Distribution of vulnerability classes for the index of agricultural area variations (UAA_VAR)
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"7573",leadTitle:null,fullTitle:"Perspectives on Risk, Assessment and Management Paradigms",title:"Perspectives on Risk, Assessment and Management Paradigms",subtitle:null,reviewType:"peer-reviewed",abstract:"This book explores various paradigms of risk, domain-specific interpretation, and application requirements and practices driven by mission and safety critical to business and service entities. The chapters fall into four categories to guide the readers with a specific focus on gaining insight into discipline-specific case studies and state of practice. In an increasingly intertwined global community, understanding, evaluating, and addressing risks and rewards will pave the way for a more transparent and objective approach to benefiting from the promises of advanced technologies while maintaining awareness and control over hazards and risks. This book is conceived to inform decision-makers and practitioners of best practices across many disciplines and sectors while encouraging innovation towards a holistic approach to risk in their areas of professional practice.",isbn:"978-1-83880-134-2",printIsbn:"978-1-83880-133-5",pdfIsbn:"978-1-83962-138-3",doi:"10.5772/intechopen.77127",price:119,priceEur:129,priceUsd:155,slug:"perspectives-on-risk-assessment-and-management-paradigms",numberOfPages:210,isOpenForSubmission:!1,isInWos:null,hash:"799ce26efc776b46b7b9f3aedff16edc",bookSignature:"Ali G. Hessami",publishedDate:"April 17th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7573.jpg",numberOfDownloads:6980,numberOfWosCitations:0,numberOfCrossrefCitations:3,numberOfDimensionsCitations:4,hasAltmetrics:1,numberOfTotalCitations:7,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 12th 2018",dateEndSecondStepPublish:"May 3rd 2018",dateEndThirdStepPublish:"July 2nd 2018",dateEndFourthStepPublish:"September 20th 2018",dateEndFifthStepPublish:"November 19th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"108303",title:"Prof.",name:"Ali G.",middleName:null,surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami",profilePictureURL:"https://mts.intechopen.com/storage/users/108303/images/system/108303.jpeg",biography:"Ali Hessami is currently the Director of R&D and Innovation at Vega Systems, UK. He is an expert in the systems assurance and safety, security, sustainability and knowledge assessment/management methodologies and has a background in design and development of advanced control systems for safety and mission critical industrial applications. \nHe is a UK expert on CENELEC & IEC systems, hardware and software standards committees. He is a member of CENELEC Railway Cyber Security Standardisation Working Group and was elected as the Technical Editor and the chair for the IEEE P7000, Model Process for Addressing Ethical Concerns During System Design standard. Prof. Ali was also appointed as the VC and Process Architect for the IEEE's Global Ethics Certification Programme for Autonomous and Intelligent Systems (ECPAIS).\nHe is currently a Visiting Professor at London City University’s Centre for Systems and Control and also at Beijing Jiaotong University. He is a fellow of Royal Society of Arts (FRSA), fellow of the Institution of Engineering & Technology (IET) and a senior member of IEEE.",institutionString:"Vega Systems",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"861",title:"Risk Management",slug:"environmental-sciences-environmental-management-risk-management"}],chapters:[{id:"66146",title:"Introductory Chapter: A Systems Framework for Risk Assessment",doi:"10.5772/intechopen.85429",slug:"introductory-chapter-a-systems-framework-for-risk-assessment",totalDownloads:512,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ali Hessami",downloadPdfUrl:"/chapter/pdf-download/66146",previewPdfUrl:"/chapter/pdf-preview/66146",authors:[{id:"108303",title:"Prof.",name:"Ali G.",surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],corrections:null},{id:"63163",title:"Decision-making in Risk Management",doi:"10.5772/intechopen.80439",slug:"decision-making-in-risk-management",totalDownloads:683,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jan Folkmann Wright",downloadPdfUrl:"/chapter/pdf-download/63163",previewPdfUrl:"/chapter/pdf-preview/63163",authors:[{id:"254395",title:"Mr.",name:"Jan Folkmann",surname:"Wright",slug:"jan-folkmann-wright",fullName:"Jan Folkmann Wright"}],corrections:null},{id:"66263",title:"Functional and Technical Methods of Information and Risk Communication",doi:"10.5772/intechopen.84488",slug:"functional-and-technical-methods-of-information-and-risk-communication",totalDownloads:390,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Carine J. Yi and Tim Park",downloadPdfUrl:"/chapter/pdf-download/66263",previewPdfUrl:"/chapter/pdf-preview/66263",authors:[{id:"202156",title:"Dr.",name:"Carine",surname:"Yi",slug:"carine-yi",fullName:"Carine Yi"},{id:"285538",title:"Mr.",name:"Tim",surname:"Park",slug:"tim-park",fullName:"Tim Park"}],corrections:null},{id:"62904",title:"Bank Risk Management: A Regulatory Perspective",doi:"10.5772/intechopen.79822",slug:"bank-risk-management-a-regulatory-perspective",totalDownloads:961,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Nguyen Thi Thieu Quang and Christopher Gan",downloadPdfUrl:"/chapter/pdf-download/62904",previewPdfUrl:"/chapter/pdf-preview/62904",authors:[{id:"256020",title:"Prof.",name:"Christopher",surname:"Gan",slug:"christopher-gan",fullName:"Christopher Gan"},{id:"256021",title:"Ms.",name:"Nguyen Thi Thieu",surname:"Quang",slug:"nguyen-thi-thieu-quang",fullName:"Nguyen Thi Thieu Quang"}],corrections:null},{id:"63201",title:"Risk Management Practices Adopted by European Financial Firms with a Mediterranean Connection",doi:"10.5772/intechopen.80640",slug:"risk-management-practices-adopted-by-european-financial-firms-with-a-mediterranean-connection",totalDownloads:410,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Simon Grima and Frank Bezzina",downloadPdfUrl:"/chapter/pdf-download/63201",previewPdfUrl:"/chapter/pdf-preview/63201",authors:[{id:"257099",title:"Dr.",name:"Simon",surname:"Grima",slug:"simon-grima",fullName:"Simon Grima"},{id:"257101",title:"Prof.",name:"Frank",surname:"Bezzina",slug:"frank-bezzina",fullName:"Frank Bezzina"}],corrections:null},{id:"64179",title:"The Internet of Things for Natural Risk Management (Inte.Ri.M.)",doi:"10.5772/intechopen.81707",slug:"the-internet-of-things-for-natural-risk-management-inte-ri-m-",totalDownloads:545,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Riccardo Beltramo, Paolo Cantore, Enrica Vesce, Sergio Margarita and\nPaola De Bernardi",downloadPdfUrl:"/chapter/pdf-download/64179",previewPdfUrl:"/chapter/pdf-preview/64179",authors:[{id:"257332",title:"Prof.",name:"Riccardo",surname:"Beltramo",slug:"riccardo-beltramo",fullName:"Riccardo Beltramo"},{id:"257334",title:"Prof.",name:"Enrica",surname:"Vesce",slug:"enrica-vesce",fullName:"Enrica Vesce"},{id:"257335",title:"Prof.",name:"Paola",surname:"De Bernardi",slug:"paola-de-bernardi",fullName:"Paola De Bernardi"},{id:"257336",title:"Dr.",name:"Paolo",surname:"Cantore",slug:"paolo-cantore",fullName:"Paolo Cantore"},{id:"257337",title:"Prof.",name:"Sergio",surname:"Margarita",slug:"sergio-margarita",fullName:"Sergio Margarita"}],corrections:null},{id:"64655",title:"Lifecycle Risk Modelling of Complex Projects",doi:"10.5772/intechopen.82273",slug:"lifecycle-risk-modelling-of-complex-projects",totalDownloads:398,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Matthew Cook and John P.T. Mo",downloadPdfUrl:"/chapter/pdf-download/64655",previewPdfUrl:"/chapter/pdf-preview/64655",authors:[{id:"6394",title:"Prof.",name:"John P.T.",surname:"Mo",slug:"john-p.t.-mo",fullName:"John P.T. Mo"},{id:"254858",title:"Ph.D. Student",name:"Matthew",surname:"Cook",slug:"matthew-cook",fullName:"Matthew Cook"}],corrections:null},{id:"65609",title:"Risk Analysis Related to Cost and Schedule for a Bridge Construction Project",doi:"10.5772/intechopen.83501",slug:"risk-analysis-related-to-cost-and-schedule-for-a-bridge-construction-project",totalDownloads:882,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Rafiq M. Choudhry",downloadPdfUrl:"/chapter/pdf-download/65609",previewPdfUrl:"/chapter/pdf-preview/65609",authors:[{id:"255346",title:"Prof.",name:"Rafiq M.",surname:"Choudhry",slug:"rafiq-m.-choudhry",fullName:"Rafiq M. Choudhry"}],corrections:null},{id:"64817",title:"Pharmaceutical Projects: Walking along the Risk Management Line",doi:"10.5772/intechopen.82601",slug:"pharmaceutical-projects-walking-along-the-risk-management-line",totalDownloads:648,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jordi Botet",downloadPdfUrl:"/chapter/pdf-download/64817",previewPdfUrl:"/chapter/pdf-preview/64817",authors:[{id:"143483",title:"PhD.",name:"Jordi",surname:"Botet",slug:"jordi-botet",fullName:"Jordi Botet"}],corrections:null},{id:"63550",title:"Paradigms of Risk, Hazards and Danger",doi:"10.5772/intechopen.80822",slug:"paradigms-of-risk-hazards-and-danger",totalDownloads:477,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Marek Różycki",downloadPdfUrl:"/chapter/pdf-download/63550",previewPdfUrl:"/chapter/pdf-preview/63550",authors:[{id:"254855",title:"Mr.",name:"Marek",surname:"Rozycki",slug:"marek-rozycki",fullName:"Marek Rozycki"}],corrections:null},{id:"64630",title:"Process of Risk Management",doi:"10.5772/intechopen.80804",slug:"process-of-risk-management",totalDownloads:1074,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"K. Srinivas",downloadPdfUrl:"/chapter/pdf-download/64630",previewPdfUrl:"/chapter/pdf-preview/64630",authors:[{id:"255339",title:"Prof.",name:"K",surname:"Srinivas",slug:"k-srinivas",fullName:"K Srinivas"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"6065",title:"Modern Railway Engineering",subtitle:null,isOpenForSubmission:!1,hash:"77a5fae5e9451d4e52e9f7cd8f39bdcb",slug:"modern-railway-engineering",bookSignature:"Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/6065.jpg",editedByType:"Edited by",editors:[{id:"108303",title:"Prof.",name:"Ali G.",surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8850",title:"Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems",subtitle:null,isOpenForSubmission:!1,hash:"25ef9074be50f4e5c1f6cb7298e1b68d",slug:"harnessing-knowledge-innovation-and-competence-in-engineering-of-mission-critical-systems",bookSignature:"Ali G. Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/8850.jpg",editedByType:"Edited by",editors:[{id:"108303",title:"Prof.",name:"Ali G.",surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65668",slug:"corrigendum-to-clinical-applications-of-mesenchymal-stromal-cells-mscs-in-orthopedic-diseases",title:"Corrigendum to: Clinical Applications of Mesenchymal Stromal Cells (MSCs) in Orthopedic Diseases",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65668.pdf",downloadPdfUrl:"/chapter/pdf-download/65668",previewPdfUrl:"/chapter/pdf-preview/65668",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65668",risUrl:"/chapter/ris/65668",chapter:{id:"61187",slug:"clinical-applications-of-mesenchymal-stromal-cells-mscs-in-orthopedic-diseases",signatures:"Jiazhao Yang, Shiyuan Fang, Lei Xu, Li Li, Kai Xie, Jinsen Lu, Hao\nWang, Xujin Wang and Lixin Kan",dateSubmitted:"December 5th 2017",dateReviewed:"March 29th 2018",datePrePublished:"November 5th 2018",datePublished:"January 23rd 2019",book:{id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications",slug:"stromal-cells-structure-function-and-therapeutic-implications",publishedDate:"January 23rd 2019",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"61187",slug:"clinical-applications-of-mesenchymal-stromal-cells-mscs-in-orthopedic-diseases",signatures:"Jiazhao Yang, Shiyuan Fang, Lei Xu, Li Li, Kai Xie, Jinsen Lu, Hao\nWang, Xujin Wang and Lixin Kan",dateSubmitted:"December 5th 2017",dateReviewed:"March 29th 2018",datePrePublished:"November 5th 2018",datePublished:"January 23rd 2019",book:{id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications",slug:"stromal-cells-structure-function-and-therapeutic-implications",publishedDate:"January 23rd 2019",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications",slug:"stromal-cells-structure-function-and-therapeutic-implications",publishedDate:"January 23rd 2019",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"6395",leadTitle:null,title:"Bridge Engineering",subtitle:null,reviewType:"peer-reviewed",abstract:"A bridge is a structure built to span the physical obstacles without closing the way underneath, such as a body of water, valley, or road, for the purpose of providing the passage over the obstacle. Bridge engineering is an engineering discipline branching from civil engineering that involves the planning, design, construction, operation, and maintenance of bridges to ensure safe and effective transportation of vehicles, people and goods. This book Bridge Engineering includes the main topics and the basic principles of bridge engineering and provides the full scope of current information necessary for effective and cost-conscious contemporary bridge. It reflects new engineering and building developments, the most current design methods, and the latest industry standards and policies. It provides a comprehensive overview of the significant characteristics for bridge engineering. It highlights the recent advancements, requirements, improvements, and details of the latest techniques in the global market. It contains a collection of the latest research developments on the bridge engineering. It comprehensively covers the basic theory and practice in sufficient depth to provide a solid grounding to bridge engineers. It helps readers to maximize effectiveness in all facets of bridge engineering. This professional book as a credible source and a valuable reference can be very applicable and useful for all professors, researchers, engineers, practicing professionals, trainee practitioners, students and others who are interested in the bridge projects.",isbn:"978-1-78923-105-2",printIsbn:"978-1-78923-104-5",pdfIsbn:"978-1-83881-451-9",doi:"10.5772/intechopen.70024",price:119,priceEur:129,priceUsd:155,slug:"bridge-engineering",numberOfPages:150,isOpenForSubmission:!1,hash:"1d5fcf0ef5708024ef95eb8b3d7310be",bookSignature:"Hamid Yaghoubi",publishedDate:"May 23rd 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6395.jpg",keywords:null,numberOfDownloads:14036,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfDimensionsCitations:2,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 8th 2017",dateEndSecondStepPublish:"June 29th 2017",dateEndThirdStepPublish:"September 25th 2017",dateEndFourthStepPublish:"December 24th 2017",dateEndFifthStepPublish:"February 22nd 2018",remainingDaysToSecondStep:"4 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"103965",title:"Dr.",name:"Hamid",middleName:null,surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi",profilePictureURL:"https://mts.intechopen.com/storage/users/103965/images/system/103965.jpeg",biography:"Dr. Hamid Yaghoubi is the director of Iran Maglev Technology (IMT). He became the Iran top researcher in 2010. In this regard, he was awarded by the Iranian president; the Iranian Minister of Science, Research and Technology; and the Iranian Minister of Information and Communication Technology. He became the 2011 and 2012 Outstanding Reviewer for the Journal of Transportation Engineering (JTE), American Society of Civil Engineers (ASCE), USA. One of his journal papers became the 2011 Top Download Paper for JTE. He received the ICCTP2011 Award for the 11th International Conference of Chinese Transportation Professionals (ICCTP2011), ASCE. He is an assistant chief editor and an editorial board member for some journals. He has been a reviewer for the majority of journals, books and conferences. He has also been an editor for some books. He has cooperated with hundreds of international conferences as a chairman, a keynote speaker, a chair of session, a publication chair, and a member of committees, including scientific, organizing, steering, advisory, technical program, and so on. He is also a member of several international committees.",institutionString:"Iran Maglev Technology (IMT)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Iran University of Science and Technology",institutionURL:null,country:{name:"Iran"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"705",title:"Construction Engineering",slug:"construction-engineering"}],chapters:[{id:"59387",title:"Introductory Chapter: Modern Bridges",slug:"introductory-chapter-modern-bridges",totalDownloads:569,totalCrossrefCites:0,authors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}]},{id:"60236",title:"The Feasibility of Constructing Super-Long-Span Bridges with New Materials in 2050",slug:"the-feasibility-of-constructing-super-long-span-bridges-with-new-materials-in-2050",totalDownloads:1008,totalCrossrefCites:1,authors:[{id:"211659",title:"Dr.",name:"Faham",surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"},{id:"221172",title:"Dr.",name:"Samad M.E.",surname:"Sepasgozar",slug:"samad-m.e.-sepasgozar",fullName:"Samad M.E. Sepasgozar"}]},{id:"57609",title:"Developing a Bridge Condition Rating Model Based on Limited Number of Data Sets",slug:"developing-a-bridge-condition-rating-model-based-on-limited-number-of-data-sets",totalDownloads:530,totalCrossrefCites:1,authors:[{id:"180233",title:"Associate Prof.",name:"Roszilah",surname:"Hamid",slug:"roszilah-hamid",fullName:"Roszilah Hamid"},{id:"216888",title:"Dr.",name:"Khairullah",surname:"Yusof",slug:"khairullah-yusof",fullName:"Khairullah Yusof"}]},{id:"57516",title:"Structural Identification (St-Id) Concept for Performance Prediction of Long-Span Bridges",slug:"structural-identification-st-id-concept-for-performance-prediction-of-long-span-bridges",totalDownloads:660,totalCrossrefCites:0,authors:[{id:"213939",title:"Dr.",name:"Selcuk",surname:"Bas",slug:"selcuk-bas",fullName:"Selcuk Bas"}]},{id:"58008",title:"Recent Advances in the Serviceability Assessment of Footbridges Under Pedestrian-Induced Vibrations",slug:"recent-advances-in-the-serviceability-assessment-of-footbridges-under-pedestrian-induced-vibrations",totalDownloads:578,totalCrossrefCites:0,authors:[{id:"215797",title:"Ph.D.",name:"Javier Fernando",surname:"Jiménez-Alonso",slug:"javier-fernando-jimenez-alonso",fullName:"Javier Fernando Jiménez-Alonso"},{id:"215798",title:"Prof.",name:"Andres",surname:"Saez",slug:"andres-saez",fullName:"Andres Saez"}]},{id:"58853",title:"Wind Action Phenomena Associated with Large-Span Bridges",slug:"wind-action-phenomena-associated-with-large-span-bridges",totalDownloads:9452,totalCrossrefCites:0,authors:[{id:"60072",title:"Prof.",name:"Raquel",surname:"Almeida",slug:"raquel-almeida",fullName:"Raquel Almeida"},{id:"216824",title:"Prof.",name:"Daniel",surname:"Vaz",slug:"daniel-vaz",fullName:"Daniel Vaz"},{id:"216827",title:"Prof.",name:"A.R.",surname:"Janeiro Borges",slug:"a.r.-janeiro-borges",fullName:"A.R. Janeiro Borges"}]},{id:"59297",title:"Bridges Subjected to Dynamic Loading",slug:"bridges-subjected-to-dynamic-loading",totalDownloads:1239,totalCrossrefCites:0,authors:[{id:"216765",title:"Prof.",name:"Ján",surname:"Benčat",slug:"jan-bencat",fullName:"Ján Benčat"},{id:"235614",title:"Associate Prof.",name:"Robert",surname:"Kohar",slug:"robert-kohar",fullName:"Robert Kohar"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"185543",firstName:"Maja",lastName:"Bozicevic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/185543/images/4748_n.jpeg",email:"maja.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5423",title:"Urban Transport Systems",subtitle:null,isOpenForSubmission:!1,hash:"222b5d90a7014dbff7e33f3dcde6bc1d",slug:"urban-transport-systems",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/5423.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6103",title:"Highway Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9c66d18cec90a84fdfd9a64451dc421a",slug:"highway-engineering",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/6103.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7524",title:"High-Speed Rail",subtitle:null,isOpenForSubmission:!1,hash:"0e248745ed8a460687701d02462cb874",slug:"high-speed-rail",bookSignature:"Hamid Yaghoubi",coverURL:"https://cdn.intechopen.com/books/images_new/7524.jpg",editedByType:"Edited by",editors:[{id:"103965",title:"Dr.",name:"Hamid",surname:"Yaghoubi",slug:"hamid-yaghoubi",fullName:"Hamid Yaghoubi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3631",title:"Smart Home Systems",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"smart-home-systems",bookSignature:"Mahmoud A. Al-Qutayri",coverURL:"https://cdn.intechopen.com/books/images_new/3631.jpg",editedByType:"Edited by",editors:[{id:"7571",title:"Dr.",name:"Mahmoud",surname:"Al-Qutayri",slug:"mahmoud-al-qutayri",fullName:"Mahmoud Al-Qutayri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2005",title:"Effective Thermal Insulation",subtitle:"The Operative Factor of a Passive Building Model",isOpenForSubmission:!1,hash:"c7c6c5a9dfad00a32efaa72b9f163e71",slug:"effective-thermal-insulation-the-operative-factor-of-a-passive-building-model",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/2005.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7205",title:"Housing",subtitle:null,isOpenForSubmission:!1,hash:"efb431be41bf8bf41facd7b4a183225e",slug:"housing",bookSignature:"Amjad Almusaed and Asaad Almssad",coverURL:"https://cdn.intechopen.com/books/images_new/7205.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5422",title:"Risk Management Treatise for Engineering Practitioners",subtitle:null,isOpenForSubmission:!1,hash:"4d70d3197f1b4dea5285a83550a79ade",slug:"risk-management-treatise-for-engineering-practitioners",bookSignature:"Chike F Oduoza",coverURL:"https://cdn.intechopen.com/books/images_new/5422.jpg",editedByType:"Edited by",editors:[{id:"5932",title:"Dr.",name:"Chike",surname:"Oduoza",slug:"chike-oduoza",fullName:"Chike Oduoza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8808",title:"Risk Management in Construction Projects",subtitle:null,isOpenForSubmission:!1,hash:"f8f1673caa5c51349ef131c89d02f873",slug:"risk-management-in-construction-projects",bookSignature:"Nthatisi Khatleli",coverURL:"https://cdn.intechopen.com/books/images_new/8808.jpg",editedByType:"Edited by",editors:[{id:"247856",title:"Dr.",name:"Nthatisi",surname:"Khatleli",slug:"nthatisi-khatleli",fullName:"Nthatisi Khatleli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7473",title:"Indoor Environmental Quality",subtitle:null,isOpenForSubmission:!1,hash:"fb35168f3d84a1a6ee93cb3797ecda97",slug:"indoor-environmental-quality",bookSignature:"Muhammad Abdul Mujeebu",coverURL:"https://cdn.intechopen.com/books/images_new/7473.jpg",editedByType:"Edited by",editors:[{id:"289697",title:"Dr.",name:"Muhammad Abdul",surname:"Mujeebu",slug:"muhammad-abdul-mujeebu",fullName:"Muhammad Abdul Mujeebu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"43218",title:"Integrated Indicators for the Estimation of Vulnerability to Land Degradation",doi:"10.5772/52870",slug:"integrated-indicators-for-the-estimation-of-vulnerability-to-land-degradation",body:'
The setting up of sustainable development strategies, able to balance the opposite demands of economic growth and environmental protection, is one of the fundamental challenges for the international community. Our developing world is experiencing growing pressures on its land, water, and food production systems and the role of the human society in determining change within the Earth environment is becoming ever more central [1]. In this context, preserving the land productivity is a prior goal, especially in those areas, such as drylands, which are particularly fragile from an ecological point of view.
One of the most serious problem threatening these areas is land degradation, which is defined as the (persistent) reduction of biological and economic productivity [2] or, equivalently, as the reduction in the capacity of the land to provide ecosystem goods and services and to assure its functions [3,4]. Land degradation is due to a mix of predisposing factors (thin soil horizons, low soil organic matter, sparse vegetation cover, etc.) frequently accentuated by human mismanagement and periodic drought.
As a crucial component of terrestrial ecosystems, soil plays a prominent role in triggering or exacerbating land degradation. The combined action of climatic factors (aridity, extreme events, rainfall erosivity) and human pressure (overgrazing, deforestation, intensification of agriculture, tourism development, see e.g., [5]) can result in a general soil degradation and in some cases in a irretrievable loss of lands suitable for agricultural/grazing/forest use [6].
In particular, as far as the anthropic pressure is concerned, the demographic boom and the economic growth have caused a rapid and unplanned change of land use patterns [7-9] as a consequence of the conversion of natural and semi-natural areas in areas often managed through intensive farming techniques. These mainly consist in the use of a considerable amount of external inputs (frequent use of fertilizers, pesticides and genetically modified organisms, see [10-12]) and in a set of unsuitable management practices (too deep ploughing, large irrigation schemes, monoculture, etc., [13]). It is evident that the progressive intensification of agricultural practices can accelerate soil degradation phenomena especially in those areas marked by poor soil qualities [14]. In fact, cropping and grazing cause land degradation more than non-agricultural uses of soil [15].
According to the European Commission, six soil degradation processes (water, wind and tillage erosion, loss of soil organic carbon, compaction, salinization and alkalinization, contamination, and decline in biodiversity) were identified as induced or worsened by bad agricultural practices [13].
Also livestock husbandry can represent a potential degradation driver when a high number of head of cattle is strongly concentrated in limited areas, as it often occurs in Southern Europe (overgrazed land, e.g., [16]).
Furthermore, degradation phenomena affect land surface processes and particularly vegetation covers which play a decisive role in the surface energy exchanges and water balance [17,18]. Therefore vegetation assessment is crucial for evaluating land degradation vulnerability, particularly in areas that are still productive. Stressed vegetation, characterized by a decrease of photosynthetic activity and/or patch fragmentation processes, can have negative repercussions on the other biophysical components (soil and climate, [19]). This is particularly true for Mediterranean landscapes, often marked by a gradual reduction of biological productivity (e.g., [20, 21]), low resilience of vegetation [7,9] and abrupt modifications due to wildfires [22,23] and land use/land cover changes [24,25].
On the whole, today, a quarter of world population is threatened by the effects of degradation phenomena [26], which affect nearly 84% of agricultural lands [26]. Then it is clear the reason why land degradation is listed among the most important socio-environmental issues having direct and indirect effects on food security, climate change at local scale, eco-refugees and wars linked to the exploitation of natural resources [28-30].
The need to halt and prevent soil/land degradation has urged the international scientific community to improve the knowledge on causes and consequences of the interest phenomena and identify efficient monitoring tools. These have to help policy makers in developing effective conservation/rehabilitation measures adapted to each involved area. In particular, scientists must provide efficient tools for the early detection of sensitive areas by classifying them in different levels of land degradation vulnerability [8]. At this aim many different methodologies have been used to study land degradation (field measurements, visual interpretation, social enquiries, mathematical models, remote sensing, environmental indicators, etc.), including the use of simple models based on indicators that synthesize information on the state and tendency of complex processes [31].
In particular, in the context of the Mediterranean basin the most used methodology is the indicator-based Environmentally Sensitive Areas (ESA) model developed within the MEDALUS project [32]. This combines information concerning the biophysical component (climate, soil and vegetation) and the anthropic one to detect areas prone to degradation and defines, at the same time, relative values of vulnerability. The standard scheme of the ESA model is not free from faults consisting in too little detailed guidance on the choice and the distribution in vulnerability classes of anthropic indicators, lack of dynamical information on the vegetation component and lack of an objective weighting system based on statistical analysis for the used indicators [33,34]. Nevertheless, the ESA model is the most frequently applied in the Mediterranean basin enabling comparability with other similar studies. This is due to the immediacy of the adopted approach in dealing with land degradation and the consequent easy and rapid interpretation of the produced cartography. Moreover, the flexibility of the model, allowing inclusion/exclusion of variables, is particularly suitable to match local biophysical and socio-economic peculiarities of each examined area [35].
In this chapter we approach the assessment of the vulnerability to land degradation of a typical Mediterranean environment using a modified version of the ESA model. This approach combines analyses of the socio-economic component with analyses of the vegetation trends.
According to the standard ESA strategy, different indicators representing the impact of agricultural and grazing activities are used. The main feature of these indicators is that they are census-based and consequently suitable only for the analysis at municipal scale. Therefore we have also elaborated a mechanization index (proxy for soil compaction induced by agricultural machineries) that uses land cover and morphological data [36], enabling high spatial resolution and faster rate of update.
The indicators related to the anthropic impact are integrated into an overall Land Management Index (LMI) and in each area it is possible to enhance the main contributing factors to highlight the prevailing forces that drive human-induced degradation processes.
In order to include vegetation in the vulnerability map we analyze satellite vegetation index NDVI (Normalized Difference Vegetation Index) which is recognized as ideal tool for monitoring long term trends of degradation phenomena and assessing different values of severity of the concerned processes [37,38].
The final result of our analyses is an integrated vulnerability map of the investigated region, accounting for management and vegetation factors, which allows us to identify priority sites where restoration/rehabilitation interventions are urgent.
The adopted procedure can be easily applied to geographic contexts characterized by high complexity in terms of land cover type and economic vocation (intensive agriculture, grazing, industrial activities) thus enabling an early detection of the areas most vulnerable to land degradation.
The Basilicata region covers an area of about 10000 km2 in the core of Southern Italy (Fig. 1). This is recognized as a region at potential risk of land degradation by several studies [39-41]. In this area, as in all the Southern Italy, vulnerability to land degradation results from the co-occurrence of some specific bioclimatic features (uneven reliefs with steep slopes, highly erodible soils, wide climate variability, recurrent drought) and from an improper land use (urbanization intensive farming, industrial pollution). For example, inappropriate agricultural practices may significantly contribute to land degradation, determining a strongly impact on the economic value of the lands [42].
Location of the study area within Southern Italy and its main placenames
From a geographic point of view, Basilicata is a mountain region, including only a small percentage of lowland (less than 10% of the total surface) in the Ionian coastal area.
In the study area, soils often show a high susceptibility to degradation due to different causes. In the Ionian coastal area (Metaponto plain) we find soils affected by salinization phenomena caused both by coastline regression and by an incorrect agro-forestry management [43,44]; in the Central-Eastern hills, soils show singular geo-mineralogical composition, irregular morphology and are exposed to strong climatic fluctuations shaping the badlands (see e.g., [45,46]).
Vegetation is highly heterogeneous according to the different orography: dense and widespread vegetation in the central area, occupied by the Apennine chain, where broad-leaved forests, maquis and pastures are dominant; sparse vegetation and bare soils in the Eastern part of the region. On the Ionian coast several irrigation schemes enable a diversified agriculture including different cultivation types: orchards, permanent crops and arable lands. These last are also prevalent in the Northern zone, near to the Apulia region.
The Basilicata region is not univocally classified in a single climatic zone. Along the coasts climate is typically Mediterranean (rainy and mild autumns-winters, hot and dry summers) while the mountain areas are characterized by cold winters and by abundant precipitations; finally, inland areas, (Melfi industrial area, Basento valley and Agri valley), are characterized by very warm summers and mild winters with annual rainfall lower than 600 mm. In these areas, the period 1994-2003 has shown a significant decrease of the average annual and winter precipitation compared with the precipitation observed from 1916 to 1980s [47] thus evidencing an increase of dryness also in the wettest periods of the year.
The specific geomorphological characteristics of this region and a limited infrastructure network determine the concentration of industrial districts in small dedicated areas (Melfi area, Basento valley and Agri valley area). At now the tertiary is the prevalent economic sector. In the agriculture sector, though farms and cultivated lands decreased in the last decade (-31.9% and -4.7 respectively, [48]), the number of employees is still very high (about one fifth of the total employees, [49]).
Intensive and often inadequate farming practices have worsened degradation phenomena under way especially where climatic conditions are particularly unfavorable (e.g. badlands, [50]); mountainous areas have experienced a remarkable dynamism in the zootechnical sector, with a net increase in the number of head of cattle and in the size of farms.
In order to evaluate the state of vegetation cover and its variations we used a vegetation index time series (2000-2010) acquired by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. We analyzed NDVI (Normalized Difference Vegetation Index) values available at full spatial resolution (250m) as 16-day composite from the MODIS dataset by NASA LP DAAC (Land Processes Distributed Active Archive Center). Among different vegetation indices available in literature, NDVI is one of the best-known and best-working indices, and is recognized as a suitable proxy for vegetation activity. It is defined as the ratio [51,52]:
where RED is the reflectance in the red band of the sensor and NIR is the reflectance in the near infrared band. NDVI takes values between -1 and 1; negative values indicate water and thick clouds, very low positive values correspond to barren areas (mainly rock, sand) or snow cover, whereas high positive values correspond to vigorous and healthy vegetation cover (Fig. 2).
The choice of MODIS sensor has been determined by its peculiar characteristics. High temporal resolution (2 images per day), moderate spatial resolution (250m), and the availability of a time series since 2000 make it suitable for monitoring vegetation variability at the national/regional scale. Furthermore, MODIS data are widely used to analyze vegetation conditions in the context of land degradation studies [53-56].
Spectral reflectance of natural surfaces (see http://bluemarble.ch/wordpress/2003/01/07/)
In order to estimate anthropic pressure indicators we extracted information from census database. The main source has been the Agricultural Census carried out by ISTAT (Italian National Institute of Statistics) for the years 1990 and 2000 (latest available census). Data are provided by municipality (i.e., the minimum administrative level) for the Basilicata region.
In particular, we gathered data on:
Utilized Agricultural Area (UAA, years 1990 and 2000);
Permanent grass and Pasture areas (PP, year 2000);
Number of heads of cattle (bovines, buffalos, sheep, goats and equines, year 2000).
For the elaboration of the Mechanization Level Index (MLI), we used the following ancillary data:
level-3 Corine Land Cover (CLC) 2000 map (Fig. 3), downloaded from the High Institute for Environment Protection and Research (ISPRA - former APAT, see http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-seamless-vector-database-4);
number of machinery passes per cultivation type (source ENAMA – Italian National Agency of Agricultural Mechanization);
20m resolution DEM (Digital Elevation Model, Fig. 4) of the Basilicata provided by the Basin Authority of the Region.
CLC map for Basilicata region
Digital Elevation Model for Basilicata region
In the last years, despite scientists have paid much attention to anthropogenic factors as potential land degradation drivers [57,34], the socio-economic component still remains difficult to explore. The main problems are related to the qualitative character, the strong spatial aggregation, and the infrequent update of the information [58]. Our approach takes into account the so called “agricultural impact” hypothesis [59] as potential explanation for the most part of the land degradation processes, by focusing on crop intensification/land abandonment and overgrazing in Southern Italy. Among the indicators already adopted in similar studies [60-62], we selected the following ones: variation of cultivated surfaces, percentage of permanent grass and pasture on the total agricultural area, grazing intensity and mechanization level. The first three indicators are based on census data, the last is calculated combining information on land cover and the other ancillary data.
According to the ESA model, in order to make the used indicators comparable, we classified them in a common range of vulnerability levels starting from 1 (the lowest vulnerability to land degradation) up to 2 (the highest vulnerability to land degradation).
The first indicator calculates the percentage variation of the cultivated surfaces (UAA_VAR) referred to a time horizon of ten years, as follows:
where
Vulnerability class | \n\t\t\tUAA_VAR Values | \n\t\t|
Decreases | \n\t\t\tIncreases | \n\t\t|
(2) high | \n\t\t\t< - 50 | \n\t\t\t> 50 | \n\t\t
medium - high | \n\t\t\t-50 : -20 | \n\t\t\t20 : 50 | \n\t\t
medium | \n\t\t\t-20 : -10 | \n\t\t\t10 : 20 | \n\t\t
medium - low | \n\t\t\t-10 : -5 | \n\t\t\t5 : 10 | \n\t\t
(1) low | \n\t\t\t-5 : 5 | \n\t\t\t-5 : 5 | \n\t\t
Distribution of vulnerability classes for the index of agricultural area variations (UAA_VAR)
In fact, both these processes are considered potential land degradation drivers: the increase in cultivated surfaces means a reduction in natural lands and requires additional inputs (water resources, fertilizers, tilling, etc.) that strongly impact on the environment; on the other hand, the decrease in cultivated areas is associated to the abandonment of marginal lands (lack of maintenance of drainage network, terracing, etc.) causing acceleration of degradation [63,64], or urbanization/industrialization phenomena with consequent soil sealing and pollution.
The second indicator estimates the percentage of Permanent grass and Pasture surfaces (Sur_PP) with respect to the total Utilized Agricultural Area (UAA) according to this formula:
The rationale behind this indicator is the basic assumption that grass and pasture can be considered low-impact covers because they do not require considerable amount of external input (fertilizers, herbicides, mechanization and irrigation scheme), accomplishing an important protection function against erosional processes [61]. Therefore, the higher the indicator value, the lower the vulnerability level (Table 2).
Vulnerability class | \n\t\t\tPP_UAA Values | \n\t\t
(2) high | \n\t\t\t< 5 | \n\t\t
medium - high | \n\t\t\t5 : 10 | \n\t\t
medium | \n\t\t\t10 : 30 | \n\t\t
medium - low | \n\t\t\t30 : 50 | \n\t\t
(1) low | \n\t\t\t50 : 100 | \n\t\t
Distribution of vulnerability classes for the percentage of permanent grass and pasture on the Utilized Agricultural Area (PP_UAA)
The third indicator is used to estimate the Grazing Intensity (GI), by evaluating the amount of Adult Bovine Unit (ABU) on the total area of permanent grass and pasture (expressed in hectares), as follows:
where ABU is computed accounting for the unit number of various livestock types (referred to the 2000 year), homogenizing them to the size of adult bovine [60]:
Overgrazing remains a typical driver of degradation in many areas of Southern Italy, resulting from the inappropriate practice of grazing too many livestock for too long periods exceeding the productive capacity of the considered areas. Livestock hooves remove vegetation cover, exposing soil to be washed away and reducing its capacity of water storage, previously facilitated by vegetation [65]. As additional effects, soil compaction arises and runoff increases. On this basis, the highest vulnerability scores are associated to the highest values of the indicator (Table 3).
Vulnerability class | \n\t\t\tGI Values | \n\t\t
(2) high | \n\t\t\t> 100 | \n\t
medium - high | \n\t\t30 : 100 | \n\t
medium | \n\t\t10 : 30 | \n\t
medium - low | \n\t\t3 : 10 | \n\t
(1) low | \n\t\t0 : 3 | \n\t
Distribution of vulnerability classes for grazing intensity (GI)
The index of mechanization level is a proxy for soil compaction due to heavy equipments used in agriculture. Multiple passes of machinery on the same lanes facilitate the formation of a compacted layer of soil (ploughsole) with a severe deterioration of many soil properties, such as porosity, hydraulic conductivity and root penetration [66-68]. The plant roots often spread out horizontally exhibiting stunted growth because of the insufficient access to soil water and nutrients [69]. Altogether, mechanization can increase risk of runoff [70], flood events and loss of nutrients by leaching [71].
The mechanization level index adopted in this work follows a new formulation based on land cover and morphological data [36], so as to obtain information more flexible for resolution, update frequency, and quality compared to census data, which are normally used to calculate this indicator [72,73]. Our indicator estimates soil compaction due to heavy vehicle traffic by taking into account the variable number of passes for each cultivation type (extracted from the land cover map and ancillary information) and the different impact on soil produced by using tyres or tracks (evaluated thanks to morphological data).
As a first step, starting from level-3 CLC we separated cultivable from natural or anthropized classes. Then we associated an average number of passes, obtained from the aggregation of ENAMA data (Table 4), for each agricultural CLC class.
Cultivation type and corresponding CLC2000 level3 code | \n\t\t\tNumber of average passes | \n\t\t
Arable land (cereals, legumes, crops, vegetables, etc.) - 2.1.1/2.1.2 | \n\t\t\t7,5 | \n\t\t
Permanent crops (vineyards, fruit trees, olive groves) - 2.2.1/2.2.2/2.2.3 | \n\t\t\t7 | \n\t\t
Pastures - 2.3.1 | \n\t\t\t3 | \n\t\t
Annual crops associated with permanent crops - 2.4.1 | \n\t\t\t5 | \n\t\t
Complex cultivation patterns - 2.4.2 | \n\t\t\t4 | \n\t\t
Land principally occupied by agriculture, with natural areas - 2.4.3 | \n\t\t\t3 | \n\t\t
Agroforestry areas - 2.4.4 | \n\t\t\t1 | \n\t\t
Other classes | \n\t\t\t0 | \n\t\t
Number of average passes for CLC2000 class, obtained aggregating ENAMA data for cultivation type.
In order to take into account the different equipments of the agricultural machinery, consisting in tyres or tracks, we applied a threshold (20%) on the slope map derived from the 20m resolution DEM since land on steep slope can be managed only by tracked vehicles, whereas tyres are adopted in all the other cases. Soil compaction induced by tracks is limited to the topsoil, that can be rather easily restored, whereas tyres mostly damage subsoil layers that are more difficult to restore [74,75]. Neglecting such a variable means to estimate equal vulnerability levels in very different conditions of soil tillage. According to this evaluation, we introduced a correction factor (f) associating a lower vulnerability to areas where tracked vehicles are used (f =1) with respect to those managed with tyred vehicles (f =1.5). The final formulation of the index (MLI) is the following:
where Np is the number of average passes for each CLC class, and f represents the correction factor accounting for track or tyre use. The indicator was classified within the ESA range (1-2) to provide values comparable with the values of other land management indicators (Table 5).
Vulnerability class | \n\t\t\tMLI Values | \n\t\t
(2) high | \n\t\t\t>9 | \n\t\t
medium - high | \n\t\t\t7 : 9 | \n\t\t
medium | \n\t\t\t5 : 7 | \n\t\t
medium - low | \n\t\t\t3 : 5 | \n\t\t
(1) low | \n\t\t\t<3 | \n\t\t
Distribution of vulnerability classes for mechanization level indicator at pixel scale (MLI)
The overall land management index (LMI) is calculated for each pixel as the geometric mean of the scores of the four indicators previously described:
The ESA model is devised to assess only the structural (potential) vulnerability to land degradation, which is connected, in the specific case of vegetation, to the different sensitivity of the different land cover classes. Nevertheless, it is frequent to detect areas showing similar vulnerability levels from a structural point of view and exhibiting, on the contrary, very different actual signs of degradation. In addition, vegetation conditions change in time and this temporal evolution can be very interesting for singling out degradation processes. Thus, moving from the assumption that land degradation should not be regarded as something static but as a dynamic process [76], multitemporal investigations using satellite time series can be profitably used for estimating not only the current state of vegetation but also the changes occurred over time. At this aim, in this chapter, we used NDVI_PV, already adopted by APAT [77], as a reliable indicator to carry out a multitemporal analysis of the vegetation activity [78].
NDVI_PV provides the spatial variability of the changes in the study area at the satellite resolution and is based on the estimation of NDVI interannual variations compared with the starting conditions. It is calculated as follows:
where Y = the number of years (11 in this work); yi = given year; MVCp,i = Maximum Value Composite for the given pixel and year i; MVCp,in = Maximum Value Composite for the given pixel at the first year of the investigated time series.
The normalization to the initial value reported in the formula takes into consideration that the vulnerability of an area is strongly linked to the starting value and to the type of vegetation cover corresponding to different typical values of NDVI. This aspect is particularly important, because the same change (trend magnitudo and direction) has a different weight if the examined cover is a densely or sparsely vegetated. Therefore, the percentage variation rather than the absolute values allows for better estimating degradation levels. This indicator is able to enhance increase/decrease of vegetation activity and to identify slow variations, long-term processes (e.g., decline of forest areas), and sudden changes (e.g., fire events).
Finally, the NDVI_PV indicator has been classified within the ESA range 1-2 (Table 6).
Vulnerability class | \n\t\t\tNDVI_PV values | \n\t\t
high | \n\t\t\t< -20 | \n\t\t
medium- high | \n\t\t\t-10 : -20 | \n\t\t
medium | \n\t\t\t-5 : -10 | \n\t\t
medium -low | \n\t\t\t0 : -5 | \n\t\t
low | \n\t\t\t>0 | \n\t
Distribution of vulnerability classes for NDVI_PV indicator.
In order to take into account the information provided by the evaluation of the anthropogenic and vegetation components (LMI and NDVI_PV), we integrated them through the geometric mean. We defined a modified index based on the ESA final index [32]:
Once defined the different vulnerability levels of a composite index, it is possible to identify spatial patterns of the main contributing factor (MCF) so as to point out the prevalent driving forces acting at pixel scale on the ongoing degradation processes. This is strategic to address ad hoc measures of conservation/mitigation/rehabilitation towards the specific involved factors. In GIS environment such an analysis is carried out by means of a simple maximizing algorithm applied on the comparable layers (rasters) representing each land management indicator:
The output raster shows the spatial dominance of one factor with respect to the other ones.
Among the anthropic indicators, the highest vulnerability values were found for the UAA_VAR indicator (Fig. 5). Most of the vulnerable municipalities seem to be equally distributed in the study area, confirming that the abandonment of marginal lands (especially in inland areas), and the agriculture intensification (in lowlands and along the Ionian coast) represent important human-induced causes of degradation for Basilicata region [79-81].
Classification of UAA_VAR in vulnerability classes. In the upper right corner it is shown the geographical reference map
As far as PP_UAA is concerned (Fig. 6), this is an important vulnerability factor only for a limited number of municipalities. In these areas, UAA is prevalently devoted to intensive farming activities (permanent crops, arable lands and heterogeneous agricultural areas) rather than to less-impacting practices that are normally carried out in grass, pasture and agroforestry areas; conversely, the Apennine and sub-Apennine zones show medium-low or low values of vulnerability, because the municipal UAA encompasses a fairly considerable proportion of grass and pasture (see http://censagr.istat.it/basilicata.pdf).
Classification of PP_UAA in vulnerability classes. In the upper right corner it is shown the geographical reference map
The vulnerability map of Grazing Intensity (GI - Fig. 7) reveals at a glance that the least impacting degradation factor in Basilicata region is overgrazing, because we found high vulnerability values only in a very few municipalities, whereas the rest of the examined areas shows prevalently low vulnerability values.
Classification of GI in vulnerability classes. In the upper right corner it is shown the geographical reference map
This agrees with the indications inferred from the previous indicators: even though livestock husbandry is a well-established economic platform comprising a large number of small to medium size enterprises in Basilicata (also in mountainous areas), the fairly even abundance of pastures and grasses allows to graze without exceeding the regeneration capacity of vegetation. As illustrated in Fig. 8, the mechanization level indicator (MLI), which is displayed with the spatial resolution of the pixel (20m as the original DEM), allows a quick discrimination of different vulnerability values also inside the municipal areas.
Classification of MLI in vulnerability classes. In the upper right corner it is shown the geographical reference map
This is a first improvement with respect to previous analyses made at the municipal level, enabling a better identification of the local critical aspects in terms of induced environmental impacts. In particular, the arrangement of the vulnerable areas reflects the agricultural productivity patterns of Basilicata, providing a picture of the actual conditions of the investigated region which is more realistic of that provided by census-based indicators [82].
We found high and medium-high vulnerability for areas located in lowlands (wide stripe in the Northeastern part of the region) and along the coast as well as in a large part of the hilly landscape (e.g., medium and low hills surrounding the city of Matera), which is particularly devoted to (intensive) farming practices; low vulnerability levels are found instead in mountain areas, less suitable to be exploited for agricultural purposes.
Finally, the Land Management Index (LMI), exhibiting the same resolution of the MLI indicator, is shown in Fig. 9. It is evident that the most severe management problems related to agriculture/grazing activities are concentrated in the cluster in the Northeastern part of the region and in some of the coastal areas along the Ionian sea. The rest of the seaboards are characterized by medium/medium-high levels of vulnerability as well as hilly areas in the Matera province and some areas surrounding the city of Potenza. The management state for the Western side of the region, dominated by natural areas, is quite satisfactory, even if there are patches having medium vulnerability values (Vulture-Melfese and Agri valley).
Classification of LMI in vulnerability classes. In the upper right corner it is shown the geographical reference map
We performed a preliminary analysis consisting in area-weighted average calculations of the adopted indicators (see radar chart, Fig. 10). According to our results, UAA_VAR shows the highest average value (1,57). Also MLI and PP_UAA are not negligible (respectively 1,45 and 1,42) whereas the role of GI seems to be nonessential (1,05).
Radar chart showing the comparison among the area-weighted average values of land management indicators for the whole investigated region
In order to investigate the role of each indicator we applied the MCF algorithm (see section 4.4) at the pixel scale. It should be remarked that (see Fig. 11) 70% of the regional surface shows a unique MFC, while the remaining part of the investigated areas is characterized by two (about 24% of the total surface), three indicators (about 4% of the total surface), or no prevailing indicator (about 2% of the total surface). In the last case all the four indicators reach the maximum vulnerability value.
Frequency distribution of the number of prevalent indicators on the investigated area
The analysis of the areas in which just one indicator is dominant (Fig. 12) brings out the importance of the UAA_VAR as the most significant driver of degradation (about 58% of the considered area). In these areas the degradation mainly comes from the decrease in cultivated surfaces.
Apart from the appreciable contribution of the mechanization indicator (MLI, about 29% of the examined area), neither the scarce presence of grass and pasture (PP_UAA, about 13% of the examined area) nor the overgrazing (GI, no area involved) contribute meaningfully to degradation.
Frequency distribution of the prevalent indicators (areas having just one indicator prevalent)
The analysis of the pixels having two dominant indicators (Fig. 13) shows a large prevalence of the synergy between MLI and PP_SAU (about 75%). On the contrary, the variation of cultivated lands (UAA_VAR) jointly with PP_UAA or MLI (respectively about 17% and 9% of analyzed areas) seems not to be particularly diffused as a degradation driver. Owing to the negligible role of grazing, areas exhibiting simultaneously three dominant indicators are always characterized by the values of MLI, PP_UAA, and UAA_VAR.
On the whole, the analysis aimed at identifying the MCF for the anthropic component indicates that UAA_VAR plays the main role in inducing degradation followed by excessive mechanization (MLI), whereas PP_UAA and particularly GI seem not to play an important role in promoting environmental degradation. This last result is due to the positive effects generated by the widespread presence of grass and pasture, also in non mountainous areas. These covers represent a mainstay of the local agricultural structure enabling a sustainable management because, on the one hand, they counterbalance the man-induced impact caused by intensive agricultural practices (resulting in lower values of the PP_UAA indicator), on the other, they allow a suitable form of grazing (resulting in very low values of the GI indicator).
The spatial patterns of the MCF (Fig. 14) show two opposite paths in the Basilicata region: marginalization of inland rural areas and further intensification of low-sustainable agriculture in lowland areas.
The first phenomenon, arising from complex socio-economic dynamics, involves the inland districts located in the core of the region (prevalently near Potenza town) that were mainly devoted to poor agricultural practices in the recent past. Today, these areas experience depopulation (for further details see http://www.istat.it/it/basilicata) as a consequence of the present economic crisis generating low profitability of agricultural products. This reduction in profit margin, in turn, can be accelerated by natural factors such as growing aridity and natural disasters (flood, landslide, fire, etc.) which induce an increase in agricultural management costs (e.g., irrigation, agrochemicals products, land rehabilitation, etc.) exacerbating land abandonment and culminating in a downward spiral of land degradation [83]. This fact, supported by provisional data of the Sixth National Agricultural Census (indicating a reduction of farm and cultivated areas, see section 2), stresses one of the most critical aspect of the local economic-productive system having serious repercussions on environmental quality and promoting social imbalances between marginal and more populated areas [84]. However, in this case, regional/national policies should be undertaken to strengthen infrastructural facilities and promote the redevelopment of marginal lands.
Frequency distribution of the prevalent indicators (areas having two indicators prevalent)
The second phenomenon focuses on the long-term sustainability of intensive farming. Especially in areas where the natural conditions are optimal (e.g., slope) and technologies and infrastructure are easily available, we notice a tendency to increase agricultural production. This occurs at the expense of future land fertility, because enlarging cultivated areas, increasing the use of mechanization and fertilizers and overexploiting water resources contributes to exacerbate land degradation processes. In these places, we observe the reverse problem affecting marginal areas and thus appropriate strategies are required to locally encourage farmers towards sustainable soil management practices and technical skill improvement.
Map of the Main Contributing Factor (MCF) computed for the anthropic component
In Fig. 15 absolute values of NDVI_PV are displayed. Positive values of the indicator (generally fairly high) are visible especially in areas located south of Matera city and they mainly are estimated for permanent crops (fruit trees and olive groves) and, in some cases, for arable lands. Areas mostly characterized by dense vegetation (coniferous and broad-leaved forests) reveal stability or a slight increase in photosynthetic activity. Negative values are detected in correspondence with arable lands (the narrow stripe bordering Apulia region) and industrial districts (geographically concentrated in Tito Scalo, near Potenza and in S. Nicola di Melfi at the northern of Basilicata, where we find one of the most recent FIAT plant, see Fig. 15).
By aggregating the NDVI_PV values in 7 ranges (see Fig. 16) we observe a considerable coverage of stable areas (more than 50%) and a limited extent of areas characterized by low negative values (10%). Areas affected by a strong decrease in vegetation activity are only 1% of the investigated territory; on the contrary, areas marked by positive trends (slight and appreciable increases in photosynthetic activity) altogether amount to 30% of the examined surfaces.
Map of the indicator NDVI_PV (not classified). Areas within the circles 1 and 2 belong to the Tito Scalo and San Nicola di Melfi locations respectively. In the upper right corner it is shown the geographical reference map
Frequency distribution of the prevalent indicators (values in abscissa represent the percentage of areas included in the given ranges)
By classifying the obtained values of NDVI_PV in the ESA range (1-2), we can extract some further information: highly vulnerable areas (medium-high and high) reach about 5% of the Basilicata surface; there are few medium vulnerability areas (about 10%), whereas the extent of areas with medium-low/low vulnerability is very significant (about 85%, see Fig. 17).
Map of the indicator NDVI_PV, classified in the ESA range (1-2)
As we can see from the map in Fig. 18, the combined analysis of the anthropic component and the vegetation one, does not show a particularly critical picture of the Basilicata region. The most vulnerable areas (ESAmod>1.5) are located, as expected, in the Northeastern sector of the region, including the agriculture-oriented lands bordering Apulia region, a part of the Ionian coast and some areas belonging to the hilly zone in the surrounding of Matera city. More densely vegetated areas, but also a large part of grasses, pastures and semi-natural areas, where the anthropic influence is clearly lower, seem to show good health conditions and thus a rather negligible vulnerability.
As established by the ESA methodology, the arrangement of the examined areas in different risk classes points out that about 23% of the region is included in the critical areas (ESAmod > 1.38) and nearly the 30% in the fragile (1.23<ESAmod<1.37); the rest of the investigated territory is characterized by potential or non-threatened areas (ESAmod<1.22; 50% of the regional surface) according with results from independent studies [85]. The composite picture emerging from all these investigations suggests that for areas falling within the first two categories (critical and fragile) several measures should be put in place to prevent more severe degradation processes by promoting mitigation/restoration actions. As for the third category (potential and non-threatened areas), a periodic monitoring can be a great (and sometimes cost-effective) solution.
Map depicting the integration of the analyzed components (ESAmod). In the upper right corner it is shown the geographical reference map
Finally, Fig.19 shows the ESAmod map segmented according to four different levels of influence of MLI and NDVI_PV.
The extent of areas having both the anthropogenic component (LMI) and the biophysical one (NDVI_PV) not exceeding the value of 1.4 (vulnerability threshold) is very considerable (blue pixels). These pixels are principally concentrated in the Western side of the region and belong to various type of land cover including mainly forested and seminatural areas and some human-influenced covers such as arable lands. These last dominate, instead, in two of the four classes: areas showing both negative vegetation trends and inappropriate land management (red pixels), and areas affected by substantial decreases of photosynthetic activity (yellow pixels) but where management is quite satisfactory. Finally, a lot of permanent crops occupy largely those areas experiencing positive trends of vegetation activity but unsuitable agricultural practices (green pixels).
Zones of influence resulting from the partition of the ESAmod map
In order to estimate the vulnerability to land degradation of a typical Mediterranean region (Basilicata) we have jointly considered the impact of the anthropic component and the vegetation conditions, using socio-economic indicators related to agriculture/grazing activities and analyzing trends of photosynthetic activity. As regards anthropic pressure we have used census-based indicators (UAA_VAR, PP_UAA and GI computed at municipal scale) and the mechanization indicator (MLI) based on land cover map and morphological information (DEM). Thanks to its formulation, the new indicator we elaborated is independent from census data, enabling a faster rate of update and providing a better discrimination of the vulnerability values because the adopted spatial resolution is connected to the used land cover map or DEM in state of the municipal level. It allows friendly exportability to different monitoring scales, which can be obtained by selecting the most opportune land cover map, and high adaptability, thanks to the possibility of selecting the number of classes for the satellite data classification.
We have combined all the socio-economic indicators to define the Land Management Index (LMI) and have carried out an analysis aimed at identifying the dominant factors driving human-induced degradation processes.
In order to estimate trends of vegetation activity we have calculated the NDVI_PV indicator using a time series (2000-2010) of the MODIS sensor observations. This indicator is able to compute interannual variations of NDVI compared with the starting conditions, so that it is possible to detect also slow variations and long-term processes of increase/decrease of the photosynthetic activity in the analyzed period.
The final map of the ESAmod index, taking into account the vulnerability due to the anthropic and vegetation components, depicts a very complex picture characterized by a wide range of vulnerability values and by many combinations of degradation causes.
The adopted procedure, which integrates remote sensing data (synoptic view, multi-temporal availability) and socio-economic indicators, is a valuable tool for estimating vulnerability to land degradation in large anthropized areas, which are highly complex in terms of land cover type and economic vocation (intensive agriculture, grazing, industrial activities).
Our methodology allows the early detection of the most vulnerable areas and the identification of the local prevailing stress factors, providing key information for the setting up of sustainable development strategies.
Our activity was carried out in the framework of “Assessment methodologies for controlling land degradation processes and impacts on the environment“ (Programma Operativo FESR Basilicata 2007-2013).
The close inter-relationship between the periodontium and root canal systems has resulted in concomitant lesions from both entities, leading to periodontal-endodontic (perio-endo) infections that, to date, remain a challenge for the dental professional to both diagnose and manage. An in-depth understanding of the anatomy and disease pathogenesis is of utmost importance in assisting clinicians to establish a prognosis, derive a rational treatment plan and troubleshoot complicated cases grounded on sound biological and clinical bases. In this chapter, evidence-based and contemporary approaches to managing periodontal and/or endodontic lesions will be discussed collectively.
\nPeriodontal disease is an inflammatory disease of the tooth supporting structures initiated by bacteria that form a biofilm on the tooth/root surfaces [1]. Root canal infections (i.e. apical periodontitis) are multi-microbial, biofilm-associated diseases [2, 3]. Apical ramifications, lateral canals, and isthmuses connecting main root canals may harbor biofilm-like microbial structures [2]. The communications between the pulp and the periodontium occur primarily through: exposed dentinal tubules, small portal of exits - e.g. accessory canals and lateral canals - and via the apical foramen [4, 5]. As such, it is unsurprising that pathogens infecting the periodontium and root canal systems are highly similar, indicative of an inseparable relationship between the root canal system and the periodontium [6].
\nIn chronic apical abscesses caused by endodontic infections, a localized collection of pus with a draining sinus may track through the periodontium, forming a deep, narrow and isolated periodontal pocket, adjacent to, or alongside, the gingival sulcus. For molars or multi-rooted teeth, radiographic examination may reveal a radiolucent area at the furcation of an infected tooth, indicating presence of accessory canals which drain into the furcation area [4].
\nJansson et al. [7] reported that teeth in periodontitis-prone patients lost more attachment when a continuous root canal infection was present compared to teeth with no periapical lesions. Such findings were also observed by Ehnevid et al. [8] who concluded that a root-canal infection, if left untreated, may impair periodontal healing following non-surgical periodontal therapy. When the pulp is the source of infection, considerations should be given towards treating the endodontic infections prior to periodontal treatment [5, 9]. Such an approach is aimed at eliminating the source of pulpal infection prior to periodontal therapy, as root instrumentation may remove the protective cementum layer [10] and communicate residual infection through exposed dentinal tubules or accessory canals [11, 12].
\nAn inflamed periodontium resulting from a periodontal infection may affect the vitality of the pulp. Seltzer and Bender [13], reported that periodontal lesions could potentially infect the pulp through numerous lateral and accessory canals in the furcation area. The authors found that 79% of periodontally involved teeth, without caries and restorations, exhibited histological evidence of pulpal pathology. In periodontal disease affected teeth, localized pulpal necrosis adjacent to accessory canals was found [13].
\nLangeland et al. [14] reported that the effect of periodontal disease on the pulp was degenerative in nature, resulting in pulpal inflammation, calcifications and resorption. Such insults from periodontal disease to the pulp were cumulative over time [14]. Similarly, Wan et al. [15] reported that the severity of periodontitis had substantial effect on pulpal health. They speculated that denuded root surfaces could induce more pathological changes within the pulp [15]. Root surfaces may be denuded of the protective cementum layer as a result of periodontal treatment [16], developmental defects [17] or even due to direct bacterial invasion [18]. Denuded surfaces are thought to allow passage of microorganisms between the pulp and periodontal tissues through patent dentinal tubules, lateral or accessory canals [18]. Furthermore, if the microvasculature of the apical foramen remains intact, the pulp may maintain its vitality [14].
\nThe dental pulp and periodontium are closely related both anatomically and functionally, through three different channels of communication – as discussed below.
\nThe root canal system is a complicated system with the apical foramen as the principal route of communication between the pulp and the periodontium. A single apical foramen is the exception rather than the rule. Multiple foramina, fins, deltas, loops, and furcations are usually present at the apical end of the root canal [19]. Bacteria, bacterial toxins, inflammatory by-products and mediators pass readily through the apical foramen into the root canal eliciting inflammation of the pulp and subsequently pulpal necrosis [20].
\nIf periodontal disease reaches the apical foramen, such inflammatory reactions may spread both ways leading to perio-endo pathologies. Similarly, infection from an infected pulp may exit the apical foramen, track through the periodontium, eliciting tissue destruction and formation of what registers clinically as a periodontal pocket.
\nAccessory or lateral canals from the dental pulp may be formed during formation of the root sheath. A break develops in the continuity of the sheath, producing a small gap, which results in a small “accessory” canal between the dental sac and the pulp. Accessory and lateral canals can be seen anywhere along the root, creating a potential perio-endo pathway of communication [21]. Studies have reported that nerve fiber and blood vessels are commonly present in these lateral canals. They are found to traverse the periodontal ligament, course through the portal on cementum wall, root dentin and connect to the main root canal system [22]. Approximately 17% of teeth may present with multiple canal systems in the apical third of the root, about 9% in the middle third and fewer than 2% in the coronal third [23]. It has been reported that debridement at molar furcation areas may increase the risk of bacterial contamination of the pulp by 39% through exposed dentin or furcation canals [24].
\nAs periodontitis gradually destroys the periodontal ligament between the cementum and bone, cementum becomes exposed to the oral environment via periodontal pockets and through gingiva recession. Destruction of Sharpey’s fibers leaves a sieve-like surface on the cementum, full of canals which may be contaminated by bacteria and their toxins that may transverse the protective cemental layer into the patent dentinal tubules [10]. Furthermore, iatrogenic removal of cementum during periodontal treatment, various developmental fissures, grooves and incomplete calcifications on cementum may all permit penetration by bacteria into the underlying dentinal tubules [10].
\nDentin is highly permeable with dentinal tubules as the major channels for diffusion of material across dentin. Bergenholtz and Lindhe [25] reported that the application of soluble material from bacterial plaque readily caused pulpal inflammation, suggesting there was a pathway of communication between the dentinal tubules, periodontium and the pulp. Such findings were again confirmed by Bergenholtz [26], who found that bacterial products applied to exposed dentin initiated inflammatory reactions in the dental pulp whilst occlusion of such exposed dentin had a protective effect with respect to the pulp.
\nThe source of perio-endo infection is no doubt from within the mouth yet there is no comprehensive report on the microbiota involved compare with periodontal or endodontic infection occurring independently. More than 460 bacterial, almost 10 fungal and 1 archaeal taxa [27] plus predominantly herpesviruses detectable at periradicular lesions [28] were reported associated with endodontic infection. Such observations were rather similar to microbiology of periodontitis [29]. Microbiology of failed endodontic treatment [30] and persisting periradicular endodontic infection (i.e. L-phase bacteria) [28], however exhibit unique microbiology. Taking that into consideration, the exact microbiological nature of perio-endo lesion remained to be elucidated.
\nThe primary aim of endodontic treatment is to disinfect the root canal system through chemo-mechanical debridement and cleaning so that the canal space can be freed of infected organic materials and obturated with an inert material [31]. Endodontic failures are caused by inadequate disinfection of the root canal system or reinfection of the root canal system due to failure to obtain a hermetic seal [32]. Endodontic infection may spread to the periodontium leading to perio-endo pathologies.
\nEndodontic failure may be caused by various biological and procedural factors e.g. (i) persistence intra- and extra-canal infection; (ii) inadequate or poorly condensed filling of the canal; (iii) overextensions of root filling materials; (iv) leakage due to inadequate coronal seal; (v) missed and thus undebrided canals; (vi) iatrogenic procedural errors such as poor access cavity design; and (vii) improper instrumentation (inadequate chemo-mechanical cleaning, ledges, perforations, or separated instruments). As it stands, proper access cavity design, thorough chemo-mechanical debridement and complete sealing of the root canal system to obliterate infection and prevent reinfection are key in prevention of endodontic failure.
\nPoor restorations can be a major culprit for periodontal conditions and endodontic failure. Poor contours due to overhanging restorations, which impinge upon and thus violate the biological width, can contribute to localized periodontal defects [33, 34].
\nPoorly adapted restorations predispose to coronal leakage, allowing for recontamination of the root canal system and subsequent endodontic failure [35, 36]. Ray and Trope [36] reported that defective restorations with adequate root fillings had a higher failure rate in comparison to teeth with inadequate root fillings but with adequate restoration [36]. Similarly, a systematic review by Gillen et al. [35] reported that adequate root canal treatment (RCT) and good coronal seal increased the odds for healing of periapical lesions. In cases with adequate root filling-inadequate coronal restoration and inadequate root filling-adequate coronal restoration, poorer resolution of periapical infections are to be expected [35].
\nIn short, sufficient disinfection and filling of the root canal system and a well-adapted coronal restoration which respects the biological width are paramount in ensuring long-term endodontic success and maintenance of a healthy periodontium around the treated tooth.
\nRoot perforation is a mechanical or pathological, communication between the root canal system and the external tooth surface [37]. Misalignment of instruments during endodontic access, negotiation and preparation of the root canals, and preparation of post space can cause iatrogenic perforations. Pathological root perforation, on the other hand, is caused by root resorption and/or caries.
\nIn perforations, bacterial infections emanating from either the root canal or periodontal tissues, or both, could prevent healing and bring about inflammation. Down-growth of the gingival epithelium to the perforation site can follow, resulting in accelerated periodontal breakdown [38]. Ideally, any perforation should be repaired immediately. Treatment outcomes of endodontic perforations at the apical part of roots have been reported to be more successful than those located more coronally [39, 40]. Mineral trioxide aggregate (MTA) is often used for perforation repair [41] as it can stimulate hard tissue deposition [42], is biocompatible [43], provides excellent seal [44] and sets in the presence of moisture [45].
\nDevelopmental malformations both affect the periodontium and complicate conventional RCT. One of the most common dental malformations seen is the palatal-radicular groove, which has a reported prevalence of 4.6% appearing in maxillary incisors [46]. Its presence is a locus of plaque accumulation and provides potential pathway for microorganisms to penetrate into deeper parts of the periodontium, causing local inflammation and subsequent periodontal breakdown. Attachment loss may extend apically until it adversely affects the viability of the pulp, which is typical of the pathogenesis of a primary periodontal lesion with secondary endodontic involvement. RCT may be needed first if the patient complains of toothache. This may then be followed by periodontal surgical debridement or regenerative periodontal therapy when indicated [47].
\nCemental tear is a rare periodontal condition characterized by partial or total separation of the cementum. The detachment normally happens at the cementum-dentin junction predisposing the tooth to plaque-induced periodontitis. Clinically, a cemental tear may present as a localized deep periodontal pocket, with or without other symptoms such as a sinus tract or pain. Probing at the affected site may detect root surface roughness or an obstruction, different to the expected typical tactile sense of calculus [48]. Treatment of cemental tear includes conventional periodontal therapy, combined periodontal and endodontic treatment when pulpal status of the affected tooth is compromised and/or surgery to remove the tear.
\nCervical enamel projections and enamel pearls are development anomalies presenting as ectopic globules of enamel on the root surface. Enamel projections are small continuous or discontinuous extensions of enamel that occur in the molar furcations while enamel pearls are larger masses of enamel that have a predilection for molars [49]. It has been reported that 82.5% of molars with furcation attachment loss exhibited cervical enamel projections [50]. Enamel pearls are a rarity and occur mostly on permanent molars with an incidence rate of 1.1–9.7% [51]. Cervical enamel projections and enamel pearls predispose to periodontitis because Sharpey’s fiber insertion is not developmentally possible, allowing only a hemi-desmosomal attachment, which may be less resistant to periodontal breakdown. Both entities may also prevent effective oral hygiene procedures when exposed to the oral environment and may serve as a nidus for periodonto-pathogenic bacteria to grow and populate their surface [49]. In longstanding conditions, down-growth of epithelial attachment may cause a perio-endo lesion, especially if exposed accessory canals in the furcation area allow bacteria invasion into the pulp [24]. A combination of treatments may be warranted, such as RCT if pulpal symptoms are present, followed by periodontal surgery to recontour locally the affected root to allow for root debridement and to facilitate proper oral hygiene measures and periodontal maintenance measures.
\nDental resorption is the loss of dental hard tissues as a result of resorptive activities by clastic cells (aptly known as odontoclasts) [52]. Root resorption may occur as a physiologic or pathologic phenomenon. Root resorption is classified into two types, external and internal.
\nExternal inflammatory resorption (EIR) is often a result of root avulsion injuries [53]. Traumatic dental injuries (e.g., intrusion, lateral luxation, and avulsion) and subsequent replantation often result in contusion injuries to the periodontal ligament (PDL). Damage to the pre-cementum, with a resultant breach in its integrity, is the precipitating factor in all types of external resorption [53]. In the wound healing process that follows, necrotic PDL tissues, damaged cementum and even root dentin may be actively removed by macrophages and osteoclasts, although the underlining mechanism is still unclear [52].
\nThe diagnosis of EIR in clinical situations is often based on radiographic findings [54]. However, in two-dimentional radiographic imaging EIR may be obscured by overlapping images, or may not detectably show early signs of EIR, resulting in late diagnosis of EIR. Chronic inflammation seen in periodontal disease has been regarded as a cause for root resorption [55, 56], and such resorptive processes are associated with the severity of periodontitis [55]. The exact mechanism of periodontal disease-associated resorption is not known, but such a process may be a sequela of tooth mobility due to attachment loss [55]. When mobile teeth are subjected to occlusal forces, traumatic assault of the radicular surface may ensue, causing formation of cemental tears or lesions which may become colonized by odontoclastic cells or even periodontal pathogens that may resorb the root [55].
\nTreatment of EIR is based on effective removal of the cause, which is to institute a RCT with removal of the infected necrotic pulpal tissue [57]. Although the treatment of such lesions in periodontal disease is inconclusive, conventional mechanical debridement [56] may suppress inflammation and arrest the resorptive process. The earlier EIR is diagnosed and treated, the better the prognosis is for the affected tooth [58].
\nExternal cervical resorption (ECR) is a form of root resorption that originates on the external root surface but may invade root dentin in any direction and to varying degrees. ECR generally develops immediately apical to the epithelial attachment to the tooth. However, in teeth that have developed gingival recession and lost periodontal support and/or have developed a long junctional epithelium, the resorptive defect may arise at a more apical location [59]. The difference between EIR and ECR is that the pulp remains vital in ECR lesions unless the lesion is extensive and erodes into the pulpal space, while EIR always presents with necrotic pulp with or without any periapical lesion.
\nThe exact etiology and pathogenesis of ECR have not been fully elucidated but may be regarded as the same for EIR. Infected or denuded cementum surfaces allow binding of multinucleated clastic cells which perpetuate the resorptive process [52]. Orthodontic treatment, dental trauma, oral surgery, periodontal therapy, bruxism, delayed eruption, and dental developmental defects were all identified as potential predisposing factors to ECR [60, 61]. In patients with periodontal disease, ECR may occur if the root-protective junctional epithelium (JE) did not develop. In such instances periodonto-pathogen initiated inflammation and dietary acid may extend into the root surfaces to cause ECR [56]. Although not fully understood, such a situation may explain why resorption occurs only in the cervical region, where JE is absent and dietary acid easily gains access and may accumulate over a long period.
\nThe clinical features of ECR may vary depending on etiology. However, the process is very often quiescent and asymptomatic initially. Its diagnosis is commonly made from a chance radiographic finding. A pink or red discoloration may later develop at the cervical region due to fibrovascular granulation tissue occupying the resorptive defect [59]. Inflammatory periodontal destruction may occur in the region of the resorption, resulting in a periodontal pocket that bleeds profusely on probing.
\nIn recent years, CBCT has allowed three-dimensional assessment of the nature, position, and extent of resorptive defects, eliminating diagnostic confusion and providing essential information about the restorability and subsequent management of affected teeth [62, 63, 64]. A CBCT scan (at the smallest voxel size – 0.2 mm) provides a more site-focused and clearer radiographic image [65], thus reducing the need for exploratory treatment (usually surgical exploration), allowing timely intervention and reduced patient morbidity.
\nThe fundamental treatment objectives in ECR are to access and excavate the resorptive defect (usually by raising a mucoperiosteal flap), halt the resorptive process (through application of 90% trichloroacetic acid), restore the hard tissue defect [66], and regular monitoring of the affected tooth for ECR recurrence, and the same for all other teeth which may be predisposed to the same resorptive event. This is especially true for ECRs related to periodontal diseases as multiple ECRs may occur in the same patient [56]. In cases where perforation of the root canal wall has occurred, RCT should be carried out as soon as possible to avoid pain. In periodontal disease-associated ECR, treatment was primarily aimed at suppressing periodontal pathogens through mechanical debridement, oral hygiene instruction and systemic antibiotics. This was supplemented with diet counseling and monitoring to lower the patients daily acid intake. High acidic intake may have contributed to the initiation of the resorptive process by retarding the proliferative capacity of the protective junctional epithelium [56].
\nA vertical root fracture (VRF) is a longitudinally oriented complete or incomplete fracture initiated in the root at any level and is usually directed buccolingually [67]. The diagnosis of a VRF is somehow difficult in the early phase with patients complaining of dull pain, tooth sensitivity and discomfort while chewing. Early detection of VRF is unlikely radiographically due to various obstructions and overlapping structures, making proper diagnosis difficult. In of long-standing VRFs, a sinus tract may develop at a location more coronal than a sinus tract associated with chronic apical abscess [68]. This hints that the source of infection is not likely from an apical lesion [69, 70]. A deep, narrow, isolated periodontal pocket may be present, which is usually pathognomonic of a VRF. Radiographically, a typical J-shaped or halo radiolucency, with bone loss seen apically and extends alongside the involved root is highly indicative of VRF [71].
\nOver time, the pocket along the fracture line, which was initially tight and narrow, may become wider and easier to detect. When the fracture line propagates coronally, extending to the cervical root area, bacteria may penetrate and biofilm can attach along the fracture line, triggering local host immune response which destroys the local periodontium. The fracture line allows the leakage of oral bacteria into the clean and previously sealed root canal system causing contamination. As reported by Tamse et al. [68], a typical VRF pocket could be observed in 67% of the cases. In periodontitis patients, vertical root fractures and cracks may serve to communicate the dental pulp with the periodontium. If the periodontium is infected or inflamed, pulp necrosis may ensue due to bacterial and bacterial product dissemination through such crevices [72].
\nTreatment for VRF differs greatly. VRF does not usually respond to non-surgical RCT or retreatment or to periodontal treatments instituted. In most cases, extraction of the tooth, especially for single-rooted teeth, is required. As for multi-rooted teeth, a root-resective approach may sometimes be considered.
\nUntreated periodontal disease may progress and cause extensive damage to the tooth supporting structures. As the disease extends along the root surface, infection and/or inflammation can spread through the various communications between the pulp and the periodontium [28] until periodontal disease progression reaches the apical foramen leading to a primary periodontal lesion with secondary endodontic involvement [4]. Classification and management of such lesions will be discussed in the segments below.
\nMany classifications for perio-endo lesions have been suggested [4, 72, 73, 74]. However, the proposed classification by Simon et al. [4] is still espoused by many, despite more rational later classifications, for many cases of perio-endo infections, and shall form the framework for the following discussion below.
\nA necrotic pulp with its infected root canal system elicits inflammation of the adjacent periodontium through leaking of bacteria and bacterial by-products through the apical foramen and/or lateral canals causing tooth-supporting bone destruction [4, 72]. In multi-rooted teeth, infection from the apical foramen or the numerous accessory canals located in the molar bifurcation area, may track into the bifurcation area giving a radiographic and often clinical appearance of periodontal furcation involvement [21]. To consider solely endodontic lesions as having a component attributable to periodontitis is a diagnostic and conceptual error.
\nAs such, when differentiating endodontic or periodontal lesions, one should be suspicious of a pulpally/endodontically induced lesion when the crestal bone levels on the mesial and distal aspects of the offending tooth appear relatively normal radiographically, despite a radiographically evident furcation radiolucency, and when clinical attachment loss is localized. Moreover, when the pulp is non-responsive to sensibility testing, it is likely that a necrotic pulp may be the infectious source. Adequate RCT with adequate coronal restoration should usually resolve a primary endodontic lesion without any periodontal therapy, for such lesions are solely endodontic in origin. If solely affected by pulpal pathology, such teeth are only endodontically involved, and the so-called “primary endodontic lesion” is solely an endodontic lesion, and thus really should not be a component of any perio-endo classification. Figure 1 illustrates a pure endodontic lesion managed by endodontic retreatment alone.
\nEndodontic lesion managed by endodontic retreatment. (A) Periapical radiograph of previously root treated tooth 31 exhibiting a large periapical lesion and infection draining through buccal gingival sulcus; (B) retreatment of 31 and RCT of a non-vital 32 completed; (C) radiograph of 31 and 32 showing bone fill 6 months post treatment.
Over time, an untreated primary endodontic lesion may result in secondary consequential periodontal breakdown, which, if this reaches the gingival sulcus or a periodontal pocket, may become infected by periodonto-pathogens which subsequently trigger further periodontitis-associated periodontal tissue destruction, pocket formation, crestal bone loss and plaque (and calculus) contamination of root surfaces.
\nA tooth so affected requires both endodontic and periodontal treatments. In general, healing of tissues damaged by infection from the pulp can be anticipated after adequate RCT. The prognosis of the tooth will then largely depend on the outcome of periodontal therapy [4].
\nPure periodontal lesions are bacterial-induced inflammatory destructions of the tooth supporting apparatus due to periodonto-pathogens [75]. Diagnosis is based on periodontal examination such as probing pocket depths at 6 sites of each tooth, plaque accumulation and gingival bleeding scores [75, 76], on teeth having normal pulpal sensibility test outcomes. Teeth affected by solely periodontitis, which should respond to adequate periodontal therapy alone, are not endodontically involved.
\nIn periodontitis, probing usually reveals plaque and calculus of varying quantity and quality along the root surface. In periodontitis many teeth are usually. The pulp typically responds positively to endodontic sensibility tests unless periodontitis has progressed towards the root apex. Prognosis of purely periodontally affected teeth depends largely upon the amount of bony destruction, the overall management of the patient, including non-surgical and surgical periodontal therapy, practice of adequate oral hygiene measures and adherence to supportive periodontal care [76, 77]. Once more, if a tooth is affected by only periodontitis which would respond to adequate periodontal treatment alone, then it is free from any endodontic involvement, and as such the so-called “primary periodontal lesion” should not form any part of a classification of perio-endo lesions.
\nIf periodontitis progresses apically along the root surface, bacterial infiltrates from the periodontium may penetrate the pulp through exposed accessory and lateral canals, canaliculi of the furcation area, and eventually the apical foramen [72]. Pulpal necrosis can also result from periodontal procedures where the blood supply, through an accessory canal or the apex is severed during instrumentation. Lateral canals and dentinal tubules may be exposed to the oral environment during periodontal treatment allowing microorganism to pass freely to, or be pushed into, the pulpal tissue space [4].
\nPrimary periodontal lesions with secondary endodontic involvement differ from primary endodontic lesion with secondary periodontal involvement only by the temporal sequence of the disease processes. Regardless of the primary cause of disease, RCT should precede periodontal therapy to prevent excessive removal of the protective root cementum and to alleviate any pulpal pain [5, 9, 22]. The tooth prognosis depends on adequate endodontic therapy, adequate coronal restoration and continuing periodontal care subsequent to endodontic therapy. The sequencing of treatment for both primary endodontic with secondary periodontal lesions and primary periodontal with secondary endodontic lesions is basically the same, so there is not a therapeutic distinction to be drawn from the differentiation between these two types of both periodontal and endodontic lesions affecting a tooth.
\nTrue combined lesions occur where a primary endodontic lesion exists on a tooth that is also affected by periodontitis. These lesions are created when an infected periodontal pocket progresses apically to join with the endodontic lesion progressing coronally. Once the endodontic and periodontal lesions coalesce, they may be clinically and radiographically indistinguishable. The degree of attachment loss is usually quite substantial and the prognosis of such lesion is often very guarded [4].
\nIn most cases, apical healing is often evident following successful endodontic treatment. The periodontal lesion, however, should respond well to adequate periodontal treatment and the prognosis may well depend on the severity of the periodontitis-induced periodontal attachment loss and the extent and pattern of alveolar bony destruction. The radiographic appearance of combined endodontic–periodontal disease may be similar to that of a VRF [4, 78].
\nThe primary endodontic lesion and the primary periodontal lesion are solely endodontic or periodontal in origin and should not be confused as perio-endo lesions where both entities are assumed to be associated with one another. To clarify such relationships, Abbott and Salgado [11] proposed a classification that limits the diagnosis of perio-endo lesions to teeth that have both endodontic and periodontal diseases occurring simultaneously. They proposed that such teeth should be classified into:
Concurrent endodontic and periodontal diseases without communication: Implying that a tooth has an infection from the root canal system and concomitant alveolar bone loss due to periodontal disease but the periapical and periodontal lesions do not communicate with each other.
Concurrent endodontic and periodontal diseases with communication: Such a diagnosis applies to a tooth that has an infection from the root canal system and concomitant alveolar bone loss due to periodontal disease and the periapical and periodontal lesions communicate with each other. Radiographically, the periapical radiolucency and the marginal periodontal bone loss appear as one continuous radiolucent lesion.
Al-Fouzan [72] in their discussion on perio-endo lesions agreed largely with the classification by Simon et al. [4] but proposed a modification to the primary endodontic lesion. They classified an endodontic lesion with a deep narrow probing defect as “retrograde periodontal disease”, with two subdivisions:
Primary endodontic lesion with drainage through the periodontal ligament: Which applies to an infected tooth with an apical lesion that drains coronally through a sinus tract that tracks along the periodontal ligament, mimicking a periodontal defect. There is usually a single deep and narrow periodontal pocket which heals upon endodontic treatment alone.
Primary endodontic lesion with secondary periodontal involvement: Such lesions exhibit extensive periodontal destruction as a result of drainage of infection from a necrotic root canal system. As the chronic communication persists, plaque and calculus accumulate within the periodontal pocket and contribute to the advancement of periodontal disease, necessitating periodontal treatment.
Al-Fouzan [72] also added an additional classification termed “iatrogenic periodontal lesions” which included: root perforation, coronal leakage, dental injuries or trauma, damage from chemicals used in dentistry and vertical root fractures. Although such lesions are not exactly periodontal lesions, such a classification allowed separate definition of perio-endo pathologies associated with trauma or iatrogenic injuries to the root surface itself. This was important as extensive damage to the root greatly diminishes a tooth’s long-term prognosis. This distinction may aid clinicians in identifying perio-endo lesions with direct and extensive damage to the root surface as opposed to lesions initiated by root canal infections and/or periodontal infections. Perio-endo lesions arising from root canal and/or periodontal infections are basically inflammatory lesions initiated by a wide array of microbiota such as bacteria, viruses or fungi. These are usually presented clinically without detectable damage to the root itself. Such lesions are treated differently from those with significant root damage and will be discussed below.
\nEvidently, various opinions and controversies have emerged over the classification of perio-endo lesions. Future research or discussion may bring about a more comprehensive classification for such lesions that can clearly define the etiology of such pathologies and serve as a guide to adequately treat them.
\nCombined perio-endo lesions are a challenge to manage. RCT, or at least its initiation with mechanical and chemical cleaning of the pulp canal spaces, and effective intra-canal medication, is usually advocated as the first step in treatment of teeth with combined perio-endo lesions presenting with increased PPD and for teeth are unresponsive to pulp sensibility testing. Non-surgical periodontal therapy can proceed. Once RCT has been completed, adequate time for healing of the endodontic lesion should be given before further advanced periodontal therapy is considered [9]. Treatment modalities aimed at removal of bacterial irritants result in tooth prognosis which has been shown to improve over time [47]. This section summarized the treatment sequence for perio-endo lesions (Figure 2).
\nFlow chart summarizing treatment sequence for perio-endo lesions.
In the management of perio-endo lesions, it is important to recall that infected or necrotic pulps may lead to a narrow sinus tract undistinguishable clinically from a periodontal pocket. Because the primary cause of such lesions is pulpal in origin, the indicated treatment is solely RCT followed by adequate coronal seal, with long-term follow-up and monitoring to assess healing.
\nSimilarly, if a vital tooth affected by solely periodontal disease develops mild pulpal symptoms, periodontal treatment should be the only intervention, followed by long-term follow-up. This will allow the mild and usually reversible inflammatory reaction of the pulp (which may transiently increase after periodontal therapy) to resolve as the vital pulp resists the spread of inflammation from the periodontal lesion [12].
\nWith regards to concurrent perio-endo infections, although these separate entities may not be communicating, RCT should be carried out, or at least initiated, first to eliminate pulpal infection and relieve pain. This may then be followed by root surface debridement. Such a treatment sequence will allow removal of infectious source from the pulp and control of any possible communication between the infected root canal system and the adjacent periodontium. With this, even if the protective cementum layer is removed during root surface debridement, there should be no pulpal infection that can spread towards the periodontium through open dentinal tubules or accessory canals [11, 12]. Such a treatment philosophy is applied to true perio-endo lesions as well, to allow the affected tooth to undergo infection control in its entirety, sequentially and as effectively as possible [12].
\nIndeed, in any patient with periodontal disease, management should include plaque control, non-surgical scaling and root debridement; periodontal surgery (with or with regenerative periodontal therapies) when indicated; and subsequent supportive periodontal care (SPC) [76, 79]. SPC should allow any teeth with pathologies, periodontal, endodontic or combined, to be well maintained within the oral cavity in the long term.
\nConventional non-surgical periodontal and endodontic therapy may be predictably used to treat mild to moderate bony defects caused by perio-endo lesions. However, these non-surgical therapies alone might be inadequate for the treatment of lesions characterized by deep pockets, or wide circumferential apical defects caused by non-healing endodontic lesions, previous endodontic surgery [80], or those with substantial root surface damage such as root fracture of resorption. An endodontic lesion may be considered non-healing if the periapical lesion increases in size or remains unchanged after RCT. A decision to provide alternative treatment modalities will depend largely on the signs and symptoms experienced by the patient and judgment of the treating clinician, as periapical lesions can take up to four years [32] or longer [81] to heal. Surgical options for perio-endo lesions can be divided into surgical debridement, periodontal- or root- resective, or regenerative, approaches. The extent of periodontal tissue destruction or the failure of adequately delivered treatment to resolve the lesions, or any component thereof, may leave tooth extraction as the only practical treatment option.
\nRoot resection is the removal of a root (or roots, or root with coronal tooth structure) along with accompanying odontoplasty, before or preferably after endodontic treatment. Such tooth respective modalities are advocated to treat specific non-furcation and furcation defects that unlikely to be managed by non-surgical or surgical debridement alone [82]. The indications for root resection include root fracture, perforation, root caries, dehiscence, fenestration, external root resorption involving one root, incomplete endodontic treatment of a particular root, severe periodontitis affecting only one or two roots with at least one good sized root with proper/sufficient periodontal support to remain [83], or and severe grade II or grade III furcation involvement of multi-rooted teeth in the treatment of which clinicians attempt to create ‘single rooted’ situations to remove affect root(s) and to facilitate oral hygiene and SPC measures [84, 85].
\nFactors such as occlusal forces, tooth restorability, residual periodontal support and strategic value of the remaining root(s) should be taken into consideration during the planning stage before treatment. Proper reshaping of the occlusal table and appropriate restoration of the clinical crown are essential [83]. Additionally, the root surface at the site of the amputation must be recontoured after removal of the root stump to allow reestablishment of soft and hard tissue morphology favorable for oral hygiene measures by the patient and SPC measures by treating clinicians [86].
\nHemisection is the surgical separation of a multirooted tooth. This is usually only a treatment option for mandibular molars with severe furcation involvement and periodontal attachment loss having affected one root more severely than the other (Figure 3). The tooth was sectioned through the furcation, and the respective root and associated portion of the crown may be removed while another moiety is retained [87]. In most instances, an elective RCT should be performed before or as soon as possible after the hemisection to avoid any future pulpal complications. Hemisection allows retention of natural tooth structure, especially the root, which helps preserve surrounding alveolar bone, and may facilitate the placement of fixed prostheses [87].
\nManagement of a mandibular left first molar with severe furcation involvement and periodontal attachment loss. (A) Radiographic bone loss observable at distal root of a non-vital 36; (B) RCT was completed and 36 was hemisected distally; (C) 36 was subsequently crowned to coronally seal the treated root canal, re-establish occlusion and prevent further mesial drift of the second molar.
The restorative aspects of the tooth to be so treated must be carefully assessed and integrated into the anticipated surgical procedure to ensure proper positioning of restorative margins relative to the osseous crest, and also to manage the anticipated changes in occlusal relationships and masticatory forces. In certain occasions, splinting of a resected tooth to neighboring teeth or the use of such teeth as abutments for fixed partial dentures may confer some reinforcement towards its long-term survival [83]. Although factors such as older age at time of resection, grade II mobility or above, and reduced pre-operative radiographic bone heights around roots seem to reduce the survival of resected teeth, the major cause of failure of resective procedures is often due to endodontic failure or vertical root fractures [88]. This is especially true if periodontal treatment had been properly carried out and the patient adheres to strict SPC [83, 88]. In most situations, the residual periodontal support of the treated tooth dictates the prognosis of the tooth. However, teeth with reduced periodontal support may still be maintained if proper SPC is provided [76, 89].
\nRegenerative therapy has been shown to yield greater attachment gain and re-establish more favorable tissue morphology for oral hygiene measures compared to conventional periodontal therapy [90]. Pre-surgical assessment includes assessment of the pulp status and the severity of periodontal destruction. Once the therapeutic prognosis for the periodontal regenerative procedure is determined to be favorable, endodontic therapy is provided and the endodontic lesion is allowed to heal. Unsatisfactory healing after RCT might be further addressed with a surgical endodontic therapy approach (apicectomy) [78]. After a successful RCT, tooth mobility is reassessed to determine the necessity for splinting, as tooth mobility may reduce the success of regenerative therapy [91]. The intrasurgical assessment includes morphology of the periodontal defect, material of choice to manage the defect, control of patient’s oral hygiene, wound and tooth stabilization [78]. The defect, patient, and surgery-specific factors associated with favorable periodontal regeneration are [80]:
Defect considerations: Deep (≥4 mm), narrow (<45 degrees), vertical, two to three wall defects with no/minimal furcation involvement, adequate soft tissue thickness (>1.1 mm) and keratinization (2 mm).
Patient considerations: Good oral hygiene, compliance towards periodontal care, abstinence from smoking/non-smoking and good systematic health/properly controlled systemic conditions.
Surgical considerations: Atraumatic incisions and flap elevation, primary closure, passive wound tension, uncontaminated wound during surgery (and post-surgical healing) and no occlusal trauma
In perio-endo lesions, regenerative periodontal therapies, such as use of biologically active products or guided tissue regeneration (GTR), may be used to promote periodontal regeneration and crestal intra-osseous defect bone-fill after endodontic treatment. In GTR, a barrier membrane is used to prevent contact of connective tissue with the osseous walls of an intra-osseous defect, to protect the underlying blood clot and to encourage growth of key tissues, while excluding unwanted cells such as epithelial cells [80]. When the intra-osseous defect is large, bone substitutes may be placed in the defect to support the overlying membrane and to maintain a space in which healing may occur [80]. Sometimes both root-resective and regenerative treatment may be carried out simultaneously to retain a tooth in function. Figure 4 shows treatment of an upper first molar with a root fracture.
\nPeriodontal surgical management of an upper left first molar with a root fracture. (A) Radiograph of root treated 26 with suspected mesio-buccal root fracture; (B) intra-operative view of 26 confirming initial diagnosis; (C) 26 MB root was resected and the defect regenerated with xenograft and a collagen barrier membrane. Radiograph taken at 6 months post treatment.
An in-depth understanding of the biology underlying perio-endo inter-relationships guides a clinician in diagnosing and subsequently deriving a sensible and timely treatment plan. Conventional endodontic and periodontal therapy have been shown to be successful in managing such lesions [47] with endodontic therapy, or at least its initiation, being the first line of treatment in most cases [9]. The use of regenerative approaches to manage perio-endo lesions has advantages especially in terms of enhanced attachment gain and better long-term outcome of treated teeth. Various other treatment modalities for managing the periodontal component of perio-endo lesions, such as the application of enamel matrix derivatives [92] or platelet-rich fibrins [93] may offer good results. However, more research is warranted in this field with hope that retention of perio-endo involved teeth may become more predictable in the near future.
\nThe work described in this chapter was substantially supported by the Young Researcher’s Incentive Grants (GGPM-2016-062 and GGPM-2017-109), The National University of Malaysia, and the Research Grants Council of the Hong Kong Special Administrative Region, China (HKU 772110 M).
\nThe authors declare no conflict of interest.
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"19"},books:[{type:"book",id:"10578",title:"Pharmacogenetics",subtitle:null,isOpenForSubmission:!0,hash:"ca2bc2ff6e15a7b735d662d9664086b1",slug:null,bookSignature:"Dr. Islam Khalil",coverURL:"https://cdn.intechopen.com/books/images_new/10578.jpg",editedByType:null,editors:[{id:"226598",title:"Dr.",name:"Islam",surname:"Khalil",slug:"islam-khalil",fullName:"Islam Khalil"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10531",title:"Advances in Nanoparticle Research for Biomedical Applications",subtitle:null,isOpenForSubmission:!0,hash:"1e9e08e7275f2b928af7911b523252f1",slug:null,bookSignature:"Dr. Maria Carmo Pereira, MSc. Maria João Ramalho and Dr. Joana A. Loureiro",coverURL:"https://cdn.intechopen.com/books/images_new/10531.jpg",editedByType:null,editors:[{id:"82791",title:"Dr.",name:"Maria Carmo",surname:"Pereira",slug:"maria-carmo-pereira",fullName:"Maria Carmo Pereira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Pharmacognosy - Medicinal Plants",subtitle:null,isOpenForSubmission:!0,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:null,bookSignature:"Prof. Hany El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:null,editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10357",title:"Drug Metabolism",subtitle:null,isOpenForSubmission:!0,hash:"3bd3ae5041cab45020555b49152b1ddc",slug:null,bookSignature:"Dr. Katherine Dunnington",coverURL:"https://cdn.intechopen.com/books/images_new/10357.jpg",editedByType:null,editors:[{id:"232694",title:"Dr.",name:"Katherine",surname:"Dunnington",slug:"katherine-dunnington",fullName:"Katherine Dunnington"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9829",title:"Biosimilars",subtitle:null,isOpenForSubmission:!0,hash:"c72171c1d1cf6df5aad989cb07cc8e4e",slug:null,bookSignature:"Dr. Valderilio Feijó Feijó Azevedo and Dr. Robert Moots",coverURL:"https://cdn.intechopen.com/books/images_new/9829.jpg",editedByType:null,editors:[{id:"69875",title:"Dr.",name:"Valderilio",surname:"Feijó Azevedo",slug:"valderilio-feijo-azevedo",fullName:"Valderilio Feijó Azevedo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10234",title:"High-Throughput Screening for Drug Discovery",subtitle:null,isOpenForSubmission:!0,hash:"37e6f5b6dd0567efb63dca4b2c73495f",slug:null,bookSignature:"Prof. Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10234.jpg",editedByType:null,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:6},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"160",title:"Surface Science",slug:"surface-science",parent:{title:"Materials Science",slug:"materials-science"},numberOfBooks:16,numberOfAuthorsAndEditors:329,numberOfWosCitations:227,numberOfCrossrefCitations:162,numberOfDimensionsCitations:405,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"surface-science",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10061",title:"21st Century Surface Science",subtitle:"a Handbook",isOpenForSubmission:!1,hash:"69253b3c7ba801a5fcd9c47827345f93",slug:"21st-century-surface-science-a-handbook",bookSignature:"Phuong Pham, Pratibha Goel, Samir Kumar and Kavita Yadav",coverURL:"https://cdn.intechopen.com/books/images_new/10061.jpg",editedByType:"Edited by",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10050",title:"Corrosion",subtitle:null,isOpenForSubmission:!1,hash:"cf66006063d4d72349fb33cc056095c1",slug:"corrosion",bookSignature:"Ambrish Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10050.jpg",editedByType:"Edited by",editors:[{id:"215348",title:"Dr.",name:"Ambrish",middleName:null,surname:"Singh",slug:"ambrish-singh",fullName:"Ambrish Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7343",title:"Superhydrophobic Surfaces",subtitle:"Fabrications to Practical Applications",isOpenForSubmission:!1,hash:"017db4d856b5d454aead24128743ba3e",slug:"superhydrophobic-surfaces-fabrications-to-practical-applications",bookSignature:"Mehdi Khodaei, Xiuyong Chen and Hua Li",coverURL:"https://cdn.intechopen.com/books/images_new/7343.jpg",editedByType:"Edited by",editors:[{id:"19478",title:"Dr.",name:"Mehdi",middleName:null,surname:"Khodaei",slug:"mehdi-khodaei",fullName:"Mehdi Khodaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8242",title:"Applied Surface Science",subtitle:null,isOpenForSubmission:!1,hash:"b2515a9d613325af2ddf6d8ef2b53f4d",slug:"applied-surface-science",bookSignature:"Gurrappa Injeti",coverURL:"https://cdn.intechopen.com/books/images_new/8242.jpg",editedByType:"Edited by",editors:[{id:"12369",title:"Dr.",name:"Gurrappa",middleName:null,surname:"Injeti",slug:"gurrappa-injeti",fullName:"Gurrappa Injeti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7550",title:"Corrosion Inhibitors",subtitle:null,isOpenForSubmission:!1,hash:"4d09bcd91e393d15a578f1b632f118e7",slug:"corrosion-inhibitors",bookSignature:"Ambrish Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7550.jpg",editedByType:"Edited by",editors:[{id:"215348",title:"Dr.",name:"Ambrish",middleName:null,surname:"Singh",slug:"ambrish-singh",fullName:"Ambrish Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6671",title:"Paint and Coatings Industry",subtitle:null,isOpenForSubmission:!1,hash:"1dc37c2c972a253d544da9849049222f",slug:"paint-and-coatings-industry",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,isOpenForSubmission:!1,hash:"98b8dfac28575877f1846a661c9150bc",slug:"coatings-and-thin-film-technologies",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7385",title:"Cavitation",subtitle:"Selected Issues",isOpenForSubmission:!1,hash:"075ee4bb432760777ffcba092d0cffae",slug:"cavitation-selected-issues",bookSignature:"Wojciech Borek, Tomasz Tański and Mariusz Król",coverURL:"https://cdn.intechopen.com/books/images_new/7385.jpg",editedByType:"Edited by",editors:[{id:"186373",title:"Dr.",name:"Wojciech",middleName:null,surname:"Borek",slug:"wojciech-borek",fullName:"Wojciech Borek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7471",title:"Advanced Surface Engineering Research",subtitle:null,isOpenForSubmission:!1,hash:"4c1a23accacc46fd18b49f2e5c6d303e",slug:"advanced-surface-engineering-research",bookSignature:"Mohammad Asaduzzaman Chowdhury",coverURL:"https://cdn.intechopen.com/books/images_new/7471.jpg",editedByType:"Edited by",editors:[{id:"185329",title:"Prof.",name:"Mohammad Asaduzzaman",middleName:null,surname:"Chowdhury",slug:"mohammad-asaduzzaman-chowdhury",fullName:"Mohammad Asaduzzaman Chowdhury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7352",title:"Granularity in Materials Science",subtitle:null,isOpenForSubmission:!1,hash:"a451ff13b9bc3b08989979518577594a",slug:"granularity-in-materials-science",bookSignature:"George Kyzas and Athanasios C. Mitropoulos",coverURL:"https://cdn.intechopen.com/books/images_new/7352.jpg",editedByType:"Edited by",editors:[{id:"152296",title:"Dr.",name:"George",middleName:"Z.",surname:"Kyzas",slug:"george-kyzas",fullName:"George Kyzas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6702",title:"Polymer Rheology",subtitle:null,isOpenForSubmission:!1,hash:"c24234818cd4b2ce3ed569c2b29f714c",slug:"polymer-rheology",bookSignature:"Jose Luis Rivera-Armenta and Beatriz Adriana Salazar Cruz",coverURL:"https://cdn.intechopen.com/books/images_new/6702.jpg",editedByType:"Edited by",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6512",title:"Superfluids and Superconductors",subtitle:null,isOpenForSubmission:!1,hash:"24385ec1d5de9c6597896900c80ee279",slug:"superfluids-and-superconductors",bookSignature:"Roberto Zivieri",coverURL:"https://cdn.intechopen.com/books/images_new/6512.jpg",editedByType:"Edited by",editors:[{id:"181334",title:"Prof.",name:"Roberto",middleName:null,surname:"Zivieri",slug:"roberto-zivieri",fullName:"Roberto Zivieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:16,mostCitedChapters:[{id:"30968",doi:"10.5772/36975",title:"Polymer Gel Rheology and Adhesion",slug:"rheology-and-adhesion-of-polymer-gels",totalDownloads:15106,totalCrossrefCites:8,totalDimensionsCites:56,book:{slug:"rheology",title:"Rheology",fullTitle:"Rheology"},signatures:"Anne M. Grillet, Nicholas B. Wyatt and Lindsey M. Gloe",authors:[{id:"110676",title:"Dr.",name:"Anne",middleName:null,surname:"Grillet",slug:"anne-grillet",fullName:"Anne Grillet"},{id:"138225",title:"Dr.",name:"Nicholas",middleName:null,surname:"Wyatt",slug:"nicholas-wyatt",fullName:"Nicholas Wyatt"},{id:"138226",title:"Ms.",name:"Lindsey",middleName:null,surname:"Gloe",slug:"lindsey-gloe",fullName:"Lindsey Gloe"}]},{id:"48822",doi:"10.5772/60808",title:"Wettability of Nanostructured Surfaces",slug:"wettability-of-nanostructured-surfaces",totalDownloads:2386,totalCrossrefCites:7,totalDimensionsCites:22,book:{slug:"wetting-and-wettability",title:"Wetting and Wettability",fullTitle:"Wetting and Wettability"},signatures:"L. Duta, A.C. Popescu, I. Zgura, N. Preda and I.N. Mihailescu",authors:[{id:"17636",title:"Dr.",name:"Ion",middleName:"N.",surname:"Mihailescu",slug:"ion-mihailescu",fullName:"Ion Mihailescu"},{id:"23532",title:"Dr.",name:"Andrei",middleName:null,surname:"Popescu",slug:"andrei-popescu",fullName:"Andrei Popescu"},{id:"174343",title:"Dr.",name:"Liviu",middleName:null,surname:"Duta",slug:"liviu-duta",fullName:"Liviu Duta"},{id:"174344",title:"Dr.",name:"Irina",middleName:null,surname:"Zgura",slug:"irina-zgura",fullName:"Irina Zgura"},{id:"174345",title:"Dr.",name:"Ligia",middleName:null,surname:"Frunza",slug:"ligia-frunza",fullName:"Ligia Frunza"}]},{id:"30975",doi:"10.5772/36619",title:"Solution Properties of κ-Carrageenan and Its Interaction with Other Polysaccharides in Aqueous Media",slug:"solution-properties-of-k-carrageenan-and-its-interaction-with-other-polysaccharides-in-aqueous-media",totalDownloads:7122,totalCrossrefCites:2,totalDimensionsCites:20,book:{slug:"rheology",title:"Rheology",fullTitle:"Rheology"},signatures:"Alberto Tecante and María del Carmen Núñez Santiago",authors:[{id:"109087",title:"Prof.",name:"Alberto",middleName:null,surname:"Tecante",slug:"alberto-tecante",fullName:"Alberto Tecante"},{id:"109098",title:"Dr.",name:"Maria Del Carmen",middleName:null,surname:"Nunez-Santiago",slug:"maria-del-carmen-nunez-santiago",fullName:"Maria Del Carmen Nunez-Santiago"}]}],mostDownloadedChaptersLast30Days:[{id:"67748",title:"Formation of Anticorrosive Structures and Thin Films on Metal Surfaces by Applying EDM",slug:"formation-of-anticorrosive-structures-and-thin-films-on-metal-surfaces-by-applying-edm",totalDownloads:618,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"corrosion-inhibitors",title:"Corrosion Inhibitors",fullTitle:"Corrosion Inhibitors"},signatures:"Pavel Topala, Alexandr Ojegov and Vitalie Besliu",authors:[{id:"254355",title:"Prof.",name:"Pavel",middleName:null,surname:"Topala",slug:"pavel-topala",fullName:"Pavel Topala"},{id:"254366",title:"Dr.",name:"Alexandr",middleName:null,surname:"Ojegov",slug:"alexandr-ojegov",fullName:"Alexandr Ojegov"},{id:"254368",title:"Dr.",name:"Besliu",middleName:null,surname:"Vitalie",slug:"besliu-vitalie",fullName:"Besliu Vitalie"}]},{id:"67077",title:"Electrochemical Techniques for Corrosion and Tribocorrosion Monitoring: Fundamentals of Electrolytic Corrosion",slug:"electrochemical-techniques-for-corrosion-and-tribocorrosion-monitoring-fundamentals-of-electrolytic-",totalDownloads:856,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"corrosion-inhibitors",title:"Corrosion Inhibitors",fullTitle:"Corrosion Inhibitors"},signatures:"Abdenacer Berradja",authors:[{id:"238628",title:"Ph.D.",name:"Abdenacer",middleName:null,surname:"Berradja",slug:"abdenacer-berradja",fullName:"Abdenacer Berradja"}]},{id:"64392",title:"Corrosion Inhibitors",slug:"corrosion-inhibitors",totalDownloads:1769,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"corrosion-inhibitors",title:"Corrosion Inhibitors",fullTitle:"Corrosion Inhibitors"},signatures:"Geethamani Palanisamy",authors:[{id:"253697",title:"Dr.",name:"Geethamani",middleName:null,surname:"P",slug:"geethamani-p",fullName:"Geethamani P"}]},{id:"48818",title:"Modification of Surface Energy and Wetting of Textile Fibers",slug:"modification-of-surface-energy-and-wetting-of-textile-fibers",totalDownloads:2345,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"wetting-and-wettability",title:"Wetting and Wettability",fullTitle:"Wetting and Wettability"},signatures:"Franco Ferrero and Monica Periolatto",authors:[{id:"173940",title:"Prof.",name:"Franco",middleName:null,surname:"Ferrero",slug:"franco-ferrero",fullName:"Franco Ferrero"},{id:"174224",title:"Ph.D.",name:"Monica",middleName:null,surname:"Periolatto",slug:"monica-periolatto",fullName:"Monica Periolatto"}]},{id:"72939",title:"Carbon Nanotubes: Synthesis, Properties and Applications",slug:"carbon-nanotubes-synthesis-properties-and-applications",totalDownloads:200,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"21st-century-surface-science-a-handbook",title:"21st Century Surface Science",fullTitle:"21st Century Surface Science - a Handbook"},signatures:"Aravind Kumar Jagadeesan, Krithiga Thangavelu and Venkatesan Dhananjeyan",authors:[{id:"319215",title:"Dr.",name:"Aravind",middleName:null,surname:"Kumar",slug:"aravind-kumar",fullName:"Aravind Kumar"},{id:"321759",title:"Dr.",name:"Krithiga",middleName:null,surname:"Thangavelu",slug:"krithiga-thangavelu",fullName:"Krithiga Thangavelu"},{id:"321760",title:"Mr.",name:"Venkatesan",middleName:null,surname:"Dhanancheyan",slug:"venkatesan-dhanancheyan",fullName:"Venkatesan Dhanancheyan"}]},{id:"62882",title:"Inside the Phenomenological Aspects of Wet Granulation: Role of Process Parameters",slug:"inside-the-phenomenological-aspects-of-wet-granulation-role-of-process-parameters",totalDownloads:659,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"granularity-in-materials-science",title:"Granularity in Materials Science",fullTitle:"Granularity in Materials Science"},signatures:"Veronica De Simone, Diego Caccavo, Annalisa Dalmoro, Gaetano\nLamberti, Matteo d’Amore and Anna Angela Barba",authors:[{id:"140173",title:"Prof.",name:"Anna Angela",middleName:null,surname:"Barba",slug:"anna-angela-barba",fullName:"Anna Angela Barba"},{id:"143947",title:"Prof.",name:"Matteo",middleName:null,surname:"D'Amore",slug:"matteo-d'amore",fullName:"Matteo D'Amore"},{id:"176104",title:"Prof.",name:"Gaetano",middleName:null,surname:"Lamberti",slug:"gaetano-lamberti",fullName:"Gaetano Lamberti"},{id:"176239",title:"MSc.",name:"Diego",middleName:null,surname:"Caccavo",slug:"diego-caccavo",fullName:"Diego Caccavo"},{id:"181500",title:"Dr.",name:"Annalisa",middleName:null,surname:"Dalmoro",slug:"annalisa-dalmoro",fullName:"Annalisa Dalmoro"},{id:"260822",title:"MSc.",name:"Veronica",middleName:null,surname:"De Simone",slug:"veronica-de-simone",fullName:"Veronica De Simone"}]},{id:"40738",title:"Viscoelastic Properties of Biological Materials",slug:"viscoelastic-properties-of-biological-materials",totalDownloads:4861,totalCrossrefCites:6,totalDimensionsCites:17,book:{slug:"viscoelasticity-from-theory-to-biological-applications",title:"Viscoelasticity",fullTitle:"Viscoelasticity - From Theory to Biological Applications"},signatures:"Naoki Sasaki",authors:[{id:"140935",title:"Prof.",name:"Naoki",middleName:null,surname:"Sasaki",slug:"naoki-sasaki",fullName:"Naoki Sasaki"}]},{id:"40740",title:"Viscoelasticity in Biological Systems: A Special Focus on Microbes",slug:"viscoelasticity-in-biological-systems-a-special-focus-on-microbes",totalDownloads:3578,totalCrossrefCites:6,totalDimensionsCites:10,book:{slug:"viscoelasticity-from-theory-to-biological-applications",title:"Viscoelasticity",fullTitle:"Viscoelasticity - From Theory to Biological Applications"},signatures:"Supriya Bhat, Dong Jun, Biplab C. Paul and Tanya E. S Dahms",authors:[{id:"144710",title:"Dr",name:"Tanya",middleName:null,surname:"Dahms",slug:"tanya-dahms",fullName:"Tanya Dahms"},{id:"144719",title:"MSc.",name:"Biplab",middleName:null,surname:"Paul",slug:"biplab-paul",fullName:"Biplab Paul"},{id:"144721",title:"MSc.",name:"Dong",middleName:null,surname:"Jun",slug:"dong-jun",fullName:"Dong Jun"},{id:"167022",title:"M.Sc.",name:"Supriya",middleName:"Venkatesh",surname:"Bhat",slug:"supriya-bhat",fullName:"Supriya Bhat"}]},{id:"62670",title:"Organometal Halide Perovskites Thin Film and Their Impact on the Efficiency of Perovskite Solar Cells",slug:"organometal-halide-perovskites-thin-film-and-their-impact-on-the-efficiency-of-perovskite-solar-cell",totalDownloads:907,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"coatings-and-thin-film-technologies",title:"Coatings and Thin-Film Technologies",fullTitle:"Coatings and Thin-Film Technologies"},signatures:"Ahmed Mourtada Elseman",authors:[{id:"221890",title:"Dr.",name:"Ahmed Mourtada",middleName:null,surname:"Elseman",slug:"ahmed-mourtada-elseman",fullName:"Ahmed Mourtada Elseman"}]},{id:"30968",title:"Polymer Gel Rheology and Adhesion",slug:"rheology-and-adhesion-of-polymer-gels",totalDownloads:15106,totalCrossrefCites:8,totalDimensionsCites:56,book:{slug:"rheology",title:"Rheology",fullTitle:"Rheology"},signatures:"Anne M. Grillet, Nicholas B. Wyatt and Lindsey M. Gloe",authors:[{id:"110676",title:"Dr.",name:"Anne",middleName:null,surname:"Grillet",slug:"anne-grillet",fullName:"Anne Grillet"},{id:"138225",title:"Dr.",name:"Nicholas",middleName:null,surname:"Wyatt",slug:"nicholas-wyatt",fullName:"Nicholas Wyatt"},{id:"138226",title:"Ms.",name:"Lindsey",middleName:null,surname:"Gloe",slug:"lindsey-gloe",fullName:"Lindsey Gloe"}]}],onlineFirstChaptersFilter:{topicSlug:"surface-science",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/118072/immacolata-vellecco",hash:"",query:{},params:{id:"118072",slug:"immacolata-vellecco"},fullPath:"/profiles/118072/immacolata-vellecco",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()