Developing the stimuli-responsive biomaterials with tailor properties represents an important goal of the tissue-engineering community. Such biomaterial promises to become the conductive polymers (CPs), as a novel generation of organic materials that have both electrical and optical properties similar to those of metals and inorganic semiconductors but which also exhibit the attractive properties associated with conventional polymers, that is, easy synthesis and flexibility in processing. The fact that several tissues are responsive to electrical fields and stimuli has made conductive polymers attractive for various biological and medical applications. In this context, the chapter provides information on the basic properties of the conductive polymers and how these polymers can be optimized to generate specific properties for biomedical applications. The synthesis routes of novel materials and specific design techniques, as well as the mechanisms by which electrical conduction affects cells/tissues, are examined, and the significant impact of the conductive polymers in the biomedical field, that is, biosensors, tissue engineering, and neural probes, is demonstrated.
Part of the book: Conducting Polymers