of-online-collaborative-spaces-",totalDownloads:1213,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Julie‐Anne Carroll, Mangalam Sankupellay, Michelle Cornford and\nNajmah Bahir",downloadPdfUrl:"/chapter/pdf-download/52988",previewPdfUrl:"/chapter/pdf-preview/52988",authors:[{id:"194108",title:"Dr.",name:"Julie-Ann",surname:"Carroll",slug:"julie-ann-carroll",fullName:"Julie-Ann Carroll"},{id:"194803",title:"Ms.",name:"Michelle",surname:"Cornford",slug:"michelle-cornford",fullName:"Michelle Cornford"},{id:"194804",title:"Ms.",name:"Najmah",surname:"Bahir",slug:"najmah-bahir",fullName:"Najmah Bahir"},{id:"194805",title:"Dr.",name:"Mangalam",surname:"Sankupellay",slug:"mangalam-sankupellay",fullName:"Mangalam Sankupellay"}],corrections:null},{id:"52297",title:"New Educational Challenges and Innovations: Students with Disability in Immersive Learning Environments",doi:"10.5772/65219",slug:"new-educational-challenges-and-innovations-students-with-disability-in-immersive-learning-environmen",totalDownloads:1546,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Gonzalo Lorenzo, Asunción Lledó, Rosabel Roig, Alejandro Lorenzo\nand Jorge Pomares",downloadPdfUrl:"/chapter/pdf-download/52297",previewPdfUrl:"/chapter/pdf-preview/52297",authors:[{id:"5683",title:"Dr.",name:"Jorge",surname:"Pomares",slug:"jorge-pomares",fullName:"Jorge Pomares"},{id:"187920",title:"Prof.",name:"Gonzalo",surname:"Lorenzo",slug:"gonzalo-lorenzo",fullName:"Gonzalo Lorenzo"},{id:"189580",title:"Prof.",name:"Asunción",surname:"Lledó",slug:"asuncion-lledo",fullName:"Asunción Lledó"},{id:"189581",title:"Prof.",name:"Rosabel",surname:"Roig",slug:"rosabel-roig",fullName:"Rosabel Roig"}],corrections:null},{id:"53197",title:"MOOCs in Higher Education",doi:"10.5772/66137",slug:"moocs-in-higher-education",totalDownloads:2675,totalCrossrefCites:3,totalDimensionsCites:3,signatures:"Sung-Wan Kim",downloadPdfUrl:"/chapter/pdf-download/53197",previewPdfUrl:"/chapter/pdf-preview/53197",authors:[{id:"187838",title:"Prof.",name:"Sung-Wan",surname:"Kim",slug:"sung-wan-kim",fullName:"Sung-Wan Kim"}],corrections:null},{id:"52803",title:"Massive Open Online Courses (MOOC) and Its Possibilities as Instrument of Formal, Nonformal, Informal and Lifelong Learning",doi:"10.5772/65930",slug:"massive-open-online-courses-mooc-and-its-possibilities-as-instrument-of-formal-nonformal-informal-an",totalDownloads:1642,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Srdjan Trajković, Radica Prokić-Cvetković and Olivera Popović",downloadPdfUrl:"/chapter/pdf-download/52803",previewPdfUrl:"/chapter/pdf-preview/52803",authors:[{id:"104246",title:"Dr.",name:"Olivera",surname:"Popović",slug:"olivera-popovic",fullName:"Olivera Popović"},{id:"106384",title:"Prof.",name:"Radica",surname:"Prokic-Cvetkovic",slug:"radica-prokic-cvetkovic",fullName:"Radica Prokic-Cvetkovic"},{id:"191211",title:"MSc.",name:"Srdjan",surname:"Trajković",slug:"srdjan-trajkovic",fullName:"Srdjan Trajković"},{id:"192158",title:"M.Sc.",name:"Srdjan",surname:"Trajković",slug:"srdjan-trajkovic",fullName:"Srdjan Trajković"}],corrections:null},{id:"52530",title:"Digital Factory and Virtual Reality: Teaching Virtual Reality Principles with Game Engines",doi:"10.5772/65218",slug:"digital-factory-and-virtual-reality-teaching-virtual-reality-principles-with-game-engines",totalDownloads:1484,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Petr Hořejší, Jiří Polcar and Lucie Rohlíková",downloadPdfUrl:"/chapter/pdf-download/52530",previewPdfUrl:"/chapter/pdf-preview/52530",authors:[{id:"189568",title:"Ph.D. Student",name:"Jiri",surname:"Polcar",slug:"jiri-polcar",fullName:"Jiri Polcar"},{id:"190239",title:"Dr.",name:"Petr",surname:"Horejsi",slug:"petr-horejsi",fullName:"Petr Horejsi"},{id:"194681",title:"Dr.",name:"Lucie",surname:"Rohlíková",slug:"lucie-rohlikova",fullName:"Lucie Rohlíková"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5707",title:"Computer Simulation",subtitle:null,isOpenForSubmission:!1,hash:"9eec1723d4d4775dc9755db55aa387a6",slug:"computer-simulation",bookSignature:"Dragan Cvetkovic",coverURL:"https://cdn.intechopen.com/books/images_new/5707.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6299",title:"Simulation and Gaming",subtitle:null,isOpenForSubmission:!1,hash:"e86eaf984e70e1544d594f7df43189ed",slug:"simulation-and-gaming",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/6299.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7249",title:"3D Printing",subtitle:null,isOpenForSubmission:!1,hash:"bd92f056fb3bb4793bf7f07413747568",slug:"3d-printing",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/7249.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6869",title:"Modeling and Computer Simulation",subtitle:null,isOpenForSubmission:!1,hash:"1c580aea0bda699dc79c012ee0f7b68d",slug:"modeling-and-computer-simulation",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/6869.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7824",title:"Numerical Modeling and Computer Simulation",subtitle:null,isOpenForSubmission:!1,hash:"603fad5bcae90ad8484397ca63b0e2e7",slug:"numerical-modeling-and-computer-simulation",bookSignature:"Dragan M. Cvetković and Gunvant A. Birajdar",coverURL:"https://cdn.intechopen.com/books/images_new/7824.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7753",title:"Interactive Multimedia",subtitle:"Multimedia Production and Digital Storytelling",isOpenForSubmission:!1,hash:"ec62348c48f21b53dc2896b6a58f81a5",slug:"interactive-multimedia-multimedia-production-and-digital-storytelling",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/7753.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2728",title:"Distance Education",subtitle:null,isOpenForSubmission:!1,hash:"3c5e98262becf8a16cf297b68056ee6a",slug:"distance-education",bookSignature:"Paul Birevu Muyinda",coverURL:"https://cdn.intechopen.com/books/images_new/2728.jpg",editedByType:"Edited by",editors:[{id:"93065",title:"Dr.",name:"Paul",surname:"Birevu Muyinda",slug:"paul-birevu-muyinda",fullName:"Paul Birevu Muyinda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"47331",slug:"correction-to-the-cultural-reinforcers-of-child-abuse",title:"Correction to: The Cultural Reinforcers of Child Abuse",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/47331.pdf",downloadPdfUrl:"/chapter/pdf-download/47331",previewPdfUrl:"/chapter/pdf-preview/47331",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/47331",risUrl:"/chapter/ris/47331",chapter:{id:"37763",slug:"the-cultural-reinforcers-of-child-abuse",signatures:"Essam Al-Shail, Ahmed Hassan, Abdullah Aldowaish and Hoda Kattan",dateSubmitted:"November 8th 2011",dateReviewed:"June 14th 2012",datePrePublished:null,datePublished:"July 11th 2012",book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"85712",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Hassan",fullName:"Ahmed Hassan",slug:"ahmed-hassan",email:"amh_64@hotmail.com",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"139594",title:"Prof.",name:"Essam",middleName:null,surname:"Al-Shail",fullName:"Essam Al-Shail",slug:"essam-al-shail",email:"shail@kfshrc.edu.sa",position:null,institution:{name:"Alfaisal University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"149745",title:"Dr.",name:"Hoda",middleName:null,surname:"Kattan",fullName:"Hoda Kattan",slug:"hoda-kattan",email:"hoda@kfshrc.edu.sa",position:null,institution:null},{id:"149746",title:"Dr.",name:"Abdullah",middleName:null,surname:"Aldowaish",fullName:"Abdullah Aldowaish",slug:"abdullah-aldowaish",email:"dowaish@kfshrc.edu.sa",position:null,institution:null}]}},chapter:{id:"37763",slug:"the-cultural-reinforcers-of-child-abuse",signatures:"Essam Al-Shail, Ahmed Hassan, Abdullah Aldowaish and Hoda Kattan",dateSubmitted:"November 8th 2011",dateReviewed:"June 14th 2012",datePrePublished:null,datePublished:"July 11th 2012",book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"85712",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Hassan",fullName:"Ahmed Hassan",slug:"ahmed-hassan",email:"amh_64@hotmail.com",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"139594",title:"Prof.",name:"Essam",middleName:null,surname:"Al-Shail",fullName:"Essam Al-Shail",slug:"essam-al-shail",email:"shail@kfshrc.edu.sa",position:null,institution:{name:"Alfaisal University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"149745",title:"Dr.",name:"Hoda",middleName:null,surname:"Kattan",fullName:"Hoda Kattan",slug:"hoda-kattan",email:"hoda@kfshrc.edu.sa",position:null,institution:null},{id:"149746",title:"Dr.",name:"Abdullah",middleName:null,surname:"Aldowaish",fullName:"Abdullah Aldowaish",slug:"abdullah-aldowaish",email:"dowaish@kfshrc.edu.sa",position:null,institution:null}]},book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10446",leadTitle:null,title:"Water Quality",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe search for more modern models and techniques to monitor water quality and improve water treatment techniques is a challenging mission for scientists in the field. This book will present trends and advances in the area of water quality.
\r\n\r\n\tThe areas that this book will integrate are: pollution by metals in water, pollution by hydrocarbons in water, pollution by pesticides in water, pollution by emerging micro-pollutants in water, pollution by microorganisms in water, advances in analytical chemistry in assessing water quality, advances in microbiology in water quality, sediment-water interaction, particulate material and water interaction, effluent water, water biomonitoring, statistical treatment of water quality data, human water supply, wastewater treatment plants, bioremediation, physical-chemical treatments, groundwater pollution, urban river pollution, water and circular economy.
\r\n\r\n\tWith the themes presented, this book aims to provide the reader with a comprehensive overview of the current state of the art in water quality, presenting an adequate and viable path to follow.
",isbn:"978-1-83969-072-3",printIsbn:"978-1-83969-071-6",pdfIsbn:"978-1-83969-073-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"add02f40c29f68a0848e95f7256aa648",bookSignature:"Dr. J. Kevin Summers",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10446.jpg",keywords:"Metals, Hydrocarbons, Microorganisms, Aquatic Flora and Fauna, Analytical Chemistry, Innovative Methods, Wastewater Treatment Plants, Bioremediation, Mangrove, Saline Water, Groundwater Pollution, Urban River Pollution",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 12th 2020",dateEndSecondStepPublish:"November 9th 2020",dateEndThirdStepPublish:"January 8th 2021",dateEndFourthStepPublish:"March 29th 2021",dateEndFifthStepPublish:"May 28th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Kevin Summers is a Senior Research Ecologist at the Environmental Protection Agency’s (EPA) Gulf Ecosystem Measurement and Modeling Division. He has authored approximately 150 peer-reviewed journal articles, book chapters, and reports and has received many awards for technical accomplishments from the EPA and outside the agency.",coeditorOneBiosketch:"Doctor in analytical chemistry with practical experience in laboratory work, currently on a position of a coordinator.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",slug:"j.-kevin-summers",fullName:"J. Kevin Summers",profilePictureURL:"https://mts.intechopen.com/storage/users/197485/images/system/197485.jpg",biography:"Dr. Kevin Summers is a Senior Research Ecologist at the Environmental Protection Agency’s (EPA) Gulf Ecosystem Measurement and Modeling Division. At present, he is working with colleagues in the Sustainable and Healthy Communities Program to develop an index of community resilience to natural hazards, an index of human well-being that can be related to changes in ecosystem, social and economic services, and a community sustainability tool for communities with populations less than 40,000. He leads research efforts for indicator and indices development. Dr. Summers is a systems ecologist and began his career at the EPA in 1989 and has worked in various programs and capacities. This includes leading the National Coastal Assessment in collaboration with the Office of Water culminating in the award-winning National Coastal Condition Report series (four volumes between 2001 and 2012), which integrates water quality, sediment quality, habitat and biological data to assess the ecosystem condition of the estuaries of the United States. He was the acting National Program Director for Ecology for the EPA between 2004 and 2006. He has authored approximately 150 peer-reviewed journal articles, book chapters, and reports and has received many awards for technical accomplishments from the EPA and outside the agency. Dr. Summers holds a BA in Zoology and Psychology, an MA in Ecology and PhD in Systems Ecology/Biology.",institutionString:"U.S. Environmental Protection Agency",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Environmental Protection Agency",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7718",title:"Water Quality",subtitle:"Science, Assessments and Policy",isOpenForSubmission:!1,hash:"c7433952368240a0d55bfdcb148ff89e",slug:"water-quality-science-assessments-and-policy",bookSignature:"Kevin Summers",coverURL:"https://cdn.intechopen.com/books/images_new/7718.jpg",editedByType:"Edited by",editors:[{id:"197485",title:"Dr.",name:"J. Kevin",surname:"Summers",slug:"j.-kevin-summers",fullName:"J. Kevin Summers"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"47598",title:"Functional Redundancy and Ecosystem Function — The Soil Microbiota as a Case Study",doi:"10.5772/58981",slug:"functional-redundancy-and-ecosystem-function-the-soil-microbiota-as-a-case-study",body:'Understanding ecosystem functioning has been a main focus of ecological studies due to its importance for the maintenance of ecosystem integrity and human livelihood. While identifying and measuring relevant ecosystem functions may be a seemingly straightforward task, isolating the biota responsible for the provision of a particular function is far more complicated. In this context, understanding how biota influence ecosystem functioning remains a very active area of research in ecology, known as Biodiversity-Ecosystem Function (BEF) [1]. Given the accelerating rates of biodiversity loss [2] and predicted increases in the intensity and duration of extreme climate events [3], understanding how species interact to provide ecosystem functions is crucial for anticipating change as well as for establishing appropriate biodiversity buffers in order to minimize the risk of functional loss and maintain ecosystem integrity.
Functioning can be evaluated in the short-term, in which case the magnitude of the process is of interest, or in the long-term, measured as the probability that this is maintained in the face of environmental change. In both cases, functioning is an emergent property of ecosystems: interactions between the system’s members and coevolution result in functioning which deviates from that expected from a system in which functioning was simply additive. In the case of environmental change, redundancy—the phenomenon in which a function is carried out by multiple species in an ecosystem—buffers functioning, as for any given environmental state there will be multiple organisms within a functional group which can perform optimally at a range of environmental conditions.
It has been suggested that concerns for the maintenance of biodiversity cannot be extended to microbes [4]. The implicit assumption is that microbial community composition is not relevant for determining function because microbes are endlessly diverse, so that the only filter determining their function is the environment. Specifically, in microbial systems, where diversity and abundance are extreme and growth rates are rapid, it was formerly assumed that redundancy is so high that diversity and community composition are decoupled from functioning due to the following observations: 1) most microbial species are ubiquitous and present in very low densities, awaiting an opportunity to “bloom”; 2) the rapid adaptability of microbes means that such a system will never be so impoverished as to cease functioning; and 3) the microbial system is so tightly linked to its physical environment that it cannot be studied within the context of cause-effect that is generally necessary for BEF studies. However, recent studies have shown that community composition matters to function [5,6]: in soil, microbial communities exhibit a home-field advantage in decomposing endemic vs. foreign litter [7,8] and different communities do not become more similar when exposed to the same environment [9]. This ongoing discussion has been particularly important in the realm of ecosystem models, where stable physical parameters or very coarse microbial parameters (such as total biomass) are assumed to accurately represent microbial contributions to ecosystem function [10].
Despite the current gaps in knowledge of microbial communities, this is an extremely attractive system for the study of BEF: the ease of manipulation, wide range of metabolic diversities, and availability of direct links between genetic diversity and function (i.e. functional gene analyses) allow for a range of experiments which would not be possible in other ecosystems. Particularly, the high turnover rate and diversity allow for studies which target the effect of redundancy on long-term function. A wide range of studies regarding this relationship are now available (for in-depth reviews, see [11,12]), but the results of microbial BEF studies have often been contradictory. The purpose of this chapter is to provide a comprehensive analysis of redundancy in microbial communities, paying special attention to the intricacies of these systems, in order to understand why these contradictions arise, and shed light on how redundancy might bolster ecosystem function in these extremely diverse ecosystems.
Microbial systems are responsible for the provision of a wide range of crucial ecosystem services, but little is known about the role of diversity in maintaining this function. This is mostly due to the overwhelming complexity found in them: the study of microbial communities has been likened to the study of solar systems [13]. This diversity is still not properly constrained: the lack of an ecological species definition for prokaryotes [14] has led to the usage of the operational taxonomic unit (OTU), defined as 97% sequence similarity in the 16S rRNA gene, is used as a threshold for prokaryotic species, however this threshold may not be comparable to the eukaryotic definition of species [14]. This means that most prokaryotes can be identified based on their sequences alone, which makes distinguishing rare species from sequencing errors nearly impossible [15], and obscures the definite measurement of prokaryotic diversity. Nevertheless, it is agreed that microbial diversity is extremely high: one gram of soil may contain 103-106 unique taxa [16,17]. Furthermore, the link between phylogeny and function is truncated for prokaryotes, where horizontal gene transfer allows for the acquisition of functions—particularly those associated with adaptability to new environments—further complicates analyses of function through genes [18].
Despite these obstacles, microbial BEF—particularly for soil microbial communities —demands much attention. In addition to serving as repositories of genetic information [19], they provide ecosystem services which are fundamental for human persistence, including the maintenance of agricultural systems and waste recycling [20]. In an assessment of the economic benefits of biodiversity, the soil microbiota was partly or fully responsible for waste recycling, soil formation, nitrogen fixation, bioremediation of chemicals, biotechnology, and biocontrol of pests. These services amounted to an estimated $1.16 trillion dollars per year globally, which was over a third of the estimated annual contribution of terrestrial ecosystem services to the worldwide economy [21]. This study contrasts sharply with another estimate which, while considering both terrestrial and marine ecosystem services, differed in its estimate of the total annual value of these services by more than an order of magnitude[22]. This discrepancy illustrates the prevailing lack of consensus regarding the economic weight of ecosystem services, which is particularly problematic the face of biodiversity loss [20] because it obscures the value of preserving biodiversity for the sake of the services it provides. It also illustrates how functional classifications may be considered arbitrary: depending on the functions selected, how they are measured, and how they are valued, very different views of the same system can be obtained.
Novel technologies are beginning to open the door for the pursuit of deeper ecological understanding of microbial systems, but these advances are not accompanied by an increase in ecological theory. High-throughput sequencing has greatly accelerated the rate at which new microbial species can be detected, but their ecological properties remain a mystery [19]. Thus, although we know increasingly more about “who is there?”, this information is not accompanied by characterization of the new species’ niche spaces (“what are they doing?”), which precludes the understanding of how additional species affect function at an ecosystem level. Instead, the large majority of BEF studies in microbial ecology tend to focus on a single or few ecologically relevant functions, and often measure the abundance and diversity of functional groups or genes associated with those functions. For example, the soil microbiota play a crucial role in the nitrogen cycle and studies trying to understand the link between N associated functions and soil microbiota use functional genes associated with different steps of the cycle, such as those associated with nitrification and denitrification, as a way to cut through the overwhelming diversity found in soils, and focus on functionally relevant microbial community dynamics, which may scale up and affect functioning at the ecosystem level [23].
Due to their rapid generation times and the large diversity found in small volumes, microbial systems are ideal settings to probe BEF relationships, particularly in controlled laboratory microcosm experiments [19]. Indeed, while much remains unknown about the world’s microbiota [24], microbial BEF research has seemingly kept pace with macroecological research [25]. The former, however, has been riddled with contradictory results, and evidence for a positive BEF relationship has not been as strong as for the latter. Some of these discrepancies may arise from the heterogeneity which is unique and inherent to the microbial system. From an environmental perspective, the extremely heterogeneous soil matrix may unevenly buffer the effect of environmental change, reducing the homogeneity of the community’s response. It is also important to note that the phenomena occurring in microenvironments within which the soil microbiota exist are of necessity averaged out for measurement, as current methodologies require soil to be homogenized before studying [26]. Furthermore, while positive BEF relationships are expected [1], a negative relationship resulting from antagonistic interactions has been documented [27,28].
Many contradictions have been attributed to differences in experimental setup. A recent meta-analysis indicates that most microbial BEF research has relied on comparative approaches, which test the BEF relationship across environmental gradients or treatments, rather than explicitly manipulating biodiversity [25] (Figure 1). The more common, comparative approaches are potentially riddled with hidden variables, and thus do not allow for the drawing of a direct link between diversity and function. For this reason, here we focus mainly on experiments which involve direct manipulation of diversity, which tend to find a strong, positive BEF relationship [13].
The relationship between diversity and function is asymptotic; different experimental approaches target different levels of species richness [13]. By greatly reducing diversity and environmental variability, assembly experiments seek mechanistic insight into the direct effect of diversity on process rates under minimized redundancy, that is, short-term function (a). Dilution-to-extinction and fumigation experiments retain greater species richness, and tend to emphasize the relationship between diversity and stability (i.e. long-term function) under otherwise stable environmental conditions (b). These experiments focus on systems in which the functioning asymptote is approached, although some dilution experiments cover broader ranges of diversity, as in [29] (b, dotted line). In observational studies, diversity is not manipulated, and the focus is rather on the effect of environmental change on the community’s ability to maintain process rates (c). In this case, the level of redundancy is high enough to ensure no effect of diversity on functioning, although both positive and negative effects (c, dotted lines) have been observed for this type of experiments [28,30]
The manipulative experiments fit within two categories. In assembly experiments, a community is experimentally assembled to test the effect of each additional species or community structure on the community [31]. By studying overly-simplified communities, these studies tend to target the ecological functioning that arises from minimally redundant systems—that is, right before functioning begins to ‘saturate’ (Figure 1a). This approach has been criticized because it can only include culturable bacteria, which may represent less than 1% of soil microbes [32], and because the diversity levels achieved are always unrealistically low, and effects observed at such low diversity levels may not be relevant or applicable to more realistic scenarios and thus is not representative. Furthermore, this setup generally ignores the effect of historical selection patterns on community composition, which seems to be related to functioning as well [7]. Nevertheless, studying only culturable microbes allows for a full functional characterization of each population introduced into the system, and in this way over-yielding of the community as an emergent property of biodiversity can be studied mechanistically. For example, by characterizing 16 species of denitrifying bacteria in terms of their use of 6 carbon resources found in soil, Salles and colleagues created a model to predict CO2 production and denitrification based on the added functioning of each individual in the system. In this way, they were able to detect over-yielding and potential antagonism within their assembled communities [33]. This body of work has found a strong, positive BEF relationship, but has also stressed that it is the diversity of the functional traits in the community—not the number of taxa present—which affect functioning: for example, a recent 12-strain assembly experiment found that the best predictor of function was the phylogenetic diversity of each microcosm [34], which agrees with previous findings [35]. The ability to manipulate genotypic and functional diversity as well as the distribution of species in assembled communities has been crucial for this [36,37]. Unfortunately, assembly experiments represent less than 1% of microbial BEF studies, and long-term studies using assembly experiments are non-existent: the lack of further mechanistic insight is one of the greater gaps in microbial BEF research [13,25].
A second approach is to erode a large part of the microbial population selectively (e.g. using heat or chloroform) or randomly (reinocculating sterile soil with serial dilutions of the original community), in the so called removal experiments. These systems seem to maintain redundancy and a large part of their complexity, and much of the extant long-term BEF research has depended on removal microcosms (Figure 2b). The first studies on microbial BEF used these approaches [38], and together with subsequent works have found that broad microbial functions, such as organic matter decomposition, are not affected by large decreases in diversity, but that soils with lowered diversity seem to be less resistant to invasion and less resilient to disturbance [38,39]. Nevertheless, these studies have also yielded contradictory results. For example, in one case, microbial diversity was reduced by inoculating sterile soil with serial dilutions of its original community, but the rate of carbon mineralization, nitrification and denitrification enzyme activity were not related to the diversity treatments, even after diversity reductions of more than 99% of the soil biota, suggesting no BEF relationship [40]. Using the same serial dilution approach, another experiment found that while a 10-5 dilution led to a 75% decrease in estimated richness, the potential denitrification rates of these soils was reduced by about 75% as well, pointing at a strong, positive BEF relationship [29].
Soil microbes are intricately tied to their environment and to each other. The complexity of the system requires that it be simplified for study, but in doing so in ways which maintain an ecosystem which is representative of the natural one has been incredibly challenging [13]. The three approaches discussed here—comparative gradient analysis, assembly, and removal experiments—target the study of the effect of the environment, diversity, and redundancy on functioning, respectively.
Redundancy is a characteristic of ecological systems which arises when “different species perform the same functional role in ecosystems so that changes in species diversity do not affect ecosystem functioning”, and must be defined relative to the system being studied [41]. The term was first developed in an attempt to optimize conservation efforts and direct them towards the most ecologically relevant species, highlighting the importance of diversity in maintaining functional stability and the integrity of the ecosystem in the face of environmental fluctuation [42], and was later taken up as a way to calculate how much biodiversity could be lost before it affected function [43].
Functional redundancy emerges from the functional classification of its individuals. In contrast to taxonomic classifications, functional ones group organisms based on their contribution to ecosystem functioning rather than phylogeny. This classification paradigm has several advantages: functional diversity is generally a better indicator of ecosystem functioning than the direct measurement of species richness [34,44–46], and functional classifications implicitly account for environmental and biotic interactions by measuring only the outcome of community composition, thereby overcoming the oversimplification which stems from studying individual species in a laboratory setting. While this classification scheme is not universally applicable in the sense that functions must be defined relative to the system, it allows for the comparison between ecosystems that contain different species [47].
A major obstacle in applying functional classifications is the different interpretations of what constitutes a functional group, functional guild, or functional type. While functional classifications are not new to ecology, they became popular fairly recently, with the definition of the functional guild as a conceptual tool: “…a group of species that exploit the same class of environmental resources in a similar way. This term groups together species, without regard to taxonomic position, that overlap significantly in their niche requirements. (…) A species can be a member of more than one guild” [48]. Since then, new terms (e.g. functional group, strategy, trait, etc.) emerged and were used to define slightly different, yet overlapping concepts (for an in-depth discussion, see [49]). While the concept was rapidly adopted by ecology, it was not applied rigorously during the development of classification schemes, rendering them incomparable in many cases. Perhaps the biggest problem has been differentiating between functional response groups (groups of organisms which respond similarly to changes in environmental factors) and functional effect groups (groups of organisms species which contribute in a similar way to ecosystem function) [50]. In order to understand the link between ecosystem functioning and biodiversity, both of these classifications are necessary: under a given environmental condition, knowing which organisms are in their optima and which are out of their functioning range precludes the understanding of how biodiversity affects function, as much of this diversity may be apparent in terms of functioning if the organisms are diverting resources from growth to persistence. Classifying organisms into functional response groups becomes even more important if the functions in question are long-term, and environmental variability is a factor (see section 5.2).
Nowhere is the need for functional effect classifications more important than in the soil microbiome, where it is estimated that 85% of microbial cells and over 50% of microbial OTU’s are inactive at any given time [51]. This means that a majority of the soil microbial diversity is only apparent with regards to short term functioning (the long term implications of these ‘microbial seed banks’ are discussed in a later section). Despite the need, to our knowledge only one experiment has classified a set of microbes based on their response to environmental change [52]. In this study, respiration—which is related to growth—was used both as an indicator of function (functional effect trait) and fitness (functional response trait) for 23 individual strains of bacteria and 22 strains of fungi across a range soil moisture contents. While for some organisms the wettest soil coincided with the highest respiration, many strains exhibited optimal respiration rates at intermediate moisture contents. Different niche breadths—tolerance to a wide range of environmental change—were observed. There was a strong phylogenetic signal associated with moisture tolerance: closely related strains performed more similarly that would be expected if the relationship between phylogeny and functional response were random. Finally, it was observed that biofilm-producing organisms performed better at low moisture content and had a wider tolerance range, but grew more slowly, highlighting the fact that environmental adaptation requires trade-offs [52].
The above study created the first microbe-focused functional response classification, but did not further study whether these strains, when combined, behave similarly, or whether the behavior changes with increasing community diversity. To our knowledge, no such studies exist. The novel practice of seeking the ‘core microbiome’ of an environment—that is, to distinguish between microbial species which change in response to the environment [53]—alludes to the need to group organisms based on their response traits, but it is generally measured in natural environments, and as such is riddled with confounding factors. One factor which distinguishes prokaryotes from other organisms is the ability to acquire mobile genetic elements (i.e. plasmids), which often contain genes that facilitate survival in a wider range of environmental states [18]. The potential change in response trait classification resulting from the acquisition of mobile genetic elements also remains unexplored.
The primary concern of BEF research is not the individual capacity of an organism to function, but rather the emergent properties that arise from biodiverse communities. This improvement in functioning may be an increase in functional output—known as the short term effects of biodiversity—or an increase in the probability that this level of functioning will be maintained given environmental change, known as the long term effects (Figure 2). These emergent properties are particularly hard to measure in complex systems due to the difficulty of partitioning and attributing changes in community function amongst a plethora of individuals.
The short and long-term effects of biodiversity are studied in systems where diversity is simplified to different levels: for the former, the assembly approach discussed in section 3 is generally optimal (a), as simple systems are more tractable and it is easier to link an individual to increases in function. For the study of the long-term effects of biodiversity on ecosystem function—namely stability and adaptive capacity—more diversity is preserved. The emphasis is on monitoring the variability of functional parameters over time, if the goal is to determine intrinsic stability (b); or to measure resistance and resilience of the system to disturbance, if the focus is on functional stability sensu Pimm 1984 [54]. The study of alternative stable states and adaptive capacity is in its infancy, and even less is known regarding the redundancy on these two ecological properties in microbial systems.
The idea that biodiversity increases ecosystem function was engraved in Darwin’s original work “...if a plot of ground be sown with one species of grass, and a similar plot be sown with several distinct genera of grasses, a greater number of plants and dry herbage can be raised in the latter than in the former case (...) the truth of the principle that the greatest amount of life can be supported by the great diversification of life, is seen under many natural circumstances" [55]. At the most basic level, BEF research seeks to understand which characteristics arise from the presence of additional species in an ecosystem before ecosystem function begins to saturate (Figure 2a). These emergent properties—also known as biodiversity effects—are broadly categorized as selection or complementarity [25], and are considered to be the mechanistic processes by which more diverse ecosystems exhibit higher process rates.
Selection refers to the phenomenon in which a more diverse community will have a higher probability of containing more productive organisms. The better-performing organism tends to outcompete the rest for resources, returning the system to a monoculture in which its productivity dominates the entire system’s productivity; interactions between competing species are not considered to be significant contributors to changes in function. Here, the maximum functioning for the community is determined by the rate of functioning of the most productive species [25,56]. In cases where the most competitive species is the less productive one, selection can lead to a negative BEF relationship.
Complementarity on the other hand, results from the competition for resources within a community, which may result in specialization and niche differentiation: as two species compete for a resource, they become specialized in exploiting the resource in different ways or times in order to minimize competitive pressure. In time, a greater efficiency is expected from the system as resources are used more thoroughly. Facilitation is a special case of complementarity, where mutualisms arise among organisms in a community, and result in higher ecosystem productivity [25]. While complementarity also predicts an asymptotic relationship between diversity and function, in this case the maximum productivity of the system may be higher than the productivity of any single member species—a phenomenon termed overyielding. In this scenario, the productivity of the system should be superior from the added productivities of the component species [57,58].
Evidence for resource-use complementarity in the soil microbial system is scant: in one case, microcosms containing up to 8 strains of cellulolytic bacteria were assembled and monitored over 25 days. Greater species richness supported more individuals and faster decomposition rates than any monoculture. Furthermore, the initial frequency distribution of inoculated organisms was maintained in the richest microcosms, suggesting coexistence, but it was not possible to distinguish whether this coexistence was due to niche differentiation or facilitation, although the authors suggest both mechanisms were present [59]. Similarly, in the assemblage experiment with denitrifying bacteria mentioned earlier, the expected function of an assembled community (‘community niche’) was calculated by summing the functioning of each of its members, and this was compared to the realized function. The most productive species in terms of CO2 did not coincide with the most productive denitrifiers, illustrating the danger of underestimating relevant species when a single function is used to study the community. In addition, community niche had a much greater explanatory power for the observed functions than species richness alone. The positive relationship between community niche and function suggested that the pattern of resource utilization of the species in a community are a major driver of the increased functioning resulting from higher diversity (i.e. complementarity). The authors also found a minor selection effect, where certain species had a greater effect on community functioning than others, but they argue that in such dynamic communities, teasing out the influence of selection from complementarity is irrelevant, as these are tightly intertwined [33]. In contrast, a study using a similar experimental approach found that respiration in assembled bacterial microcosms was lower in pairwise cultures than expected from the monocultures, and even lower in multispecies cultures, suggesting a predominance of negative interactions in this system [27].
Ecosystems are dynamic, and communities must maintain ecological processes in the face of environmental change (stability), recover from radical environmental change (resilience), and adapt to constantly changing environments (self-organization) in order to persist. These three properties of diverse systems arise from the interplay between functionally redundant organisms in the community: species within a functional effect group might belong to different functional response groups. When environmental change occurs, it is the presence of organisms with different response patterns that allows for the maintenance of function, as species with more favorable responses to environmental change can compensate for the loss of function by the more sensitive species. In a similar way, the presence of functionally redundant organisms allows for other, tolerant individuals to maintain function when sensitive ones die or go dormant in response to disturbance.
Redundancy may be particularly important for the highly dynamic soil microbial system where, while diversity may be extreme, it may be necessary to buffer environmental change and guarantee the maintenance of function. The most well studied long-term BEF effect is functional stability. The notion that redundancy results in stability is not new, however interest in the development of mathematical models which mechanistically explain why this occurs did not become popular until the late 1990’s. The importance of redundancy to ecosystem performance was initially modeled by applying concepts of reliability engineering to the stability of function [59]. In this model, ecosystem functioning was defined as “the biogeochemical activities of an ecosystem or the flow of materials and processing of energy”, complexity as the number of functional groups in the system, and reliability as the probability that the system will provide enough services to perpetuate the cycle. Here, diversity increases the stability within a functional group through compensatory growth, by which one species within a functional group increases when another is reduced. This refers to the difference in environmental tolerances between organisms, which suggests that in redundant systems, there is a higher probability that some organisms will be unaffected by the environmental change, and these will be able to use the resources left behind by the more sensitive species. Interestingly, this model looks at each functional group in the system as a compartment that feeds into the others, and so collapse of the system may come about if a single functional group becomes unstable.
The insurance hypothesis, developed a year later [60], builds on the previous model, and attributes the increase in functioning and decreased variability to the positive selection of the more productive species and the temporal asynchronicity of species responses to environmental fluctuation, respectively. Here, stability arises because the dynamics of the diverse systems are less dependent on individual species. This is particularly important in soils, which exhibit a very high species turnover rate: in one case, the bacterial and archaeal ammonia oxidizing communities in a range of Dutch agricultural soils showed above 50% change in community structure between seasons [61,62]. In another, it was shown that when colonizing a novel environment, the microbial community undergoes drastic rearrangement, and draws heavily from members of the ‘rare biosphere’ [9,63], a strategy which may be crucial for stress-response [51].
While the intrinsic variability of soils and the mechanisms that support it may be of interest to understanding how redundancy contributes to microbial ecosystem function (figure 2b), soil research rarely focuses on this aspect of stability. Instead soil stability is measured by applying a disturbance to soils with naturally or artificially differing levels of diversity and testing whether the microbiota are able to maintain function in the face of disturbance (resistance), and the time it takes the function to be restored to its pre-disturbance levels (engineering resilience, figure 2c) [54]. Redundancy can be measured as the diversity within a functional group, which is often assessed through functional gene markers that allow for the inclusion of unculturable organisms. As a whole, the results emerging from this area of research are hard to interpret: the usage of disturbances of different identity, duration, and intensity as well as the different time intervals between the measurements of resistance and resilience render these studies incomparable [64].
Nevertheless, this body of work has yielded important insights into the relationship between diversity and stability. For example, one study found that the diversity of both nitrite oxidizing and denitrifying bacteria in soil was not significant in determining the rate of functional recovery from experimental heating; rather, the main factor affecting this phenomenon was the abundance of the genes responsible for the functions tested [65]. In this case, it was not diversity, but sheer abundance which was responsible for stability. In another case, the recovery rate of two soils with naturally differing levels of diversity was compared: while mineralization of a labile carbon source (14C-labeled wheat shoot) remained unaffected, mineralization of a recalcitrant substrate (14C-labeled 2,4 dichlorophenol) was impaired. The more diverse soil was able to recover within the 9 weeks of the experiment, while the less diverse soil did not [30], suggesting here diversity mattered not only for stability, but also for the decrease in function.
Generally, narrower or less redundant functions have been found to be less stable following disturbance than broad functions[66], supporting the notion that biodiversity acts to buffer the system against fluctuations. In one case, respiration in serially diluted soil microbial microcosms exhibited no change in basal respiration or decomposition despite the large reductions in diversity, but nitrification was progressively retarded with each dilution [38]. Changes in community composition may affect function when, following disturbance, an abundant and efficient species is replaced by a redundant, but less efficient yet tolerant one. For example, monitoring potential nitrite oxidation (PNO) on soils that were treated with the cessation of tillage on tilled land or the establishment of tillage on untilled land, it was possible to detect a switch from Nitrobacter-like nitrite oxidizers to Nitrospira-like nitrite oxidizers with tillage, which explained the decrease in PNO [67]. The cessation of tillage did not result in a restoration of the Nitrobacter community within the 17 months of study, suggesting that long-term function might have been permanently affected by treatment. In an assembly experiment comparing the recovery from heating or metals in microbial communities of 1-12 bacterial species, biodiversity increased stability, measured as community biomass, but this stability was closely associated to the number of tolerant species in the community, a phenomenon analogous to the selection effect [34]. In a separate experiment, altering the pH in mixed culture fermentation reactors was shown to bring about the dominance of different species of Clostridium and elicit slight changes in the reactor’s chemical output in accordance with the dominant species’ preferences [68].
The distribution of species abundances within a community also affect stability: more evenly distributed communities are generally more stable than communities characterized by one or two dominant species [37,69]. In one case, the effect of selective stress on the stability of assembled denitrifying communities of up to 18 species was highly dependent on initial community evenness [37]. Even excluding the effect of the presence of tolerant species on the community’s response, evenness played a significant role in maintaining stability.
Perhaps the clearest results have been obtained from studies looking at invasion resistance as an indicator of functional stability [11]. In general, diversity decreases invasibility in microbial systems [36,39,45]. By using both assembly and dilution in bacterial microcosms, a strong, negative correlation was shown between diversity and invasibility of an invader E. coli strain [39]. In a more recent experiment, the authors were able to attribute this decrease in invasibility to a reduction in easily available resources and reduced competitive advantage in the more diverse treatments. This result was confirmed by applying a resource pulse to the community following invasion, which led to an increase in the abundance of the invading species [70]. An analogous result was found in assembled communities consisting of different strains of Pseudomonas fluorescens, where genetic dissimilarity within a community increased productivity and decreased the success of the invader Serratia liquefaciens by decreasing the amount of resources available to the invader [71].
While it seems that theoretical predictions of a positive relationship between diversity and stability are somewhat in agreement, a large gap in the literature arises from differences between the definition of stability employed in these two fields: while experimental microbial ecology uses a functional definition of stability, which depends on resistance and resilience, theory often relies on intrinsic functional stability, which is a stand-alone parameter that measures the reduction of variability when there is no change in environmental parameters (Figure 2b). It is expected that more diverse communities will be more functionally stable and less compositionally stable, yet this has received little attention. The measurement of intrinsic stability requires the repeated measurement of an unperturbed community over time. Instead, a measurement is made immediately before disturbance to determine “normal” levels of functioning, immediately after to evaluate whether the system was resistant, and for a third time after a recovery period has passed. This approach does not consider that the system at equilibrium exhibits a constant variability which is intrinsic to the system, called normal operating range (NOR) [72], and thus cannot distinguish whether the response of a community to disturbance fits within ‘normal’ ranges of fluctuation or not, or whether a system that is deemed recovered is in a similar equilibrium to its undisturbed state.
The concept of resilience employed in the measurement of functional stability—engineering resilience—differs from the ecological concept as it was originally proposed [73]—ecological resilience. The former sees ecosystems as simple, rebounding springs, while the latter includes the possibility of the system shifting to alternative states due to perturbation, and thus is much harder to measure [73]. If ecological resilience is considered as a function in the same way as invasion resistance and stability, then it too can be progressively eroded. While research on this topic has been sparse and has not directly manipulated diversity, evidence of this phenomenon exists [74–78]. For example, mercury-contaminated, heat-shocked soils responded much more slowly to substrate additions than the transiently tylosin-contaminated or control soils [79]. The authors observed a significant decrease in the microbial diversity of the mercury-contaminated soils, which may explain the reduced response following additional disturbances. Mercury constitutes a long-term stress, so the heat-shocked communities were already coping with the original disturbance; however some studies find that even when the soils are allowed to recover from transient perturbations, their response to further disturbances is slower than that of the control soils: in another case, grassland soils which had experienced various forms of perturbation (reseeding, application of sewage-sludge, biocide/nitrogen and lime additions) recovered their ability to decompose more slowly following both copper and transient heat stresses than the unperturbed controls [78].
The concept of ecological resilience can be broken down into three characteristics: 1) the amount of change a system can undergo while retaining the same controls on function and structure; 2) the degree to which the system is capable of self-organization; and 3) the ability to build and increase the capacity for learning and adaptation [80]. Systems in which ecological resilience has been lost are unable to adapt to environmental change beyond a certain threshold, and in response to change shift to alternative stable states, in which the community is characterized by a different set of interactions (Figure 2d). One question that arises from this is whether microbial systems have stable equilibria to begin with. This is unclear, since the detection of alternative stable states requires the measurement of intrinsic variability which, as mentioned in the previous section, is not common practice in microbial ecology.
Another question is whether these irreversible shifts to alternative stable states have any relevance to ecosystem cycles. By analyzing the available literature, we may find mechanisms by which they do: the previously mentioned experiment in which tillage and no-tillage agricultural lands experienced an exchange in practice and the productivity and structure of the nitrite oxidizing communities underwent a catastrophic shift as, in response to an environmental change (tilling), the dominant members of a functional group (nitrite oxidizing bacteria) fundamentally changed from a those belonging to a more efficient genus (Nitrobacter) to a less efficient one (Nitrospira), leading to a decrease in function. Furthermore, cessation of tillage did not result in the opposite change in community. This may be an example of hysteresis—the phenomenon in which a system fails to return to its original state once perturbation ceases [81]—which is a property of systems that exhibit alternative stable states. In this case, the system may fail to return to its no-tillage state because the Nitrobacter community has been eroded beyond its ability to recover, or because the new dominant, generalist group is well suited for a wide range of environmental states, and it cannot easily be outcompeted when the system returns to its original conformation. Regardless of the underlying mechanism, this study provides evidence that a shift in the identity of the dominant organisms in a functional group may have an effect on functioning, and that this change may be irreversible. The implications of applying the ecological resilience concept to BEF studies are unknown but potentially very relevant, however to our knowledge, no work explicitly targets the measurement of ecological resilience in microbial systems, and this represents a serious gap in ecological research.
The last decade has seen a shift in focus, from a function-focused to a stability and probability-focused perspective. This is to be expected: at a time in which climate is expected to become more unpredictable [3], and biodiversity loss is expected to accelerate [2], it becomes important to be able to guarantee not only that ecosystems will be able to function, but that they will still be able to function in the face of drastic change. As mentioned earlier, the concept of functional redundancy was developed as a way determine which species within a community required the most conservation attention, and was later used to refer to a ‘minimum’ amount of biodiversity needed to keep the system functioning. As the focus shifts from the from the short-to the long-term effects of redundancy on ecosystem functioning, it becomes clear that the ecological value of redundant species lies in their ability to buffer against environmental change. Microbial communities are excellent model systems to study such buffering, not only due to the extremely high level of functional redundancy found here, but also due to the fact that these systems routinely experience rapid changes which may be catastrophic from a microbial perspective, and yet as a community they are able to maintain function. It seems that, even in the extremely diverse soil microbial system, diversity reductions result in reductions in either long-term or short-term function, or both, although the current gap in knowledge regarding microbial functional responses impairs our ability to understand the mechanics of this reduction as well as our ability to predict when environmental change results in functional change [82].
While the relevance of diversity to resilience and self-organization, and their contribution to the maintenance of function may be elusive and hard to study experimentally, these relationships warrant our attention. Initial studies have already revealed the importance of rare species in restructuring communities. Given current knowledge, it seems that in changing environments, every species matters, even in communities as diverse as the soil microbial community. Future research must delve into whether certain individuals matter more by evaluating the functional response profiles of individuals and communities, and quantifying the effect of changes of community composition on function.
Rice (Oryza sativa L.) is one of the most important crop in the world in terms of total developing world production (480 x 106 tonnes of rough rice in 2012) and the number of consumers (3.5 billion) dependent on it as their staple food and is cultivated in over 100 countries in every continent (except Antarctica), from 53oN to 40oS and from the sea level to an altitude of 3 kilometres high [1]. In 2019, the total world rice production amounted to approximately 738.75 million metric tons (MMT) from total harvested area of approximately 162.71 million ha, making rice the world’s third most-produced cereal crop after maize (1.12 billion metric tons) and wheat (731.45 MMT) [2]. On the African continent, especially in sub-Saharan Africa (SSA), rice has become a staple food crop and constitutes major part of the human diet [3]. Over the last three decades, African countries has experienced a consistent increase in rice production and consumption demand making rice the fastest growing staple food especially among low income earners [4]. In countries such Tanzania, Niger and Nigeria transformational changes in the production practices and shift of consumer preference from other coarse grain such as corn, sorghum and millet towards rice is particularly glaring and fuelling increased local production and consumption demand. Available statistics indicated that Africa produce an estimated 20.5 million tonnes of paddy rice annually [5], and West Africa is the continent’s rice powerhouse, producing about 66% of the total paddy in Africa, mostly by smallholder farmers [4].
The growth in rice production, processing and consumption in many Africa countries has been shown to have direct correlation with growing income, rapid urbanization, population growth, and change in the occupational structure of African families. It is believed that as more and more women and young girls in Africa join the workforce, and more men live and work in urban area, there is a shift toward food that is more convenient and cooks fast such as rice. Although the per capita consumption of rice is declining in many parts of Asia, in Africa, especially the SSA region, the demand for rice is increasing and at a faster rate than in any part of the world [6]. However, rice production in Africa has not kept pace with the increasing demand, resulting in huge volume of rice imported to fill the gap at a significantly high cost to Africa external reserves. Rice farmers in Africa, especially in Nigeria, Niger and Tanzania, have responded to the increasing demand for rice, as reflected in upward trends in total production in recent years [7]. But, when compared with population increases, the rice production trends are much less impressive and many of the countries are becoming increasingly dependent on rice imports, fuelled by growing production-to-consumption gaps [8].
Geographically, according to International Rice Research Institute (IRRI), Africa has the highest reserves of untapped natural resources for food production globally, especially water and land (130 million ha of inland valley) which are essential for rice production [5]. In spite of these sizeable land and favourable agro-ecological conditions, the Food and Agriculture Organization [7] and The World Bank, [9] states that significant number of population are undernourished while poverty and unemployment levels in country such as Nigeria is significantly high (69%). Added to the high level of unemployment, food insecurity and under nutrition, there is huge food losses and waste along the entire food value chain. It has therefore become imperative to make concerted efforts to reduce losses especially postharvest losses to improve food and nutrition security in Africa [10]. Huge volume of rice produced in Africa for instant like in most developing countries does not reach the table of the final consumers due to significant post-harvest losses in terms of physical grain loss (PGL) and grain quality loss (GQL) [11].
Research for development (R4D) in Africa have developed technologies and innovations and made recommendations for increasing rice productivity through the use of high yielding varieties, expansion of area under cultivation and reducing postharvest losses through good production practices and adoption of improved technologies [10, 11]. However, in most African countries, where tropical weather and poorly developed infrastructure contribute to the problem of food loss, wastage can regularly be as high as 40–50% and has been one of the key encumbrances to farmers’ income and sustainable food security in this region [12, 13]. Postharvest losses have therefore contributed significantly to African’s inability to attain self-sufficiency in local food production and also a huge drain to local production and food security, as colossal quantities of food, including rice are lost, year after year [13]. Globally, Gustavsson et al., [14] noted that about 1.3 billion tons of food are wasted or lost annually, while in the local context such as Nigeria, the country’s agricultural productivity has been generally low, mostly due to post harvest losses of farm produce (20% for grains such as rice and over 40% for fruits and vegetables), and attributed these to poor post-harvest handling, inadequate agro-processing development among other critical factors.
The adoption of good agronomic practices, favourable government policies and shift in consumer preference from other staple coarse grains toward rice have fuelled increased production and yield per hectare of rice across Africa. However, postharvest losses that have been relatively small in absolute terms have increased proportionally with increased yield per ha. Therefore, integrated management of postharvest operations such as threshing, cleaning, drying, parboiling, milling, grading and branding and storage have now been adopted in many rice producing clusters to reduce losses at each stage of the chain [13].
Ndindeng et al, [11] observed that resolving the critical issues along the rice value chain in many SSA countries is also impeded by the lack of a simple, adoptable and well- defined practical methodology on how to estimate PGL and GQL after harvest. This makes it impossible to have credible data during the various operations along the rice value-chain. Secondly, there is also wide quality gap between imported milled rice and domestically processed rice. The locally processed rice in Africa including Nigeria tend to be of poor quality due to high level of impurities (stones, weed seeds, sand and insect residues), high level of broken fractions, variability in grain size and colour and off-flavour perceived when cooked. However, many cost effective and efficient postharvest handling machines and practices developed and recommended by R4D organizations are not available for farmers, probably due to poor extension and funding challenges. In postharvest operation such as parboiling, the use of rudimentary technologies has resulted in high losses estimated at 15–20% with high energy and water demand which contributes to the final cost of the final product and environmentally unsustainable practices because of dependent of wood fuel [10]. They recommended the valorisation of rice processing by products to enhance income for the rice value chain actors and also improve food security and sustainable environment.
Broken rice fractions, bran and husk are major by-products of rice processing operations. They account for about 25–50% by weight of milled rice depending on variety and technology of milling. In many rice producing communities in Africa, rice processing by-products such as husk and bran are generally dispose and dumped as hips of wastes in many rice processing sites with little or no environmentally friendly ways of disposal. This has resulted in dusk related health challenges for people living nearby and methane emission during its natural decomposition [15]. But research in many parts of the world including Africa has indicated that rice husk if properly harnessed can serve as good raw materials for fuel [16, 17] and low grade broken fractions could be used for the production of other value added products [10] that may increase farmer’s income, safe guide the environment and improve food and nutrition security. Broken rice fractions can be converted to high quality flour and used for the production of value added products that can enhance nutrition and food security and livelihood of smallholder farmers and profitability of small-scale food processing industries [18]. It can also employ huge number of youths and women and serve as sources of employment and reduce restiveness.
This chapter will cover selected innovative techniques and technology advancement made especially by the Africa-Wide Taskforce on Rice Processing and Value Addition and its partners in developing strategies for minimizing postharvest loss in Africa through the development of technologies for utilization of broken rice fractions and rice husk to reduce rice postharvest losses in Africa. Major challenges mitigating the adoption of this technologies and possible opportunities in the rice postharvest value chain that can attract investment for the improvement of rice production and reduction in rice postharvest losses are also outlined. This synthesis we believe will help in providing future direction for research and support for sustainable rice postharvest system in Africa.
Rice postharvest value chain is a set of unit operations in which well matured harvested paddy rice pass through from the point of harvest to consumption. Efficient and sustainable rice postharvest value chain therefore, aimed at minimizing losses and maximizes quality of the harvested grains until it reaches the consumer [10]. At each level of the value chain, several actors are involved and different values of losses are recorded. In Africa, especially in West Africa, several actors using diverse kinds of equipment and techniques are involved in primary, secondary and tertiary postharvest operations of the rice value chain (Figure 1).
Unit operations at different levels of rice postharvest system in Africa.
Losses particularly along the value chain [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] has been highlighted as a major source of lost in revenue and productivity among value chain actors as both quantitative and qualitative losses occur during any of the stages [19]. This is an indication that critical attention need to be given to the postharvest value chain to reduce loss in productivity and make rice production a sustainable venture. Technically, when paddy is harvested, it passes through the first routes (A), before storage, but may also be traded directly by farmers to middle men or collected together by farmers’ cooperative groups where this exists before marketing at a favourable period. Currently in Africa, especially SSA, little or no value addition is carried out at the primary postharvest level. At the second level (B), some levels of value addition are made where the paddy is either milled after parboiling or directly after winnowing to produce white rice which is traded as milled rice and used for the preparation of traditional whole kernel rice-based foods [20]. At this point where appropriate technologies are used, grain quality is improved which translate into improved economic value and competitiveness of milled rice.
Over the last few years, in Nigeria and other African countries, several large scale integrated mills have been installed which combined parboiling and milling operations and coupled with grading and packaging system. In these mills, parboiling and drying energy are generated by combusting the husks, while milling uses electricity from national grid or private generators. Recently, a third level have been added to the chain, where low grade broken fractions, a by-product of rice milling is converted to rice flour and used for the production of diverse rice-based products (C) or other by-products such as husk are used for energy for artisanal rice parboiling and household cooking [16, 17, 21]. The tertiary postharvest level is built on broken rice, bran and husk utilization where low quality rice is converted into flour and used for the production of flour-based products, while bran is used in combination of legumes for the production of animal feeds and sold to animal husbandry firms and husk for energy sources. It is important to note that rice postharvest operations in SSA consist mainly of manual operations resulting in high crop losses and contamination.
Postharvest losses in food production including rice not only have effects on social and economic scales, but also represent a waste of resources used in production such as land, water, energy and other inputs. Report by Africa Postharvest Loss Information System [22] indicated that losses occurs hugely at all levels of the rice postharvest operations. Harvesting operations including harvesting, threshing, winnowing and drying resulted in an average of 11.2% loss due to grain spillage and poor threshing where grains are left on panicles. Transportation resulted in 2.3% (to farm and market) and storage 3.4% indicating an approximately 15.91% average postharvest loss across the continent. Report by Sallah, [23] on the postharvest losses of rice and its implication on livelihood and food security in Africa taking a case of Cameroon and The Gambia indicated that losses at threshing operation were 19 and 17%, drying 9.3 and 7.0%, storage 4.2 and 6.0%, milling 1.3 and 1.0% and transportation 1.33 and 0.8% respectively for Cameroon and The Gambia. This results in reduced income and employability of the people in the study area. Loss was aggravated by lack of or poor processing equipment, poor storage facilities, poor knowledge and skills on postharvest reduction strategies.
It has been estimated in Nigeria by Oguntade et al., [24] that rice post-harvest losses may be as high as 20 to 40%, implying conservatively between 10 and 40% of rice that grown in the country never reaches the market or consumers table or are traded at a discounted price due to loss of quality resulting from poor postharvest management. The high postharvest losses slowdown the marginal increase in rice production recorded over the last few years in many African countries and also threatened food and nutrition security. Because of the adoption of improved technology in rice production in developed countries, postharvest losses occur primarily at the consumer level, with minimal losses at the field or after harvesting or at the other stages of the value chain [10, 25]. In contrast, postharvest losses in Africa occur mainly during harvesting through to market stages, with slightest share of losses occurring at the consumption level [25, 26].
According to Oguntade et al. [24], huge losses totalling about 11.39% is recorded during rice postharvest level in Nigeria, with harvesting accounting for 4.43%, threshing and cleaning (4.97%), transporting paddy from field to homes (0.34%), paddy drying and storage (1.53%) and transporting of paddy to local markets (0.12%). At secondary postharvest levels (Figure 1), rice parboiling process, an essential pre-treatment given to paddy rice before milling accounted for 5.19% paddy loss, while milling at the village level and milled rice transportation, marketing and storage results in 4.40% and 7.54% losses respectively. Danbaba et al., [10] correlated the data with rice production statistics of 17.5 MMT of paddy produced in Nigeria in 2016 [27], considering postharvest losses of 11.39% paddy from harvest to market and 135 Naira per Kg market price of paddy (as at November, 2018), Nigeria losses about 1.99 MMT of paddy representing 269.09 billion naira annually. These losses are huge and unsustainable if added up to the estimated 123 billion naira losses during the parboiling and milling processes. Situations from the three African countries classically indicates the unfavourable postharvest loss situation on the continent which calls for urgent action and intervention.
The continues increase in rice consumption together with minimal increase in domestic production coupled with high postharvest losses, high rice import cost and glaring impacts of climate change and conflicts in Africa, research and development organizations are working together under a coordinated strategy lead by Africa Rice Centre (AfricaRice) to provide innovative approach for improving productivity and food and nutrition security through postharvest loss reduction. The rapid advances in small and intermediate technology development, formulation and production of new value added products from low grade broken rice fractions and other rice processing by-products demonstrated the ability to improve food and nutrition security in Africa through novel postharvest loss reduction strategies [10, 16, 21, 28]. Until recently, rice research for development has focused on yield improvement without much emphasis on postharvest practices especially as it relates to loss reduction, quality improvement and marketability. But Nguyen and Ferrero [29] opined that in near future, the possibility of expanding rice production area will remain limited in SSA due to high cost of developing new land suitable for rice production combined with water scarcity for rice production and urban and industrial expansion, implying that loss at any point of the value chain need to minimized to save food and nutrition security in SSA.
In 2008, the SSA countries were faced with significant hike in food price [30]. Milled rice in the international market grow by almost 400% and combined with about 40% rice deficit in SSA, it become highly vulnerable to global rice prize shock and probably was the major cause of ‘food riot’ in 2008 in countries such as Burkina Faso, Cameroon, Cote d’Ivoire, Mauritania and Senegal [31, 32]. The riot of 2007–2008 [32] triggered renewed focus and investments in rice production together with postharvest operations in many African countries. Nigeria, Ghana, Togo, Cote d’Ivoire, The Gambia, Senegal and Burkina Faso developed a national strategic plan to attain rice self-sufficiency in medium and long time by increasing public and private sector investment into rice sub-sector of their economy, but quality and postharvest losses are least emphasised [33]. In 2011, AfricaRice lead a consortium of research organizations in major rice producing countries of Africa to implement and innovative postharvest loss reduction model ‘enhancing food security in Africa through the improvement of rice postharvest handling, marketing and development of new rice-based products’. The project emphases the utilization of flour from low grade broken rice fractions to prepare value added food products such as snacks, biscuits, and porridges. This innovative uses of rice can catalyse rural enterprises and raise income, especially for women farmers and processors in Africa [33]. The project also developed innovative technology to utilize rice husk for energy as a strategy to add value to rice husks which are hitherto stockpiled and dumped near mills where they rot and produces methane (a potential greenhouse gas) or burned in the open fields, thus causing pollution.
By improving harvest and postharvest system of rice value chain in Africa, small holder farmer’s income will be enhanced through time saving on processing, reduction in qualitative and quantitative postharvest losses which will translate to higher income and better quality of locally milled rice which may compete favourably with imported brands and fetch better price, thereby enhancing the incomes of various actors along the value chain. New rice products containing high nutrients will improve nutrition security and provide employment for women and youths and the overall industrial development of rural communities. The utilization of rice husks for energy will certainly reduce deforestation which is currently threatening significant number of countries of Africa, especially the Sahel region.
Innovative production is a concept that describes an on-going re-engineering process with the major aims of evolving products and production engineering from prevalent trends based on advances in research for development [34]. Innovative rice postharvest loss reduction trends in Africa is being re-engineered by evolving new value added products based on prevalent research trends. Since production innovation strengthens the productivity and resource use efficiency of production system, recent trends in Africa in the field of rice postharvest system development is the innovative approach to the utilization of rice processing by-products as a strategy to strengthen the productivity of rice and resource use efficiency. The following sections describes the innovative strategies currently used in Africa to reduce postharvest through efficient postharvest system management.
Fissuring cause by poor postharvest handling of paddy results in broken kernels upon milling, and consequently lost in quality and economic values of milled rice [35]. However, recent increase in the use of rice flour has promoted interest in broken rice fractions utilization as raw materials in many foods especially snacks, porridges and others [36]. Rice flour has been used traditionally for the production of traditional stiff dough (tuwo) in Nigeria and many West African countries [20]. Its application in the production of high quality flour that could be used in baking has been hampered by lack of improved rice flour production process that produces flour of particles sizes that could be considered suitable as baking flour and improved functionality [21].
Chiang and Yeh [37] proposed wet milling of rice kernels to produce flour of desirable functionality. As a strategy to valorised broken rice fractions resulting from poor milling processes and rice of low grain quality characteristics, broken rice fractions are processed through wet milling process to produce high quality rice flour that has appreciably acceptable baking quality [21]. The innovative technique which is being commercialized in Africa, involves repeated wet grinding of soaked broken rice fractions and sieving through a fine cloth mesh until virtually all the slurries are made to pass through the sieve. The filtrate is allowed to stand for 3–4 hours depending on the variety and water temperature and decanted to obtain smooth sediment at the bottom. The solid sediment is broken into pieces and dried in an oven before pulverizing and sieving (200 μm) to obtain rice flour (Figure 2). The United States Code of Federal Regulation (CFR) state that for a product of milling of grains to be considered as flour, not less than 98% of the particles of the milling process must pass through a sieve having opening not larger than 212 μm [38]. Flour of this particle size characteristics has been demonstrated to impact positively on the end-use application [21, 38, 39, 40] studied the physicochemical and functional properties of flours from some common Nigerian rice varieties and concluded that these properties are promising for their application in food systems.
Flow chart for the production of high quality rice flour from broken rice fractions. Danbaba et al. [21].
Production of flour from broken rice fraction has been shown to improve the economic value of broken rice kernels by 38% and significant consumer preference for snacks and other baked products. This has significantly reduced qualitative losses incurred during rice processing and improved income of smallholder food processors. The high quality rice flour is also blended with legume based flour (Figure 3) to improve protein content and quality to enhance nutrition and product specifications [21] which is an innovative production system.
High quality rice flour from broken rice fractions (left), branded rice flour (centre) and rice flour blended with cowpea flour for the production of high protein baked products [21].
Recent changes in social life of many population across the world and the development of middle class worker in developing countries of Africa has resulted in high population of people who are inclined to eat ‘ready-to-eat’ food, because of its convenience, easy to consume, low to moderate price with minimal need for further processing. Extruded snacks are example of such products and their consumption is growing by day. Extrusion cooking technology is a continuous mixing, cooking and shaping process carried out at high temperatures over short times [41]. It is a very versatile, low-cost and highly energy efficient technology for snack or expanded foods production. Extrusion of cereal-based flours or other starchy raw materials is widely used in the food industry in developed countries to produce snack foods [42]. Little of extrusion cooking is being practiced in Africa especially as it relates to value added rice processing, but recent advances in rice postharvest science has introduce the use of low grade broken rice fractions as raw material for the production of extruded snack foods [10, 43].
However, when starchy raw materials such as rice are subjected to extrusion cooking, there is a chemical and structural transformation such as starch gelatinization, protein denaturation, complex formation between amylose, lipids and/or proteins, and degradation of pigments and vitamins [44]. Under the Africa-Wide Taskforce on Rice Processing and Value Addition of Africa Rice Centre and its national partners, low grade broken rice fractions from different milling operations have been tested and validated for the production of snacks that are high in protein and acceptable to consumers [21, 43]. Through process modelling and optimization, optimum moisture content, barrel temperature and level of legume flour for extrusion have been established for the blends of broken rice fractions with cowpea, bambara groundnut and soybean, keeping other extrusion parameters within range [21, 28, 43]. This optimized process conditions produces extruded snacks with smooth outer-surface (Figure 4) and uniform air spaces with regular shape, this according Ryu et al., [45] are features of good quality extrudates.
Photographic images (longitudinal section) of the physical state of rice-cowpea blend extruded snacks.
Because extrusion cooking process allows for the production of low-fat snacks and induces the formation of resistant starch, which makes no caloric contribution and behaves physiologically like dietary fibre [46], rice-based extruded snacks in Africa have received satisfactory acceptability among consumers that are concerned with nutritional quality of food they eat. As a result, therefore, the application of extrusion cooking is increasingly becoming popular for snack production in Africa using raw materials such as rice [28, 43], sorghum [47], and millet [48] containing protein, starch and dietary fibre in an effort to create novel food products such as snacks with a more adequate nutritional value. This new product is expected to improve rice postharvest system through qualitative loss reduction and improve overall food and nutrition security of the populace.
In some instance, it has been demonstrated that when crushed and pulverized, extruded broken rice fractions could be used as porridge or weaning foods. Danbaba et al [21, 28] introduced extruded ready-to-eat rice porridge (Figure 5) as part of valorisation of low quality broken rice fractions after blending with appropriate amount of legume flour. Protein-energy malnutrition (PEM) and micronutrient deficiency is a severe problem facing developing countries and particularly children under the age of 5 years. This has resulted in more than 50% of childhood death in developing countries including Africa [49, 50]. Blending cereals with legumes in the production of complementary foods has been shown to improve childhood nutrition and significantly reduce mortality [21, 28, 43]. Several authors including Stojceska et al., [51]; Obradović et al., [52]; Panak Balentić et al., [53, 54] have also shown in other parts of the world that it is possible to enrich extruded cereal-based snacks with nutritionally valuable ingredients such as protein from ingredients like legumes. The utilization and application of extrusion cooking in Africa provides an alternative for producing high protein-energy weaning porridges from the blends of low grade broken rice and legumes. This process according to Pathania, et al., [55] credible alternative from the traditional practices for the manufacturing of re-constitutable foods for blended flours (Figure 5). Extrusion cooking therefore is expected to impact positively on the rice postharvest system in Africa in the years to come.
Production of extruded high protein-energy weaning porridge from blends of broken rice and cowpea.
The increased demand by more consumers for gluten-free products has over the few decades necessitated the quest for suitable alternative raw materials to wheat for the production of third-generation snacks, and the use of rice flour is gaining greater interest because of its favourable attributes of negligible gluten content, good expansion during extrusion and bland taste [56]. Third-generation snacks (3G), also called semi or half products, during production undergo cooking after extrusion and are dried to a stable moisture content (approximately 12%) and then expanded by frying in hot oil, puffing in hot air or microwaving and infrared heating as new variants [57]. In developed world or where extrusion cooking technology has gained popularity, 3G snacks are common. After expansion products are spiced with various types of spices and then packaged and sold as ready-to-eat (RTE) snacks [57]. The products can also be flavoured before expansion and sold as pellets, for preparation at home [58]. In Nigeria, under a strategy to improve postharvest quality of rice, especially poor quality rice varieties having poor parboiling characteristics, kernels are converted to high quality flour of specific particle size and used innovatively for the production of 3G snacks (Figure 6) that are current popular among snack producers in many African countries [21].
Some rice-based 3G snacks produced from low grade broken rice flour.
Cold forming extrusion (40–70°C, 60–90 bar) of pre-gelatinized rice flour blended legume flour is used for the production of rice-based 3G snacks. Adjusting extrusion temperature, residence time and initial ingredient moisture facilitate complete gelatinization of starch component of the ingredients before frying [57, 59, 60]. Extruded snacks from rice will significantly take some market share as more and more countries in Africa are increasingly improving their rice production and more consumers are becoming more interested in non-gluten baked snacks. Badau et al. [61] state that the addition of 30% cowpea to rice flour for the production of traditional Nigeria snack (Garabia) significantly improves protein content, metabolizable energy and vitamin B2, while consumer rating based on 9-point hedonic scales was above 6.0 indicating that with the addition of cowpea, the snacks are well-liked by consumers.
In 2014, it was estimated that Sub-Saharan Africa produces about 22.1 million tonnes of paddy, which represent about 4.6% of the total global production [5]. Structurally, paddy consists of about 72% kernel, 5–8% bran and 20–22% husk [62]. Therefore, when 22.1 million tonnes of paddy are subjected to milling, it produces about 4.8 million tonnes of husk [11]. With the increased production of paddy in Africa over the last 2 decades, the annual production of rice husk has also proportionally increased. The utilization of rice husk for economic purposes hitherto in Africa especially SSA is very low even though by-products such as rice husk is suitable raw material for energy generation and bran is a nutritive ingredient for food formulation [11, 63]. The high amount of silica in rice husk even when mixed with bran as obtained from village mills (Engelberg type mill) is not suitable for animal feeding purposes. In SSA, significant proportion of rice husk produced is disposed of by burning in open fields or abandoned around rice milling facilities [11]. These practices have resulted in the pollution of air, land and water through the generation of greenhouses gases and particles in water and air [64]. This situation calls for urgent and innovative technique to economically utilize the husk and improve rice postharvest handling for sustainable environment.
Rice husk, a by-product of rice milling is about 20% by weight of paddy and chemically contains about 20% SiO2. Gasification technique for rice husk as energy for rice parboiling and household cooking has been recently developed and is being commercialized across the continent of Africa [65]. Five different rice husk top-lit updraft (TLUD) gasifier household cooking stoves for use in rice processing clusters of Africa has been evaluated under a study to select technically feasible rice husk stove for rural and semi urban household cooking and artisanal rice processing in Africa. Ndindeng, et al. [65] study demonstrated that fan-assisted cook stoves especially PO150 recorded better thermal and emission indices and are safer to use than the natural draft gasifiers stove and is therefore recommended for household cooking in rice processing communities of Africa.
Gasification is the process of converting biomass such as rice husk into a combustible gas through thermo-chemical reaction of oxygen in the air and carbon available in the biomass during combustion. In other to gasify rice husk therefore, about 4.7 kg of air per kg of rice is needed [66, 67] and has resulted in the development of several models of fan-assisted rice husk gasifier [65]. The energy obtained are environmentally friendly and the technology easy to use by rural households. Using biomass such as rice husk in Africa for energy generation offers several advantages, including the mitigation of gaseous emissions such as CO2, SOx, and NOX [68]. This is probably due to low amount of sulphur and nitrogen present in agricultural residues as well as minimal chlorine content [69]. But the question arises as to whether some components of emitted gasses by the stove during burning can contaminate the food being processed and exert toxic effects on consumers. Germaine et al. [70] evaluated in vivo toxicity of rice husk used as fuel for household cooking and indicated significantly non toxicity of water boiled with rice husk gasifier. The results obtained by Germaine et al. [70] suggested that rice husk used as fuel in household cooking using a fan-assisted rice husk stove is not toxic at 0.5, 1.0 and 2 ml/100100 g body weight and did not produce any evident symptoms in the acute and sub-chronic oral toxicity studies. Even though no evident symptom of toxicity was observed, Quispe et al., [69] suggested that the use of agricultural residues such as rice husk for energy purpose require the performance of integral assessment considering all stage of its life cycle and comparing same with the use of fossil fuels as a means of identifying the conditions and scenarios for a lower environmental impact. Ndindeng, et al., [65], McKendry, et al., [71, 72] illustrated the following as the main advantages of the innovative rice husk gasification cooking stove introduced in Africa:
Newly introduced rice husk stove had better performance metrics than that of existing brands in the region.
Rice husk mixed with palm kernel shell or other biomass significantly increase burning time but not flame temperature.
Data from end-user evaluation were in conformation with stove performance metrics determined instrumentally.
If the rice husks are completely burned, the amount of CO2 produced is equal to the amount taken from the environment during the growing stage, making it husk gasification and environmentally sustainable practice.
Another advantage is the diversification of energy supply avoiding non-renewable resources depletion which is challenging African forest and farming lands.
Significant improvement has been made in Africa in terms of rice production mainly as a results of the development of new improved varieties, expansion of area under rice cultivation and huge public and private sector investments. This increased production has resulted in increased by-products such as broken rice fractions and husk. Poor utilization of the broken fractions resulted in reduction of productivity of rice and the husks have become of huge environmental and health changes. The high postharvest losses recorded in Africa has become of great concern to research and development experts, and new innovative methodologies were developed to use broken rice fractions for the production of high quality rice flour that could be used to produce high nutrients and consumer acceptable value added products that improve income and food security of smallholder rice value chain actors. The utilization of rice husk for energy generation has also become a fast moving technology where fan-assisted cooking stoves are developed and provide efficient alternative to fossil fuel. Both qualitative and quantitative postharvest losses in rice are being aggressively managed as a strategy to improve food and nutrition security, environmental sustainability and overall productivity of rice production system. Stakeholder including policy-makers, environmental experts, among others, should as a matter of urgency priority consider the use of biomass as sources of energy for home cooking to reduce over dependence on forest woods and popularize the fan-assisted cooking stove among rural dwellers especially among populations in the Sahel region of Africa where desert is moving fast. Utilization of broken rice fraction as raw materials for flour, snacks, porridges and other foods should be encouraged as means of improving food and nutrition security as well as the socioeconomic development of rural areas.
Authors declare no conflict of interests.
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118373},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"18"},books:[{type:"book",id:"9667",title:"Neuroimmunology",subtitle:null,isOpenForSubmission:!0,hash:"9cf0e8203ce088c0b84add014fd8d382",slug:null,bookSignature:"Prof. Robert Weissert",coverURL:"https://cdn.intechopen.com/books/images_new/9667.jpg",editedByType:null,editors:[{id:"79343",title:"Prof.",name:"Robert",surname:"Weissert",slug:"robert-weissert",fullName:"Robert Weissert"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10744",title:"Astrocyte",subtitle:null,isOpenForSubmission:!0,hash:"b770f09e3f87daa5d8525fa78f771405",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10744.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!0,hash:"6a079df045b086b404399c5ed4ac049a",slug:null,bookSignature:"Prof. Amit Agrawal, Dr. Roshan Sutar and Dr. Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:null,editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5244},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"716",title:"Computer-Aided Technologies",slug:"computer-aided-technologies",parent:{title:"Control Engineering",slug:"engineering-control-engineering"},numberOfBooks:2,numberOfAuthorsAndEditors:39,numberOfWosCitations:24,numberOfCrossrefCitations:18,numberOfDimensionsCitations:29,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"computer-aided-technologies",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5379",title:"Computer-aided Technologies",subtitle:"Applications in Engineering and Medicine",isOpenForSubmission:!1,hash:"f33a3bdb537f32114b4c1ca6ed3be8dd",slug:"computer-aided-technologies-applications-in-engineering-and-medicine",bookSignature:"Razvan Udroiu",coverURL:"https://cdn.intechopen.com/books/images_new/5379.jpg",editedByType:"Edited by",editors:[{id:"13146",title:"Prof.",name:"Razvan",middleName:null,surname:"Udroiu",slug:"razvan-udroiu",fullName:"Razvan Udroiu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"52774",doi:"10.5772/65851",title:"Joining in Nonrigid Variation Simulation",slug:"joining-in-nonrigid-variation-simulation",totalDownloads:959,totalCrossrefCites:7,totalDimensionsCites:15,book:{slug:"computer-aided-technologies-applications-in-engineering-and-medicine",title:"Computer-aided Technologies",fullTitle:"Computer-aided Technologies - Applications in Engineering and Medicine"},signatures:"Kristina Wärmefjord, Rikard Söderberg, Björn Lindau, Lars Lindkvist\nand Samuel Lorin",authors:[{id:"52913",title:"Prof.",name:"Rikard",middleName:null,surname:"Soderberg",slug:"rikard-soderberg",fullName:"Rikard Soderberg"},{id:"190535",title:"Associate Prof.",name:"Kristina",middleName:null,surname:"Wärmefjord",slug:"kristina-warmefjord",fullName:"Kristina Wärmefjord"},{id:"194323",title:"MSc.",name:"Björn",middleName:null,surname:"Lindau",slug:"bjorn-lindau",fullName:"Björn Lindau"},{id:"194324",title:"Dr.",name:"Lars",middleName:null,surname:"Lindkvist",slug:"lars-lindkvist",fullName:"Lars Lindkvist"},{id:"194325",title:"Dr.",name:"Samuel",middleName:null,surname:"Lorin",slug:"samuel-lorin",fullName:"Samuel Lorin"}]},{id:"52202",doi:"10.5772/64980",title:"Computer-Aided Diagnosis in Neuroimaging",slug:"computer-aided-diagnosis-in-neuroimaging",totalDownloads:1360,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"computer-aided-technologies-applications-in-engineering-and-medicine",title:"Computer-aided Technologies",fullTitle:"Computer-aided Technologies - Applications in Engineering and Medicine"},signatures:"Francisco J. Martínez-Murcia, Juan Manuel Górriz and Javier\nRamírez",authors:[{id:"17445",title:"Dr.",name:"Javier",middleName:null,surname:"Ramírez",slug:"javier-ramirez",fullName:"Javier Ramírez"},{id:"187376",title:"M.Sc.",name:"Francisco J.",middleName:null,surname:"Martínez-Murcia",slug:"francisco-j.-martinez-murcia",fullName:"Francisco J. Martínez-Murcia"},{id:"187381",title:"Prof.",name:"Juan Manuel",middleName:null,surname:"Górriz",slug:"juan-manuel-gorriz",fullName:"Juan Manuel Górriz"}]},{id:"66967",doi:"10.5772/intechopen.82011",title:"Decision-Making in Real-Life Industrial Environment through Graph Theory Approach",slug:"decision-making-in-real-life-industrial-environment-through-graph-theory-approach",totalDownloads:331,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",fullTitle:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering"},signatures:"Ravi Pratap Singh, Ravinder Kataria and Sandeep Singhal",authors:[{id:"265010",title:"Dr.",name:"Ravi Pratap",middleName:null,surname:"Singh",slug:"ravi-pratap-singh",fullName:"Ravi Pratap Singh"},{id:"265017",title:"Dr.",name:"Ravinder",middleName:null,surname:"Kataria",slug:"ravinder-kataria",fullName:"Ravinder Kataria"},{id:"271624",title:"Dr.",name:"Sandeep",middleName:null,surname:"Singhal",slug:"sandeep-singhal",fullName:"Sandeep Singhal"}]}],mostDownloadedChaptersLast30Days:[{id:"52192",title:"Computer-Aided Biosensor Design",slug:"computer-aided-biosensor-design",totalDownloads:945,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"computer-aided-technologies-applications-in-engineering-and-medicine",title:"Computer-aided Technologies",fullTitle:"Computer-aided Technologies - Applications in Engineering and Medicine"},signatures:"Yu-Chen Lo, Ren Gui, Hiroshi Honda and Jorge Z. Torres",authors:[{id:"186645",title:"Dr.",name:"Jorge",middleName:null,surname:"Torres",slug:"jorge-torres",fullName:"Jorge Torres"},{id:"187584",title:"Dr.",name:"Yu-Chen",middleName:null,surname:"Lo",slug:"yu-chen-lo",fullName:"Yu-Chen Lo"},{id:"188117",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Honda",slug:"hiroshi-honda",fullName:"Hiroshi Honda"},{id:"188357",title:"Ms.",name:"Ren",middleName:null,surname:"Gui",slug:"ren-gui",fullName:"Ren Gui"}]},{id:"53083",title:"Introductory Chapter: Integration of Computer-Aided Technologies in Product Lifecycle Management (PLM) and Human Lifecycle Management (HUM)",slug:"introductory-chapter-integration-of-computer-aided-technologies-in-product-lifecycle-management-plm-",totalDownloads:1524,totalCrossrefCites:4,totalDimensionsCites:3,book:{slug:"computer-aided-technologies-applications-in-engineering-and-medicine",title:"Computer-aided Technologies",fullTitle:"Computer-aided Technologies - Applications in Engineering and Medicine"},signatures:"Razvan Udroiu",authors:[{id:"13146",title:"Prof.",name:"Razvan",middleName:null,surname:"Udroiu",slug:"razvan-udroiu",fullName:"Razvan Udroiu"}]},{id:"67425",title:"Impact of Medical Advancement: Prostheses",slug:"impact-of-medical-advancement-prostheses",totalDownloads:531,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",fullTitle:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering"},signatures:"Samreen Hussain, Sarmad Shams and Saad Jawaid Khan",authors:[{id:"281496",title:"Prof.",name:"Samreen",middleName:null,surname:"Hussain",slug:"samreen-hussain",fullName:"Samreen Hussain"},{id:"281500",title:"Dr.",name:"Sarmad",middleName:null,surname:"Shams",slug:"sarmad-shams",fullName:"Sarmad Shams"},{id:"298862",title:"Dr.",name:"Saad",middleName:null,surname:"Jawaid Khan",slug:"saad-jawaid-khan",fullName:"Saad Jawaid Khan"}]},{id:"52202",title:"Computer-Aided Diagnosis in Neuroimaging",slug:"computer-aided-diagnosis-in-neuroimaging",totalDownloads:1360,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"computer-aided-technologies-applications-in-engineering-and-medicine",title:"Computer-aided Technologies",fullTitle:"Computer-aided Technologies - Applications in Engineering and Medicine"},signatures:"Francisco J. Martínez-Murcia, Juan Manuel Górriz and Javier\nRamírez",authors:[{id:"17445",title:"Dr.",name:"Javier",middleName:null,surname:"Ramírez",slug:"javier-ramirez",fullName:"Javier Ramírez"},{id:"187376",title:"M.Sc.",name:"Francisco J.",middleName:null,surname:"Martínez-Murcia",slug:"francisco-j.-martinez-murcia",fullName:"Francisco J. Martínez-Murcia"},{id:"187381",title:"Prof.",name:"Juan Manuel",middleName:null,surname:"Górriz",slug:"juan-manuel-gorriz",fullName:"Juan Manuel Górriz"}]},{id:"68178",title:"Artificial Intelligence in Light-Source Design",slug:"artificial-intelligence-in-light-source-design",totalDownloads:290,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",fullTitle:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering"},signatures:"Snjezana Soltic and Andrew N. Chalmers",authors:[{id:"211512",title:"Dr.",name:"Andrew",middleName:null,surname:"Chalmers",slug:"andrew-chalmers",fullName:"Andrew Chalmers"},{id:"303396",title:"Dr.",name:"Snjezana",middleName:null,surname:"Soltic",slug:"snjezana-soltic",fullName:"Snjezana Soltic"}]},{id:"52774",title:"Joining in Nonrigid Variation Simulation",slug:"joining-in-nonrigid-variation-simulation",totalDownloads:958,totalCrossrefCites:6,totalDimensionsCites:15,book:{slug:"computer-aided-technologies-applications-in-engineering-and-medicine",title:"Computer-aided Technologies",fullTitle:"Computer-aided Technologies - Applications in Engineering and Medicine"},signatures:"Kristina Wärmefjord, Rikard Söderberg, Björn Lindau, Lars Lindkvist\nand Samuel Lorin",authors:[{id:"52913",title:"Prof.",name:"Rikard",middleName:null,surname:"Soderberg",slug:"rikard-soderberg",fullName:"Rikard Soderberg"},{id:"190535",title:"Associate Prof.",name:"Kristina",middleName:null,surname:"Wärmefjord",slug:"kristina-warmefjord",fullName:"Kristina Wärmefjord"},{id:"194323",title:"MSc.",name:"Björn",middleName:null,surname:"Lindau",slug:"bjorn-lindau",fullName:"Björn Lindau"},{id:"194324",title:"Dr.",name:"Lars",middleName:null,surname:"Lindkvist",slug:"lars-lindkvist",fullName:"Lars Lindkvist"},{id:"194325",title:"Dr.",name:"Samuel",middleName:null,surname:"Lorin",slug:"samuel-lorin",fullName:"Samuel Lorin"}]},{id:"67484",title:"Human Behavior Modeling: The Necessity of Narrative",slug:"human-behavior-modeling-the-necessity-of-narrative",totalDownloads:429,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",fullTitle:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering"},signatures:"Roger Parker",authors:[{id:"284043",title:"Ph.D.",name:"Roger",middleName:null,surname:"Parker",slug:"roger-parker",fullName:"Roger Parker"}]},{id:"66967",title:"Decision-Making in Real-Life Industrial Environment through Graph Theory Approach",slug:"decision-making-in-real-life-industrial-environment-through-graph-theory-approach",totalDownloads:329,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",fullTitle:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering"},signatures:"Ravi Pratap Singh, Ravinder Kataria and Sandeep Singhal",authors:[{id:"265010",title:"Dr.",name:"Ravi Pratap",middleName:null,surname:"Singh",slug:"ravi-pratap-singh",fullName:"Ravi Pratap Singh"},{id:"265017",title:"Dr.",name:"Ravinder",middleName:null,surname:"Kataria",slug:"ravinder-kataria",fullName:"Ravinder Kataria"},{id:"271624",title:"Dr.",name:"Sandeep",middleName:null,surname:"Singhal",slug:"sandeep-singhal",fullName:"Sandeep Singhal"}]},{id:"68675",title:"Introductory Chapter: Computer-Aided Diagnosis for Biomedical Applications",slug:"introductory-chapter-computer-aided-diagnosis-for-biomedical-applications",totalDownloads:207,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",fullTitle:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering"},signatures:"Lulu Wang and Liandong Yu",authors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"},{id:"271596",title:"Dr.",name:"Liandong",middleName:null,surname:"Yu",slug:"liandong-yu",fullName:"Liandong Yu"}]},{id:"66925",title:"Interpreting Analysis on Rhetorical Strategies Modeling in Computer Science Research Articles",slug:"interpreting-analysis-on-rhetorical-strategies-modeling-in-computer-science-research-articles",totalDownloads:230,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",fullTitle:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering"},signatures:"Ina Suryani, Mohd Mustafa Al Bakri Abdullah and Hazry Desa",authors:[{id:"25183",title:"Dr.",name:"hazry",middleName:null,surname:"desa",slug:"hazry-desa",fullName:"hazry desa"},{id:"224049",title:"Prof.",name:"Mohd Mustafa Al Bakri",middleName:null,surname:"Abdullah",slug:"mohd-mustafa-al-bakri-abdullah",fullName:"Mohd Mustafa Al Bakri Abdullah"},{id:"281421",title:"Dr.",name:"Ina",middleName:null,surname:"Suryani",slug:"ina-suryani",fullName:"Ina Suryani"}]}],onlineFirstChaptersFilter:{topicSlug:"computer-aided-technologies",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/131990/gordon-gropp",hash:"",query:{},params:{id:"131990",slug:"gordon-gropp"},fullPath:"/profiles/131990/gordon-gropp",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()