\r\n\tSome of them are potential hazards caused by novel (bio)technologies, such as nanoparticles or process-related toxicants. Others are well-known hazards that climate change and new trends in food consumption have now moved under the spotlight. Some are due to the deliberate adulteration of food for economic reasons, that is strongly affecting the global market.
\r\n\tFood scientists are strongly involved in tackling this global challenge, supported by novel technologies and ICT-based tools. On one hand, innovative analytical approaches, mainly based on omics science and big data, may offer a great support for hazard characterization and risk assessment. On the other hand, early warning tools are strongly needed to efficiently support risk management and avoid food losses.
\r\n\tAlthough many contaminants are regulated worldwide and routine control plans ensure the compliance of food before entering our plate, scientists are now focusing their research not only on single compounds, but mainly on a cocktail of toxicants thanks to biomonitoring and imaging techniques. This change in the approach will lead to a new design of risk assessment within few years.
\r\n\tBesides traditional players, like scientists and policy-makers, also agro-food companies are investing efforts and resources in the identification and assessment of emerging risks, to meet consumer’s demand of safer food and prevent misleading communication.
\r\n\tIt is clear that the food safety scenario is rapidly changing, driven by innovation and big data. This book intends to provide the reader with a comprehensive overview on the methodological advances the scientific community has brought about to face emerging risks and new trends.The main emerging risks will be covered, and methodological improvements will be outlined. Strategies in management and communication will be described. New market trends and consumers’ behavior leading to a change in the future scenario, will be discussed.
Osteonecrosis as term represents the death of bone tissue in the body and causes of necrosis can be different. If it is associated with a reduced or complete absence of blood supply, this process is called avascular necrosis of the bone and is most commonly associated in the literature with the femur bone [1].
Radiotherapy (radiation) can also adversely affect bone tissue due to compromised angiogenesis resulting in avascular necrosis with hypoxic, hypocellular, and hypovascular lesions, termed osteoradionecrosis [1]. In 2003, when 36 cancer patients receiving treatment with pamidronate or zoledronate developed a painful bone exposure of the mandible, of the maxilla or both, which was unresponsive to medical and surgical treatment, a new type of osteonecrosis of the jawbone associated with bisphosphonate was called osteonecrosis of the jaw (BRONJ) [2]. Over time, precisely in 2010, new drugs have been identified, such as denosumab for causing osteonecrosis, that do not belong to the group of bisphosphonates so the name has changed to medication-related osteonecrosis of the jaw (MRONJ) [3]. MRONJ is an uncommon condition that can occur after exposure to medication to prevent bone complications, such as bisphosphonates or denosumab or other agents as angiogenesis inhibitors [4]. In most cases it manifests as exposed bone in the maxillofacial region, although non-exposed MRONJ has also been recognized [5, 6, 7, 8].
The purpose of this chapter was to describe medication-related osteonecrosis of the jaw, the theory of its development, clinical picture, classification, epidemiology and modalities of treatment, including biostimulative and antimicrobial photodynamic therapy, of medication-related osteonecrosis of the jaw.
Bone remodeling is a physiological process that lasts lifetime and is characterized by the interaction of bone-forming cells - osteoblasts and bone-resorbing cells - osteoclasts. The remodeling process begins with the activation of osteoclasts (multinuclear cells of the monocyte–macrophage system) which are located on the bone surface and with the formation of acidic medium, they dissolve mineralized bone with the breakdown of proteins of the remaining bone matrix. This resorption process takes between two and four weeks. After the resorption process, osteoblasts replace osteoclasts (cells of mesenchymal origin) which synthesize osteoid and organic matrix over a period of two to four months, as a prerequisite for bone mineralization or calcium hydroxyapatite mineral investment [2]. Finally, when osteoblasts are implanted in the bone matrix, they become osteocytes [3]. The presence of osteocytes is extremely important for bone vitality because they can recognize and respond to a variety of mechanical stimuli by regulating the differentiation of osteoblasts and osteoclasts. The remodeling process is regulated by various mechanisms, of which the most important is the RANK/RANKL/Osteoprotergin system. Osteoblasts secrete osteoprotergin, which prevents osteoclast differentiation from precursor cells and thus inhibits resorption. On the other hand, RANKL (Receptor Activator of NF-kb Ligand) along with M-CSF (Macrophage Colony-Stimulating Factor) stimulates osteoclast differentiation and maturation from precursor cells [4]. If this physiological process is disturbed, and this is especially important with increased expression of RANKL, resorption occurs. RANKL is produced by osteoblasts and activated T lymphocytes.
During remodeling and healing of bone fractures, osteoblasts activate various bone morphogenetic proteins that stimulate the production of VEGF (Vascular Endothelial Growth Factor) factor, which is necessary for the formation of new blood vessels, or angiogenesis [5].
The process of physiological remodeling can be disrupted in a variety of diseases and conditions associated with hyperactivated osteoclasts that have a high potential for bone destruction, which can result in hypercalcemia, decreased bone density, and consequent spontaneous fractures. The most common metabolic disease of the skeletal system is osteoporosis which is characterized by osteoclast hyperactivity with loss of bone quality. Malignant diseases of the breast, prostate, lungs, kidneys and thyroid often metastasize to bone. Complications of bone metastases include bone pain, fractures, hypercalcemia, and cachexia. Once formed in the bones, malignant cells stimulate bone resorption where various growth factors, released during bone destruction from the bone matrix, serve them for further growth and proliferation. In addition to growth factors, VEGF factor is also important for later tumor growth. Multiple myeloma, a malignant hematological disease, which is manifested by the presence of lytic lesions in the bone, has a similar mechanism of bone destruction. In the treatment of these diseases, antiresorptive drugs that directly or indirectly inhibit osteoclasts and antiangiogenic drugs that inhibit VEGF are used.
There are two groups of drugs that may cause medication-related osteonecrosis of the jaw. The first group includes antiresorptive drugs, specifically bisphosphonates and denosumabs, and the second group consists of antiangiogenic drugs that include bevacizumab (Avastin) which is humanized monoclonal antibody and also sunitinib (Sutent) which acts as a thyroxine kinase inhibitor [9, 10, 11, 12, 13].
The first type of drugs is antiresorptive drugs, which include bisphosphonates and denosumabs. They have a similar mechanism of action and a similar potency of causing osteonecrosis.
Bisphosphonates are medications that act as analogs of pyrophosphate, which is a natural inhibitor of bone metabolism. The mechanism of their action has not yet been fully elucidated, but they are inhibitors of osteoclast activity and inductors of their apoptosis, reducing the process of bone remodeling. Bisphosphonates are incorporated into the hydroxyapatite bone matrix, at the site of the OH group of bisphosphonates, using the P-C-P compound, which alters bone microstructure by slowing bone growth and reducing the amount of mineral dissolution in bone. Unlike osteoclasts, osteoblastic activity does not decrease, but remains preserved, which results in an increase in bone mass. There are currently three generations of bisphosphonates on the market. The first generation of nitrogen-free bisphosphonates has the least potential for jaw osteonecrosis. The main side effect of bisphosphonate therapy is osteonecrosis of the jaw [2]. Other side effects that may occur in bisphosphonate therapy are: gastrointestinal disorders (nausea and vomiting), atypical femoral fractures, esophageal inflammation with consequent mucosal erosions, secondary hyperparathyroidism, atrial fibrillation, eye outbursts, muscle pain and others [14, 15, 16, 17]. Bisphosphonates are excreted by the kidneys, after accumulation at sites of active remodeling (both jaws). Their characteristic is also rapid deposition in the bones and their long retention in the same (the half-life of zoledronic acid is 11.2 years in the bones) [18]. There are two types of bisphosphonate administration, oral and intravenously.
Denosumab are humanized monoclonal antibodies directed to a RANK ligand (modeling regulator) that inhibit osteoclasts and reduce bone resorption [25]. It is used for treatment of osteoporosis in which there is an increased risk of bone fractures, in osteoporosis where there is bone loss due to the use of various drugs and in the treatment of malignant bone lesions diseases. Denosumab therapy is a better option than bisphosphonate therapy, especially with renal dysfunction. The potency of denosumabs to induce osteonecrosis alone has been shown to be approximately similar to the potency of zoledronic acid which is the most potent bisphosphonate [26, 27].
Denosumabs are administered subcutaneously and, unlike bisphosphonates, do not accumulate in bone, so that their effect on bone remodeling is reversible and lasts approximately six months [28].
Antiangiogenic medications prevent the formation of new blood vessels binding to various signaling molecules that inhibit angiogenesis.
Bevacizumab is humanized monoclonal antibody that binds selectively to a protein called vascular endothelial growth factor (VEGF) in the blood and lymph vessels. It is used in the treatment of malignant diseases of the kidneys, gastrointestinal tract, lungs and glioblastoma [9, 10].
Sunitinib is used in the treatment of gastrointestinal tumors, metastatic renal cell carcinomas cells and neuroendocrine tumors of the pancreas. It works by inhibiting thyroxine kinase function. In combination with chemotherapy or bisphosphonates, they have high risk of inducing osteonecrosis [29].
The exact mechanisms of development MRONJ are not todays completely resolved. It is thought that its development is a result from combination of medication interactions, microbiological contamination of the area and local tissue trauma [30]. In the literature there are few hypotheses of the development of this specific disease.
Antiresorptive medications inhibit osteoclast function and differentiation, leading to their apoptosis, and this results in reduced bone remodeling [31]. In addition to acting on osteoclasts, antiresorptive medications also reduce the activity of osteoblasts, keratinocytes and fibroblasts [32, 33]. Of all the bones, the jaws are the most susceptible to remodeling, so osteonecrosis specifically occurs on them.
In the pathogenesis of medication-related osteonecrosis, inflammation plays a significant role development. Advanced periodontal disease and tooth extraction are one of the main triggers for occurrence of necrosis. Pathohistological analysis of bone parts, which are affected with osteonecrosis, decontamination with various bacteria is present, especially
Inhibition of angiogenesis means inhibition of growth, migration and differentiation of new endothelial cells in forming blood vessels. Medications that inhibit angiogenesis, due to ischemia or lack of blood supply to the bone secondary create osteonecrosis [37].
One of theory of medication-related osteonecrosis is that drugs directly negatively affect fibroblasts producing toxicity of the oral mucosa. In vitro studies, increased apoptosis has been reported, especially in oral epithelial cells, after application bisphosphonates. Bone exposure and impaired healing caused by tissue toxicity play an important role in the development of osteonecrosis [38].
Antiresorptive drugs together with other immunosuppressants such as corticosteroids, chemotherapy or methotrexate increases the possibility of osteonecrosis [3]. Ruggiero et al. [3] stated that in the beginning of investigating the influence of bisphosphonates on wound healing in animal models, to induce osteonecrosis, steroids were combined with bisphosphonates. Inflammation, delayed healing, mucosal ulceration, exposed bone, fistula and histologic necrosis are well documented symptoms in different animal species and in humans exposed to surgical procedures after application chemotherapy with antiresorptive drugs. Methotrexat is standard or first line drug for therapy of rheumatoid arthritis. It can be an iatrogenic cause of lymphoproliferative disorders in immunodeficient or immunosuppressed patients, resulting with osteonecrosis of the jaw in some cases [35].
Depending on the pH value, bisphosphonates can bind to hydroxyapatite in the bone or leave it and activate. At neutral pH the bisphosphonates are bound to hydroxyapatite and at reduced pH values bisphosphonates are released and activated from it [37, 38]. Bone resorption mechanism takes place in the Howship’s lacunae. In situations when the pH remains low, potentially leads to toxic levels of bisphosphonates which have a negative effect on osteoclasts and other cells as well. By acting on different types of cells, there is suppression of remodeling, suppression of angiogenesis, increasing the toxicity of the oral mucosa, which contributes creating an infection with developing the osteonecrosis [38].
The incidence of drug osteonecrosis depends on a variety of factors.
The way of medication administration is an important factor in assessing the risk of developing osteonecrosis. Bisphosphonates taken orally have been shown to be more benign than bisphosphonates administered intravenously [3, 39]. The prevalence of medication related osteonecrosis in oral bisphosphonates is much lower (ranging from 0.1% to 0.05%) than the prevalence of intravenous bisphosphonates and denosumab (ranging from 2% to 10). Prevalence increases after invasive surgical procedure and also increases with the duration of therapy. The largest prevalence of medication-related osteonecrosis has been described in patients with multiple myeloma [22, 40].
An important factor in the development of medication related osteonecrosis is the duration of the antiresorptive therapy. The literature states that after each year of therapy, the risk of medication osteonecrosis doubles [41].
Medications that cause MRONJ can be prescribed every day, once weekly, once a month, once every three months or once every six months. Incidence of osteonecrosis increases with a higher dose [42, 43, 44, 45].
Almost every antiresorptive medication shows its potency in causing osteonecrosis [42].
Zoledronic acid and denosumab have similar potency of inducing osteonecrosis. They are different in the time of accumulation in the body. Bisphosphonates accumulate in bones, where they persist for a long time, their half-life last up to 11.2 years, while unlike bisphosphonates, denosumabs do not accumulate in the bones and are eliminated from the body after only 6 months [28, 46].
Dental procedures that are invasive, such as dentoalveolar surgery, increase the risk of MRONJ up to seven times [3]. From local factors dentoalveolar surgery is considered the most risky factor for the development of medication-related osteonecrosis with an incidence of 60 to 65% [31, 47]. In other dental procedures such as endodontic or periodontal, the incidence of medication-related osteonecrosis is less. Dental diseases that the patient has already overcome, such as periodontitis, periimplantitis, various inflammatory conditions of the jaw and poor oral hygiene are among the additional risk factors conducive to the development of MRONJ [47, 48].
It is known that medication related osteonecrosis occurs more often in the lower jaw in 73% of cases relative to the upper jaw, where it occurs in 22.5% of cases, while the incidence of osteonecrosis in both jaws simultaneously only in 4.5% of cases [3]. It also turned out that MRONJ more often develops in places with the thinnest layer of mucosa, and these are the lingual side of the lower jaw and the various exostoses and toruses found in the oral cavity [3, 47]. Wearing a prosthesis is also doubling the risk of developing MRONJ.
A significant risk factor for the development of MRONJ is the patient’s basic disease [49]. An increased risk of medication-related osteonecrosis has been shown in women, mostly due to osteoporosis or breast cancer. A risk of MRONJ significantly increases if, in addition to antiresorptive therapy are added additional drugs that act immunosuppressively, such as chemotherapeutics or corticosteroids. Studies show that MRONJ occurs in 40% of cases in patients who have been or are still on chemotherapy, in 25% cases of patients on corticosteroid therapy and in 10% of patients with diabetes [50, 51]. Anemia, systemic lupus, hypothyroidism, renal failure, rheumatoid arthritis, hypertension and smoking are also conditions that contribute to an increased risk of osteonecrosis [52, 53].
The risk of developing osteonecrosis is also associated with gene predisposition. Some studies have shown an association between the FDPS (farnesyl diphosphate synthase gene) which encodes a key enzyme of the mevalonate pathway and the development of osteonecrosis of the jaw. That is why are tested rs2297480, a SNP region on the FDPS gene. Studies have been conducted in patients who have suffered from multiple myeloma or metastatic carcinomas and have been treated with zoledronate acid [54].
Bone markers have been shown to be useful for assessing the risk of developing osteonecrosis [47]. C-terminal telopeptide (CTX) and N-terminal telopeptide (NTX) are demonstrated as the two main bone markers that measure osteoclast activity, i.e., degradation of osteoclasts and osteoblasts [47].
Before starting antiresorptive therapy, it is important to make an initial dental examination with a detailed history and radiologically and clinically evaluate the patient’s condition. An orthopantomogram is recommended of the radiological techniques. The goal of preventive screening is to remove any potential conditions that could lead to the formation of osteonecrosis during therapy. It is necessary to remove all incurable teeth or teeth with a poor prognosis, cure acute or chronic infections, cysts, tumors and other pathological conditions of the jaw. If the patient has a prosthesis, it is necessary to examine the sharp edges or possible painful areas (“blistering”) that may adversely affect the mucosa. If teeth need to be extracted, it is advisable to wait a minimum of three weeks to achieve acceptable soft tissue healing, or preferably four to six weeks to achieve sufficient bone healing before initiating antiresorptive therapy [3].
Patients need to be educated about the risk of developing osteonecrosis, motivate them to strengthen oral hygiene and more frequent control (at least four times a year).
Depending on the duration and manner of taking antiresorptive drugs, it is necessary to make a detailed treatment plan that includes a consultation with a competent doctor for possible withdrawal of therapy.
Invasive surgical procedures (extraction, endodontic surgery) are reported as an increased risk of creating necrosis itself. In high-risk patients (high-potency drugs, adjunctive therapy), for the development of osteonecrosis, tooth extraction is not recommended and instead of extraction, endodontic treatment is recommended with root smoothing and cement coating. However, if invasive surgery is required as indicated for severe periodontitis, movable teeth, root fractures, then it is advisable to use the recommended guidelines [3].
Oral bisphosphonates.
If the patient is on therapy for less than four years and is not on adjunctive therapy (corticosteroids or angiogenic drugs), antiresorptive therapy does not need to be removed.
If the patient is on therapy for less than four years and prescribes adjunctive therapy (corticosteroids or angiogenic drugs) or is on therapy for more than four years or without adjunctive therapy, then consultation with a physician is required to discontinue bisphosphonate therapy at least two months before surgical treatment and continuation of bisphosphonate therapy when adequate bone healing is achieved (usually three months after the surgical treatment) [3].
Denosumabs.
Denosumabs are most commonly taken subcutaneously every six months. If invasive surgery is required, it is recommended to do it three weeks before the next application of the drug itself. It should be in mind that denosumabs are extremely potent drugs for the formation of osteonecrosis, but they, unlike bisphosphonates, are eliminated from the tissues after six months [3].
Parenteral bisphosphonates.
The previous recommendation was to discontinue therapy six months before the procedure and three months after, but this is especially difficult in malignant patients (due to the severity of the underlying disease) and discontinuation of therapy has not been scientifically proven to reduce the risk of osteonecrosis. It is recommended that the patient be referred to a specialist institution for the most at-risk group. Poor soft tissue healing should be in mind in patients receiving chemotherapy, especially three to four weeks after chemotherapy when mucositis of the oral mucosa is most common [3].
To diagnose medication related osteonecrosis of the jaws the following criteria must be filled:
Current or previous therapy with antiresorptive or antiangiogenic medications;
Exposed bone or appearance of a fistula in the jaw (intraoral or extraoral) that persists longer from eight weeks;
The patient is not irradiated and has no proven metastasis in the jaw bones [3, 55].
Medication-related osteonecrosis significantly impairs the quality of life of the patient and represents problems with speech, chewing, swallowing, feeding, often there is pain in the swollen mucosa, as well as chronic sinusitis [3]. In almost 94% of cases of medication-related osteonecrosis, exposed bone is present [56]. It is also the main feature of osteonecrosis (Figure 1). Variations can be different, from the small exposed edges around the empty alveoli all the way to complete involvement of one or both jaws [57]. We often find next to the exposed bone and signs of inflammation of the surrounding soft tissues that present as swelling that may or may not be purulent. The most lesions are asymptomatic, and when the patient develops pain, we often find signs of acute inflammation in the surrounding tissue. In two-thirds of cases, medication-related osteonecrosis is found in the lower jaw [58]. The reason for this is a thinner mucosa than in the upper jaw and poorer blood supply to the lower jaw. Patients suffering from malignant diseases are most predisposed to MRONJ so it is very important to estimate whether the symptoms of progression are consequences osteonecrosis itself or are symptoms of secondaryism. After removal of the necrotic part of the bone, it is recommended to send materials for pathohistological analysis to determine the persistence of necrosis or some other lesions.
Clinical appearance of MRONJ-exposed bone (Zometa).
The course of the disease itself can vary. Lesions can be limited and at dormancy stage or can spread to surrounding structures. MRONJ can spread all the way to the mandibular canal or maxillary sinus. In such cases, there are symptoms such as numbness, sinus infection and even the formation of oroantral communication. By spreading necrotic lesions it can also lead to pathological fractures of the jaw, which are serious, therapeutic and functional problems. Pathological fractures (Figure 2) are not common, they occur in 3% of patients who are treated from MRONJ [3].
Spontaneous bilateral mandibular fracture (Aredia).
The involvement of the region by medication-related osteonecrosis can be assessed by radiographic analysis. This type of imaging is also useful in monitoring the disease and in diagnosing complications that occur in osteonecrosis such as fractures and sinusitis. By radiological analysis we can detect different stages of the disease and even the zero stage. Two-dimensional panoramic images (Figure 3) are recommended as an initial radiographic technique that give an excellent overview of the bones, teeth and the surrounding structure. Sclerosis found in the lamina dura of the alveolar ridge, after radiological examination, is the most common radiological change at risk patients. We can also find others radiological changes that are not so common, namely: sclerosis of the marginal parts of the jaw (most commonly in the mandible), narrowing of the mandibular canal, difficult or complete absence of healing of postextraction alveoli, radiolucent regions around the bone corresponding to osteolysis and necrotic bone sequesters that occur in the later stages of medication-related osteonecrosis [59, 60, 61]. More precisely, the lesion can be represented by one of the three-dimensional display techniques such as computed tomography or cone-beam computed tomography. In the CBCT scan (Figure 4) we can get more precise data on the localization and on the progression of the disease and useful data on the surrounding bone structures. At early diagnosis of MRONJ, magnetic resonance (MRI), single-photon emission computed tomography (SPECT) and positron emission tomography with computed tomography (PET/CT) were also proved as an excellent diagnostic tool [59, 62, 63, 64, 65, 66, 67].
MRONJ in a patient with multiple myeloma and treated with zoledronic acid (Zometa).
CBCT scan (of same patient as in
The disease, according to the clinical picture and the appearance of symptoms of osteonecrosis, is classified into four stages [3].
This stage of disease includes patients who have not clinically developed osteonecrosis but have nonspecific symptoms or radiological signs that may be associated with therapy. Symptoms associated with stage zero are: unexplained odontalgia, dull pain of lower jaw extending toward the temporomandibular joint, sinus pain that may be associated with inflammation and narrowing of the bone wall toward the sinus [3]. Clinical findings that may indicate stage zero are: unexplained tooth loss unrelated to chronic periodontal disease, periapical/periodontal fistula unrelated to pulp necrosis or caries, unexplained gingival swelling. Radiological signs are: loss of alveolar bone or resorption not related to chronic periodontitis, changes in the composition of the trabeculae, difficult (delayed) wound healing after tooth extraction, sclerosing regions of the alveolar part (thickening of the lamina dura, or reduction of the space belonging to the periodontal ligament) or surrounding part of the bone [66, 67, 68].
Zero-stage therapy is symptomatic and conservative, aimed at remediation of predisposing conditions that can cause osteonecrosis (remediation of caries, periodontal diseases, other pathological conditions, inadequate dentures). It is also necessary to exclude other diseases such as fibroseal lesions, chronic sclerosing osteomyelitis and others.
Patients need to be educated about the disease, about adequate oral hygiene and encouraged to have more frequent check-ups (at least every two months).
Stage one of the disease describes clinically exposed necrotic bone or the appearance of a fistula that forms from the bone, however patients have no symptoms and no signs of acute infection. The time required for proper diagnosis of the first stage of disease is eight weeks from appearance of exposed bone or fistula [3].
First-stage therapy is primarily aimed at monitoring the lesion. If necrotic bone sequesters or sharp bone margins occur, they should be removed. Monitoring the condition of the surrounding mucosa is extremely important for further prognosis of the disease.
It is also necessary to educate and motivate patients for frequent checkups.
Stage two describes clinically exposed necrotic bone or the appearance of a fistula that forms from bone with signs of acute infection accompanied by pain [3].
Stage two therapy is initially aimed at repairing the inflammation and antibiotic therapy is often attributed to it in combination with antimicrobial washes (most commonly chlorhexidine). Necrotic bone is often contaminated with bacteria to form biofilms that may be resistant to antibiotic therapy. After repairing the inflammation, it is necessary to remove the necrotic part of the bone and the inflamed mucosa.
Stage three describes clinically exposed necrotic bone or the appearance of a fistula that forms from bone with signs of acute infection accompanied by pain and at least one of these signs: spreading necrosis outside the dental alveolus (lower edge and ascending part of mandible, maxillary sinus, toward the cheekbone), the appearance of extraoral fistula, osteolysis of the lower border of the lower jaw and the bottom of the maxillary sinus with the appearance of oroantral communication and the appearance of pathological fractures [3].
Third-stage therapy focuses on palliative therapy that includes debridement or resection of the lesion in combination with antibiotic therapy to eliminate acute infection and pain. Therapy directly depends on the health condition of the patient. If larger resections are performed, reconstruction is performed by different reconstructive methods (fibula graft) with or without obturator.
There is currently no gold standard or clearly defined treatment protocol for the disease itself.
If osteonecrosis of the jaw occurs, it is recommended that the patient be referred to an oral or maxillofacial surgery specialist for further treatment.
The goals of therapy are aimed at eliminating inflammation and pain by preventing or slowing the progression of the disease. Before treatment, it is necessary to take a detailed medical and dental history and consult a doctor about the possible removal of the drug. Treatment depends on the degree of the disease and is initially focused on antibiotic therapy in combination with antimicrobial therapy and analgesics. Surgical techniques for removing the necrotic part of the bone include sequestration, ridge modeling, resection of the jaw with various reconstructive methods [3].
American Association of Oral and Maxillofacial Surgeons (AAOMS) recommends starting conservative therapy before surgery [3]. Conservative therapy serves to control the disease itself and is achieved by antibiotic therapy and chlorhexidine rinsing. They believe that elective surgery can lead to further disease progression. If the disease progresses then surgery needs to remove the necrotic lesion. On the other hand, European guidelines recommend the initial surgical removal of the necrotic part of the bone regardless of the degree of the disease for several reasons: the necrotic part of the bone cannot be revitalized and it is the entrance door for colonization of bacteria and fungi [69, 70, 71]. Histological processing is recommended to demonstrate necrosis and differential diagnosis in the form of bone metastases, osteomyelitis (inflammatory bone condition) or osteoradionecrosis (radiation-related ischemic bone necrosis) [72].
Surgical procedures have been scientifically proven to perform better compared to a conservative approach [73, 74, 75, 76]. Conservative treatment consists of more frequent follow-up examinations (once or twice a week) for months, which is a burden for patients. It should be in mind that frequent check-ups are difficult for oncology patients.
The success of the therapy is achieved when the necrotic part of the bone is removed and when the mucosal integrity of the tissue is established. Treatment of MRONJ should be divided into bone and soft tissue repair. After removal of the necrotic part of the bone or tooth extraction, it is necessary to keep in mind the smoothing or modeling of sharp sclerotic bone edges of the wound because they remodel very slowly and can potentiate the development of necrosis (Figure 5). After removal of the necrotic part, it is necessary to process the soft tissue. The aim is to achieve optimal marginal closure of the wound in the form of preventing the penetration of microorganisms, i.e., contamination of the surrounding bone. Mucosal integrity is achieved by primary suturing of the wound without tension. Some surgeons recommend double covering the exposed portion of the bone with a muscle flap (
Surgical treatment- modeling of sharp sclerotic bone edges.
The necrotic portion of the bone relative to the surrounding healthy bone tissue may be clearly limited (sequestration formation) or may be diffusely incorporated into healthy bone tissue. Clearly demarcated sequesters are easily removed during surgery, while diffuse parts are difficult to remove due to the unclear boundary of necrotic from vital bone tissue [80, 81]. Bone bleeding was previously thought to be a sign of vitality (which makes it easier for surgeons to work) however, this has proven to be wrong. For the treatment of diffuse lesions, the use of fluorescence in combination with tetracycline is recommended [82, 83].
There are various additional methods of treatment, in addition to surgical treatment, that promote healing of the lesion. For this purpose oxygen therapy (ozone, hyperbaric chamber), hormone therapy (parathyroid hormone), growth factor (Figure 6) therapy (PRP, PRF, PRGF, BMP), mesenchymal stem cell therapy and a combination of pantophilin and tocopherol [84, 85, 86, 87, 88] are used.
Augmentation using autologous growth factors; PRGF technique, F2 and F1 phase.
Vescovi et al. [89] in 2006 described the application of low-level-laser therapy (LLLT) as possible treatment of osteonecrosis of the jaw. The effect of lasers is classified in two categories, regarding its mW range: biostimulation (LLLT) and photodynamic therapy (PDT). Main difference between this two types is that in biostimulation therapy (LLLT) the laser acts directly on the tissue and aims to support tissue healing, while in photodynamic therapy (PDT) it acts on chemical medium (photosensitizer) (Figure 7) which induces cell (e.g. bacteria) and tissue damage as a chemical effect [90].
Application of chemical medium (photosensitizer)- toluidine blue.
LLLT has from clinical point of view become adjuvant medical tool for enhancing wound-healing process, so some clinical studies reported laser-induced stimulation especially of soft tissue healing such as ulcers and postoperative wound dehiscences [91, 92]. Stein et al. [93]. in their
Photodynamic therapy (PDT) is being increasingly used in the management of MRONJ in combination with other therapeutic choices [90].
In the beginning photodynamic therapy (PDT) was used particularly to treat cancer and several studies have shown its antimicrobial potency [95, 96, 97, 98]. Analyzing the effects of PDT on osteoblasts growth, study by Zancanela et al. [99] showed that PDT results in biostimulation of osteoblastic cell cultures or a cytotoxic effect depends of the applied dose. PDT has well documented clinical impact as adjuvant local treatment of ulcers and infected wounds, and potential indications for therapy of periodontitis and peri-implantitis, but treatment of MRONJ still in phase of collecting clinical results [100, 101, 102, 103, 104, 105]. Treatment concept of MRONJ with PDT describes its use for symptomatic treatment in stage 0, preoperatively to reduce bacterial load and in cases with healing deficiencies, while in stages 1, 2 and 3 it is used after surgical treatment. Also it may be used as adjuvant conservative intervention for palliative therapy of compromised patients or in cases to avoid progression of disease when patients refuse surgery.
While application of LLLT for therapy of MRONJ has been described in numerous studies, there are few studies mainly focused on impact of photodynamic therapy of preventing occurrence of MRONJ. Vescovi et al. [89] used Nd:YAG laser biostimulation in addition to medical and surgical therapy and demonstrate a better healing tendency due to bony ablation, bactericidal and detoxification effect [106, 107]. Da Guarda et al. [108] reported a case of successful MRONJ treatment with the GaAIAs diode laser in combination with bone curettage. Summarizing the literature, use of LLLT is beneficial for treatment of MRONJ, although till today there are no large studies that proves significant improvement.
One of promoting factor in mechanism of MRONJ is presence of microflora. Species such as
The most used PDT system is one with mobile diode laser and dye (HELBO) with methylene blue (MB) (Figure 8). It has shown very promising results during surgical procedures or as adjuvant therapy in cases of postoperative wound dehiscences in patients with MRONJ. Photosensitizers’s antimicrobial activity is mediated by singlet oxygen, which has high chemical reactivity and results with a direct effect on extracellular molecules. The polysaccharides present in extracellular matrix of a bacterial biofilm are sensitive to photodamage, so breaking biofilms can interrupt colonization and prevent antibiotic resistance [111].
Antimicrobial photodynamic therapy using low-power diode laser (aPDT mode, LaserHF, HagernnnnnWerken).
Although is surgical treatment first option to deal with MRONJ, appliance of photodynamic therapy has several advantages. Before surgery usually we treat symptoms of MRONJ infection, such as swelling, purulent discharge and pain. They can be managed by bio-stimulative effect of the laser, especially those with advanced primary disease or those suffering from other sickness resulting in a general poor health [90]. PDT might be very sufficient in early stages of osteonecrosis promoting secondary granulation and formation of mucosal coverage, so surgery can be avoid. Unfortunately there are no controlled studies opposing PDT and LLLT to evaluate use of photosensitizer. Appliance of photodynamic therapy immediately after surgery could decrease complications of impaired healing of the wound (Figure 9).
MRONJ before and 2 months after treatment with combined therapy (surgery/aPDT/PRGF).
In conclusion, although MRONJ is considered difficult to treat and may even be recalcitrant to therapy, photodynamic therapy can be a viable supportive tool of initial and advanced stages of MRONJ, as an adjuvant treatment before or after surgery or primary treatment in cases without surgery indicated.
The authors declare no conflict of interest.
IntechOpen Compacts provide a mid-length publishing format which bridges the gap between journal articles, book chapters and monographs, and cover content across all scientific disciplines. Compacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues or broader topics on the research subject.
",metaTitle:"IntechOpen Compacts",metaDescription:"IntechOpen Compacts present a mid-length publishing format which bridges the gap between journal articles, book chapters, and monographs and covers content across all scientific disciplines.",metaKeywords:null,canonicalURL:"/page/compacts",contentRaw:'[{"type":"htmlEditorComponent","content":"Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\\n\\nCOMPACTS-SHORT FORM MONOGRAPH
\\n\\nCOST
\\n\\n4,000 GBP Compacts Monograph - Short Form
\\n\\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview and description of the steps involved in the publishing process here.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\n\nCOMPACTS-SHORT FORM MONOGRAPH
\n\nCOST
\n\n4,000 GBP Compacts Monograph - Short Form
\n\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview and description of the steps involved in the publishing process here.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15932}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"21"},books:[{type:"book",id:"10671",title:"Connected Adolescence",subtitle:null,isOpenForSubmission:!0,hash:"f005179bb7f6cd7c531a00cd8da18eaa",slug:null,bookSignature:"Prof. Massimo Ingrassia and Prof. Loredana Benedetto",coverURL:"https://cdn.intechopen.com/books/images_new/10671.jpg",editedByType:null,editors:[{id:"193901",title:"Prof.",name:"Massimo",surname:"Ingrassia",slug:"massimo-ingrassia",fullName:"Massimo Ingrassia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Decision Making",subtitle:null,isOpenForSubmission:!0,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:null,bookSignature:"Prof. Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:null,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10909",title:"Psychometrics",subtitle:null,isOpenForSubmission:!0,hash:"51388e9ab6c536936b8da4f9c226252e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10909.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10910",title:"Learning Disabilities",subtitle:null,isOpenForSubmission:!0,hash:"0999e5f759c2380ae5a4a2ee0835c98d",slug:null,bookSignature:" Sandro Misciagna",coverURL:"https://cdn.intechopen.com/books/images_new/10910.jpg",editedByType:null,editors:[{id:"103586",title:null,name:"Sandro",surname:"Misciagna",slug:"sandro-misciagna",fullName:"Sandro Misciagna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!0,hash:"5214c44bdc42978449de0751ca364684",slug:null,bookSignature:"Ph.D. Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:null,editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:6},popularBooks:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5327},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"383",title:"Biotechnology",slug:"biochemistry-genetics-and-molecular-biology-bioorganic-chemistry-biotechnology",parent:{title:"Bioorganic Chemistry",slug:"biochemistry-genetics-and-molecular-biology-bioorganic-chemistry"},numberOfBooks:1,numberOfAuthorsAndEditors:46,numberOfWosCitations:139,numberOfCrossrefCitations:69,numberOfDimensionsCitations:190,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"biochemistry-genetics-and-molecular-biology-bioorganic-chemistry-biotechnology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"880",title:"Plant Breeding",subtitle:null,isOpenForSubmission:!1,hash:"00fb30196097697f0e1211ce27ba426d",slug:"plant-breeding",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/880.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Dr.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"25554",doi:"10.5772/29982",title:"Haploids and Doubled Haploids in Plant Breeding",slug:"haploids-and-doubled-haploids-in-plant-breeding",totalDownloads:27579,totalCrossrefCites:41,totalDimensionsCites:68,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Jana Murovec and Borut Bohanec",authors:[{id:"80213",title:"Prof.",name:"Borut",middleName:null,surname:"Bohanec",slug:"borut-bohanec",fullName:"Borut Bohanec"},{id:"127399",title:"Dr.",name:"Jana",middleName:null,surname:"Murovec",slug:"jana-murovec",fullName:"Jana Murovec"}]},{id:"25556",doi:"10.5772/37458",title:"Genomics-Assisted Plant Breeding in the 21st Century: Technological Advances and Progress",slug:"genomics-assisted-plant-breeding-in-the-21st-century-technological-advances-and-progress",totalDownloads:7714,totalCrossrefCites:1,totalDimensionsCites:27,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Siva P. Kumpatla, Ramesh Buyyarapu, Ibrokhim Y. Abdurakhmonov and Jafar A. Mammadov",authors:[{id:"112839",title:"Dr.",name:"Siva Prasad",middleName:null,surname:"Kumpatla",slug:"siva-prasad-kumpatla",fullName:"Siva Prasad Kumpatla"},{id:"124831",title:"Dr.",name:"Jafar",middleName:null,surname:"Mammadov",slug:"jafar-mammadov",fullName:"Jafar Mammadov"},{id:"124832",title:"Dr.",name:"Ramesh",middleName:null,surname:"Buyyarapu",slug:"ramesh-buyyarapu",fullName:"Ramesh Buyyarapu"},{id:"213344",title:"Dr.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}]},{id:"25553",doi:"10.5772/29827",title:"Use of 2n Gametes in Plant Breeding",slug:"use-of-2n-gametes-in-plant-breeding",totalDownloads:3953,totalCrossrefCites:13,totalDimensionsCites:26,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"A. Dewitte, K. Van Laere and J. Van Huylenbroeck",authors:[{id:"53763",title:"Dr.",name:"Angelo",middleName:null,surname:"Dewitte",slug:"angelo-dewitte",fullName:"Angelo Dewitte"},{id:"59918",title:"Dr.",name:"Johan",middleName:null,surname:"Van Huylenbroeck",slug:"johan-van-huylenbroeck",fullName:"Johan Van Huylenbroeck"},{id:"120546",title:"Dr.",name:"Katrijn",middleName:null,surname:"Van Laere",slug:"katrijn-van-laere",fullName:"Katrijn Van Laere"}]}],mostDownloadedChaptersLast30Days:[{id:"25554",title:"Haploids and Doubled Haploids in Plant Breeding",slug:"haploids-and-doubled-haploids-in-plant-breeding",totalDownloads:27579,totalCrossrefCites:41,totalDimensionsCites:68,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Jana Murovec and Borut Bohanec",authors:[{id:"80213",title:"Prof.",name:"Borut",middleName:null,surname:"Bohanec",slug:"borut-bohanec",fullName:"Borut Bohanec"},{id:"127399",title:"Dr.",name:"Jana",middleName:null,surname:"Murovec",slug:"jana-murovec",fullName:"Jana Murovec"}]},{id:"25550",title:"Virtual Plant Breeding",slug:"virtual-plant-breeding",totalDownloads:2806,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Sven B. Andersen",authors:[{id:"79388",title:"Prof.",name:"Sven Bode",middleName:null,surname:"Andersen",slug:"sven-bode-andersen",fullName:"Sven Bode Andersen"}]},{id:"25555",title:"Chromosome Substitution Lines: Concept, Development and Utilization in the Genetic Improvement of Upland Cotton",slug:"chromosome-substitution-lines-concept-development-and-utilization-in-the-genetic-improvement-of-upla",totalDownloads:5462,totalCrossrefCites:2,totalDimensionsCites:12,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Sukumar Saha, David M. Stelly, Dwaine A. Raska, Jixiang Wu, Johnie N. Jenkins, Jack C. McCarty, Abdusalom Makamov, V. Gotmare, Ibrokhim Y. Abdurakhmonov and B.T. Campbell",authors:[{id:"105070",title:"Dr.",name:"Sukumar",middleName:null,surname:"Saha",slug:"sukumar-saha",fullName:"Sukumar Saha"}]},{id:"25561",title:"Challenges, Opportunities and Recent Advances in Sugarcane Breeding",slug:"challenges-opportunities-and-recent-advances-in-sugarcane-breeding",totalDownloads:7432,totalCrossrefCites:2,totalDimensionsCites:23,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Katia C. Scortecci, Silvana Creste, Tercilio Calsa Jr., Mauro A. Xavier, Marcos G. A. Landell, Antonio Figueira and Vagner A. Benedito",authors:[{id:"74637",title:"Prof.",name:"Vagner",middleName:null,surname:"Benedito",slug:"vagner-benedito",fullName:"Vagner Benedito"}]},{id:"25551",title:"Modelling and Simulation of Plant Breeding Strategies",slug:"modelling-and-simulation-of-plant-breeding-strategies",totalDownloads:4488,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Jiankang Wang",authors:[{id:"71858",title:"Dr.",name:"Jiankang",middleName:null,surname:"Wang",slug:"jiankang-wang",fullName:"Jiankang Wang"}]},{id:"25560",title:"Olive – Colletotrichum acutatum: An Example of Fruit-Fungal Interaction",slug:"olive-colletotrichum-acutatum-an-example-of-fruit-fungal-interaction",totalDownloads:3426,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Sónia Gomes, Pilar Prieto, Teresa Carvalho, Henrique Guedes-Pinto and Paula Martins-Lopes",authors:[{id:"72207",title:"Prof.",name:"Paula",middleName:null,surname:"Martins-Lopes",slug:"paula-martins-lopes",fullName:"Paula Martins-Lopes"},{id:"72215",title:"Dr.",name:"Sónia",middleName:null,surname:"Gomes",slug:"sonia-gomes",fullName:"Sónia Gomes"},{id:"72222",title:"Prof.",name:"Henrique",middleName:null,surname:"Guedes-Pinto",slug:"henrique-guedes-pinto",fullName:"Henrique Guedes-Pinto"},{id:"72224",title:"Dr.",name:"Pilar",middleName:null,surname:"Prieto",slug:"pilar-prieto",fullName:"Pilar Prieto"},{id:"72226",title:"MSc.",name:"Teresa",middleName:null,surname:"Carvalho",slug:"teresa-carvalho",fullName:"Teresa Carvalho"}]},{id:"25562",title:"Heritability of Cold Tolerance (Winter Hardiness) in Gladiolus xgrandiflorus",slug:"heritability-of-cold-tolerance-winter-hardiness-in-gladiolus-xgrandiflorus",totalDownloads:2788,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Neil O. Anderson, Janelle Frick, Adnan Younis and Christopher Currey",authors:[{id:"69714",title:"Prof.",name:"Neil",middleName:null,surname:"Anderson",slug:"neil-anderson",fullName:"Neil Anderson"},{id:"69724",title:"Ms.",name:"Janelle",middleName:null,surname:"Frick",slug:"janelle-frick",fullName:"Janelle Frick"},{id:"69725",title:"Dr.",name:"Adnan",middleName:null,surname:"Younis",slug:"adnan-younis",fullName:"Adnan Younis"},{id:"69726",title:"Mr.",name:"Chris",middleName:null,surname:"Currey",slug:"chris-currey",fullName:"Chris Currey"}]},{id:"25564",title:"Genetic Variability Evaluation and Selection in Ancient Grapevine Varieties",slug:"genetic-variability-evaluation-and-selection-in-ancient-grapevine-varieties",totalDownloads:2044,totalCrossrefCites:5,totalDimensionsCites:9,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Elsa Gonçalves and Antero Martins",authors:[{id:"72007",title:"Prof.",name:"Elsa",middleName:null,surname:"Gonçalves",slug:"elsa-goncalves",fullName:"Elsa Gonçalves"},{id:"79368",title:"Prof.",name:"Antero",middleName:null,surname:"Martins",slug:"antero-martins",fullName:"Antero Martins"}]},{id:"25553",title:"Use of 2n Gametes in Plant Breeding",slug:"use-of-2n-gametes-in-plant-breeding",totalDownloads:3953,totalCrossrefCites:13,totalDimensionsCites:26,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"A. Dewitte, K. Van Laere and J. Van Huylenbroeck",authors:[{id:"53763",title:"Dr.",name:"Angelo",middleName:null,surname:"Dewitte",slug:"angelo-dewitte",fullName:"Angelo Dewitte"},{id:"59918",title:"Dr.",name:"Johan",middleName:null,surname:"Van Huylenbroeck",slug:"johan-van-huylenbroeck",fullName:"Johan Van Huylenbroeck"},{id:"120546",title:"Dr.",name:"Katrijn",middleName:null,surname:"Van Laere",slug:"katrijn-van-laere",fullName:"Katrijn Van Laere"}]},{id:"25557",title:"A Multiplex Fluorescent PCR Assay in Molecular Breeding of Oilseed Rape",slug:"a-multiplex-fluorescent-pcr-assay-in-molecular-breeding-of-oilseed-rape",totalDownloads:2749,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Katarzyna Mikolajczyk, Iwona Bartkowiak-Broda, Wieslawa Poplawska, Stanislaw Spasibionek, Agnieszka Dobrzycka and Miroslawa Dabert",authors:[{id:"71973",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Mikolajczyk",slug:"katarzyna-mikolajczyk",fullName:"Katarzyna Mikolajczyk"},{id:"81084",title:"Dr.",name:"Miroslawa",middleName:null,surname:"Dabert",slug:"miroslawa-dabert",fullName:"Miroslawa Dabert"},{id:"87118",title:"Dr.",name:"Agnieszka",middleName:null,surname:"Dobrzycka",slug:"agnieszka-dobrzycka",fullName:"Agnieszka Dobrzycka"},{id:"87119",title:"Dr.",name:"Stanislaw",middleName:null,surname:"Spasibionek",slug:"stanislaw-spasibionek",fullName:"Stanislaw Spasibionek"},{id:"87120",title:"Dr.",name:"Wieslawa",middleName:"Maria",surname:"Poplawska",slug:"wieslawa-poplawska",fullName:"Wieslawa Poplawska"},{id:"87121",title:"Prof.",name:"Iwona",middleName:"Maria",surname:"Bartkowiak-Broda",slug:"iwona-bartkowiak-broda",fullName:"Iwona Bartkowiak-Broda"}]}],onlineFirstChaptersFilter:{topicSlug:"biochemistry-genetics-and-molecular-biology-bioorganic-chemistry-biotechnology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/121004/sergio-alberto-dassie",hash:"",query:{},params:{id:"121004",slug:"sergio-alberto-dassie"},fullPath:"/profiles/121004/sergio-alberto-dassie",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()