BEV and PHEV parameters comparison
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"3218",leadTitle:null,fullTitle:"Piezoelectric Ceramics",title:"Piezoelectric Ceramics",subtitle:null,reviewType:"peer-reviewed",abstract:"This book reviews a big window of opportunity for piezoelectric ceramics, such as new materials, material combinations, structures, damages and porosity effects. In addition, applications of sensors, actuators, transducers for ultrasonic imaging, positioning systems, energy harvesting, biomedical and microelectronic devices are described. The book consists of fourteen chapters. \nThe genetic algorithm is used for identification of RLC parameters in the equivalent electrical circuit of piezoelectric transducers. Concept and development perspectives for piezoelectric energy harvesting are described. The characterization of principal properties and advantages of a novel device called ceramic-controlled piezoelectric with a Pt wire implant is included. Bio-compatibility studies between piezoelectric ceramic material and biological cell suspension are exposed. Thus, piezoelectric ceramics have been a very favorable solution as a consequence of its high energy density and the variety of fabrication techniques to obtain bulk or thin films devices. Finally, the readers will perceive a trend analysis and examine recent developments in different fields of applications of piezoelectric ceramics.",isbn:null,printIsbn:"978-953-307-122-0",pdfIsbn:"978-953-51-5921-6",doi:"10.5772/241",price:139,priceEur:155,priceUsd:179,slug:"piezoelectric-ceramics",numberOfPages:304,isOpenForSubmission:!1,isInWos:1,hash:"835cbf1fbf213fbd3aeb4e4cbf1686c9",bookSignature:"Ernesto Suaste-Gomez",publishedDate:"October 5th 2010",coverURL:"https://cdn.intechopen.com/books/images_new/3218.jpg",numberOfDownloads:62274,numberOfWosCitations:53,numberOfCrossrefCitations:31,numberOfDimensionsCitations:62,hasAltmetrics:0,numberOfTotalCitations:146,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 1st 2009",dateEndSecondStepPublish:"January 22nd 2009",dateEndThirdStepPublish:"April 28th 2009",dateEndFourthStepPublish:"July 27th 2009",dateEndFifthStepPublish:"August 26th 2009",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"12814",title:"Dr.",name:"Ernesto",middleName:null,surname:"Suaste-Gomez",slug:"ernesto-suaste-gomez",fullName:"Ernesto Suaste-Gomez",profilePictureURL:"https://mts.intechopen.com/storage/users/12814/images/system/12814.jpg",biography:"Ernesto Suaste-Gomez received a doctorate degree in Biomedical Engineering in 1997 at the Center for Research and Advanced Studies, Cinvestav-IPN, Mexico. He has been a visiting scholar at several institutions including UC Berkeley, CSU Long Beach, NIH Bethesda MD, and Technical University of Ilmanau, Germany. Currently, he is a professor at the Electronic Engineering Department, Cinvestav-IPN. He teaches graduate courses in biomedical engineering and his research domain involves areas related to Human Vision, Eye Behavior and Biomedical Instrumentation in Variability Cardiac and Pupil Reflex. He is also interested in developing and applying new materials such as ferroelectric, piezoelectric, piezopolymers, pyroelectrics in the design of sensors and transducer. In addition, he also works on applications of sensors, actuators, transducers for ultrasonic imaging, positioning systems, energy harvesting and microelectronic devices associate at Biomedical Engineering.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"921",title:"Electrostatics",slug:"ceramics-electrostatics"}],chapters:[{id:"11639",title:"Piezoelectric Thin Film Deposition: Novel Self-Assembled Island Structures and Low Temperature Processes on Silicon",doi:"10.5772/9937",slug:"piezoelectric-thin-film-deposition-novel-self-assembled-island-structures-and-low-temperature-proces",totalDownloads:3487,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Sharath Sriram, Madhu Bhaskaran and Arnan Mitchell",downloadPdfUrl:"/chapter/pdf-download/11639",previewPdfUrl:"/chapter/pdf-preview/11639",authors:[{id:"12171",title:"Dr.",name:"Sharath",surname:"Sriram",slug:"sharath-sriram",fullName:"Sharath Sriram"},{id:"12172",title:"Dr.",name:"Madhu",surname:"Bhaskaran",slug:"madhu-bhaskaran",fullName:"Madhu Bhaskaran"},{id:"12173",title:"Prof",name:"Arnan",surname:"Mitchell",slug:"arnan-mitchell",fullName:"Arnan Mitchell"}],corrections:null},{id:"11640",title:"Investigation of Elevated Temperature Effects on Multiple Layer Piezoelectric Ultrasonic Transducers with Adhesive Bondlines by Self-Heating",doi:"10.5772/9938",slug:"investigation-of-elevated-temperature-effects-on-multiple-layer-piezoelectric-ultrasonic-transducers",totalDownloads:17977,totalCrossrefCites:3,totalDimensionsCites:3,signatures:"Zhengbin Wu, Sandy Cochran and Bo Wu",downloadPdfUrl:"/chapter/pdf-download/11640",previewPdfUrl:"/chapter/pdf-preview/11640",authors:[{id:"11907",title:"Prof.",name:"Zhengbin",surname:"Wu",slug:"zhengbin-wu",fullName:"Zhengbin Wu"},{id:"12761",title:"Dr.",name:"Sandy",surname:"Cochran",slug:"sandy-cochran",fullName:"Sandy Cochran"},{id:"12763",title:"Prof",name:"Bo",surname:"Wu",slug:"bo-wu",fullName:"Bo Wu"}],corrections:null},{id:"11641",title:"Modelling Shear Lag Phenomenon for Adhesively Bonded Piezo-Impedance Transducers",doi:"10.5772/9939",slug:"modelling-shear-lag-phenomenon-for-adhesively-bonded-piezo-impedance-transducers",totalDownloads:2581,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Suresh Bhalla and Ashok Gupta",downloadPdfUrl:"/chapter/pdf-download/11641",previewPdfUrl:"/chapter/pdf-preview/11641",authors:[{id:"12276",title:"Dr.",name:"Suresh",surname:"Bhalla",slug:"suresh-bhalla",fullName:"Suresh Bhalla"},{id:"12865",title:"Prof",name:"Ashok",surname:"Gupta",slug:"ashok-gupta",fullName:"Ashok Gupta"}],corrections:null},{id:"11642",title:"Characterization of Properties and Damage in Piezoelectrics",doi:"10.5772/9940",slug:"characterization-of-properties-and-damage-in-piezoelectrics",totalDownloads:1859,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Guillermo Rus, Roberto Palma and Javier Suárez",downloadPdfUrl:"/chapter/pdf-download/11642",previewPdfUrl:"/chapter/pdf-preview/11642",authors:[{id:"13053",title:"Prof.",name:"Guillermo",surname:"Rus",slug:"guillermo-rus",fullName:"Guillermo Rus"},{id:"13057",title:"Mr.",name:"Roberto",surname:"Palma",slug:"roberto-palma",fullName:"Roberto Palma"},{id:"13058",title:"Prof.",name:"Javier",surname:"Suárez",slug:"javier-suarez",fullName:"Javier Suárez"}],corrections:null},{id:"11643",title:"Analysis of Mechanical and Electrical Damages in Piezoelectric Ceramics",doi:"10.5772/9941",slug:"analysis-of-mechanical-and-electrical-damages-in-piezoelectric-ceramics",totalDownloads:2549,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Xinhua Yang, Guowei Zeng and Weizhong Cao",downloadPdfUrl:"/chapter/pdf-download/11643",previewPdfUrl:"/chapter/pdf-preview/11643",authors:[{id:"12469",title:"Prof.",name:"Xinhua",surname:"Yang",slug:"xinhua-yang",fullName:"Xinhua Yang"},{id:"125454",title:"Prof.",name:"Guowei",surname:"Zeng",slug:"guowei-zeng",fullName:"Guowei Zeng"},{id:"125455",title:"Prof.",name:"Weizhong",surname:"Cao",slug:"weizhong-cao",fullName:"Weizhong Cao"}],corrections:null},{id:"11644",title:"Porous Piezoelectric Ceramics",doi:"10.5772/9942",slug:"porous-piezoelectric-ceramics",totalDownloads:4988,totalCrossrefCites:11,totalDimensionsCites:21,signatures:"Elisa Mercadelli, Alessandra Sanson and Carmen Galassi",downloadPdfUrl:"/chapter/pdf-download/11644",previewPdfUrl:"/chapter/pdf-preview/11644",authors:[{id:"12866",title:"Dr.",name:"Elisa",surname:"Mercadelli",slug:"elisa-mercadelli",fullName:"Elisa Mercadelli"},{id:"12886",title:"Dr.",name:"Alessandra",surname:"Sanson",slug:"alessandra-sanson",fullName:"Alessandra Sanson"},{id:"12887",title:"Dr.",name:"Carmen",surname:"Galassi",slug:"carmen-galassi",fullName:"Carmen Galassi"}],corrections:null},{id:"11645",title:"Genetic Identification of Parameters the Piezoelectric Transducers for Digital Model of Power Converter in Ultrasonic Systems",doi:"10.5772/9943",slug:"genetic-identification-of-parameters-the-piezoelectric-transducers-for-digital-model-of-power-conver",totalDownloads:3615,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"Pawel Fabijanski and Ryszard Łagoda",downloadPdfUrl:"/chapter/pdf-download/11645",previewPdfUrl:"/chapter/pdf-preview/11645",authors:[{id:"13086",title:"Dr.",name:"Pawel",surname:"Fabijański",slug:"pawel-fabijanski",fullName:"Pawel Fabijański"},{id:"13142",title:"Dr.",name:"Ryszard",surname:"Lagoda",slug:"ryszard-lagoda",fullName:"Ryszard Lagoda"}],corrections:null},{id:"11646",title:"Lead-Free Piezoelectric Transducers for Microelectronic Wirebonding Applications",doi:"10.5772/9944",slug:"lead-free-piezoelectric-transducers-for-microelectronic-wirebonding-applications-",totalDownloads:4391,totalCrossrefCites:4,totalDimensionsCites:6,signatures:"K.W. Kwok, T. Lee, S.H. Choy and H.L.W. Chan",downloadPdfUrl:"/chapter/pdf-download/11646",previewPdfUrl:"/chapter/pdf-preview/11646",authors:[{id:"12889",title:"Dr.",name:"K.W.",surname:"Kwok",slug:"k.w.-kwok",fullName:"K.W. Kwok"},{id:"12891",title:"Prof.",name:"H.L.W.",surname:"Chan",slug:"h.l.w.-chan",fullName:"H.L.W. Chan"}],corrections:null},{id:"11647",title:"Piezoelectric Material-Based Energy Harvesting Devices: Advance of SSH Optimization Techniques (1999-2009)",doi:"10.5772/9945",slug:"piezoelectric-material-based-energy-harvesting-devices-advance-of-ssh-optimization-techniques-1999-2",totalDownloads:3196,totalCrossrefCites:4,totalDimensionsCites:10,signatures:"Elie Lefeuvre, Mickail Lallart, Claude Richard and Daniel Guyomar",downloadPdfUrl:"/chapter/pdf-download/11647",previewPdfUrl:"/chapter/pdf-preview/11647",authors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"},{id:"10042",title:"Prof.",name:"Daniel",surname:"Guyomar",slug:"daniel-guyomar",fullName:"Daniel Guyomar"},{id:"12121",title:"Dr.",name:"Elie",surname:"Lefeuvre",slug:"elie-lefeuvre",fullName:"Elie Lefeuvre"},{id:"12927",title:"Pr",name:"Claude",surname:"Richard",slug:"claude-richard",fullName:"Claude Richard"}],corrections:null},{id:"11648",title:"Electrostrictive Polymers as High-Performance Electroactive Polymers for Energy Harvesting",doi:"10.5772/9946",slug:"electrostrictive-polymers-as-high-performance-electroactive-polymers-for-energy-harvesting",totalDownloads:5241,totalCrossrefCites:3,totalDimensionsCites:7,signatures:"Pierre-Jean Cottinet, Daniel Guyomar, Benoit Guiffard, Laurent Lebrun and Chatchai Putson",downloadPdfUrl:"/chapter/pdf-download/11648",previewPdfUrl:"/chapter/pdf-preview/11648",authors:[{id:"12401",title:"Dr.",name:"Pierre-Jean",surname:"Cottinet",slug:"pierre-jean-cottinet",fullName:"Pierre-Jean Cottinet"},{id:"12570",title:"Prof.",name:"Benoit",surname:"Guiffard",slug:"benoit-guiffard",fullName:"Benoit Guiffard"},{id:"12571",title:"Pr.",name:"Laurent",surname:"Lebrun",slug:"laurent-lebrun",fullName:"Laurent Lebrun"},{id:"12572",title:"PhD student",name:"Chatchai",surname:"Putson",slug:"chatchai-putson",fullName:"Chatchai Putson"}],corrections:null},{id:"11649",title:"Ceramic-Controlled Piezoelectric: Development, Applications and Potentiality in Electrical and Biomedical Engineering.",doi:"10.5772/9947",slug:"ceramic-controlled-piezoelectric-development-applications-and-potentiality-in-electrical-and-biomedi",totalDownloads:2679,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Ernesto Suaste-Gomez, Carlos Omar Gonzalez.Moran and Jose De Jesus Agustin Flores-Cuautle",downloadPdfUrl:"/chapter/pdf-download/11649",previewPdfUrl:"/chapter/pdf-preview/11649",authors:[{id:"12814",title:"Dr.",name:"Ernesto",surname:"Suaste-Gomez",slug:"ernesto-suaste-gomez",fullName:"Ernesto Suaste-Gomez"},{id:"12815",title:"Dr.",name:"Carlos",surname:"González Morán",slug:"carlos-gonzalez-moran",fullName:"Carlos González Morán"},{id:"12816",title:"Dr.",name:"Jose De Jesus Agustin",surname:"Flores-Cuautle",slug:"jose-de-jesus-agustin-flores-cuautle",fullName:"Jose De Jesus Agustin Flores-Cuautle"}],corrections:null},{id:"11650",title:"Piezoelectric Ceramic Applications: Micromixing in Biology and Medicine",doi:"10.5772/49089",slug:"piezoelectric-ceramic-applications-micromixing-in-biology-and-medicine",totalDownloads:2656,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Sajin M., Craciunoiu F., Moisin A.M., Dumitru A.I., Petrescu D., Raluca G., Bunea A.C., Sajin G.I.",downloadPdfUrl:"/chapter/pdf-download/11650",previewPdfUrl:"/chapter/pdf-preview/11650",authors:[{id:"4391",title:"Dr.",name:"Gheorghe Ioan",surname:"Sajin",slug:"gheorghe-ioan-sajin",fullName:"Gheorghe Ioan Sajin"},{id:"12795",title:"Prof.",name:"Maria",surname:"Sajin",slug:"maria-sajin",fullName:"Maria Sajin"},{id:"123241",title:"Dr.",name:"Florea",surname:"Craciunoiu",slug:"florea-craciunoiu",fullName:"Florea Craciunoiu"},{id:"135530",title:"Prof.",name:"Ana Maria",surname:"Moisin",slug:"ana-maria-moisin",fullName:"Ana Maria Moisin"},{id:"135532",title:"Prof.",name:"Alina",surname:"Dumitru",slug:"alina-dumitru",fullName:"Alina Dumitru"},{id:"135534",title:"Prof.",name:"Gavrila",surname:"Raluca",slug:"gavrila-raluca",fullName:"Gavrila Raluca"}],corrections:null},{id:"11651",title:"Piezoelectric-Ceramic-Based Microgrippers in Micromanipulation",doi:"10.5772/9948",slug:"piezoelectric-ceramic-based-microgrippers-in-micromanipulation",totalDownloads:2231,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Xin Ye and Zhi-Jing Zhang",downloadPdfUrl:"/chapter/pdf-download/11651",previewPdfUrl:"/chapter/pdf-preview/11651",authors:[{id:"11989",title:"Dr.",name:"Xin",surname:"Ye",slug:"xin-ye",fullName:"Xin Ye"},{id:"29872",title:"Mr",name:"zhang",surname:"zhi",slug:"zhang-zhi",fullName:"zhang zhi"}],corrections:null},{id:"11652",title:"Application of Piezoelectric Materials in Pulsed Power Technology and Engineering",doi:"10.5772/9949",slug:"application-of-piezoelectric-materials-in-pulsed-power-technology-and-engineering-",totalDownloads:4834,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Sergey Shkuratov, Evgueni Talantsev and Jason Baird",downloadPdfUrl:"/chapter/pdf-download/11652",previewPdfUrl:"/chapter/pdf-preview/11652",authors:[{id:"12264",title:"Dr.",name:"Sergey",surname:"Shkuratov",slug:"sergey-shkuratov",fullName:"Sergey Shkuratov"},{id:"12839",title:"Dr.",name:"Evgueni",surname:"Talantsev",slug:"evgueni-talantsev",fullName:"Evgueni Talantsev"},{id:"12840",title:"Prof.",name:"Jason",surname:"Baird",slug:"jason-baird",fullName:"Jason Baird"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5215",title:"Piezoelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"a062db03e5e21b64942d5d4dfd9b7bd2",slug:"piezoelectric-materials",bookSignature:"Toshio Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/5215.jpg",editedByType:"Edited by",editors:[{id:"33684",title:"Prof.",name:"Toshio",surname:"Ogawa",slug:"toshio-ogawa",fullName:"Toshio Ogawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3272",title:"Piezoelectric Materials and Devices",subtitle:"Practice and Applications",isOpenForSubmission:!1,hash:"a41c5bb092cc30980df760d6bec44c20",slug:"piezoelectric-materials-and-devices-practice-and-applications",bookSignature:"Farzad Ebrahimi",coverURL:"https://cdn.intechopen.com/books/images_new/3272.jpg",editedByType:"Edited by",editors:[{id:"20062",title:"Dr.",name:"Farzad",surname:"Ebrahimi",slug:"farzad-ebrahimi",fullName:"Farzad Ebrahimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66301",slug:"corrigendum-to-denim-fabrics-woven-with-dual-core-spun-yarns",title:"Corrigendum to: Denim Fabrics Woven with Dual Core-Spun Yarns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66301.pdf",downloadPdfUrl:"/chapter/pdf-download/66301",previewPdfUrl:"/chapter/pdf-preview/66301",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66301",risUrl:"/chapter/ris/66301",chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]}},chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]},book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"6275",leadTitle:null,title:"Supercapacitors",subtitle:"Theoretical and Practical Solutions",reviewType:"peer-reviewed",abstract:"This edited volume Supercapacitors: Theoretical and Practical Solutions is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of electronic devices and materials. The book comprises single chapters authored by various researchers and is edited by a group of experts. Each chapter is complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on electronic devices and materials and opens new possible research paths for further novel developments.",isbn:"978-1-78923-353-7",printIsbn:"978-1-78923-352-0",pdfIsbn:"978-1-83881-372-7",doi:"10.5772/intechopen.69087",price:119,priceEur:129,priceUsd:155,slug:"supercapacitors-theoretical-and-practical-solutions",numberOfPages:166,isOpenForSubmission:!1,hash:"94a2398d62d5bcefd79ae73a0003ad7a",bookSignature:"Lionginas Liudvinavičius",publishedDate:"June 27th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6275.jpg",keywords:null,numberOfDownloads:5722,numberOfWosCitations:2,numberOfCrossrefCitations:7,numberOfDimensionsCitations:20,numberOfTotalCitations:29,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 11th 2017",dateEndSecondStepPublish:"June 1st 2017",dateEndThirdStepPublish:"November 26th 2017",dateEndFourthStepPublish:"December 26th 2017",dateEndFifthStepPublish:"February 26th 2018",remainingDaysToSecondStep:"4 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"32614",title:"Dr.",name:"Lionginas",middleName:null,surname:"Liudvinavičius",slug:"lionginas-liudvinavicius",fullName:"Lionginas Liudvinavičius",profilePictureURL:"https://mts.intechopen.com/storage/users/32614/images/5340_n.jpg",biography:"Assoc. Prof. Dr. Lionginas Liudvinavičius received qualification of Electrics Engineer in Kaunas University Technology and studied in St. Petersburg Railway Institute (1970-1975). Received Ph.D. degree of Technical Sciences at Vilnius Gediminas Technical University (VGTU) in 2012 and title of Association Professor in 2016. Currently he is working at Department of Railway Transport of VGTU. From 1975 to 2000 he worked as head of various departments of Lithuanian Railways. Transport Minister awarded him “Honored Railwayman Name” (1998) and the second grade awards for contribution to Lithuanian Railways (2010). He is reviewer for IEEE journals. He has authored/coauthored many papers in journals, conference proceedings and he is coauthor of study manuals. His research interests are Railway Electrification, Electric Traction, Modern Electric Drive parameters automatic control, Locomotive Traction Converters, Electrical Machinery, Theoretical and Practical Aspects of Use Electrodynamic Braking, Hybrids vehicles, Energy Saving and Storage Systems using Supercapacitors.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"740",title:"Electronic Devices and Materials",slug:"electronic-devices-and-materials"}],chapters:[{id:"58877",title:"Supercapacitor-Based Hybrid Energy Harvesting for Low-Voltage System",slug:"supercapacitor-based-hybrid-energy-harvesting-for-low-voltage-system",totalDownloads:589,totalCrossrefCites:0,authors:[{id:"210576",title:"Dr.",name:"Md Shahrukh Adnan",surname:"Khan",slug:"md-shahrukh-adnan-khan",fullName:"Md Shahrukh Adnan Khan"},{id:"210579",title:"Dr.",name:"Rajprasad Kumar",surname:"Rajkumar",slug:"rajprasad-kumar-rajkumar",fullName:"Rajprasad Kumar Rajkumar"},{id:"224612",title:"Dr.",name:"Yee Wan",surname:"Wong",slug:"yee-wan-wong",fullName:"Yee Wan Wong"},{id:"224613",title:"Mr.",name:"Anas",surname:"Syed",slug:"anas-syed",fullName:"Anas Syed"}]},{id:"58814",title:"Ionic Liquid for High Voltage Supercapacitor",slug:"ionic-liquid-for-high-voltage-supercapacitor",totalDownloads:974,totalCrossrefCites:0,authors:[{id:"211423",title:"Prof.",name:"Jeeyoung",surname:"Yoo",slug:"jeeyoung-yoo",fullName:"Jeeyoung Yoo"}]},{id:"56956",title:"Electrochemical Capacitor Performance: Influence of Aqueous Electrolytes",slug:"electrochemical-capacitor-performance-influence-of-aqueous-electrolytes",totalDownloads:1258,totalCrossrefCites:3,authors:[{id:"212251",title:"Prof.",name:"Fei",surname:"Wang",slug:"fei-wang",fullName:"Fei Wang"},{id:"212284",title:"Dr.",name:"Rajendran",surname:"Ramachandran",slug:"rajendran-ramachandran",fullName:"Rajendran Ramachandran"}]},{id:"57168",title:"Performance of Aqueous Ion Solution/Tube-Super Dielectric Material-Based Capacitors as a Function of Discharge Time",slug:"performance-of-aqueous-ion-solution-tube-super-dielectric-material-based-capacitors-as-a-function-of",totalDownloads:557,totalCrossrefCites:0,authors:[{id:"218394",title:"Prof.",name:"Jonathan",surname:"Phillips",slug:"jonathan-phillips",fullName:"Jonathan Phillips"},{id:"218396",title:"MSc.",name:"Steven",surname:"Lombardo",slug:"steven-lombardo",fullName:"Steven Lombardo"}]},{id:"59872",title:"Enhancing Pseudocapacitive Process for Energy Storage Devices: Analyzing the Charge Transport Using Electro-kinetic Study and Numerical Modeling",slug:"enhancing-pseudocapacitive-process-for-energy-storage-devices-analyzing-the-charge-transport-using-e",totalDownloads:766,totalCrossrefCites:1,authors:[{id:"24478",title:"Prof.",name:"Xiaowei",surname:"Teng",slug:"xiaowei-teng",fullName:"Xiaowei Teng"},{id:"240109",title:"Mr.",name:"Fenghua",surname:"Guo",slug:"fenghua-guo",fullName:"Fenghua Guo"},{id:"240110",title:"Prof.",name:"Nivedita",surname:"Gupta",slug:"nivedita-gupta",fullName:"Nivedita Gupta"}]},{id:"58793",title:"Direct Laser Writing of Supercapacitors",slug:"direct-laser-writing-of-supercapacitors",totalDownloads:557,totalCrossrefCites:0,authors:[{id:"227543",title:"Ph.D.",name:"Litty",surname:"Thekkekara",slug:"litty-thekkekara",fullName:"Litty Thekkekara"}]},{id:"58845",title:"Toward High-Voltage/Energy Symmetric Supercapacitors via Interface Engineering",slug:"toward-high-voltage-energy-symmetric-supercapacitors-via-interface-engineering",totalDownloads:471,totalCrossrefCites:1,authors:[{id:"228334",title:"Prof.",name:"Guoxin",surname:"Zhang",slug:"guoxin-zhang",fullName:"Guoxin Zhang"},{id:"228336",title:"Prof.",name:"Yaqun",surname:"Wang",slug:"yaqun-wang",fullName:"Yaqun Wang"}]},{id:"60803",title:"Classical Density Functional Theory Insights for Supercapacitors",slug:"classical-density-functional-theory-insights-for-supercapacitors",totalDownloads:561,totalCrossrefCites:2,authors:[{id:"182639",title:"Dr.",name:"Honglai",surname:"Liu",slug:"honglai-liu",fullName:"Honglai Liu"},{id:"228687",title:"Dr.",name:"Cheng",surname:"Lian",slug:"cheng-lian",fullName:"Cheng Lian"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"177730",firstName:"Edi",lastName:"Lipovic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/177730/images/4741_n.jpg",email:"edi@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"3645",title:"Passive Microwave Components and Antennas",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"passive-microwave-components-and-antennas",bookSignature:"Vitaliy Zhurbenko",coverURL:"https://cdn.intechopen.com/books/images_new/3645.jpg",editedByType:"Edited by",editors:[{id:"3721",title:"Prof.",name:"Vitaliy",surname:"Zhurbenko",slug:"vitaliy-zhurbenko",fullName:"Vitaliy Zhurbenko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"253",title:"Organic Light Emitting Diode",subtitle:"Material, Process and Devices",isOpenForSubmission:!1,hash:"bf0742adef8e8ae73b12780081eeb1d7",slug:"organic-light-emitting-diode-material-process-and-devices",bookSignature:"Seung Hwan Ko",coverURL:"https://cdn.intechopen.com/books/images_new/253.jpg",editedByType:"Edited by",editors:[{id:"33170",title:"Prof.",name:"Seung Hwan",surname:"Ko",slug:"seung-hwan-ko",fullName:"Seung Hwan Ko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3644",title:"Semiconductor Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"semiconductor-technologies",bookSignature:"Jan Grym",coverURL:"https://cdn.intechopen.com/books/images_new/3644.jpg",editedByType:"Edited by",editors:[{id:"4283",title:"Ph.D.",name:"Jan",surname:"Grym",slug:"jan-grym",fullName:"Jan Grym"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6489",title:"Light-Emitting Diode",subtitle:"An Outlook On the Empirical Features and Its Recent Technological Advancements",isOpenForSubmission:!1,hash:"20818f168134f1af35547e807d839463",slug:"light-emitting-diode-an-outlook-on-the-empirical-features-and-its-recent-technological-advancements",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6489.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6509",title:"Energy Harvesting",subtitle:null,isOpenForSubmission:!1,hash:"9665f0b76c3e7d51613f12f86efc3767",slug:"energy-harvesting",bookSignature:"Reccab Manyala",coverURL:"https://cdn.intechopen.com/books/images_new/6509.jpg",editedByType:"Edited by",editors:[{id:"12002",title:"Associate Prof.",name:"Reccab",surname:"Manyala",slug:"reccab-manyala",fullName:"Reccab Manyala"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6511",title:"Complementary Metal Oxide Semiconductor",subtitle:null,isOpenForSubmission:!1,hash:"96b2d63df3822f48468050aa7a44a44c",slug:"complementary-metal-oxide-semiconductor",bookSignature:"Kim Ho Yeap and Humaira Nisar",coverURL:"https://cdn.intechopen.com/books/images_new/6511.jpg",editedByType:"Edited by",editors:[{id:"24699",title:"Dr.",name:"Kim Ho",surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8724",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!1,hash:"bc4be4b954b559709aaace45f70adcd0",slug:"gas-sensors",bookSignature:"Sher Bahadar Khan, Abdullah M. Asiri and Kalsoom Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/8724.jpg",editedByType:"Edited by",editors:[{id:"245468",title:"Dr.",name:"Sher Bahadar",surname:"Khan",slug:"sher-bahadar-khan",fullName:"Sher Bahadar Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7619",title:"Solar Cells",subtitle:null,isOpenForSubmission:!1,hash:"0a247e3e90115e9dce4f44a6996bc866",slug:"solar-cells",bookSignature:"Majid Nayeripour, Mahdi Mansouri and Eberhard Waffenschmidt",coverURL:"https://cdn.intechopen.com/books/images_new/7619.jpg",editedByType:"Edited by",editors:[{id:"66929",title:"Prof.",name:"Majid",surname:"Nayeripour",slug:"majid-nayeripour",fullName:"Majid Nayeripour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7567",title:"Science, Technology and Advanced Application of Supercapacitors",subtitle:null,isOpenForSubmission:!1,hash:"6f3c82213ad65bc6260c0164da9319f4",slug:"science-technology-and-advanced-application-of-supercapacitors",bookSignature:"Takaya Sato",coverURL:"https://cdn.intechopen.com/books/images_new/7567.jpg",editedByType:"Edited by",editors:[{id:"51962",title:"Prof.",name:"Takaya",surname:"Sato",slug:"takaya-sato",fullName:"Takaya Sato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5741",title:"Epitaxy",subtitle:null,isOpenForSubmission:!1,hash:"a5fad1c4783ec478a4c4877914ae5ca9",slug:"epitaxy",bookSignature:"Miao Zhong",coverURL:"https://cdn.intechopen.com/books/images_new/5741.jpg",editedByType:"Edited by",editors:[{id:"164790",title:"Dr.",name:"Miao",surname:"Zhong",slug:"miao-zhong",fullName:"Miao Zhong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"18665",title:"Plug-in Hybrid Vehicles",doi:"10.5772/21528",slug:"plug-in-hybrid-vehicles",body:'
The plug-in hybrid vehicle (PHEV) represents the reaction of automotive industry on the green policy, to reduce the pollutions and the fossil fuels consumption in transport. The oil price is permanently rising and the oil import makes unpleasant dependence of the national economy on the non-stabile countries, because the road transport is nowadays completely dependent on the oil fuels. The electric drive is ready for use in the vehicles many years, it is optimal for control and it offers the maximal efficiency, but there is no suitable battery available in this time for all the day vehicle energy supply. But most of cars in household are typically used in common commutation cycle, with average daily portion under 50km and they are only occasionally used for longer trips in weekends or holidays. For such range is the battery available with acceptable weight and price. If users do not like to hold and care two cars, the electric one for commutation and the second one with petrol engine for longer trips, the PHEV is an optimal solution, combining both drives and the suitable cooperation between both power sources can give additional profit; also many materials and components for the second car - body, wheels and suspension - are saved. However it must be said that having better battery (or similar electrical energy storage device), the presence of generator and internal combustion engine (ICE) is not necessary and the PHEV would be reduced to the much simpler battery operated vehicle (BEV), although the running engine produces some “free” heat which can be with advantage used for air-conditioning. The green energy production from renewable power sources or from nuclear power plants grows up and the night charging can solve the oil fuels reduction in the road transport.
In the beginning of auto-mobility the electric drive was more successful, than engines with internal combustion. The previous steam engines, very famous from railway locomotives, were also not suitable for mobile lightweight applications, due to their big mass and the need of water, which was permanently wasted in open system without condensation.
In the road passenger transport for very limited distance (due to low speed on roads for horses) and for the sport activities was electric motor (EM) with a cheap lead acid battery and simple speed control very reliable and easy operable. Looking in the historical records, the first vehicle over 100km/h speed limit was electric vehicle and also the number of registered vehicles with EM was equal to other kinds of drive. Only after the Ford’s mass production of cheap vehicles with engine the ratio of electric vehicles decreases. Then with better roads, growing speed and operating range consequently, the low battery capacity and the slow long-lasting charging process beat in competition the electric vehicle in the road transport. Only the cable supply was suitable to compete in the city transport (trolleybus) and the battery supply remained only in low speed local transport, like door to door milk and mail delivery, shipping in the production halls or in the railway stations, and in the last decade also some golf carts and neighbourhood electric cars can be find in the market offer.
Typical configuration of common hybrid vehicle with parallel power flow
Hybrid vehicles (HEV) with combination of engine and EM bring back the electric drive into vehicle traction. They are on the market over ten years and their second generation is offered now. First HEV were only from the Japanese production, but in last few years every automotive production group presents at least one car with electric hybrid drive. Such vehicle is certainly more expensive in manufacturing, but the advantage of HEV is its reduced fuel consumption, primarily in the city cycle with low average speed, in which the standard ICE vehicle has higher consumption (lower mileage), comparing with land transport at much higher speed. Out of city the fuel savings are not detectable.
The typical HEV (Fig.1) has only low power EM, which assists in the phase of vehicle acceleration and again in the braking, when it can recuperate the part of kinetic energy into battery for the next acceleration. The efficiency of this cycle (braking – acceleration) is not very good and about 50% of energy is lost, but in often repeating of this cycle at each traffic lights, the fuel saving is important. The energy in one cycle is not big; therefore only small battery can be used. The battery life in the number of cycles is very important, because it is not acceptable to change this battery each month. Fortunately, the reduced depth of discharge (DOD) extends the length of lifetime very much and this low ratio between the energy of one cycle and the energy of the battery is the way, how to use one battery pack up to five years with total number of cycles over 100 000.
The HEV principal scheme can be followed in Fig.1, where it can be observed the parallel power ways from both torque sources to the wheel. The EM can work not only in motor run, when it produces the torque and mechanical power from electric energy, but it can be easily switched into generator run, when the mechanical power from kinetic energy of vehicle is changed into electric energy, recuperated back to battery. The advantage of EM presence is not only the energy recuperation, but also the torque production at any speed, like it was at old steam engines. No kind of ICE is able to produce the torque at zero speed and moreover there is some minimal value of crankshaft speed, called idle run, under which the ICE stops. To keep the ICE in the idle run needs also some fuel and in city transport the standing at the crossroads is very often and very long lasting. The engine stopping at any occasion and its automatic starting connected with touch of clutch pedal, known as STOP-START system is also effective, but it does not eliminate the energy wasting in brakes and the fuel consumption for acceleration. Also the clutch wear is much higher than in the case of vehicle accelerating by EM torque.
Mechanical characteristics of EM vs. ICE with gearbox (rIII=2, rV=4)
The comparison of EM and ICE mechanical characteristics is in Fig.2 and it can be said here, that any EM can have the same characteristic if it is supplied from suitable inverter. Each EM can be for short time overloaded, when increased current gives increased torque and the torque is to disposal from zero speed. Also each kind of EM can recuperate the energy working in generating mode, the negative (braking) torque reverses the current back to the source. The speed gap between the zero and idle run speed of ICE can be reduced using the variable-ratio gearbox. In the gearbox, when the speed is reduced, the torque grows up inversely. The higher is the gear ratio, the lower is the speed and the higher is the torque keeping the same power (neglecting losses). The mechanical power is given by:
where T is the torque in Newton-meters and ω is angular speed in radians per second. The common technical unit of speed n is revolve per minute, the transformation formula is:
The gear ratio, according to (1) gives:
From this mathematics and from Fig.2 there is evident, that at high speed the ICE has always enough power, therefore it needs the help from EM2 primarily in the area of low speeds, where the power is also small as results from (1). Low power EM and low power battery are not able to drive the vehicle at speed over 10km/h. For fully electric drive the concept must be modified.
Many car owner do not use the car for business travel, and they do not drive daily more than 50km. for such distance it is not necessary to spend any petrol, because this distance can be easily realized by energy from battery, but great disadvantage of electric drive is, that the “empty” battery cannot be recharged in minutes and in the case of longer trip, the safety return is not sure. Also in some rare trips during holidays etc. cannot be realized by electric vehicle that means you must have or purchase another car. All these problems are solved by serial hybrid with greater battery, which can be driven first 50km from battery only and in the case of longer trip; the engine is started and operated in the optimal efficiency work point with constant power and speed. The generated electricity is either used for motors supply or in case of low load is simultaneously stored in empty battery.
The PHEV must be able to work in electric mode only at any speed, during the short trips under the daily limit. Therefore it must have strong enough electric motor EM and this condition results in serial concept hybrid, when the ICE is not mechanically connected with wheels, because its help is not necessary (Fig.3).
Typical configuration of PHEV with serial power flow
Omitting the generating unit in Fig.3, the PHEV is reduced into the simple BEV and only the parameters of battery determine the operating range of this vehicle. The idea of hybrid concept wants to eliminate the danger of empty battery in case of some complication in traffic like detour, lost way, waiting, etc. Because the battery charging is supposed from home plug during many hours and there are no charging stations in streets, the best way how to be mobile permanently is to have the energy source for charging on the board. The power of the charger does not have to be as big as is the EM power, because in the periods with full power both sources, generator and battery, work together.
All the mechanical energy output from ICE is converted by generator into electricity, which is typically divided between EM and battery, when EM does not work with full power. If the EM is loaded more than is the maximal power from the generator can be, then the battery must deliver the difference. It is typical in acceleration and in uphill slope, both lasts only very short time in second or minutes. The ICE has not to be so strong (maximal power) as it is in a petrol car and it can work here always near the optimal operating point (Fig.11) with maximal efficiency and minimal emissions.
It is not the new idea to have the Engine-Generator unit on board, but to develop and realise the mass production of PHEV it is a merit of American company Chevrolet (Fig.4). However their vehicle is about three or four years in prototype and they solve intensively the problem of optimal battery. The development and new inventions in this area are very fast and it is a problem to start the production of any battery, if tomorrow some principally better technology would appear.
Chevrolet Volt Chassis Version 2008
But it is not only the batteries production technology, also the electric motor for traction manufacturing needs new knowhow in the automotive industry. Also the manufacturers of auxiliary components must prepare new products and some problem can create the dangerous voltage in the vehicle, because the battery voltage can reach up to 300V and the motor supply voltage AC up to 400V phase to phase or DC up to 600V. It is not the same situation as is in traditional 12 or 24V and the isolation check in metallic body must be perfect. But such systems are already developed and verified in trolleybuses e.g.
The problem of this PHEV concept (Fig. 3) is how to reach high efficiency of all the drive train (ICE, Generator, Battery, Inverter, EM, Gear) for low power light vehicle with total mass about 1500kg. Its average power out of highway at 80 or 90km/h limit is only 5 - 10kW and the peaks are up to 100kW for dynamic drive in modern traffic. The situation in ICE cars is more dependent on the engine volume. The same model can be sold with three or more engines and each of them offers other dynamics. The power and the torque peaks are in case of ICE fix and they can only decrease due the wear, not optimal intake parameters or control, the EM is oppositely easily overload capable, of course for short time only, because the overload brings higher losses and the temperature rise consequently. Big traction machines have on their labels not only rated power but also one-hour power, which is 20 – 30% higher depending on the EM size. For vehicle acceleration in seconds the overload can be easily 100% or more, because after this period the torque and current falls down and the winding temperature also decreases back fast (with effective ventilation). From simulation in Fig.5 it can be seen, the differences between the power in acceleration and in constant speed drive for flat surface.
Time dependence of Power, Speed and Distance for exemplar cycle
Power vs. speed for EV Tesla Roadster on the plane
The dependence of the power on the vehicle speed in steady state is in the Fig. 6 for strong sport car Lotus, which is professionally remade by TESLA Cars Company for the electric drive. Because at higher speed the aerodynamic drag represent the highest force, the power grow with the speed is nearly quadratic.-Tesla Roadster has no generator, but it can be interesting to compare it with two PHEV. The selected data of two typical PHEV are in Table 1 briefly compared with top power BEV Tesla.
Mark | Tesla | Chevrolet | Mitsubishi |
Model | Roadster | Volt | iMiEV |
AC Motor | 185kW | 120kW | 47kW |
Maximal torque | 375Nm | 320Nm | 180Nm |
Asynchronous | Asynchronous | Permanent Magnets | |
Maximal speed | 14.000rpm | 7500rpm | |
Voltage | 370V | 320V | 330V |
Battery | 56kWh | 16kWh | 16kWh |
Mass | 180kg | ||
Generator | NO | 53kW | --- |
Maximal speed | 200km/h | 80/140km/h | 130km/h |
Maximal cruise | 450km | 64+960km | 160 km |
Vehicle mass | 1080kg | ||
80% SOC | 30min |
BEV and PHEV parameters comparison
Mitsubishi iMiEV through view
Chevrolet\'s Volt is the first series hybrid concept car shown by a major manufacturer. Its 1,0-liter (1000ccm), 3-cylinder turbocharged engine runs an on-board 53kW generator that recharges a 16kWh lithium-ion battery made of 80 four-volt cells. Main components distribution on the chassis is in Fig.4. The engine-generator has typical handwrite of car engineers and not only its size, but also its location under front hood with long exhaust pipe. Guessingly 200kg mass can be replaced by another battery with more than twice longer range. The small generator for occasional long trips could be situated in backside trunk, or in tender, which could be hired. The fix mounting of ICE needs all the servicing as standard ICE vehicle, oppositely to BEV, which needs no regular service. Because of rapid evolution in battery technology GM newly opened advanced battery laboratories (3 000 square meters).
Opel Ampera is a Twin sister car to the Chevy Volt for European market. The other leading European producers are preparing their program in EV. New producers like Fiskers, Aptera, Th!nk and many other are only the small companies involved in EV development and they can bring some revolutionary solutions, because there are strong restrictions, in big companies, based on tradition.
Mitsubishi is leading Japan Company in preparing EV with lithium batteries. Its small car iMi with ICE has its twin with electric drive, which is presently (2010) long-term tested over all Japan. The main parts arrangement can be seen on Fig.7.
The EM choice is the most important part of PHEV design. As was mentioned above the EM is easily overloadable, its power P depends on the voltage U and current I from the battery:
where η describes the motor efficiency. This power is equal to that one from (1). Very simplified, it can be said, that the torque is given by the EM current and the EM speed is given by voltage:
These equation are exact for DC motor, where Φ is magnetic flux and Ia is the armature (or rotor) current and Ui is induced voltage in the armature, which is slightly different from the terminal voltage because of the voltage drop on the internal resistances. The AC motors are more complicated, they have more phases, in case of induction (or asynchronous) motor (AM) there is no separation of field circuit and armature circuit, but it is not the main goal of this book and more can be find in any electric machines textbook. The important for motor control is how to change the voltage, and in the case of AC motors the frequency must be also changed (together with voltage), because instead of mechanical current commutation in DC rotor, the switching technology must be used to create the three phase system in converter. The output frequency f gives the speed of AC rotor:
where p is the number of pole pairs. The rotor of AM is slightly slower, that difference between the speed of the rotating field ns and the real rotor speed n is called slip and its value is typically 3 – 5%, changing with the load.
DC motors are the first kind of traction motors, and in the period before power electronics their control was only by resistance controllers and serial-parallel switching. DC/DC inverters improved the efficiency of DC motor in controlled drive, it is cheaper than the DC/AC converter, but DC motor is not so robust and it needs often maintenance due to carbon brushes.
Brushless DC is in principle the DC with permanent magnets (PM) for field creation on the rotor and static electronic inverter, instead of collector with 3 segments on the rotor; it has 3 winding terminals on the stator, supplied from the 3-legs bridge, working as a commutator. Because the rare earth PM (REPM) are very expensive and very sensitive, namely to temperature and corrosion, they find place mostly in low power (0,2 – 2kW) EM for bikes, where they are in low volume only.
In the power range 20 – 200kW for passenger cars the induction machine offers its perfect robustness at low price and also the standard inverter supply, which widely used in industry and also in new trams.
The switched reluctance machine (SRM) has also very robust and simple construction with no rotor winding and it can be very prospective, but it is not yet widely used. It needs special inverter, which supposes some larger volume production for a good price.
DC Brush Type | Brushless DC (Permanent Magnet) | AC (Induction) | |
Peak efficiency | 85 - 89 | 95 - 97 | 94 - 95 |
Efficiency at 10% Load | 80 - 87 | 73 - 82 | 93 - 94 |
Max. RPM | 4 000 - 6 000 | 4 000 - 10 000 | 9 000 – 15 000 |
Cost per shaft kW | $120 - 200 | $120 - 180 | $60 - 100 |
Relative Cost of Controller | 1 | 3 - 5 | 6 - 8 |
Typical Electric Motors 20 – 200kW Parameters
The survey of EM basic properties is in Table 2. It must be said here, that all parameters in this Table are valid for power range from 20 to 200kW and with growing power grows up also the efficiency and oppositely the maximal speed falls down.
AC Motor | DC Motor |
Single-speed transmission | Multi-speed transmission |
Light weight | Heavier at equivalent power |
Less expensive | More expensive |
95% Efficiency at full load | 85-95% Efficiency at full load |
More expensive controller | Simple controller |
Motor/controller/inverter more expensive | Motor/controller less expensive |
Electric Motors Properties Comparison
Another EM properties comparison can be read in Table 3 from the drivetrain design point of view.
The volume and mass of EM is given by its torque and not by the power. Because the vehicle mass should be minimized, the EM must be designed on maximal possible speed and minimal torque consequently (1), of course with respect to efficiency and cooling ability. Therefore no direct drive without gear is optimal and there is in Fig.3 the reduction and differential gearbox between EM and wheel. Increasing the speed increases the frequency, which should not exceed 400Hz. It is better to keep the frequency under 200Hz and for two pole AM it can give the speed from (7) ns = 12 000rpm. For the vehicle speed 144km/h = 40m/s and the wheel circumference 2m its rotation speed nW is:
Then the total ratio between the AM and the wheel must be from (3):
which can be realised by 3 pairs of cogwheels minimally.
Beside of typical mechanical losses due to friction and ventilation losses, which both are speed dependent, there are in the EM specific electrical losses and these can be divided into two groups. The current depend losses, or Joule losses grow up with the square of current:
and looking in (5), they grow up with square of torque.
The other group of losses has origin in the magnetic circuit (iron) due its alternating flux. These losses can be described by formula:
where mFe is the AC iron mass. The grow up with speed is more than linear, but if the EM has not PM field, the flux can be reduced when there is no need of full torque (5) to reduce the iron losses, but increased current results in the Joule losses grow up. The optimal flux at any speed and power can be estimated. The greatest advantage of controlled flux is at high speed and no torque run (by inertia or downhill), when the PM machine has high iron losses and they are supplied from kinetic energy of vehicle, which means they are braking the vehicle undesirably.
First EV has been built in the 1835 and 1836 respectively; the speed record 105km/h was also reached with EV in 1899 with lead acid battery. Edison tried to build EV with his Ni-Fe batteries, but without commercial success. From the year 1903 when Ford established 146km/h speed record, the petrol ruled the vehicles power supply, because of its very high energy density, which is about 36MJ/L = 10kWh/L, because the petrol density is only 0.72kg/L the mass density value is over 14kWh/kg. Also the charging power is enormous, if filling the tank by speed 2L/s the 60L tank can be full in 30s and “supplying power” is 72MW.
Comparing with liquid hydrocarbons, the best available batteries have only 0,2kWh in one kilogram. There are some projects of better electric storage devices based on electrostatic principle, but they are only in patents and no sample has been presented. In the electrochemical batteries, the most promising are lithium-air, which can change completely the electric vehicles during next ten years. Special problem of batteries with numerous cells is their cooling (and heating) system keeping optimal temperature in all the battery pack and the voltage distribution control (charge management) for in series cells avoiding overcharging which can damage the cells with danger of explosion and fire.
Two parameters must be watched if looking for optimal battery, the energy density and the power density. Survey of suitable batteries for EV is in Table 4.
Nearly all the 20th century there was no new chemistry in secondary cells (rechargeable) introduced and only the technologies were improved in two basic batteries.
Lead-acid is wide spread battery for engines starting and for emergency power supply, the Edison alkaline battery nickel – iron Ni-Fe was slightly improved by cadmium Ni-Cd. This kind of batteries was mostly used for railway vehicles and communication technologies. The silver based chemistry Ag-Zn was able to supply electric vehicle, but the silver is not widely available (precious metal) and such batteries can be used only in very special purposes for military or space technologies.
Lead-Acid | (Ni-MH) | Lithium-Ion | |
First Use (Commercial) | 1859 | 1989 | 1991 |
Current Use(Automotive) | Traditional 12-volt batteries | For today’s generation of HEV | Under development for PHEV and BEV |
Strengths | Long proven in automotive use;Price | Twice the energy/weight as lead-acid | About twice the energy content of Ni-MH |
Weaknesses | Heavy; low energy/weight ratio for EV | High cost (four times the cost of lead-acid) | Expensive until production volume |
Energy density | 30 - 40Wh/kg | 65 - 70Wh/kg | 100 - 150Wh/kg |
Recyclability | Excellent | Good | Very Good |
Electrochemical Batteries Evaluation
Only the last decade of the 20th century and the new electronics devices, connected with communication and information technologies, bring the progress in the cell chemistry. The lithium ion and lithium polymer batteries replaced in few years the Ni-Mh in cellular mobile phones, notebooks and other audio and video portable players. The Ni-Cd has been also replaced in its last important area of use, which was hand-tools supply. This new batteries generation has, up to three times, higher energy density, then old chemistries, which give new possibilities for electric vehicle construction. Lithium is very promising and many new prospective chemistries with lithium are invented and developed, the survey is in Table 5.
Chemistry | Company |
Doped Lithium Nanophosphate | A123 |
Manganese Spinel | LG / NEC |
Lithium Nickel Cobalt Aluminium Oxide | Panasonic |
Lithium Manganese Oxide | Hitachi |
Lithium Cobalt Oxide | Commercial offer |
Lithium Titanate Spinel | Altair Nano |
Lithium Iron Phosphate | Lishen |
Lithium Manganese Titanate | EnerDel |
Lithium Battery Chemistry Survey
The greatest problem of any battery for electric vehicle is beside its lifetime in cycles, but also its low internal electric resistance, thermal stability between -40 to +60ºC, shock resistance, non toxicity, fire safety, but mostly its charging properties and its price, which can create important part of the vehicle price. For the car construction there is important also the volume and mass energy density. The cheapest chemistry is the lead acid, which his used in all cars for engine starting, but in electric vehicles only in old neighbourhood vehicles and golf cars. The modern hybrids use Nickel – Metal Hydride chemistry or Lithium, which is in strong development connected with communications and information technology produced therefore only in small cells about 2Wh. Tesla Car Company started the production of their BEV, which was designed few years ago with old technology lithium battery consisting from 6 831 small cells a little bigger than AA size (8Wh each).
The big problem for EV is the long time for charging the battery, which is not comfortable for permanent transport in business, comparing this time with gasoline filling, where the entire tank can be filled in the time under one minute. The calculation of the power of such filling results in megawatts. The fast charging brings not only the problems with battery cooling, but also problem with power peaks in grid, because there are no reservoirs for electrical energy (EE) similar to tanks for petrol and rapid charging results in high power peaks:
To charge 10kWh (which is equivalent energy of one litre petrol) in one minute, from this formula, gives the charger power 600kW (!). Because the charging is not very efficient, and more than 100kW are the losses – the heat, such rapid charging connected with energy conversion is impossible. The only hope is here the storage of EE in electrostatic field, which is not connected with energy conversion.
The rapid charging can be more effective if there is not required full charging. The partial charging is described by SOC (state of charge) in percent of full capacity. Similarly is defined the DOD (depth of discharge), which define the percent of full charge, which was taken from battery and partial discharging extends the lifetime significantly.
The energy for charging is due to chemical processes much higher, than is the energy received during discharge. It can be demonstrated on the lead acid cell, which is discharged at 2V and for each 1Ah must be recharged 1,2Ah at voltage 2,4V. From this can be easily calculated the efficiency:
and similar value is valid also for the other chemistries.
Lead acid: The first in history secondary battery (1859), mass produced for ICE starting in all vehicles, for emergency power supply and UPS (uninterruptible power supply), it is very cheap, with number of full cycles about 400, but special construction for traction has increased number of cycles to 2000. The sulphuric acid electrolyte is very corrosive and the lead is only metal, which resists in this medium. The sealed construction and gel electrolyte allow using this battery in any position without danger of stain or effusion. Its energy density is up to 40Wh/kg, due its price it is very popular for EV drives, but the operating range is very limited and the lifetime less than 5 or 10 years respectively. Another disadvantage is the danger of sulphatizing, which can be prevented by immediate charging after run that means the battery cannot be left discharged.
Nickel or Alkaline battery: The alkalic electrolyte with NaOH or KOH is less aggressive and Edison realized the first alkaline secondary cell with Nickel and Iron electrodes so called Ni-Fe battery. Nickel cadmium Ni-Cd is an improved chemistry with higher power density. The voltage of cell is only 1.2V, but the lifetime of such battery with minimal maintenance is about 20 years. It is mostly used in railway wagons and in hand tools. The toxic cadmium was about 20 years ago (1989) successfully substituted by metal hydrides in so-called Ni-MH cells, with better energy density. This chemistry is used in Japan HEV.
Energy density in various battery chemistries
Na-MCl2 chemistry has similar parameters with Ni-MH and also Ni-Zn is from the same family with similar gravimetric density but weaker volumetric density.
Lithium battery: Very reactive lithium has highest potential, but the technology was mastered only in 1991 (by Sony). The lithium ion cells LiCoO2 with rated voltage 3.75V are widely used in cellular phones and notebooks; the battery with serial connected cells must have electronic balancing system to avoid the overcharge at any cell. In last few years the big cells for traction are produced, with capacity up to 2 000Ah and new chemistry LiFePO4 (lithium iron phosphate) Table 5. Comparing to lead acid the fast discharge of lithium battery does not decrease the capacity, but the energy is lower due to joule losses in internal resistance.
The theoretical specific energy of lithium thionyl battery is 1 420Wh/L (explosive TNT has 1 920Wh/L) and the theoretical specific energy of lithium-oxygen is over 5 000Wh/kg, which gives more traction energy than the petrol of the same volume or weight, if the ICE efficiency is taken into account (Fig.8).
A lithium-titanate battery is a modified lithium-ion battery that uses lithium-titanate nano-crystals on the surface of its anode instead of carbon. This applied nanotechnology gives the anode a surface area of about 100 square meters per gram, compared with 3 square meters per gram for carbon, allowing electrons to enter and leave the anode quickly. This makes fast recharging possible and provides high currents when needed
Other chemistries: In last forty years after the renaissance of EV many new electrochemical batteries have been studied, but they did not convince. High temperature NaS has good parameters, but bad maintenance, Zn-Br needs two tanks for pumping electrolyte, which stores the energy similarly as the vanadium battery, suitable more for stationary applications. Special category is Ag-Zn chemistry with super performance, but due to limited silver cannot be widespread system and it is used only in the very special military or space applications.
The super-capacitors (SC) are the first revolutionary technology, which can be compared to electrochemical batteries in energy density and have much better power density, suitable for the power peaks in short time.
Quantum Battery (QB) promises the surprising energy density, it is based on the discovery of quantum effect on TiO2 sample, measured by Swiss inventor and described in patent application. The rutile crystals, 15nm long, absorb at 180V the energy with density 8 – 12MJ/kg. It is very optimistic, but without working prototype and with the theory of photon resonance only. Author describes cheap technology with possible market price 15USD/kWh. The predicted low self-discharge (about 6,3 % per month) and long durability would be optimal for EV.
EEStore from Cedar Park, TX, also announces the promising technology of high voltage solid dielectrics super-capacitor based on thin layer (nanometers) with high permittivity barium titanate composite. In the last period the power density 1200kJ/kg is referred, which is four times more than electrochemical battery, moreover without looses and with short recharging time less than one minute. But nanotechnologies in batteries with lithium chemistry can be also competitive, as is mentioned above.
As it is mentioned above, the absence of running ICE in PHEV means, there is no source of thermal energy suitable for cabin heating. The heating as well as cooling, simply all the cabin air condition can be realised by heat pump with electric drive, which must be developed for next PHEV. The heat pump usage can save significantly the spending of limited battery energy for non traction purposes.
There is also no mechanical drive of powered steering pump, powered braking without running ICE and the modern car is supposed to have all these facilities, which must be realised by local electric drives.
The lighting, dashboard and cabin electronics need low voltage supply, which must be also realized by power electronics DC/DC inverter, instead of rotating generator.
All here listed components that must be developed for PHEV can later serve also for BEV, when better battery will be available, but these components design, technology and manufacturing must be realized and tested before starting the PHEV mass production.
The liquid hydrocarbons are optimal for transport due their extremely high energy density when in 50kg tank can be stored 500kWh, it is of course the thermal energy, but if the total efficiency (of all the energy conversion from fuel to heat, mechanical force on piston, torque from crankshaft, via gearbox and axis to the wheels) is only 16 - 24%, as is calculated in Table 6. Taking the middle value 20% there is the traction energy 100kWh to disposal. The common passenger car with such petrol can run between 500 and 1000km. It is about 0,2kWh/km and for 60km must be in the battery more than 12kWh.
In the Table 6 is the survey of all components of drive train with typical efficiencies and for more vehicles and operating modes is the total efficiency calculated. From first two rows is evident, that the classical petrol car in city transport has 50% increased fuel consumption, because its engine works with lower efficiency at low power (Fig.11). The new symbols in Table 6 are MGB for manual gearbox, REC for AC/DC inverter (rectifier), INV for DC/AC inverter and RDG for reduction and differential gearbox.
The PHEV without ICE has efficiency 77% if calculated from the battery energy, but only 54% if calculated from the plug. If the PHEV charges its battery from running ICE, its total efficiency can fall under the classic vehicle in the city traffic and if its ICE will be used only for EM supply its efficiency is still under the classic vehicle. Last example in the table is for Diesel – electric drive on big locomotive (Fig.9), where due better efficiencies of big power components is also the total efficiency satisfactory.
ICE | GEN | MGB | REC | BAT | INV | EM | RDG | TOTAL | |
Classic Car | 0,30 | --- | 0,85 | 1,00 | --- | --- | --- | 0,95 | 0,24 |
Classic Car - City | 0,20 | --- | 0,85 | 1,00 | --- | --- | --- | 0,95 | 0,16 |
PHEV - Electric | 0,95 | 0,85 | 0,95 | 0,77 | |||||
PHEV - Electric | 0,70 | 0,95 | 0,85 | 0,95 | 0,54 | ||||
PHEV – Charging BAT | 0,30 | 0,85 | --- | 0,95 | 0,70 | 0,95 | 0,85 | 0,95 | 0,13 |
PHEV – No Charging | 0,30 | 0,85 | --- | 0,95 | 1,00 | 0,95 | 0,85 | 0,95 | 0,19 |
Loco D-E - 1MW | 0,38 | 0,90 | --- | 0,95 | 1,00 | 0,95 | 0,90 | 0,95 | 0,26 |
Efficiency of Drive Train for Various Vehicles
Diesel electric transmission is effectively used in locomotives for rail transport, but there is no energy accumulator in the power train and the generator – inverter – motor (Fig.9) works here as an alternative to mechanical shafts and gearboxes, with better flexibility and high efficiency. It is also the rated power of components, which gives the nice efficiency, because the motors are in the power 100 – 1000kW. The greater rated power the higher efficiency is standard property of every machine.
Typical configuration of Diesel – Electric Locomotive (serial power flow)
If the PHEV would be, after spending the energy accumulated in battery from the grid, operated similar way as this diesel – electric loco without charging the battery from engine and the battery would be used only in the same mode as is in actual HEV, that means for accumulating of kinetic energy during recuperative braking, the electric power train efficiency has not be so bad.
From this locomotive can be also copied the multi-motor scheme when each axis has one EM. For road vehicle it can be the advantage if any wheel has its motor, but small motors are again less efficient. Possible solution can be the drive management with switching-off the motors at constant speed, when the individual EM for each wheel allows the optimal regenerative braking with ABS control, preventing the wheel blocking, because every wheel torque and speed can be controlled separately. The storage system can return the energy from braking into next acceleration and reduce the energy consumption, but it is similar as in standard hybrid, when greater battery capacity allows to store not only the energy from one acceleration - deceleration cycle, but also (in mountainous countries) to exploit the potential energy from downhill drive for next uphill climb.
What is the fuel savings composition in HEV is briefly explained in Fig.10, where the negative influence of increased vehicle mass (battery + EM) represents the first column. The next three columns are contributions from HEV technology given by no ICE idle run, ICE speed control and EE recuperation by electric braking.
The standard HEV as is in Fig.1 saves the fuel only in the city traffic. The ICE specific fuel consumption is in Fig.11 and it is evident, that for the torque under 15% of rated value, the fuel consumption grows more than twice.
Fuel saving components of HEV in city transport
Specific Fuel Use for ICE in Honda Insight
The serial PHEV is also good alternative for military vehicles and other vehicles for operation out of civilization and out of grid, where the battery can be charged only from Diesel-generator. Here is not the advantage of night charging from the plug, but the generator with battery can serve as an independent power source for local DC or AC grid from inverter. So it can be said, that such vehicle is more plug-out than plug-in, but its composition is similar, maybe with higher ICE and generator power.
The last time concepts of PHEV suppose also solutions with mechanical connection of ICE to wheels in highway traffic mode, when the EM and generator can be smaller and thanks “shorter” drive chain the fuel consumption can be reduced comparing with electric chain. Such concept can separate also the wheels driven by ICE and by EM and the typical front-wheel drive vehicle can be can be equipped with electric rear-wheel drive.
PHEV without Generator
Because the charging from ICE is not very efficient and does not save the fuel, it is possible to realize the vehicle, where each axis is driven by one motor (Fig.12). For short distance trips the axis 1 is driven by EM supplied from battery and here can be also the energy recuperated from braking or downhill rides. For the long distance trips on highways the ICE drives the axis 2, which is connected to the first axis only by road surface, EM does not help in drive, but it can again recuperate and in low speed drive, when the ICE does not work with high enough efficiency, the driving torque from ICE can be bigger than is necessary and EM can in generator run the surplus energy change into EE and charge the battery. Instead of generator in Fig.3 here is the gearbox (manual or automatic) and the second reduction and differential gearbox, both are from standard production. It is perfect union of two independent drives available in emergency.
The reasons for PHEV are
Ecology, because the energy from renewable power sources reduces the carbon emissions
Independence on oil import, because practically all suitable fuels for the ICE are produced from oil. Coal hydrogenation was also developed in the war years and in some tropical countries (like Brasilia) there are produced the alcohol fuels from plants with sugar. For Diesel engines there is produced the oil from plants in the last years, to replace the mineral oils.
Efficiency, especially in the city transport with low average speed and often stops and traffic jam, where the combustion engine works with very low efficiency and also much of fuel is spent in idle run.
Safety, due more automatic drive control in electric transmission drive train
The greatest advantage of the PHEV mass production is important oil consumption decrease and increase of electricity production in the night hours when the price is minimal. The distributors are also planning the smart grids in near future based on numerous batteries in PHEV (or battery only vehicles) which can help to control the electrical energy balance in grid for keeping the high quality parameters without voltage dips and sags.
The Czech Ministry of Education, Youth and Sport Financial Support, Program No. OC169 for COST Action 542, is acknowledged.
The financial support of the Czech Ministry of Defence Program for the Organization Development (University of Defence in Brno) is acknowledged.
The governing equations of physical, biological and economical models often involve features which make it impossible to obtain their exact solution. For instance, problems where we observe “a complicated algebraic equations”, “the occurrence of a complicated integral”, in case of differential equations (DE), “a varying coefficients or nonlinear term” sometimes problems with an awkwardly shaped boundary are tough to solve with the limited methods for finding analytical solutions. The main purpose of this chapter is to describe the application of perturbation expansion techniques to the solution of DE. Approximate expressions are generated in the form of asymptotic series. These may not and often do not converge but in a truncated form of only two or three terms, provide a useful approximation to the original problem. These analytical techniques provide an alternative to the direct computer solution. Before attempting to solve these DE numerically, one should have an awareness of the perturbation approach. An example of this occurs in boundary layer problems where there are regions of rapid change of quantities such as fluid velocity, temperature or concentration. Appropriate scaling of the boundary layer dimension is required before a numerical solution can be generated which will capture the behavior in the rapidly changing region.
\nWhen a large or small parameter occurs in a mathematical model of a process there are various methods of constructing perturbation expansions for the solution of the governing equations. Often the terms in the perturbation expansions are governed by simpler equations for which the exact solution techniques are available. Even if exact solutions cannot be obtained, the numerical methods used to solve the perturbation equations approximately are often easier to construct than the numerical approximation for the original governing equation.
\nFirst, we consider a model problem for which an exact solution is available against which the perturbation expansion can be compared. A feature of the perturbation expansions is that they often form divergence series. The concept of an asymptotic expansion will be introduced and the value of a truncated divergent series will be demonstrated.
\nThis example studies the effect of small damping on the motion of a particle. Consider a particle of mass \n
Integrating (1), we obtain the solution \n
On defining the non-dimensional velocity \n
with the solution \n
Taking account of the air resistance, and is included in the Newton’s second law as a force dependent on the velocity in a linear way, we obtain the following linear equation
\nwhere the drag constant \n
Let us denote the dimensionless drag constant by \n
where \n
It is possible to solve (6) exactly since it is of variables separable form. Here, we solve by an iterative process, known as perturbation expansion for the solution.
\nLet \n
The justification for this iterative scheme is that the term \n
The first iterate is obtained by neglecting the perturbation, thus
\nThis is known as the unperturbed problem, and direct integration yields
\nThe next iterate \n
and integration yields
\nSimilarly, \n
Direct integration yields the solution
\nRearranging the terms in these iterates in ascending powers of \n
Clearly as the iteration proceeds the expressions are refined by terms which involve increasing powers of \n
An alternative procedure to that of developing the expansion by iteration is to assume the form of the expansion at the outset. Thus, if we assume that the perturbation expansion involves the standard asymptotic sequence \n
The coefficients \n
Thus, the coefficients of powers of \n
The proof of validity of this fundamental procedure can be developed by first setting \n
This is valid for all nonzero values of \n
Integrating the equations in (11), we obtain
\nUsing these values in (9), we obtain that
\nThis is the same as the expansion (8) which is generated by iteration.
\nThe IVP (6) can be solved exactly as
\nThe perturbation expansion can be obtained from (12) by replacing the exponential function by its Maclaurin expansion, i.e.,
\nThis is the same as the expansion (12). Thus, the perturbation expansion approach is justified in this case. One can refer the books [1, 2].
\nThe letters \n
If a function \n
The functions are said to be of the same order as \n
For example, we have the following functions:
\nThe expression
\nmeans that \n
We have the following functions satisfy the \n
Consider the expansion
\nis an asymptotic expansion as \n
The following expansion is used when (17) and (18) hold,
\nHere, \n
The sequence \n
Some examples of asymptotic sequences are
\n\n
\n\n
The general expression for an asymptotic expansion of a function \n
where the coefficients \n
where
\nIf a function possesses an asymptotic expansion involving the sequence \n
Consider a function \n
The coefficients of the gauge functions \n
Refer [3, 4] for more details. For (24) to be a uniform asymptotic expansion the ultimate proportionality between \n
for \n
An example of a uniform asymptotic expansion is \n
An example of a nonuniform expansion is
\nHere, one cannot find a fixed \n
The expansion (27) becomes nonuniform when subsequent terms are no longer small corrections to previous terms. This occurs when subsequent terms are of the same order or of dominant order than previous terms. Subsequent terms dominate previous terms for larger \n
The critical case is such that subsequent terms are of the same order. This determines the region of nonuniformity. In (27), the region of nonuniformity occurs when \n
There are two common reasons for nonuniformities in asymptotic expansions, they are
Infinite domains which allow long-term effects of small perturbations to accumulate.
Singularities in governing equations which lead to localized regions of rapid change.
Consider the nonlinear Duffing equation
\nSuppose the solution may be expanded using the standard asymptotic sequence
\nOn substituting this in (28) and in the initial conditions, we get
\nEquating like of powers of \n
and
\nSolving Eqs. (30) and (31), we obtain
\nThe term \n
The trigonometric functions are treated as \n
The second common source of nonuniformities is associated with the presence of singularities. Consider, the following initial-value problem:
\nwhere \n
Substituting (34) in (33), we have
\nEquating coefficients of like powers of \n
Clearly, \n
but the initial condition \n
The unperturbed problem, obtained by setting \n
Thus, the perturbation expansion (36) is a good approximation of the exact solution away from the region \n
The perturbation expansion (36) generates the second member of (37), but not the first member. The coefficient \n
Boundary layers are regions of nonuniformity in perturbation expansions of the form (36).
\nBoundary layers are regions in which a rapid change occurs in the value of a variable. Some physical examples include “the fluid velocity near a solid wall”, “the velocity at the edge of a jet of fluid”, “the temperature of a fluid near a solid wall.” Ludwig Prandtl pioneered the subject of boundary layer theory in his explanation of how a quantity as small as the viscosity of common fluids such as water and air could nevertheless play a crucial role in determining their flow. The viscosity of many fluids is very small and yet taking account of this small quantity is vital. The essential point is that the viscous term involves higher order derivatives so that its omission necessitates the loss of a boundary condition. The ideal flow solution allow slip to occur between a solid and fluid. In reality the tangential velocity of a fluid relative to a solid is zero. The fluid is brought to rest by the action of a tangential stress resulting from the viscous force.
\nMathematically the occurrence of boundary layers is associated with the presence of a small parameter multiplying the highest derivative in the governing equation of a process. A straightforward perturbation expansion using an asymptotic sequence in the small parameter leads to differential equations of lower order than the original governing equation. In consequence not all of the boundary and initial conditions can be satisfied by the perturbation expansion. This is an example of what is commonly referred to as a singular perturbation problem. The technique for overcoming the difficulty is to combine the straightforward expansion, which is valid away from the layer adjacent to the boundary. The straightforward expansion is referred to as the outer expansion. The inner expansion associated with the boundary layer region is expressed in terms of a stretched variable, rather than the original independent variable, which takes due account of the scale of certain derivative terms. The inner and outer expansions are matched over a region located at the edge of the boundary layer. The technique is called the method of matched asymptotic expansions.
\nConsider the following two-point boundary value problem:
\nwhere \n
then the equations associated with powers of \n
and the boundary conditions require
\nwhich leads to
\n\nEquation (42) require that each \n
The general solution of (42) is \n
From (42), we obtain the equations
\nand its solutions are
\nTherefore, the outer expansion is
\nwhere ‘out’ label is used to indicate that the solution is valid away from the region near \n
The exact solution of the BVP (38) can be obtained as
\nThe constants \n
We know that \n
and the exact solution is
\nafter rearranging the terms in asymptotic order, we obtain
\nComparing the exact solution with the outer expansion shows that the terms involving \n
The behavior of the exact solution and the zeroth-order term of the outer expansion are plotted in \nFigure 1\n for various values of \n
Exact solution of (38) for various values of \n\nε\n\n.
By differentiating the leading order term \n
Outside the boundary layer, i.e., for \n
This indicates that \n
so that within the boundary layer
\nThe variable \n
We assume a boundary layer expansion, called the inner expansion of the form
\nThe inner expansion will satisfy the boundary condition at \n
with solutions
\nThe boundary condition at \n
The leading order terms in the ‘inner’ and ‘outer’ expansions are to be matched at the ‘edge of the boundary layer’. Of course there is no precise edge of the boundary layer, we simply know that it has thickness of order \n
Equating at \n
If, instead we choose to match at \n
These two expressions differ in the argument of the exponential and differ algebraically with \n
where the remainder is uniformly \n
The limit \n
Applying these conditions to the current example leads to
\nwhich yields \n
To prove that these are valid leading terms we consider \n
We conclude that the matching condition has correctly predicted the leading order terms.
\nAs single composite expression for these leading order terms can be constructed using the combination
\nwhere \n
For the current example, \n
Prandtl’s matching condition can only be used for the leading order terms in the asymptotic expansions.
\nThe outer, inner and composite expansions of the BVP (38) are presented in \nFigures 2\n and \n3\n for different values of \n
Outer, inner and composite expansions. (a) For ε = 0.2; (b) For ε = 0.1.
Outer, inner and composite expansions. (a) For ε = 0.05; (b) For ε = 0.025.
Consider the following linear DE
\nThe following general statements can be made about the boundary layer location and the nature of the inner expansion.
\n\nCase I. If \n
The solution of this equation is
\nwhere \n
\nCase II. If \n
\nCase III. If \n
The boundary layers which we have met so far have all had thickness \n
There are practical situations where the boundary layer thickness will be of \n
Consider the example
\nSince the signs of the first and second derivatives are the same, and the boundary layer will occur at \n
The one-term outer expansion \n
To determine the inner expansion we first wrongly assume that the boundary layer thickness is \n
If the appropriate stretching transformation has been used for the boundary layer then \n
The solution is \n
Thus, we reject the assumption of a boundary layer of thickness \n
Next, suppose that the boundary layer thickness is \n
Again we argue that if the appropriate stretching has been used then all derivatives are of \n
The solution is \n
The correct choice of stretching transformation is \n
The dominant equation satisfied by \n
The solution is \n
which leads to \n
The one-term composite expansion is
\nThe leading order boundary layer equation associated with the stretching transformation \n
The composite expansion (62) can be verified by comparing with the exact solution of (56). The general solution of (56) is
\nwhere
\nWe expand \n
so that
\nUsing the boundary conditions and by neglecting the transcendentally small term \n
There is an apparent discrepancy between (64) and the composite expansion (62) in the coefficient of the \n
Consider the following two-point BVP:
\nWe seek a one-term composite expansion for the above BVP. We will tentatively assume that a boundary layer occurs at \n
The one term outer expansion satisfies
\nIts exact solution is \n
Let us assume that the boundary layer thickness is of \n
The second-term is always dominated by the third, so the principle of degeneracy requires the first term to be of the same order as the third term (i.e., \n
The solution of the above problem is \n
which yields \n
The on-term composite expansion is
\nWe conclude this example with the observation that a choice for the value of the index \n
Thus, if \n
which gives \n
Consider the BVP:
\nThe coefficient of the first derivative (convective term) is positive in \n
with the solution \n
The outer expansion for negative \n
with the solution \n
We suppose the boundary layer at \n
The third term is dominated by the second term. The first term has the same order as the second term if \n
Its solution can be given by
\nPrandtl;s matching condition applied to the region \n
and corresponding for \n
Using the limiting values \n
A composite expansion cannot be formed in the standard way when there is more than one outer solution. However, the behavior of \n
Utilizing this enables a uniformly valid one-term composite expansion to be constructed which yields the correct coefficient of \n
Consider the following semilinear
\nThe coefficient of the first and second order derivatives have the same sign, so the boundary layer will occur at the left boundary \n
and the solution is \n
The one-term inner expansion \n
which gives \n
Next, consider the quasilinear problem
\nThe nonlinearity is associated with the first derivative term. The location of the boundary layer depends on the relative sign of the first and second derivative coefficients. If we assume that the dependent variable is nonnegative throughout the interval \n
with the solution \n
Assuming that the boundary layer thickness is \n
Its solution is \n
Application of perturbation techniques to partial differential equations, and other types of problems can be seen in the books [5, 6].
\nThe authors declare no conflict of interest.
I owe a great debt to my mentor Prof. S Natesan, Department of Mathematics, IIT Guwahati, who introduced me to this topic. The chapter was discussed during my stay at IIT Guwahati.
\nIf your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\nIMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nLITHUANIA
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nSWITZERLAND
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nMonographs Only
\n\n\n\nLITHUANIA
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nSWITZERLAND
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n