",isbn:"978-1-80356-948-2",printIsbn:"978-1-80356-947-5",pdfIsbn:"978-1-80356-949-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"c0d1c1c93a36fd9d726445966316a373",bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",keywords:"Indigenous People, Natives, First People, Minorities, United Nations, UN Declaration, Indigenous People Rights, Self-Determination, States, Independence, Struggle for Rights, Contemporary Times",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 7th 2022",dateEndSecondStepPublish:"May 5th 2022",dateEndThirdStepPublish:"July 4th 2022",dateEndFourthStepPublish:"September 22nd 2022",dateEndFifthStepPublish:"November 21st 2022",remainingDaysToSecondStep:"15 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Legal practitioner, consultant and a law academic with a diversity of interest in multi and intra-disciplinary scholarship on legal issues at national regional and international levels.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",middleName:"Gbendazhi",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas",profilePictureURL:"https://mts.intechopen.com/storage/users/293764/images/system/293764.jpg",biography:"Sylvanus Barnabas is a Senior Lecturer in Law at the Faculty of Law, Nile University of Nigeria where he teaches various subjects in law; he obtained the degree of Doctor of Philosophy in international human rights law from Northumbria University at Newcastle upon Tyne, United Kingdom; he has a Master of Laws degree obtained with distinction in Environmental Law and Policy from University of Kent at Canterbury, Kent, United Kingdom; he also holds a Bachelor of Laws degree from Ahmadu Bello University, Zaria, Nigeria; and he is also a qualified a barrister and solicitor of the Supreme Court of Nigeria.",institutionString:"Nigerian Turkish Nile University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Nigerian Turkish Nile University",institutionURL:null,country:{name:"Nigeria"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"440204",firstName:"Ana",lastName:"Cink",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/440204/images/20006_n.jpg",email:"ana.c@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde",surname:"Nielsen",slug:"hilde-nielsen",fullName:"Hilde Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"53549",title:"Municipal Wastewater Irrigation for Rice Cultivation",doi:"10.5772/66956",slug:"municipal-wastewater-irrigation-for-rice-cultivation",body:'\n
1. Introduction
\n
Climate change and global population explosion put water resources scarcity in many corners of the world to alarming status [1, 2], with around 1.1 billion people lacking access to freshwater in developing countries and nearly 2.4 billion lacking adequate sanitation [3]. It is estimated that two‐thirds of the world\'s population will suffer from moderate to high water stress, and about half of the population will face severe water supply constraints in 2025 [4]. Agriculture is known as the largest consumer of freshwater resources at the beginning of the twenty‐first century, and water consumption for agriculture accounts for over 70% of global water withdrawals [5, 6]. However, agricultural irrigation water does not usually require the same high grade of water quality as drinking water [7]. Currently, in approximately 1.5 billion hectares of agricultural land all over the world [8], total fertilizer use (N + P2O5 + K2O) is estimated to be around 190.4 million tons [9]. Wastewater can supply a significant amount of nutrients which can improve soil fertility, plant growth and crop production, reducing the consumption of required fertilizers [10]. In this circumstance, municipal wastewater is evaluated as a new resource of water, and the practice of reclaimed wastewater for agricultural irrigation is likely to become more commonly applied in many countries with a vast volume [11–13]. It is not the main objective, but reuse of wastewater also contributes to interrupting discharges of nutrients and organic matters into water environment [14].
\n
Approximately 50% of worldwide irrigation water is used by rice cultivation—one of the agricultural products which need notable amount of water [15, 16]. Although there are a variety of practices of rice cultivation, typically, rice fields are flooded before plowing, and thereafter, water levels are kept at 4–6 cm in shallow rice fields. It sometimes becomes as high as 10 cm when continuous‐flooding irrigation is done during the growing season [17]. Rice is one of the leading cereal crops providing around 20% daily calories for more than 3.5 billion people [18]. There are around 150 million hectares of rice land worldwide, which supply 550–600 million tons of rough rice yearly. Irrigated rice cultivation makes up 55% of harvested rice area and contributes to 75% of global rice production [19]. Irrigation of rice paddy using treated or untreated wastewater is extensively practiced and examined in many countries to investigate benefits [20–26] or drawbacks of the practices [12, 27–33].
\n
This chapter provides information about municipal wastewater characteristic as well as discussions about positive and negative effects of its reuse for rice cultivation.
\n
2. Municipal wastewater and its treatment
\n
2.1. Characteristics of municipal wastewater
\n
Municipal wastewater, which is usually conveyed in a combined sewer or sanitary sewer, consists of domestic wastewater, industrial wastewater, and storm water and groundwater seepage entering the municipal sewage network. Domestic wastewater includes effluent from households, institutions, commercial buildings and the like. Industrial wastewater is the effluent discharged from manufacturing units and food processing plants. In general, characteristics of domestic wastewater are not significantly different from one region to another, while there are many types of industrial wastewater based on industrial processes as its origin.
\n
Municipal wastewater mainly consists of water (99.9%) together with relatively low concentrations of suspended and dissolved organic and inorganic solids. Parts of the organic substances present in wastewater are carbohydrates, lignin, fats, soaps, synthetic detergents, proteins and their decomposition products as well as various natural and synthetic organic chemicals from the process industries. Table 1 shows the levels of the major constituents in municipal wastewater.
Contaminants
Unit
Range
Total solid (TS)
mg/L
390–1230
Total dissolved solid (TDS)
mg/L
270–860
Total suspended solid (TSS)
mg/L
120–400
Biochemical oxygen demand (BOD5)
mg/L
110–350
Chemical oxygen demand (COD)
mg/L
250–800
Total organic carbon (TOC)
mg/L
80–260
Total nitrogen (TN)
mg/L
20–70
Total phosphorus (TP)
mg/L
4–12
Total coliform
no./100 mL
106–109
Fecal coliform
no./100 mL
103–107
Table 1.
Typical composition of untreated domestic wastewater.
It is not recommended to reuse municipal wastewater directly for rice cultivation due to its drawbacks, which are described in the next section. Treatment of wastewater at any level is required to overcome the drawbacks. The principal objective of wastewater treatment is to remove contaminants such as solids, organic matter and nutrients before the treated wastewater is discharged into water bodies. The quality of treated wastewater depends on the treatment technology and operation.
\n
Although wastewater treatment includes physical, chemical and biological processes, it normally has four basic steps: preliminary, primary, secondary and advanced treatments [35]. Preliminary treatment is designed to remove coarse solids and other large materials, which are often found in raw wastewater. These solids consist of pieces of wood, cloth, paper, plastics, sand, gravel, etc. The objective of primary treatment is to extract organic and inorganic solids from wastewater by the physical process of sedimentation and flotation. Approximately 25–50% of the BOD, 50–70% of the SS and 65% of the oil are removed throughout this treatment step [36].
\n
Secondary treatment, in general, follows primary treatment to do the further treatment. Its objective is removal of biodegradable dissolved and colloidal organic matters from effluent of primary treatment using many different types of microorganisms in a controlled environment. The principal secondary treatment techniques are the trickling filter and the activated sludge process. The latter one, which is used most commonly all over the world, can remove organic matters effectively but cannot do nutrients, especially nitrogen, from wastewater. Hence, the secondary effluent from wastewater treatment plants still has a high content of nutrients available for crop growth.
\n
At most treatment plants, the secondary effluent is discharged into receiving water environment after disinfection with chlorine, ozone or ultraviolet radiation. To prevent eutrophication in the water environment, advanced treatment is sometimes applied to remove specific contaminations such as nutrients in the secondary effluent [37].
\n
2.3. Advantages and disadvantages of wastewater irrigation for rice production
\n
These characteristics of municipal wastewater make us imagine advantages and drawbacks of its irrigation for rice production. Major advantages are:\n
Higher crop yields with reduced use of synthetic fertilizers, resulting in saved cost for cultivation.
Enhanced recycles of nutrients and organic matters, improving soil properties.
Reduced discharges of pollutants to surface water bodies.
Decreased freshwater withdraw during irrigation.
On the other hand, we should pay attentions to its drawbacks such as:
Contamination of irrigated soil with salt, heavy metals and toxic compounds originated from wastewater, resulting in reduced soil productivity.
Contamination of agricultural products (rice crop) with heavy metals and toxic compounds, posing health risks to consumers.
Farmers’ risk of health problems due to exposure to paddy water contaminated with pathogens, heavy metals and toxic compounds.
Contamination of groundwater due to infiltration of wastewater used for irrigation.
\n
The following sections describe more detail explanation about the above advantages and drawbacks. Most of them are common to irrigation of the treated wastewater, although its treatment may highlight the advantages and overcome the drawbacks.
\n
3. Potential impacts of municipal wastewater reuse for rice production
\n
3.1. Impacts on crops
\n
In general, wastewater irrigation can affect rice crops in terms of yields and crop quality such as appearance and flavor. Municipal wastewater is a rich source of nutrients necessary for crop growth, so it is expected that crops irrigated with municipal wastewater get higher yield than normal. Yoon et al. [20] examined the effect of treated sewage irrigation on paddy rice cultivation. They found that the irrigation did not adversely affect the growth and yield of rice, resulting in up to 50% greater yield than rice without wastewater irrigation. Thu [38] also reported that wastewater irrigation brought 10–15% higher yield of rice crops.
\n
If nitrogen supplied to the crop exceeds its dose recommended for optimal yields, crop growth may be stimulated together with yield loss and delayed ripening [14]. The study by Nyomora [26] illustrated that wastewater irrigation resulted in four times higher rice yield than tap water irrigation, but, in contrast, wastewater irrigation applied with N‐P‐K fertilizer depressed the yield potential to 3.2 times of that obtained without its application. This situation can happen accidentally. For example, urea plant effluents, as a rich source of liquid fertilizer in concentrated forms, have adverse effects on rice and corn yields [2]. Also, oversupply of nitrogen may be resulted in overgrowth of rice plants, which triggers their lodging and reduces eating quality of rice due to increased content of proteins [39].
\n
Crops irrigated with wastewater have potential to be contaminated with microbes, heavy metals and organic toxic compounds in wastewater. This effect is discussed separately in the Section 3.5.
\n
3.2. Effects on soil resources
\n
Wastewater can affect paddy soil in two opposite ways: by providing benefits and causing problems. It is usually difficult to predict which effect appears in wastewater irrigation because soil is a very complicated structure involving inorganic and organic matters. One of the most recognizable effects of wastewater irrigation is a rise of yield due to nutrients supplied with wastewater as well as soil texture improved by organic matters in wastewater [40]. Supplying organic matter improves soil texture by enhancing soil humidity and microbial activity [41].
\n
Nitrogen in wastewater consists of several chemical forms such as nitrate, nitrite, ammonia and organic nitrogen. All of these forms are soluble and mobile in water, and when the wastewater is irrigated, all forms of nitrogen except ammonia are easily washed out and may cause pollution of groundwater and surface water receiving the runoff water. Only ammonia in wastewater can attach to soil particles and is retained in paddy fields, but, at the surface of soil layer and rhizosphere with the presence of oxygen, it is gradually converted to nitrite and finally nitrate with bacterial activities. By contrast, phosphorus, which can exist as a trivalent cation, is so stable in soil layer. In addition to this fact, since wastewater contains a smaller amount of phosphorus than that required by crops, its irrigation hardly gives an adverse impact on the water environment [14].
\n
On the other hand, wastewater irrigation may make consequent adverse effects on soils. The most commonly reported impact is accumulation of metals that, depending on the level, may be harmful. Chung et al. [12] indicated that application of domestic wastewater to arable land for 3 years slightly increased the levels of Pb, Cd, Cu and Zn in soil. Kang et al. [21] conducted rice cultivation with groundwater and treated wastewater in different treatment levels. The results showed no adverse effects on chemical concentrations including the heavy metals (Cu, As, Cd, Zn, Hg and Pb) in paddy soil. This indicates the possibility that treated municipal wastewater can be safely used as an alternative water source for the irrigation of rice, although continued monitoring will be needed to determine the long‐term effects with regard to soil contamination.
\n
A field research in Thessaloniki, Greece, during a 2‐year period [22] reported no adverse effects on the physicochemical properties of soil, whereas macro and trace elements concentration showed discrepancies between the 2 years and the three treatments (river water with N‐P fertilizer, treated wastewater with N fertilization and treated wastewater without fertilizer).
\n
Wastewaters including industrial discharges with a high metal concentration are harmful to crops and eventually to consumers, as a result of metal accumulation in soil. The elements of major concern are heavy metals such as cadmium, copper, molybdenum, nickel and zinc. Yang et al. [27] reported that the paddy soil irrigated with untreated mining wastewater in Lechang lead/zinc mine area was heavily contaminated by Cd and would pose a human/animal health risk through Cd mobility in the food chain. Very high concentrations of As, Cd, Cu, Pb and Zn were found in the paddy soils irrigated by river water, which received wastewater from mining activity [42].
\n
Wastewater, particularly domestic wastewater, normally contains salts which may be accumulated in the root zone with possible harmful impacts on soil health. Increase rate of salinity depends on the salinity of irrigated water, soil transmissivity, organic matter concentration, land drainage, irrigation rate, depth to the groundwater level and the type of soils. Long‐term use of wastewater with high salt contents is a potential hazard for soil as it may erode the soil structure, resulting in less productivity. The problem of soil salinity can be settled by the application of natural or artificial solutions, although it is costly and leads to economic constraints.
\n
Wastewater with a large amount of solids may cause soil clogging, depending on soil porosity, concentration (>100 mg/L can cause the problem) and chemical composition. The most concerning components are minerals that are not biodegraded. If soil is clogged, irrigation will become less effective due to dismissed water percolation [43].
\n
3.3. Effects on ground and surface water
\n
The first effect of irrigated agriculture on groundwater resource is aquifer recharge. The recharge happens almost always non‐intentionally and has the advantage of increasing the local availability of water [44]. Pescod [36] estimated that 50–70% of the irrigation water could infiltrate to groundwater aquifer in some parts.
\n
Due to this phenomenon, wastewater irrigation can cause adverse effects on groundwater resource. The most famous adverse effect is infiltration of nitrates in irrigated wastewater into groundwater. Groundwater contaminated with nitrates is known to cause methemoglobinemia in infants, so‐called blue baby syndrome, if it is used as a source of drinking water [43].
\n
Not only nitrogen but also organic matters and metals may contaminate groundwater in municipal wastewater irrigation. If some of most toxic metals to humans—cadmium, lead, mercury and arsenic—are present in irrigated wastewater at a higher concentration than the acceptable level, groundwater is severely contaminated, posing risk of serious diseases like cancer to the groundwater users. Contamination of groundwater with organic matters brings another type of health risk to its users, through the formation of organochlorides when the groundwater is disinfected with chlorine (the most common method) for drinking purpose [45].
\n
Long‐term irrigation of municipal wastewater may result in a significant increase of salt content in aquifers, although quality of irrigated wastewater, soil characteristics and original quality of the receiving groundwater are all important factors to determine the extent to which the quality of groundwater is impacted. Even though groundwater has a low salt concentration, addition of salts originated from irrigated wastewater may not be considered too adverse if its movement is limited or if it is not used for any purposes. Thus, the impact of increased salts in groundwater by wastewater irrigation, which is sometimes inevitable, needs to be weighed up in consideration with all the risks and benefits from the irrigation [46].
\n
Surface water bodies are also affected due to drainage and runoff from the fields irrigated with municipal wastewater. The inevitable contamination in surface water is almost the same as that in groundwater, but the extent of the impact depends on the strength of wastewater and type of water body (i.e., river, irrigation channel, lake or dam) as well as hydraulic retention time in the fields.
\n
3.4. Effects on quality of irrigated wastewater
\n
Although wastewater irrigation has a potential to contaminate freshwater sources, it is expected that quality of the wastewater is improved by being used for irrigation. Suspended solids including pathogenic microorganisms are trapped and absorbed in upper soil layers and removed from the wastewater. The efficiency of solid removal depends on sizes of soil pore and the solids [44]. Adsorption of microorganisms to soil particles is favored at low pH, high salt concentration in the sewage and high relative concentrations of calcium and magnesium over monovalent cations such as sodium and potassium in soil [14].
\n
Organic matters in wastewater can be rapidly converted in soils to stable and nontoxic ones such as humic and fulvic acids. In fact, we can find biodegradation of a wider variety and greater amount of organic matters in soils than in water bodies. So the organic matters in term of COD and BOD in the irrigated wastewater are significantly decreased after percolation through soil layers.
\n
More significant reduction in nitrogen concentration is expected at paddy fields with wastewater irrigation due to three main reasons: absorption by plants, release to the atmosphere as the result of nitrification and denitrification by nitrogen bacteria such as Nitrobacter and Nitrosomonas, and adsorption of ammonium to soil particles. Firstly, rice plants grow taking nutrients in wastewater used for irrigation, and nitrogen, one of the fundamental nutrients for plant development, is removed from the wastewater stored in soil layers [15, 24]. Secondly, soil and rice rhizosphere microorganisms contribute to transformation of organic nitrogen or ammonium to nitrogen gas as well as nitrous oxide gas under a variety of redox conditions in soil layers [23]. Nitrogen removal is enhanced if flooding and drying periods are alternated for promoting nitrification/denitrification process, with 75% removal at the maximum [14]. Thirdly, ammonium as a cation has an affinity to the surface of soil particles normally with positive charge. However, a large amount of ammonium is supplied, and as mentioned above, excess nitrogen will be transported to groundwater with infiltrated irrigation water. Nitrites and nitrates, which are anions, are easily lost from paddy fields, resulting in groundwater contamination.
\n
3.5. Effects on human health
\n
As mentioned above, municipal wastewater includes pathogenic microorganisms such as bacteria, viruses and parasites. These microorganisms potentially pose human health risks when the wastewater is reused for some activities. Particularly, human parasites such as protozoa and helminth eggs are of special significance in this concern as they are known as being more difficult to remove by treatment processes [2].
\n
Paddy fields irrigated with municipal wastewater may have unfavorable health effects on farmers. It has been reported that the practice of reuse of raw or even treated wastewater for irrigation may cause epidemiological problems among nearby populations and consumers of uncooked agricultural products [47]. The degree of risk may vary among the various age groups [2], and in a study [31], children were found to have a greater risk of infection with Escherichia coli. A study conducted in a province in northern Vietnam [29] assessed the risk of skin disease among farmers occupationally exposed to wastewater, showing that exposure to wastewater is a major risk factor for skin disease, but it is not clear which chemical and biological agents might play the main role in causing the diseases. Rhee et al. [30] examined the concentrations of E. coli in a paddy rice field irrigated with reclaimed wastewater and evaluated the risk of its infection among farmers using beta‐Poisson dose‐response model. The results showed that the risk was lower in irrigation of groundwater and reclaimed wastewater irrigation than in irrigation of direct effluent from wastewater treatment plant.
\n
Municipal wastewater sometimes has harmful metals such as Zn, Cu, Pb, Mn, Ni, Cr and Cd, depending upon the type of activities in the associated area. Continuous irrigation of municipal wastewater may result in heavy metal accumulation in the soil and agricultural products [48]. In case of rice plant, it is well known that Cd is the metal to which a special attention should be paid because it is accumulated so intensively in edible part of rice.
\n
Most of the heavy metals are normally removed well by wastewater treatment processes. Even so, we should take case about heavy metal contamination in the paddy field considering subsequent food chain involving agricultural products and consumers [49]. Due to the nonbiodegradable and persistent nature, heavy metals are accumulated in viscera and born, and are associated with numerous serious health disorders [50]. Singh et al. [51] indicated that rice and wheat grains contained less heavy metals than vegetables, but health risk was more significant due to higher contribution of cereals in the diet.
\n
3.6. Socioeconomic effect
\n
Wastewater irrigation brings various economic benefits. Wastewater for irrigation does not require as high quality as the effluent which is discharged to water bodies. Indeed, thanks to the function of paddy fields to improve water quality as explained in the Section 3.4, the discharge from the field has a better quality than the irrigation water. By using this function effectively, we can save the cost for wastewater treatment.
\n
In addition, when wastewater containing rich nutrients is used for irrigation, we can reduce the amount of fertilizer applied to the field, resulting in cost saving or higher yield obtained. This must contribute to improvement of economic status of farmers. Papadopoulos et al. [22] reported that the total production cost decreased up to 11.9% by applying municipal wastewater for rice production, compared to the normal paddy field.
\n
3.7. Effects on greenhouse gas emission
\n
Global warming is caused by the emission of greenhouse gases (GHGs) such as methane (CH4) and nitrous oxide (N2O). On global scale, agricultural activities accounted for about 50% of CH4 and 60% of N2O in the total anthropogenic GHGs emissions in 2005 and nearly 17% increase of these emissions from 1990 to 2005 [52]. In particular, paddy fields and irrigated lowland rice production systems are known to be significant sources of CH4 and N2O, which are two important trace gases contributing to an observed increase of approximately 0.6–0.7°C in global surface temperature during the last century.
\n
GHGs emission from paddy fields may be affected by many factors such as water regime, organic matter and nitrogen resource including fertilizer. As introduced above, municipal wastewater is rich in organic matters and also contains an appreciable amount of macronutrients and micronutrients, and thus nutrient levels of soils are expected to increase with its irrigation. Several studies focused on the effects of water regime and fertilizer application on GHGs emission strength; however, to our knowledge, there was only one research [53] examining the effect of wastewater irrigation on CH4 and N2O emissions from paddy field. Reports showed that CH4 and N2O emissions from rice paddies are closely associated with soil carbon and nitrogen availabilities and transformation processes, which are significantly dependent on soil properties, soil heavy metal contents and soil microbial communities [54–56]. Consequently, Zou et al. [53] hypothesized that wastewater irrigation would significantly increase these gas emissions from rice paddies. The increments of CH4 and N2O emissions were 27 and 68%, respectively, compared to paddy fields irrigated by river water.
\n
4. New concept: cultivation of rice for animal feeding with irrigation of municipal wastewater
\n
4.1. Motivation and goal
\n
In previous sections, we discussed the benefits and downsides of municipal wastewater reuse for irrigation, in particular for rice cultivation. Most of the drawbacks are from the contaminants in the irrigated wastewater, and therefore, one of the best ways to reduce its adverse effects is to use treated wastewater after the contaminants are removed to the suitable level. For this purpose, advanced treatments are not necessary and low‐cost technologies are preferable to keep the total cost for cultivation acceptable.
\n
Such low‐cost technologies, even standard activated sludge process, are difficult to remove nutrients from wastewater, and the application of treated wastewater may lead to overgrowth of rice plants, resulting in lodging [15]. Too much supply of nutrients, especially nitrogen, also reduces the eating quality of rice due to high content of proteins.
\n
These difficulties in irrigation of treated wastewater gave us motivation to propose a new concept to cultivate rice for animal feed rather than for human consumption [39]. The rice cultivars used for animal feed have several advantages compared with those used for human consumption. These advantages include higher crop yield and plant resistance to lodging. Moreover, the high protein content in this rice, which results from the adsorption of excess nitrogen, is preferable for animal feed.
\n
We can expect that rice cultivation in this concept contributes to an improvement in the quality of treated municipal wastewater. In addition to this merit in environmental protection, it is also expected to promote water and nitrogen circulation among urban dwellers who consume animal products and produce wastewater, farmers who produce rice for animal food by reusing treated wastewater and livestock farmers who use the cultivated rice as fodder for the animals (Figure 1). Our goal is to realize this resource circulation based on the new concept for sustainability of our environment. We recognize that it is another advantage of this concept to overcome the psychological hurdle of consumers against eating rice cultivated using treated wastewater.
Figure 1.
Resource circulation involving urban (consumers) and rural areas (rice and livestock famers), which is realized with cultivation of rice for animal feeding with irrigation of treated municipal wastewater.
\n
4.2. Progress in our research toward implementation of this concept
\n
The bench‐scale experiment (Figure 2) with dimension of 0.6 × 0.3 m revealed that cultivation of rice for animal feeding could remove three times the amount of nitrogen from the treated wastewater compared with rice cultivation for human consumption [39]. In addition, the experiment showed that upward irrigation called bottom‐to‐top irrigation, in which treated wastewater is supplied from the pipe fixed at the bottom of the field and then infiltrate up through soil layer to the surface, increased the nitrogen released to the atmosphere, probably because of enhanced denitrification. This kind of irrigation seemed to increase the rice yield and biomass of the plants.
Figure 2.
Bench‐scale experiment to reveal the performance of treated wastewater irrigation to cultivate rice for animal feeding.
\n
The yield of rice reached its target (8t/ha) for the cultivar used for the experiment [57], and the protein content (up to 13.1%) in the rice cultivated with irrigation of treated wastewater was significantly higher than that found in the normal paddy fields [58]. Actually, it may be possible to harvest such a protein‐rich rice if a larger amount of nitrogen fertilizer is applied, but it is not cost‐effective and attractive to farmers. In this sense, application of treated wastewater, which enables low‐cost cultivation, is essential and core in the concept. We are now trying to examine the performance of rice cultivation practice, which was revealed in the bench‐scale experiment, in the real fields.
\n
5. Conclusions
\n
Rice, which is a leading cereal crop, demands a huge amount of water, while the exploding urban population needs foods as well as produces wastewater. Reuse of wastewater for rice cultivation has a great potential to contribute to sustainable wastewater management. Several instances of positive and adverse effects of municipal wastewater irrigation for rice cultivation were given in this chapter. To avoid such negative effects on environment and human health, it is highly recommended that municipal wastewater should be reused for irrigation after being treated properly. Supposing it is treated with activated sludge process, a new concept “rice cultivation for animal feeding with irrigation of treated municipal wastewater” was introduced. Until now, our bench‐scale experiment has revealed the feasibility of this concept with the data showing the achievement of target value of rice yield and its high protein content which is preferable for animal feed.
Acknowledgments
\n\n
This review was based on the outcome of our researches supported by the Ministry of Land, Infrastructure, Transport, and Tourism (MLIT) of Japan through the Gesuido Academic Incubation to Advanced (GAIA) project, by the Ministry of Education, Sports, Culture, Science, and Technology (MEXT) of Japan through the Center of Community (COC) project and by the Institute for Regional Innovation, Yamagata University.
\n',keywords:"municipal wastewater, rice production, wastewater irrigation, benefit and disadvantage, greenhouse gas, rice for animal feeding",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/53549.pdf",chapterXML:"https://mts.intechopen.com/source/xml/53549.xml",downloadPdfUrl:"/chapter/pdf-download/53549",previewPdfUrl:"/chapter/pdf-preview/53549",totalDownloads:1974,totalViews:564,totalCrossrefCites:3,totalDimensionsCites:4,totalAltmetricsMentions:2,impactScore:2,impactScorePercentile:73,impactScoreQuartile:3,hasAltmetrics:1,dateSubmitted:"May 18th 2016",dateReviewed:"November 16th 2016",datePrePublished:null,datePublished:"March 1st 2017",dateFinished:"December 19th 2016",readingETA:"0",abstract:"In scene of worrisome water shortage, municipal wastewater has been gradually accepted as an alternative water resource containing important nutrients for irrigation. Rice cultivation, which is one of the main crops feeding global population and requires plenty of water for its effective growth, has been often irrigated by municipal wastewater in many countries. While irrigation of municipal wastewater for rice cultivation must bring benefits for farmers mainly by increased yield with less amount of fertilizers, it also has potential to cause drawbacks to human health and the environment. This chapter discusses about these aspects based on scientific works and practical experiences of municipal wastewater irrigation for rice production as well as the introduction of our concept to cultivate rice for animal feeding with irrigation of treated wastewater, which can contribute to resource circulation between urban and rural areas. The feasibility study under this concept has demonstrated that the target value of rice yield can be achieved and protein‐rich rice preferable for animal feed can be harvested with irrigation of properly treated municipal wastewater.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/53549",risUrl:"/chapter/ris/53549",book:{id:"5502",slug:"current-perspective-on-irrigation-and-drainage"},signatures:"Dong Duy Pham and Toru Watanabe",authors:[{id:"150634",title:"Dr.",name:"Toru",middleName:null,surname:"Watanabe",fullName:"Toru Watanabe",slug:"toru-watanabe",email:"to-ru@tds1.tr.yamagata-u.ac.jp",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"192426",title:"Dr.",name:"Dong",middleName:null,surname:"Duy Pham",fullName:"Dong Duy Pham",slug:"dong-duy-pham",email:"dongctn@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Municipal wastewater and its treatment",level:"1"},{id:"sec_2_2",title:"2.1. Characteristics of municipal wastewater",level:"2"},{id:"sec_3_2",title:"2.2. Treatment of municipal wastewater",level:"2"},{id:"sec_4_2",title:"2.3. Advantages and disadvantages of wastewater irrigation for rice production",level:"2"},{id:"sec_6",title:"3. Potential impacts of municipal wastewater reuse for rice production",level:"1"},{id:"sec_6_2",title:"3.1. Impacts on crops",level:"2"},{id:"sec_7_2",title:"3.2. Effects on soil resources",level:"2"},{id:"sec_8_2",title:"3.3. Effects on ground and surface water",level:"2"},{id:"sec_9_2",title:"3.4. Effects on quality of irrigated wastewater",level:"2"},{id:"sec_10_2",title:"3.5. Effects on human health",level:"2"},{id:"sec_11_2",title:"3.6. Socioeconomic effect",level:"2"},{id:"sec_12_2",title:"3.7. Effects on greenhouse gas emission",level:"2"},{id:"sec_14",title:"4. New concept: cultivation of rice for animal feeding with irrigation of municipal wastewater",level:"1"},{id:"sec_14_2",title:"4.1. Motivation and goal",level:"2"},{id:"sec_15_2",title:"4.2. Progress in our research toward implementation of this concept",level:"2"},{id:"sec_17",title:"5. Conclusions",level:"1"},{id:"sec_18",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'N. W. Arnell. Climate change and global water resources: SRES emissions and socio‐economic scenarios. Global Environmental Change. vol. 14, no. 1, pp. 31–52. 2004.'},{id:"B2",body:'I. Hussain, L. Raschid, M. A. Hanjra, F. Marikar and W. van der Hoek. Wastewater use in agriculture: Review of impacts and methodological issues in valuing impacts. Working Paper 37. International Water Management Institute, Colombo, Sri Lanka. 2002.'},{id:"B3",body:'S. P. Simonovic. World water dynamics: global modeling of water resources. Journal of Environmental Management. vol. 66, no. 3, pp. 249–267. 2002.'},{id:"B4",body:'V. Lazarova, B. Levine, J. Sack, G. Cirelli, P. Jeffrey, H. Muntau, M. Salgot and F. Brissaud. Role of water reuse for enhancing integrated water management in Europe and Mediterranean countries. Water Science and Technology. vol. 43, no. 10, pp. 25–33. 2001.'},{id:"B5",body:'UNESCO. Agriculture, food and water: A contribution to the World Water Development Report. 2013.'},{id:"B6",body:'S. H. Gheewala, T. Silalertruksa, P. Nilsalab, R. Mungkung, S. R. Perret and N. Chaiyawannakarn. Water footprint and impact of water consumption for food, feed, fuel crops production in Thailand. Water (Switzerland). vol. 6, no. 6, pp. 1698–1718. 2014.'},{id:"B7",body:'T. Jang, M. Jung, E. Lee, S. Park, J. Lee and H. Jeong. Assessing environmental impacts of reclaimed wastewater irrigation in paddy fields using bioindicator. Irrigation Science. vol. 31, no. 5, pp. 1225–1236. 2013.'},{id:"B8",body:'FAO. World agriculture: towards 2015/2030—An FAO perspective. p. 432. 2003.'},{id:"B9",body:'FAO. Current world fertilizer trends and outlooks to 2015. 2011.'},{id:"B10",body:'M. A. Hanjra, J. Blackwell, G. Carr, F. Zhang and T. M. Jackson. Wastewater irrigation and environmental health: implications for water governance and public policy. International Journal of Hygiene and Environmental Health. vol. 215, no. 3, pp. 255–269. 2012.'},{id:"B11",body:'UNEP. Water and Wastewater reuse: An Environmentally Sound Approach for Sustainable Urban Water Management. 2005.'},{id:"B12",body:'B. Y. Chung, C. H. Song, B. J. Park and J. Y. Cho. Heavy metals in brown rice (Oryza sativa L.) and soil after long‐term irrigation of wastewater discharged from domestic sewage treatment plants. Pedosphere. vol. 21, no. 5, pp. 621–627. 2011.'},{id:"B13",body:'D. Norton‐Brandão, S. M. Scherrenberg and J. B. van Lier. Reclamation of used urban waters for irrigation purposes: a review of treatment technologies. Journal of Environmental Management. vol. 122, pp. 85–98. 2013.'},{id:"B14",body:'B. Jiménez. Irrigation in developing countries using wastewater. International Review for Environmental Strategies. vol. 6, no. 2, pp. 229–250. 2006.'},{id:"B15",body:'A. Muramatsu, T. Watanabe, A. Sasaki, H. Ito and A. Kajihara. Rice production with minimal irrigation and no nitrogen fertilizer by intensive use of treated municipal wastewater. Water Science and Technology. vol. 70, no. 3, pp. 510–516. 2014.'},{id:"B16",body:'T. P. Tuong and B. A. M. Bouman. Rice production in water‐scarce environments. Water. vol. 5, pp. 53–67. 2003.'},{id:"B17",body:'A. K. Rath, B. Swain, B. Ramakrishnan, D. Panda, T. K. Adhya, V. R. Rao and N. Sethunathan. Influence of fertilizer management and water regime on methane emission from rice fields. Agriculture, Ecosystems and Environment. vol. 76, no. 2, pp. 99–107. 1999.'},{id:"B18",body:'Sustainable Rice Platform. Rice facts. [Online]. Available: http://www.sustainablerice.org/rice_facts.html. [Accessed 2016. 10. 30].'},{id:"B19",body:'J. McLean, D. Dawe, B. Hardy and G. Hettel. Rice Almanac: Third Edition. CABI Publishing. Oxford. England. 2002.'},{id:"B20",body:'C. G. Yoon, S. K. Kwun and J. H. Ham. Effects of treated sewage irrigation on paddy rice culture and its soil. Irrigation and Drainage. vol. 50, no. 3, pp. 227–236. 2001.'},{id:"B21",body:'M. S. Kang, S. M. Kim, S. W. Park, J. J. Lee and K. H. Yoo. Assessment of reclaimed wastewater irrigation impacts on water quality, soil, and rice cultivation in paddy fields. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering. vol. 42, no. 4, pp. 439–445. 2007.'},{id:"B22",body:'F. Papadopoulos, G. Parissopoulos, A. Papadopoulos, A. Zdragas, D. Ntanos, C. Prochaska and I. Metaxa. Assessment of reclaimed municipal wastewater application on rice cultivation. Environment Management. vol. 43, no. 1, pp. 135–143. 2009.'},{id:"B23",body:'S. Li, H. Li, X. Liang, Y. Chen, Z. Cao and Z. Xu. Rural wastewater irrigation and nitrogen removal by the paddy wetland system in the Tai Lake region of China. Journal of Soils Sediments. vol. 9, no. 5, pp. 433–442. 2009.'},{id:"B24",body:'T. I. Jang, H. K. Kim, C. H. Seong, E. J. Lee and S. W. Park. Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture. Agricultural Water Management. vol. 104, pp. 235–243. 2012.'},{id:"B25",body:'K. Jung, T. Jang, H. Jeong and S. Park. Assessment of growth and yield components of rice irrigated with reclaimed wastewater. Agricultural Water Management. vol. 138, pp. 17–25. 2014.'},{id:"B26",body:'A. M. Nyomora. Effect of treated domestic wastewater as source of irrigation water and nutrients on rice performance in Morogoro, Tanzania. Journal of Environment and Waste Management. vol. 2, no. 2, pp. 47–55. 2015.'},{id:"B27",body:'Q. W. Yang, C. Y. Lan, H. B. Wang, P. Zhuang and W. S. Shu. Cadmium in soil‐rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang, China. Agricultural Water Management. vol. 84, no. 1–2, pp. 147–152. 2006.'},{id:"B28",body:'D. T. Trang, W. van der Hoek, P. D. Cam, K. T. Vinh, N. Van Hoa and A. Dalsgaard. Low risk for helminth infection in wastewater‐fed rice cultivation in Vietnam. Journal of Water and Health. vol. 4, no. 3, pp. 321–331. 2006.'},{id:"B29",body:'D. T. Trang, W. Van Der Hoek, N. D. Tuan, P. D. Cam, V. H. Viet, D. D. Luu, F. Konradsen and A. Dalsgaard. Skin disease among farmers using wastewater in rice cultivation in Nam Dinh, Vietnam. Tropical Medicine and International Health. vol. 12, no. Suppl. 2, pp. 51–58. 2007.'},{id:"B30",body:'H. P. Rhee, C. G. Yoon, Y. K. Son and J. H. Jang. Quantitative risk assessment for reclaimed wastewater irrigation on paddy rice field in Korea. Paddy and Water Environment. vol. 9, no. 2, pp. 183–191. 2011.'},{id:"B31",body:'Y.‐J. An, C. G. Yoon, K.‐W. Jung and J.‐H. Ham. Estimating the microbial risk of E. coli in reclaimed wastewater irrigation on paddy field. Environmental Monitoring and Assessment. vol. 129, no. 1–3, pp. 53–60. 2007.'},{id:"B32",body:'V. Mukherjee and G. Gupta. Toxicity and profitability of rice cultivation under wastewater irrigation: the case of the East Calcutta Wetlands. South Asian Network for Development and Environmental Economics (SANDEE). vol. 62–11, pp. 292–300, 2011.'},{id:"B33",body:'Y. K. Son, C. G. Yoon, H. P. Rhee and S. J. Lee. A review on microbial and toxic risk analysis procedure for reclaimed wastewater irrigation on paddy rice field proposed for South Korea. Paddy and Water Environment. vol. 11, no. 1–4, pp. 543–550. 2013.'},{id:"B34",body:'Metcalf & Eddy, Inc. and AECOM Company, T. Asano, F. L. Burton, H. L. Leverenz, R. Tsuchihashi and G. Tchobanoglous. Water reuse: Issue, Technology, and Application. McGraw Hill, New York, USA. 1570pp. 2007.'},{id:"B35",body:'A. Sonune and R. Ghate. Developments in wastewater treatment methods. Desalination. vol. 167, no. 1–3, pp. 55–63. 2004.'},{id:"B36",body:'M. B. Pescod. Wastewater treatment and use in agriculture. FAO Irrigation and Drainage Paper. vol. 47, pp. 169. 1992.'},{id:"B37",body:'United States Environmental Protection Agency (EPA). Wastewater Treatment Works: The Basics. EPA 833‐F‐98‐002. 1998.'},{id:"B38",body:'N. N. Thu. Urbanization and wastewater reuse in peri‐urban areas: a case study in Thanh Tri District, Hanoi City. IWMI Work. Paper. no. 30, pp. 16–17. 2001.'},{id:"B39",body:'A. Muramatsu, H. Ito, A. Sasaki, A. Kajihara and T. Watanabe. Cultivation of rice for animal feed with circulated irrigation of treated municipal wastewater for enhanced nitrogen removal: comparison of cultivation systems feeding irrigation water upward and downward. Water Science and Technology. vol. 72, no. 4, pp. 579–584. 2015.'},{id:"B40",body:'D. Mara. Domestic wastewater treatment in developing countries. Earthscan, London, England. pp. 32. 2004.'},{id:"B41",body:'M. P. Ortega‐Larroceaa, C. Siebe, G. Bécard, I. Méndez and R. Webster. Impact of a century of wastewater irrigation on the abundance of arbuscular mycorrhizal spores in the soil of the Mezquital Valley of Mexico. Applied Soil Ecology. vol. 16, no. 2, pp. 149–157. 2001.'},{id:"B42",body:'N. Rogan, T. Serafimovski, M. Dolenec, G. Tasev and T. Dolenec. Heavy metal contamination of paddy soils and rice (Oryza sativa L.) from Kocani Field (Macedonia). Environmental Geochemistry and Health. vol. 31, no. 4, pp. 439–451, 2009.'},{id:"B43",body:'WHO. WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater. Volume 2: Wastewater Use in Agriculture. vol. II, pp. 222. 2006.'},{id:"B44",body:'Stephen Foster, Héctor Garduño, Albert Tuinhof, Karin Kemper and Marcella Nanni. Sustainable groundwater groundwater management?: management urban wastewater as groundwater recharge evaluating and managing the risks and benefits. World Bank Briefing Note Series. vol. 12, pp. 6. 2005.'},{id:"B45",body:'H. Gallard and U. Von Gunten. Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water Research. vol. 36, no. 1, pp. 65–74. 2002.'},{id:"B46",body:'S. Toze. Reuse of effluent water—benefits and risks. Agricultural Water Management. vol. 80, no. 1–3 SPEC. ISS., pp. 147–159. 2006.'},{id:"B47",body:'A. Peasey, U. Blumenthal, D. Mara and P. G. Ruiz‐palacios. A review of policy and standards for wastewater reuse in agriculture: A Latin American perspective. No. 68, Part II. Water and Environmental Health at London and Loughborough (WELL), London, England. 74p. June 2000.'},{id:"B48",body:'K. P. Singh, D. Mohan, S. Sinha and R. Dalwani. Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere. vol. 55, no. 2, pp. 227–255. 2004.'},{id:"B49",body:'K. Fytianos, G. Katsianis, P. Triantafyllou and G. Zachariadis. Accumulation of heavy metals in vegetables grown in an industrial area in relation to soil. Bulletin of Environmental Contamination and Toxicology. vol. 67, no. 3, pp. 423–430, 2001.'},{id:"B50",body:'J. O. Duruibe, M. O. C. Ogwuegbu and J. N. Egwurugwu. Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences. vol. 2, no. 5, pp. 112–118. 2007.'},{id:"B51",body:'A. Singh, R. K. Sharma, M. Agrawal and F. M. Marshall. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Food and Chemical Toxicology. vol. 51, no. 2 Suppl., pp. 375–387. 2010.'},{id:"B52",body:'IPPC. Mitigation of climate change: Contribution of working group III to the fourth assessment report of the Intergovernmental Panel on Climate Change. 2007.'},{id:"B53",body:'J. Zou, S. Liu, Y. Qin, G. Pan and D. Zhu. Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China. Agriculture, Ecosystems and Environment. vol. 129, no. 4, pp. 516–522. 2009.'},{id:"B54",body:'Y. Jiao, Y. Huang, L. Zong, X. Zheng and R. L. Sass. Effects of copper concentration on methane emission from rice soils. Chemosphere. vol. 58, no. 2, pp. 185–193. 2005.'},{id:"B55",body:'M. A. Ali, J. H. Oh and P. J. Kim. Evaluation of silicate iron slag amendment on reducing methane emission from flood water rice farming. Agriculture, Ecosystems and Environment. vol. 128, no. 1–2, pp. 21–26. 2008.'},{id:"B56",body:'Y. Xu, J. Ge, S. Tian, S. Li, A. L. Nguy‐Robertson, M. Zhan and C. Cao. Effects of water‐saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no‐till paddy in the central lowlands of China. Science of Total Environment. vol. 505, pp. 1043–1052. 2015.'},{id:"B57",body:'T. Watanabe, T. Mashiko, R. Maftukhah and Nobuo Kaku, D. D. Pham and H. Ito. Rice cultivation and power generation circulated irrigation of treated municipal wastewater. Water Science and Technology in press.'},{id:"B58",body:'T. Watanabe, S. Kurashima, D. D. Pham, K. Horiguchi, T. Sasaki and J. Pu. Nutrient characteristics of rice for animal feed cultivated with continuous irrigation of treated municipal wastewater. Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research), vol. 72(7), III_505-III_514 (in Japanese).'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Dong Duy Pham",address:null,affiliation:'
The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
Faculty of Agriculture, Yamagata University, Yamagata, Japan
'}],corrections:null},book:{id:"5502",type:"book",title:"Current Perspective on Irrigation and Drainage",subtitle:null,fullTitle:"Current Perspective on Irrigation and Drainage",slug:"current-perspective-on-irrigation-and-drainage",publishedDate:"March 1st 2017",bookSignature:"Suren Kulshreshtha and Amin Elshorbagy",coverURL:"https://cdn.intechopen.com/books/images_new/5502.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-953-51-2952-3",printIsbn:"978-953-51-2951-6",pdfIsbn:"978-953-51-4105-1",reviewType:"peer-reviewed",numberOfWosCitations:21,isAvailableForWebshopOrdering:!0,editors:[{id:"37057",title:"Dr.",name:"Surendra N.",middleName:null,surname:"Kulshreshtha",slug:"surendra-n.-kulshreshtha",fullName:"Surendra N. Kulshreshtha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"15590",title:"Dr.",name:"Amin",middleName:null,surname:"Elshorbagy",slug:"amin-elshorbagy",fullName:"Amin Elshorbagy"},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"714"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"52812",type:"chapter",title:"Irrigation and Drainage in Agriculture: A Salinity and Environmental Perspective",slug:"irrigation-and-drainage-in-agriculture-a-salinity-and-environmental-perspective",totalDownloads:2667,totalCrossrefCites:2,signatures:"Sjoerd E.A.T.M. van der Zee, Sija F. Stofberg, Xiaomei Yang, Yu Liu,\nMd. Nazrul Islam and Yin Fei Hu",reviewType:"peer-reviewed",authors:[{id:"62032",title:"Prof.",name:"Sjoerd E.A.T.M.",middleName:null,surname:"Van Der Zee",fullName:"Sjoerd E.A.T.M. Van Der Zee",slug:"sjoerd-e.a.t.m.-van-der-zee"},{id:"198028",title:"M.Sc.",name:"Sija",middleName:null,surname:"F. Stofberg",fullName:"Sija F. Stofberg",slug:"sija-f.-stofberg"}]},{id:"53999",type:"chapter",title:"Predictive Irrigation Scheduling Modeling in Nurseries",slug:"predictive-irrigation-scheduling-modeling-in-nurseries",totalDownloads:1457,totalCrossrefCites:0,signatures:"Rousseau Tawegoum, Florian Leroy, Gérard Sintes and Gérard\nChassériaux",reviewType:"peer-reviewed",authors:[{id:"192322",title:"Dr.",name:"Rousseau",middleName:null,surname:"Tawegoum",fullName:"Rousseau Tawegoum",slug:"rousseau-tawegoum"},{id:"196587",title:"MSc.",name:"Florian",middleName:null,surname:"Leroy",fullName:"Florian Leroy",slug:"florian-leroy"},{id:"196588",title:"MSc.",name:"Gérard",middleName:null,surname:"Sintes",fullName:"Gérard Sintes",slug:"gerard-sintes"},{id:"196589",title:"Prof.",name:"Gérard",middleName:null,surname:"Chassériaux",fullName:"Gérard Chassériaux",slug:"gerard-chasseriaux"}]},{id:"53549",type:"chapter",title:"Municipal Wastewater Irrigation for Rice Cultivation",slug:"municipal-wastewater-irrigation-for-rice-cultivation",totalDownloads:1974,totalCrossrefCites:3,signatures:"Dong Duy Pham and Toru Watanabe",reviewType:"peer-reviewed",authors:[{id:"150634",title:"Dr.",name:"Toru",middleName:null,surname:"Watanabe",fullName:"Toru Watanabe",slug:"toru-watanabe"},{id:"192426",title:"Dr.",name:"Dong",middleName:null,surname:"Duy Pham",fullName:"Dong Duy Pham",slug:"dong-duy-pham"}]},{id:"53979",type:"chapter",title:"On the Use of Decision-Support Tools for Improved Irrigation Management: AquaCrop-Based Applications",slug:"on-the-use-of-decision-support-tools-for-improved-irrigation-management-aquacrop-based-applications",totalDownloads:2571,totalCrossrefCites:2,signatures:"Joost Wellens, Dirk Raes and Bernard Tychon",reviewType:"peer-reviewed",authors:[{id:"191077",title:"Dr.",name:"Joost",middleName:null,surname:"Wellens",fullName:"Joost Wellens",slug:"joost-wellens"},{id:"195766",title:"Dr.",name:"Dirk",middleName:null,surname:"Raes",fullName:"Dirk Raes",slug:"dirk-raes"},{id:"195767",title:"Prof.",name:"Bernard",middleName:null,surname:"Tychon",fullName:"Bernard Tychon",slug:"bernard-tychon"}]},{id:"54002",type:"chapter",title:"Technical Efficiency of the Subsurface Drainage on Agricultural Lands in the Moldova River Meadow",slug:"technical-efficiency-of-the-subsurface-drainage-on-agricultural-lands-in-the-moldova-river-meadow",totalDownloads:1714,totalCrossrefCites:1,signatures:"Oprea Radu, Sorin Mihai Cimpeanu, Razvan Ionut Teodorescu and\nDaniel Bucur",reviewType:"peer-reviewed",authors:[{id:"50794",title:"Prof.",name:"Daniel",middleName:"G",surname:"Bucur",fullName:"Daniel Bucur",slug:"daniel-bucur"}]},{id:"53699",type:"chapter",title:"Applications of SuDS Techniques in Harvesting Stormwater for Landscape Irrigation Purposes: Issues and Considerations",slug:"applications-of-suds-techniques-in-harvesting-stormwater-for-landscape-irrigation-purposes-issues-an",totalDownloads:1879,totalCrossrefCites:2,signatures:"Andrew B. Shuttleworth, Ernest O. Nnadi, Fredrick U. Mbanaso,\nStephen J. Coupe, Joris G.W.F. Voeten and Alan P. Newman",reviewType:"peer-reviewed",authors:[{id:"191750",title:"Dr.",name:"Ernest",middleName:null,surname:"Nnadi",fullName:"Ernest Nnadi",slug:"ernest-nnadi"},{id:"197165",title:"Mr.",name:"Andy",middleName:null,surname:"Shuttleworth",fullName:"Andy Shuttleworth",slug:"andy-shuttleworth"},{id:"197167",title:"Dr.",name:"Fredrick",middleName:null,surname:"Mbanaso",fullName:"Fredrick Mbanaso",slug:"fredrick-mbanaso"},{id:"197168",title:"Dr.",name:"Stephen",middleName:null,surname:"Coupe",fullName:"Stephen Coupe",slug:"stephen-coupe"},{id:"197169",title:"Dr.",name:"Joris",middleName:null,surname:"Voeten",fullName:"Joris Voeten",slug:"joris-voeten"},{id:"197170",title:"Prof.",name:"Alan",middleName:null,surname:"Newman",fullName:"Alan Newman",slug:"alan-newman"}]}]},relatedBooks:[{type:"book",id:"8308",title:"Agricultural Economics",subtitle:"Current Issues",isOpenForSubmission:!1,hash:"138b8e4117a40c74fc41ec72d552fa9f",slug:"agricultural-economics-current-issues",bookSignature:"Surendra N. Kulshreshtha",coverURL:"https://cdn.intechopen.com/books/images_new/8308.jpg",editedByType:"Edited by",editors:[{id:"37057",title:"Dr.",name:"Surendra N.",surname:"Kulshreshtha",slug:"surendra-n.-kulshreshtha",fullName:"Surendra N. Kulshreshtha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"67079",title:"Introductory Chapter: Agricultural Economics",slug:"introductory-chapter-agricultural-economics",signatures:"Surendra N. Kulshreshtha",authors:[{id:"37057",title:"Dr.",name:"Surendra N.",middleName:null,surname:"Kulshreshtha",fullName:"Surendra N. Kulshreshtha",slug:"surendra-n.-kulshreshtha"}]},{id:"64696",title:"Date Palm Value Chain Analysis and Marketing Opportunities for the Gulf Cooperation Council (GCC) Countries",slug:"date-palm-value-chain-analysis-and-marketing-opportunities-for-the-gulf-cooperation-council-gcc-coun",signatures:"Boubaker Dhehibi, Mohamed Ben Salah and Aymen Frija",authors:[{id:"197434",title:"Dr.",name:"Boubaker",middleName:null,surname:"Dhehibi",fullName:"Boubaker Dhehibi",slug:"boubaker-dhehibi"},{id:"268347",title:"Dr.",name:"Mohamed",middleName:null,surname:"Ben Salah",fullName:"Mohamed Ben Salah",slug:"mohamed-ben-salah"},{id:"268348",title:"Dr.",name:"Aymen",middleName:null,surname:"Frija",fullName:"Aymen Frija",slug:"aymen-frija"}]},{id:"65227",title:"Effects of Water Scarcity on the Performances of the Agricultural Sector and Adaptation Strategies in Tunisia",slug:"effects-of-water-scarcity-on-the-performances-of-the-agricultural-sector-and-adaptation-strategies-i",signatures:"Ali Chebil, Aymen Frija, Mariem Makhlouf, Chokri Thabet and Sihem Jebari",authors:[{id:"268348",title:"Dr.",name:"Aymen",middleName:null,surname:"Frija",fullName:"Aymen Frija",slug:"aymen-frija"},{id:"282705",title:"Ph.D.",name:"Ali",middleName:null,surname:"Chebil",fullName:"Ali Chebil",slug:"ali-chebil"},{id:"283211",title:"Dr.",name:"Mariem",middleName:null,surname:"Makhlouf",fullName:"Mariem Makhlouf",slug:"mariem-makhlouf"},{id:"283212",title:"Dr.",name:"Chokri",middleName:null,surname:"Thabet",fullName:"Chokri Thabet",slug:"chokri-thabet"},{id:"308992",title:"Prof.",name:"Sihem",middleName:null,surname:"Jebari",fullName:"Sihem Jebari",slug:"sihem-jebari"}]},{id:"66616",title:"Local Techniques for Crop Conservation in Burkina Faso: Analysis of the Valorization Status and Perception of Tilgr-Baore Technology",slug:"local-techniques-for-crop-conservation-in-burkina-faso-analysis-of-the-valorization-status-and-perce",signatures:"Kala Brigitte Hema, Bienlo Annick Marina Paré and Marie-Thérèse Arcens Somé",authors:[{id:"280207",title:"Dr.",name:"Kala Brigitte",middleName:null,surname:"Hema",fullName:"Kala Brigitte Hema",slug:"kala-brigitte-hema"},{id:"289733",title:"MSc.",name:"Bienlo Annick",middleName:null,surname:"Marina Paré",fullName:"Bienlo Annick Marina Paré",slug:"bienlo-annick-marina-pare"},{id:"294842",title:"Dr.",name:"Marie-Thérèse",middleName:null,surname:"Arcens Somé",fullName:"Marie-Thérèse Arcens Somé",slug:"marie-therese-arcens-some"}]},{id:"66293",title:"Value Chain-Induced Constraints Limiting Scale of Conservation Agriculture in South Africa",slug:"value-chain-induced-constraints-limiting-scale-of-conservation-agriculture-in-south-africa",signatures:"Wolfgang Johann von Loeper, Scott Drimie and James Blignaut",authors:[{id:"219859",title:"Mr.",name:"Wolfgang Johann",middleName:null,surname:"von Loeper",fullName:"Wolfgang Johann von Loeper",slug:"wolfgang-johann-von-loeper"},{id:"222873",title:"Prof.",name:"James",middleName:null,surname:"Blignaut",fullName:"James Blignaut",slug:"james-blignaut"},{id:"222874",title:"Dr.",name:"Scott",middleName:null,surname:"Drimie",fullName:"Scott Drimie",slug:"scott-drimie"}]},{id:"64186",title:"Coastal Community Adaptation to Climate Change-Induced Salinity Intrusion in Bangladesh",slug:"coastal-community-adaptation-to-climate-change-induced-salinity-intrusion-in-bangladesh",signatures:"Golam Rabbani, Sirazoom Munira and Samia Saif",authors:[{id:"252937",title:"Mr.",name:"Golam",middleName:null,surname:"Rabbani",fullName:"Golam Rabbani",slug:"golam-rabbani"},{id:"252939",title:"Dr.",name:"Samia",middleName:null,surname:"Saif",fullName:"Samia Saif",slug:"samia-saif"},{id:"252940",title:"Dr.",name:"Sirazoom",middleName:null,surname:"Munira",fullName:"Sirazoom Munira",slug:"sirazoom-munira"}]},{id:"69221",title:"Social Value of Urban Rooftop Farming: A Hong Kong Case Study",slug:"social-value-of-urban-rooftop-farming-a-hong-kong-case-study",signatures:"Ting Wang and Mathew Pryor",authors:[{id:"289674",title:"Ph.D. Student",name:"Ting",middleName:null,surname:"Wang",fullName:"Ting Wang",slug:"ting-wang"},{id:"289677",title:"Prof.",name:"Mathew",middleName:null,surname:"Pryor",fullName:"Mathew Pryor",slug:"mathew-pryor"}]}]}],publishedBooks:[{type:"book",id:"669",title:"Drainage Systems",subtitle:null,isOpenForSubmission:!1,hash:"e5941b901bd76fb3633a9a20d5ec0c8a",slug:"drainage-systems",bookSignature:"Muhammad Salik Javaid",coverURL:"https://cdn.intechopen.com/books/images_new/669.jpg",editedByType:"Edited by",editors:[{id:"208759",title:"Dr.",name:"Muhammad Salik",surname:"Javaid",slug:"muhammad-salik-javaid",fullName:"Muhammad Salik Javaid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1666",title:"Advances in Spatial Planning",subtitle:null,isOpenForSubmission:!1,hash:"295f576e7f0d365cbe04096113fae16c",slug:"advances-in-spatial-planning",bookSignature:"Jaroslav Burian",coverURL:"https://cdn.intechopen.com/books/images_new/1666.jpg",editedByType:"Edited by",editors:[{id:"95041",title:"Dr.",name:"Jaroslav",surname:"Burian",slug:"jaroslav-burian",fullName:"Jaroslav Burian"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3653",title:"Methods and Techniques in Urban Engineering",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"methods-and-techniques-in-urban-engineering",bookSignature:"Armando Carlos de Pina Filho and Aloisio Carlos de Pina",coverURL:"https://cdn.intechopen.com/books/images_new/3653.jpg",editedByType:"Edited by",editors:[{id:"24367",title:"Prof.",name:"Armando Carlos",surname:"De Pina Filho",slug:"armando-carlos-de-pina-filho",fullName:"Armando Carlos De Pina Filho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3655",title:"Urban Transport and Hybrid Vehicles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"urban-transport-and-hybrid-vehicles",bookSignature:"Seref Soylu",coverURL:"https://cdn.intechopen.com/books/images_new/3655.jpg",editedByType:"Edited by",editors:[{id:"12153",title:"Dr.",name:"Seref",surname:"Soylu",slug:"seref-soylu",fullName:"Seref Soylu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5502",title:"Current Perspective on Irrigation and Drainage",subtitle:null,isOpenForSubmission:!1,hash:"f84b58948ba0347cba6ad7d2f1e65fe2",slug:"current-perspective-on-irrigation-and-drainage",bookSignature:"Suren Kulshreshtha and Amin Elshorbagy",coverURL:"https://cdn.intechopen.com/books/images_new/5502.jpg",editedByType:"Edited by",editors:[{id:"37057",title:"Dr.",name:"Surendra N.",surname:"Kulshreshtha",slug:"surendra-n.-kulshreshtha",fullName:"Surendra N. Kulshreshtha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"1641",title:"Cholera",subtitle:null,isOpenForSubmission:!1,hash:"afebfab613bc604ea17f98395e290eeb",slug:"cholera",bookSignature:"Sivakumar Joghi Thatha Gowder",coverURL:"https://cdn.intechopen.com/books/images_new/1641.jpg",editedByType:"Edited by",editors:[{id:"118572",title:"Dr.",name:"Sivakumar Joghi",surname:"Thatha Gowder",slug:"sivakumar-joghi-thatha-gowder",fullName:"Sivakumar Joghi Thatha Gowder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5502",title:"Current Perspective on Irrigation and Drainage",subtitle:null,isOpenForSubmission:!1,hash:"f84b58948ba0347cba6ad7d2f1e65fe2",slug:"current-perspective-on-irrigation-and-drainage",bookSignature:"Suren Kulshreshtha and Amin Elshorbagy",coverURL:"https://cdn.intechopen.com/books/images_new/5502.jpg",editedByType:"Edited by",editors:[{id:"37057",title:"Dr.",name:"Surendra N.",surname:"Kulshreshtha",slug:"surendra-n.-kulshreshtha",fullName:"Surendra N. Kulshreshtha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"72304",title:"Clinical Use of Melatonin in the Treatment of Sleep Disorders",doi:"10.5772/intechopen.92656",slug:"clinical-use-of-melatonin-in-the-treatment-of-sleep-disorders",body:'
1. Introduction
Sleep is fundamental to the mental and physical health of a person. Lack of sleep is a significant risk factor for obesity, diabetes, diseases of the cardiovascular system, as well as anxiety and depressive disorders. Sleep disorders have a significant financial burden on the healthcare system and complicate the treatment of major somatic diseases. Sleep disorders are a category of diseases that include hypersomnia, insomnia (accompanied by difficulty falling asleep, maintaining sleep, and early awakening), circadian rhythm disturbance, parasomnia, and sleep-dependent breathing disorders. The consequence of some sleep disorders is a violation of falling asleep and maintaining sleep, drowsiness, and, as a consequence, a decrease in the quality of life. Some sleep disorders can also lead to severe impaired ability to perform every day and professional tasks related to concentration, switching attention, and spatial perception [1].
The development of pharmacological treatment methods has provoked an increase in the frequency of sleep disorders in the last decade, as a result of undesirable effects of this therapy. The most common disease is insomnia, which according to the classification criteria for mental disorders Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV) in the general population is found in 4–6%. The main classes of drugs for the treatment of insomnia are barbiturates, benzodiazepines, benzodiazepine agonists, antidepressants, and anxiolytics. These drugs can cause a large number of side effects associated with excessive daytime sleepiness, decreased concentration, and switching attention and can cause deterioration of short-term memory. In some cases, with prolonged use of these drugs, dependence may form, and with cancelation, a “rebound phenomenon” may occur. In this regard, it becomes relevant to search for new pharmaceuticals that reduce the number and severity of these side effects while maintaining the proper level of effectiveness. One of these drugs, with long-term administration of minimal side effects and sufficient effectiveness in certain sleep disorders, is melatonin. Melatonin is mainly produced by the pineal gland with a peak of activity at night; the concentration fluctuation coincides with the circadian rhythm. Melatonin-based preparations have good tolerance in various age periods, without forming dependency [2, 3, 4].
Other effects are inherent to melatonin, namely, regulation of circadian, seasonal rhythms; regulation of the psychoemotional and cognitive sphere; antioxidant, neuroprotective, and geroprotective effect; immunomodulatory; vegetative stabilizing; and oncological and stress-protective effect.
The multiplicity of effects of melatonin is due to the large number of targets on which this hormone has an effect. The most studied mechanism for the implementation of the action of melatonin remains its effect on suprachiasmal nuclei (SCN) of the hypothalamus. Through SCN, the chronobiological effect of melatonin is realized and, of course, its hypnotic effects. Melatonin interacts with two types of G-protein-bound receptors—MT1 and MT2 [5]. MT1-type receptors are distributed in the hippocampus, caudate nucleus, pillow, suprachiasmatic nuclei, paraventricular nucleus, supraoptic nucleus, Meynert nucleus, adjacent nucleus, substantia nigra, mammary bodies, and retina. MT2-type receptors are mainly detected in the hippocampus, SCN, and the retina. Both types of receptors are expressed by neurons and glial cells of the cerebral and cerebellar cortex, in the thalamus, and pineal gland [5, 6].
Melatonin is released into the blood plasma as a rhythmic oscillatory pattern, which is regulated by SCN neurons. Daylight suppresses the release of melatonin through the retinohypothalamic tract, projecting from melanopsin-expressing retinal ganglion cells to SCN neurons. It is known, for example, that night illumination is 2000–2500 Lux within 2 hours, which completely inhibits the secretion of melatonin. On the other hand, traditional home light (50–300 Lux) practically does not have a suppressive effect on the secretion of melatonin [7]. The neural relationship between the structures of the central nervous system, where axons of melanopsin-expressing ganglion cells are projected, primarily with SCN neurons and the sympathetic nervous system, is via the superior cervical sympathetic ganglion, from where the nerve fibers go directly to the pinealocytes and regulate the exocytosis of norepinephrine, which activates melatonin synthesis and its release [8]. As mentioned above, melatonin easily penetrates through biological barrier: it is secreted continuously into the blood plasma and enters various fluids (saliva, urine, cerebrospinal fluid, preovulatory follicle, spermatozoa, amniotic fluid, and human milk). The maximum level of melatonin in blood plasma is at 03.00–04.00 at night. The indicator varies depending on the chronotype and is not determined in the daytime. Melatonin levels have a pronounced intersubject heterogeneity but are steadily repeated in the same person. After birth, the rhythmic production of melatonin during the day reaches very high levels by 3–6 years of life and then decreases by almost 80% to levels in an adult. The melatonin rhythm is generated by the endogenous clock of the hypothalamic SCN neurons, which are affected by the light/dark cycle (zeitgeber). Seasonal effects on the secretion of melatonin are manifested in an increase in nighttime secretion of melatonin, which is associated with a decrease in plasma of ovarian steroids. On the other hand, urban lighting reduces seasonal differences in the secretion of melatonin, cortisol, and thyrotropin. Winter-type seasonal affective disorders are characterized by recurrent depressive episodes during a short photoperiod.
Melatonin, due to its amphotericity (amphiphilicity), is able to penetrate into the cell, organelles, and nuclear membranes and directly interacts with intracellular molecules, exerting a non–receptor-mediated effect. Along with this, melatonin exerts a receptor-mediated effect on target cells, as a result of the interaction of the hormone with either membrane or nuclear receptors [9]. The main physiological functions of melatonin are due to its hormonal properties; however, the hormone also has an autocrine and paracrine effect, in particular in the retina and gastrointestinal tract [10].
Outside of SCN, MT1 and MT2 receptors are also found in large numbers in the duodenum, colon, cecum and appendix, gallbladder epithelium, parotid gland, pancreas, β-cells of the endocrine system, pancreas, coronary, and cerebral arteries adipose tissue. In addition to membrane receptors for melatonin, there are also nuclear receptors: RORα and RORβ. The prevalence of RORα is highest in T and B lymphocytes, neutrophils, and monocytes, whereas RORβ are found mainly in the brain, pineal gland, retina, and spleen.
The modulating effect on sleep architecture is also realized by melatonin due to membrane receptors MT1 and MT2. The activation of the MT2 receptor contributes to increasing the duration of slow-wave sleep. The activation of the MT 1 receptor has a decrease in the duration of slow-wave sleep [11, 12].
The effects of melatonin, in addition to effects on SCN, on neural networks of passive brain function default mode network (DMN) were also demonstrated. Their activation is accompanied by the appearance of a feeling of fatigue and is characterized by changes typical of sleep in such parts of the cortex as the precuneus located in the rostromedial aspect of the occipital cortex [13, 14]. Because the general effect of melatonin through two membrane receptors does not increase the duration of slow-wave sleep (SWS) [15], the main effect of melatonin is not associated with its homeostatic effect on sleep. Therefore, its effect can be attributed to sleep regulation through the circadian component [16].
The multiple representation of melatonin receptors in the central nervous system, its effect on one of the key components of the regulation of the sleep-wake cycle, leads to the multiplicity of the clinical use of this hormone, especially in pathological conditions accompanied by primary or secondary circadian rhythm disturbances.
2. Melatonin and sleep disorders
2.1 Melatonin and disorders of the sleep-wake cycle
Circadian disturbances of the sleep-wake rhythm are associated with disconnection of the synchronization of the endogenous circadian rhythm and environmental influences. Melatonin signals the onset of darkness, and activation of its production indirectly depends on the activity of intrinsically photosensitive retinal ganglion cells (ipRGC) or true light-sensitive retinal ganglion cells. However, there is also an endogenous melatonin release profile that allows SCN activation regardless of external light, maintaining sleep-wake rhythms and neuroendocrine rhythms in a 24-hour cycle. However, the absence of external-stabilizing effect of zeitgeber (daily light change) can lead to the formation of a non-24-hour sleep-wake cycle. For example, in completely blind subjects, it is quite common (in 50–75% of cases) to observe a non-24-hour sleep-wake disorder (non-24-hour sleep-wake disorder), the occurrence of which is associated with the inability to synchronize with changes in light [17]. Circadian rhythm disorders can be divided into conditions that may be caused by endogenous or exogenous factors. The first subgroup includes the syndrome of delayed onset of sleep and wake phases (advanced sleep-wake phase disorder), early onset of the sleep phase (delayed sleep-wake phase disorder), irregular sleep-wake rhythm disorder (irregular sleep-wake rhythm disorder), and non-24-hour sleep-wake cycle (non-24-hour sleep-wake disorder). The group with exogenous causes of occurrence includes jet lag disorder, a disorder caused by a shift work schedule (shift work disorder) or a result of behavioral features of going to bed and violation of the work and rest regime in the format of about 24-hour circadian rhythm. The circadian rhythm is regulated by melatonin, while the production of melatonin itself is regulated by external influences, the most important of which is the effect of light, which activates the retinal ganglion cells containing the light-sensitive pigment melanopsin. External influences with excessive activation of signal systems implemented through SCN excitation are caused by the lifestyle of modern people, the use of electronic devices. Such excessive activation can lead to difficulty in initiating sleep, reducing its duration [18]. A decrease in melatonin secretion serves as one of the main mechanisms for the occurrence of such a disorder as delayed sleep phases [19]. There is a positive modulating effect of melatonin on the circadian rhythm of sleep-wakefulness and sleep efficiency both in pathology and in healthy subjects [20].
In separate studies in patients with delayed onset of sleep and wake phases in combination with attention deficit hyperactivity disorder, therapy was performed at a dose of 10 mg, lasting for 4 or more years. The therapeutic effect of melatonin was shown in reducing the start time of sleep and increasing the time of wakefulness in these patients. The use of melatonin in a dose of 3 mg for the treatment of disorders of the sleep-wake cycle in children did not show any effects on the process of puberty in the long-term period. However, it should be noted that these studies are isolated and do not carry a sufficiently high level of evidence [21]. However, even this long-term use of melatonin was not accompanied by any significant or serious adverse events.
Table 1 presents data on the efficacy of melatonin and its agonists in various forms of sleep-wake disorder [21].
Type of disorder (syndrome)
Efficiency
Level of evidence
Delayed onset of the phases of sleep and wakefulness
Recommended for adults with or without depression Recommended for children and adolescents without or with concomitant psychiatric pathology
Low
Recommended for children and adolescents without or with concomitant psychiatric pathology
Moderate
Non-24-hour sleep-wake cycle
Recommended for blind adults
Low
Irregular rhythm of sleep-wakefulness
Not recommended for seniors with dementia. Recommended for children and adolescents with neurological pathology
Moderate
Table 1.
The use of melatonin and its agonists in various types of disorders of the sleep-wake cycle.
According to the recommendations for the treatment of these conditions, melatonin and its agonists have a sufficient level of evidence when applied to the diagnosis of delayed onset of sleep and wake phases and irregular sleep-wake rhythm syndrome. Concerning the recommendations on the dose of melatonin, no consensus has been formed, since in studies on the basis of which recommendations are formed with the use of a wide variety of doses of melatonin, from 0.3 to 10 mg. For the non-24-hour sleep-wake cycle syndrome alone, in 2014, the US Food and Drug Administration (FDA) approved a melatonin agonist (tasimelteon) as a therapy.
However, individual studies have demonstrated a high therapeutic effect in the treatment of completely blind patients with N24HSWD immediate-release melatonin preparations. Taking a 0.5–10 mg of melatonin helped accelerate the synchronization of the endogenous sleep-wake rhythm with a 24-hour rhythm, according to the profile of the production of melatonin and cortisol. Also, separate studies demonstrate that drugs with modified melatonin release can also be effective in stabilizing circadian rhythms in completely blind patients with N24HSWD [22].
The so-called sleep-wake cycle disturbance states, namely, “jetlag,” which occurs when changing time zones during an eastbound flight, can be corrected quite well with exogenous melatonin. In separate studies, various doses of melatonin (from 0.5 to 10 mg) used at bedtime, 3 days before the transmeridian flight and 5 days after it, were used to treat jetlag [23, 24]. The effectiveness of melatonin in most studies was already shown during the first 3 days after the completed flight, but subsequently, patients who did not take melatonin showed the same sleep-wake cycle characteristics as the group of people taking it. The main effect of melatonin in the first 3 days after the transmeridian flight was an increase in the duration and quality of night sleep, based both on subjective sensations and on the data of objective methods for recording sleep patterns (polysomnography and actigraphy) [25, 26].
At the same time, melatonin had a positive effect on latency and duration of sleep. Melatonin agonists have also shown their effectiveness in accelerating adaptation to a new time zone. Melatonin agonists (ramelteon and tasimelteon) are approved by the FDA for the treatment of time zone change syndrome (“jet lag”). As a pharmacological method of treating these types of disorders, the use of agomelatine, long-acting melatonin, and tasimelteon was approved by the European Medicines Agency. Most studies have evaluated the effects of melatonin on jet lag when changing time zones eastward, but there are also few studies showing its effectiveness in treating jet lag with a transmeridian flight (12 time zones) westward [27, 28]. A definitive statement regarding the most effective dose of melatonin in jet lag treatment cannot be made; however, separate studies have shown a greater efficacy of a 5 mg immediate-release melatonin dose relative to the group of patients taking 2 mg delayed-release melatonin [24].
Melatonin, as a dietary supplement, is used widely enough but is not an approved treatment for these types of disorders. The reason for this, as a rule, is the lack of sufficient evidence in the form of clinical trials conducted at the appropriate level to evaluate the clinical effects.
2.2 Melatonin in the treatment of insomnia
Insomnia is a pathological condition caused by a variety of endogenous and exogenous factors. Insomnia is characterized primarily by the difficulty of initiating and maintaining sleep, which results in low-quality daily activity. People suffering from chronic insomnia are usually more prone to psychiatric disorders, primarily anxiety-depressive disorders, and cardiovascular diseases [29]. With age, the prevalence of insomnia increases; one of the reasons for this is an involutional decrease in the level of secretion of melatonin [30], a decrease in its concentration with SCN [6]. According to epidemiological studies, 6% of adults in industrialized countries suffer from a chronic form of insomnia [30]. In addition to night manifestations, accompanied by an increase in sleep latency, a decrease in sleep time, low sleep efficiency, and an increase in wakefulness during sleep, daytime manifestations of this disease are also formed, namely, fatigue, decreased short-term memory, decreased mood, headaches, and gastrointestinal disturbances intestinal tract [31].
The architecture of sleep begins to change already in adulthood, while initially a decrease in the duration of slow sleep is observed. The main goals of treating insomnia are to improve the quality of sleep and its duration and also to improve daily activity. As polysomnographic markers used to objectify the effectiveness of therapy insomnia, wake time after sleep onset (WASO), sleep onset latency (SOL), the number of awakenings, and sleep effectiveness. Despite this, polysomnography is an optional research method. Its use is advisable in cases of suspected secondary genesis of insomnia, as well as to exclude other sleep disorders.
According to the questionnaire, patients with insomnia have higher values (more than 7 points) when questioning on the Insomnia Severity Index (ISI) scale. According to the Pittsburgh Sleep Quality Index (PSQI), there may be more than 5 points. The Beck Depression Questionnaire demonstrates at least the presence of minimal signs of a depressive state, reaching values of 10 or more points. To assess the long-term effects of therapy, keeping a sleep diary is one of the objective methods (recommendation level IIB, based on expert consensus).
According to the recommendations of the American Academy of Sleep Medicine (AASM) from 2008, the use of benzodiazepines and a melatonin receptor agonist (ramelteon) is recommended as a therapy for primary insomnia (psychophysiological, idiopathic, and paradoxical forms). At the same time, there are no clear recommendations regarding the order of initiation of therapy with one of the groups of these drugs. The simultaneous use of melatonin and benzodiazepines is acceptable, to reduce the severity of side effects of the latter. It has been shown that agonists of melatonin receptors have a positive effect on the subjective quality of night sleep and their positive therapeutic effect is objectively confirmed by a polysomnographic study. At the same time, the main criteria for the effectiveness of the treatment of insomnia are achieved, namely, a decrease in WASO and SOL by at least 30 minutes, a decrease in the frequency of awakenings, an increase in sleep duration of more than 6 hours, and an increase in sleep efficiency (ratio of sleep time to recording time) to 80% or more [32, 33]. However, given the short half-life of melatonin and melatonin receptor agonists (e.g., ramelteon), the main clinical effects of these drugs are aimed at the treatment of presomic disorders [33]. In this case, immediate-release melatonin has no other effects on the structure of night sleep, except as a decrease in sleep latency. At the same time, there are observations demonstrating, but not explaining, the reason for the increase in the efficiency of activation of MT1 receptors with SCN, which increases their sensitivity to melatonin, which may be the basis of the therapeutic effect in relation to presominal disorders [34].
One of the mechanisms for implementing the hypnotic effect of melatonin can be realized through hormonal stabilization of the limbic system, which is involved in adaptogenic behavior [7, 9].
According to the recommendations of the European Sleep Research Society (ESRS) from 2017, based on a meta-analysis of 109 studies with a total number of patients 13,969 for the period from 2005 to 2016, melatonin and melatonin receptor agonists have shown unequivocal efficacy in the treatment of insomnia (weak recommendation – low-quality evidence). According to the results of individual studies, polysomnographic criteria for the effectiveness of insomnia therapy were achieved, namely, a decrease in sleep latency and an increase in the total sleep time and sleep efficiency [35, 36]. In a number of studies, even a decrease in the number of nocturnal awakenings was noted, which demonstrated effectiveness in relation to intrasomnic disorders. According to these studies, no dependence of the clinical effect on the dose of melatonin used was revealed. A common opinion formed as a result of the analysis of research data is a high safety profile for melatonin.
Melatonin is approved in Europe for the treatment of primary insomnia in adults over the age of 55, with a level of evidence of 1B (level of evidence based on the results of several randomized, placebo-controlled trials) [37].
Studies are demonstrating the effectiveness and perspective use of new forms of melatonin delivery [38]. Modified release tablet formulations with melatonin (MLT) are clinically more useful in initiating and maintaining sleep in elderly insomniacs than those designed for immediate release. The release of MLT from formulation F(nf)2 (nanofiber mats incorporated into 3-layered tablets containing lactose monohydrate both in the upper and lower layers) was found to be in closer alignment with these effects than the other delivery systems [39].
Among healthy children, sleep problems are observed in 20–40% [40] and, among children with impaired development of the nervous system, up to 80% [41, 42]. In pediatric practice, sleep disturbance is most often found among children with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), as well as in anxiety or depressive states [43]. Numerous clinical studies have shown the effectiveness of melatonin in the treatment of falling asleep in patients of various age groups, including children with ASD [44] or adolescents suffering from depression [45]. The physiological concentration of melatonin is crucial for the development of cognitive and behavioral functions [46]. A number of studies have demonstrated a causal relationship between a decrease in melatonin levels and the onset of ASD. Forty percent of children with ASD experienced an increase in serotonin while a decrease in melatonin. An increase in the intermediate metabolite of N-acetylserotonin (NAS) was also observed in 47% of patients [47]. One of the reasons for a decrease in the level of melatonin and an increase in the concentration of its precursor may be due to a violation of the activity of hydroxyindole-O-methyltransferase [46].
Despite the lack of clinical recommendations, the use of delayed-release melatonin is recommended for children with difficulty maintaining sleep, while immediate-release melatonin is recommended for children with difficulty falling asleep [41, 48]. According to individual recommendations (level of evidence C), melatonin should be used as a sleep inducer at a dose of 1–3 mg 30 minutes before bedtime. To obtain chronobiological effects, a melatonin drug should be taken with immediate release 3–4 hours before bedtime at a dose of 0.2–0.5 mg; the maximum dose for children is 3 mg and for adolescents 5 mg [49].
Despite the fact that in a number of studies melatonin has been shown to be effective in treating insomnia in patients with attention ADHD, its effect on cognitive function and behavior in this population of children has not been found [50].
Melatonin has also been shown to be effective in patients with secondary iatrogenic insomnia receiving beta blockers for hypertension [51] as well as in children with attention deficit hyperactivity disorder (level of IA recommendations based on the results of randomized, placebo-controlled clinical trials) [52, 53].
The use of melatonin in pediatric practice is associated with a minimal number of side effects. However, there are reports of undesirable phenomena of mild severity, namely, an increase in the clinical manifestations of nocturnal enuresis, morning drowsiness, and extremely rare insomnia [54].
Thus, according to the main clinical recommendations in the treatment of insomnia, melatonin has a positive effect both on the subjective quality of night sleep and on its objective characteristics. The drug has a high level of evidence of its effectiveness in the long-term therapy of insomnia in patients older than 55 years, associated mainly with the difficulty of falling asleep and the poor quality of night sleep. Ensuring physiological control of the sleep-wake cycle in children with pathology of the development of the nervous system and patients older than 55 years with insomnia is the goal of replacement therapy with melatonin, since in both groups there is a decrease in the secretion of endogenous melatonin during the night [55, 56].
2.3 Melatonin and parasomnia
Parasomnias are undesirable physical or psychological phenomena that usually form at certain stages of sleep, causing a number of clinical manifestations, including the formation of secondary insomnia. Quite often, parasomnia, especially accompanied by motor manifestations, can lead to injuries of varying severity and the formation of psychological problems or social maladaptation [21, 57]. The most striking in its clinical manifestation is REM behavior disorder (RBD). In the treatment of this form of parasomnia, clonazepam is most successfully used. But, the use of this drug is associated with numerous side effects typical of benzodiazepines, especially if the elderly patient has sleep-related breathing disorders (SRBD). An alternative pharmacological method is the use of melatonin. Melatonin also causes a decrease in the frequency and severity of motor activity during an RBD episode, which leads to a decrease in the frequency and severity of injuries. According to the results of a few studies, the use of melatonin at a dose of 3–15 mg led to a significant reduction in paradoxical sleep without atony, as well as the severity of motor manifestations of behavior disorder in the REM phase [58]. One of the options for therapeutic treatment may be taking the drug melatonin for 5–7 days at a minimum dose of 3 mg, followed by an increase in the dose of the drug every 5–7 days to a maximum of 12 mg at night [59, 60]. Little information is available regarding the efficacy of prolonged forms of melatonin or agonists in patients with RBD. There were also no comparisons of the clinical efficacy of clonazepam and melatonin.
Indeed, a number of studies demonstrate a more effective therapeutic effect with the combination of clonazepam and melatonin [61]. The potentiation of the effects of melatonin and clonazepam in the context of RBD therapy has no definitive explanation. It is believed that clonazepam reduces the phase activity inherent in paradoxical sleep, but at the same time, motor activity and minimal disturbance of behavior may remain, according to a polysomnographic survey [62]. The effect of melatonin in combination with clonazepam is due to the modulating effect of the structure of paradoxical sleep, reducing the number of transitions to other stages [59]. An alternative hypothesis explaining the effectiveness of melatonin in RBD may be its effect on increasing the effect of GABA on the GABA receptors of motor neurons of the anterior horns of the spinal cord, which leads to more intense muscle atony. Efficiency may also be related to the fact that melatonin helps to reduce the concentration of calmodulin, which affects the structure of the cytoskeleton and nicotinic acetylcholine receptors of skeletal muscles, which also leads to a progressive decrease in muscle tone [61]. The presence of a favorable safety profile makes the use of melatonin more attractive relative to clonazepam, especially in the elderly [61]. Therefore, in some few clinical trials, melatonin is used as a first-line therapy for RBD, especially in the presence of cognitive impairment, Parkinsonism, or SRBD. In the presence of minimal effectiveness of melatonin or a decrease in its effectiveness during therapy, clonazepam should be additionally prescribed. According to AASM recommendations, melatonin has a “B” level of evidence regarding its effectiveness. Doses of the drug in the studies on the basis of which these recommendations were made ranged from 8 to 12 mg; therefore, there are no clear recommendations regarding the dose of administration [63].
There is also another class of parasomnia in the treatment of which the effectiveness of melatonin was studied. These are parasomnia associated with slow eye movement, which is defined as undesirable motor and psychophysiological manifestations that occur at the time of awakening from a slow-wave sleep. Parasomnia associated with slow eye movement is defined as undesirable motor and psychophysiological manifestations that occur at the time of awakening from a slow-wave sleep [64]. In cases of severe clinical manifestations of these forms of parasomnia, benzodiazepines (clonazepam) or antidepressants (imipramine or clomipramine) may be used. When walking in a dream, the drugs of choice are benzodiazepines or selective serotonin reuptake inhibitors (SSRIs), such as paroxetine and imipramine [64]. The use of melatonin did not reveal a reliable therapeutic effect on the clinical manifestations of these forms of parasomnia. There are only a few studies on the use of melatonin as a first-line therapy for nightly fears in children; the first-line drug is melatonin or L-5-hydroxytryptophan [65]. The absence of a significant clinical effect is associated with the absence of a homeostatic effect on sleep in melatonin.
2.4 Melatonin in the treatment of complications of sleep-dependent respiratory disorders
Sleep-dependent respiratory disorders are represented by several types of pathological conditions: Obstructive sleep apnea (OSA), central sleep apnea, sleep-related hypoventilation, and sleep-related hypoxemia disorder. Most studies are devoted to the study of melatonin metabolism in OSA. A number of studies have demonstrated impaired melatonin secretion in OSA. At the same time, it is believed that the decrease in secretion is secondary. There is also data on the relationship between the concentration of melatonin at night and the duration of night sleep, as well as body weight [66, 67, 68]. Some studies have shown a relationship between the severity of OSA and the degree of decrease in melatonin [69]. Approximately 25% of patients with OSA have an altered circadian rhythm of melatonin secretion. In patients with OSA with a maintained rhythm of secretion, peak melatonin levels at night are significantly lower than in healthy people. The 3-month treatment period with continuous positive airway pressure (CPAP) can help restore the physiological rhythm of melatonin in patients with OSA with an impaired secretion profile [70]. One of the uses of melatonin is its use as a drug that reduces the complications associated with respiratory failure during sleep. Numerous studies on biological models demonstrate the positive effect of melatonin on the unfolding pathophysiological cascade of changes in the body in the presence of sleep-dependent respiratory disorders. For example, melatonin inhibits an increase in glucose, the concentration of which increases during periods of apnea [71]. Melatonin modulation of the activity of adenosine monophosphate-activated protein kinase reduces the progression of cardiac muscle hypertrophy. Melatonin also inhibits the expression of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-6, and cyclooxygenase-2 [72]. It also helps to reduce the severity of Ca2+ caused by impaired myocardial contractile function, thus reducing the manifestations of endothelial dysfunction.
The use of melatonin as a prophylactic helps to prevent cardiac remodeling due to hypoxia arising from obstructive apnea [73]. Effects on the cardiovascular system are also realized due to the ability of melatonin and melatonin receptor agonists to inhibit bradykinin B2 receptors, as well as dimerization of angiotensin-converting enzyme I, improving therapeutic control of blood pressure [74]. Another way of realizing the effects of melatonin is the stabilizing effect on angiotensin II receptors and ACE-B2R dimers, which increases the production of nitric oxide by endothelial cells, increasing tissue perfusion. The activation of the MT1 receptor promotes vasoconstriction and MT2 receptor vasodilation. Thus, melatonin can act as a therapeutic agent in the treatment of cardiovascular diseases and hypertension resulting from comorbid diseases in sleep-dependent respiratory disorders. These effects of melatonin in carotid-dependent respiratory disorders were found as a result of a few studies; therefore, they do not have a sufficient recommended level.
2.5 Melatonin in the treatment of hypersomnia
Hypersomnia, such as type I and type II narcolepsy, and idiopathic hypersomnia, are diseases of which the main clinical syndrome is excessive daytime sleepiness. At the same time, drowsiness, being one of the obligate syndromes of diseases, can be modulated by sleep disturbances, observed in these patients, associated with disturbances in sleep structure, and the stability of being in a slow-wave sleep. Currently, drugs approved by FDA, for example, include methylphenidate, modafinil, oxybate, and pitolisant. Methylphenidate, being an analogue of amphetamine, blocks the transport of dopamine and norepinephrine, increasing their concentration. This drug has a fairly large number of side effects. Modaphenyl is better tolerated but may cause psychological dependence on administration [75]. Oxybate and pitolisant are well tolerated. Pitolisant is currently undergoing an expansion of indications up to 6 years of age in the treatment of types 1 and 2 narcolepsy.
Melatonin can affect the severity of hypersomnia in these patients indirectly due to the effect on the architecture of night sleep. A positive impact on the architecture of night sleep is realized by increasing the representation of paradoxical sleep. The positive effects of melatonin administration in patients with hypersomnia in Parkinson’s disease have been described, slowing down the decrease in the loss of dopamine-producing neurons and contributing to the suppression of dopamine transport [76]. Presumably, one of the causes of excessive daytime sleepiness in Parkinson’s disease is the decrease in the concentration of melatonin [77]. The use of melatonin in patients with neurodegenerative diseases is promising, since a number of interesting effects of melatonin exposure were obtained on biological models. For example, melatonin, freely penetrating the blood-brain barrier, activates brain-derived neurotrophic factor and cyclooxygenase-10, suppressing plasma tumor necrosis factor (TNF-alpha) and IL-10 levels. In experiments, a decrease in the number of apoptotic cells induced by phenylhydrazine was demonstrated. These studies confirm the role of melatonin in neuroprotection and protection against apoptosis in oxidative damage to neurons [78]. According to domestic guidelines for the treatment of nonmotor manifestations of Parkinson’s disease, melatonin is recommended for use as a therapy for excessive daytime sleepiness [79].
3. Conclusion
A decrease in the secretion of melatonin is often observed with aging and diseases of various etiologies. Inadequate sleep hygiene, namely, excessive night illumination or night work, are the most common causes of suppression of pineal melatonin production, which has a chronobiological effect on the body. A decrease in the production of melatonin in some cases can be caused by neurodegeneration, accompanied by a change in the functioning of SCN, disrupting the operation of the circadic oscillator. The most common manifestations of epiphyseal deficiency of this hormone are various functional psychopathological disorders in the form of insomnia, anxiety, or depressive disorders. The role of melatonin is currently being actively discussed in the treatment of insomnia and the sleep-wake cycle disorder. A few clinical studies demonstrate the effects in the treatment of the main manifestations of such forms of sleep disorders as hypersomnia and parasomnia. A positive effect is noted in the correction of the pathophysiological cascade arising as a result of hypoxia against the background of sleep-dependent respiratory disorders. Thus, the numerous clinical effects of melatonin demonstrate its universal modulating effect on physiological processes in the body and some common features of the pathogenesis of pathological conditions such as insomnia and circadian rhythm disturbances.
Acknowledgments
We thank Pytin Vasiliy and Poverennova Irina (Samara Medical University).
Conflict of interest
The authors declare no conflict of interest.
Notes/thanks/other declarations
We thank the management and rector Samara Medical University (Kolsanov Alexander) for the opportunity to conduct scientific work.
\n',keywords:"sleep, melatonin, sleep disorders, sleep-wake cycle",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/72304.pdf",chapterXML:"https://mts.intechopen.com/source/xml/72304.xml",downloadPdfUrl:"/chapter/pdf-download/72304",previewPdfUrl:"/chapter/pdf-preview/72304",totalDownloads:891,totalViews:0,totalCrossrefCites:0,dateSubmitted:"November 4th 2019",dateReviewed:"April 26th 2020",datePrePublished:"May 26th 2020",datePublished:"June 24th 2020",dateFinished:"May 25th 2020",readingETA:"0",abstract:"Sleep disorders are a group of conditions that affect the circadian rhythm of sleep-wake, leading to social and professional maladaptation. At the moment, there is a wide range of medications aimed at the treatment of sleep disorders, but the results from their use are not always satisfactory. Benzodiazepines, antidepressants, and antihistamines may cause dependence or withdrawal effects. Melatonin (N-acetyl-5-methoxytryptamine) is an endogenous hormone produced by the pineal gland that affects intraday, seasonal rhythm, and the sleep-wake cycle. Studies of the effects of melatonin have demonstrated its ability to synchronize circadian rhythms, reduce the latency of slow sleep, increase the duration of sleep, and improve its subjective quality. This review highlights the current therapeutic possibilities of using melatonin in various sleep disorders, taking into account the mechanisms of its action. Also, the prospects of using melatonin due to its chronobiological effect in other sleep disorders, such as parasomnia, sleep-dependent respiratory disorders, and hypersomnia, are emphasized. At the moment, melatonin is one of the methods for correcting intraday rhythms and some types of insomnia.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/72304",risUrl:"/chapter/ris/72304",signatures:"Alexander Zakharov and Elena Khivintseva",book:{id:"8762",type:"book",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",bookSignature:"Marilena Vlachou",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83962-909-9",printIsbn:"978-1-83962-908-2",pdfIsbn:"978-1-83962-910-5",isAvailableForWebshopOrdering:!0,editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Melatonin and sleep disorders",level:"1"},{id:"sec_2_2",title:"2.1 Melatonin and disorders of the sleep-wake cycle",level:"2"},{id:"sec_3_2",title:"2.2 Melatonin in the treatment of insomnia",level:"2"},{id:"sec_4_2",title:"2.3 Melatonin and parasomnia",level:"2"},{id:"sec_5_2",title:"2.4 Melatonin in the treatment of complications of sleep-dependent respiratory disorders",level:"2"},{id:"sec_6_2",title:"2.5 Melatonin in the treatment of hypersomnia",level:"2"},{id:"sec_8",title:"3. Conclusion",level:"1"},{id:"sec_9",title:"Acknowledgments",level:"1"},{id:"sec_12",title:"Conflict of interest",level:"1"},{id:"sec_9",title:"Notes/thanks/other declarations",level:"1"}],chapterReferences:[{id:"B1",body:'Amihaesei IC, Mungiu OC. Main neuroendocrine features and therapy in primary sleep troubles. Revista Medico-Chirurgicală̆ a Societă̆ţ̜ii de Medici şṃi Naturalişṃti din Iaşṃi. 2012;116(3):862-866'},{id:"B2",body:'Geoffroy PA, Etain B, Franchi JA, Bellivier F, Ritter P. Melatonin and melatonin agonists as adjunctive treatments in bipolar disorder. Current Pharmacogenomics. 2015;21(23):3352-3358. DOI: 10.2174/1381612821666150619093448'},{id:"B3",body:'Galley HF, Lowes DA, Allen L, Cameron G, Aucott LS, Websteret NR. Melatonin as a potential therapy for sepsis: A phase I dose escalation study and an ex vivo whole blood model under conditions of sepsis. Journal of Pineal Research. 2014;56(4):427-438. DOI: 10.1111/jpi.12134'},{id:"B4",body:'Chang YS, Lin MH, Lee JH, Lee PL, Dai YS, Chu KH, et al. Melatonin supplementation for children with atopic dermatitis and sleep disturbance: A randomized clinical trial. JAMA Pediatrics. 2016;170(1):35-42. DOI: 10.1001/jamapediatrics.2015.3092'},{id:"B5",body:'Ng KY, Leong MK, Liang H, Paxinos G. Melatonin receptors: Distribution in mammalian brain and their respective putative functions. Brain Structure & Function. 2017;222(7):2921-2939. DOI: 10.1007/s00429-017-1439-6'},{id:"B6",body:'Wu YH, Zhou JN, Balesar R, Unmehopa U, Bao A, Jockers R, et al. Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: Colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. The Journal of Comparative Neurology. 2006;499(6):897-910. DOI: 10.1002/cne.21152'},{id:"B7",body:'Claustal B, Leston J. Melatonin: Physiological effects in humans. Neurochirurgye. 2015;61(2-3):77-84. DOI: 10.1016/j.neuchi.2015.03.002'},{id:"B8",body:'Moller M, Baeres FM. The anatomy and innervation of the mammalian pineal gland. Cell and Tissue Research. 2002;309(1):139-150. DOI: 10.1007/s00441-002-0580-5'},{id:"B9",body:'Cipolla-Neto J, Amaral FG. Melatonin as a hormone: New physiological and clinical insights. Endocrine Reviews. 2018;39(6):990-1028. DOI: 10.1210/er.2018-00084'},{id:"B10",body:'Tan DX, Manchester LC, Sanchez-Barcelo E, Mediavilla MD, Reiter RJ. Significance of high levels of endogenous melatonin in mammalian cerebrospinal fluid and in the central nervous system. Current Neuropharmacology. 2010;8(3):162-167. DOI: 10.2174/157015910792246182'},{id:"B11",body:'Ochoa-Sanchez R, Comai S, Spadoni G, Bedini A, Tarzia G, Gobbi G. Melatonin, selective and non-selective MT1/MT2 receptors agonists: Differential effects on the 24-h vigilance states. Neuroscience Letters. 2014;561:156-161. DOI: 10.1016/j.neulet.2013.12.069'},{id:"B12",body:'Ochoa-Sanchez R, Comai S, Lacoste B, Bambico FR, Dominguez-Lopez S, Spadoni G, et al. Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. The Journal of Neuroscience. 2011;31(50):18439-18452. DOI: 10.1523/JNEUROSCI.2676-11.2011'},{id:"B13",body:'Gorfine T, Assaf Y, Goshen-Gottstein Y, Yeshurun Y, Zisapel N. Sleep-anticipating effects of melatonin in the human brain. NeuroImage. 2006;31(1):410-418. DOI: 10.1016/j.neuroimage.2005.11.024'},{id:"B14",body:'Gorfine T, Zisapel N. Late evening brain activation patterns and their relation to the internal biological time, melatonin, and homeostatic sleep debt. Human Brain Mapping. 2009;30(2):541-552. DOI: 10.1002/hbm.20525'},{id:"B15",body:'Arbon EL, Knurowska M, Dijk DJ. Randomised clinical trial of the effects of prolonged-release melatonin, temazepam and zolpidem on slow-wave activity during sleep in healthy people. Journal of Psychopharmacology. 2015;29(7):764-776. DOI: 10.1177/0269881115581963'},{id:"B16",body:'Zisapel N. Sleep and sleep disturbances: Biological basis and clinical implications. Cellular and Molecular Life Sciences. 2007;64(10):1174-1186. DOI: 10.1007/s00018-007-6529-9'},{id:"B17",body:'Emens JS, Eastman CI. Diagnosis and treatment of non-24-h sleep-wake disorder in the blind. Drugs. 2017;77(6):637-650. DOI: 10.1007/s40265-017-0707-3'},{id:"B18",body:'Kyba C, Kantermann T. Does ambient light at night reduce total melatonin production? Hormones. 2016;15(1):142-143. DOI: 10.14310/horm.2002.1613'},{id:"B19",body:'Micic G, Lovato N, Gradisar M, Burgess HJ, Ferguson SA, Kennaway DJ, et al. Nocturnal melatonin profiles in patients with delayed sleep-wake phase disorder and control sleepers. Journal of Biological Rhythms. 2015;30(5):437-448. DOI: 10.1177/0748730415591753'},{id:"B20",body:'Leonardo-Mendonca RC, Martinez-Nicolas A, de Teresa G, Ocaña-Wilhelmi J, Rusanova R, Guerra-Hernández E, et al. The benefits of four weeks of melatonin treatment on circadian patterns in resistance-trained athletes. Chronobiology International. 2015;32(8):1125-1134. DOI: 10.3109/07420528.2015.1069830'},{id:"B21",body:'Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: Advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015. Journal of Clinical Sleep Medicine. 2015;11(10):1199-1236. DOI: 10.5664/jcsm.5100'},{id:"B22",body:'Roth T, Nir T, Zisapel N. Prolonged release melatonin for improving sleep in totally blind subjects: A pilot placebo-controlled multicenter trial. Nature and Science of Sleep. 2015;7:13-23. DOI: 10.2147/nss.s71838'},{id:"B23",body:'Suhner A, Schlagenhauf P, Hofer I, Johnson R, Tschopp A, Steffen R. Effectiveness and tolerability of melatonin and zolpidem for the alleviation of jet lag. Aviation, Space, and Environmental Medicine. 2001;72:638-646'},{id:"B24",body:'Suhner A, Schlagenhauf P, Johnson R, Tschopp A, Steffen R. Comparative study to determine the optimal melatonin dosage form for the alleviation of jet lag. Chronobiology International. 1998;15(6):655-666. DOI: 10.3109/07420529808993201'},{id:"B25",body:'Comperatore CA, Lieberman HR, Kirby AW, Adams B, Crowley JS. Melatonin efficacy in aviation missions requiring rapid deployment and night operations. Aviat Space & Environmental Medcine. 1996;67(6):520-524'},{id:"B26",body:'Paul MA, Gray G, Sardana TM, Pigeau RA. Melatonin and zopiclone as facilitators of early circadian sleep in operational air transport crews. Aviation, Space, and Environmental Medicine. 2004;75(5):439-443'},{id:"B27",body:'Petrie K, Conaglen JV, Thompson L, Chamberlain K. Effect of melatonin on jet lag after long haul flights. BMJ. 1989;298(6675):705-707. DOI: 10.1136/bmj.298.6675.705'},{id:"B28",body:'Petrie K, Dawson AG, Thompson L, Brook R. A double-blind trial of melatonin as a treatment for jet lag in international cabin crew. Biological Psychiatry. 1993;33(7):526-530. DOI: 10.1016/0006-3223(93)90007-z'},{id:"B29",body:'Hoevenaar-Blom MP, Spijkerman AM, Kromhout D, van den Berg JF, Verschuren WM. Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: The MORGEN study. Sleep. 2011;34(11):1487-1492. DOI: 10.5665/sleep.1382'},{id:"B30",body:'Zhang W, Wing YK. Sex differences in insomnia: A meta-analysis. Sleep. 2006;29(1):85-93. DOI: 10.1093/sleep/29.1.85'},{id:"B31",body:'Edinger JD, Bonnet MH, Bootzin RR, Doghramji K, Dorsey CM, Espie CA, et al. Derivation of research diagnostic criteria for insomnia: Report of an American Academy of Sleep Medicine Work Group. Sleep. 2004;27(8):1567-1596. DOI: 10.1093/sleep/27.8.1567'},{id:"B32",body:'Schutte-Rodin S, Broch L, Buysse D, Dorsey C, Sateia M. Clinical guideline for the evaluation and management of chronic insomnia in adults. Journal of Clinical Sleep Medicine. 2008;4(5):487-504. DOI: 10.5664/jcsm.27286'},{id:"B33",body:'Erman M, Seiden D, Zammit G, Sainati S, Zhang J. An efficacy, safety, and dose-response study of Ramelteon in patients with chronic primary insomnia. Sleep Medicine. 2006;7(1):17-24. DOI: 10.1016/j.sleep.2005.09.004'},{id:"B34",body:'Dubocovich ML. Melatonin receptors: Role on sleep and circadian rhythm regulation. Sleep Medicine. 2007;8(3):34-42. DOI: 10.1016/j.sleep.2007.10.007'},{id:"B35",body:'Brzezinski A, Vangel MG, Wurtman RJ, Norrie G, Zhdanova I, Ben-Shushan A, et al. Effects of exogenous melatonin on sleep: A meta-analysis. Sleep Medicine Reviews. 2005;9(1):41-50. DOI: 10.1016/j.smrv.2004.06.004'},{id:"B36",body:'Zakharov AV, Khivintseva EV, Pyatin VF, Sergeeva MS, Antipov OI. Melatonin—Known and novel areas of clinical application. Neuroscience and Behavioral Physiology. 2019;49(1):60-63. DOI: 10.1007/s11055-018-0692-3'},{id:"B37",body:'Wilson SJ, Nutt DJ, Alford C, Argyropoulos SV, Baldwin DS, Baldwin DS, et al. British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders. Journal of Psychopharmacology. 2010;24(11):1577-1601. DOI: 10.1177/0269881110379307'},{id:"B38",body:'Vlachou M, Kikionis S, Siamidi A, Tragou K, Ioannou E, Roussis V, et al. Modified in vitro release of melatonin loaded in nanofibrous electrospun mats incorporated into mono-layered and three-layered tablets. Journal of Pharmaceutical Sciences. 2019;108(2):970-976. DOI: 10.1016/j.xphs.2018.09.0351'},{id:"B39",body:'Vlachou M, Tragou K, Siamidi A, Kikionis S, Chatzianagnostou AL, Mitsopoulos A, et al. Modified in vitro release of the chronobiotic hormone melatonin from matrix tablets based on the marine sulfated polysaccharide ulvan. Journal of Drug Delivery Science and Technology. 2018;44:41-48. DOI: 10.1016/j.jddst.2017.11.019'},{id:"B40",body:'Fricke-Oerkermann L, Plück J, Schredl M, Heinz K, Mitschke A, Wiater A, et al. Prevalence and course of sleep problems in childhood. Sleep. 2007;30(10):1371-1377. DOI: 10.1093/sleep/30.10.1371'},{id:"B41",body:'Grigg-Damberger M, Ralls F. Treatment strategies for complex behavioral insomnia in children with neurodevelopmental disorders. Current Opinion in Pulmonary Medicine. 2013;19(6):616-625. DOI: 10.1097/mcp.0b013e328365ab89'},{id:"B42",body:'Damiani JM, Sweet BV, Sohoni P. Melatonin: An option for managing sleep disorders in children with autism spectrum disorder. American Journal of Health-System Pharmacy. 2014;71(2):95-101. DOI: 10.2146/ajhp130215'},{id:"B43",body:'Meltzer LJ, Mindell JA. Sleep and sleep disorders in children and adolescents. Psychiatric Clinics of North America. 2006;29(4):1059-1076. DOI: 10.1016/j.psc.2006.08.004'},{id:"B44",body:'Goldman SE, Adkins KW, Calcutt MW, Carter MD, Goodpaster RL, Wang L, et al. Melatonin in children with autism spectrum disorders: Endogenous and pharmacokinetic profiles in relation to sleep. Journal of Autism and Developmental Disorders. 2014;44(10):2525-2535. DOI: 10.1007/s10803-014-2123-9'},{id:"B45",body:'Bartlett DJ, Biggs SN, Armstrong SM. Circadian rhythm disorders among adolescents: Assessment and treatment options. The Medical Journal of Australia. 2013;199:16-20. DOI: 10.5694/mja13.10912'},{id:"B46",body:'Melke J, Goubran Botros H, Chaste P, Betancur C, Nygren G, Anckarsäter H, et al. Abnormal melatonin synthesis in autism spectrum disorders. Molecular Psychiatry. 2008;13:90-98. DOI: 10.1038/sj.mp.4002016'},{id:"B47",body:'Pagan C, Delorme R, Callebert J, Goubran-Botros H, Amsellem F, Drouot X, et al. The serotonin-N-acetylserotonin–melatonin pathway as a biomarker for autism spectrum disorders. Translational Psychiatry. 2014;4:479. DOI: 10.1038/tp.2014.120'},{id:"B48",body:'Veatch OJ, Goldman SE, Adkins KW, Malow BA. Melatonin in children with autism spectrum disorders: How does the evidence fit together? Journal of Nature and Science. 2015;1(7):125'},{id:"B49",body:'Bruni O, Alonso-Alconada D, Besag F, Biran V, Braam W, Cortese S, et al. Current role of melatonin in pediatric neurology: Clinical recommendations. European Journal of Paediatric Neurology. 2015;19:122-133. DOI: 10.1016/j.ejpn.2014.12.007'},{id:"B50",body:'Van der Heijden KB, Smits MG, Van Someren EJ, Ridderinkhof KR, Gunning WB. Effect of melatonin on sleep, behavior, and cognition in ADHD and chronic sleep-onset insomnia. Journal of the American Academy of Child and Adolescent Psychiatry. 2007;46:233-241. DOI: 10.1097/01.chi.0000246055.76167.0d'},{id:"B51",body:'Scheer FA, Morris CJ, Garcia JI, Smales C, Kelly EE, Marks J, et al. Repeated melatonin supplementation improves sleep in hypertensive patients treated with beta-blockers: A randomized controlled trial. Sleep. 2012;35:1395-1402. DOI: 10.5665/sleep.2122'},{id:"B52",body:'Shechter A, Lesperance P, Ng YKN, Boivin DB. Nocturnal polysomnographic sleep across the menstrual cycle in premenstrual dysphoric disorder. Sleep Medicine. 2012;13:1071-1078. DOI: 10.1016/j.sleep.2012.05.012'},{id:"B53",body:'Holvoet E, Gabriels L. Disturbed sleep in children with ADHD: Is there a place for melatonin as a treatment option? Tijdschrift voor Psychiatrie. 2013;55:349-357'},{id:"B54",body:'Andersen IM, Kaczmarska J, McGrew SG, Malow BA. Melaton in for insomniain children with autism spectrum disorders. Journal of Child Neurology. 2008;23:482-485. DOI: 10.1177/0883073807309783'},{id:"B55",body:'Haimov I, Laudon M, Zisapel N, Souroujon M, Nof D, Shlitner A, et al. Sleep disorders and melatonin rhythms in elderly people. BMJ. 1994;309(6948):167. DOI: 10.1136/bmj.309.6948.167'},{id:"B56",body:'Tordjman S, Najjar I, Bellissant E, Anderson GM, Barburoth M, Cohen D, et al. Advances in the research of melatonin in autism spectrum disorders: Literature review and new perspectives. International Journal of Molecular Sciences. 2013;14:20508-20542. DOI: 10.3390/ijms141020508'},{id:"B57",body:'Zakharov AV, Poverennova IE, Kalinin VA, Khivintseva EV. Parasomnias associated with disordered arousal from slow-wave sleep: Mechanism of occurrence and neurophysiological characteristics. Neuroscience and Behavioral Physiology. 2020;50:270-274. DOI: 10.1007/s11055-020-00897-z'},{id:"B58",body:'Kunz D, Mahlberg R. A two-part, double-blind, placebocontrolled trial of exogenous melatonin in REM sleep behaviour disorder. Journal of Sleep Research. 2010;19:591-596. DOI: 10.1111/j.1365-2869.2010.00848.x'},{id:"B59",body:'Kunz D, Bes F. Melatonin as a therapy in rem sleep behavior disorder patients: An open-labeled pilot study on the possible influence of melatonin on rem-sleep regulation. Movement Disorders. 1999;14:507-511. DOI: 10.1002/1531-8257(199905)14:3<507::aid-mds1021>3.0.co;2-8'},{id:"B60",body:'Schaefer C, Kunz D, Bes F. Melatonin effects in REM sleep behavior disorder associated with obstructive sleep apnea syndrome: A case series. Current Alzheimer Research. 2017;14:1084-1089. DOI: 10.2174/1567205014666170523094938'},{id:"B61",body:'McGrane IR, Leung JG, St Louis EK, Boeve BF. Melatonin therapy for REM sleep behavior disorder: A critical review of evidence. Sleep Medicine. 2015;16:19-26. DOI: 10.1016/j.sleep.2014.09.011'},{id:"B62",body:'Lapierre O, Montplaisir J. Polysomnographic features of REM sleep behavior disorder development of a scoring method. Neurology. 1992;42:1371. DOI: 10.1212/wnl.42.7.1371'},{id:"B63",body:'Aurora RN, Zak RS, Maganti RK, Auerbach SH, Casey KR, Chowdhuri S, et al. Best practice guide for the treatment of REM sleep behavior disorder (RBD). Journal of Clinical Sleep Medicine. 2010;6(1):85-95'},{id:"B64",body:'Sateia MJ. International classification of sleep disorders-third edition. Chest. 2014;146(5):1387-1394. DOI: 10.1378/chest.14-0970'},{id:"B65",body:'Bruni O, Ferri R, Miano S, Verrillo E. L-5-Hydroxytryptophan treatment of sleep terrors in children. European Journal of Pediatrics. 2004;163:402-407. DOI: 10.1007/s00431-004-1444-7'},{id:"B66",body:'Wetterberg L, Bratlid T, Knorring L, et al. A multinational study of the relationships between nighttime urinary melatonin production, age, gender, body size and latitude. European Archives of Psychiatry and Clinical Neuroscience. 1999;249:256-262. DOI: 10.1007/s004060050095'},{id:"B67",body:'Scheer F, Czeisler C. Melatonin, sleep and circadian rhythms. Sleep Medicine Reviews. 2005;9(1):5-9. DOI: 10.1016/j.smrv.2004.11.004'},{id:"B68",body:'Zhdanova I, Tucci V. Melatonin, circadian rhythms and sleep. Current Treatment Options in Neurology. 2003;5:225-229. DOI: 10.1007/s11940-003-0013-0'},{id:"B69",body:'Reutrakul S, Siwasaranond N, Nimitphong H, Saetung S, Chirakalwasan N, Chailurkit LO, et al. Associations between nocturnal urinary 6-sulfatoxymelatonin, obstructive sleep apnea severity and glycemic control in type 2 diabetes. Chronobiology International. 2017;34:382-392. DOI: 10.1080/07420528.2016.1278382'},{id:"B70",body:'Barnaś M, Maskey-Warzęchowska M, Bielicki P, Kumor M, Chazan R. Diurnal and nocturnal serum melatonin concentrations after treatment with continuous positive airway pressure in patients with obstructive sleep apnea. Polish Archives of Internal Medicine. 2017;127(9):589-596. DOI: 10.20452/pamw.4062'},{id:"B71",body:'Kaminski RS, Martinez D, Fagundes M, Martins EF, Montanari CC, Rosa DP, et al. Melatonin prevents hyperglycemia in a model of sleep apnea. Archives of Endocrinology and Metabolism. 2015;59:66-70. DOI: 10.1590/2359-3997000000012'},{id:"B72",body:'Xie S, Deng Y, Pan YY, Wang ZH, Ren J, Guo XL, et al. Melatonin protects against chronic intermittent hypoxia-induced cardiac hypertrophy by modulating autophagy through the 5′ adenosine monophosphate-activated protein kinase pathway. Biochemical and Biophysical Research Communications. 2015;464:975-981. DOI: 10.1016/j.bbrc.2015.06.149'},{id:"B73",body:'Yeung HM, Hung MW, Lau CF, Fung ML. Cardioprotective effects of melatonin against myocardial injuries induced by chronic intermittent hypoxia in rats. Journal of Pineal Research. 2015;58:12-25. DOI: 10.1111/jpi.12190'},{id:"B74",body:'Sabatini RA, Guimaraes PB, Fernandes LB, Reis FC, Bersanetti PA, Mori MA, et al. ACE activity is modulated by kinin B2 receptor. Hypertension. 2008;51(3):689-695. DOI: 10.1161/HYPERTENSIONAHA.107.091181'},{id:"B75",body:'Roth T, Schwartz JR, Hirshkowitz M, Erman MK, Dayno JM, Arora S. Evaluation of the safety of modafinil for treatment of excessive sleepiness. Journal of Clinical Sleep Medicine. 2007;3:595-602'},{id:"B76",body:'Lin CH, Huang JY, Ching CH, Chuang JI. Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats. Journal of Pineal Research. 2008;44(2):205-213. DOI: 10.1111/j.1600-079X.2007.00510.x'},{id:"B77",body:'Videnovic A, Noble C, Reid KJ, Peng J, Turek FW, Marconi A, et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurology. 2014;71:463-469. DOI: 10.1001/jamaneurol.2013.6239'},{id:"B78",body:'Pazar A, Kolgazi M, Memisoglu A, Bahadir E, Sirvanci S, Yaman A, et al. The neuroprotective and anti-apoptotic effects of melatonin on hemolytic hyperbilirubinemia-induced oxidative brain damage. Journal of Pineal Research. 2016;60(1):74-83. DOI: 10.1111/jpi.12292'},{id:"B79",body:'Srinivasan V, Cardinali DP, Srinivasan US, Kaur C, Brown GM, Spence D, et al. Therapeutic potential of melatonin and its analogs in Parkinson’s disease: Focus on sleep and neuroprotection. Therapeutic Advances in Neurological Disorders. 2011;4(5):297-317. DOI: 10.1177/1756285611406166'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Alexander Zakharov",address:"zakharov1977@mail.ru",affiliation:'
Department Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
Department Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
'}],corrections:null},book:{id:"8762",type:"book",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",bookSignature:"Marilena Vlachou",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83962-909-9",printIsbn:"978-1-83962-908-2",pdfIsbn:"978-1-83962-910-5",isAvailableForWebshopOrdering:!0,editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"127399",title:"Dr.",name:"Jana",middleName:null,surname:"Murovec",email:"jana.murovec@bf.uni-lj.si",fullName:"Jana Murovec",slug:"jana-murovec",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"25554",title:"Haploids and Doubled Haploids in Plant Breeding",slug:"haploids-and-doubled-haploids-in-plant-breeding",abstract:null,signatures:"Jana Murovec and Borut Bohanec",authors:[{id:"80213",title:"Prof.",name:"Borut",surname:"Bohanec",fullName:"Borut Bohanec",slug:"borut-bohanec",email:"borut.bohanec@bf.uni-lj.si"},{id:"127399",title:"Dr.",name:"Jana",surname:"Murovec",fullName:"Jana Murovec",slug:"jana-murovec",email:"jana.murovec@bf.uni-lj.si"}],book:{id:"880",title:"Plant Breeding",slug:"plant-breeding",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"53763",title:"Dr.",name:"Angelo",surname:"Dewitte",slug:"angelo-dewitte",fullName:"Angelo Dewitte",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"59918",title:"Dr.",name:"Johan",surname:"Van Huylenbroeck",slug:"johan-van-huylenbroeck",fullName:"Johan Van Huylenbroeck",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"71858",title:"Dr.",name:"Jiankang",surname:"Wang",slug:"jiankang-wang",fullName:"Jiankang Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"79388",title:"Prof.",name:"Sven Bode",surname:"Andersen",slug:"sven-bode-andersen",fullName:"Sven Bode Andersen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/79388/images/system/79388.jpg",biography:"Sven Bode Andersen is a Professor of Plant Breeding at the Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark. He received a M.Sc. in Agronomy (Horticulture) in March 1980. In June 1983, he obtained a Ph.D. in Agronomy (Plant Breeding) with the thesis on Haploid production in plant breeding. He became the professor of Plant Breeding in May 2003. His research focuses on the following: Biotechnology for Plant Breeding, Doubled haploid systems, protoplasts, Molecular markers for Diversity analysis and genetic dissection of important traits, Quantitative trait analysis of resistance, quality and yield.",institutionString:null,institution:{name:"University of Copenhagen",institutionURL:null,country:{name:"Denmark"}}},{id:"80213",title:"Prof.",name:"Borut",surname:"Bohanec",slug:"borut-bohanec",fullName:"Borut Bohanec",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ljubljana",institutionURL:null,country:{name:"Slovenia"}}},{id:"90482",title:"Dr.",name:"Arunava",surname:"Pattanayak",slug:"arunava-pattanayak",fullName:"Arunava Pattanayak",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"ICAR Research Complex for NEH Region",institutionURL:null,country:{name:"India"}}},{id:"105070",title:"Dr.",name:"Sukumar",surname:"Saha",slug:"sukumar-saha",fullName:"Sukumar Saha",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Agricultural Research Service",institutionURL:null,country:{name:"United States of America"}}},{id:"112839",title:"Dr.",name:"Siva Prasad",surname:"Kumpatla",slug:"siva-prasad-kumpatla",fullName:"Siva Prasad Kumpatla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dow Agrosciences (United States)",institutionURL:null,country:{name:"United States of America"}}},{id:"120546",title:"Dr.",name:"Katrijn",surname:"Van Laere",slug:"katrijn-van-laere",fullName:"Katrijn Van Laere",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Instituut voor Landbouw en Visserijonderzoek",institutionURL:null,country:{name:"Belgium"}}},{id:"126489",title:"Dr.",name:"Patu",surname:"Khate Zeliang",slug:"patu-khate-zeliang",fullName:"Patu Khate Zeliang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"open-access-funding-funders-list",title:"List of Funders by Country",intro:"
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\n
IMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
Wellcome Trust (Funding available only to Wellcome-funded researchers/grantees)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{mdrv:"www.intechopen.com"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6597},{group:"region",caption:"Middle and South America",value:2,count:5902},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12537},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17560}],offset:12,limit:12,total:132762},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"8"},books:[{type:"book",id:"12073",title:"Solvents",subtitle:null,isOpenForSubmission:!0,hash:"d31c0b4deb8e2005ddefc42a4be8e451",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12073.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12074",title:"Updates on Titanium Dioxide",subtitle:null,isOpenForSubmission:!0,hash:"8642ed95890654474416a163e3236afb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12074.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12075",title:"Arsenic",subtitle:null,isOpenForSubmission:!0,hash:"a1156f4143737baa68f568837f9edc94",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12075.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12076",title:"Ruthenium",subtitle:null,isOpenForSubmission:!0,hash:"08bd1ab70c296e319165eb763b112e00",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12076.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12077",title:"Heavy Metals",subtitle:null,isOpenForSubmission:!0,hash:"bcf87da8936c737e7fdd61cdc825128e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12077.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Heterocycles",subtitle:null,isOpenForSubmission:!0,hash:"fcadb070d3dbdf21157b1290d9880c3e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12080",title:"Density Functional Theory",subtitle:null,isOpenForSubmission:!0,hash:"fcd6287912c74f409babc8937c6d0fd1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12080.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12290",title:"Electrochemiluminescence",subtitle:null,isOpenForSubmission:!0,hash:"7a3bf39f9a3f87b0697d6855ab2d695b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12290.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12293",title:"Cobalt",subtitle:null,isOpenForSubmission:!0,hash:"c841e0833d63ee0f5962a22defe6d0b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12293.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12295",title:"Noble Gases",subtitle:null,isOpenForSubmission:!0,hash:"ef0dbba5426cbb55e8b0150ff3642aae",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12295.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12297",title:"Electrophile",subtitle:null,isOpenForSubmission:!0,hash:"ed99712e2d3a8ea85b8732d969e15ebd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12297.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12299",title:"Benzene",subtitle:null,isOpenForSubmission:!0,hash:"e0fdce171959cc4ddc167e1f658121f3",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12299.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:46},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:14},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:107},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:17},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"285",title:"Design Engineering",slug:"technology-design-engineering",parent:{id:"24",title:"Technology",slug:"technology"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:226,numberOfWosCitations:215,numberOfCrossrefCitations:134,numberOfDimensionsCitations:305,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"285",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8374",title:"New Innovations in Engineering Education and Naval Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4019cba8abf5c1688f512dd73a1e79aa",slug:"new-innovations-in-engineering-education-and-naval-engineering",bookSignature:"Nur Md. Sayeed Hassan and Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/8374.jpg",editedByType:"Edited by",editors:[{id:"143363",title:"Dr.",name:"Nur Md. Sayeed",middleName:null,surname:"Hassan",slug:"nur-md.-sayeed-hassan",fullName:"Nur Md. Sayeed Hassan"}],equalEditorOne:{id:"248645",title:"Dr.",name:"Sérgio",middleName:null,surname:"Lousada",slug:"sergio-lousada",fullName:"Sérgio Lousada",profilePictureURL:"https://mts.intechopen.com/storage/users/248645/images/system/248645.jpg",biography:"Sérgio António Neves Lousada has an international Ph.D. in Civil Engineering (Hydraulics). He teaches Hydraulics, Environment, and Water Resources and Construction at the University of Madeira, Portugal. He has published articles and books and participated in events mainly in the areas of hydraulics, urban planning, and land management. Furthermore, he collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx); VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; CITUR - Madeira - Centre for Tourism Research, Development and Innovation, Madeira, Portugal; and Institute of Research on Territorial Governance and Inter-Organizational Cooperation, Dąbrowa Górnicza, Poland. Moreover, he holds an International master\\'s degree in Ports and Coasts Engineering.",institutionString:"University of Madeira",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"9",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Madeira",institutionURL:null,country:{name:"Portugal"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7249",title:"3D Printing",subtitle:null,isOpenForSubmission:!1,hash:"bd92f056fb3bb4793bf7f07413747568",slug:"3d-printing",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/7249.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1942",title:"Applied Measurement Systems",subtitle:null,isOpenForSubmission:!1,hash:"64893485e869fc18f5520846648ea70c",slug:"applied-measurement-systems",bookSignature:"Md. Zahurul Haq",coverURL:"https://cdn.intechopen.com/books/images_new/1942.jpg",editedByType:"Edited by",editors:[{id:"104292",title:"Prof.",name:"Md. Zahurul",middleName:null,surname:"Haq",slug:"md.-zahurul-haq",fullName:"Md. Zahurul Haq"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"307",title:"Rapid Prototyping Technology",subtitle:"Principles and Functional Requirements",isOpenForSubmission:!1,hash:"aa39f8a56e606bbc2935e87620674425",slug:"rapid-prototyping-technology-principles-and-functional-requirements",bookSignature:"Muhammad Enamul Hoque",coverURL:"https://cdn.intechopen.com/books/images_new/307.jpg",editedByType:"Edited by",editors:[{id:"39279",title:"Prof.",name:"Md Enamul",middleName:"Enamul",surname:"Hoque",slug:"md-enamul-hoque",fullName:"Md Enamul Hoque"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"930",title:"Advanced Applications of Rapid Prototyping Technology in Modern Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3775beff84516a387ab64fe05390fbea",slug:"advanced-applications-of-rapid-prototyping-technology-in-modern-engineering",bookSignature:"Muhammad Enamul Hoque",coverURL:"https://cdn.intechopen.com/books/images_new/930.jpg",editedByType:"Edited by",editors:[{id:"39279",title:"Prof.",name:"Md Enamul",middleName:"Enamul",surname:"Hoque",slug:"md-enamul-hoque",fullName:"Md Enamul Hoque"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"61889",doi:"10.5772/intechopen.78147",title:"Stereolithography",slug:"stereolithography",totalDownloads:2777,totalCrossrefCites:24,totalDimensionsCites:44,abstract:"The stereolithography (SLA) process and its methods are introduced in this chapter. After establishing SLA as pertaining to the high-resolution but also high-cost spectrum of the 3D printing technologies, different classifications of SLA processes are presented. Laser-based SLA and digital light processing (DLP), as well as their specialized techniques such as two-photon polymerization (TPP) or continuous liquid interface production (CLIP) are discussed and analyzed for their advantages and shortcomings. Prerequisites of SLA resins and the most common resin compositions are discussed. Furthermore, printable materials and their applications are briefly reviewed, and insight into commercially available SLA systems is given. Finally, an outlook highlighting challenges within the SLA process and propositions to resolve these are offered.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Christina Schmidleithner and Deepak M. Kalaskar",authors:[{id:"247897",title:"Dr.",name:"Deepak",middleName:null,surname:"Kalaskar",slug:"deepak-kalaskar",fullName:"Deepak Kalaskar"}]},{id:"29364",doi:"10.5772/36302",title:"Planar Microwave Sensors for Complex Permittivity Characterization of Materials and Their Applications",slug:"planar-microwave-sensors-for-complex-permittivity-characterization-of-materials-and-their-applicatio",totalDownloads:4850,totalCrossrefCites:16,totalDimensionsCites:25,abstract:null,book:{id:"1942",slug:"applied-measurement-systems",title:"Applied Measurement Systems",fullTitle:"Applied Measurement Systems"},signatures:"Kashif Saeed, Muhammad F. Shafique, Matthew B. Byrne and Ian C. Hunter",authors:[{id:"107789",title:"Dr.",name:"Kashif",middleName:null,surname:"Saeed",slug:"kashif-saeed",fullName:"Kashif Saeed"},{id:"108133",title:"Dr.",name:"Muhammad",middleName:"Farhan",surname:"Shafique",slug:"muhammad-shafique",fullName:"Muhammad Shafique"},{id:"112179",title:"Dr.",name:"Matthew",middleName:null,surname:"Byrne",slug:"matthew-byrne",fullName:"Matthew Byrne"},{id:"148470",title:"Dr.",name:"Ian C.",middleName:null,surname:"Hunter",slug:"ian-c.-hunter",fullName:"Ian C. Hunter"}]},{id:"20723",doi:"10.5772/24994",title:"Rapid Prototyping of Hybrid, Plastic-Quartz 3D-Chips for Battery-Operated Microplasmas",slug:"rapid-prototyping-of-hybrid-plastic-quartz-3d-chips-for-battery-operated-microplasmas",totalDownloads:2931,totalCrossrefCites:1,totalDimensionsCites:25,abstract:null,book:{id:"307",slug:"rapid-prototyping-technology-principles-and-functional-requirements",title:"Rapid Prototyping Technology",fullTitle:"Rapid Prototyping Technology - Principles and Functional Requirements"},signatures:"Weagant S., Li L. and Karanassios V.",authors:[{id:"60925",title:"Prof.",name:"Vassili",middleName:null,surname:"Karanassios",slug:"vassili-karanassios",fullName:"Vassili Karanassios"},{id:"96647",title:"Mr.",name:"Scott",middleName:null,surname:"Weagant",slug:"scott-weagant",fullName:"Scott Weagant"},{id:"96648",title:"Ms.",name:"Lu",middleName:null,surname:"Li",slug:"lu-li",fullName:"Lu Li"}]},{id:"61731",doi:"10.5772/intechopen.78145",title:"3D Printing of Scaffolds for Tissue Engineering",slug:"3d-printing-of-scaffolds-for-tissue-engineering",totalDownloads:2669,totalCrossrefCites:4,totalDimensionsCites:17,abstract:"Three-dimensional (3D) printing has demonstrated its great potential in producing functional scaffolds for biomedical applications. To facilitate tissue regeneration, scaffolds need to be designed to provide a suitable environment for cell growth, which generally depends on the selection of materials and geometrical features such as internal structures and pore size distribution. The mechanical property match with the original tissue to be repaired is also critical. In this chapter, the specific request of materials and structure for tissue engineering is briefly reviewed, and then an overview of the recent research in 3D printing technologies for tissue engineering will be provided, together with a discussion of possible future directions in this area.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Jingyu Liu and Cheng Yan",authors:[{id:"139494",title:"Prof.",name:"Cheng",middleName:null,surname:"Yan",slug:"cheng-yan",fullName:"Cheng Yan"},{id:"246713",title:"MSc.",name:"Jingyu",middleName:null,surname:"Liu",slug:"jingyu-liu",fullName:"Jingyu Liu"}]},{id:"29365",doi:"10.5772/37195",title:"Basics on Radar Cross Section Reduction Measurements of Simple and Complex Targets Using Microwave Absorbers",slug:"basics-on-radar-cross-section-reduction-measurements-of-simple-and-complex-targets-using-microwave-a",totalDownloads:12500,totalCrossrefCites:10,totalDimensionsCites:14,abstract:null,book:{id:"1942",slug:"applied-measurement-systems",title:"Applied Measurement Systems",fullTitle:"Applied Measurement Systems"},signatures:"Marcelo A. S. Miacci and Mirabel C. Rezende",authors:[{id:"111727",title:"Dr.",name:"Marcelo",middleName:"A. S.",surname:"Miacci",slug:"marcelo-miacci",fullName:"Marcelo Miacci"},{id:"112158",title:"Dr.",name:"Mirabel",middleName:null,surname:"Rezende",slug:"mirabel-rezende",fullName:"Mirabel Rezende"}]}],mostDownloadedChaptersLast30Days:[{id:"72725",title:"Communication Subsystems for Satellite Design",slug:"communication-subsystems-for-satellite-design",totalDownloads:1302,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The objective of this chapter is to provide a comprehensive end-to-end overview of existing communication subsystems residing on both the satellite bus and payloads. These subsystems include command and mission data handling, telemetry and tracking, and the antenna payloads for both command, telemetry and mission data. The function of each subsystem and the relationships to the others will be described in detail. In addition, the recent application of software defined radio (SDR) to advanced satellite communication system design will be looked at with applications to satellite development, and the impacts on how SDR will affect future satellite missions are briefly discussed.",book:{id:"7030",slug:"satellite-systems-design-modeling-simulation-and-analysis",title:"Satellite Systems",fullTitle:"Satellite Systems - Design, Modeling, Simulation and Analysis"},signatures:"Hung H. Nguyen and Peter S. Nguyen",authors:[{id:"316857",title:"Dr.",name:"Hung H.",middleName:null,surname:"Nguyen",slug:"hung-h.-nguyen",fullName:"Hung H. Nguyen"},{id:"316861",title:"Mr.",name:"Peter S.",middleName:null,surname:"Nguyen",slug:"peter-s.-nguyen",fullName:"Peter S. Nguyen"}]},{id:"61731",title:"3D Printing of Scaffolds for Tissue Engineering",slug:"3d-printing-of-scaffolds-for-tissue-engineering",totalDownloads:2670,totalCrossrefCites:4,totalDimensionsCites:17,abstract:"Three-dimensional (3D) printing has demonstrated its great potential in producing functional scaffolds for biomedical applications. To facilitate tissue regeneration, scaffolds need to be designed to provide a suitable environment for cell growth, which generally depends on the selection of materials and geometrical features such as internal structures and pore size distribution. The mechanical property match with the original tissue to be repaired is also critical. In this chapter, the specific request of materials and structure for tissue engineering is briefly reviewed, and then an overview of the recent research in 3D printing technologies for tissue engineering will be provided, together with a discussion of possible future directions in this area.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Jingyu Liu and Cheng Yan",authors:[{id:"139494",title:"Prof.",name:"Cheng",middleName:null,surname:"Yan",slug:"cheng-yan",fullName:"Cheng Yan"},{id:"246713",title:"MSc.",name:"Jingyu",middleName:null,surname:"Liu",slug:"jingyu-liu",fullName:"Jingyu Liu"}]},{id:"63539",title:"The Evolution of 3D Printing in AEC: From Experimental to Consolidated Techniques",slug:"the-evolution-of-3d-printing-in-aec-from-experimental-to-consolidated-techniques",totalDownloads:1722,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"The chapter leads the reader through the historical development of additive manufacturing (AM) techniques until the most recent developments. A tentative taxonomy is added to the historical perspective, in order to better understand the main lines of development and the potential cross-fertilization opportunities. Some case studies are analyzed in order to provide a clearer picture of the practical applications of AM in architecture engineering and construction (AEC), with a particular attention to the use of AM for final products rather than just prototypes. Eventually, some thoughts are shared as to the impact of AM on AEC beyond the mere cost-effectiveness and well into the potential change of paradigms in how architecture can be thought of and further developed embracing the new world of opportunities brought by AM.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Ingrid Paoletti and Lorenzo Ceccon",authors:[{id:"246398",title:"Associate Prof.",name:"Ingrid",middleName:null,surname:"Paoletti",slug:"ingrid-paoletti",fullName:"Ingrid Paoletti"},{id:"261886",title:"MSc.",name:"Lorenzo",middleName:null,surname:"Ceccon",slug:"lorenzo-ceccon",fullName:"Lorenzo Ceccon"}]},{id:"61889",title:"Stereolithography",slug:"stereolithography",totalDownloads:2780,totalCrossrefCites:25,totalDimensionsCites:44,abstract:"The stereolithography (SLA) process and its methods are introduced in this chapter. After establishing SLA as pertaining to the high-resolution but also high-cost spectrum of the 3D printing technologies, different classifications of SLA processes are presented. Laser-based SLA and digital light processing (DLP), as well as their specialized techniques such as two-photon polymerization (TPP) or continuous liquid interface production (CLIP) are discussed and analyzed for their advantages and shortcomings. Prerequisites of SLA resins and the most common resin compositions are discussed. Furthermore, printable materials and their applications are briefly reviewed, and insight into commercially available SLA systems is given. Finally, an outlook highlighting challenges within the SLA process and propositions to resolve these are offered.",book:{id:"7249",slug:"3d-printing",title:"3D Printing",fullTitle:"3D Printing"},signatures:"Christina Schmidleithner and Deepak M. Kalaskar",authors:[{id:"247897",title:"Dr.",name:"Deepak",middleName:null,surname:"Kalaskar",slug:"deepak-kalaskar",fullName:"Deepak Kalaskar"}]},{id:"75110",title:"Compression of High-Resolution Satellite Images Using Optical Image Processing",slug:"compression-of-high-resolution-satellite-images-using-optical-image-processing",totalDownloads:508,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter presents a novel method for compressing satellite imagery using phase grating to facilitate the optimization of storage space and bandwidth in satellite communication. In this research work, each Satellite image is first modulated with high grating frequency in a fixed orientation. Due to this modulation, three spots (spectrum) have been generated. From these three spots, by applying Inverse Fourier Transform in any one band, we can recover the image. Out of these three spots, one is center spectrum spot and other spots represent two sidebands. Care should be taken during the spot selection is to avoid aliasing effect. At the receiving end, to recover image we use only one spectrum. We have proved that size of the extracted image is less than the original image. In this way, compression of satellite image has been performed. To measure quality of the output images, PSNR value has been calculated and compared this value with previous techniques. As high-resolution satellite image contains a lot of information, therefore to get detail information from extracted image, compression ratio should be as minimum as possible.",book:{id:"7030",slug:"satellite-systems-design-modeling-simulation-and-analysis",title:"Satellite Systems",fullTitle:"Satellite Systems - Design, Modeling, Simulation and Analysis"},signatures:"Anirban Patra, Arijit Saha, Debasish Chakraborty and Kallol Bhattacharya",authors:[{id:"307075",title:"Dr.",name:"Debasish",middleName:null,surname:"Chakraborty",slug:"debasish-chakraborty",fullName:"Debasish Chakraborty"},{id:"319415",title:"Mr.",name:"Anirban",middleName:null,surname:"Patra",slug:"anirban-patra",fullName:"Anirban Patra"},{id:"320110",title:"Dr.",name:"Arijit",middleName:null,surname:"Saha",slug:"arijit-saha",fullName:"Arijit Saha"},{id:"320111",title:"Dr.",name:"Kallol",middleName:null,surname:"Bhattacharya",slug:"kallol-bhattacharya",fullName:"Kallol Bhattacharya"}]}],onlineFirstChaptersFilter:{topicId:"285",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}}]}},subseries:{item:{id:"5",type:"subseries",title:"Parasitic Infectious Diseases",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11401,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188881",title:"Dr.",name:"Fernando José",middleName:null,surname:"Andrade-Narváez",slug:"fernando-jose-andrade-narvaez",fullName:"Fernando José Andrade-Narváez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRIV7QAO/Profile_Picture_1628834308121",institutionString:null,institution:{name:"Autonomous University of Yucatán",institutionURL:null,country:{name:"Mexico"}}},{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRaBqQAK/Profile_Picture_1644331884726",institutionString:"CSIR - Institute of Microbial Technology, India",institution:null},{id:"336849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Izurieta",slug:"ricardo-izurieta",fullName:"Ricardo Izurieta",profilePictureURL:"https://mts.intechopen.com/storage/users/293169/images/system/293169.png",institutionString:null,institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/127399",hash:"",query:{},params:{id:"127399"},fullPath:"/profiles/127399",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()