Representative ranges of measured menaquinone concentration in food.
\r\n\tThe WHO classification in 2007; was based on the histogenesis and cell origin of the tumor. In the latest classification made in 2016; to better characterize the tumor and obtain better data on its prognosis; The combination of molecular and genetic biomarkers and histopathological features of the tumor was used. Despite all current treatment approaches, the median survival time is around 12 months in most GBM patients. Compared with the situation of some types of successfully treated cancers; the survival time of GBM patients is not at an acceptable level today. In the treatment of CNS tumors; surgery, chemotherapy, and radiation treatments (x-rays, gamma rays, electron and proton beams) are used. The therapeutic potential of chemotherapy; New strategies are needed to increase drug concentration at the diseased site, as this largely depends on the ability of the chemotherapeutic agent to achieve effective concentrations at tumor localization. Based on our better understanding of the genetic and molecular characteristics of CNS tumors; Targeted therapies, including vaccines, and treatment protocols such as immunotherapy are promising developments.
\r\n\r\n\tThis book supposes to be written by many authors who have an internationally honored place in their field to share their ideas about the treatment of CNS tumors. Surgery, Radiotherapy, Chemotherapy and Antiangiogenic Therapy Protocols, Immunotherapy, Molecular Therapy, Specific target-agents therapy with Nanoparticles and Gene Therapy for CNS tumors among the book chapters.
\r\n\tIn these sections; there are many practical pieces of information that can help the students who graduated from the Medicine Faculty and specialist doctors who are interested in Neurosurgery.
Vitamin K occurs naturally in two biologically active forms. Vitamin K1, also called phylloquinone (PK), is abundant in leafy green vegetables, such as cabbage, spinach, and lettuce [1]. The other form, vitamin K2, is called menaquinone (MK) and is predominantly of microbial origin [2, 3]. Vitamin K2 is mainly present in fermented food such as cheese and natto (fermented soybeans), but gut microbiota are also able to synthesize vitamin K2 [4]. One exception, menaquinone-4 (MK-4), is formed in humans and animals by tissue-specific conversion of PK and/or menadione [5]. However, in the literature, all MKs are mostly grouped under the term vitamin K2 resulting in the assumption that all MKs are similar in origin and function. Moreover, despite the knowledge that MKs are present in the food supply, little is known about their individual synthesis, growth conditions, and interactions of the producing bacteria and the total amounts of the different MKs in fermented foods. Regarding the findings that MKs play an important role in health aspects beyond coagulation, study of the interaction of MKs with other nutrients may lead to a better understanding of the effect of different food items on health aspects, such as bone health or cardiovascular health.
\nSuch a global view could be essential for guiding the development of dietary intake recommendations for vitamin K.
\nBoth vitamin K forms have 2-methyl-1,4-naphthoquinone, also called menadione or vitamin K3, as a common ring structure. However, they differ from each other in the length and degree of saturation of the polyisoprenoid side chain attached to the 3-position.
\nPhylloquinone (vitamin K1) possesses a phytyl side chain, which consists of four isoprene units, and one of them is unsaturated. Phylloquinone is found primarily in plants in association with chlorophyll, whereas menaquinone (vitamin K2) is principally synthesized by bacteria. Menaquinone contains side chains of varying length, for most the part of a polymer of repeating unsaturated 5-carbon prenyl units. Depending on the microorganism by which the chain is synthesized, the chain length generally ranges from 4 to 13 prenyl units. Menaquinones are classified according to the number of prenyl units. The number of units is given in a suffix (-
Vitamin K is fat soluble. The melting points of menaquinones vary from 35°C to 62°C depending on the length of the multiprenyl side chain. Menaquinones are stable to heat and air but are very sensitive to alkali and ultraviolet (UV) irradiation [9].
\nThe distribution of isoprenoid quinones has been studied in 900 microbial strains, 56 mold strains, and 88 yeast strains. About half of the studied bacteria contain menaquinone, but no menaquinones have been found in molds and yeast [10]. Menaquinone and demethylmenaquinones (DMKs) are found in the cytoplasmic membrane of bacteria. MKs and DMKs function as a reversible redox component of the electron transfer chain [11]. Additionally, reduced MKs exhibit antioxidant properties and can play a role in protecting cellular membranes from lipid oxidation [12]. Menaquinones are also necessary for sporulation and proper regulation of cytochrome formation in some Gram-positive bacteria such as
Menaquinone synthesis has mostly been described in
Menaquinones have side chains of different sizes in different organisms and sometimes even within the same organism. Depending on the growing conditions, the basic structure can be modified by demethylation of the naphthoquinone ring to reform DMK or by saturation of the isoprenoid side chain [2, 19].
\nBacterially synthesized menaquinones that contribute to human vitamin K2 requirements may be produced by the gut microbiota or by bacteria present in food. In humans, the most important genera of intestinal flora are
Vitamin K2 is mostly synthesized by bacteria; therefore, the highest number of long-chain menaquinones is found in fermented dairy products, such as cheese and fermented vegetables, such as natto and sauerkraut [16]. One exception is MK-4, which is formed by a realkylation step from menadione present in animal feed or as a product of tissue-specific conversion directly from dietary phylloquinone [5]. The extent of the conversion to MK-4 is estimated to range from 5% to 25% of the ingested phylloquinone [25].
\nSearching for information about the concentration of vitamin K2 in food is not very fruitful. Out of more than 70 national food databases, only 12 provide the vitamin K content of food items. Only three of these food databases (the United States, the Netherlands, Turkey) specifically report the vitamin K2 concentration; all others publish only phylloquinone (PK) or total vitamin K or give no further information about the vitamin forms included in the given values. The comparison of the provided concentration of MK in these three databases is not possible because the values are based on different specifications and different processes. The data given in the US database are for MK-4. However, the Dutch database includes several types of menaquinones, ranging from MK-4 to MK-10. For the data from the Turkish database, there is no information concerning the definition of vitamin K2 [16, 26]. In countries where animals are supplemented with menadione as practiced in the United States [27] and the Netherlands [28], the MK-4 concentration is normally higher in food of animal origin. The supplementation practice used in Turkey is unknown. Last, the process and the bacterial strains used in the production of fermented food determine the concentration and forms of MK in products [16].
\nScanning the literature for publications that report the results of vitamin K measurements in food provides additional separate values for different menaquinones. However, information about longer-chain menaquinones (MK-5 to MK-10) is very limited. Table 1 summarizes the values of vitamin K2 for animal products such as dairy, meat, fish and eggs, and fermented vegetable products such as bread, sauerkraut, and legumes (natto).
\nMenaquinone content (μg/100 g; mean ± SD or range) | \n\n | \n | ||||||
---|---|---|---|---|---|---|---|---|
Food | \nMK-4 | \nMK-5 | \nMK-6 | \nMK-7 | \nMK-8 | \nMK-9 | \nMK-10 | \nSource | \n
\n | \n||||||||
Whole milk | \n0.7–0.9 | \n0.0–0.1 | \nnd | \nnd | \nnd | \nnd | \nnr | \n[6] | \n
Whole milk | \n0.8–1.0 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
Whole milk | \n2 ± 0.3 | \nnr | \nnr | \nnd | \nnr | \nnr | \nnr | \n[32] | \n
Whole milk | \n0.4–1.0 | \nnr | \nnr | \nnr | \nnr | \n0–2 | \nnr | \n[29] | \n
Milk 1% fat | \n0.3–0.4 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
Milk 2% fat | \n0.4–0.5 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
Whipped cream | \n5.2–5.6 | \nnd | \nnd | \nnd | \nnd | \nnd | \nnr | \n[6] | \n
Cream | \n8 ± 3 | \nnr | \nnr | \nnd | \nnr | \nnr | \nnr | \n[32] | \n
Butter | \n13.5–15.9 | \nnd | \nnd | \nnd | \nnd | \nnd | \nnr | \n[6] | \n
\n | 21 ± 7 | \nnr | \nnr | \nnd | \nnr | \nnr | \nnr | \n[32] | \n
\n | \n||||||||
Whole milk, sour | \n0.6 ± 0.02 | \n0.3 ± 0.002 | \n0.2 ± 0.03 | \n0.4 ± 0.04 | \n2.0 ± 0.1 | \n4.7 ± 0.2 | \nnd | \n[31] | \n
Buttermilk | \n0.2–0.3 | \n0.1–0.2 | \n0–0.2 | \n0.1–0.3 | \n0.5–0.6 | \n1.2–1.6 | \nnr | \n[6] | \n
Mesophilic | \nnr | \nnr | \n4.2 | \n5 | \n25.9 | \n100.8 | \n8.5 | \n[34] | \n
Thermophilic | \nnd | \nnd | \nnd | \nnd | \nnd | \nnd | \nnd | \n[34] | \n
\n | \n||||||||
Whole | \n0.4–1.0 | \nnr | \nnr | \nnr | \nnr | \n0–2.0 | \nnr | \n[29] | \n
Whole | \n0.5–0.7 | \n0–0.2 | \nnd | \nnd | \nnd | \nnd | \nnr | \n[6] | \n
Whole | \n1 ± 0.1 | \nnr | \nnr | \n0.1 ± 0.2 | \nnr | \nnr | \nnr | \n[32] | \n
Plain | \n0.4 ± 0.03 | \n0.1 ± 0.006 | \nnd | \nnd | \nnd | \nnd | \nnd | \n[31] | \n
Skimmed | \nnd | \nnd | \nnd | \nnd | \n0–0.2 | \nnd | \nnr | \n[6] | \n
\n | \n||||||||
Curd | \n0.3–0.6 | \n0–0.2 | \n0.1–0.3 | \n0.2–0.5 | \n4.8–5.4 | \n18.1–19.2 | \nnr | \n[6] | \n
Curd | \n2–10 | \nnr | \nnr | \nnr | \nnr | \n40–70 | \nnr | \n[29] | \n
Hard | \n4.2–6.6 | \n1.3–1.7 | \n0.6–1.0 | \n1.1–1.5 | \n14.9–18.2 | \n45.3–54.9 | \nnr | \n[6] | \n
Semi‐hard | \nnr | \nnr | \n1.9 | \n1.1 | \n3.9 | \n17.5 | \n4.7 | \n[34] | \n
Soft | \n3.3–3.9 | \n0.2 –0.4 | \n0.5–0.7 | \n0.9 – 1.1 | \n10.7–12.2 | \n35.1–42.7 | \nnr | \n[6] | \n
Soft | \nnr | \nnr | \n1.7 | \n1.2 | \n7.0 | \n27.3 | \n2.9 | \n[34] | \n
Processed | \n5 ± 2 | \nnr | \nnr | \n0.3 ± 0.1 | \nnr | \nnr | \nnr | \n[32] | \n
Blue cheese | \nnr | \nnr | \n4.9 | \n12.4 | \n7.7 | \n19.3 | \n2.9 | \n[34] | \n
Appenzeller | \n4.3–5.2 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[33] | \n
Caerphilly | \nnr | \nnr | \n1.6 ± 0.1 | \nnd | \n1.6 ± 0.1 | \n32.4 ± 0.8 | \nnd | \n[34] | \n
Cheddar | \n10.2 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
Cheddar | \nnr | \nnr | \n2.2 | \n2.1 | \n3.2 | \n12.9 | \n5.2 | \n[34] | \n
Cheshire | \nnr | \nnr | \n1.6± 0.2 | \nnd | \n5.8 ± 0.2 | \n24.2 ± 0.4 | \nnd | \n[34] | \n
Comté | \n5.5–8.4 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[33] | \n
Comté | \nnd | \nnd | \nnd | \nnd | \nnd | \nnd | \nnd | \n[34] | \n
Edam | \n3.3 ± 0.2 | \n1.0 ± 0.1 | \n0.6 ± 0.1 | \n1.3 ± 0.1 | \n10.5 ± 0.8 | \n30.0 ± 2.6 | \n0.9 ± 0.1 | \n[31] | \n
Emmental | \n8.1–8.6 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[33] | \n
Emmental | \nnr | \nnr | \nnd | \nnd | \nnd | \nnd | \n4.0 | \n[34] | \n
Aged 90 d | \n5.2 ± 0.1 | \nnd | \ntrace | \ntrace | \nnd | \nnd | \nnd | \n[31] | \n
Aged 180 d | \n6.1 ± 0.5 | \nnd | \ntrace | \nnd | \nnd | \nnd | \nnd | \n[31] | \n
Gamalost | \n1.0 ± 0.0 | \n0.6 ± 0.0 | \n0.3 ± 0.0 | \n0.9 ± 0.1 | \n4.8 ± 0.7 | \n42.3 ± 7.0 | \n2.1 ±0.4 | \n[35] | \n
Jarlsberg | \n8.4 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[33] | \n
Gruyère | \n8.1–9.6 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[33] | \n
Leicester | \nnr | \nnr | \n2.0 ± 0.1 | \n2.1 ± 0.1 | \n4.8 ± 0.2 | \n16.2 ± 0.3 | \n4.4 ± 0.2 | \n[34] | \n
Mozzarella | \n3.1–4.0 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
Mozzarella | \nnd | \nnd | \nnd | \nnd | \nnd | \nnd | \nnd | \n[34] | \n
Norvegia | \n5.1 ± 0.9 | \nnd | \n0.3 ± 0.1 | \n1.3 ± 0.2 | \n5.3 ± 0.5 | \n29.6 ± 3.6 | \nnd | \n[35] | \n
Raclette | \n5 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[33] | \n
Swiss cheese | \n6.2–8.8 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
\n | \n||||||||
Salami | \n8.2–10.1 | \nnd | \nnd | \nnd | \nnd | \nnd | \nnr | \n[6] | \n
Calf liver | \n1.1–8.9 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
Beef liver | \n0.4 ± 0.4 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
Bovine liver | \n6.8 ± 1.03 | \nnd | \n9.44 ± 0.118 | \n25.6 ± 0.59 | \n13.8 ± 0.55 | \n9.8 ± 0.7 | \n14±1.7 | \n[31] | \n
Beef liver | \n0.8 | \nnr | \n2.5 | \n18.2 | \n4.8 | \n1.5 | \n6.6 | \n[30] | \n
Pork liver | \n0.3–0.4 | \nnd | \nnd | \nnd | \nnd | \nnd | \nnd | \n[6] | \n
Pork liver | \n10.8 ± 1.44 | \nnd | \nnd | \n16 ± 2.7 | \n25 ± 5.2 | \n6 ± 1.8 | \n8±2.9 | \n[31] | \n
Pork liver | \n0.6 | \nnd | \n0.04 | \n0.6 | \n0.5 | \n0.3 | \n0.5 | \n[30] | \n
Chicken liver | \n14.1 ± 2.0 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
Chicken liver | \n4 | \nnr | \n0.03 | \nnd | \n0.09 | \n0.04 | \n0.03 | \n[30] | \n
Beef kidney | \n2.1 | \nnr | \n0.08 | \n0.2 | \n0.01 | \nnd | \n0.1 | \n[30] | \n
Pork kidney | \n1.3 | \nnr | \n0.02 | \n0.07 | \n0.05 | \n0.22 | \n0.24 | \n[30] | \n
Chicken kidney | \n5 | \nnr | \nnd | \nnd | \nnd | \nnd | \nnd | \n[30] | \n
Beef muscle | \n3.4 | \nnr | \n0.03 | \n0.03 | \nnr | \nnr | \nnr | \n[30] | \n
Pork thigh | \n6 ± 2 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[32] | \n
Pork steak | \n1.7–2.4 | \nnd | \nnd | \n0.4–0.7 | \n0.9–1.2 | \nnd | \nnd | \n[6] | \n
Pork chop | \n3.1 ± 0.46 | \nnd | \nnd | \n0.12 ± 0.035 | \nnd | \nnd | \nnd | \n[31] | \n
Pork muscle | \n0.9 | \nnr | \n0.03 | \n0.03 | \nnr | \nnr | \nnr | \n[30] | \n
Chicken breast | \n6.4–11.3 | \nnd | \nnd | \nnd | \nnd | \nnd | \nnd | \n[6] | \n
Chicken leg | \n5.8–10.5 | \nnd | \nnd | \nnd | \nnd | \nnd | \nnd | \n[6] | \n
Chicken thigh | \n27 ± 15 | \nnr | \nnr | \nnd | \nnr | \nnr | \nnr | \n[32] | \n
Chicken meat, leg and thigh | \n60 ± 8.2 | \nnd | \nnd | \nnd | \nnd | \nnd | \nnd | \n[31] | \n
Chicken muscle | \n8.9 | \nnr | \nnd | \nnd | \nnr | \nnr | \nnr | \n[30] | \n
\n | \n||||||||
Rainbow trout, cultivated | \n3.1 ± 0.2 | \n0.09 ± 0.019 | \nnd | \n0.2 ± 0.058 | \nnd | \nnd | \nnd | \n[31] | \n
Pike perch | \n0.2 ± 0.025 | \n0.05 ± 0.0044 | \n0.05 ± 0.0008 | \n0.5 ± 0.13 | \nnd | \nnd | \nnd | \n[31] | \n
Baltic herring | \n0.21 ± 0.002 | \nnr | \nnd | \nnd | \nnd | \nnd | \nnd | \n[31] | \n
Horse mackerel | \n0.6 ± 0.1 | \nnr | \nnr | \nnd | \nnr | \nnr | \nnr | \n[32] | \n
Mackerel | \n1 ± 0.2 | \nnr | \nnr | \nnd | \nnr | \nnr | \nnr | \n[32] | \n
Mackerel | \n0.3–0.5 | \nnd | \nnd | \nnd | \nnd | \nnd | \nnr | \n[6] | \n
Salmon | \n0.2–0.3 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
Plaice | \n0.1–0.3 | \nnd | \n0.2–0.3 | \n0.0–0.1 | \n1.3–1.8 | \nnr | \nnr | \n[6] | \n
Eel | \n1.4–2.1 | \nnd | \n0.0–0.2 | \n0.2–0.6 | \nnd | \nnd | \nnr | \n[6] | \n
Salmon | \n0.4–0.6 | \nnd | \nnd | \nnd | \nnd | \nnd | \nnr | \n[6] | \n
\n | \n||||||||
Egg yolk | \n29.1–33.5 | \nnd | \n0.6–0.8 | \nnd | \nnd | \nnd | \nnr | \n[6] | \n
Egg albumen | \n0.8–1.0 | \nnd | \nnd | \nnd | \nnd | \nnd | \nnr | \n[6] | \n
Whole egg | \n7 ± 3 | \nnr | \nnr | \nnd | \nnr | \nnr | \nnr | \n[32] | \n
Egg white | \n1 ± 1 | \nnr | \nnr | \nnd | \nnr | \nnr | \nnr | \n[32] | \n
Egg yolk | \n64 ± 31 | \nnr | \nnr | \nnd | \nnr | \nnr | \nnr | \n[32] | \n
Whole egg | \n5.6 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
Egg white | \n0.4 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
Egg yolk | \n15.5 | \nnr | \nnr | \nnr | \nnr | \nnr | \nnr | \n[27] | \n
\n | \n||||||||
Bread | \n0 | \nnr | \nnr | \nnr | \nnr | \n0.9–2 | \nnr | \n[29] | \n
Buckwheat | \nnd | \nnd | \nnd | \n1.0–1.2 | \nnd | \nnd | \nnr | \n[6] | \n
\n | \n||||||||
Sauerkraut | \n0.3–0.5 | \n0.6–1.0 | \n1.4–1.6 | \n0.1–0.3 | \n0.6–0.9 | \n0.9–1.3 | \nnr | \n[6] | \n
Natto | \nnd | \n7.1–7.8 | \n12.7–14.8 | \n882–1034 | \n78.3–89.8 | \nnd | \nnr | \n[6] | \n
\n | 2 ± 3 | \nnr | \nnr | \n939 ± 753 | \nnr | \nnr | \nnr | \n[32] | \n
Hikiwari natto (chopped natto) | \nnd | \nnr | \nnr | \n827 ± 194 | \nnr | \nnr | \nnr | \n[32] | \n
Black bean natto | \nnd | \nnr | \nnr | \n796 ± 93 | \nnr | \nnr | \nnr | \n[32] | \n
Representative ranges of measured menaquinone concentration in food.
nd, not determined; nr, not reported.
Values for MK-4 to MK-10 are available. MK-4 is found in all reported products except buckwheat, hikiwari natto, and black bean natto [6, 27, 29–35]. In non-fermented dairy products and in eggs, hardly any longer-chain menaquinones have been reported [6, 27, 29, 32]. Long-chain menaquinones are also rare in the muscle meat of beef, pork, and chicken [6, 30–32]. However, in offal, such as the liver and kidney, small-to-moderate concentrations of MK-6 to MK-10 have been detected [6, 27, 30, 31]. In fish, vitamin K2 concentrations are in general very low, and menaquinones other than MK-4 have been found in only a few fish species [6, 27, 31, 32]. These small amounts of longer-chain menaquinones are said to originate from the bacteria in decomposing organic material that serves as food for fish that live at the bottom of the sea such as eel and plaice [36]. In sour milk and buttermilk and in curd and hard and soft cheese, MK-8 and MK-9 mainly account for the total concentration of vitamin K followed by MK-6 and MK-7 [6, 27, 29, 31–35]. Fermented plant products are characterized by a high concentration of MK-7 (up to 1000 μg/100 g) [6, 32].
\nAlmost no data are available about the stability and changes in vitamin K concentrations during storage of food in general and during ripening of fermented food in particular.
\nFermentation is traditionally used to increase shelf life, to inhibit pathogens, and to improve organoleptic properties [37]. Additionally, the microbial production of vitamins provides a very attractive approach for improving the nutritional composition of fermented foods. A number of MK-producing species are commonly used in industrial food fermentation applications (Table 2). The main microorganisms used in fermented dairy products are lactic acid bacteria, which transform lactose into lactic acid.
Species/subspecies | \nFood use | \n
---|---|
\n | \nCheese, buttermilk, sour cream, cottage cheese, cream cheese, kefir, yogurt | \n
\n | \nCheese | \n
\n | \nCheese | \n
\n | \nVegetables, dairy | \n
\n | \nCheese | \n
\n | \nMeat | \n
\n | \nCheese | \n
\n | \nDairy, sausage | \n
\n | \nDairy, meat | \n
\n | \nCheese | \n
\n | \nNatto (fermented soybean) | \n
\n | \nCheese | \n
\n | \nCheese | \n
In Swiss Emmental cheese,
In contrast, dairy products fermented with thermophilic lactic acid bacteria, such as Comté cheese, mozzarella, or yogurt products, contain only small amounts of menaquinone or none (Table 1). These thermophilic species include
In soft cheese, the average total menaquinones range 40.1 μg/100 g to 61 μg/100 g depending on the source, analytical method, and type of cheese (Table 1). Manoury and coauthors reported a soft cheese and a blue cheese with very high concentrations (up to 4.110 μg/100 g and 70 μg/100 g, respectively), but the researchers could not explain why these two cheeses are so rich in menaquinones [34].
\nOne cheese with mold was also analyzed for menaquinone content. Gamalost, a Norwegian mold (
Some work has been conducted to improve the content of different menaquinones in dairy products. New research demonstrated that strains of
In contrast to fermented animal products, fermented vegetable products contain mainly MK-7 (Table 1). Natto, a traditional Japanese food produced with
Dietary recommendations for vitamin K are still based on knowledge of phylloquinone and its classic role as an enzyme cofactor for coagulation proteins. The recommendations do not consider the differences in bioavailability and bioactivity between the different forms of vitamin K or the possibly higher requirements for health effects apart from coagulation, such as bone or cardiovascular health [16].
\nDepending on country, sex, and age, the recommendations for vitamin K range from 50 to 120 μg per day for adults 19 years and older. These recommendations are generally presented as adequate intake or estimated values, and no tolerable upper intake level has been established for vitamin K [16, 25, 48]. Research for valuable biomarkers to measure the status of vitamin K in the population is ongoing. A recent study from Maastricht University compared the biomarkers for coagulation with those of bone and vascular health in 896 healthy volunteers. Whereas all coagulation proteins were completely carboxylated by vitamin K, and a high concentration of undercarboxylated Gla proteins (osteocalcin and matrix Gla protein) was found in the majority of the blood samples, indicating that most of the volunteers in this study had an inadequate supply of vitamin K [23]. As long as robust physiological endpoints are missing to differentiate the contribution of MKs to human health from that of PK, it is unlikely that specific dietary recommendations for MKs will be widely adopted in the near future. In the meantime, a preferred recommendation could be to consume a wide variety of foods which are good sources of PKs and MKs, respectively, such as green leafy vegetables and fermented dairy products [16, 49].
\nAs shown in Table 1, the most important sources of menaquinones are cheese, curd, offal, and fermented soybeans (natto). Based on regional differences in dietary patterns, the form and amount of specific menaquinones consumed may vary widely between populations. For example, in Japan, as a result of natto consumption, MK-7 is the most frequently consumed form of menaquinones. The contribution of MK-7 to total vitamin K intake is 25% among young women living in eastern Japan. Nearly all of the MK-7 intake originates from pulses, including fermented soybean natto [32]. The mean daily intake of MK-7 in this study was 57.4 μg with a range from 0 to 340 μg.
\nIn countries with a traditional high intake of dairy products, such as the Netherlands, Germany, and the United Kingdom (UK), MK-7 to MK-10 contribute mostly to the menaquinone supply. Beulens and coauthors compiled the results from several European studies that estimated menaquinone intake using Food Frequency Questionnaires (FFQs). The self-reported mean daily intake of menaquinones in adults ranged from 20.7 μg for women in the Rotterdam Study to 43 μg in men in the UK National Dietary and Nutrition Survey. In all of these studies, cheese was the most important food source of menaquinones [49]. However, these data should be interpreted carefully because they were collected by FFQs that are designed to estimate the relative dietary intake of large populations but not to estimate absolute dietary intake. A seasonal survey in postmenopausal women in Tehran, Iran, used a monthly food record for 1 year. The researchers found a significantly higher intake of vitamin K in the spring, summer, and autumn compared to the winter. Unfortunately, these authors did not further specify vitamin K and did not provide any information about consumption of different food items containing vitamin K [50]. A study in older individuals to calculate the desired duration of a diet recording to estimate the individual vitamin K intake concluded that 13 24-hour recalls are ideal to record intraindividual variance. As this would not be realistic in most studies, the authors proposed a minimum of six nonconsecutive days of diet recording [51]. Another possible approach for estimating nutrient status is to use biomarkers. Biomarkers for menaquinones are undercarboxylated vitamin K-dependent proteins in the circulatory system. However, in addition to vitamin K availability, these biomarkers depend on the total amount of protein. To be sure that protein status does not confound vitamin K status, the measurements must be corrected for the total amount of the protein under study [52].
\nThese limitations, together with the scarce and widely varying data on concentrations of different menaquinones in food items, show how fragmentary our knowledge of the supply of vitamin K2 in the general population remains.
\nAlthough the forms of vitamin K are classified as fat-soluble nutrients, the lipophilicity of the different forms changes with side-chain length. Whereas menadione is water soluble, phylloquinone and MK-4 are mildly lipophilic. Long-chain menaquinones are strongly lipophilic and soluble only in apolar organic solvents [36]. This lipophilicity also influences the absorption of vitamin K, which varies greatly depending on the food matrix. As long-chain menaquinones are found mainly in the fat fraction of dairy products, the absorption of these menaquinones is almost 100% in contrast to PK, where the poor uptake of only 5–10% from cooked vegetables can be improved only slightly by concomitant fat intake [6]. As a consequence, even the dietary intake of phylloquinone is much higher, menaquinones are equally important for vitamin K status, because of their better intestinal absorption. Independently of their form and origin, all K vitamins are transported to the liver, incorporated in triglyceride-rich lipoproteins. Unlike phylloquinone, which mostly remains in the liver to be used for clotting factor synthesis, menaquinones are released to the bloodstream incorporated in low-density lipoproteins and transported to the target tissue such as bone and arteries for Gla-protein carboxylation. Absorbability is further supported by a longer half-life, up to several days for long-chain menaquinones compared to phylloquinone, which normally disappears from the bloodstream after 8 hours. This longer postprandial presence in the bloodstream leads to a more constant circulating level of vitamin K2 and, as a consequence, longer availability of these long-chain menaquinones for uptake by extrahepatic tissues [36, 53]. Although there is some evidence that menaquinones with medium-chain length like MK-7 are better absorbed than short- (MK-4) or long-chain menaquinones (MK-8 and MK-9) [6], human data on the bioavailability, absorption, and kinetics of K2 vitamins from food are limited to MK-7 and MK-9 and have not been systematically tested for all menaquinones thus far [36, 49].
\nAs researchers have found that MKs play an important role in health aspects beyond coagulation, the cooperation with other nutrients in vitamin K-rich food such as fermented dairy products may lead to a better understanding of the effect of different food items on health aspects, for example, bone health or cardiovascular health.
\nOne of the most important research fields in the past and present is the study of the factors that influence the formation and conservation of strong bones. Osteopenia, including osteoporosis, is one of the most prevalent diseases in elderly individuals and is a large social, medical, and economic burden throughout the world. One out of three women and one out of five men older than 50 years are at risk of experiencing an osteoporotic fracture [54]. Low bone mineral mass is the main factor that causes osteoporotic fractures. Bone mass in later life is the result of the peak bone mass achieved during growth and the rate of age-related bone loss. Consequently, a high peak bone mass at maturity and a low bone loss during aging are the most promising factors in the prevention of osteoporosis and fractures. In addition to factors that influence bone health such as gender, age, body size, genetics, and ethnicity that are not changeable, other factors, especially lifestyle factors such as physical activity, smoking, alcohol consumption, and dietary patterns, can be modified [55]. Different dietary factors are known to positively influence bone health. They range from minerals (e.g., calcium, magnesium, phosphorus, potassium, and various trace elements) and vitamins (A, D, E, K, C, and certain B vitamins) to macronutrients such as proteins and fatty acids and finally to bioactive food components (e.g., peptides) that in recent years have been proposed to be beneficial for bone health [55]. All these elements are involved in bone metabolism. Currently, researchers are trying to identify and understand the mechanisms and interactions of these factors in relation to bone health [56].
\nMost studies that have investigated the relationship between dairy and bone health have shown a beneficial effect of dairy consumption, even if the reason for this link is still unclear [56, 57]. After many years of focusing on calcium as the beneficial element for bone health in dairy, recent evidence suggests that other macro- and micronutrients, as well as food components such as bioactive peptides, milk fat globule membrane, prebiotics, and probiotics present in milk and dairy products, play an important role in this health outcome [56]. Many of these nutrients support the bioavailability (phosphorus, vitamin D, magnesium, zinc, potassium), absorption (casein phosphopeptides, phosphorus, lactose, protein) and homeostasis (magnesium, potassium, vitamin D) of calcium and contribute to bone-building properties (phosphorus, magnesium, potassium, zinc, vitamin D, vitamin B12, and vitamin K) [56–58].
\nMost of these components are not or are positively affected by fermentation. That means their concentration remains the same in the fermented product compared with milk or even increases either by processing (i.e., fat-soluble vitamins in cheese) or by the activity of microorganisms (i.e., bioactive peptides, vitamin B12, or vitamin K2).
\nThe role of vitamin K2 in bone health is strongly bound to osteocalcin (OC), a key regulator of calcium usage. This small Ca2+-binding protein is involved in the mineralization of bones and teeth, and its potential to bind calcium is dependent on carboxylation with vitamin K2.
\nOnly the fully carboxylated OC is able to strongly bind calcium and to consolidate calcification of the hydroxyapatite crystal lattice that requires a sufficient supply with vitamin K2 and other nutrients, such as retinoic acid and vitamin D, all involved in the regulation of osteocalcin production [59].
\nFermented dairy products are vital for bone health because of their unique combination of various nutrients and microorganisms that support and maintain positive bone metabolism [57, 60]. Additionally, dairy matrix and nutrient composition may affect the delivery of menaquinones and improve vitamin K status [61].
\nCoronary artery calcification (CAC) is a predictor of cardiovascular disease (CVD) and mortality. Based on vitamin K’s role in activating matrix Gla protein (MGP), a calcification inhibitor, vitamin K is proposed to play a preventive role in CAC and CVD [59, 62]. As recently reviewed, randomized controlled trials that examined the influence of vitamin K on the risk of cardiovascular disease are scarce [63]. The results of observational studies have shown an association between higher dietary menaquinone consumption and less calcification [64], decreased risk of coronary heart disease (CHD), CHD mortality, and all-cause mortality [65–67]. The results of a Dutch prospective cohort study suggested that of all MKs the long-chain menaquinones (MK-7 to MK-9) have the most beneficial effects on cardiovascular disease [67]. Although these results are promising, they must be interpreted with caution, because validated biomarkers for single MK intake are missing [16].
\nComplex milk fatty acid chemistry and several minerals, such as calcium, magnesium, phosphorus, and potassium provided in relevant concentrations, have been proposed to be involved in the complex mechanism of dairy products and their support to reduce CVD risk [68]. Among the high number of different fatty acids in dairy products, trans-palmitoleic acid, stearic acid, lauric acid, myristic acid, and oleic acid have been associated with beneficial effects on blood lipids and serum lipoprotein levels [56]. These assumptions are supported by the inverse association observed between CHD risk and the consumption of milk, cheese, and meat as the richest sources of MKs in the Western diet [6, 67].
\nOur knowledge of the consumption of menaquinones should be improved with weighed and extended food records [51] in combination with (multiple) biomarkers in the blood for vitamin K status [52] and the content of the various menaquinones in food items such as cheese, which contribute most to the supply with this vitamin.
\nAs different lactic acid bacteria strains used in cheese production influence the expression of various MKs, analysis of a wide variety of different cheeses may be necessary for a representative overview of the vitamin K2 content in this food group. Although results from well-designed clinical trials investigating the association between menaquinones and bone health, as well as cardiovascular health, are rare, dairy products seem to be predestined to play a major role in the Western diet because of their nutrient density and matrix properties that improve the bioavailability of vitamin K2.
\nThe respiratory system is anatomically divided into the following two parts: upper respiratory tract (organs outside the chest: nose, pharynx, and larynx) and lower respiratory tract (organs inside the chest: trachea, bronchi, bronchioles, alveolar ducts, and alveoli). This system that performs three basic functions, i.e., air transmission, air filtration, and gas exchange (respiration), is functionally divided into two zones. These are the conductive zones (from the nose to the bronchioles) that act as a pathway for the delivery of inhaled gases, and the respiratory zone (from the alveolar canal to the alveoli) where gas exchange occurs. The branching pattern of the conducting passages is known as the tracheobronchial tree as it resembles the branching of a tree [1].
The lungs, the main organ of the respiratory system, are divided into two sections depending on the functions of their structural parts. These are the tubes that conduct air (bronchi and bronchioles) and respiratory tissue (alveolar ducts, alveolar sacs, and alveoli). Ventilated by a secondary (lobar) bronchus, each lobe of the lung is divided into smaller pyramidal-shaped segments known as the bronchopulmonary segments and is ventilated by a tertiary (segmental) bronchus [2].
The bronchi of the lower respiratory tract are vital in terms of respiratory aspects because they are responsible for the transmission and filtration of air as well as for key immunological functions.
The bronchial wall is microscopically composed of the following five sections: mucosa, muscle, submucosa, cartilage, and peribronchial connective tissue (adventitia) (Figure 1) [3].
Light microscopic view of the bronchial wall, rat lung (H-E). Black star: bronchial lumen, black arrow: respiratory epithelium layer, white arrow: lamina propria layer, red arrow: smooth muscle layer, yellow arrow: submucosa layer, white star: distinctive lung tissue (LT) showing the many empty spaces of pulmonary alveoli.
The epithelial and lamina propria layers constitute the bronchial mucosa layer, which has the characteristics of the respiratory mucosa. The initial part of the bronchi exhibits a similar structure to that of the trachea, which is a pathway responsible for the transmission of air taken from the external environment into the lungs. The structure of the bronchial wall changes histologically at the point where it enters the lungs and transforms into intrapulmonary bronchi. In the beginning, the bronchial mucosa comprises a layer of respiratory epithelium with the same cellular composition as the trachea. The height of the cells of this ciliated layer, also known as the pseudostratified columnar epithelium, decreases in proportion to the diameter of the bronchus. The prominent cell types in the epithelium are ciliated cells, goblet cells, basal cells, brush cells, and neuroendocrine cells. The epithelial layer is separated from other mucosal layers by a basement membrane [4].
The basement membrane is prominent in the primary bronchi; however, it rapidly decreases in thickness and disappears as a separate structure in the secondary bronchi. The lamina propria layer is similar to the trachea, but it decreases in proportion to the diameter of the bronchi. The lamina propria layer, which appears as a typical loose connective tissue with abundant elastic and collagen threads, is rich in cellular structures. In addition to the cell types such as plasma cells, mast cells, eosinophils, and fibroblasts, it comprises a large number of lymphocyte cells. The lymphocytes in this layer gather in the form of infiltrates at some places and lymph follicles at some [3].
The muscularis layer, which comprises multiple rows of circular smooth muscle cells, is a continuous layer of smooth muscles in the large bronchi. However, in the small bronchi, it is weakly and loosely organized because it may appear discontinuous due to its spiral route. This layer is responsible for determining the appropriate airway diameter for airflow regulation. In the large bronchi, the loose connective tissue submucosa layer is evident, whereas in the small bronchi, it is only observed as a narrow patch. In addition to the venous plexus and lymph follicles, bronchial glands known as GI. bronchioles are quite common in this layer. These glands, similar to salivary gland tissue, comprise a mixture of serous and mucinous cells and decrease in quantity as the diameter of the bronchi decreases (Figure 2) [3, 5].
A higher power light microscopic view of the bronchial wall, rat lung (H-E). Black arrow: respiratory epithelium layer, white arrow: lamina propria layer, red arrow: smooth muscle layer.
The cartilage layer is observed as a whole in the trachea, whereas it is irregularly present at the beginning of the bronchi in the form of hyaline cartilage. As the diameter of the bronchus decreases, the fragmented cartilage layer becomes smaller and appears as elastic cartilage. On the other hand, the peribronchial connective tissue (adventitia) layer is dense that limits the bronchi from the alveoli and is rich in nerve and elastic fibers in addition to large blood and lymph vessels [3].
The lower respiratory tract is constantly exposed to a wide variety of airborne foreign bodies because it is in direct communication with the external environment for gas exchange [6]. Both the trachea and bronchi function as filters against this exposure due to some of their structural features. The bronchial epithelium has a similar histological structure to the trachea and can capture foreign bodies through the smear of the mucus film secreted by the goblet cells to the kinocilium at the apical ends of the prismatic cells present in its structure. These bodies are captured and removed from the lungs by the movement of the kinocilium toward the larynx [7]. Mechanical filtering of inhaled air is thus ensured due to this primary defense mechanism.
The lower respiratory tract is constantly exposed to allergens, antigens, bacteria, and viruses during gas exchange. This is a very sensitive area for various types of pathogen invasions, such as influenza virus, measles virus, and
The tracheobronchial tree, which is considered as an immunological organ, [13] is important for the defense mechanism of microorganisms reaching the lungs through inhaled air as well as for hypersensitive reactions that occur through respiration. The lymphoid tissue of the tracheobronchial system contains specialized diffuse, clustered, and solitary lymphatic nodules known as bronchus-associated lymphoid tissue [14, 15]. This secondary lymphoid tissue is a representative of the mucosal immune system in the bronchial wall, which is common in different parts of the body. It forms the immunoglobulins as a result of the immune defense reaction, thus forming a special protective mechanism of the lower respiratory system.
The immune system can recognize a wide range of unknown antigens and elicit an appropriate respond due to the lymphocytes that have a wide variety of antigen receptors [16]. This system has evolved into a system of secondary lymphoid organs such as the spleen, lymph nodes, Peyer’s patches, and other MALT, in line with the defense targets [17]. Highly organized secondary lymphoid organs contain architectural domains that facilitate sequential cellular interactions between antigen-presenting cells and lymphocytes and efficiently promote the activation, selection, and differentiation of B and T cells [16]. Therefore, the immunological response becomes more effective.
MALT can function independently of the systemic immune system and therefore encompasses the mucosal immune system, which is a crucial part of immunopathology [18]. It plays an important role in immunological defense by eliciting immune responses against specific antigens encountered along the surfaces of all mucosal tissues [19]. Although MALT is anatomically divided into regions, these regions are functionally interconnected under the name of the common mucosal immune system. In this way, events such as antigen presentation and B-cell activation in a mucosal region can trigger the secretion of immunoglobulin A (IgA) in the mucosal regions of different organs [18, 20]. Due to MALT, which mainly functions to produce and secrete IgA along the mucosal surfaces in antigen-specific, T helper 2-dependent reactions, T helper 1 and cytotoxic T-cell-mediated reactions can occur. This may then result in immunotolerance [20, 21].
The best-known representatives of MALT, which contains approximately half of the lymphocytes of the immune system, [22] are gut-associated lymphoid tissue (GALT), nasal-associated lymphoid tissue (NALT), and BALT. However, structures such as conjunctival-associated lymphoid tissue (CALT), larynx-associated lymphoid tissue, and duct-associated lymphoid tissue (DALT) are other MALT representatives [20, 21].
MALT is divided into the two following functional parts: inducer sites and effector sites. Inducer sites include secondary lymphoid tissues, where the clonal expansion of B cells and IgA class transition occur in response to antigen-specific T-cell activation [19]. GALT, BALT, NALT, and CALT in mice, dogs [23], and baboons [24] and DALT in cynomolgus macaques [25] constitute these inducing sites. These sites are known as secondary immune tissues where antigen sampling occurs, and immune responses are initiated. Although there are many differences between inducing sites in various organs, they all contain the same functional segments as follows: lymphoid follicles, interfollicular zones, subepithelial dome zones, and follicle-associated epithelium or lymphoepithelium containing microfold (M) cells [19].
Effector sites distributed as diffuse lymphoid tissue throughout the lamina propria layer on all mucosal surfaces [26] are known as the transport sites of IgA along the mucosal epithelium. After activation and IgA class transition, T- and B cells migrate from inducing sites to these sites [19]. CD4+ and CD8+ T cells, IgA-, IgG- and IgM-plasma cells, B cells, antigen-presenting dendritic cells, and macrophages [19] constitute the cellular content of these effector regions where secreted IgA (S-IgA) is secreted along the mucosal epithelium [27]. Mast cells and eosinophils can occasionally be seen in the interfollicular area. Thus, all the cell types required to initiate an immune response are present here.
BALT, an important part of MALT, is classically used to refer to intrapulmonary lymphoid tissue in connection with the pulmonary vessels and adventitia of the bronchi [11, 28]. Macklin [29] named this lymphoid tissue in 1955 as ‘sumps’ or ‘pulmonary tonsils’ in which dust and organisms are retained. Subsequently, Bienenstock et al. [28, 30] identified these formations as subepithelial follicular lymphoid aggregates, primarily composed of lymphocytes, organized in the bronchial mucosa in contact with the surface epithelium, and coined the term BALT to describe them.
Although BALT, a secondary lymphoid tissue that plays an important role in the maintenance and regulation of lung mucosal immune homeostasis [8], was initially claimed to resemble Peyer’s patches in the small intestine [11]; it was later revealed that it was quite different from these formations [31]. Compared to GALT where in the founder Peyer’s patches are located, it is accepted that BALT is not regularly present during fetal life due to embryonic preprogramming; however, it occurs with antigenic stimulation during the postnatal period [32, 33]. In other words, it is claimed that there is a relatively special lymphoid tissue in the development of BALT. However, studies have shown that BALT exhibits great differences between species [34, 35].
BALT, which was first identified in the bronchial wall of rabbits by Bienenstock et al. [28], is frequently detected in these animals and has the highest number of regions [28, 34]. In terms of the presence and distribution of BALT, rats and guinea pigs [34] follow rabbits, whereas germ-free pigs [28, 34], cats, dogs, and Syrian hamsters [34, 36] do not have this lymphoid tissue. BALT is frequently present in poultry, particularly hens [37]. In mice and humans, the situation with BALT is a little more contradictory [19]. Some scientists suggest that BALT is present in germ-free mice when antigenic stimulation is absent [12], whereas others report that it is not [38, 39]. Besides the differing viewpoints on the presence of BALT in mice, it is assumed that it is only observed infrequently after the neonatal period.
Further, it is claimed that BALT is not present in structurally healthy humans [31] because the features similar to BALT in mice are also found in humans [8]. BALT, in particular, is detectable if it is induced in adults; however, it is only observed in 40% healthy children and adolescents. Factors inducing the presence and distribution of BALT in these adults include infection, pathogen exposure, chronic pulmonary inflammation or autoimmune disease, etc. [32, 33, 40]. Moreover, it is suggested that the formation, size, and amount of BALT depend on the type and duration of exposure [41]. Therefore, it is concluded that BALT varies in different species as well as indifferent physiological states of the same species [8].
Most of the secondary lymphoid organs found in mice and humans develop embryonically in the absence of microbial stimulation or environmental antigens [42]. Furthermore, the structure and function of several secondary lymphoid organs, particularly those on the mucosal surfaces, are dramatically altered upon exposure to foreign antigens and commensal organisms [43]. Peyer’s patches of MALT demonstrate a striking increase in size and complexity following the colonization of commensals [44, 45]. Similarly, in rodents, NALT is not completely developed until the postnatal period; however, microbial exposure accelerates this process [46]. On the other hand, the appendix tissue of rabbits has the characteristics of the primary and secondary lymphoid tissues in terms of being functionally dependent on microbial colonization [47]. However, some lymphoid tissues, known as tertiary lymphoid tissues, develop only after environmental exposure to microbes, pathogens, or inflammatory stimulations. Interestingly, although the lungs of mice and humans normally lack organized lymphoid tissue, tertiary lymphoid structures are frequently observed in lung tissue [38, 48].
BALT is recognized as an inducible tertiary or ectopic lymphoid tissue, unlike the related secondary lymphoid organs. BALT develops during the postnatal period and at anatomically non-lymphoid sites. In terms of disease states characterized by chronic inflammation, infection, or autoimmunity, BALT formation can be induced, and these areas are then known as iBALT [32, 38]. iBALT is a classic example of tertiary lymphoid tissue because it does not develop on a preprogrammed basis; its creation, size, and number in the lungs depend on the type and duration of antigenic exposure [31, 49]. iBALT regions are best characterized in the lungs of rodents and humans. They are observed in the lungs of mammals and birds as well as in possibly all air-breathing vertebrates [41]. The emerging arguments confirm the role of infectious agents, such as isolated lymphoid follicles in the gut, indicating that iBALT may develop in response to microbial exposure [32]. In contrast, BALT is said to have been discovered in germ-free rats [28] and mice [50] as well.
Unlike the classical BALT structure, iBALT does not always have an overlying lymphoepithelium, is not associated with a continuous airway, and can be located adjacent to small pulmonary arteries in the lung parenchyma [32]. However, as both BALT and iBALT have the same function, both tissue types are called BALT [48].
Microscopically, BALT is defined as a densely packed cluster of lymphocytes with follicular structures enveloped in a network of reticular stromal cells beneath a specialized airway epithelium devoid of cilium. These structures are claimed to be located along the main bronchial airways embedded in the airway wall with extensive lymphocytic infiltration of the epithelial layer forming a classical dome epithelium (Figures 3 and 4) [11].
Light microscopic view of the BALT structure, rat lung (H-E). Red star: BALT formation.
A higher power light microscopic view of the BALT structure, rat lung (H-E). Red star: BALT formation.
Further, it is stated that BALT is present in bronchial tree bifurcations to capture respiratory antigens. In species, BALT develops in response to various stimulations rather than being constitutively present in the lung, whereas iBALT does not always have such a defined structure or precise localization in the lung [51].
As a part of the integrated mucosal system including GALT, NALT, and other secondary lymphoid tissue representatives, BALT is known to contain cell types that are responsible for eliciting an appropriate immune response. BALT is mainly defined as an organized structure comprising T- and B-cell domains, dendritic cells (DCs), stromal cells, and high endothelial venules (HEVs) in the T-cell region [38, 52, 53, 54, 55]. Furthermore, it is stated that most of its cellular component consists of B cells expressing IgMlo IgDhi; however, depending on the nature of the microbe and/or antigen to which the cells respond, IgG-, IgA-, and even IgE-positive plasma cells may also be present [50, 56, 57, 58].
Moreover, in BALT, the most prominent structure is follicular-like lymphocyte accumulation, which is the common microscopic appearance of secondary lymphoid tissues, forming a classical germinal center (active site) [59, 60]. In this structure, surrounded by more mature, small lymphocytes, most of the germinal center comprises antigen-presenting macrophages [58, 61]. Lymphocytes leave the blood and migrate to BALT in the walls of HEVs, which are present at the periphery of the tissue. As there are no afferent lymphatics, these HEVs are thought to be the only entry site where lymphocytes migrate to BALT [59, 60]. In addition, the expression of chemokines in HEVs ensures accurate targeting of lymphocytes to lymphoid tissues [62].
However, in the direction of the bronchial epithelium, a dome-like protrusion similar to Peyer’s patches toward the bronchial lumen is sometimes clearly observed [31]. The B-cell follicle, which is the most noticeable characteristic in classic BALT tissues with dome epithelium, is positioned below the epithelium [11]. CD4+ T cells are abundant in B-cell follicles, especially in reactive follicles with germinal centers [63], and CD8+ T cells are uncommon. Moreover, BALT is covered by a lymphoepithelium, which contains M cells that are similar to the M cells present in the dome epithelium of Peyer’s patches in some species [31]. M cells are thought to transport antigens from the mucosal lumen to DCs that are in close contact with the dome epithelium [48]. Rabbits, the first and important representative of BALT, have fewer ciliated cells, few goblet cells, and many lymphocytes between epithelial and M cells. Although this basic structure appears to be valid for all species, there are some differences in details [31].
Another cell type that makes up the cellular component of BALT is follicular DCs (FDCs). These cells depend on the lymphotoxin signaling pathway to differentiate into conventional lymphoid tissues and BALT [38]. Located at the center of B-cell follicles, these cells present antigen to B cells [64] and provide costimulatory signals that increase B-cell activation and proliferation in germinal centers [65, 66]. FDCs in mice are characterized by their ability to bind to antibodies against CD21/CD35 [38], FDCM1, or FDCM2 [57] and to sequester their immune complexes [67]. In addition, FDCs are responsible for the organization of the follicle and expression of CXCL13, which is responsible for the recruitment of B cells and some T cells in the B-cell area [68]. DCs located at the highest concentration in the T-cell areas of BALT are reportedly capable of preserving the BALT architecture as well as their antigen-presenting ability [48].
BALT is induced to produce IgA+ cells that secrete polymeric IgA, mainly due to its role in immunity. When polymeric IgA is transported into the lumen, it induces the formation of S-IgA, which has considerable immunological importance [8]. Thus, when BALT is identified as part of the integrated mucosal immune system, the term should be restricted to structures tightly associated with an epithelium infiltrated by lymphocytes. In the integrated mucosal immune system, specific antigen uptake and antigen presentation by M cells occur and immune reactions are initiated, including IgA responses [31].
Immunohistological studies in humans show a preferential central localization of B cells mixed with some CD4+ lymphocytes and macrophages. CD4+ lymphocytes are also present in the area around the HEV, at the edge resembling a crown, and in the epithelium. In addition to the few proliferative cells positive for Ki67 observed in the follicles, many cells positive for the human leukocyte antigen-DR isotype, which is associated with various autoimmune conditions, disease susceptibility, and disease resistance, are evenly distributed in the follicle [69]. This basic structural distribution of lymphoid and non-lymphoid cells has also been noted in BALT in pathological conditions such as rheumatoid arthritis [70], hypersensitivity pneumonia [71], or diffuse panbronchiolitis [72]. Therefore, it is reasonable to conclude that BALT plays an important role in many respiratory system-related pathologies.
BALT plays an important role in pulmonary immunity such as regulating microbial homeostasis [73], inducing immune tolerance [74], inhibiting inflammation [75], and supporting immune clearance [76]. Therefore, BALT frequently encounters many pathologies associated with infectious disease agents, allergens, environmental antigens, air-borne particles, autoimmune disease agents, and factors causing malignancy. As these pathological conditions have a broad spectrum, it is not possible to discuss all the roles of BALT; therefore, only a few have been addressed.
The respiratory tract is a typical entry site for viruses. This makes it difficult for the immune system to effectively eliminate viruses and virus-infected cells without causing much damage and inflammation, which jeopardizes the lung’s structural and functional integrity. The balance between eliciting an immune response to effectively eliminate viruses and virus-infected cells and to cause less damage and inflammation is maintained by a complex network of innate and adaptive immune mechanisms as well as immunomodulatory and anti-inflammatory mechanisms. Accordingly, BALT could be one of the mechanisms that facilitates viral clearance by eliciting immune responses and decreasing inflammatory responses [48]. BALT reportedly initiates pulmonary immune responses that are faster and more protective than those initiated at systemic sites. It has been proposed that once generated, BALT could play a key role in combating successive rounds of the same infection as well as assisting in establishing local immunity against unrelated viruses or pathogens [51]. For example, it has been suggested that
Endotoxin, known as lipopolysaccharide (LPS), is a component of the gram-negative bacteria [84, 85] that is commonly present in the environment [86, 87]. The development or exacerbation of asthma [86, 87], bronchitis, and chronic obstructive pulmonary disease [88, 89] is linked to considerable LPS exposure. LPS, a classical T-cell-independent B-cell antigen, and mitogen are thought to bind to TLR4 signaling pathway [84, 85], triggering B-cell activation, proliferation, and differentiation into antibody-secreting cells [90]. TLR4 signaling activates macrophages and DCs, epithelial cells, and even fibroblasts, causing them to produce inflammatory cytokines and chemokines [91, 92]. Experimentally, pulmonary exposure of rats to endotoxin has been found to cause increases in pre-existing BALT and pulmonary plasma cells, ultimately leading to the formation of germinal centers [93]. Sustained dosing of LPS prior to pulmonary inflammation in BALT-deficient mice appeared to result in BALT development in the major airways with an accumulation of B cells, T cells, and macrophages in the lungs, and even in BALT-deficient areas [94]. Thus, environmental exposures to LPS, often with additional antigenic or inflammatory components, cause BALT reactivity and pulmonary physiology alterations [95].
Considering the importance of pulmonary inflammation in asthma, a correlation between BALT development and asthma is likely. However, some believe that the presence of BALT is not always associated with asthma [96], but that the reactivity of BALT in patients with asthma is elevated [97]. Further, there is evidence that specific allergens, such as
Hypersensitivity pneumonia is defined as an inflammatory disease of the alveoli induced by hypersensitivity to inhaled organic antigens [99]. In contrast to asthma, which affects the airways, this condition affects the alveoli [48]. An occupational exposure often is the cause of hypersensitivity pneumonia; it can occur particularly when farmers are exposed to mold and fungi in barns [100]. Considering that hypersensitivity pneumonia results from chronic pulmonary exposure to the antigen, the emergence of well-developed BALT areas with vast germinal centers and FDC networks is not surprising for researchers [61].
The lungs are exposed to a wide range of particles, many of which are naturally inflammatory because they cannot be metabolized and persist in phagocytes or because their components bind to specific receptors that trigger an inflammatory response. Silicosis, for example, is a chronic diffuse parenchymal lung disease caused by prolonged exposure to inhaled crystalline silica particles. Pulmonary silica exposure reportedly results in nodules of mononuclear cell infiltration at the location of silica deposition, leading to pulmonary fibrosis [101]. It has been proposed that pulmonary exposure of rats to silica causes silica-loaded alveolar macrophages to migrate across the epithelium and accumulate in BALT [102]. This is analogous to the kinetic observation of virus-activated DCs in the airways migrating from the epithelium to BALT [40].
Rheumatoid arthritis (RA) and Sjögren’s syndrome (SS) are autoimmune disorders characterized by the formation of ectopic lymphoid follicles in target tissues. Ectopic lymphoid follicles in the joints are common in patients with RA [103]; whereas ectopic follicles in the salivary and lacrimal glands are common in those with SS [104]. These follicles are hypothesized to contain separate B- and T-cell domains, germinal centers, FDCs, and HEVs, and they contribute toautoimmunity by generating high-affinity autoreactive B cells and sparing autoreactive effector T cells. BALT areas are observed in lung biopsies from a subset of patients with RA and SS who develop lung disease. It has been suggested to range from very small isolated lymphoid follicles to large, highly organized clusters of B-cell follicles [61].
BALT formation is frequently linked to lung inflammation and exposure to a variety of inflammatory stimuli. Therefore, it is not surprising that experimental exposure to an inflammatory agent via the pulmonary route results in BALT hyperplasia in rats. However, it is possible that an inflammatory agent, which has been linked to tumorigenesis, could also cause pulmonary adenocarcinoma [105]. Therefore, inflammatory responses in the lung can promote BALT and neoplasia at the same time. Indeed, considering the links between chronic inflammation and cancer development [106], it seems probable that BALT formation precedes tumorigenesis in such cases [48].
Local immune responses to pulmonary pathogens and antigens are clearly associated with BALT formation; thus, it is predicted that BALT development adjacent to pulmonary malignancies would also be beneficial for antitumor immune responses. A study demonstrated tertiary lymphoid tissue neogenesis induced by lymphotoxin: antitumor antibody fusion protein with the accumulations of CD4+ and CD8+ T cells, B cells, and PNAd-expressing HEVs [107]. Thus, it was hypothesized that the immune response necessary for tumor eradication was produced locally in tertiary lymphoid tissues [108]. Therefore, it is concluded that local BALT induction surrounding pulmonary metastases may be beneficial in inducing antitumor immunity and tumor regression [48].
In addition, it is suggested that the development of a lymphoid environment surrounding tumors may trigger antitumor immunity or immunological tolerance due to some unknown factors. Further, some studies indicate that lymphoid-like stromal elements surrounding tumors can impair antitumor immunity and lead to tolerance [109]. Despite the discrepancies and gaps in the literature, the ability of BALT to be spontaneously developed as a clear response to the development of pulmonary tumors or metastasis of other tumors to the lung as well as to boost immunity against lung tumors is an intriguing and research-worthy topic.
BALT covers a large area in the lungs, from small irregular lymphocytes and DC clusters to B-cell follicles, germinal centers, FDCs, HEV lymphatics, well-developed dome epithelium, and highly organized lymphoid tissues. It has the potential to help researchers better understand the mechanisms underlying chronic lung diseases, particularly in mammals. The potential contributions of BALT at this point are the collection of antigens from the pulmonary airways, priming B- and T-cell responses, and aiding in the clearance of pulmonary diseases. BALT becomes a functional tissue due to the induction of T cells and the production of deep lymphoid tissue, which functions in priming immune responses in the lung, including IgA-secreting plasma cells. The development of effective vaccines, particularly in the prevention of viral infections, will be aided by lymphoid tissue production.
This chapter was edited for English language by Crimson Interactive Inc. (Enago).
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"7"},books:[{type:"book",id:"11774",title:"International Law - A Practical Manual",subtitle:null,isOpenForSubmission:!0,hash:"c607e873911da868c0764770dc224313",slug:null,bookSignature:"Dr. Michael Underdown",coverURL:"https://cdn.intechopen.com/books/images_new/11774.jpg",editedByType:null,editors:[{id:"478218",title:"Dr.",name:"Michael",surname:"Underdown",slug:"michael-underdown",fullName:"Michael Underdown"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11775",title:"Global Peace and Security",subtitle:null,isOpenForSubmission:!0,hash:"131303f07b492463a5c4a7607fe46ba9",slug:null,bookSignature:"Dr. Norman Chivasa",coverURL:"https://cdn.intechopen.com/books/images_new/11775.jpg",editedByType:null,editors:[{id:"331566",title:"Dr.",name:"Norman",surname:"Chivasa",slug:"norman-chivasa",fullName:"Norman Chivasa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12134",title:"Sustainable Tourism",subtitle:null,isOpenForSubmission:!0,hash:"bb510c876f827a1df7960a523a4b5db3",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12134.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12138",title:"Online Advertising",subtitle:null,isOpenForSubmission:!0,hash:"d1a7aaa841aba83e7199b564c4991cf1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12138.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12139",title:"Global Market and Trade",subtitle:null,isOpenForSubmission:!0,hash:"fa34af07c3a9657fa670404202f8cba5",slug:null,bookSignature:"Dr.Ing. Ireneusz Miciuła",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",editedByType:null,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",subtitle:null,isOpenForSubmission:!0,hash:"85f77453916f1d80d80d88ee4fd2f2d1",slug:null,bookSignature:"Dr. Joseph Crawford",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",editedByType:null,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:7},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4798},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"11",title:"Engineering",slug:"engineering",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:926,numberOfSeries:1,numberOfAuthorsAndEditors:21974,numberOfWosCitations:37587,numberOfCrossrefCitations:23716,numberOfDimensionsCitations:51823,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"11",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10597",title:"Electric Grid Modernization",subtitle:null,isOpenForSubmission:!1,hash:"62f0e391662f7e8ae35a6bea2e77accf",slug:"electric-grid-modernization",bookSignature:"Mahmoud Ghofrani",coverURL:"https://cdn.intechopen.com/books/images_new/10597.jpg",editedByType:"Edited by",editors:[{id:"183482",title:"Dr.",name:"Mahmoud",middleName:null,surname:"Ghofrani",slug:"mahmoud-ghofrani",fullName:"Mahmoud Ghofrani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11158",title:"New Advances in Semiconductors",subtitle:null,isOpenForSubmission:!1,hash:"238b808626f765e883b9bff8b62eae18",slug:"new-advances-in-semiconductors",bookSignature:"Alberto Adriano Cavalheiro",coverURL:"https://cdn.intechopen.com/books/images_new/11158.jpg",editedByType:"Edited by",editors:[{id:"201848",title:"Dr.",name:"Alberto Adriano",middleName:null,surname:"Cavalheiro",slug:"alberto-adriano-cavalheiro",fullName:"Alberto Adriano Cavalheiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",editors:[{id:"79083",title:"Dr.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10972",title:"Control Systems in Engineering and Optimization Techniques",subtitle:null,isOpenForSubmission:!1,hash:"f92f65447d0f90b67465865d41a61cd1",slug:"control-systems-in-engineering-and-optimization-techniques",bookSignature:"P. Balasubramaniam, Sathiyaraj Thambiayya, Kuru Ratnavelu and JinRong Wang",coverURL:"https://cdn.intechopen.com/books/images_new/10972.jpg",editedByType:"Edited by",editors:[{id:"252215",title:"Dr.",name:"P.",middleName:null,surname:"Balasubramaniam",slug:"p.-balasubramaniam",fullName:"P. Balasubramaniam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:926,seriesByTopicCollection:[{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],seriesByTopicTotal:1,mostCitedChapters:[{id:"17237",doi:"10.5772/24553",title:"Hydrogels: Methods of Preparation, Characterisation and Applications",slug:"hydrogels-methods-of-preparation-characterisation-and-applications",totalDownloads:65915,totalCrossrefCites:86,totalDimensionsCites:279,abstract:null,book:{id:"248",slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Syed K. H. Gulrez, Saphwan Al-Assaf and Glyn O Phillips",authors:[{id:"58120",title:"Prof.",name:"Saphwan",middleName:null,surname:"Al-Assaf",slug:"saphwan-al-assaf",fullName:"Saphwan Al-Assaf"}]},{id:"13254",doi:"10.5772/13474",title:"Insight Into Adsorption Thermodynamics",slug:"insight-into-adsorption-thermodynamics",totalDownloads:7156,totalCrossrefCites:90,totalDimensionsCites:267,abstract:null,book:{id:"25",slug:"thermodynamics",title:"Thermodynamics",fullTitle:"Thermodynamics"},signatures:"Papita Saha and Shamik Chowdhury",authors:[{id:"13943",title:"Dr.",name:"Papita",middleName:null,surname:"Saha",slug:"papita-saha",fullName:"Papita Saha"},{id:"24184",title:"Mr.",name:"Shamik",middleName:null,surname:"Chowdhury",slug:"shamik-chowdhury",fullName:"Shamik Chowdhury"}]},{id:"35261",doi:"10.5772/34233",title:"Anisotropic Mechanical Properties of ABS Parts Fabricated by Fused Deposition Modelling",slug:"anisotropic-mechanical-properties-of-abs-parts-fabricated-by-fused-deposition-modeling-",totalDownloads:7283,totalCrossrefCites:116,totalDimensionsCites:246,abstract:null,book:{id:"1982",slug:"mechanical-engineering",title:"Mechanical Engineering",fullTitle:"Mechanical Engineering"},signatures:"Constance Ziemian, Mala Sharma and Sophia Ziemian",authors:[{id:"89554",title:"Dr.",name:"Mala",middleName:null,surname:"Sharma",slug:"mala-sharma",fullName:"Mala Sharma"},{id:"98759",title:"Dr.",name:"Constance",middleName:null,surname:"Ziemian",slug:"constance-ziemian",fullName:"Constance Ziemian"},{id:"137165",title:"Ms.",name:"Sophia",middleName:null,surname:"Ziemian",slug:"sophia-ziemian",fullName:"Sophia Ziemian"}]},{id:"8446",doi:"10.5772/39538",title:"2 µm Laser Sources and Their Possible Applications",slug:"2-m-laser-sources-and-their-possible-applications",totalDownloads:12087,totalCrossrefCites:139,totalDimensionsCites:227,abstract:null,book:{id:"3161",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",title:"Frontiers in Guided Wave Optics and Optoelectronics",fullTitle:"Frontiers in Guided Wave Optics and Optoelectronics"},signatures:"Karsten Scholle, Samir Lamrini, Philipp Koopmann and Peter Fuhrberg",authors:[{id:"4951",title:"Dr.",name:"Karsten",middleName:null,surname:"Scholle",slug:"karsten-scholle",fullName:"Karsten Scholle"},{id:"133366",title:"Prof.",name:"Samir",middleName:null,surname:"Lamrini",slug:"samir-lamrini",fullName:"Samir Lamrini"},{id:"133370",title:"Prof.",name:"Philipp",middleName:null,surname:"Koopmann",slug:"philipp-koopmann",fullName:"Philipp Koopmann"},{id:"133371",title:"Mr.",name:"Peter",middleName:null,surname:"Fuhrberg",slug:"peter-fuhrberg",fullName:"Peter Fuhrberg"}]},{id:"27163",doi:"10.5772/31200",title:"Synergisms between Compost and Biochar for Sustainable Soil Amelioration",slug:"synergism-between-biochar-and-compost-for-sustainable-soil-amelioration",totalDownloads:6069,totalCrossrefCites:66,totalDimensionsCites:170,abstract:null,book:{id:"873",slug:"management-of-organic-waste",title:"Management of Organic Waste",fullTitle:"Management of Organic Waste"},signatures:"Daniel Fischer and Bruno Glaser",authors:[{id:"84418",title:"Prof.",name:"Bruno",middleName:null,surname:"Glaser",slug:"bruno-glaser",fullName:"Bruno Glaser"},{id:"96141",title:"Mr.",name:"Daniel",middleName:null,surname:"Fischer",slug:"daniel-fischer",fullName:"Daniel Fischer"}]}],mostDownloadedChaptersLast30Days:[{id:"35255",title:"Mechanical Transmissions Parameter Modelling",slug:"mechanical-transmissions-parameter-modelling",totalDownloads:7442,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"1982",slug:"mechanical-engineering",title:"Mechanical Engineering",fullTitle:"Mechanical Engineering"},signatures:"Isad Saric, Nedzad Repcic and Adil Muminovic",authors:[{id:"101313",title:"Prof.",name:"Isad",middleName:null,surname:"Saric",slug:"isad-saric",fullName:"Isad Saric"}]},{id:"67558",title:"Polymerase Chain Reaction (PCR): Principle and Applications",slug:"polymerase-chain-reaction-pcr-principle-and-applications",totalDownloads:10667,totalCrossrefCites:8,totalDimensionsCites:18,abstract:"The characterization of the diversity of species living within ecosystems is of major scientific interest to understand the functioning of these ecosystems. It is also becoming a societal issue since it is necessary to implement the conservation or even the restoration of biodiversity. Historically, species have been described and characterized on the basis of morphological criteria, which are closely linked by environmental conditions or which find their limits especially in groups where they are difficult to access, as is the case for many species of microorganisms. The need to understand the molecular mechanisms in species has made the PCR an indispensable tool for understanding the functioning of these biological systems. A number of markers are now available to detect nuclear DNA polymorphisms. In genetic diversity studies, the most frequently used markers are microsatellites. The study of biological complexity is a new frontier that requires high-throughput molecular technology, high speed computer memory, new approaches to data analysis, and the integration of interdisciplinary skills.",book:{id:"7728",slug:"synthetic-biology-new-interdisciplinary-science",title:"Synthetic Biology",fullTitle:"Synthetic Biology - New Interdisciplinary Science"},signatures:"Karim Kadri",authors:[{id:"290766",title:"Dr.",name:"Kadri",middleName:null,surname:"Karim",slug:"kadri-karim",fullName:"Kadri Karim"}]},{id:"62059",title:"Types of HVAC Systems",slug:"types-of-hvac-systems",totalDownloads:12438,totalCrossrefCites:8,totalDimensionsCites:14,abstract:"HVAC systems are milestones of building mechanical systems that provide thermal comfort for occupants accompanied with indoor air quality. HVAC systems can be classified into central and local systems according to multiple zones, location, and distribution. Primary HVAC equipment includes heating equipment, ventilation equipment, and cooling or air-conditioning equipment. Central HVAC systems locate away from buildings in a central equipment room and deliver the conditioned air by a delivery ductwork system. Central HVAC systems contain all-air, air-water, all-water systems. Two systems should be considered as central such as heating and cooling panels and water-source heat pumps. Local HVAC systems can be located inside a conditioned zone or adjacent to it and no requirement for ductwork. Local systems include local heating, local air-conditioning, local ventilation, and split systems.",book:{id:"6807",slug:"hvac-system",title:"HVAC System",fullTitle:"HVAC System"},signatures:"Shaimaa Seyam",authors:[{id:"247650",title:"M.Sc.",name:"Shaimaa",middleName:null,surname:"Seyam",slug:"shaimaa-seyam",fullName:"Shaimaa Seyam"},{id:"257733",title:"MSc.",name:"Shaimaa",middleName:null,surname:"Seyam",slug:"shaimaa-seyam",fullName:"Shaimaa Seyam"},{id:"395618",title:"Dr.",name:"Shaimaa",middleName:null,surname:"Seyam",slug:"shaimaa-seyam",fullName:"Shaimaa Seyam"}]},{id:"70315",title:"Some Basic and Key Issues of Switched-Reluctance Machine Systems",slug:"some-basic-and-key-issues-of-switched-reluctance-machine-systems",totalDownloads:1264,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Although switched-reluctance machine (SRM) possesses many structural advantages and application potential, it is rather difficult to successfully control with high performance being comparable to other machines. Many critical affairs must be properly treated to obtain the improved operating characteristics. This chapter presents the basic and key technologies of switched-reluctance machine in motor and generator operations. The contents in this chapter include: (1) structures and governing equations of SRM; (2) some commonly used SRM converters; (3) estimation of key parameters and performance evaluation of SRM drive; (4) commutation scheme, current control scheme, and speed control scheme of SRM drive; (5) some commonly used front-end converters and their operation controls for SRM drive; (6) reversible and regenerative braking operation controls for SRM drive; (7) some tuning issues for SRM drive; (8) operation control and some tuning issues of switched-reluctance generators; and (9) experimental application exploration for SRM systems—(a) wind generator and microgrid and (b) EV SRM drive.",book:{id:"8899",slug:"modelling-and-control-of-switched-reluctance-machines",title:"Modelling and Control of Switched Reluctance Machines",fullTitle:"Modelling and Control of Switched Reluctance Machines"},signatures:"Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou and Kuan-Yu Chou",authors:[{id:"37616",title:"Prof.",name:"Chang-Ming",middleName:null,surname:"Liaw",slug:"chang-ming-liaw",fullName:"Chang-Ming Liaw"},{id:"306461",title:"Mr.",name:"Min-Ze",middleName:null,surname:"Lu",slug:"min-ze-lu",fullName:"Min-Ze Lu"},{id:"306463",title:"Mr.",name:"Ping-Hong",middleName:null,surname:"Jhou",slug:"ping-hong-jhou",fullName:"Ping-Hong Jhou"},{id:"306464",title:"Mr.",name:"Kuan-Yu",middleName:null,surname:"Chou",slug:"kuan-yu-chou",fullName:"Kuan-Yu Chou"}]},{id:"70874",title:"Social, Economic, and Environmental Impacts of Renewable Energy Resources",slug:"social-economic-and-environmental-impacts-of-renewable-energy-resources",totalDownloads:4991,totalCrossrefCites:27,totalDimensionsCites:53,abstract:"Conventional energy source based on coal, gas, and oil are very much helpful for the improvement in the economy of a country, but on the other hand, some bad impacts of these resources in the environment have bound us to use these resources within some limit and turned our thinking toward the renewable energy resources. The social, environmental, and economical problems can be omitted by use of renewable energy sources, because these resources are considered as environment-friendly, having no or little emission of exhaust and poisonous gases like carbon dioxide, carbon monooxide, sulfur dioxide, etc. Renewable energy is going to be an important source for power generation in near future, because we can use these resources again and again to produce useful energy. Wind power generation is considered as having lowest water consumption, lowest relative greenhouse gas emission, and most favorable social impacts. It is considered as one of the most sustainable renewable energy sources, followed by hydropower, photovoltaic, and then geothermal. As these resources are considered as clean energy resources, they can be helpful for the mitigation of greenhouse effect and global warming effect. Local employment, better health, job opportunities, job creation, consumer choice, improvement of life standard, social bonds creation, income development, demographic impacts, social bonds creation, and community development can be achieved by the proper usage of renewable energy system. Along with the outstanding advantages of these resources, some shortcomings also exist such as the variation of output due to seasonal change, which is the common thing for wind and hydroelectric power plant; hence, special design and consideration are required, which are fulfilled by the hardware and software due to the improvement in computer technology.",book:{id:"7636",slug:"wind-solar-hybrid-renewable-energy-system",title:"Wind Solar Hybrid Renewable Energy System",fullTitle:"Wind Solar Hybrid Renewable Energy System"},signatures:"Mahesh Kumar",authors:[{id:"309842",title:"Mr.",name:"Kamlesh",middleName:null,surname:"Kumar",slug:"kamlesh-kumar",fullName:"Kamlesh Kumar"}]}],onlineFirstChaptersFilter:{topicId:"11",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"1082338",title:"Capacitated Clustering Models to Real Life Applications",slug:null,totalDownloads:null,totalDimensionsCites:0,doi:"10.5992/intechopen.1000213",abstract:'This chapter considers the use of different capacitated clustering problems and models that fits better in real-life applications such as household waste collection, IT teams layout in software factories, wholesales distribution, and staff’s home collection or delivery to/from workplace. Each application is explored in its regular form as it is being developed by contractors and/or users. We consider for each application the aspects of solving the problem by the appropriate mathematical programming model and decision support methodology (using aggregated Geographical Information System and mobile technology) to hold correctly and most precisely the problems and difficulties related to instances in evaluation. The experience on these fields is here revealed in detailed form as the results obtained by using the techniques here explained.
',book:{id:"11082",title:"Operations Management",coverURL:"https://cdn.intechopen.com/books/images_new/11082.jpg"},signatures:"Marcos J. Negreiros, Nelson Maculan, Augusto W.C. Palhano, Albert E.F. Muritiba and Pablo L.F. Batista"},{id:"83011",title:"E-Waste Management in Different Countries: Strategies, Impacts, and Determinants",slug:"e-waste-management-in-different-countries-strategies-impacts-and-determinants",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.106644",abstract:"Over the last two decades, the electronic equipment has increased dramatically around the world, which causes increasing in e-waste as well. This increasing has affected the environment badly. E-waste disposal has become one of the most critical issues and concerns have raised of it because most of these products do not biodegrade easily and they are toxic. Different strategies have been followed in many countries in order to solve the e-waste problem. Understanding these strategies can help to plan better for e-waste management correctly. Awareness of people about the e-waste impacts is crucial, because it can ensure people participation in managing the e waste process. This research has carried out in order to introduce to the e-waste impacts on environment and human health, and the importance of people awareness about these impacts. In addition, it shows many strategies that have been used in different countries to manage the e-waste, choosing the successful one to focus in order to benefit from it. Furthermore, a surveying has been carried out to exam people awareness in Iraq about the e-waste impacts. Finally, recommendations to manage e-waste successfully have been added.",book:{id:"11533",title:"Advances in Green Electronics Technologies",coverURL:"https://cdn.intechopen.com/books/images_new/11533.jpg"},signatures:"Shireen Ibrahim Mohammed"},{id:"83044",title:"Fatigue Behavior of Reinforced Welded Hand-Holes in Aluminum Light Poles with a Change in Detail Geometry",slug:"fatigue-behavior-of-reinforced-welded-hand-holes-in-aluminum-light-poles-with-a-change-in-detail-geo",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.106342",abstract:"Welded aluminum light poles often contain hand-holes. These hand-holes are used to give access for electrical wiring installation and maintenance purposes. Wind load may cause light poles to be loaded in a cyclic manner. This cyclic loading can cause localized fatigue cracking around the hand-hole. Fatigue failure around hand-holes has been observed in the field, but studies surrounding the resistance of the hand-holes are few and far between. This study included four-point bending fatigue tests on welded aluminum poles containing hand-holes. Eight welded aluminum specimens, each with two hand-holes, were tested in fatigue. These 16 details were loaded at the same stress range. Each specimen had a slightly different geometry or treatment applied to the hand hole. These different details mimicked traditional reinforced hand holes, similar to those evaluated in previous studies. Changes in the treatment and/or geometry included milling the inside of hole, milling the inside of the hole as well as the cast insert prior to welding, and milling the cast insert itself prior to welding. Among the 16 details tested, 15 failed as a result of fatigue cracking. It was found that specimen failure would originated in the throat of the fillet weld and then proceeded to propagate into the reinforcement ring/casting. A finite element analysis was used in addition to the experimental study.",book:{id:"12056",title:"Structural Health Monitoring",coverURL:"https://cdn.intechopen.com/books/images_new/12056.jpg"},signatures:"Cameron R. Rusnak and Craig C. Menzemer"},{id:"83028",title:"Construction and Modification of Copper Current Collectors for Improved Li Metal Batteries",slug:"construction-and-modification-of-copper-current-collectors-for-improved-li-metal-batteries",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.106540",abstract:"Metallic Lithium have gained great attention for its high theoretical specific capacity. But continuous growth of Li dendrites upon cycling might cause low coulombic efficiency and serious security issues. Construction of advanced 3D Cu current collectors to regulate Li plating/stripping and improve battery performance is considered as one effective promising strategy. In this chapter, we will discuss the roles and requirements of current collectors in lithium metal batteries. Then methods (dealloying, powder-sintering and 3D printing) employed for construction of 3D Cu current collector and implementation of surface modification (lithiophilic sites and coating layers) will be illustrated. At last, future opportunities of Cu current collectors will be lifted out.",book:{id:"11179",title:"Lithium-Ion Batteries - Recent Advanced and Emerging Topics",coverURL:"https://cdn.intechopen.com/books/images_new/11179.jpg"},signatures:"Shunrui Luo and Kai Pei"},{id:"83021",title:"Valorization of Forest Waste for the Production of Dio-oils for Biofuel and Biodiesel",slug:"valorization-of-forest-waste-for-the-production-of-dio-oils-for-biofuel-and-biodiesel",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.105366",abstract:"Biomass is a renewable energy source to generate heat and electricity through the enhancement of various organic materials. Cistus slow pyrolysis of seeds and shells was carried out in a fixed bed reactor to determine the effect of pyrolysis temperature, heating rate, and particle size on the performance of pyrolysis. Therefore, pyrolysis experiments were performed at different temperatures, ranging from 300 to 500°C, with heating rates varying from 10 to 70°C.min−1 for shells and 7 to 28°C.min−1 for seeds. The particle sizes of samples range from 0.3 to 3.5 mm for shells and 0.075 to 1.2 mm for seeds. The highest yield of liquid products (53.31% for shells; 52.24% for seeds) was obtained at a pyrolysis temperature of 450°C and a heating rate of 40°C.min−1 for shells and 21°C.min−1 for seeds. The functional groups and chemical compounds present in the bio-oil obtained under optimal conditions were identified by FTIR. The calorific value of the bio-oil was equal to 37.05 and 37.93 MJ.kg−1 for shells and seeds, respectively. The obtained results show that the bio-oil from the pyrolysis of Cistus shells and seeds could be used as a renewable fuel or a source of pharmaceutical and chemical raw material.",book:{id:"11533",title:"Advances in Green Electronics Technologies",coverURL:"https://cdn.intechopen.com/books/images_new/11533.jpg"},signatures:"Hammadi el Farissi"},{id:"83003",title:"Rheology of Heavy Oils",slug:"rheology-of-heavy-oils",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.105666",abstract:"The problems of heavy oil rheology, accompanied by physical phenomena of the formation and destruction of coagulation disordered structures and aggregates as a result of the hydrodynamic interaction of particles (asphaltenes, paraffins, resins, and solid-phase particles) contained in the oil, which significantly affect its properties and flow, are considered and analyzed. Rheological models of viscous-plastic heavy oils are considered and developed, consistent with a variety of experimental data. New rheological models for viscous-plastic heavy oils are proposed, which make it possible to generalize many existing models. It is noted that the variety of rheological models for heavy oils is determined by the conditions for the formation of disordered structures in the bulk of the oil flow. For heavy oils, a nonlinear equation for filtration in porous media is proposed, depending on the shear stress, pressure gradient, effective viscosity of the oil, and a number of other parameters. An analytical solution to this equation is proposed, which is consistent with the experimental data. Models for the settling rate and drag coefficient of particles in heavy oils are proposed. Applied problems of rheology aimed at improving the rheological properties of heavy oil during their processing as a result of creating a recirculation scheme at an operating oil refining unit are considered.",book:{id:"11542",title:"Crude Oil - Emerging Downstream Processing Technologies",coverURL:"https://cdn.intechopen.com/books/images_new/11542.jpg"},signatures:"Gudret Isfandiyar Kelbaliyev, Dilgam Babir Tagiyev and Manaf Rizvan Manafov"}],onlineFirstChaptersTotal:285},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo, Ph.D., is a professor in the Department of Engineering, University of Naples “Parthenope,” Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino and Southern Lazio, Italy. Her research interests include multi-criteria decision analysis, industrial plants, logistics, manufacturing, and safety. She serves as an associate editor for the International Journal of the Analytic Hierarchy Process and is an editorial board member for several other journals. She is also a member of the Analytic Hierarchy Process (AHP) Academy.",institutionString:"Parthenope University of Naples",institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:"Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the 'new normal'. Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.",institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!0,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:{name:"Swiss Federal Institute of Aquatic Science and Technology",institutionURL:null,country:{name:"Switzerland"}}},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:9,paginationItems:[{id:"82936",title:"Soil Degradation Processes Linked to Long-Term Forest-Type Damage",doi:"10.5772/intechopen.106390",signatures:"Pavel Samec, Aleš Kučera and Gabriela Tomášová",slug:"soil-degradation-processes-linked-to-long-term-forest-type-damage",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"82777",title:"Sustainability and Social Investment: Community Microhydropower Systems in the Dominican Republic",doi:"10.5772/intechopen.105995",signatures:"Michela Izzo, Alberto Sánchez and Rafael Fonseca",slug:"sustainability-and-social-investment-community-microhydropower-systems-in-the-dominican-republic",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82387",title:"Kept Promises? The Evolution of the EU Financial Contribution to Climate Change",doi:"10.5772/intechopen.105541",signatures:"Cecilia Camporeale, Roberto Del Ciello and Mario Jorizzo",slug:"kept-promises-the-evolution-of-the-eu-financial-contribution-to-climate-change",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Mario",surname:"Jorizzo"},{name:"Cecilia",surname:"Camporeale"},{name:"ROBERTO",surname:"DEL CIELLO"}],book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82524",title:"Italy’s Small Exporting Companies: Globalization and Sustainability Issues",doi:"10.5772/intechopen.105542",signatures:"Roberta Pace and Francesca Mandanici",slug:"italy-s-small-exporting-companies-globalization-and-sustainability-issues",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10897",title:"Food Systems Resilience",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",slug:"food-systems-resilience",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Ana I. Ribeiro-Barros, Daniel S. Tevera, Luís F. Goulao and Lucas D. Tivana",hash:"ae9dd92f53433e4607f1db188dc649b4",volumeInSeries:1,fullTitle:"Food Systems Resilience",editors:[{id:"171036",title:"Dr.",name:"Ana I.",middleName:null,surname:"Ribeiro-Barros",slug:"ana-i.-ribeiro-barros",fullName:"Ana I. Ribeiro-Barros",profilePictureURL:"https://mts.intechopen.com/storage/users/171036/images/system/171036.jpg",biography:"Ana I. Ribeiro-Barros, Ph.D., is the director of the Tropical College, University of Lisbon (ULisboa). She obtained a Ph.D. in Plant Molecular Biology from Wageningen University, the Netherlands. She is also a senior researcher, head of the lab, and professor at the School of Agriculture, ULisboa, and an invited professor at Nova University Lisbon (NOVA), Eduardo Mondlane University (UEM), and Gorongosa National Park (GNP). She is a member of the Coordination and Scientific Committees of the doctoral program “Tropical Knowledge and Management” (NOVA), Master in Biotechnology (UEM), and Master in Conservation Biology (GNP); and a national expert for Food and Nutrition Security and Sustainable Agriculture - High-Level Policy Dialogue EU-Africa. Her research expertise and interests are centered on biodiversity, environmental sustainability, agro-ecological approaches, and food and nutritional security.",institutionString:"University of Lisbon",institution:{name:"University of Lisbon",institutionURL:null,country:{name:"Portugal"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82858",title:"Corporate Social Responsibility a Case of the Provision of Recreational Facilities",doi:"10.5772/intechopen.105608",signatures:"Peter Musa Wash, Shida Irwana Omar, Badaruddin Mohamed and Mohd Ismail Isa",slug:"corporate-social-responsibility-a-case-of-the-provision-of-recreational-facilities",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82786",title:"Discussion of Purchasing Virtual Digital Nature and Tourism",doi:"10.5772/intechopen.105869",signatures:"Hiroko Oe and Yasuyuki Yamaoka",slug:"discussion-of-purchasing-virtual-digital-nature-and-tourism",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}},{id:"82289",title:"Consumer Culture and Abundance of Choices: Having More, Feeling Blue",doi:"10.5772/intechopen.105607",signatures:"Ondřej Roubal",slug:"consumer-culture-and-abundance-of-choices-having-more-feeling-blue",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}},{id:"82405",title:"Does Board Structure Matter in CSR Spending of Commercial Banks? Empirical Evidence from an Emerging Economy",doi:"10.5772/intechopen.105589",signatures:"Bishnu Kumar Adhikary and Ranjan Kumar Mitra",slug:"does-board-structure-matter-in-csr-spending-of-commercial-banks-empirical-evidence-from-an-emerging-",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82395",title:"Toward a Better Understanding of Green Human Resource Management’s Impact on Green Competitive Advantage: A Conceptual Model",doi:"10.5772/intechopen.105528",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"toward-a-better-understanding-of-green-human-resource-management-s-impact-on-green-competitive-advan",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82269",title:"CSR Reporting and Blockchain Technology",doi:"10.5772/intechopen.105512",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Piyachart Phiromswad",slug:"csr-reporting-and-blockchain-technology",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82270",title:"From Corporate Social Opportunity to Corporate Social Responsibility",doi:"10.5772/intechopen.105445",signatures:"Brian Bolton",slug:"from-corporate-social-opportunity-to-corporate-social-responsibility",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82339",title:"Green Human Resource Management: An Exploratory Study from Moroccan ISO 14001 Certified Companies",doi:"10.5772/intechopen.105565",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"green-human-resource-management-an-exploratory-study-from-moroccan-iso-14001-certified-companies",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82194",title:"CSR and Female Directors: A Review and Future Research Agenda",doi:"10.5772/intechopen.105112",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Sirimon Treepongkaruna",slug:"csr-and-female-directors-a-review-and-future-research-agenda",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Marketing",value:88,count:2,group:"subseries"},{caption:"Business and Management",value:86,count:8,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",publishedDate:"July 27th 2022",editedByType:"Edited by",bookSignature:"Dragana Gabrić and Marko Vuletić",hash:"4af8830e463f89c57515c2da2b9777b0",volumeInSeries:11,fullTitle:"Current Concepts in Dental Implantology - From Science to Clinical Research",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić",profilePictureURL:"https://mts.intechopen.com/storage/users/26946/images/system/26946.png",institutionString:"University of Zagreb",institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:3},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:{name:"Medical University Plovdiv",country:{name:"Bulgaria"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"312999",title:"Dr.",name:"Bernard O.",middleName:null,surname:"Asimeng",slug:"bernard-o.-asimeng",fullName:"Bernard O. Asimeng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}}]}},subseries:{item:{id:"3",type:"subseries",title:"Bacterial Infectious Diseases",keywords:"Antibiotics, Biofilm, Antibiotic Resistance, Host-microbiota Relationship, Treatment, Diagnostic Tools",scope:"