Summary of bionomics of the DVS of the Americas (created by cross referencing TAG and literature searches). Filled dot (∙) indicates typical behaviour, open dot (◦) indicates non-typical behaviour but examples exist, and dashes (-) indicate no data.
\r\n\tSolar radiation is the radiant energy that originated from the sun in the form of electromagnetic radiation at various wavelengths. Solar radiation is the source of renewable energy and can be captured and converted into various forms of energy (e.g. electricity and heat) using different technologies.
\r\n\tA very vast amount of solar energy reaches the atmosphere and surface of the earth and solar energy has been used for heating purposes for a very long-time and after solar cells’ invention in 1954, solar cells have also been used widely for electricity generation. Solar cells convert the sunlight into electricity by the creation of voltage and electric current through the so-called photovoltaic effect.
\r\n\tPhotovoltaic (PV) solar energy has attracted significant attention in the recent decade as a reliable source for power generation due to various merits such as the free source of energy, abundant materials resources, environmentally friendly and noise-free, longtime service life, requiring low maintenance, technological advancements, market potential, and very importantly, low cost. The growth of using photovoltaic (PV) solar energy as a promising renewable energy technology, is being increased more and more worldwide. Therefore, much further research is needed for possible future developments in the field of solar photovoltaic energy.
\r\n\tThe aim of this book is to provide detailed information about solar radiation as the source of photovoltaic (PV) solar energy for a broad range of readership including undergraduate and postgraduate students, young or experienced researchers and engineers.
\r\n\tThis should be accomplished by addressing the various technical and practical aspects of solar radiation fundamentals, modeling and the measurement for photovoltaic (PV) solar energy applications.
\r\n\tThe majority of this book should describe the basic, modern, and contemporary knowledge and technology of extraterrestrial and terrestrial solar irradiance for photovoltaic (PV) solar energy.
\r\n\tThe book covers the most recent developments, innovation and applications concerning the following topics:
\r\n\t• Fundamental of solar radiation and photovoltaic solar energy
\r\n\t• Solar radiation and photovoltaic solar energy potential
\r\n\t• Solar irradiance measurement: techniques, instrumentation and uncertainty analysis
\r\n\t• Solar radiation modeling for photovoltaic solar energy applications
\r\n\t• Solar monitoring and data quality assessment
\r\n\t• Solar resource assessment and photovoltaic system performance
\r\n\t• Solar energy and photovoltaic power forecasting
\r\n\tThese are accompanied with other useful research topics and material.
",isbn:"978-1-83968-859-1",printIsbn:"978-1-83968-858-4",pdfIsbn:"978-1-83968-860-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"4c3d1319d7286e81bfb15c1f4b20460a",bookSignature:"Dr. Mohammadreza Aghaei",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9862.jpg",keywords:"Solar Radiation Modeling, Solar Data Assessment, Solar Monitoring, Solar Radiation Forecasting, Solar Irradiance Measurements, Solar Instruments, Solar Spectral Distributions, Uncertainty Analysis, Solar Cell Technologies, Photovoltaics (PV), Solar Resource Assessment, Photovoltaics Power Forecasting",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 17th 2020",dateEndSecondStepPublish:"October 15th 2020",dateEndThirdStepPublish:"December 14th 2020",dateEndFourthStepPublish:"March 4th 2021",dateEndFifthStepPublish:"May 3rd 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A senior researcher in the field of photovoltaic solar energy, a postdoctoral scientist at Eindhoven University of Technology (TU/e), Chair of the WG2: reliability and durability of PV in EU COST PEARL PV.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"317230",title:"Dr.",name:"Mohammadreza",middleName:null,surname:"Aghaei",slug:"mohammadreza-aghaei",fullName:"Mohammadreza Aghaei",profilePictureURL:"https://mts.intechopen.com/storage/users/317230/images/system/317230.jpg",biography:"Mohammadreza Aghaei is a senior researcher in the field of photovoltaic solar energy, Eindhoven University of Technology (TU/e), The Netherlands. He is chair of the Working Group 2: reliability and durability of PV in European Cooperation in Science and Technology, COST Action PEARL PV.\nHe received the M.S. degree in electrical engineering from the Universiti Tenaga Nasional (UNITEN), Selangor, Malaysia, in 2013, and the Ph.D. degree in electrical engineering from the Politecnico di Milano, Milan, Italy, in 2016.\nHe was a Postdoctoral Scientist with Fraunhofer ISE and Helmholtz-Zentrum Berlin (HZB)-PVcomB, Germany, in 2017 and 2018, respectively. He is a Guest Scientist with the Department of Microsystems Engineering (IMTEK), Solar Energy Engineering, University of Freiburg since 2017. He is currently a Postdoctoral Scientist with the Design of Sustainable Energy Systems Group, Eindhoven University of Technology (TU/e), The Netherlands. He has authored numerous publications in international refereed journals, book chapters, and conference proceedings. The main his research interests include Solar Energy, Photovoltaic systems, PV monitoring, LSC PV, solar cells, machine learning, and UAVs.\nDr. Aghaei is a member of the International Energy Agency, PVPS program-Task 13 and International Solar Energy Society, and also an MC member in EU COST Action PEARL PV.",institutionString:"Eindhoven University of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Eindhoven University of Technology",institutionURL:null,country:{name:"Netherlands"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"43624",title:"Global Distribution of the Dominant Vector Species of Malaria",doi:"10.5772/54163",slug:"global-distribution-of-the-dominant-vector-species-of-malaria",body:'Human malarial protozoa are transmitted by mosquitoes of the genus Anopheles. There are 465 formally recognised species and more than 50 unnamed members of species complexes [1]. Approximately 70 of these species have the capacity to transmit human malaria parasites [2] and 41 are considered here to be dominant vector species/species complexes (DVS), capable of transmitting malaria at a level of major concern to public health [3, 4] (Tables 1-3).
The aim of this chapter is to document the distribution of these DVS using global and regional maps. In addition, behavioural summaries are provided for the most important species, i.e. those on each continent that are considered the most dangerous and responsible for most malaria transmission, and hence have the greatest impact on human health. Only the primary vectors in those regions with current and problematic malaria transmission are discussed further here (i.e. the vectors of Europe and the Middle-East are not included – but more details can be found in Sinka et al. [5]) The regions covered include the Americas, Africa and the Asian-Pacific.
The maps presented (e.g. Figure 1) provide species location information and highlight the existence of a greater number of vector species than is often considered, many in sympatry, across the malarial zones. Amongst these DVS, there are often important behavioural characteristics that must be considered if successful vector control is to be applied. For example, some species do not always enter houses to bite, are most active in the early evening, and prefer to rest outdoors after feeding, such as many of the species common in South America (e.g. An. albopictus, An. marajoara, An. nuneztovari), An. dirus in South-East Asia and An. farauti in the Australian-Pacific region. Others are highly opportunistic in their feeding habits (including An. darlingi, the most ‘dominant’ south American species amongst the South American DVS); biting readily indoors or out. As such, a large investment in insecticide treated bednets (ITNs) or insecticide residual spraying (IRS) will not reduce malaria transmission where such species occur. Thus, to appreciate where different malaria control methods are best applied, one must know what Anopheles species exists in an area and understand their behaviour. A map clearly and simply addresses the first of these needs, and if accompanied by a behavioural summary, than informed decisions about how to combat malaria transmission can be made.
Maps clearly illustrate the spatial extent of a species’ distribution. Often, even within a single Anopheles species range, behaviour can vary depending on location. The best known example is the An. gambiae complex. The An. gambiae complex was initially considered as a single species. Clear differences in behaviour reported across its distribution caused it to be examined more closely and now this complex is considered to include eight species [1, 6] including the DVS: An. arabiensis, An. gambiae, An melas and An. merus.\n\t\t\t\tAnopheles arabiensis, is considered mostly zoophilic, when compared to the highly anthropophilic An. gambiae, but still plays a very important role in malaria transmission – indeed, its presence and propensity to rest outdoors is attributed (amongst other factors) to the ‘failure’ of the mass indoor residual spraying program intended to control malaria in Nigeria during the Garki project [7]. Variability in behaviour within the An. gambiae species (rather than the complex) is also commonly reported [5]. Such spatially dependant variability amongst the DVS will be discussed further within this chapter.
The maps presented in this chapter are not a comprehensive analysis of all anophelines. They show only those species designated as DVS; a categorisation initially based on information taken from a number of authoritative reviews [8-12] ([10] translated and updated:[13]) and with additional guidance from a technical advisory group of vector experts [3, 5, 14, 15]. This chapter will also briefly touch upon the methodology behind creating the distribution maps for these DVS including what information is needed to ensure increasingly accurate maps can be produced in future.
The global DVS map (Figure 1) gives a clear overview of the variability in vector complexity across the world. Africa appears to show a relatively simple picture of a small number of highly dominant species covering large areas of the continent and although the ‘secondary DVS’ are not shown (see Figure 4), even with their influence, the comparative complexity between African and Asia is very different. The Asian-Pacific region has 19 DVS [14] (16 of which are shown on the multi-species maps presented here (Figures 1 & 5) – see below) whereas Africa has only seven DVS [5], with the three ‘primary’ DVS shown on the global map (Figure 1 - see below). Of the 19 species in the Asian-Pacific, nine are now considered species complexes, whereas of the seven African DVS, only An. nili is a confirmed species complex (the An. gambiae complex is not included here, as specific individual members of the complex are categorised within these seven African DVS) [1, 6, 16]. It is unclear what is the cause of the high diversity of vectors found in the Asian-Pacific region, but it may be simply a factor of the large number of islands, and hence a consequence of limitations in dispersal and specialisation within a restricted environment. Whatever the reason, the Asian-Pacific region maintains a high number of vectors and species complexes and even within individual species, behaviours can vary hugely depending on location (e.g. An. annularis – see below).
North America (excluding Mexico) shows a simple vector profile (Figure 2). There are only two species considered here as DVS: An. freeborni found in northwestern USA and the An. quadrimaculatus complex, found in the southern regions of the country. In Latin America, however, the situation is a little more complex. Despite a number of sympatric species on the continent, An. darlingi is considered the most important vector in the neotropical region [13] and hence is shown dominating all localities where it occurs. In Central America this species does not have such a great influence and both An. albimanus and An. pseudopunctipennis are considered of greater importance.
The individual regions (Americas, Africa, and Asia-Pacific) are discussed in more detail in the following sections.
The global distribution of 34 DVS. (Map reproduced from Sinka et al. [4]); s.l.: sensu lato, meaning ‘in the broad sense’ referring to species complex
On a global scale, the nations of the Americas benefit from having the lowest P. falciparum morbidity, with stable risk areas typically having low levels of endemicity (PfPR2-10≤ 5%) [17]. Such reduced levels of malaria transmission coupled with continuing reports of decreasing mortality and morbidity for all major Plasmodium species across the region (e.g. between 2000 and 2007) [18] have been credited to an increasing use of integrated vector control [19]. Integrated vector control/management relies on a number of factors, but foremost (as given in the World Health Organisation (WHO), strategic framework for integrated vector management [20]) is the ‘selection of proven vector control methods based on knowledge of local vector biology and ecology, disease transmission and morbidity’; essentially, knowing which vector species is present and understanding how it behaves.
There are nine DVS in the Americas (Figure 2, Table 1) [15], with two species having their distributions contained entirely within North America (An. freeborni and An. quadrimaculatus), and the remaining six species encompassing areas from southern North America, through Central America and into South America, incorporating the northern reaches of Argentina. As stated above, in South America, An. darlingi is considered to be the most important of the DVS where it is found [13]. However there is increasing evidence of the importance of other species, including members of the An. albitarsis complex (e.g. An. marajoara), that may have a higher influence in malaria transmission than previously thought [21]. As such, and due to the dominance across the continent indicated by the An. darlingi distribution in Figure 2, single species maps are also shown for An. albitarsis,\n\t\t\t\tAn. marajoara, An. nuneztovari and An. pseudopunctipennis (Figure 3).\n\t\t\t
Summary of bionomics of the DVS of the Americas (created by cross referencing TAG and literature searches). Filled dot (∙) indicates typical behaviour, open dot (◦) indicates non-typical behaviour but examples exist, and dashes (-) indicate no data.
Many of the American species show great variability in their adult behaviour, with most showing little preference for biting either humans or animals [15] (Table 1), tending to feed on whichever host they first encounter. This variability is also reflected in their propensity to bite both indoors and out. Overall, the majority of DVS in the Americas will rest outside after biting (Table 1, [15]).
Despite similar adult behaviour amongst many of the South American DVS, there are a number of behavioural characteristics found in the larval stages that do differentiate the species (Table 1). For example An. aquasalis, whose name means salt (salis) water (aqua), is a vector found in coastal environments. Its larvae prefer clear, non-polluted water bodies such as mangrove swamps, lagoons and ditches [22, 23]. They can develop in fresh water sites, but it is considered a poor competitor in such habitats, especially against An. albimanus [15], which may be causal in tending to restrict the range of An. aquasalis to brackish locations.
Anopheles darlingi larvae are characteristically associated with patches of floating debris found along river margins in rural and lowland forested areas [24]. Anopheles marajoara is also found in lowland areas but is more common in secondary forests and is able to adapt to environments that have undergone some human intervention [21, 25] which may be a causal factor in its increasing dominance over An. darlingi in some localities. Forest clearance and pollution will decrease sites suitable for An. darlingi but increase the availability of sunlit marshy areas and ponds more suitable for An. marajoara [21, 26].
The An. pseudopunctipennis complex is known to be able to survive and transmit malaria at altitudes higher than many other DVS, up to 3000 m [27, 28]. Its larvae also have a defining characteristic; an apparent obligate association with filamentous Spirogyra-type green algae [23, 27, 29-31] (Table 1). Indeed, the removal of such algae has been shown to be a viable method of control for this species [31].
Multi-species map of the nine DVS of the Americas (map reproduced from Sinka et al. [4])
Predicted distribution maps for a) An. albitarsis s.l. (n = 138); b) An. marajoara (n = 56); c) An. nuneztovari (n = 171); d) An. pseudopunctipennis (n = 156). The insert map in each shows the expert opinion distribution for that species (Maps reproduced from Sinka et al, [15]).
Across the huge and variable landscape of the African continent, there is a corresponding variability in the intensity of malaria transmission [32, 33]. Sub-saharan Africa is, however, home to localities suffering from the highest global malaria transmission levels, and hence, morbidity and mortality of malaria [17, 32, 34-36]; a consequence of the wide spread presence of the most effective and efficient vector currently known, An. gambiae [37, 38]. Anopheles gambiae is a member of the An. gambiae complex, which also contains other DVS including An. arabiensis, An. merus and An. melas [6, 39-42]. Also found in Africa is the widespread An. funestus subgroup of which An. funestus is another highly effective vector, and possibly the first species to adapt to make use of humans as a food/blood source [43]. The more restricted, but still highly anthropophilic An. moucheti and the more widespread An. nili complex add to a suite of vectors within Africa that have proved highly efficient in malaria transmission and equally difficult to control [5].
Figure 1 shows those vector species that can be considered the ‘primary’ DVS of Africa: An. gambiae, An. arabiensis and An. funestus. Figure 4 indicates the more ‘secondary’ DVS, including An. moucheti, An. nili, An. melas and An. merus. Examining only the ‘primary’ species (Figure 1), the vector situation in Africa appears relatively simple. However for each of these species to have an extensive spread across such a large geographical area suggests a high level of adaptability and plasticity in behaviours and tolerances within all of these DVS. This plasticity is becoming more apparent as the taxonomy of the species complexes are untangled. The An. gambiae complex is a case in point. Originally considered as one species, the discovery of saline tolerant larval ‘An. gambiae’ coastal specimens which, in cross mating experiments, produced sterile male progeny, confirmed that the salt-water tolerant and fresh-water ‘An. gambiae’ were reproductively incompatible, and identified An. melas on the west coast and An. merus on the east [44-47]. The Gambiae complex is now known to consist of at least eight species [1, 6] yet this taxonomic categorisation is still a relatively recent occurrence, with the provisional inclusion of An. quadriannulatus B only reported in 1998 [6, 48]. Moreover, behavioural and ecological plasticity within the An. gambiae species itself have highlighted further potential speciation; there are now five recognised chromosomal forms (Savanna, Mopti, Forest, Bamako and Bissau) and two molecular forms (M and S) [49-51]. The M and S forms have distinctive and separate behaviours, specifically in terms of preferred larval habitats, with the S form utilising larval sites considered typical for An. gambiae (i.e. temporary pools or puddles that only occur after rain) whereas larvae from the M form are found in more permanent sites such as rice fields or flooded areas [52-57]. Overall, An. gambiae is considered highly anthropophilic (Table 2), a characteristic that is held as greatly influential in the designation of this species as the most effective malaria vector. It also tends to be reported as biting indoors and during the night when people are asleep and therefore more vulnerable [5]. Although these traits do tend to hold true in a general sense, the variability of An. gambiae does extend to adult behaviour and there are a number of localities where this species does not follow these commonly reported behaviours [5].
The extensive distribution of An. arabiensis (Figure 1) also indicates a vector with a wide range of behaviours [40, 58, 59] and although it is classified as zoophilic and exophagic (Table 2) this is often only reported in comparison with the generally highly anthropophilic and endophagic An. gambiae or An. funestus [5, 60]. Anopheles arabiensis is more tolerant of drier environments than the other DVS, as can be seen in Figure 1 where its range extends north (the Sahel) and south (desert and steppe of Namibia and Botswana) beyond those of either An. gambiae or An. funestus. It is noticeably absent from the humid, forested areas of western Africa (Figure 1).
Summary of bionomics of the DVS of Africa (created by cross referencing TAG and literature searches) Filled dot (∙) indicates typical behaviour, open dot (◦) indicates non-typical behaviour but examples exist, and dashes (-) indicate no data.
Despite the zoophilic label, the feeding behaviour of An. arabiensis varies greatly depending upon location, host availability and the local genotype [40, 58, 59, 61] and there is some suggestion that An. arabiensis populations are more anthropophilic, endophilic and endophagic in western Africa whereas those in the east are more zoophilic and exophilic [62].
Beside the apparent inability to exist in the forested west of Africa, An. arabiensis appears to tolerate a much greater range of larval sites than An. gambiae. Similar to its sibling, it makes use of sunlit, temporary, shallow fresh-water habitats and the larger more permanent sites as characterised by An. gambiae M form, but it is also able to survive in flowing water, turbid or polluted sites and even, on occasion, brackish habitats [5, 63-66]. It readily makes use of rice fields, although its propensity for sunlit water means it is primarily found when the rice plants are small and larval numbers reduce substantially as the plants mature [67-70]. The adaptability, plasticity and general tendencies for An. arabiensis to feed outdoors on animals (Table 2) means that this species does not readily succumb to traditional methods of control such as IRS or ITNs [59, 71, 72].
Anopheles funestus, is a highly adaptable species with a large distribution across sub-saharan Africa (Figure 1). It is also a highly effective vector, and in some cases, due to a relatively high longevity plus a preference for human blood and late night biting (Table 2), is even more efficient at transmitting malaria than An. gambiae [38, 40, 73]. Anopheles funestus is the only member within the Funestus Subgroup regarded as an important vector [73], and can only be morphologically distinguished from other members at certain stages in their development, again highlighting the importance of correct species identification [38, 40, 73, 74]. Indeed, for this subgroup, such identification is rarely reported, and hence the distributions illustrated here (Figure 1) cannot distinguish the true range of this specific vector. For example in Ethiopia, only one known study has performed PCR identifications of the Funestus Group [75], indicating that only An. parensis (a non-vector member of the Funestus Subgroup) is present.
Anopheles funestus is a highly anthropophilic mosquito [5, 38, 76, 77] and its endophilic behaviour adds to a suite of behaviours that enhance its ability to effectively transmit malaria [5]. It is comparably consistent in its behaviour and has been subject to successful control via both IRS and ITNs, but some populations have shown a rapid development of insecticide resistance to pyrethroids which was considered the primary cause of epidemic malaria reported in South Africa in the late 1990s [73, 78].
The larvae of An. funestus are found in large permanent or semi-permanent bodies of freshwater such as swamps, large ponds or lake edges [5]. They are also associated with rice cultivation in some localities, favouring older fields with mature rice plants [79-81].
Multi-species map of Africa indicating the distributions of the four ‘secondary’ but still important, DVS. (map reproduced from Sinka et al. [4]).
The region of Central, South and East Asia is home to 46% of the global populations at risk (PAR) of stable falciparum malaria [82] and suffers a particularly high impact of vivax malaria, with an estimated 82% of the world’s PAR of P. vivax transmission [83]. Indeed within the ‘top 10’ of countries with the highest global P. vivax PAR estimates, seven are from Asia (China, Indonesia, Pakistan, Vietnam, the Philippines, Myanmar and Thailand) [84]. The complexity of the vector situation in the Asian-Pacific region increases the problems associated with understanding the vector/transmission environment. This region has a greater number of DVS than any other and amongst these, there are a greater number of species complexes and taxonomic complexities than anywhere else [1, 6, 16].
With at least nine out of 19 DVS found in the Asian-Pacific now considered as a species complex [1, 6], the impetus to correctly identify both the vectors and their behaviours at a specific location is even greater in this region than elsewhere. Indeed, even within those species not currently considered as part of a complex, behavioural variability is common, depending upon location, and in some cases to such an extent that a species considered a vector in one location may be only of secondary importance, or even a non vector in another [14]. For example, An. annularis has a range extending across India, down through South-East Asia, across many of the Indonesian islands down to and including Timor Island [14]. However, it only has a focal role in malaria transmission in selected areas of India. Elsewhere it is considered of little importance [85-91] (hence, An. annularis, along with An. aconitus and An. subpictus; all listed in Table 3 as DVS, are not included in the multi-species maps shown here in Figure 1 and Figure 5, as overall, they do not have as great an impact in malaria transmission as other species in the region).
Summary of bionomics of the DVS of the Asian-Pacific (created by cross referencing TAG and literature searches) Filled dot (∙) indicates typical behaviour, open dot (◦) indicates non-typical behaviour but examples exist, and dashes (-) indicate no data.
Summary of bionomics of the DVS of the Asian-Pacific (created by cross referencing TAG and literature searches) Filled dot (∙) indicates typical behaviour, open dot (◦) indicates non-typical behaviour but examples exist, and dashes (-) indicate no data.
Unfortunately the high number of vectors in this region, and their complexity, have not equated to a higher level of knowledge, despite considerable effort from local scientists as well as from US military entomologists during WWII and the Vietnam War. Indeed, amongst all 41 DVS mapped [5, 14, 15], the two species with the lowest number of occurrence points, were both from the Asian-Pacific region (An. leucosphyrus/An. latens (12 points) and An. balabacensis (14 points)). There are also limitations when attempting to categorise vector behaviour as again, some species are very poorly studied, or those data that do exist are compromised by unreliable identifications due to the lack of robust techniques that are now available. Hence the summaries given here should be considered as potentially transient and may be updated as more data is collected and systematic PCR-based assays for species identification are applied [92-94]. Accepting these caveats, it must also be noted that the behavioural information presented is the culmination of a comprehensive review of the published literature combined with the ‘on the ground’ knowledge of highly competent and experienced experts and as such, do represent the best currently available species distribution maps and bionomics knowledge. Here focus is on the species and species complexes designated as the most influential across the region, including An. culicifacies, An. fluviatilis and An. stephensi across the Indian subcontinent; An. dirus and An. minimus within south-east Asia and the DVS members of the Punctulatus Group in the Pacific region. More detailed bionomics information and single species distribution maps for all 19 Asian-Pacific DVS are given in Sinka et al. [14].
The Indian subcontinent is densely populated giving rise to very high figures for the population at risk from malaria, however, the levels of risk are typically lower than those found in sub-saharan Africa. The majority of people at risk are living in areas of low endemicity (<5% prevalence) or areas of unstable malaria transmission where the disease is not endemic. This is true for both falciparum and vivax malaria. A smaller number of people living in India itself are at risk of much higher levels of falciparum malaria (>40% prevalence), possibly equalling the levels of risk found in sub-saharan Africa although there is a need for more data to support these figures [82].
The range of the An. culicifacies complex extends far beyond the Indian subcontinent; it also encompasses large areas of Southeast Asia including Vietnam, Cambodia, Lao PDR and southern China and reaches as far as Yemen in the Middle East with a small distribution in Eritrea as well as Nepal, India, Pakistan and Sri Lanka [14] (Figure 1). Despite this extensive distribution, the complex has only been studied in any detail in India and Sri Lanka [95-100]. Of the five species (A, B, C, D, E) of the complex, four are considered vectors in India (A, C, D and E) [101]. Of these four, species E is a particularly efficient vector due to its highly anthropophilic and endophilic behaviour and is considered the most important vector of both P. falciparum and P. vivax in southern India and Sri Lanka [102, 103]. The remaining three species (A, C and D) are primarily zoophilic and tend to be considered as playing more minor roles in malaria transmission [97]. Indeed, the highly zoophilic behaviour of Species B means it is often considered a non-vector [99, 104].
Members of the complex are found at a wide range of altitudes, from plains to hilly and mountainous areas [100]. The habitats they utilise are also varied and include forested and deforested ecotypes and irrigated areas. Consequentially, the larval sites they inhabit are also wide-ranging and include man-made habitats such as irrigation canals, borrow pits, domestic wells, tanks and gutters as well as natural sites such as stream margins and rock pools [96, 100, 101, 104-107]. A tolerance to brackish water has also been reported [96, 108], although freshwater sites appear to be preferred. With many aspects of behaviour dependent on sibling, further investigations, coupled with confirmed identifications of each species, are needed before targeted vector control can be applied.
Again, despite a large distribution (Figure 1) [14], the behaviour and ecology of the An. fluviatilis complex has only been studied in any detail in two countries: India and Iran. The complex consists of three species, currently and informally designated species S, T and U [109] and an as yet unconfirmed form V [110]. The complex is distributed widely across the forested hills and mountains of southwestern Asia (Iran, Pakistan, Afghanistan, India, Nepal, Bangladesh and Myanmar) [104, 111-114]. Members of the complex also exhibit behavioural differences, with the anthropophilic and endophilic An. fluviatilis S categorised as a highly efficient vector in India [112], whereas both the zoophilic Species T and U, which also tend to feed and rest outdoors, are considered poor or non-vectors [115, 116]. However, species T is considered an important vector in Pakistan, Nepal and Iran [117, 118]. The larvae of this complex are associated with slow-flowing water in streams or river margins [119-124] (Table 3a).
The ability of the larval stages of An. stephensi (Table 3b) to develop in urban areas, making use of artificial containers such as domestic wells, overhead water tanks, room coolers, cisterns and roof gutters and in water bodies in construction sites and other industrial localities, brings malaria transmission into densely populated areas including the major cities of India such as Delhi [125, 126]. In general, malaria is considered to be a disease confined to rural environments, as a simple consequence of the tendency of anophelines to search for clean and unpolluted larval habitats and thus the existence of An. stephensi in such areas is a defining characteristic of the species.
Anopheles stephensi is found across the Indian subcontinent [14], extending from the Arabian Peninsula, through Iran and Iraq, across to Bangladesh, southern China, Myanmar and Thailand (Figure 1) [127-129]. It is typically described as an endophilic and endophagic species despite a tendency to bite outdoors during warmer months when people are more active outdoors [130, 131]. Host availability seems to be a driver to a variable anthropophily for this species, and therefore in urban areas, there appears to be a greater tendency for biting humans [132, 133], and therefore an increased risk of malaria transmission.
Human populations in Southeast Asia, with the exception of Myanmar, are typically exposed to low levels of falciparum and vivax malaria endemicity, unstable malaria transmission or are living in malaria-free areas. The majority of the population in Myanmar live in areas with low malaria endemicity but significant numbers live in areas of moderate (5-40% prevalence) and high (>40% falciparum prevalence or >7% vivax prevalence) risk. There is increasing evidence that knowlesi malaria is transmitted from monkeys to humans in this region, particularly in the South, but the level of risk is currently unmeasured [82, 83, 134, 135].
The Dirus and Minimus complexes both contain species considered particularly efficient in transmitting malaria. Indeed, the An. dirus complex, due to its longevity and the highly anthropophilic behaviour of its members (Table 3a), is considered to be the dominant vector group in any area where its species exist [136]. However, due to its close relationship with members of the Leucosphyrus Complex, there has been considerable confusion in its identity in the published literature [137]. Species of the An. dirus complex are forest dwellers, existing in mountains and foothills, cultivated forests and forest fringes. There are eight members, An. dirus (formerly An. dirus species A), An. cracens (formerly sp. B), An. scanloni (formerly sp. C), An. baimaii (formerly sp. D), An. elegans (formerly sp. E), An. nemophilous (formerly sp. F), An. takasagoensis and the recently added species informally named An. Aff. Takasagoensis [138-142]. Of these species, An. dirus and An. baimaii are vectors of particular note [143-146]. As mentioned above, they are both highly anthropophilic, but their efficiency in transmitting both vivax and falciparum malaria is enhanced through biting humans both in and outdoors and of avoiding most conventional control methods by resting mainly outdoors (Table 3a) [111, 143, 145, 147-150].
Larvae are typically found in small, temporary, shallow and shaded pools of fresh water within the forest environment, such as puddles, pits, animal footprints, wheel ruts, hollow logs and slow flowing streams (Table 3a) [151-154].
Species of the An. minimus complex are also found in the hilly forested regions, but unlike the Dirus Complex, are restricted to mainland Southeast Asia (Figure 1) [14]. The complex contains three sibling species, An. minimus (formerly species A), An. harrisoni (formerly sp. C) and An. yaeyamaensis (formerly sp. E) [155-157]. This latter species has a very restricted distribution, only being found in the Ryukyu Archipelago in southern Japan, where it was considered a major malaria vector before the successful eradication of the disease in 1962 [158, 159]. Both An. minimus and An. harrisoni are, however, still considered primary vectors across their range, which encompasses much of Southeast Asia [14], although all historical records of An. minimus in Indonesia are now considered to actually be An. flavirostris. Anopheles minimus has a more adaptable nature than An. harrisoni allowing it to occupy a large variety of habitats, including dense canopy forests to open rice fields [14] and therefore has a greater distribution. Anopheles harrisoni tends to be restricted to deforested agricultural sites [160, 161]. Anopheles minimus is also highly variable in its behaviour (Table 3b), being an opportunistic mosquito, although in some reports this may be a consequence of the species complex not being fully identified [160]. Larvae of the An. minimus complex are found in small or moderate streams with slow-running, clear water. Females lay their eggs in the partially shaded grassy margins (Table 3b)[162-165]. Larvae have also been found in water containers in Hanoi [166].
Anopheles minimus is considered primarily anthropophilic, but its choice of blood meal can also be influenced by the availability of alternative animal hosts such as domestic cattle [148, 167, 168]. Biting habit is also variable (Table 3b), and dependent on location, with reports of endophagic behaviour in India, Thailand and central Vietnam, but exophagic behaviour in Cambodia and northern Vietnam [148, 165, 169]. The same is found for resting behaviour, although there appears to be a large influence of the use of IRS on resting location and population densities for this species [170, 171]. Overall, An. harrisoni appears more consistent in behaviour, generally reported as exophagic, exophilic and zoophilic and thus potentially the less dominant vector [172, 173].
Human populations in the Asia-Pacific, with the exception of Papua New Guinea and Indonesian Papua, typically live in areas with low levels of falciparum and vivax malaria endemicity (<5% prevalence), or unstable malaria transmission or that are malaria-free. The majority of the population in Papua New Guinea live in areas with low malaria endemicity (<5% prevalence) but significant numbers live in areas of moderate (5-40% prevalence) risk. [82, 83].
The DVS in the Asia-Pacific region (as categorised here) are dominated by three of the 12 members of the Punctulatus Group, namely An. farauti complex, An. koliensis and An. punctulatus complex (Figure 5). Anopheles farauti complex has the widest distribution of these vectors (and of the Punctulatus Group as a whole), extending from the Maluku island group (Indonesia) in the west to Vanuatu in the east, including northern Australia in between. Of the eight species within the An. farauti complex, only three are considered to be main vectors, An. farauti s.s., An. hinesorum (formerly An. farauti No. 2) and An. farauti No. 4, although there is some, albeit limited and circumstantial, evidence of An. farauti No. 6 as a primary vector in the highlands, river valleys and intramontane plains of New Guinea [174, 175].
Despite being the most studied member of the Punctulatus Group, there are still many unknowns regarding the ecology and behaviour of the species of the An. farauti complex, with added uncertainty due to apparent variability in behaviour depending on location (based on reports of undifferentiated members of the complex). However, there are some trends that appear relatively consistent, for example, members seem to be mainly anthropophilic, although they will feed on domestic livestock, birds and other animals where available (Table 3a) [14]. Both endo- and exophagic feeding on humans has been reported, and some, albeit limited, endophilic behaviour. On the whole, females tend to be early biters (18.00 – 20.00), biting and resting outdoors [14, 176].
The larvae of An. farauti complex are able to make use of a large variety of water sources, both sunlit and shaded, but tend to be found in natural, rain-fed temporary pools through to semi-permanent/permanent bodies of ground water, often with floating or emergent vegetation. Within the complex, a defining trait of An. farauti s.s. is its ability to tolerate brackish larval sites, and hence this species is found mainly on the coast in pools within mangroves containing high organic debris and subject to tidal fluctuations. They are also found in natural swamps, oxbows, fish ponds, ditches, borrow pits and pools along stream or river margins [14]. Other members of the complex may have greater or lesser salinity tolerance, but this is one uncertainty that still needs to be confirmed, along with many other aspects of behaviour within the complex.
Anopheles koliensis plays an important role in transmitting malaria wherever it is found, possibly due to its strong anthropophily (Table 3b). Its range is essentially limited to New Guinea Island (Figure 5) with only a patchy distribution in the Solomon Islands, where it is absent in some areas despite a presence of apparently suitable environments [177-179]. Where it is found, it will bite in or outdoors, but is rarely found resting indoors [180]. The larvae of this species are found in more permanent habitats than those of either the An. farauti or An. punctulatus complexes [180, 181]. Typical larval sites include sunlit irrigation ditches, and ponds containing floating and/or emergent vegetation, often in close association with humans. They are never found in brackish water [14].
Multi-species map of South-East Asia and the Asia-Pacific region indicating the distribution of 13 DVS of particular importance. (map reproduced from Sinka et al. [4]).
The last DVS in this region is a member of the An. punctulatus complex. The complex contains two species, An. punctulatus and An. sp. near punctulatus [182] of which the latter is relatively uncommon and restricted to a few remote highland localities on New Guinea Island where little is known of its ability to transmit malaria. On the other hand, Anopheles punctulatus is a highly efficient malaria vector across much of its range, which extends within lowland valleys and plains, and up to altitudes of 2000m across New Guinea Island and the Solomon Islands [174], although its impact and importance as a vector appears reduced in this eastward end of its range [14, 178, 179]. As with other vectors within the Punctulatus Group, An. punctulatus feeds readily on humans both in and outdoors and is mainly found resting outdoors (Table 3b) [181, 183, 184]. This species is particularly adept at exploiting disturbed environments, such as those caused by land clearance or areas subject to drought conditions, where receding rivers result in small temporary pools rapidly colonised by larvae. Such colonisations can result in explosive adult populations and subsequent severe and unpredictable outbreaks of malaria [185, 186]. The typical larval sites utilised by this species reflect the conditions found in such disturbed ecologies, i.e. scattered temporary pools of fresh water, generally sunlit and shallow, containing either clear or turbid water with little or no vegetation [14]. Eggs can cope with some level of desiccation and larvae can survive in damp mud for several days during drought conditions [183]. They are also able to withstand high water temperatures (over 40oC) where they grow rapidly with particularly short development time (5-9 days to adults), occasionally resorting to cannibalism to survive, (Bangs, pers com; [14]).
A full description of the methodology used to create the individual and multi-species maps is given in Sinka et al [15] and Sinka et al [4].
The maps presented here were created using the Boosted Regression Tree (BRT) environmental niche modelling method [187, 188]. This method uses spatially defined presence data and environmental and climatic variables to identify the conditions that typify a species’ habitat. The model then identifies all locations where such conditions exist and therefore other localities where the species could potentially occur (i.e. its fundamental niche). It also provides an estimate of the probability of occurrence, i.e. applying a numerical value to indicate the conditions within the acceptable range of a species. The multi-species maps show only presence pixels with a probability value greater than 0.5 for each species.
To create the multi-species maps, the individual species distributions were overlaid ensuring the most dominant species (established through consultation with a technical advisory group of vector experts) was uppermost. Where more than one species was considered dominant in an area the species distributions were merged.
The maps given in this chapter are presented with the caveat that they represent only the beginning of a process to establish the distribution of these vectors. As with all species distribution modelling, the accuracy of the output is limited by the amount and quality of the data that is available to the model. The data must be accurately geo-referenced and reflect the true and full identity of the species to be modelled. Our maps were created using the most comprehensive database of species occurrence currently available, yet still, for many of the DVS, the quality of the data is ambiguous and the quantity is poor. However, as more reliable and repeatable methods of species identification are developed, species occurrence data and the corresponding bionomics will be better understood as the taxonomy of many of these species are resolved. Moreover, a greater commitment for data sharing between research groups, public health officials, modellers and map makers is beginning to increase the quantity and quality of data available and subsequently, increasingly accurate maps and a greater understanding of transmission dynamics, combined with the benefits of targeted vector control, is making the prospect of the global elimination of malaria a much more realistic goal.
Bioremediation and natural reduction are also seen as a solution for emerging contaminant problems; microbes are very helpful to remediate the contaminated environment. Number of microbes including aerobic, anaerobic bacteria and fungi are involved in bioremediation process. Bioremediation is highly involved in degradation, eradication, immobilization, or detoxification diverse chemical wastes and physical hazardous materials from the surrounding through the all-inclusive and action of microorganisms. The main principle is degrading and converting pollutants to less toxic forms. There are two types of factors these are biotic and abiotic conditions are determine rate of degradation. Currently, different methods and strategies are applied for bioremediation process.
Environmental pollution has been on the rise in the past few decades due to increased human activities such as population explosion, unsafe agricultural practices, unplanned urbanization, deforestation, rapid industrialization and non-judicious use of energy reservoirs and other anthropogenic activities. Among the pollutants that are of environmental and public health concerns due to their toxicities are: chemical fertilizer, heavy metals, nuclear wastes, pesticides, herbicides, insecticides greenhouse gases, and hydrocarbons. Thousands of hazardous waste sites have been identified and estimated is that more will be identified in the coming decades. Release of pollutants into the environment comes from illegal dumping by chemical companies and industries. Many of the techniques utilized for site clean-up in the past, such as digging up the contaminated soil and hauling it away to be land filled or incinerated have been prohibitively expensive and do not provide permanent solution. More recent techniques such as vapor extraction and soil venting are cost effective but incomplete solution.
Bioremediation is a process where biological organisms are used to remove or neutralize an environmental pollutant by metabolic process. The “biological” organisms include microscopic organisms, such as fungi, algae and bacteria, and the “remediation”—treating the situation.
In the Earth’s biosphere, microorganisms grow in the widest range of habitats. They grow in soil, water, plants, animals, deep sea, and freezing ice environment. Their absolute numbers and their appetite for a wide range of chemicals make microorganisms the perfect candidate for acting as our environmental caretakers.
“Bioremediation is a waste management technique that includes the use of living organisms to eradicate or neutralize pollutants from a contaminated site.”
“Bioremediation is a ‘treatment techniques’ that uses naturally occurring organisms to break down harmful materials into less toxic or non-toxic materials.”
Bioremediation technologies came into extensive usage and continue growing today at an exponential rate. Remediation of polluted sites using microbial process (bioremediation) has proven effective and reliable due to its eco-friendly features. In the past two decades, there have been recent developments in bioremediation techniques with the decisive goal being to successfully restore polluted environments in an economic, eco-friendly approach. Researchers have developed different bioremediation techniques that restore polluted environments. The micro-organisms used in bioremediation can be either indigenous or non-indigenous added to the contaminated site. Indigenous microorganisms present in polluted environments hold the key to solving most of the challenges associated with biodegradation and bioremediation of pollutant [1]. Environmentally friendly and cost effective are among the major advantages of bioremediation compared to both chemical and physical methods of remediation.
A mechanism of bioremediation is to reduce, detoxify, degrade, mineralize or transform more toxic pollutants to a less toxic. The pollutant removal process depends mainly on the pollutant nature, which includes pesticides, agrochemicals, chlorinated compounds, heavy metals, xenobiotic compounds, organic halogens, greenhouse gases, hydrocarbons, nuclear waste, dyes plastics and sludge. Cleaning technique apply to remove toxic waste from polluted environment. Bioremediation is highly involved in degradation, eradication, immobilization, or detoxification diverse chemical wastes and physical hazardous materials from the surrounding through the all-inclusive and action of microorganisms (Figure 1).
Bioremediation approaches for environmental clean-up.
Microorganisms play an important role on nutritional chains that are important part of the biological balance in life. Bioremediation involves the removal of the contaminated materials with the help of bacteria, fungi, algae and yeast. Microbes can grow at below zero temperature as well as extreme heat in the presence of hazardous compounds or any waste stream. The two characters of microbes are adaptability and biological system made them suitable for remediation process [2]. Carbon is the main requirement for microbial activity. Bioremediation process was carried out by microbial consortium in different environments. These microorganisms comprise Achromobacter, Arthrobacter, Alcaligenes, Bacillus, Corynebacterium, Pseudomonas, Flavobacterium, Mycobacterium, Nitrosomonas, Xanthobacter, etc. [3].
There are groups of microbes which are used in bioremediation such as:
Aerobic: aerobic bacteria have degradative capacities to degrade the complex compounds such as Pseudomonas, Acinetobacter, Sphingomonas, Nocardia, Flavobacterium, Rhodococcus, and Mycobacterium. These microbes have been reported to degrade pesticides, hydrocarbons, alkanes, and polyaromatic compounds. Many of these bacteria use the contaminants as carbon and energy source.
Anaerobic: anaerobic bacteria are not as regularly used as aerobic bacteria. There is an increasing interest in aerobic bacteria used for bioremediation of chlorinated aromatic compounds, polychlorinated biphenyls, and dechlorination of the solvent trichloroethylene and chloroform, degrading and converting pollutants to less toxic forms.
Bioremediation process is degrading, removing, changing, immobilizing, or detoxifying various chemicals and physical pollutants from the environment through the activity of bacteria, fungi, algae and plants. Enzymatic metabolic pathways of microorganisms facilitate the progress of biochemical reactions that help in degradation of the pollutant. Microorganisms are act on the pollutants only when they have contact to the compounds which help them to generate energy and nutrients to multiply cells. The effectiveness of bioremediation depends on many factors; including, the chemical nature and concentration of pollutants, the physicochemical characteristics of the environment, and their accessibility to existing microorganisms [4].
The factors are mainly microbial population for degrading the pollutants, the accessibility of contaminants to the microbial population and environment factors like type of soils, pH, temperature, oxygen and nutrients.
Biotic factors are helpful for the degradation of organic compounds by microorganisms with insufficient carbon sources, antagonistic interactions among microorganisms or the protozoa and bacteriophages. The rate of contaminant degradation is frequently dependent on the concentration of the contaminant and the amount of catalyst present in biochemical reaction. The major biological factors are included enzyme activity, interaction (competition, succession, and predation), mutation, horizontal gene transfer, its growth for biomass production, population size and its composition [5, 6].
The interaction of environmental contaminants with metabolic activity, physicochemical properties of the microorganisms targeted during the process. The successful interaction between the microbes and pollutant depends on the environmental situations. Microbial growth and activity are depended on temperature, pH, moisture, soil structure, water solubility, nutrients, site conditions, oxygen content and redox potential, deficiency of resources and physico-chemical bioavailability of pollutants, concentration, chemical structure, type, solubility and toxicity. This above factors are control degradation kinetics [5, 7].
Biodegradation of pollutant can occur under range of pH (6.5–8.5) is generally optimal for biodegradation in most aquatic and terrestrial environment. Moisture affects the metabolism of contaminant because it depends on the kind and amount of soluble constituents that are accessible as well as the pH and osmotic pressure of terrestrial and aquatic systems [8].
Superficially, bioremediation techniques can be carried out ex-situ and in-situ site of application (Figure 1). Pollutant nature, depth and amount of pollution, type of environment, location, cost, and environmental policies are the selection standards that are considered for selecting any bioremediation technique. Performance based on oxygen and nutrient concentrations, temperature, pH, and other abiotic factors that determine the success of bioremediation processes [9, 10].
Ex-situ bioremediation techniques involve digging pollutants from polluted sites and successively transporting them to another site for treatment. Ex-situ bioremediation techniques are regularly considered based on the depth of pollution, type of pollutant, degree of pollution, cost of treatment and geographical location of the polluted site. Performance standards also regulate the choice of ex-situ bioremediation techniques.
Solid-phase treatment
Solid-phase bioremediation is an ex-situ technology in which the contaminated soil is excavated and placed into piles. It is also includes organic waste like leaves, animal manures and agriculture wastes, domestic, industrial wastes and municipal wastes. Bacterial growth is moved through pipes that are distributed throughout the piles. Air pulling through the pipes is necessary for ventilation and microbial respiration. Solid-phase system required huge amount of space and cleanups require more time to complete as compared to slurry-phase processes. Solid-phase treatment processes include biopiles, windrows, land farming, composting, etc. [11].
Slurry-phase bioremediation
Slurry-phase bioremediation is a relative more rapid process compared to the other treatment processes. Contaminated soil is combined with water, nutrient and oxygen in the bioreactor to create the optimum environment for the microorganisms to degrade the contaminants which are present in soil. This processing involves the separation of stones and rubbles from the contaminated soil. The added water concentration depends on the concentration of pollutants, the biodegradation process rate and the physicochemical properties of the soil. After completion of this process the soil is removed and dried up by using vacuum filters, pressure filters and centrifuges. The subsequent procedure is soil disposition and advance treatment of the resultant fluids.
There are far more than nine types of bioremediation, but the following are the most common ways in which it is used.
Bioremediation includes above-ground piling of dug polluted soil, followed by aeration and nutrient amendment to improve bioremediation by microbial metabolic activities. This technique comprises aeration, irrigation, nutrients, leachate collection and treatment bed systems. This specific ex-situ technique is progressively being measured due to its useful features with cost effectiveness, which allows operative biodegradation conditions includes pH, nutrient, temperature and aeration are effectively controlled. The biopile use to treat volatile low molecular weight pollutants; it can also be used effectively to remediate polluted very cold extreme environments [12, 13, 14]. The flexibility of biopile allows remediation time to be shortened as heating system can be integrated into biopile design to increase microbial activities and contaminant availability thus increasing the rate of biodegradation [15]. Additionally, heated air can be injected into biopile design to deliver air and heat in tandem, in order to facilitate enhanced bioremediation. Bulking agents such as straw saw dust, bark or wood chips and other organic materials have been added to enhance remediation process in a biopile construct. Although biopile systems connected to additional field ex-situ bioremediation techniques, such as land farming, bioventing, biosparging, robust engineering, maintenance and operation cost, lack of power supply at remote sites, which would facilitate constant air circulation in contaminated piled soil through air pump. Additional, extreme heating of air can lead to soil drying undertaking bioremediation, which will inhibit microbial activities and which stimulate volatilization than biodegradation [16].
Windrows is bioremediation techniques depends on periodic rotating the piled polluted soil to improve bioremediation by increasing microbial degradation activities of native and transient hydrocarbonoclastic present in polluted soil. The periodic turning of polluted soil increase in aeration with addition of water, uniform distribution of nutrients, pollutants and microbial degradation activities, accordingly increase the rate of bioremediation, which can be proficient through acclimatization, biotransformation and mineralization. Windrow treatment as compared to biopile treatment, showed higher rate of hydrocarbon removal however, the effectiveness of the windrow for hydrocarbon removal from the soil [17]. However, periodic turning associated with windrow treatment not the best selection method to implement in bioremediation of soil polluted with toxic volatiles compounds. The use of windrow treatment has been associated in greenhouse gas (CH4) release due to formation of anaerobic zone inside piled polluted soil, which frequently reduced aeration [18].
Land farming is the simplest, outstanding bioremediation techniques due to its low cost and less equipment requirement for operation. It is mostly observed in ex-situ bioremediation, while in some cases of in-situ bioremediation technique. This consideration is due to the site of treatment. Pollutant depth is important in land farming which can be carried out ex-situ or in-situ. In land farming, polluted soils are regularly excavated and tilled and site of treatment speciously regulates the type of bioremediation. When excavated polluted soil is treated on-site, it is ex-situ as it has more in common than other ex-situ bioremediation techniques. Generally, excavated polluted soils are carefully applied on a fixed layer support above the ground surface to allow aerobic biodegradation of pollutant by autochthonous microorganisms [19]. Over all, land farming bioremediation technique is very simple to design and implement, requires low capital input and can be used to treat large volume of polluted soil with minimal environmental impact and energy requirement [20].
Bioreactor is a vessel in which raw materials are converted to specific product(s) following series of biological reactions. There are different operational modes of bioreactors, which include: batch, fed-batch, sequencing batch, continuous and multistage. Bioreactor provides optimal growth conditions for bioremediation. Bioreactor filled with polluted samples for remediation process. The bioreactor based treatment of polluted soil has several advantages as compared to ex-situ bioremediation procedures. Bioreactor-based bioremediation process having excellent control of pH, temperature, agitation and aeration, substrate and inoculum concentrations efficiently reduces bioremediation time. The ability to control and manipulate process parameters in a bioreactor implies that biological reactions. The flexible nature of bioreactor designs allows maximum biological degradation while minimizing abiotic losses [21].
Advantages of ex-situ bioremediation
Suitable for a wide range of contaminants
Suitability relatively simple to assess from site investigation data
Biodegradation are greater in a bioreactor system than or in solid-phase systems because the contaminated environment is more manageable and more controllable and predictable.
Disadvantages
Not applicable to heavy metal contamination or chlorinated hydrocarbons such as trichloroethylene.
Non-permeable soil requires additional processing.
The contaminant can be stripped from soil via soil washing or physical extraction before being placed in bioreactor.
These techniques comprise treating polluted substances at the pollution site. It does not need any excavation and by little or no disturbance in soil construction. Perfectly, these techniques should to be cost effective compared to ex-situ bioremediation techniques. Some in-situ bioremediation techniques like bioventing, biosparging and phytoremediation may be enhanced, while others may be progress without any form of improvement such as intrinsic bioremediation or natural attenuation. In-situ bioremediation techniques have been effectively used to treat chlorinated solvents, heavy metals, dyes, and hydrocarbons polluted sites [22, 23, 24].
In-situ bioremediation is two types; these are intrinsic and engineered bioremediation.
Intrinsic bioremediation
Intrinsic bioremediation also known as natural reduction is an in-situ bioremediation technique, which involves passive remediation of polluted sites, without any external force (human intervention). This process deals with stimulation of indigenous or naturally occurring microbial population. The process based on both microbial aerobic and anaerobic processes to biodegrade polluting constituents containing those that are recalcitrant. The absence of external force implies that the technique is less expensive compared to other in-situ techniques.
Engineered in-situ bioremediation
The second approach involves the introduction of certain microorganism to the site of contamination. Genetically Engineered microorganisms used in the in-situ bioremediation accelerate the degradation process by enhancing the physicochemical conditions to encourage the growth of microorganisms.
Bioventing techniques involve controlled stimulation of airflow by delivering oxygen to unsaturated (vadose) zone in order to increase activities of indigenous microbes for bioremediation. In bioventing, amendments are made by adding nutrients and moisture to increase bioremediation. That will achieve microbial transformation of pollutants to a harmless state. This technique has gained popularity among other in-situ bioremediation techniques [25].
This technique combines vacuum-enhanced pumping, soil vapor extraction and bioventing to achieve soil and ground water remediation by indirect providing of oxygen and stimulation of contaminant biodegradation [26]. This technique is planned for products recovery from remediating capillary, light non-aqueous phase liquids (LNAPLs), unsaturated and saturated zones. This technique used to remediate soils which are contaminated with volatile and semi-volatile organic compounds. The method uses a “slurp” that spreads into the free product layer, which pulls up liquids from this layer. The pumping machine transports LNAPLs to the surface by upward movement, where it becomes separated from air and water. In this technique, soil moisture bounds air permeability and declines oxygen transfer rate, which reducing microbial activities. Although this technique is not suitable for low permeable soil remediation, it is cost effective operation procedure due to less amount of ground water, minimizes storage, treatment and disposal costs.
This technique is similar to bioventing in this air is injected into soil subsurface to improve microbial activities which stimulate pollutant removal from polluted sites. However, in bioventing, air is injected in saturated zone, which can help in upward movement of volatile organic compounds to the unsaturated zone to stimulate biodegradation process. The efficiency of biosparging depends on two major factors specifically soil permeability and pollutant biodegradability. In bioventing and soil vapor extraction (SVE), biosparing operation is closely correlated technique known as in-situ air sparging (IAS), which depend on high air-flow rates for volatilization of pollutant, whereas biosparging stimulates biodegradation. Biosparging has been generally used in treating aquifers contaminated with diesel and kerosene.
Phytoremediation is depolluting the contaminated soils. This technique based on plant interactions like physical, chemical, biological, microbiological and biochemical in contaminated sites to diminish the toxic properties of pollutants. Which is depending on pollutant amount and nature, there are several mechanisms such as extraction, degradation, filtration, accumulation, stabilization and volatilization involved in phytoremediation. Pollutants like heavy metals and radionuclides are commonly removed by extraction, transformation and sequestration. Organic pollutants hydrocarbons and chlorinated compounds are mostly removed by degradation, rhizoremediation, stabilization and volatilization, with mineralization being possible when some plants such as willow and alfalfa are used [27, 28].
Some important factors of plant as a phytoremediator include: root system, which may be fibrous or tap depending on the depth of pollutant, above ground biomass, toxicity of pollutant to plant, plant existence and its adaptability to predominant environmental conditions, plant growth rate, site monitoring and above all, time mandatory to achieve the preferred level of cleanliness. In addition, the plant must be resistant to diseases and pests [29]. In phytoremediation removal of pollutant includes uptake, translocation from roots to shoots. Further, translocation and accumulation depends on transpiration and partitioning [30]. However, the process is possible to change, depending on other factors such as nature of contaminant and plant. The mostly plants growing in any polluted site are good phytoremediators. Therefore, the success of any phytoremediation method mainly depends on improving the remediation potentials of native plants growing in polluted sites either by bioaugmentation with endogenous or exogenous plant. One of the major advantages of using plants to remediate polluted site is that some precious metals can bioaccumulate in some plants and recovered after remediation, a process known as phytomining.
This technique is commonly observed as a physical method for remediating contaminated groundwater. However, biological mechanisms are precipitation degradation and sorption of pollutant removal used in PRB method. The substitute terms such as biological PRB, bio-enhanced PRB, passive bioreactive barrier, have been suggested to accommodate the biotechnology and bioremediation aspect of the technique. In general, PRB is an in-situ technique used for remediating heavy metals and chlorinated compounds in groundwater pollution [31, 32].
In-situ bioremediation methods do not required excavation of the contaminated soil.
This method provides volumetric treatment, treating both dissolved and solid contaminants.
The time required to treat sub-surface pollution using accelerated in-situ bioremediation can often be faster than pump and treat processes.
It may be possible to completely transform organic contaminants to innocuous substances like carbon dioxide, water and ethane.
It is a cost effective method because there is minimal site disruption.
Depending on specific site, some contaminants may not be absolutely transformed to harmless products.
If transformation stops at an intermediate compound, the intermediate may be more toxic and/or mobile than parent compound some are recalcitrant contaminants cannot be biodegradable.
When incorrectly applied, injection wells may become blocked by profuse microbial growth due to addition of nutrients, electron donor and electron acceptor.
Heavy metals and organic compounds concentration inhibit activity of indigenous microorganisms.
In-situ bioremediation usually required microorganism’s acclimatization, which may not develop for spills and recalcitrant compounds.
Bioremediation techniques are varied and have demonstrated effective in restoring polluted sites. Microorganisms play fundamental role in bioremediation; consequently, their diversity, abundance and community structure in polluted environments offer insight into the chance of any bioremediation technique providing other environmental factors, which can inhibit microbial activities. Advanced Molecular techniques such as ‘Omics’ includes genomics, proteomics, metabolomics and transcriptomics have contributed towards microbial identification, functions, metabolic and catabolic pathways, with microbial based methods. Nutrient availability, low population or absence of microbes with degradative capabilities, and pollutant bioavailability may delay the achievement of bioremediation. Since bioremediation depends on microbial process, biostimulation and bioaugmentation approaches speed up microbial activities in polluted sites. Biostimulation increase microbial activities by the addition of nutrients to a polluted sample. Microorganisms are abundantly present in different type of environmental condition, it is noticeable that pollutant degrading microbes are naturally present in polluted contaminated sites, their growth and metabolic activities may depends on pollutant type and concentration; later, we can use of agro-industrial wastes, which contains nitrogen, phosphorus and potassium as a nutrient source most polluted sites. Microbial consortium has been reported to degrade pollutants more efficiently than pure isolates [33].
This activity due to metabolic diversities of individual isolates, which potency create from their isolation source, adaptation process, pollutant composition, and synergistic effects, which may lead to complete and rapid degradation of pollutants when such isolates are mixed together [34]. Additional so, both bioaugmentation and biostimulation were effective in removing pollutant such as polyaromatic hydrocarbons (PAHs) from heavily polluted sample compared to non-amended setup (control) [35].
Although bioaugmentation has recognized effective method, it has been shown to increase the degradation of many compounds. If proper biodegrading microorganisms are not present in soil or if microbial populations decreased because of contaminant toxicity, specific microorganisms can be added as “introduced organisms” to improve the current populations and the possibility that the inoculated microorganisms may not survive in the new environment make bioaugmentation a very uncertain method. This process is known as bioaugmentation. Bioremediation technique in which natural or genetically engineered bacteria with unique metabolic profiles are used to treat sewage or contaminated water or soil. The use of alginate, agar, agarose, gelatin, gellan gum and polyurethane as carrier materials solve some of the challenges associated with bioaugmentation [36].
Biosurfactants are chemical equivalents having ecofriendly and biodegradable properties. However, high construction cost and low scalability application of biosurfactants to polluted site are uneconomical. Agro-industrial wastes combination are nutrient sources for development of biosurfactant producers during fermentation process. Application of several bioremediation techniques will help increase remediation efficiency [37].
Enhancing bioremediation ability with organized use of genetically engineered microorganisms (GEM) is a favorable approach. This is due to possibility of engineering a designer biocatalyst target pollutant including recalcitrant compounds by combining a novel and efficient metabolic pathways, widening the substrate range of existing pathways and increasing stability of catabolic activity [38].
However, parallel gene transfer and multiplication of GEM in an environmental application are encouraging approach. Bacterial containment systems, in which any GEM escaping an environment to reconstruct polluted environment.
Further, derivative pathway of genetically engineering microorganisms with a target polluted compound using biological approach could increase bioremediation efficiency. Nanomaterials decline the toxicity of pollutant to microorganisms because nanomaterials having increase surface area and lower activation energy, which reduce time and cost of bioremediation [39].
Bioremediation must be considered as appropriate methods that can applied to all states of matter in the environment
Solids (soils, sediment and sludge)
Liquids (ground water, surface water and industrial waste water
Gases (industrial air emissions)
Sub-surface environments (saturated and vadose zones).
The general approaches to bioremediation are the (i) intrinsic (natural) bioremediation, (ii) biosimulation (environmental modifications, through nutrient application and aeration, and (iii) bioaugmentation (addition of microbes).
The biological community exploited for bioremediation generally consists of the native soil microflora. However, higher plants can also be manipulated to enhance toxicant removal (phytoremediation), especially for remediation of metal contaminated soils.
All bioremediation techniques have its own advantage and disadvantage because it has its own specific applications.
It is a natural process; it takes a little time, as an adequate waste treatment process for contaminated material such as soil. Microbes able to degrade the contaminant, the biodegradative populations become reduced. The treatment products are commonly harmless including cell biomass, water and carbon dioxide.
It needs a very less effort and can commonly carry out on site, regularly without disturbing normal microbial activities. This also eradicates the transport amount of waste off site and the possible threats to human health and the environment.
It is functional in a cost effective process as comparison to other conventional methods that are used for clean-up of toxic hazardous waste regularly for the treatment of oil contaminated sites. It also supports in complete degradation of the pollutants; many of the toxic hazardous compounds can be transformed to less harmful products and disposal of contaminated material.
It does not use any dangerous chemicals. Nutrients especially fertilizers added to make active and fast microbial growth. Because of bioremediation change harmful chemicals into water and harmless gases, the harmful chemicals are completely destroyed.
Simple, less labor intensive and cheap due to their natural role in the environment.
Contaminants are destroyed, not simply transferred to different environmental.
Nonintrusive, possibly allowing for continued site use.
Current way of remediating environment from large contaminates and acts as ecofriendly sustainable opportunities.
It is restricted for biodegradable compounds. Not all compounds are disposed to quick and complete degradation process.
There are particular new products of biodegradation may be more toxic than the initial compounds and persist in environment.
Biological processes are highly specific, ecofriendly which includes the presence of metabolically active microbial populations, suitable environmental growth conditions and availability of nutrients and contaminants.
It is demanding to encourage the process from bench and pilot-scale to large-scale field operations. Contaminants may be present as solids, liquids and gases. It often takes longer than other treatment preferences, such as excavation and removal of soil or incineration.
Research is needed to develop and engineer bioremediation technologies that are appropriate for sites with complex mixtures of contaminants that are not evenly dispersed in the environment.
Bioremediation is limited to those compounds that are biodegradable. This method is susceptible to rapid and complete degradation. Products of biodegradation may be more persistent or toxic than the parent compound in the environment.
Specificity
Biological processes are highly specific. Important site factors mandatory for success include the presence of metabolically capable microbial populations, suitable environmental growth conditions, and appropriate levels of nutrients and contaminants.
Scale up limitation
It is difficult to scale up bioremediation process from batch and pilot scale studies applicable to large scale field operations.
Technological advancement
More research is required to develop modern engineer bioremediation technologies that are suitable for sites with composite combinations of contaminants that are not equally distributed in the environment. It may be present as solids, liquids and gases forms.
Time taking process
Bioremediation takes longer time compare to other treatment options, such as excavation and removal of soil from contaminated site.
Regulatory uncertainty
We are not certain to say that remediation is 100% completed, as there is no accepted definition of clean. Due to that performance evaluation of bioremediation is difficult, and there is no acceptable endpoint for bioremediation treatments.
Biodegradation is very fruitful and attractive option to remediating, cleaning, managing and recovering technique for solving polluted environment through microbial activity. The speed of undesirable waste substances degradation is determined in competition with in biological agents like fungi, bacterial, algae inadequate supply with essential nutrient, uncomfortable external abiotic conditions (aeration, moisture, pH, temperature), and low bioavailability. Bioremediation depending on several factors, which include but not limited to cost, site characteristics, type and concentration of pollutants. The leading step to a successful bioremediation is site description, which helps create the most suitable and promising bioremediation technique (ex-situ or in-situ). Ex-situ bioremediation techniques tend to be more costly due to excavation and transportation from archeological site. However, they can be used to treat wider range of pollutants. In contrast, in-situ techniques have no extra cost for excavation; however, on-site installation cost of equipment, attached with effectively and control the subsurface of polluted site can reduce some ineffective in-situ bioremediation methods. Geological characteristics of polluted sites comprising soil, pollutant type and depth, human habitation site and performance of every bioremediation technique should be integrated in determining the most appropriate and operative bioremediation technique to successfully treatment of polluted sites.
IntechOpen is the first native scientific publisher of Open Access books, with more than 116,000 authors worldwide, ranging from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery. Established in Europe with the new headquarters based in London, and with plans for international growth, IntechOpen is the leading publisher of Open Access scientific books. The values of our business are based on the same ones that any scientist applies to their research -- we have created a culture of respect, collegiality and collaboration within an atmosphere that’s relaxed, friendly and progressive.
",metaTitle:"Social Media Community Manager and Marketing Assistant",metaDescription:"We are looking to add further talent to our team in The Shard office in London with a full-time Marketing and Communications Specialist position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate will be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\\n\\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\\n\\nResponsibilities:
\\n\\nEssential Skills:
\\n\\nDesired Skills:
\\n\\nWhat makes IntechOpen a great place to work?
\\n\\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\\n\\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\\n\\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\\n\\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\n\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\n\nResponsibilities:
\n\nEssential Skills:
\n\nDesired Skills:
\n\nWhat makes IntechOpen a great place to work?
\n\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\n\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\n\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\n\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5703},{group:"region",caption:"Middle and South America",value:2,count:5174},{group:"region",caption:"Africa",value:3,count:1690},{group:"region",caption:"Asia",value:4,count:10246},{group:"region",caption:"Australia and Oceania",value:5,count:889},{group:"region",caption:"Europe",value:6,count:15653}],offset:12,limit:12,total:117316},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"9"},books:[{type:"book",id:"9226",title:"Intelligent User Interfaces",subtitle:null,isOpenForSubmission:!0,hash:"2540a73b78f2f13158366ac0ab9d62a1",slug:null,bookSignature:"Dr. Rüdiger Heimgärtner",coverURL:"https://cdn.intechopen.com/books/images_new/9226.jpg",editedByType:null,editors:[{id:"135236",title:"Dr.",name:"Rüdiger",surname:"Heimgärtner",slug:"rudiger-heimgartner",fullName:"Rüdiger Heimgärtner"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9980",title:"Vision Sensors",subtitle:null,isOpenForSubmission:!0,hash:"fc472f04a4214bf13db3f693a2c7c323",slug:null,bookSignature:"Dr. Vasanth Iyer",coverURL:"https://cdn.intechopen.com/books/images_new/9980.jpg",editedByType:null,editors:[{id:"301000",title:"Dr.",name:"Vasanth",surname:"Iyer",slug:"vasanth-iyer",fullName:"Vasanth Iyer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10270",title:"Fog Computing",subtitle:null,isOpenForSubmission:!0,hash:"54853b3034f0348a6157b5591f8d95f3",slug:null,bookSignature:"Dr. Isiaka Ajewale Alimi, Dr. Nelson Muga, Dr. Qin Xin and Dr. Paulo P. Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/10270.jpg",editedByType:null,editors:[{id:"208236",title:"Dr.",name:"Isiaka",surname:"Alimi",slug:"isiaka-alimi",fullName:"Isiaka Alimi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10394",title:"Blockchain Potential in AI",subtitle:null,isOpenForSubmission:!0,hash:"700eff7270bae63fd214974a0bd8e77f",slug:null,bookSignature:"Dr. Tiago M. Fernández-Caramés and Dr. Paula Fraga-Lamas",coverURL:"https://cdn.intechopen.com/books/images_new/10394.jpg",editedByType:null,editors:[{id:"186818",title:"Dr.",name:"Tiago M.",surname:"Fernández-Caramés",slug:"tiago-m.-fernandez-carames",fullName:"Tiago M. Fernández-Caramés"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10403",title:"Recent Advances on Numerical Simulations",subtitle:null,isOpenForSubmission:!0,hash:"d74c4bc8f3f49c49eb2e80810d938611",slug:null,bookSignature:"Dr. Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10403.jpg",editedByType:null,editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10452",title:"Computer-Mediated Communication",subtitle:null,isOpenForSubmission:!0,hash:"ed2d494d96079740341956fe830814ac",slug:null,bookSignature:"Dr. Indrakshi Dey",coverURL:"https://cdn.intechopen.com/books/images_new/10452.jpg",editedByType:null,editors:[{id:"321151",title:"Dr.",name:"Indrakshi",surname:"Dey",slug:"indrakshi-dey",fullName:"Indrakshi Dey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10517",title:"Swarm Intelligence",subtitle:null,isOpenForSubmission:!0,hash:"c184136bf5b833b19f7e12ace5531773",slug:null,bookSignature:"Dr. Mehmet Emin Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/10517.jpg",editedByType:null,editors:[{id:"148497",title:"Dr.",name:"Mehmet",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10522",title:"Coding Theory - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:null,bookSignature:"Dr. Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:null,editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10576",title:"Factoring Ethics in Technology, Policy Making and Regulation",subtitle:null,isOpenForSubmission:!0,hash:"eff20787f4c5417ea12367e8a6d72e92",slug:null,bookSignature:"Prof. Ali G. Hessami and Dr. Patricia Shaw",coverURL:"https://cdn.intechopen.com/books/images_new/10576.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali G.",surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10651",title:"Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"5806b4efae3bd91c3f56e64e0442df35",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:10},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:55},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:18},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5146},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"305",title:"Plant Genetics",slug:"agricultural-science-plant-genetics",parent:{title:"Agricultural Science",slug:"agricultural-science"},numberOfBooks:2,numberOfAuthorsAndEditors:46,numberOfWosCitations:5,numberOfCrossrefCitations:8,numberOfDimensionsCitations:15,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"agricultural-science-plant-genetics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6166",title:"Maize Germplasm",subtitle:"Characterization and Genetic Approaches for Crop Improvement",isOpenForSubmission:!1,hash:"c417c25f765a026f5ebbf9d3119edb2e",slug:"maize-germplasm-characterization-and-genetic-approaches-for-crop-improvement",bookSignature:"Mohamed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/6166.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5978",title:"New Perspectives in Forage Crops",subtitle:null,isOpenForSubmission:!1,hash:"129c29bcddd8225ed58e908138b2cda5",slug:"new-perspectives-in-forage-crops",bookSignature:"Ricardo Loiola Edvan and Leilson Rocha Bezerra",coverURL:"https://cdn.intechopen.com/books/images_new/5978.jpg",editedByType:"Edited by",editors:[{id:"171035",title:"Dr.",name:"Ricardo",middleName:null,surname:"Loiola Edvan",slug:"ricardo-loiola-edvan",fullName:"Ricardo Loiola Edvan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"55856",doi:"10.5772/intechopen.69616",title:"Halophytes as Forages",slug:"halophytes-as-forages",totalDownloads:965,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Salah A. Attia-Ismail",authors:[{id:"204190",title:"Emeritus Prof.",name:"Salah",middleName:"Abdelaty",surname:"Attia-Ismail",slug:"salah-attia-ismail",fullName:"Salah Attia-Ismail"}]},{id:"57115",doi:"10.5772/intechopen.70345",title:"Best Management Practices (BMPs) for Nitrogen Fertilizer in Forage Grasses",slug:"best-management-practices-bmps-for-nitrogen-fertilizer-in-forage-grasses",totalDownloads:985,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Ademar Pereira Serra, Marlene Estevão Marchetti, Elisângela Dupas,\nSimone Candido Ensinas, Elaine Reis Pinheiro Lourente, Eulene\nFrancisco da Silva, Roberto Giolo de Almeida, Carla Eloize Carducci\nand Alessandra Mayumi Tokura Alovisi",authors:[{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra"}]},{id:"58077",doi:"10.5772/intechopen.72310",title:"Sustainable Pasture Management",slug:"sustainable-pasture-management",totalDownloads:1279,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Atanas Sevov, Chtistina Yancheva and Yanka Kazakova",authors:[{id:"220128",title:"Dr.",name:"Christina",middleName:"Georgieva",surname:"Yancheva",slug:"christina-yancheva",fullName:"Christina Yancheva"},{id:"220129",title:"Dr.",name:"Atanas",middleName:null,surname:"Sevov",slug:"atanas-sevov",fullName:"Atanas Sevov"},{id:"222141",title:"Dr.",name:"Yanka",middleName:null,surname:"Kazakova",slug:"yanka-kazakova",fullName:"Yanka Kazakova"}]}],mostDownloadedChaptersLast30Days:[{id:"57115",title:"Best Management Practices (BMPs) for Nitrogen Fertilizer in Forage Grasses",slug:"best-management-practices-bmps-for-nitrogen-fertilizer-in-forage-grasses",totalDownloads:985,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Ademar Pereira Serra, Marlene Estevão Marchetti, Elisângela Dupas,\nSimone Candido Ensinas, Elaine Reis Pinheiro Lourente, Eulene\nFrancisco da Silva, Roberto Giolo de Almeida, Carla Eloize Carducci\nand Alessandra Mayumi Tokura Alovisi",authors:[{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra"}]},{id:"58077",title:"Sustainable Pasture Management",slug:"sustainable-pasture-management",totalDownloads:1279,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Atanas Sevov, Chtistina Yancheva and Yanka Kazakova",authors:[{id:"220128",title:"Dr.",name:"Christina",middleName:"Georgieva",surname:"Yancheva",slug:"christina-yancheva",fullName:"Christina Yancheva"},{id:"220129",title:"Dr.",name:"Atanas",middleName:null,surname:"Sevov",slug:"atanas-sevov",fullName:"Atanas Sevov"},{id:"222141",title:"Dr.",name:"Yanka",middleName:null,surname:"Kazakova",slug:"yanka-kazakova",fullName:"Yanka Kazakova"}]},{id:"56856",title:"Polyembryony in Maize: A Complex, Elusive, and Potentially Agronomical Useful Trait",slug:"polyembryony-in-maize-a-complex-elusive-and-potentially-agronomical-useful-trait",totalDownloads:685,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"maize-germplasm-characterization-and-genetic-approaches-for-crop-improvement",title:"Maize Germplasm",fullTitle:"Maize Germplasm - Characterization and Genetic Approaches for Crop Improvement"},signatures:"Mariela R. Michel, Marisol Cruz-Requena, Marselino C. Avendaño-\nSanchez, Víctor M. González-Vazquez, Adriana C. Flores-Gallegos,\nCristóbal N. Aguilar, José Espinoza-Velázquez and Raúl Rodríguez-\nHerrera",authors:[{id:"67240",title:"Prof.",name:"Cristobal",middleName:null,surname:"Aguilar",slug:"cristobal-aguilar",fullName:"Cristobal Aguilar"},{id:"183439",title:"Dr.",name:"Raul",middleName:null,surname:"Rodriguez-Herrera",slug:"raul-rodriguez-herrera",fullName:"Raul Rodriguez-Herrera"},{id:"185302",title:"Dr.",name:"Mariela R.",middleName:null,surname:"Michel",slug:"mariela-r.-michel",fullName:"Mariela R. Michel"},{id:"185304",title:"Dr.",name:"Adriana Carolina",middleName:null,surname:"Flores Gallegos",slug:"adriana-carolina-flores-gallegos",fullName:"Adriana Carolina Flores Gallegos"},{id:"217785",title:"Dr.",name:"Marisol",middleName:null,surname:"Cruz-Requena",slug:"marisol-cruz-requena",fullName:"Marisol Cruz-Requena"},{id:"217786",title:"Mr.",name:"Marcelino",middleName:null,surname:"Avendaño-Sanchez",slug:"marcelino-avendano-sanchez",fullName:"Marcelino Avendaño-Sanchez"},{id:"217787",title:"Mr.",name:"Victor",middleName:null,surname:"González-Vazquez",slug:"victor-gonzalez-vazquez",fullName:"Victor González-Vazquez"},{id:"217788",title:"Dr.",name:"Jose",middleName:null,surname:"Espinoza-Velázquez",slug:"jose-espinoza-velazquez",fullName:"Jose Espinoza-Velázquez"}]},{id:"56029",title:"Production of Spineless Cactus in Brazilian Semiarid",slug:"production-of-spineless-cactus-in-brazilian-semiarid",totalDownloads:1218,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Wilma Cristina Cavalcante dos Santos Sá, Edson Mauro Santos,\nJuliana Silva de Oliveira and Alexandre Fernandes Perazzo",authors:[{id:"139631",title:"Dr.",name:"Edson Mauro",middleName:null,surname:"Santos",slug:"edson-mauro-santos",fullName:"Edson Mauro Santos"},{id:"180036",title:"Dr.",name:"Juliana",middleName:null,surname:"Oliveira",slug:"juliana-oliveira",fullName:"Juliana Oliveira"},{id:"203022",title:"MSc.",name:"Wilma",middleName:null,surname:"Sá",slug:"wilma-sa",fullName:"Wilma Sá"},{id:"207265",title:"Dr.",name:"Alexandre",middleName:null,surname:"Perazzo",slug:"alexandre-perazzo",fullName:"Alexandre Perazzo"}]},{id:"57540",title:"Impacts of Nitrogen Fertilization and Conservation Tillage on the Agricultural Soils of the United States: A Review",slug:"impacts-of-nitrogen-fertilization-and-conservation-tillage-on-the-agricultural-soils-of-the-united-s",totalDownloads:698,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"maize-germplasm-characterization-and-genetic-approaches-for-crop-improvement",title:"Maize Germplasm",fullTitle:"Maize Germplasm - Characterization and Genetic Approaches for Crop Improvement"},signatures:"Meimei Lin",authors:[{id:"208050",title:"Dr.",name:"Meimei",middleName:null,surname:"Lin",slug:"meimei-lin",fullName:"Meimei Lin"}]},{id:"56095",title:"Development of Tropical Forages in Veracruz, Mexico: Agronomic Approach for the New Forage Legume Cratylia argentea",slug:"development-of-tropical-forages-in-veracruz-mexico-agronomic-approach-for-the-new-forage-legume-crat",totalDownloads:832,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Braulio Valles-de la Mora, Epigmenio Castillo-Gallegos, Jesús Jarillo-\nRodríguez, Eliazar Ocaña-Zavaleta and Miguel Angel Alonso-Díaz",authors:[{id:"149753",title:"Dr.",name:"Jesús",middleName:null,surname:"Jarillo-Rodríguez",slug:"jesus-jarillo-rodriguez",fullName:"Jesús Jarillo-Rodríguez"},{id:"158862",title:"Dr.",name:"Epigmenio",middleName:null,surname:"Castillo-Gallegos",slug:"epigmenio-castillo-gallegos",fullName:"Epigmenio Castillo-Gallegos"},{id:"201581",title:"Dr.",name:"Braulio",middleName:null,surname:"Valles",slug:"braulio-valles",fullName:"Braulio Valles"},{id:"208059",title:"Dr.",name:"Miguel Angel",middleName:null,surname:"Alonso-Diaz",slug:"miguel-angel-alonso-diaz",fullName:"Miguel Angel Alonso-Diaz"},{id:"208062",title:"MSc.",name:"Eliazar",middleName:null,surname:"Ocaña-Zavaleta",slug:"eliazar-ocana-zavaleta",fullName:"Eliazar Ocaña-Zavaleta"}]},{id:"56047",title:"Genetic Variability of US and Czech Phalaris Arundinacea L. Wild and Cultivated Populations",slug:"genetic-variability-of-us-and-czech-phalaris-arundinacea-l-wild-and-cultivated-populations",totalDownloads:663,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Tereza Kávová, Barbora Kubátová, Vladislav Čurn and Neil O.\nAnderson",authors:[{id:"69714",title:"Prof.",name:"Neil",middleName:null,surname:"Anderson",slug:"neil-anderson",fullName:"Neil Anderson"},{id:"204381",title:"MSc.",name:"Tereza",middleName:null,surname:"Kávová",slug:"tereza-kavova",fullName:"Tereza Kávová"},{id:"204382",title:"Dr.",name:"Barbora",middleName:null,surname:"Kubátová",slug:"barbora-kubatova",fullName:"Barbora Kubátová"},{id:"204383",title:"Prof.",name:"Vladislav",middleName:null,surname:"Čurn",slug:"vladislav-curn",fullName:"Vladislav Čurn"}]},{id:"55856",title:"Halophytes as Forages",slug:"halophytes-as-forages",totalDownloads:965,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Salah A. Attia-Ismail",authors:[{id:"204190",title:"Emeritus Prof.",name:"Salah",middleName:"Abdelaty",surname:"Attia-Ismail",slug:"salah-attia-ismail",fullName:"Salah Attia-Ismail"}]},{id:"56953",title:"Phosphorus in Forage Production",slug:"phosphorus-in-forage-production",totalDownloads:1130,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Ademar Pereira Serra, Marlene Estevão Marchetti, Elisângela Dupas,\nCarla Eloize Carducci, Eulene Francisco da Silva, Elaine Reis Pinheiro",authors:[{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra"}]},{id:"57721",title:"An Insight into Current and Future Production of Forage Crops in Zimbabwe",slug:"an-insight-into-current-and-future-production-of-forage-crops-in-zimbabwe",totalDownloads:1104,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Allan Sebata",authors:[{id:"143409",title:"Dr.",name:"Allan",middleName:null,surname:"Sebata",slug:"allan-sebata",fullName:"Allan Sebata"}]}],onlineFirstChaptersFilter:{topicSlug:"agricultural-science-plant-genetics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/120093/ingrid-huber",hash:"",query:{},params:{id:"120093",slug:"ingrid-huber"},fullPath:"/profiles/120093/ingrid-huber",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()