Ea values over several Ni-based catalysts for DRM reaction.
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"1897",leadTitle:null,fullTitle:"Metamaterial",title:"Metamaterial",subtitle:null,reviewType:"peer-reviewed",abstract:"In-depth analysis of the theory, properties and description of the most potential technological applications of metamaterials for the realization of novel devices such as subwavelength lenses, invisibility cloaks, dipole and reflector antennas, high frequency telecommunications, new designs of bandpass filters, absorbers and concentrators of EM waves etc. In order to create a new devices it is necessary to know the main electrodynamical characteristics of metamaterial structures on the basis of which the device is supposed to be created. The electromagnetic wave scattering surfaces built with metamaterials are primarily based on the ability of metamaterials to control the surrounded electromagnetic fields by varying their permeability and permittivity characteristics. The book covers some solutions for microwave wavelength scales as well as exploitation of nanoscale EM wavelength such as visible specter using recent advances of nanotechnology, for instance in the field of nanowires, nanopolymers, carbon nanotubes and graphene. Metamaterial is suitable for scholars from extremely large scientific domain and therefore given to engineers, scientists, graduates and other interested professionals from photonics to nanoscience and from material science to antenna engineering as a comprehensive reference on this artificial materials of tomorrow.",isbn:null,printIsbn:"978-953-51-0591-6",pdfIsbn:"978-953-51-6209-4",doi:"10.5772/2319",price:159,priceEur:175,priceUsd:205,slug:"metamaterial",numberOfPages:628,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"56517158cb186183585408e26e16cf8f",bookSignature:"Xun-Ya Jiang",publishedDate:"May 16th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1897.jpg",numberOfDownloads:72952,numberOfWosCitations:48,numberOfCrossrefCitations:28,numberOfCrossrefCitationsByBook:8,numberOfDimensionsCitations:60,numberOfDimensionsCitationsByBook:10,hasAltmetrics:0,numberOfTotalCitations:136,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 9th 2011",dateEndSecondStepPublish:"June 6th 2011",dateEndThirdStepPublish:"October 11th 2011",dateEndFourthStepPublish:"November 10th 2011",dateEndFifthStepPublish:"March 9th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"103012",title:"Dr.",name:"Xun-Ya",middleName:null,surname:"Jiang",slug:"xun-ya-jiang",fullName:"Xun-Ya Jiang",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"State Key Laboratory of Functional Materials for Informatics\nShanghai Institute of Microsystem and Information Technology\nCAS, Shanghai, China",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Chinese Academy of Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"929",title:"Electrostatics",slug:"materials-science-composite-materials-electrostatics"}],chapters:[{id:"37001",title:"Novel Electromagnetic Phenomena in Graphene and Subsequent Microwave Devices Enabled by Multi-Scale Metamaterials",doi:"10.5772/37691",slug:"novel-electromagnetic-phenomena-in-graphene-and-subsequent-microwave-devices-enabled-by-multi-scale-",totalDownloads:3181,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Dimitrios L. Sounas and Christophe Caloz",downloadPdfUrl:"/chapter/pdf-download/37001",previewPdfUrl:"/chapter/pdf-preview/37001",authors:[{id:"112652",title:"Prof.",name:"Christophe",surname:"Caloz",slug:"christophe-caloz",fullName:"Christophe Caloz"},{id:"113916",title:"Dr.",name:"Dimitrios",surname:"Sounas",slug:"dimitrios-sounas",fullName:"Dimitrios Sounas"}],corrections:null},{id:"37002",title:"Electrodynamical Analysis of Open Lossy Metamaterial Waveguide and Scattering Structures",doi:"10.5772/35141",slug:"electrodynamical-analysis-of-open-lossy-metamaterial-waveguide-and-scattering-structures",totalDownloads:2018,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"L. Nickelson, S. Asmontas, T. Gric, J. Bucinskas and A. Bubnelis",downloadPdfUrl:"/chapter/pdf-download/37002",previewPdfUrl:"/chapter/pdf-preview/37002",authors:[{id:"19853",title:"Prof.",name:"Liudmila",surname:"Nickelson",slug:"liudmila-nickelson",fullName:"Liudmila Nickelson"},{id:"24827",title:"Prof.",name:"Steponas",surname:"Asmontas",slug:"steponas-asmontas",fullName:"Steponas Asmontas"},{id:"24828",title:"Mr.",name:"Tatjana",surname:"Gric",slug:"tatjana-gric",fullName:"Tatjana Gric"},{id:"107738",title:"Dr.",name:"Juozas",surname:"Bucinskas",slug:"juozas-bucinskas",fullName:"Juozas Bucinskas"},{id:"107739",title:"Mr.",name:"Arturas",surname:"Bubnelis",slug:"arturas-bubnelis",fullName:"Arturas Bubnelis"}],corrections:null},{id:"37003",title:"The Group Velocity Picture of Metamaterial Systems",doi:"10.5772/35886",slug:"the-group-velocity-picture-of-metamaterial-systems",totalDownloads:2899,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Xunya Jiang, Zheng Liu,Wei Li, Zixian Liang, Penjun Yao, Xulin Lin, Xiaogang Zhang, Yongliang Zhang and Lina Shi",downloadPdfUrl:"/chapter/pdf-download/37003",previewPdfUrl:"/chapter/pdf-preview/37003",authors:[{id:"103012",title:"Dr.",name:"Xun-Ya",surname:"Jiang",slug:"xun-ya-jiang",fullName:"Xun-Ya Jiang"}],corrections:null},{id:"37004",title:"Formation of Coherent Multi-Element Resonance States in Metamaterials",doi:"10.5772/36885",slug:"formation-of-coherent-multi-element-resonance-states-in-metamaterials",totalDownloads:1739,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Elena Semouchkina",downloadPdfUrl:"/chapter/pdf-download/37004",previewPdfUrl:"/chapter/pdf-preview/37004",authors:[{id:"4255",title:"Prof.",name:"Elena",surname:"Semouchkina",slug:"elena-semouchkina",fullName:"Elena Semouchkina"}],corrections:null},{id:"37005",title:"Space Coordinate Transformation and Applications",doi:"10.5772/35724",slug:"space-coordinate-transformation-and-applications",totalDownloads:3530,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"André de Lustrac, Shah Nawaz Burokur, Paul-Henri Tichit, Boubacar Kante, Rasta Ghasemi and Dylan Germain",downloadPdfUrl:"/chapter/pdf-download/37005",previewPdfUrl:"/chapter/pdf-preview/37005",authors:[{id:"105622",title:"Prof.",name:"Andre",surname:"De Lustrac",slug:"andre-de-lustrac",fullName:"Andre De Lustrac"}],corrections:null},{id:"37006",title:"Effective Medium Theories and Symmetry Properties of Elastic Metamaterials",doi:"10.5772/36554",slug:"effective-medium-theories-and-symmetry-properties-of-elastic-metamaterials",totalDownloads:2813,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Ying Wu, Yun Lai and Zhao-Qing Zhang",downloadPdfUrl:"/chapter/pdf-download/37006",previewPdfUrl:"/chapter/pdf-preview/37006",authors:[{id:"108800",title:"Prof.",name:"Zhao-Qing",surname:"Zhang",slug:"zhao-qing-zhang",fullName:"Zhao-Qing Zhang"}],corrections:null},{id:"37007",title:"Resonant Negative Refractive Index Metamaterials",doi:"10.5772/35153",slug:"resonant-negative-refractive-index-metamaterials",totalDownloads:3140,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Divitha Seetharamdoo",downloadPdfUrl:"/chapter/pdf-download/37007",previewPdfUrl:"/chapter/pdf-preview/37007",authors:[{id:"103183",title:"Dr.",name:"Divitha",surname:"Seetharamdoo",slug:"divitha-seetharamdoo",fullName:"Divitha Seetharamdoo"}],corrections:null},{id:"37008",title:"Nonlinear Left-Handed Metamaterials",doi:"10.5772/35990",slug:"nonlinear-and-tunable-left-handed-metamaterials",totalDownloads:2208,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Alexander B. Kozyrev and Daniel W. van der Weide",downloadPdfUrl:"/chapter/pdf-download/37008",previewPdfUrl:"/chapter/pdf-preview/37008",authors:[{id:"106659",title:"Dr.",name:"Alexander",surname:"Kozyrev",slug:"alexander-kozyrev",fullName:"Alexander Kozyrev"},{id:"113904",title:"Prof.",name:"Daniel",surname:"Van Der Weide",slug:"daniel-van-der-weide",fullName:"Daniel Van Der Weide"}],corrections:null},{id:"37009",title:"Non-Unity Permeability in InP-Based Photonic Device Combined with Metamaterial",doi:"10.5772/35360",slug:"non-unity-permeability-in-inp-based-photonic-device-combined-with-metamaterial",totalDownloads:2075,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"T. Amemiya, T. Shindo, S. Myoga, E. Murai, N. Nishiyama and S. Arai",downloadPdfUrl:"/chapter/pdf-download/37009",previewPdfUrl:"/chapter/pdf-preview/37009",authors:[{id:"104066",title:"Dr.",name:"Tomohiro",surname:"Amemiya",slug:"tomohiro-amemiya",fullName:"Tomohiro Amemiya"}],corrections:null},{id:"37010",title:"Electromagnetic Response and Broadband Utilities of Planar Metamaterials",doi:"10.5772/37779",slug:"electromagnetic-response-and-broadband-utilities-of-planar-metamaterials",totalDownloads:2123,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Hongqiang Li and Zeyong Wei",downloadPdfUrl:"/chapter/pdf-download/37010",previewPdfUrl:"/chapter/pdf-preview/37010",authors:[{id:"103430",title:"Prof.",name:"Hongqiang",surname:"Li",slug:"hongqiang-li",fullName:"Hongqiang Li"}],corrections:null},{id:"37011",title:"Design and Characterization of Metamaterials for Optical and Radio Communications",doi:"10.5772/37553",slug:"design-and-characterization-of-metamaterials-for-optical-and-radio-communications",totalDownloads:2756,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"André de Lustrac, Shah Nawaz Burokur, Boubacar Kanté, Alexandre Sellier and Dylan Germain",downloadPdfUrl:"/chapter/pdf-download/37011",previewPdfUrl:"/chapter/pdf-preview/37011",authors:[{id:"105622",title:"Prof.",name:"Andre",surname:"De Lustrac",slug:"andre-de-lustrac",fullName:"Andre De Lustrac"}],corrections:null},{id:"37012",title:"Characterization of Metamaterial Transmission Lines with Coupled Resonators Through Parameter Extraction",doi:"10.5772/36542",slug:"characterization-of-metamaterial-transmission-lines-with-coupled-resonators-through-parameter-extrac",totalDownloads:3722,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Francisco Aznar-Ballesta, Marta Gil, Miguel Durán-Sindreu, Jordi Bonache and Ferran Martín",downloadPdfUrl:"/chapter/pdf-download/37012",previewPdfUrl:"/chapter/pdf-preview/37012",authors:[{id:"4171",title:"Prof.",name:"Ferran",surname:"Martin",slug:"ferran-martin",fullName:"Ferran Martin"},{id:"108740",title:"Dr.",name:"Francisco",surname:"Aznar-Ballesta",slug:"francisco-aznar-ballesta",fullName:"Francisco Aznar-Ballesta"},{id:"113454",title:"Dr.",name:"Marta",surname:"Gil Barba",slug:"marta-gil-barba",fullName:"Marta Gil Barba"},{id:"113456",title:"Mr.",name:"Miguel",surname:"Duran-Sindreu",slug:"miguel-duran-sindreu",fullName:"Miguel Duran-Sindreu"},{id:"113457",title:"Dr.",name:"Jordi",surname:"Bonache",slug:"jordi-bonache",fullName:"Jordi Bonache"}],corrections:null},{id:"37013",title:"Synthesis of Planar EBG Structures Based on Genetic Programming",doi:"10.5772/36654",slug:"synthesis-of-planar-ebg-structures-based-on-evolutionary-programming",totalDownloads:2506,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Luisa Deias, Giuseppe Mazzarella and Nicola Sirena",downloadPdfUrl:"/chapter/pdf-download/37013",previewPdfUrl:"/chapter/pdf-preview/37013",authors:[{id:"109254",title:"Dr.",name:"Luisa",surname:"Deias",slug:"luisa-deias",fullName:"Luisa Deias"},{id:"113551",title:"Prof.",name:"Giuseppe",surname:"Mazzarella",slug:"giuseppe-mazzarella",fullName:"Giuseppe Mazzarella"},{id:"113552",title:"MSc.",name:"Nicola",surname:"Sirena",slug:"nicola-sirena",fullName:"Nicola Sirena"}],corrections:null},{id:"37014",title:"Magnonic Metamaterials",doi:"10.5772/37454",slug:"magnonic-metamaterials",totalDownloads:3469,totalCrossrefCites:7,totalDimensionsCites:14,hasAltmetrics:0,abstract:null,signatures:"V.V. Kruglyak, M. Dvornik, R.V. Mikhaylovskiy, O. Dmytriiev, G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, F. Montoncello, L. Giovannini, R. Zivieri, J.W. Klos, M.L. Sokolovskyy, S. Mamica, M. Krawczyk, M. Okuda, J.C. Eloi, S. Ward Jones, W. Schwarzacher, T. Schwarze, F. Brandl, D. Grundler, D.V. Berkov, E. Semenova and N. Gorn",downloadPdfUrl:"/chapter/pdf-download/37014",previewPdfUrl:"/chapter/pdf-preview/37014",authors:[{id:"112826",title:"Dr.",name:"Volodymyr",surname:"Kruglyak",slug:"volodymyr-kruglyak",fullName:"Volodymyr Kruglyak"}],corrections:null},{id:"37015",title:"Investigation of Dipole Antenna Loaded with DPS and DNG Materials",doi:"10.5772/39130",slug:"investigation-of-wire-antenna-loaded-with-dps-and-dng-materials",totalDownloads:2638,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Amir Jafargholi and Manouchehr Kamyab",downloadPdfUrl:"/chapter/pdf-download/37015",previewPdfUrl:"/chapter/pdf-preview/37015",authors:[{id:"103649",title:"Dr.",name:"Amir",surname:"Jafargholi",slug:"amir-jafargholi",fullName:"Amir Jafargholi"}],corrections:null},{id:"37016",title:"Antenna Designs with Electromagnetic Band Gap Structures",doi:"10.5772/37222",slug:"design-antenna-with-electromagnetic-band-gap-structures",totalDownloads:8280,totalCrossrefCites:0,totalDimensionsCites:11,hasAltmetrics:0,abstract:null,signatures:"Dalia M.N. Elsheakh, Hala A. Elsadek and Esmat A. Abdallah",downloadPdfUrl:"/chapter/pdf-download/37016",previewPdfUrl:"/chapter/pdf-preview/37016",authors:[{id:"111813",title:"Dr.",name:"Dalia",surname:"Elsheakh",slug:"dalia-elsheakh",fullName:"Dalia Elsheakh"},{id:"111867",title:"Prof.",name:"Esmat",surname:"Abdallah",slug:"esmat-abdallah",fullName:"Esmat Abdallah"}],corrections:null},{id:"37017",title:"Designs of True-Time-Delay Lines and Phase Shifters Based on CRLH TL Unit Cells",doi:"10.5772/37147",slug:"designs-of-true-time-delay-lines-and-phase-shifters-based-on-crlh-tl-unit-cells",totalDownloads:4597,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"J. Zhang, S.W. Cheung and T.I. Yuk",downloadPdfUrl:"/chapter/pdf-download/37017",previewPdfUrl:"/chapter/pdf-preview/37017",authors:[{id:"21229",title:"Dr.",name:"T.I.",surname:"Yuk",slug:"t.i.-yuk",fullName:"T.I. Yuk"},{id:"21461",title:"Dr.",name:"S.W.",surname:"Cheung",slug:"s.w.-cheung",fullName:"S.W. Cheung"},{id:"111477",title:"Dr.",name:"J.",surname:"Zhang",slug:"j.-zhang",fullName:"J. Zhang"}],corrections:null},{id:"37018",title:"Perfect Metamaterial Absorbers in Microwave and Terahertz Bands",doi:"10.5772/36828",slug:"perfect-metamaterial-absorbers-in-microwave-and-terahertz-bands",totalDownloads:3987,totalCrossrefCites:7,totalDimensionsCites:11,hasAltmetrics:0,abstract:null,signatures:"Qi-Ye Wen, Huai-Wu Zhang, Qing-Hui Yang, Zhi Chen, Bi-Hui Zhao, Yang Long and Yu-Lan Jing",downloadPdfUrl:"/chapter/pdf-download/37018",previewPdfUrl:"/chapter/pdf-preview/37018",authors:[{id:"110023",title:"Prof.",name:"Qi-Ye",surname:"Wen",slug:"qi-ye-wen",fullName:"Qi-Ye Wen"}],corrections:null},{id:"37019",title:"Metamaterial-Based Compact Filter Design",doi:"10.5772/35853",slug:"metamaterial-based-compact-filter-design",totalDownloads:3624,totalCrossrefCites:5,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Merih Palandoken",downloadPdfUrl:"/chapter/pdf-download/37019",previewPdfUrl:"/chapter/pdf-preview/37019",authors:[{id:"19051",title:"Dr.Ing.",name:"Merih",surname:"Palandöken",slug:"merih-palandoken",fullName:"Merih Palandöken"}],corrections:null},{id:"37020",title:"Metasurfaces for High Directivity Antenna Applications",doi:"10.5772/35845",slug:"metasurfaces-for-high-directivity-antenna-applications",totalDownloads:3979,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Shah Nawaz Burokur, Abdelwaheb Ourir, André de Lustrac and Riad Yahiaoui",downloadPdfUrl:"/chapter/pdf-download/37020",previewPdfUrl:"/chapter/pdf-preview/37020",authors:[{id:"106076",title:"Dr.",name:"Shah Nawaz",surname:"Burokur",slug:"shah-nawaz-burokur",fullName:"Shah Nawaz Burokur"}],corrections:null},{id:"37021",title:"Magnetically Tunable Unidirectional Electromagnetic Devices Based on Magnetic Surface Plasmon",doi:"10.5772/35273",slug:"magnetically-tunable-unidirectional-electromagnetic-devices-based-on-magnetic-surface-plasmon",totalDownloads:1899,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Shiyang Liu, Huajin Chen, Zhifang Lin and S. T. Chui",downloadPdfUrl:"/chapter/pdf-download/37021",previewPdfUrl:"/chapter/pdf-preview/37021",authors:[{id:"16514",title:"Dr.",name:"Shiyang",surname:"Liu",slug:"shiyang-liu",fullName:"Shiyang Liu"},{id:"18842",title:"Prof.",name:"S. T.",surname:"Chui",slug:"s.-t.-chui",fullName:"S. T. Chui"},{id:"111452",title:"MSc.",name:"Huajin",surname:"Chen",slug:"huajin-chen",fullName:"Huajin Chen"},{id:"111453",title:"Prof.",name:"Zhifang",surname:"Lin",slug:"zhifang-lin",fullName:"Zhifang Lin"}],corrections:null},{id:"37022",title:"Applications of Artificial Magnetic Conductors in Monopole and Dipole Antennas",doi:"10.5772/35257",slug:"applications-of-artificial-magnetic-conductors-on-monopole-and-dipole-antennas",totalDownloads:3225,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Amir Jafargholi, Mahmood Rafaei Booket and Mehdi Veysi",downloadPdfUrl:"/chapter/pdf-download/37022",previewPdfUrl:"/chapter/pdf-preview/37022",authors:[{id:"103649",title:"Dr.",name:"Amir",surname:"Jafargholi",slug:"amir-jafargholi",fullName:"Amir Jafargholi"},{id:"113494",title:"Prof.",name:"Manouchehr",surname:"Kamyab",slug:"manouchehr-kamyab",fullName:"Manouchehr Kamyab"}],corrections:null},{id:"37023",title:"Compact Coplanar Waveguide Metamaterial-Inspired Lines and Its Use in Highly Selective and Tunable Bandpass Filters",doi:"10.5772/35168",slug:"compact-coplanar-waveguide-metamaterial-inspired-lines-and-its-use-in-highly-selective-and-tunable-b",totalDownloads:2566,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Alejandro L. Borja, James R. Kelly, Angel Belenguer, Joaquin Cascon and Vicente E. Boria",downloadPdfUrl:"/chapter/pdf-download/37023",previewPdfUrl:"/chapter/pdf-preview/37023",authors:[{id:"103261",title:"Dr.",name:"Alejandro Lucas",surname:"Borja",slug:"alejandro-lucas-borja",fullName:"Alejandro Lucas Borja"},{id:"124079",title:"Prof.",name:"Vicente",surname:"Boria",slug:"vicente-boria",fullName:"Vicente Boria"},{id:"126102",title:"Dr.",name:"James R.",surname:"Kelly",slug:"james-r.-kelly",fullName:"James R. Kelly"},{id:"137520",title:"Dr.",name:"Angel",surname:"Belenguer",slug:"angel-belenguer",fullName:"Angel Belenguer"},{id:"137521",title:"Dr.",name:"Joaquin",surname:"Cascon",slug:"joaquin-cascon",fullName:"Joaquin Cascon"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65200",slug:"corrigendum-to-evaluation-of-psoriasis-patients",title:"Corrigendum to: Evaluation of Psoriasis Patients",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65200.pdf",downloadPdfUrl:"/chapter/pdf-download/65200",previewPdfUrl:"/chapter/pdf-preview/65200",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65200",risUrl:"/chapter/ris/65200",chapter:{id:"63332",slug:"evaluation-of-psoriasis-patients",signatures:"Meda Sandra Orasan, Iulia Ioana Roman and Andrei Coneac",dateSubmitted:"April 17th 2018",dateReviewed:"June 26th 2018",datePrePublished:"November 5th 2018",datePublished:"July 17th 2019",book:{id:"7045",title:"Tailored Treatments in Psoriatic Patients",subtitle:null,fullTitle:"Tailored Treatments in Psoriatic Patients",slug:"tailored-treatments-in-psoriatic-patients",publishedDate:"July 17th 2019",bookSignature:"Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/7045.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",middleName:null,surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"202125",title:"Dr.",name:"Meda",middleName:"Sandra",surname:"Orasan",fullName:"Meda Orasan",slug:"meda-orasan",email:"meda2002m@yahoo.com",position:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"205669",title:"Dr.",name:"Andrei",middleName:null,surname:"Coneac",fullName:"Andrei Coneac",slug:"andrei-coneac",email:"andrei.coneac@gmail.com",position:null,institution:null},{id:"255002",title:"Dr.",name:"Iulia Ioana",middleName:null,surname:"Roman",fullName:"Iulia Ioana Roman",slug:"iulia-ioana-roman",email:"iuliaroman09@gmail.com",position:null,institution:null}]}},chapter:{id:"63332",slug:"evaluation-of-psoriasis-patients",signatures:"Meda Sandra Orasan, Iulia Ioana Roman and Andrei Coneac",dateSubmitted:"April 17th 2018",dateReviewed:"June 26th 2018",datePrePublished:"November 5th 2018",datePublished:"July 17th 2019",book:{id:"7045",title:"Tailored Treatments in Psoriatic Patients",subtitle:null,fullTitle:"Tailored Treatments in Psoriatic Patients",slug:"tailored-treatments-in-psoriatic-patients",publishedDate:"July 17th 2019",bookSignature:"Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/7045.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",middleName:null,surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"202125",title:"Dr.",name:"Meda",middleName:"Sandra",surname:"Orasan",fullName:"Meda Orasan",slug:"meda-orasan",email:"meda2002m@yahoo.com",position:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"205669",title:"Dr.",name:"Andrei",middleName:null,surname:"Coneac",fullName:"Andrei Coneac",slug:"andrei-coneac",email:"andrei.coneac@gmail.com",position:null,institution:null},{id:"255002",title:"Dr.",name:"Iulia Ioana",middleName:null,surname:"Roman",fullName:"Iulia Ioana Roman",slug:"iulia-ioana-roman",email:"iuliaroman09@gmail.com",position:null,institution:null}]},book:{id:"7045",title:"Tailored Treatments in Psoriatic Patients",subtitle:null,fullTitle:"Tailored Treatments in Psoriatic Patients",slug:"tailored-treatments-in-psoriatic-patients",publishedDate:"July 17th 2019",bookSignature:"Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/7045.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",middleName:null,surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12109",leadTitle:null,title:"Identifying Occupational Stress and Coping Strategies",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThis book on Occupational Stress will focus on the various workplaces and the stress levels that exist within different occupations in that workplace. The causes of occupational stress will also be analyzed from the occupational perspective. The various ways by which one can identify the symptoms of occupational stress will be elucidated to get an understanding of the issues faced by the employees. Occupational stress can lead to a range of medical illnesses, and that is why specific emphasis will also be given to sleep disturbances. Sleep disturbances can include difficulties in falling asleep or waking up several times during sleep or early awakening. Aspects of depression and anxiety will also be included in this book on Occupational Stress. Moving further, the various management techniques to cope with occupational stress will be outlined to give the readers an idea of how to manage occupational stress effectively. Research studies that show the effectiveness of such coping strategies are also welcomed.
",isbn:"978-1-83768-257-7",printIsbn:"978-1-83768-256-0",pdfIsbn:"978-1-83768-258-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"09a2f5fe50b90b20637b7aceccf1cfdd",bookSignature:"Dr. Kavitha Palaniappan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12109.jpg",keywords:"Workplace Conflict, Bullying, Working Conditions, Long Hours, Depressed Mood, Anxiety, Irritability, Fatigue, Coping Techniques, Therapies, Sleep Enhancement, Time Management",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 31st 2022",dateEndSecondStepPublish:"June 28th 2022",dateEndThirdStepPublish:"August 27th 2022",dateEndFourthStepPublish:"November 15th 2022",dateEndFifthStepPublish:"January 14th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"An academic director and pioneering researcher in the field of occupational health and safety, Dr. Palaniappan thrives in multi-disciplinary research, including the prevalence of psychosocial illnesses and their impacts on society. Her research covers alternative therapies to enhance sleep, yoga and its health benefits, and nanotechnology. She is a graduate member of the Institution of Occupational Safety and Health, UK.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"311189",title:"Dr.",name:"Kavitha",middleName:null,surname:"Palaniappan",slug:"kavitha-palaniappan",fullName:"Kavitha Palaniappan",profilePictureURL:"https://mts.intechopen.com/storage/users/311189/images/system/311189.jpg",biography:"Associate Professor Dr. Kavitha Palaniappan is the academic director at Newcastle Australia Institute of Higher Education (Singapore), a wholly-owned entity of the University of Newcastle, Australia. She teaches the program of Bachelor of Environmental and Occupational Health and Safety (BEnvOHS). Apart from teaching, Dr. Palaniappan is also actively involved in multi-disciplinary research, including the prevalence of psychosocial illnesses and their impacts on society, economy and country. She also researches alternative therapies to enhance sleep, yoga and its health benefits, the toxicity of nanomaterials, exposure measurements and hygiene requirements for nano-titanium dioxide, exposure to nano-silver in mattresses and beddings and their health effects, associations between seasonal patterns, climate variables, and dengue risks in Singapore. She is a graduate member of the Institution of Occupational Safety and Health (IOSH).",institutionString:"Duke-NUS Medical School",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Duke NUS Graduate Medical School",institutionURL:null,country:{name:"Singapore"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429341",firstName:"Paula",lastName:"Gavran",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"paula@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde Dorthea Grindvik",surname:"Nielsen",slug:"hilde-dorthea-grindvik-nielsen",fullName:"Hilde Dorthea Grindvik Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"66895",title:"Programmed Cell Death Deregulation in BCR-ABL1-Negative Myeloproliferative Neoplasms",doi:"10.5772/intechopen.86062",slug:"programmed-cell-death-deregulation-in-bcr-abl1-negative-myeloproliferative-neoplasms",body:'Hematopoiesis is a highly controlled process that ensures the differentiation of the hematopoietic stem cells (HSCs) into lymphoid and myeloid common progenitors and further into all lineages of blood cells [1].
Programmed cell death (PCD) is one of the fundamental mechanisms of an organism’s life cycle that controls every system, including hematopoietic system, based on a precisely tuned signaling network. Apoptosis, the most important type of PCD, maybe because it is the most analyzed type of death to date, is well described in hematopoietic differentiation [2]. Its deregulation in pathological circumstances is potentially deleterious and may influence the fate of the entire organism. Although different other types of PCD were described, apoptosis remains one of the most important processes involved in differentiation and cell survival regulation, while mechanisms as autophagy and necroptosis look like “backup” mechanisms that share some “key players” and diverged from apoptosis at a certain point, to assure the elimination of the malfunctioning system in case of “internal” defect (mutations) or pathogens that inhibit the components of the apoptotic network [3, 4].
Primary myelofibrosis (PMF), polycythemia vera (PV), and essential thrombocythemia (ET) are classic BCR-ABL1-negative myeloproliferative neoplasms (MPNs) that are stem cell-derived clonal disorders characterized by hematopoietic progenitor autonomy or hypersensitivity to cytokines, driven by acquired somatic mutations in critical pathways, resulting in pathological expansion of the myeloid lineages. In their natural course, MPNs could be exacerbated and transformed into secondary acute myeloid leukemia (sAML) associated with treatment resistance and poor clinical outcome [5].
This chapter will explore the most important modifications affecting programmed cell death pathways involved in myeloid proliferation, and how these alterations might be exploited in single or combined targeted therapeutic strategies in a classic BCR-ABL1-negative MPN.
Overall, the hematopoietic homeostasis requires a precise balance between blood cell formation and maintenance of an adequate number of mature cells. Although apoptosis is necessary to prevent the excessive accumulation of cells, the hematopoietic progenitors need to be protected and preserved. A disruption of the homeostatic balance in the hematopoietic system is relevant for many hematological disorders, an increased cell death being involved in the etiology of immune deficiencies and anemia, while an inappropriate resistance to apoptosis might lead to hematological malignancies [6], such as MPNs.
As a particular form of PCD, apoptosis is activated via two convergent pathways: the intrinsic and the extrinsic [7]. The intrinsic signaling pathway is triggered at mitochondrial level in response to various stimuli such as genotoxic agents or growth factor deprivation, and it is mainly regulated by the members of BCL-2 protein family that contain one or more BCL2 homology (BH) domains [8]. These proteins are structurally and functionally classified into three groups. The first group includes the critical effectors of the intrinsic pathway, namely BCL-2 antagonist killer 1 (BAK) and BCL-2-associated X protein (BAX). The second group is represented by the prosurvival BCL-2 proteins (BCL-2, BCL-xL, MCL-1, BCL-W, and A1) that hinder BAK and BAX activation, while the third group comprises several structurally different proteins, known as “BH3-only” proteins (BIM, BID, BAD, BIK, PUMA, and NOXA), which share solely a sequence called BH3-domain [8, 9]. Cellular stress signals are sensed by the “BH3-only” proteins that directly activate BAK and BAX or neutralize the prosurvival proteins. Once activated, through conformational changes, BAK and BAX induce the permeabilization of the mitochondrial membrane with subsequent release of apoptogenic factors, such as cytochrome c and second mitochondrial activator of caspases/direct IAP binding protein with low pI (SMAC/DIABLO). Cytochrome c binds to the apoptotic protease activating factor-1 (APAF-1) and forms the apoptosome, a heptameric complex that activates the initiator caspase-9, followed by activation of the effector caspase-3, caspase-6, and caspase-7 that trigger final events of apoptosis [10, 11].
In the extrinsic apoptotic pathway, caspase activation is elicited at the level of “death receptors” (DR), transmembrane proteins of the tumor necrosis factor (TNF) receptor superfamily typically represented by FAS (CD95), TNF receptors, and TNF-related, apoptosis-inducing ligand (TRAIL) receptors. Through interaction with their corresponding ligands—FASL, TNF-α, and TRAIL, respectively—DR become activated, leading to the recruitment of a death adaptor protein, such as FAS-associated death domain (FADD) or TNFR-1-associated death domain (TRADD). Death adaptors generate a death-inducing signaling complex (DISC), in which procaspase-8 is recruited and activated, the death signal being subsequently transduced to the effector caspases [2, 10].
A very early apoptosis event is the global and rapid mRNA degradation by a mechanism that is not yet completely characterized [12].
Various factors associated with intrinsic and extrinsic apoptotic pathways have been involved in the control of adult hematopoiesis under physiological as well as pathological conditions [2]. In this respect, BCL-2 protein family members play different roles across individual hematopoietic lineages during differentiation and maturation. At the level of HSCs and early myeloid progenitors, MCL-1 is an essential prosurvival factor, being upregulated by stem cell factor and interleukin-3 via JAK/STAT (Janus-activated kinase/signal transducers and activators of transcription) and AKT signaling pathways [13, 14]. During erythropoiesis, erythropoietin (EPO) ensures erythroid progenitor survival, proliferation, and differentiation by acting on its cognate receptor (EPO-R) and inducing JAK2-STAT5 activation that leads to upregulation of BCL-xL [10]. The development, maturation, and survival of megakaryocytes (MKC) is strictly dependent on the presence of both BCL-xL and MCL-1 proteins that are induced by thrombopoietin (TPO) signaling and restrain intrinsic apoptosis, while platelet life span seems to be dictated only by BCL-xL levels [7, 15, 16]. Similarly, MCL-1 is essential for granulocyte progenitor survival and differentiation [16]. On the other hand, the receptor/ligand interactions of the TNF family represent physiological mechanisms that exert a negative regulation in the terminal stages of the hematopoietic differentiation, controlling in this way the size of the expanding hematopoietic clones and maintaining heterogeneity in response to various demands [17].
PV is characterized by erythrocytosis accompanied by a suppressed endogenous EPO production. It often associates thrombocytosis and/or leukocytosis with panmyelosis at bone marrow examination. The pattern of driver mutations is strikingly dominated by
A study that analyzed gene expression profile of granulocytes isolated from PV patients showed an upregulation of protease inhibitors with affinity for proteases inducing apoptosis in neutrophils (e.g., cystatin F and secretory leukocyte protease inhibitor), as well as of several antiapoptotic and survival factors (e.g., p38 MAPK), compared to granulocytes obtained from healthy subjects [19]. Also, unlike the granulocytes of ET patients or normal controls, the granulocytes of PV patients were found to express an increased amount of heat shock protein 70 (HSP70), which counteracts apoptosis at different levels by preventing BAX translocation to mitochondria, inhibiting APAF-1 and procaspase-9 recruitment to apoptosome, and reducing caspase activation. As shown in primary cell cultures, an HSP-70 inhibitor was able to induce apoptosis in the erythroid lineage [20].
Concerning the extrinsic apoptosis pathway, it was found that erythroblasts isolated from PV patients carrying
ET is defined by thrombocytosis associated with normocellular bone marrow and hyperplasia of enlarged MKC. The molecular profile of ET consists of
Before the discovery of
In a study that aimed to characterize the immunophenotypic apoptotic profiles of MKC on bone marrow biopsy samples obtained from MPN patients, it was observed that ET MKC displayed an antiapoptotic pattern, characterized by an overexpression of BCL-xL and a lower expression of BAX, compared to those of PMF patients [24]. Furthermore, Treliński et al. confirmed by flow cytometry the antiapoptotic profile of ET MKC and bone marrow mononuclear cells (BMMC). As opposed to controls, previously untreated ET patients presented significantly lower percentages of apoptotic MKC and BMMCs, when assessed for the number of annexin-V+ and caspase-3+ positive cells. These findings were accompanied by markedly lower BAX levels and BAX/BCL-2 ratios, especially in
Compared to PV and ET, PMF is a more heterogeneous disease, being characterized by clonal myeloproliferation, abnormal cytokine expression, early bone marrow fibrosis, anemia, splenomegaly, extramedullary hematopoiesis, constitutional symptoms, and a lower overall survival rate. On the other hand, during the natural course of the disease PV and ET patients might suffer a conversion into secondary myelofibrosis (MF) that resembles PMF [26, 27]. PMF shares with ET a similar profile of mutations in
Initially, it was suggested that bone marrow MKC in PMF might undergo an increased apoptosis that could be responsible for the release of fibrogenic cytokines [28]. However, further studies have demonstrated that PMF MKC displayed a high proliferative capacity and resistance to apoptosis, explained by the overexpression of BCL-xL [29]. Also, the gene expression analysis of laser-microdissected MKC from PMF patients indicated a tendency toward an overall downregulation of apoptosis-associated genes, especially of
Chronic inflammation sustained by the continuous release of proinflammatory cytokines and chemokines and subsequent bone marrow microenvironment alterations are considered key factors in PMF pathogenesis. The abnormal production of cytokines that occurs both in malignant and nonmalignant cells was related to an increased JAK2-STAT3 activation and was found responsible for the inhibition of apoptosis and increased myeloproliferation, creating an environment that favors MPN clone maintenance and expansion [31, 32]. Recently, it was shown that MF cells downregulated the expression of X-linked inhibitor of apoptosis (XIAP) and mitogen-activated protein kinase 8 (MAPK 8), a necessary component of TNF-mediated apoptosis, via a TNF/TNFR2-dependent autocrine loop. This was considered a mechanism to escape an apoptotic response and to increase NF-κB signaling involved in inflammatory cytokine expression [33].
Overall, these data show the importance of the participation of both intrinsic and extrinsic apoptosis pathways in the pathogenesis of MPNs.
Modifications occurred in the regulation of apoptosis, especially in expression of pro- and antiapoptotic genes, have great contribution to the myeloaccumulation in MPNs. Concerning the involvement of other types of PCD in myeloproliferations, few data are available. Some key players are involved in apoptosis regulation and also in autophagy or necroptosis. More often, it is a continuous process from apoptosis, autophagy to necroptosis. Increased death signals and stress levels can switch cell death types in the attempt of eliminating the malfunctioning cells [34, 35].
BCL-2 family of proteins is a very important regulator of apoptosis and, at the same time, is also a negative regulator of BECN1/Beclin-1, a key regulator of autophagy [36, 37]. Autophagy was shown to be a major contributor to chemotherapy resistance in AML [38].
BCL-xL promotes cell survival, such as survival of erythroid cells and platelets, and regulates their lifespan at a steady state. Inhibition of BCL-xL induces profound thrombocytopenia by triggered BAK/BAX-mediated mitochondrial damage, caspase activation, and premature death of MKC [39, 40]. In MPNs, a concerted effect resulted from antiapoptotic BCL-xL over-expression and proapoptotic BNIP-3 downregulation was clearly documented [41].
Bcl-2-associated death promoter (BAD) inhibits antiapoptotic proteins BCL-2 and BCL-xL and is involved in initiating the apoptosis process. In unphosphorylated form, BAD forms heterodimers with BCL-2 and BCL-xL, inhibiting their antiapoptotic functions, and facilitates BAX/BAK activation in response to apoptotic stimuli [42, 43], promoting apoptosis. After activation by phosphorylation, BAD forms a heterodimer with 14-3-3 proteins, releasing BCL-2 that is free to block apoptosis. BAD is a substrate of various kinases, such as AKT, protein kinase A (PKA), and c-Jun NH2-terminal kinase (JNK).
Gene expression studies on CD34+ cells and peripheral leukocytes isolated from ET and PMF patients indicated that mRNA levels of
Studies focused on the apoptosis deregulation in PV identified an increased expression of
Survivin is one of the inhibitors of apoptosis proteins (IAPs) that regulate cell death through mitochondrial route by restricting the IAP-inhibitor DIABLO protein and preventing it from activating caspase-9. A greater proportion of myeloproliferative MKC express survivin compared to its reciprocal inhibitor, DIABLO. Survivin seems to be the key mediator of the MKC survival signature in the MPNs and might be a potential therapeutic target [41]. Recently, new evidence suggested that survivin may be involved in the evasion of cell death by manipulation of autophagy [49].
BNIP-3 (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3), a proapoptotic mitochondrial protein belonging to the BCL-2 family, is activated under hypoxic conditions with hypoxia-inducible factor (HIF-1α) in normal and cancer tissues. BNIP-3 is involved in the induction of hypoxic necrosis in tumors because it activates caspase-independent necrosis-like cell death by opening the mitochondrial permeability transition pore. In MPNs, BNIP-3 expression is reportedly low and this might indicate that the increased bone marrow cellularity is not only because of proliferative signaling but also due to decreased apoptosis [50, 51].
CALR is a multifunctional endoplasmic reticulum (ER) chaperone involved in the quality control of N-glycosylated proteins, calcium storage, and immune responses [27, 52]. In relation to apoptosis, CALR is implicated in the specific activation of caspase-8, BAX, and BAK, and also in the BCL-2 cleavage [53].
Caspase-8, a key factor in the extrinsic pathway, together with caspase-9, a key factor in the intrinsic pathway, is implicated in regulating MKC turnover [41].
Immunohistochemistry studies showed that the percentage of MKC positive for caspase-8 is higher in MPNs in comparison with controls, suggesting that MKC in MPN tend to counteract the survival advantages acquired through inhibition of the intrinsic apoptotic pathway by activating the caspase-8-mediated extrinsic apoptotic cascade[41].
Caspase-9 is an inducible proapoptotic molecule, which acts relatively late in apoptosis signaling becoming less susceptible to inhibition by apoptosis inhibitors [56]. Caspase-9 is an apoptotic initiator caspase in MKC and platelets being necessary for their efficient death, and it is not required for platelet generation and function, as it was previously thought. Thus, caspase-9 loss is associated with an increased MKC proliferative capacity. In MPNs, especially in the
SMAC/DIABLO controls apoptosis by negatively regulating IAPs and by activating caspases. Recently, it was shown that silencing of SMAC/DIABLO caused decreased levels of phospholipids, suggesting that besides proapoptotic functions, SMAC/DIABLO have nonapoptotic lipid synthesis-related function essential for cancer growth and development. Therefore, it was assumed that SMAC/DIABLO could be a promising therapeutic target in cancer [57]. On the other hand, SMAC/DIABLO downregulation was found to be associated with progressive disease and poor survival rate in hematologic malignancies, and DIABLO/SMAC mimetics were proposed as a potential adjunct therapy to enhance DIABLO levels in MPN MKC [41]. More studies are necessary to establish the proper therapeutic options in the light of the new role of SMAC/DIABLO in the phospholipid synthesis.
The tumor suppressor gene
Cell surface death receptor-ligand interaction, such as FASL binding FAS, TRAIL binding death receptor 5 (DR5) or TNFα binding TNFR1, executes extrinsic pathway apoptosis.
The two major necroptotic death effector complexes, the necrosome and ripoptosome, are induced by TNFR1 and toll like receptor 3 (TLR3) signaling, respectively [60]. IFN-R activation, primarily by type-I IFN, is believed to involve a caspase- and FADD-independent, receptor-interacting protein kinase (RIP) 3-dependent mode of cell death via the formation of the necrosome. Following IFN-R activation, JAK/STAT signaling and the activity of RNA-responsive protein kinase (PKR), upstream of RIP1/RIP3 necrosome formation is essential. TNFα binding to TNFR1 causes recruitment of TRADD and RIP1 via their death domains resulting in the prosurvival complex I, which is stabilized by TNFα-bound TNFR2-TRAF2. Internalization of the TNFR1-TRADD-RIP1 complex is required for recruitment of caspase-8 and FADD, necessary for apoptosis. This is therefore a major cell death checkpoint as the absence of NF-κB activation and prosurvival signaling results in proapoptotic complexes or, alternatively, the pronecroptotic complex known as the necrosome. The ripoptosome consists of FADD, cFLIP and caspase-8 and allows necroptosis to prevail if active cleavage of RIP1 by caspase-8 is prevented by cFLIPL. In MPN, it was shown that blocking TNFR2 but not TNFR1 selectively inhibits MPN cells over normal ones and the process involves XIAP, cIAP, and MAPK8 as key mediators of these differential responses to TNF. These data support the potential therapeutic use of cIAP inhibitors and selective TNFR2 inhibitors in the treatment of MF [33].
The TLR3-induced pathway converges with the TNFR1-induced pathway at the necrosome. The execution phase of necroptosis starts with interaction between RIP1 and RIP3. Following stabilization of the RIP1-RIP3 complex, mixed-lineage kinase domain-like protein (MLKL) is recruited to form a functional necrosome. MLKL activated upon phosphorylation by RIP3 results in the translocation of the MLKL necrosome to the plasma membrane, necroptotic membrane disruption, and release of liposomes containing phosphatidylinositol phosphates (PIPs). This permeabilization, combined with MLKL-mediated calcium or sodium influx ion-pore dysregulation, characterizes the model proposed for necroptosis execution [60]. Human cancers, including MPN and their exacerbated form, sAML, are known for eluding apoptosis; therefore, therapeutic induction of necroptosis may represent a better strategy for an efficient treatment. A series of compounds have been shown to trigger necroptosis, particularly inhibitors of RIP1, RIP3 or MLKL, in leukemia cells; however, a deeper understanding of the signaling network that regulates this type of PCD is still necessary [35].
The constitutive activation of JAK-STAT pathway is a common feature of MPNs irrespective of driving mutation, being observed even in so-called “triple-negative MPNs” that lack known
Major signaling pathways involved in apoptotic failure in molecular subgroups of MPN.
In addition, loss-of-function or neomorph mutations in genes that are involved in epigenetic regulation, splicing, and signaling can act as disease modifiers by cooperating with MPN driver mutations [52].
The JAK/STAT is the major pathway (Figure 1a) involved in MPN pathology [64, 65, 66].
The MAPK/ERK signaling pathway activation (Figure 1b) is required in MKC differentiation, with TPO as signal for induced maturation via MPL receptor [71].
An increased activation of RAS/RAF/ERK pathway was showed in MPN patients, especially in erythroid precursor cells and MKC (Figure 1b). It was shown that ERK is constitutively activated by the
The PI3K/AKT signaling pathway (Figure 1c) may be activated by the
The activation of AKT upregulates BCL-xL and inactivates BAD, suppressing apoptosis and promoting cell survival. This was observed in MPN patients, where the activation of pAKT was higher in MKC and associated with the inhibition of MKC apoptosis [50]. pAKT is also known to induce activation of BNIP-3 and caspase-9 through mammalian target of rapamycin (mTOR)—a serine/threonine kinase that is an effector protein of AKT—via activation of HIF-1. Data related to BNIP-3 expression are conflicting; some groups reported a reduced BNIP-3 expression [30], whereas others have shown its upregulation in MPNs [50]. In the study of Koopmans et al., the immunohistochemical expression of BNIP-3, with proapoptotic function, was lower in total bone marrow cells of ET, PV, and PMF patients, compared with the control group. This suggests that a decreased apoptosis might also contribute to the increased bone marrow cellularity observed in MPNs. However, in contrast to total bone marrow cells, the MKC of MPN patients were found to display a high level of BNIP-3 [50]. On the other hand, the most pronounced reductions in BNIP-3 were observed in PMF, suggesting a loss of proapoptotic potential during progression to the “accelerated” phase of MPNs [80].
Noncanonical
Taking into account the above-mentioned cellular and molecular effects of MPN driver mutations, we can assume that megakaryocytic and erythroid progenitor expansion in MPNs results from a combination of increased proliferation and attenuated apoptosis.
As shown previously, deregulation of the JAK/STAT pathway is central to MPN development and is driven in most cases by activating mutations in
Understanding molecular mechanisms of MPN pathogenesis has stimulated drug development in the field.
Reduction of thrombotic risk is the major goal of therapy in patients with PV and ET, and hydroxyurea (HU) is normally the first-line drug for achieving cytoreduction [98, 99]. In addition, most patients should receive aspirin, if they have no contraindications. In PV, maintaining hematocrit values <45% is an important therapeutic target. Second-line drugs of choice are interferon-α (IFNα) and busulfan [99].
The clinical efficacy of IFNα has been reported since 30 years ago and was improved with the development of pegylated forms [100, 101]. Furthermore, significant reductions of the
RUX showed efficiency in spleen size reduction and symptomatology alleviation, improving quality of life, and overall survival; however, no significant decrease in allele burden was achieved [11, 111, 112]. RUX effects on the malignant clone are modest, side effects (such as anemia and thrombocytopenia) are reported, and drug resistance may appear. Other therapeutic strategies have been developed; they include the discovery of new inhibitors that target specifically mutant JAK2 and the combination of current therapies with other molecules that inhibit components of signaling pathway [105].
Early studies provided some evidence for the increased resistance to apoptosis of PV erythroid progenitor cells: overexpression of BCL-xL in the absence of EPO and a higher sensitivity to the antiapoptotic growth factor IGF-1 [113]. Moreover, Zeuner et al. have shown that erythroid precursors in PV patients with average and high
In susceptible cells, apoptosis is caused by exposure to a JAK inhibitor, which leads to dephosphorylation of BAD, enabling BAD to bind and sequester the antiapoptotic protein BCL-xL. On the other side, in potent cells, RAS effector pathways keep BAD phosphorylation in the presence of JAK inhibitors, maintaining a specific dependence on BCL-xL for survival. So, downstream regulation of BCL-xL, more precisely BCL-xL inhibition, might be the key against resistance to JAK inhibition by either co-inhibition of JAK and RAS effector in AKT and ERK pathways or by direct inhibition of BCL-xL inducing apoptosis [116].
At present, there are over 1500 clinical trials evaluating various drug effects on myeloproliferative neoplasms registered at clinicaltrials.gov. Some of them might be successful due to targeting different apoptotic pathways or by targeting simultaneously different types of PCD.
Plitidepsin is a synthetically produced anticancer agent [117], a cyclodepsipeptide related to didemnins, commercialized as Aplidin® (PharmaMar, S.A., Madrid, Spain). Plitidepsin induces dose-dependent cell-cycle arrest and an acute apoptotic process. These effects rely on the induction of early oxidative stress, the rapid activation of Rac1 GTPase, and the sustained activation of JNK and p38/MAPK, which finally result in caspase-dependent apoptosis [118, 119]. JNK phosphorylation can be seen as early as 5–10 minutes after exposure to the compound. The activation of JNK and p38/MAPK is associated with increase in reactive oxygen species and a decrease in reduced form of glutathione [120].
Recent studies have led researchers to hypothesize that the primary target of plitidepsin could be the eukaryotic elongation factor 1A2 (eEF1A2), which is overexpressed in tumors and supports tumor cell proliferation while inhibiting apoptosis [121]. eEF1A2 seems to be an interesting target for therapy and may also be a biomarker predicting drug sensitivity. Aplidin®/Plitidepsin was investigated for its effect (safety and tolerability) on bone marrow or peripheral blood cells as well as assessed the response rate in patients with PMF, post-PV MF, or post-ET MF, in phase II/open label single agent clinical trial (NCT01149681). Although the drug was well tolerated, the trial was prematurely terminated due to the low response rate [122].
Navitoclax is an orally active, synthetic small molecule and an antagonist of the apoptosis suppressor proteins BCL-2, BCL-xL, and BCL-w, which are frequently overexpressed in a wide variety of cancers, including myeloid ones, and are linked to drug resistance. Inhibition of these apoptosis suppressors prevents their binding to the apoptotic effectors BAX and BAK proteins, thereby triggering apoptotic processes in cells overexpressing BCL-2, BCL-xL, and BCL-w. This eventually reduces tumor cell proliferation. Navitoclax (ABT-263) and RUX are currently evaluated in combination for efficacy, safety, and tolerability on spleen volume as assessed by magnetic resonance imaging (MRI) in participants with MF in a phase II/open label clinical trial (NCT03222609).
Obatoclax (GX15–070) is a BH3-mimetic designed to target and counteract antiapoptotic BCL-2 proteins. Obatoclax is an MCL-1 antagonist [123] and downregulates p53, and it has a dual mechanism of action, being capable to induce apoptosis or autophagy [124]. On the other side, obatoclax accumulates in lysosomes inducing their alkalinization and inhibiting their function [125]. Parikh et al. conducted a multicenter, open-label, noncomparative phase II study (NCT00360035) of obatoclax in patients with MF. Unfortunately, obatoclax exhibited no significant clinical activity at the tested dose and schedule [126].
Other phase I trial (NCT02436135) investigated the combination of RUX with idelalisib, a PI3K delta inhibitor, as therapy for intermediate to high-risk PMF, post-PV MF, or post-ET MF with progressive or relapsed disease [127].
PIM inhibitors have shown preclinical synergy with JAK inhibitors, as well as the ability to overcome JAK inhibitor resistance in MPN cell lines. PIM regulate JAK/STAT signaling and are involved in oncogenesis through phosphorylation of cell cycle regulators, activation of antiapoptotic proteins, and enhancement of MYC expression [97]. A phase 1b study of RUX plus PIM inhibitor PIM447, or RUX plus CDK4/6 inhibitor ribociclib (LEE011), or the combination of all three is underway in several non-U.S. countries (NCT02370706).
As PI3K/AKT/mTOR signaling is markedly activated in MPNs, small molecule inhibitors of the proteins involved in this pathway have been tested in MF with promising results. Thus, mTOR inhibitor everolimus, as single therapeutic agent, was able to induce responses, in terms of reducing constitutional symptoms and the degree of leukocytosis, thrombocytosis, and anemia, in 23% of patients in a phase I/II clinical trial. Due to the preclinically proved synergic effects of PI3K/AKT/mTOR inhibitors and JAK inhibitors, several clinical studies were initiated: PI3K inhibitor TGR-1202 in combination with RUX (NCT02493530), PI3K inhibitor buparlisib with RUX (NCT01730248), PI3K inhibitor INCB050465 and RUX (NCT02718300), and selective PI3Kδ inhibitor TGR-1202 and RUX (NCT02493530). Preliminary results of buparlisib and RUX phase 1b study indicated that this drug association was well tolerated, and ≥ 50% reduction in splenomegaly was observed in 70% of JAK-inhibitor naive patients and 54% of patients who did not previously respond to JAK2 inhibitor monotherapy [97, 127].
RAF/MEK/ERK pathway is another signaling cascade activated in MPNs by the increased JAK/STAT signaling. Therefore, MEK inhibitors were tested in different murine models, either alone or in combination with JAK inhibitors, showing a decrease in bone marrow fibrosis, inhibition of malignant cell growth, and HSC function recovery, associated with a prolonged survival. Moreover, a new trial that combines the MEK inhibitor selumetinib with the DNA hypomethylating agent azacitidine is soon expected [97].
Preclinical studies reveal a central role for tumor necrosis factor alfa (TNF-α) in promoting clonal dominance of
SMAC-mimetics are novel apoptosis-inducing agents that stimulate the ubiquitinylation and proteasomal degradation of cellular inhibitors of apoptosis (IAPs) [102], proteins that play an important role in tumor cell resistance to cytotoxicity mediated by TNF superfamily cytokines. These agents have been shown to sensitize cancer cells to TNF family-induced apoptosis [103]. Results from a phase II trial of the SMAC-mimetic LCL-161 in patients with intermediate or high-risk MF intolerant of, ineligible for, or relapsed/refractory to JAK inhibitors were recently presented. Six of sixteen evaluated patients (38%) had objective responses, obtaining clinical improvement and in one case cytogenetic remission [128].
Resistance of hematologic malignancies to PCD significantly limits the efficacy of chemotherapy. As the majority of chemotherapeutic drugs trigger apoptosis, the observed resistance may indicate that novel therapeutic strategies to reactivate nonapoptotic PCD or at least combined therapeutic strategies able to attack simultaneously different mechanisms might be better approaches to eradicate malignant cells.
Deregulation of pro- and anti-PCD genes involved in cell resistance to cell death and accumulation of myeloid cells in MPNs is continuously clarified by intense exploration of the modifications affecting different types of PCD pathways involved in myeloid proliferation. At the same time, comprehension of the network of signaling pathways involved in etiology and drug resistance of these disorders facilitate a more efficient exploitation of the knowledge, using combined and synergic, targeted therapeutic strategies.
We gratefully acknowledge the funding from the project Competitiveness Operational Programme (COP) A1.1.4. ID: P_37_798 MyeloAL-EDiaProT, Contract 149/26.10.2016, (SMIS: 106774), MyeloAL Project.
All the authors contributed equally to this manuscript.
Due to the elevated level of population growth, energy consumption has risen over the recent decade [1]. This increase in energy demand over the years has changed the energy scenario through manufacturing [2]. Furthermore, even with the current low oil price, the world’s energy demand is anticipated to continue to rise in the future according to the international energy agency’s new policy situation [3], from 13.2% in 2011 up to 17.6% in 2035 as shown Figure 1.
Primary energy demand in Mtoe (million tonnes of oil equivalent) (a) 2011, (b) 2035 “new policies scenario” and (c) 2035 “450 scenario” (adapted from Ref. [
Currently, dependence on fossil fuels such as petroleum, gas and coal to satisfy energy demand has caused environmental issues owing to anthropogenic greenhouse gas generation. Methane (CH4) and carbon dioxide (CO2) are the most abundant greenhouse gasses and have lately contributed significantly to climate change issues [4]. While the level of methane in the environment is smaller than that of carbon dioxide [5], it is surprising that around 20% of worldwide warming occurs is caused by it [6]. Conventionally, there are two main sources of methane emissions including nature occurring activities and anthropogenic activities. Examples of the first source are termites, grasslands, coal beds, lakes, wetlands and forest fires, while examples from the second source are landfills, oil and gas treatment, wastewater treatment plants, coal mining, rice production, livestock and agricultural activities [7]. According to the US Environmental Protection Agency [8], methane manufacturing from landfill sites accounts for almost one-third of all methane produced in the United States alone, where landfill gas consists of 40–45% methane and 55–60% carbon dioxide by quantity by volume [9]. Notwithstanding, the reality that methane is a significant element of natural gas, a big quantity of natural gas is burned globally owing to technological constraints and the high price of carrying this valuable gas from its reservoirs, which are often far from industrial fields and the prospective market [10]. These actions have wasted an important source of hydrocarbons and contributed to global warming by releasing greenhouse gases into the atmosphere [11]. Carbon dioxide capture and storage (CCS) has been implemented globally to decrease carbon dioxide emissions due to pressure to combat global climate change and guarantee viable power sources [12]. In addition, renewable energy is required instantly to replace oil resources to decrease the heavy dependence on crude oil and its unwanted impacts on the atmosphere [13].
In the last few years, the resources of renewable energy, particularly, biogas, have gained massive attention around the world as a substitute for traditional fossil fuels [14]. In Southeast Asia, palm oil biomass is considered one of the most plentiful renewable resources and has enormous potential for the sustainable production of chemical substances and fuels. Liquid waste, known as palm oil mill effluent (POME) generated along with crude palm oil production, is one of Southeast Asia’s environmental problem due to its high pollution characteristics. Therefore, digestion, an aerobic treatment, is widely adopted in the oil palm industries as a reliable and effective treatment for POME. The biogas generated during POME’s anaerobic decomposition is not restored for use, but can be dissipated into the atmosphere [15]. The biogas produced contains two greenhouse gases: methane (60–70%) and carbon dioxide (30–40%) with traces of hydrogen sulfide which can be utilized after purification for heat generation, electricity production, bio-methane production and of synthesis gas (referred to as syngas, mixture of H2 and CO) [16]. In fact, POME could become a significant source for biogas production due to its high organic content [17]. According to the World Meteorological Organization [18], methane and carbon dioxide levels were reported at 1845 ppm (parts per million) and 400.1 ppm (parts per million) respectively in 2015. Methane levels in the environment have been revealed to be below carbon dioxide levels, but have caused about 20% of worldwide warming [19]. Methane production was estimated at 6875 million metric tons which equals the total amount of carbon dioxide from all anthropogenic sources in 2010 [20]. Methane is frequently considered an important natural gas component with small amounts of other hydrocarbons such as ethane, propane and butane containing inert substances such as molecular oxygen (O2) and carbon dioxide [21]. When monitoring the negative impact of methane and carbon dioxide, it is paramount to reduce their concentrations so that to avoid the high concentration of the greenhouse gases that lead to negative environmental conditions and increased temperature.
A great deal of extensive studies has been conducted to discover efficient methods of converting methane and carbon dioxide into precious products and thus reducing their elevated atmospheric quantity. Because of its comparatively low price and stability relative to other methods, converting carbon dioxide and methane into syngas is one of the most prevalent technologies [22]. It is one of the most important processes to convert hydrocarbons in the chemical industries to produce syngas [23]. In many distinct applications, such as Fischer-Tropsch (F-T) petroleum synthesis and the manufacturing of methanol and other precious fluid fuels and chemicals, syngas can be regarded as a construction block [24].
Recently, there have been many attempts that have prompted interest in producing alternative fuels by using renewable and environmentally friendly sources of energy, one of the few alternative sources is biogas. Even so, it is not entirely greenhouse gas-free; it does not, however, lead to global warming. Biogas is an appealing alternative for converting fuel to transport and generate electricity [25]. The vital route that will be of benefit to the power generation industry is the direct conversion of biogas, composed of methane and carbon dioxide to hydrocarbons under catalytic decomposition processes.
The use of catalysts in the catalytic reaction is essential in growing syngas manufacturing, as they assist to alter and enhance the reaction rate without consumption in the process [26]. Catalysts operate by offering an alternative mechanism that decreases energy activation, which implies the system needs less energy to achieve the state of transition. While catalytic reaction needs elevated temperatures to operate due to its heat-absorbing nature, the existence of catalysts can significantly decrease the reaction temperature [27].
Recently, there have been many attempts to use monometallic catalysts such as Ni, Co, Fe and Cu in the catalytic process because they are cheap and have a strong magnetization ability [28, 29]. Furthermore, bimetallic such as Ni-Co, Ni-Fe, and Ni-Cu have become very attractive to researchers due to their properties and the diversity of applications when compared with their individual mono-metal counterparts. The incorporation of nickel into Co, Fe, and Cu metals decreases the use of expensive noble metals [30]. Bimetallic catalysts success is thought to be due to the synergy of their parent metals they consist of two separate metals that display elevated dispersion and active sites. Moreover, the physical and chemical properties of the bimetallic catalysts are enhanced due to the formation of the solid solution [31]. For example, Pudukudy et al. [32] and Pinilla et al. [33] revealed a greater carbon output from a bimetallic catalyst compared to a monometallic catalyst.
At the moment, the adverse effect on the environment from the burning of fossil fuels, coal and compressed natural gas has become one of the main global issues [34]. Climate change occurs when the greenhouse effect rises, as demonstrated by flash floods, wind storms, heat waves and sudden droughts in a number of nations [35]. In addition, worldwide demand for energy is growing while fossil-fuel energy sources are quickly declining. Fossil fuels are one of the non-renewable energy resources that will be depleted in several decades if large-scale sources of energy are continually used [36]. As shown in Figure 2, the world production of fossil oil is at the peak of the production, and it is expected to diminish by the year 2050 [37]. Because of these situations, it is essential to replace petroleum consumption, minimize future expenses and eliminate the adverse effect on health and the environment. Thus, the replacement of non-renewable energy source with renewable resources is imperative to fulfill the needs of the energy demand without causing harm to the environment and mankind [38]. Due to this crisis, various kinds of energy are used to meet the large demand for petroleum-based fuel such as wind turbines, river dams, solar panels, geothermal power and biofuels [39].
Oil and natural gas production in the NZE (adapted from Ref. [
The conversion of methane into liquid fuels or greater hydrocarbons has been performed extensively. Bradford and Vannice [40] studied the growth of methanol, formaldehyde, propanol, benzene and other aromatics through direct oxidative conversion of methane. Unfortunately, all the aforementioned processes produce low yields or they are not recommended for an industrial scale. Today, various technologies are available for the production of syngas from natural gas. This gas is a component of precious fluid fuels and chemicals like Fischer-Tropsch oil, methanol and dimethyl ether [41].
The most significant renewable energy sources in the globe are biomass and hydropower. However, the use of other renewable resources is necessary to minimize the negative climate impacts caused by the excessive use of fossil fuels. In that sense, biogas will play an important role in the future. The biogas primary energy has increased 70% between 2008 and 2013 [42] and its production is expected to double in 2022 up to 45 × 109 m3. Biogas is a gas consisting primarily of methane and carbon dioxide generated from anaerobic digestion of organic matter from agricultural waste, landfills, urban wastewater and industrial wastewater. It is considered, therefore, a renewable energy source [43].
Based on the residue, biogas can contain traces of other compounds that hinder its use in the production of energy, making it necessary to install costly purification systems. Among them, the most significant are H2S, NH3, halogenated hydrocarbons and siloxanes. Biogas has traditionally been regarded a non-value by-product usually burned in flares to avoid hazards to humans and the environment and then released into the atmosphere. Recently, various options for biogas use such as heat, electricity, mixed heat and energy or the manufacturing of bio-methane have been suggested. Nevertheless, from an economical point of view, all the previous biogas applications depend on government feed in tariff policies. Besides, different countries like Malaysia, Germany, Spain or Italy, have reduced or even removed the cost-based compensation creating an unstable scenario for the renewable energy producers [44]. Therefore, the manufacturing of fresh biogas products is not only interesting but essential in order to reduce the obstacles to profitability.
One of the alternatives considered is the manufacturing of syngas that consists of a blend of H2 and CO and is the basis of C1 chemistry [45]. Depending on the syngas H2:CO ratio, it can be used to produce methanol, dimethyl ether (DME), liquid hydrocarbons (Fischer-Tropsch process) or H2. Syngas can be acquired from several procedures such as methane steam reforming, partial methane oxidation or dry methane reforming.
Due to overdependence on fossil-based fuels and increasing environmental concerns, the resources of renewable energy, in particular biogas, have gained massive attention around the world as a substitute for traditional fossil fuels. Biogas is obtained from the process of the anaerobic digestion of organic compounds. Methane (40–70%) and carbon dioxide (30–60%) are the primary compounds of biogas [46]. One of its most common applications is the direct combustion for energy recovery through co-generation plants that produce electricity and heat. Nevertheless, the use of renewable sources of methane like the one contained in biogas (bio-methane) for different applications like the production of hydrogen is a more interesting option than the use of fossil methane [47].
In this context, the catalytic decomposition of methane (CDM) (Eq. (1)) is being studied as an alternative to steam reforming of methane (SRM) to produce CO2-free hydrogen. The CDM in a single step produces a mixture of hydrogen and unconverted methane, which can be directly used as fuel in internal combustion engines or, even directly used to power a fuel cell [47].
The catalysts traditionally used in the CDM consist of transition metals belonging to group VIII (Ni, Fe, Co) supported over different metal oxides such as Al2O3, MgO, La2O3, and CeO2 [48, 49]. These catalysts are characterized by promoting the formation of carbon nanostructures (carbon nanofibers or carbon nanotubes) varying their textural and structural properties as a function of the catalyst composition and the operational conditions [50]. These carbon nanostructures have very interesting properties for their use in applications where thermal and electrical conductivity of materials is a key factor. However, one of the problems of the CDM is the deactivation over time of the catalysts due to carbon deposition that encapsulates the metal particles disabling their active sites [51].
Co-feeding with CH4 different oxidizing agents such as H2, H2O or CO2, can increase the life of the catalyst. Co-feeding with H2, inhibits the deactivation of the catalyst at the expense of a desired product, which reduces the efficiency of the process while the use of CO2 as Co-feeding induces Boudouard reaction (Eq. (2)) thereby resulting in gasification of graphitic carbon produced during the CDM reaction.
The use of CO2 in the CDM process has been studied by two approaches: some authors have suggested a cyclical process consisting of a methane decomposition step followed by another stage of gasification of the deposited carbon with CO2. Other authors have studied the decomposition of mixtures CH4:CO2 in conditions that favor the formation of nanostructured carbon. Nagayasu et al. [52] observed a slow deactivation of a Ni based catalyst to be used in the CDM in the presence of CO2. They also noted an increase in carbon accumulation capacity in the form of nanotubes by increasing the partial pressure of CO2 co-fed along with that of CH4.
Asai et al. [53] confirmed the inhibition of the deactivation of the catalyst studied in the decomposition of methane in the presence of CO2, suggesting a mechanism based on the gasification of graphitic carbon layers that encapsulate the catalyst particles, allowing the formation of carbon in the form of nanotubes. Indeed, co-feeding of CH4 and CO2, which are the main components of biogas as previously mentioned, modifies the reaction mechanism of methane decomposition into carbon and H2, to a process called dry reforming, which produces a mixture of H2 and CO. This is a highly endothermic reaction that takes place by way of a catalyst in the temperature range between 600 and 800
This syngas can be used in multiple applications such as fuel for solid oxide fuel cells or Fischer-Tropsch synthesis to produce environmental friendly liquid fuels, when using a renewable source such as biogas [55]. If the aim is to produce H2, then a water gas shift reaction followed by CO2-H2 separation should be accomplished. The practical implementation of the dry reforming of methane (DRM) faces many key challenges, which also apply to the biogas decomposition, and one of the most important is the deactivation of the catalysts due to the formation of carbon during the reactions of CH4 decomposition and CO2 disproportionation [56]. Also, Edwards and Maitra [57] reported that it is convenient to work at high temperatures and low ratios of CH4:CO2 (<1), to minimize carbon formation from a thermodynamic point of view. However, from the industrial point of view it would be much more desirable to work at moderate temperatures and CH4:CO2 ratios close to one, despite these are conditions under which carbon formation is thermodynamically favored.
Another issue that should be addressed is the high sulfur content of the biogas. This can provoke severe metal catalysts deactivation, therefore an exhaustive desulphurization of the biogas fed to the catalytic decomposition of biogas (CDB) reactor would be required when using a real biogas. The most commonly used methods for hydrogen sulphide removal can be found in [58]. The more active catalysts that promote the lower carbon deposition are precious metals, but its high price provokes that the most widely used catalysts for dry reforming are based on Ni, Co and Fe [59], which are the same catalysts traditionally used in the CDM.
Since the typical CH4:CO2 ratio in biogas composition is higher than 1 (CH4 concentration in biogas can be as high as 70% depending on its origin), avoiding carbon deposition in the biogas decomposition reaction is not a task easy to accomplish. Thus, as previously mentioned, the presence of CO2 along with the selection of optimum operating conditions for the deposition of carbon could prevent the rapid deactivation of the catalyst, resulting in a new biogas recovery process in which a gas with a suitable composition for its use in an internal combustion engine and carbon nanofibers (CNF) with multiple applications in sectors such as energy and transport are obtained. Direct decomposition of a gas simulating a typical biogas composition by means of metal catalysts under conditions that are favorable for carbon deposition has been studied by Muradov and Smith [60]. The problem associated to carbon deposition through decomposition of CH4:CO2 mixtures with ratio >1 was solved by adding small amounts of steam, prolonging the catalyst life. Some previous works by De Llobet et al. [61] focused on a study of CDB, conducted at moderate temperatures and using typical catalysts previously used in the CDM, promoting the formation of nanostructured carbon and syngas. As per their report, the Ni/Al2O3 catalyst exhibited high activity as well as stability, allowing them to obtain high CH4 conversion together with the high-yield production of fishbone-like nanocarbon.
Figure 3 illustrates a key aspect of the thermodynamics of any possible CO2 conversion. The figure also demonstrates the free emission of CO2 from Gibbs and its associated substances. It is evident that CO2 is an extremely stable molecule; it therefore requires significant energy input, optimized reaction conditions and (almost invariably) active catalysts for any chemical conversion of CO2 into a carbonaceous fuel.
Gibbs free energies of formation of selected chemicals (adapted from Ref. [
However, it is important to note that chemical reactions (conversions) arise due to the difference in the Gibbs free energy between the reactants and products of a chemical reaction (under certain conditions). This is illustrated by the Gibbs-Helmholtz relationship (Eq. (3)):
Therefore, the comparative stability of the ultimate response products must be taken into consideration in the effort to use CO2 as a chemical feedstock compared to the use of reactants. Both terms (Δ
Freund and Roberts [63] highlighted the significant contribution of CO2 surface chemistry. They claimed that any progress in the use of CO2 as a useful reactant can be achieved in relation to fuel synthesis by using novel catalytic chemistry wisely. They attempted to illustrate that the greatest potential impact lies in this area of material chemistry, physics and engineering. These researchers also pointed out that a positive change in free energy should not be considered as a reason enough not to pursue potentially useful CO2 reactions. This is because, Δ
Since the kinetics are favorable, CO2 decrease to CO (a key step in all conversion reactions), the primary step in all transformation responses, may also be feasible on metal surfaces or other catalytic materials, for instance on nano- and mesoporous metal particles [62]. Presently, a large number of industrial-scale chemical manufacturing processes worldwide operate on the basis of strong endothermic chemicals. The SRM to yield syngas and hydrogen is a classic example (Eq. (5)):
It is important to emphasize that the above-mentioned, highly endothermic reaction is used to produce large quantities of ‘merchant hydrogen’ in the gas, food and fertilizer industries worldwide. The corresponding DRM reflects the important reaction of CO2 with hydrocarbons, which will be central to our idea of converting CO2 into flue gases to produce chemical fuels (Eq. (6)):
The energy input for DRM requires about 20% more energy input than the SRM, but there is definitely no restricted additional energy cost for this chemical reaction. It is important that these two reactions lead to syngas with different H2:CO molar ratios. For the final production of liquid fuels, both are useful for the formation of horns.
Figure 4 shows the enthalpy of the chemical reactions of the CO2 conversion. This means that CO2 is thermodynamically much easier to use as a co-reactant, usually with a higher (i.e. less negative) Gibbs free energy, such as H2 or CH4. These hydrogen-containing energy carriers give their internal chemical energy to promote the conversion of CO2. Therefore, the heat of reaction (enthalpy of reaction) from CO2 to CO production is important and obvious as the individual reactive and CO2 energy as a key factor. Compare the thermal decomposition energies of CO2 (Eqs. (7) and (8)).
The enthalpy of reaction for syngas production and Fischer-Tropsch (FT) synthesis of methanol and dimethyl ether (adapted from Ref. [
With that of the reaction of CO2 with H2 (Eq. (8))
This aspect may be further illustrated by the process of ‘oxyforming’, whereby the amount of oxygen in the dry reforming reaction is increased deliberately. In doing so, the reaction enthalpy of reaction is significantly reduced (Eqs. (9) and (10)):
The fundamental material challenge in this area lies in the fact that, generally, the reaction between CO2 and H2 occurs at high temperatures on multi-component heterogeneous catalysts [64].
Syngas is a blend of carbon monoxide and coal with a tiny quantity of methane and carbon dioxide. In the ever changing energy landscape, it is not only versatile, but also an increasingly important commodity. There are various carbon sources that happen through gasification or catalytic reformation for the manufacturing of syngas. Coal, natural gas (mainly methane), petroleum, and biomass could be the sources of carbon. The primary technical problem with fossil fuel syngas manufacturing is the complicated purification and conditioning procedures of syngas. The main reasons why the world has become more interested in the producing of biomass-derived syngas are therefore to decrease over-dependence on fossil fuels, to impose stricter CO2 emission standards and to verify the accessibility of resources. Roddy [65] claimed that biomass could originate from industrial, domestic, agricultural and urban waste sources as a feedstock for syngas production. The use of biomass or waste as the raw material for syngas manufacturing is theoretically two-pronged: the generation of clean energy and an effective way to reduce waste as reported by Markets and Markets [66], a compound annual growth rate (CAGR) of 8.7% is anticipated to achieve 117,400 MW (Megawatts) heat in 2018. Boerrigter and Rauch [67] estimated the future market for syngas to increase to 50,000 petajoules (PJ) per annum, equivalent to 13.9 × 109 MWh per annum in, 2040. This amounts to replacing an average 30% fossil fuel usage is 10% of the complete world power consumption. They also projected that syngas will be used primarily in gas-to-liquid (GTL) procedures, with 49% for gas-to-product (GTP) procedures and 39% for renewable gas and hydrocarbon manufacturing. In, 1993, Shell Malaysia built the world’s first commercial GTL plant in Bintulu, Sarawak. Since, 2003, as many as for 14,700 barrels of high-quality GTL products have been produced per day. This is clearly an upgrade in the production from its original capacity of 12,500 barrels per day. As reported by the Borneo Post, Shell’s GTL plant plans to invest RM (Malaysian ringgit) 48.36 million to rejuvenate its plant in Bintulu in, 2015. The world’s largest GTL plant is located in Qatar, with a production capacity of 140,000 barrels of product per day.
In short, the development of the market for syngas is accelerating, the important increase in syngas consumption is due to its use as an energy precursor. The presence of CO, H2 and CH4 gases, which possess certain heating value, makes it highly in demand. Syngas also includes approximately 50% of natural gas’s power density. Subramani et al. [68] reported that 1 kg of H2 contains the same amount of energy as 2.6 kg of CH4, which is equivalent to 3.1 kg of gasoline. H2 is used at low temperatures because of its elevated energy content; fuel cells are used to produce electricity, power cars or even in the synthesis of Fischer – Tropsch. In addition to serving as an energy carrier, it has traditionally been used as a feedstock for the mass production of significant chemicals, such as methanol, ammonia or fertilizers.
Carbon nanofilaments are nanometric filaments with diameters between 1 and 200 nm and lengths of up to several microns. These materials are composed mainly of graphite type carbon whose basic structural component is graphene [69]. Graphene can be defined as the combination of carbon atoms with sp2 hybridization, where each carbon atom joins three others forming a flat hexagonal tessellation (basal plane or graphene layer) [70]. The parallel stacking of several of these layers’ outcomes in graphite characterized by an elevated structural order and a distance of 0.3354 nm between the distinct graphene layers (crystalline domain or interplanar distance, d002) (Figure 5).
Representative scheme of crystal structures of graphene (adapted from Ref. [
On the other hand, carbon nanofilaments have a structural order inferior to that of graphite and according to the Franklin classification [72] correspond to turbostratic type materials, that is, they have crystalline domains greater than graphite and smaller than non-graphitic carbons (0.3354 < d002 < 0.344 nm).
Within carbon nanofilaments we can distinguish two types: carbon nanotubes (CNT) and carbon nanofibers (CNF). The CNT can be considered as layers of graphene rolled into hollow tubes [73]. Depending on the number of layers that make up the CNT, they are classified as single wall CNT (SWCNT), formed by a single layer, or multiple wall CNT (MWCNT), formed by 2 or more concentrically coiled layers (Figure 6a) [73]. On the other side, the CNF can be hollow or strong and are categorized with regard to their longitudinal axis according to the angle they form graphene layers (α). The most common types of CNF are platelet, parallel (also named ribbon or tubular) and fishbone (Figure 6b) [73]. Platelet CNF are characterized by the fact that the graphene sheets are arranged perpendicular to the growth axis of the CNF (α ≈ 180°), while in the fishbone type the angle α is between approximately 20–160° [74].
Simplified representation of the different kinds of (a) carbon nanotubes (SWCNT and MWCNT), and (b) carbon nanofibers (platelet, tubular, fishbone) (adapted from Ref. [
They are also called Herringbone. Finally, the parallel types would be those in which the sheets are parallel to the longitudinal axis of the CNF (α ≈ 0°). Unlike Figure 6b, this sort of structure can also be tubular and therefore it is not feasible to distinguish them from MWCNT by using electronic microscopy methods. However, there is some controversy, parallel type CNF tend to present areas along their structure in which the graphene layers are not oriented in parallel (α > 0°) as well as numerous imperfections such as the union of the layers’ graphene inside the nanofiber (loops). Along with these three morphologies, in the CNF world there are other types of less common structures such as bamboo CNF, which are characterized by having internal holes that occur periodically due to the movement of the catalytic particle during the growth of the CNF, or the octopus-type NFCs that are generally produced when a Ni catalyst doped with Cu [75] is employed. Although there is a bibliography related to the formation of carbon filaments since the late nineteenth century, it was the discovery of the transmission electron microscope (TEM) in 1939 that really represented a breakthrough in this field since it allowed the observation in detail the morphology of this type of structures [76]. Initially, the interest in carbon formation derived from the problems that its accumulation caused in the processes of conversion of hydrocarbons (deactivation and destruction of catalysts or plugging of reactors) and therefore, the objective was to understand how and why it was generated in order to avoid their formation [77]. However, since the discovery of CNT by Iijima [78] in the 90s and due to the properties that carbon nanofilaments present (high specific surfaces and high electrical conductivities and thermal, the approach changed and numerous studies were initiated to optimize their production [79].
Numerous reform techniques have been created to fulfill the long list of demands required in downstream chemicals procedures. Dry Reforming of methane is the most prevalent technique used in the syngas sector through one of three reforming procedures: (1) steam reforming of methane (SRM), (2) partial oxidation of methane (POM) and (3) dry reforming of methane (DRM). The difference between the three techniques is based on the oxidant used, the kinetics and reaction energy, and the percentage of syngas produced (H2:CO).
The SRM approach produces a higher H2:CO ratio of 3:1 compared to the ratio required for Fischer-Tropsch (F-T) synthesis of 2:1 [80]. Due to its endothermic nature, SRM requires an extensive energy input so it is very expensive. In addition, a higher H2O:CH4 ratio is required to achieve a higher H2 output, making the SRM process less favorable and speeding up the activation of catalysis. Moreover, SRM faces corrosion problems and requires a desulfurization unit [81].
In the case of POM approach, this process is suitable for producing larger amounts of hydrocarbons and naphtha. Typically, POM has a very short residence time, high selectivity, and high conversion rates [82]. However, the exothermic nature of the reaction causes the induction of hot spots in the catalyst and makes it difficult to control the process. In addition, POM requires a cryogenic unit to separate oxygen from air. In the case of POM, this process is suitable for producing larger amounts of hydrocarbons and naphtha. POM typically has a very short period of residence, high selectivity and high conversion rates. The exothermic nature of the response, however, allows warm spots in the catalyst to be induced and makes the method hard to regulate and POM requires a cryogenic unit to separate oxygen from air [83].
DRM approach is the most promising of all techniques, as it utilizes two greenhouse gases (CO2 and CH4) to generate industry-significant syngas while at the same moment lowering excessive greenhouse gas emissions. The DRM method is also cheaper than other techniques, as it eliminates the complicated gas separation of finished products. It generates the ratio H2:CO that can be used to synthesize oxidized chemicals and F-T synthesis long-chain hydrocarbons. DRM can also be extended to biogas (CO2, CO, and CH4) as a raw material for cleaner and eco-friendly fuels. DRM syngas is also a solar or nuclear energy storage facility [84]. Since reaction is endothermic, the process is generally carried out at temperatures between 450 and 900°C. In addition, the utilization of a catalyst is required in order to obtain acceptable CH4 conversions. The practical application of the DRM faces many significant obstacles and one of the most significant is the deactivation of the catalysts due to carbon formation during CH4 decomposition and CO2 disproportionate responses. Working at elevated temperatures and low CH4:CO2 ratios (<1) is useful from a thermodynamic point of perspective to prevent carbon formation. From an industrial point of perspective, however, work at mild temperatures and CH4 would be much more desirable: CO2 ratios close to one. Nevertheless, circumstances under which thermodynamic carbon formation is favored [85].
In this context, the DRM’s attempts focus on developing a catalyst that demonstrates elevated activity and stability and low carbon formation and price at the same moment. In one of the first works related to the DRM, Fischer and Tropsch studied different metals belonging to groups 8, 9 and 10 (Ni, Co, Fe, Mo, W, Y, Cu). Among them, only Ni and Co showed a good activity (XCH4 ≈ 90%). Years later, Gadalla et al. [86] tested different commercial Ni-based catalysts, obtaining CH4 conversions near 100% during 70 h of operation. Nonetheless, in order to avoid carbon deposition and catalyst deactivation they used CH4:CO2 ratios below 0.5 and temperatures above 900°C. Due to their high activity and lower carbon formation as compared to Ni, noble metals have been extensively studied as catalysts for the DRM [87]. However, their high cost and low availability make other metals more attractive from an industrial point of view. Due to their reduced cost compared to noble metals, Ni, Co and Fe were also widely researched and in the last years, bimetallic catalysts have stood out.
In order to synthesize an enhanced catalyst, these catalysts aim to potentiate the features of both metals. Ni-Co bimetallic catalysts showed a very healthy conduct among them. In any event, carbon deposition issues are even more important when using biogas. Biogas usually has higher CH4:CO2 ratios than one that ultimately leads to bigger quantities of carbon depositions that quickly deactivate the catalysts. However, distinct types of carbon are created during the decomposition of hydrocarbons and luckily not all of them are directly liable for the deactivation of catalysts. The sort and location of carbon atoms is more important than the amount generated when considering catalytic activity, according to Pinilla et al. [88]. Generally, only carbon encapsulation is directly liable for deactivation of the catalyst owing to active center coverage, while other carbon structures, such as carbon nanofilaments, can only cause operational issues when manufactured in big amounts as reactor blockage.
Studies of DRM’s kinetics and mechanisms were conducted to determine an appropriate reaction rate model, either empirically or on the basis of a theoretical response mechanism to best suit the relevant experimental information and possibly describe the response rate and the chemical process. This understanding can further optimize the design and layout of the chemical system catalysts (the reactor), which can further improve DRM’s overall development with more cost-effective technology [89]. Although, from a mechanistic point of perspective, steam reforming has received much attention, there has been a resurgence of interest in dry reforming over the previous centuries. A series of catalysts for DRM were researched as a consequence. This has resulted in a number of mechanistic measures for DRM being published in the literature. The DRM reaction mechanism was explored by Aldana et al. [90] over a Ni-based catalyst.
Aldana et al. reported that H2 dissociates on Ni0 locations while carbon dioxide is activated on ceria-zirconia assistance to generate carbonates that can be hydrogenated into formats and then into methoxy species. This mechanism includes weak fundamental support sites for carbon dioxide adsorption and includes a stable interface between metal and support. Compared to Ni-silica, which activates both carbon dioxide and hydrogen on Ni0 particles, these characteristics lead in much better operations of these catalysts [90]. This mechanism is also supported by Pan et al. [91]. Meanwhile, Ayodele et al. [92] conducted a DFT analysis of the DRM over Ru nanoparticles supported on TiO2 (101).
Extensive research was carried out to study the impacts of altering process variables on catalyst performance for the DRM reaction. This inquiry is essential as various process factors may result in variable catalyst performance [93]. The notion of activation energy should be considered as it will determine the response rate. Table 1 tabulates the activation energy (
Catalyst | Preparation method | Total flowrate (mg) | Catalyst Amount (kJ/mol) | Ea(CH4) (kJ/mol) | Ea(CO2) (kJ/mol) | Ref. |
---|---|---|---|---|---|---|
Ni/Al2O3 (400–650°C) | Wet impregnation | 28 | 500 | — | 64.4 | [94] |
4.82Ni/Al2O3 (750–850°C) | Incipient wetness | 100–980 | — | 242.67 | 115.86 | [95] |
7Ni/MgO (550–750°C) | Incipient wetness-impregnation | — | 10 | 105 | 99 | [96] |
5Ni/MgAl2O4 (600–800°C) | Co-precipitation | 30 | 20 | 26.39 | 40.43 | [97] |
13.5Ni-2K/5MnO-Al2O3 (550–800°C) | Impregnation | 400 | 50 | 113.8 | — | [98] |
0.3Pt-10Ni/Al2O3 (580–620°C) | Sequential impregnation | 100 | 5 | 112.55 | 98.74 | [99] |
8%Ni/α-Al2O3 (550–750°C) | Wet impregnation | 360 | 40 | 89.1 | 88.6 | [100] |
Ea values over several Ni-based catalysts for DRM reaction.
In the meantime, Cui et al. [100] conducted a thorough study of the DRM mechanism over Ni/α-Al2O3 using steady-state and transient kinetic methods at 550–750°C temperatures. Their results show that the CH4 dissociation and CO2 conversion
According to Kathiraser et al. [93], distinct gas hourly space velocities (GHSVs) need to be tested to eliminate internal mass transport resistance. The aim of this experiment is to verify that the conversions have reached a stable value and that a further shift in GHSV does not influence the conversion of reactants. The contact time, which plays a significant part in CO2 and CH4 conversions, is another consideration. When the contact time value is high, CO2 or CH4 conversions stay unaffected. The particle size of the catalyst should be held as small as possible to eliminate inner mass transport resistance, so that a further reduction in size does not impact conversions.
Kim et al. [101], explored the use of a CO2-photoacoustic signal (PAS) to analyze kinetically the DRM reaction on a Ni catalyst supported on Al2O3 and TiO2. They discovered that the reason why mass flow rates low are used is because this method generates heat periodically because when a material absorbs a modulated laser beam, the photoacoustic signal is produced. It is essential to remember the characteristics of kinetic curves that act as the reaction mechanism’s blueprints. These include the point of inflection, a brief period of induction or breakpoints. No particular GHSV can be found from all the results to eliminate the impacts of constraints on mass transfer. This indicates that the development of inherent kinetic models is critical in preliminary research.
Numerous studies on the development of active and coking-resistant DRM reaction catalysts have been published [102, 103]. Common DRM catalysts are backed by noble metal catalysts like Ru, Rh and Pt and backed by transition metal catalysts like Ni and Co [104, 105, 106]. The calculations for the result showed that noble Ru and Rh metals exhibit greater activity than Ni as long as the particle sizes and dispersion are the same [106]. While noble metals such as Ru, Rh and Pt in the DRM response are very effective and more resistant to coking than other transition metals, they are not readily accessible and are also costly [104].
Ni-based catalysts are the most frequently used for commercial purposes on an industrial scale. In order to commercialize the industrial sector DRM response, the primary focus is on developing inexpensive and cost-effective catalysts with high activity and high carbon deposition resistance. Researchers performed research on the sort of assistance used and the impacts of adding promoters to Ni-based catalysts in order to define the most efficient way to enhance their coking resistance. In addition, latest efforts to enhance catalytic activity and inhibit carbon formation are aimed at combining two or three metals as active locations [105, 107]. Pre-treatment process preparation method and catalyst also play a crucial role in altering structural characteristics, implementing behavior decrease and enhancing catalytic efficiency [108]. Besides establishing the Ni-based catalyst with certain modifying agents in the catalyst preparation, the incorporation of Ni particles in the mesoporous aid could also enhance the conversion of reactants and the yield of products by preventing the sintering of metal particles and improving the metal-supporting connection. This metal produces desirable results due to the high specific region of mesoporous materials which can increase the dispersion of Ni particles on the supported catalyst [109].
In addition, the strong interaction between metal and support stabilizes the Ni particles incorporated in the mesoporous matrix. Multiple contact regions between the Ni particles and the support could improve thermal stability and support metal cooperation and support. The incorporation of Ni-based catalysts into mesoporous supports such as MCM-41, SBA-16, TUD-1, meso-Al2O3 and meso-ZrO2 has, as reported in the literature, demonstrated high catalytic activity and high carbon resistance in DRM. Catalyst supports can also be synthesized from plants, which is crucial for the effectiveness of DRM catalysts. The use of polymers from trees has been an interesting region among scientists in latest years with the aim of increasing the velocity of chemical reactions. In addition to generating high-quality chemicals, catalysts installed on commonly accessible cellulose incur low manufacturing expenses [110].
Abimanyu et al. [111] reported that the main steps to synthesize catalyst supports are pretreatment and hydrolysis. Ni-based catalysts have been used industrially as metal precursors in DRM, but the need to refine the metal to improve catalyst performance has recently attracted the interest of many scientists, as these particles demonstrated promising physical and chemical properties with elevated technological applications potential.
The preparation technique significantly affected a catalyst’s physico-chemical characteristics and efficiency, according to Jang et al. [112]. It has therefore been noted that impregnation and co-precipitation are the most commonly used standard techniques of catalyst preparing. Another less prevalent technique for preparing catalysts is sol-gel, which generates a distribution of fine size. This method reduces the deactivation rate, offers high thermal resistance to agglomeration and creates a product of high quality compared to conventional methods.
A new non-thermal glow discharge plasma method has recently been developed to improve metal support interaction, boost the distribution of Ni particles and improve the activity and stability of the catalyst [113]. However, in comparison with simpler preparation techniques, plasma therapy is comparatively costly. This would improve the activity and stability of the catalyst in the DRM response by combining novel catalytic material and techniques.
Supported bimetallic catalysts demonstrate increased DRM activity and stability based on Zhang et al. [114] study. The preparation technique is one of the main variables responsible for the bimetallic catalyst’s outstanding catalytic results. During catalyst preparing, the use of high calcining temperature outcomes in strong interactions between metal and support, which converts the catalyst into stable frame-like constructions. In particular, carbon formation is efficiently blocked during the catalyst decrease by using Ni-Co alloy compared to using single Ni sites. The synthesis method of different catalysts also affects the reaction effectiveness. For example, the method of co-precipitation may produce smaller sizes of metal particles compared to the use of wet impregnation.
There are focuses on the development of DRM catalysts for catalysts with the following features: greater activity and greater stability towards coke formation, sintering, the formation of inactive chemical species and metal oxidation [115]. The catalytic efficiency could be improved by changing the catalyst’s active sites by adding supports and promoters during catalyst preparing to increase conversion and selectivity [116]. Table 2 shows several catalysts that have been developed recently, including Ni-based catalysts applied to the DRM reaction.
Catalyst | Preparation method | GHSV (mL/gh) | Temperature (°C) | CH4 conversion (%) | CO2 conversion (%) | H2/CO ratio | Ref. |
---|---|---|---|---|---|---|---|
Co-, Cu- and Fe-doped Ni/Al2O3 | Fusion | 12,000 | 650 | 34–40 | NA | NA | [30] |
25–55%Ni/MeOx(Me = Al, Mg, Ti, and Si) | Evaporation-induced self-assembly | 48,000 | 600 | 76 | NA | NA | [50] |
Ni/Ce-Al2O3 and Ni/Ce-Zr-Al2O3 | Wet impregnation | 21,000 | 800 | 66.7–79.5 | 45.2–86.9 | NA | [58] |
5% Ni/MgAl2O4 | Microwave-assisted combustion | NA | 850 | 83 | — | ≈1 | [102] |
5,10,15%Ni/MgAl2O4 | Homogenous precipitation | 12,000 | 700 | 78 | 89 | NA | [103] |
K,Mg,Ce-2,8%Ni/Al2O3 | Wet impregnation | NA | 160 | 31.6 | 22.8 | 2.2 | [107] |
5–100%NiH-Ce | Co-precipitation | 20,000 | 550 | 35–55 | 35–45 | 0.55–1.60 | [115] |
5,10,15%NiMgAlCe | Co-precipitation | 29,000 | 750 | 33–48 | 57–69 | 0.78–0.96 | [116] |
Pd, Pt-55%Ni-Cu/MgO·Al2O3 | Wet impregnation | 48,000 | 675 | 84 | NA | 0.55–1.50 | [103] |
15%Ni/ZrTiAlOx | Sol-gel & impregnation | 45,000 | 600 | 85 | 95 | 0.95 | [117] |
10Ni + 3%Ce/8%PO4 + ZrO2 | Wet impregnation | 28,115.4 | 800 | 95 | 96 | NA | [118] |
Ni-Mo2C/MgO | Sol-gel | 30,000 | 850 | 90 | 85 | NA | [119] |
NiO–10Al2O3–ZrO2 | One-step synthesis method | 48,000 | 700 | 92 | 90 | 0.73 | [120] |
Ni-W/Al2O3-MgO | Co-precipitation | 36,000 | 777.29 | 87.6 | 93.3 | 1 | [121] |
Catalysts developed for the DRM reaction.
Deactivation of catalyst relates to loss of activity of catalyst during the response. It is the significant drawback of metal-based catalysts, as it not only creates product reductions that affect the response rate, but also costs industry millions of cash to replace the catalyst. Catalyst deactivation basically relates to three elements, according to Bartholomew and Farrauto [122] chemical, mechanical and thermal. Catalysts for metal reforming are frequently deactivated by coking, poisoning, fouling and sintering. Table 3 describes the mechanisms of catalyst deactivation.
Poisoning relates to the powerful adsorption in the feed of chemical substances such as impurities. Poisoning of catalysts may be reversible (temporary) or irreversible (permanent) [122]. The catalyst may be retrieved by air oxidation or steaming to wash its surface for reversible toxicity. For irreversible poisoning, however, the toxins cannot be removed, so replacing current catalysts with a fresh batch is essential. Sulfur species such as hydrogen sulfide are common poisons in all catalytic processes with reduced metals as the active site. S-poisoning, as in procedures of F-T synthesis and steam reform, is always a disaster.
In 2011, Bartholomew and Farrauto illustrated the mechanism of sulfur poisoning [122]. Firstly, the S atom adsorbs or blocks the reaction or active sites of the catalyst physically (geometric effect). Then, the S atom alters the metal atoms electronically. The metal ions subsequently alter their adsorbability or their capacity to dissociate with reactant molecules like H2 and CO. The S atom also alters the surface area and creates major catalytic characteristics alterations. This hinders the accessibility of adsorbed reactants to each other and thus slows down the adsorbed reactants’ surface propagation. Table 4 describes the typical poisons of industrial catalysts for different types of reaction. The avoidance of sulfur toxicity and sulfur strength can be improved by modifying the structure of the catalysts by incorporating certain additives, such as molybdenum and boron, which adsorb sulfur selectively or change the response circumstances. According to Bartholomew and Farrauto [122], reduction in the temperature of steam reforming over Ni/Al2O3 catalysts from 800 to 500
Mechanism | Type | Definition |
---|---|---|
Poisoning | Chemical | Strong chemisorption of species on catalytic sites, thereby blocking sites for catalytic reaction |
Fouling | Mechanical | Physical deposition of species from fluid phase onto the catalytic surface and in catalyst pores |
Thermal degradation (Sintering) | Thermal | Thermally induced loss of the catalytic surface area due to crystalline growth, support area and active phase support reactions |
Vapor formation | Chemical | Reaction of gas with catalyst phase to produce volatile compound |
Vapor-solid and solid-solid reactions | Chemical | Reaction of fluid, support, or promoter with catalytic phase to produce inactive phase |
Attrition/crushing | Mechanical | Loss of catalytic material due to abrasion Loss of internal surface area due to mechanical induced crushing of the catalyst particle |
Mechanisms of catalyst deactivation.
Reactions | Catalyst | Poisons |
---|---|---|
Steam reforming | Ni/Al2O3, Ni | H2S, As, HCl |
CO hydrogenation | Ni, CO, Fe | H2S, As, COS, NH3, HCN, metal carbonyls |
Automotive catalytic converters | Pt, Pd | Pb, P, Zn, S |
Ammonia synthesis | Fe | CO, CO2, H2O, O2, S, C2H2, Bi, Se, Te, P, VSO4 |
Catalytic cracking | SiO2-Al2O3, Zeolites | Organic bases, NH3, hydrocarbon, Na, heavy metals |
Poisons of the industrial catalysts.
Bartholomew and Farrauto [122], Christensen et al. [123], and Argyle and Bartholomew [124] describe the sintering of a heterogeneous catalyst as the loss of the catalytic layer, which is generally irreversible owing to the development of crystallite either on the supporting material or after thermal degradation in the active stage. Bartholomew and Farrauto [122] revealed two significant sintering parameters. The first is the sintering of temperature, including above the catalyst atmospheric temperature. The next is the sintering rate, which is impacted by the support structure and morphology, the metal particle size distribution, and the support’s phase transition. These two catalyst sintering processes are crystallite migration (coalescence) and nuclear or vapor transport (ripening of Ostwald). Christensen et al. [123] outlined that crystallite migration involves entire crystallite migration followed by collision and coalescence. In the meantime, Argyle and Bartholomew [124] addressed that Ostwald ripening relates to the migration of metal transport species emitted from one crystallite over the assistance or through the gas phase and caught by another crystallite. The author also stated that the sintering method is due to elevated temperatures and that owing to the presence of water vapor there is an increase in the sintering speed. Due to sintering impacts, Figure 7 demonstrates the conceptual models of crystallite development.
Conceptual models for crystallite growth due to sintering by (A) Ostwald ripening and (B) crystallite migration (adapted from Ref. [
Lif and Skoglundh [125] found that the co-impregnation of nickel catalysts with the oxides of alkali metals, alkaline earths or lanthanides suppresses the sintering effect. In addition, it was also shown that the catalyst preparation sequential impregnation technique improves the catalyst’s stability towards sintering. To conclude, it is extremely desirable that it possesses the following characteristics for the growth of a fresh catalyst: heat resistance, coking resistance and stability in syngas manufacturing.
Fouling is a physical (mechanical) deactivation that causes the loss of catalyst activity owing to coke deposition that blocks the reactive sites. Steam reforming utilizes catalysts primarily based on Ni. Coke deposition is a prevalent cause of deactivation of Ni-based catalysts. Temperature-programmed hydrogenation (TPH) and Temperature-programmed oxidation (TPO) methods are used to analyze carbon deposition on the used catalyst. The methods of TPH and TPO are used to define the features of the kinds of carbon species created during reaction on the catalysts [126]. According to Bartholomew and Farrauto [122], the types of carbon that may be formed during reforming are
No. | Structural type | Designation | Temperature of formation (K) | Peak temperature (K) for reaction with H2 | Ref. |
---|---|---|---|---|---|
1 | Adsorbed, atomic (dispersed, surface carbide) | Cα | 473–673 | 473 | [127, 128] |
2 | Polymeric, amorphous films or filament | Cβ | 523–773 | 673 | [127, 129, 130] |
3 | Vermicular (polymeric amorphous)
| Cν | 573–1273 | 673–873 | [127, 131, 132, 133] |
4 | Nickel carbide (bulk) | Cγ | 423–523 | 548 | [127] |
5 | Graphitic (crystalline)
| CC | 773–823 | 823–1123 | [127, 128, 131, 132, 134] |
Forms and reactivity of carbon formed by decomposition of CO on Ni.
CH4 cracking (Eq. (1)) and CO disproportionation are the two primary reasons for coke deposition during DRM (Eq. (6)). There are three possible carbon fouling mechanisms for the metal catalyst. The first mechanism is carbon, which deposits reactive sites on the catalyst and impedes binding of the reactants to the active locations. The carbon would otherwise encapsulate the catalyst’s reactive site and deactivate the catalysts. Another deactivation option resides in the coke being deposited in the catalyst pores, thereby stopping the reactants from crystallizing on it. The third mechanism involves carbon-forming needle-like filaments in the active site of the nickel catalyst, to some extent breaking the catalysts. Figure 8 shows the conceptual model of the mechanisms of carbon fouling of a catalyst.
Conceptual models of fouling, crystalline encapsulation and pore plugging of a supported metal catalyst (adapted from Ref [
Quincoces et al. [135] used DRM catalyst Ni/γ-Al2O3. They found that there were no rises in carbon deposition while the molar ratio of the reactants, CH4/CO2, was maintained in unity. This finding shows that by changing the response circumstances, such as the molar ratio of reactant feed, carbon deposition can be minimized. In their research, they discovered that a filamentous or whisker-like morphology was shown by the carbon deposit on Ni/γ-Al2O3. This finding is comparable to Kępiński et al. [136] reporting. Meanwhile, on a backed metal catalyst, Toebes et al. [137] recorded carbon formation with metal crystallites in addition to carbon filaments. The growth of carbon filaments has pushed the metal crystallites from the surface of the catalyst support.
Ito et al. [138] also proposed that CO2 could reduce the impacts of the fouling system. While the increasing carbon filaments remove the Ni metal, the introduced CO2 responds to CO through a reverse-Boudouard response with the carbon whiskers. One of the findings of their study was that after the removal of the carbon whisker, there is a decrease in bulk Ni. This renders the catalyst to be inactive for carbon deposition. However, there is an increase in the reforming activity of CH4, which is due to the newly exposed Ni active sites from the bulk Ni.
Cheng et al. [139] report a reduction in the Brunauer-Emmett-Teller (BET) surface area and the amount of pore used carbon catalyst. As a result of this phenomenon, catalyst activity is lost. Wagner et al. [140] noted that a vapor reforming catalyst’s acidity is proportional to its coke formation tendency. They also asserted that using basic support or basic mixed oxide support named K, the coking strength of the reforming catalysts could be improved. Li et al. [141] and Zanganeh et al. [142] also endorsed this argument, whereby nickel catalyst deactivation can be weakened if the nickel is backed by a strong Lewis base oxide like MgO, CaO, SrO or BaO.
Subsequently, the present research project introduces DRM to investigate the level of resistance of the catalyst towards carbon formation. Zanganeh et al. [142] suggested that an increase in the CO2/CH4 ratio during DRM and increasing the temperature to a high level may minimize carbon formation thermodynamically.
Ito et al. [138] also agreed that the increased CO2-to-CH4 feed ratio would eliminate the CH4 decomposition reaction. Koo et al. [143] found that introducing less than 1wt percent of Mg into the Ni catalyst would enhance their coking strength. Adding promoter like Mo could therefore allay the coke formation phenomenon on the Ni catalyst. Another proposal to reduce the carbon deposition of a catalyst with a small surface area is to reduce the Ni load of the assistance. A CO2/CH4 molar ratio of more than 3.0 should be used to prevent the boudouard reaction.
Throughout this work, it has been shown that biogas is a very interesting source of renewable energy. Because of its elevated CH4 content, biogas has excellent potential, as reflected in its year-over-year rise in production. This is because its manufacturing promotes the use of organic waste, prevents uncontrolled dumping and minimizes atmospheric CH4 and CO2 emissions. In addition, its use as an energy source is in some cases an alternative to fossil fuels and can help to minimize energy dependence. Another aspect of interest is that it can be used insitu, allowing agro-livestock farms or small industrial plants to achieve energy self-sufficiency. A lot of studies on DRM over Ni-based catalysts has been carried out in latest decades to better comprehend the mechanism and techniques of response to improve carbon deposition resistance. Several methods were suggested to minimize the trend of Ni-based catalyst coke formation. One is the use of the appropriate catalyst preparation technique. Another is the use of metal oxides with strong Lewis basicity as supports or promoters (since Lewis acidity is identified to encourage coke buildup). Future study in this area is likely to focus on the use of catalysts based on bimetallic nickel, such as the incorporation of Co with Ni catalyst.
The bimetallic catalysts showed stable activity and elevated inactivation resistance, although carbon deposition occurs. Catalyst activity should be considered, as the primary reason for catalytic inactivation is the encapsulating carbon, which is deposited directly in the catalyst’s active places instead of the carrier’s surface. Also, when it is generated in large quantities, it can cause clogging of the reactor. The problem of carbon formation is exacerbated when biogas is used for this process, because the CH4:CO2 ratio of biogas is greater than that which can lead to the formation of large carbon deposits in a short time. However, carbon atoms are more essential in type and place than the quantity of carbon generated. Averting the deposition of carbon is therefore a challenging task. Also, this problem can be addressed from a completely different perspective. Rather than trying to avert carbon formation, it can be promoted as carbon filamentous. Previously, many researchers have effectively accomplished the synthesis of carbon filamentous thru electric arc-discharge and laser ablation and chemical vapor deposition techniques. Nevertheless, the cost-efficient and the controlled synthesis of carbon filamentous with varies morphologies by those techniques has not been reported.
Given the broad range of applications and the growing demand for biogas in different areas, the superb characteristics of biogas indicate its growing potential as a source of syngas for a broad range of renewable energies, where high purity and low manufacturing costs are significant factors. Thus, producing high-purity syngas and the controlled production of value-added carbon filamentous over cheap, efficient, tunable and simply synthesized catalysts is very important and is the main interest in this subject.
The authors would like to acknowledge UKM, grant number (FRGS/1/2019/TK02/UKM/01/2), for financial support and for material analysis.
The authors declare no conflict of interest.
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\nIMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nLITHUANIA
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nSWITZERLAND
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nMonographs Only
\n\n\n\nLITHUANIA
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nSWITZERLAND
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\r\n\tEducation and Human Development is an interdisciplinary research area that aims to shed light on topics related to both learning and development. This Series is intended for researchers, practitioners, and students who are interested in understanding more about these fields and their applications.
",coverUrl:"https://cdn.intechopen.com/series/covers/23.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"280770",title:"Dr.",name:"Katherine K.M.",middleName:null,surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRdFuQAK/Profile_Picture_2022-05-24T09:03:48.jpg",biography:"Katherine Stavropoulos received her BA in Psychology from Trinity College, in Connecticut, USA. Dr. Stavropoulos received her Ph.D. in Experimental Psychology from the University of California, San Diego. She completed her postdoctoral work at the Yale Child Study Center with Dr. James McPartland. Dr. Stavropoulos’ doctoral dissertation explored neural correlates of reward anticipation to social versus nonsocial stimuli in children with and without autism spectrum disorders (ASD). She has been a faculty member at the University of California, Riverside in the School of Education since 2016. Her research focuses on translational studies to explore the reward system in ASD, as well as how anxiety contributes to social challenges in ASD. She also investigates how behavioral interventions affect neural activity, behavior, and school performance in children with ASD. She is also involved in the diagnosis of children with ASD and is a licensed clinical psychologist in California. She is the Assistant Director of the SEARCH Center at UCR and is a Faculty member in the Graduate Program in Neuroscience.",institutionString:null,institution:{name:"University of California, Riverside",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"89",title:"Education",coverUrl:"https://cdn.intechopen.com/series_topics/covers/89.jpg",isOpenForSubmission:!1,editor:{id:"260066",title:"Associate Prof.",name:"Michail",middleName:null,surname:"Kalogiannakis",slug:"michail-kalogiannakis",fullName:"Michail Kalogiannakis",profilePictureURL:"https://mts.intechopen.com/storage/users/260066/images/system/260066.jpg",biography:"Michail Kalogiannakis is an Associate Professor of the Department of Preschool Education, University of Crete, and an Associate Tutor at School of Humanities at the Hellenic Open University. He graduated from the Physics Department of the University of Crete and continued his post-graduate studies at the University Paris 7-Denis Diderot (D.E.A. in Didactic of Physics), University Paris 5-René Descartes-Sorbonne (D.E.A. in Science Education) and received his Ph.D. degree at the University Paris 5-René Descartes-Sorbonne (PhD in Science Education). His research interests include science education in early childhood, science teaching and learning, e-learning, the use of ICT in science education, games simulations, and mobile learning. He has published over 120 articles in international conferences and journals and has served on the program committees of numerous international conferences.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorTwo:{id:"422488",title:"Dr.",name:"Maria",middleName:null,surname:"Ampartzaki",slug:"maria-ampartzaki",fullName:"Maria Ampartzaki",profilePictureURL:"https://mts.intechopen.com/storage/users/422488/images/system/422488.jpg",biography:"Dr Maria Ampartzaki is an Assistant Professor in Early Childhood Education in the Department of Preschool Education at the University of Crete. Her research interests include ICT in education, science education in the early years, inquiry-based and art-based learning, teachers’ professional development, action research, and the Pedagogy of Multiliteracies, among others. She has run and participated in several funded and non-funded projects on the teaching of Science, Social Sciences, and ICT in education. She also has the experience of participating in five Erasmus+ projects.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorThree:null},{id:"90",title:"Human Development",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",isOpenForSubmission:!0,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:182,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:348,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:179,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Science",value:19,count:12,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"91",type:"subseries",title:"Sustainable Economy and Fair Society",keywords:"Sustainable, Society, Economy, Digitalization, KPIs, Decision Making, Business, Digital Footprint",scope:"\r\n\tGlobally, the ecological footprint is growing at a faster rate than GDP. This phenomenon has been studied by scientists for many years. However, clear strategies and actions are needed now more than ever. Every day, humanity, from individuals to businesses (public and private) and governments, are called to change their mindset in order to pursue a virtuous combination for sustainable development. Reasoning in a sustainable way entails, first and foremost, managing the available resources efficiently and strategically, whether they are natural, financial, human or relational. In this way, value is generated by contributing to the growth, improvement and socio-economic development of the communities and of all the players that make up its value chain. In the coming decades, we will need to be able to transition from a society in which economic well-being and health are measured by the growth of production and material consumption, to a society in which we live better while consuming less. In this context, digitization has the potential to disrupt processes, with significant implications for the environment and sustainable development. There are numerous challenges associated with sustainability and digitization, the need to consider new business models capable of extracting value, data ownership and sharing and integration, as well as collaboration across the entire supply chain of a product. In order to generate value, effectively developing a complex system based on sustainability principles is a challenge that requires a deep commitment to both technological factors, such as data and platforms, and human dimensions, such as trust and collaboration. Regular study, research and implementation must be part of the road to sustainable solutions. Consequently, this topic will analyze growth models and techniques aimed at achieving intergenerational equity in terms of economic, social and environmental well-being. It will also cover various subjects, including risk assessment in the context of sustainable economy and a just society.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11975,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:[{id:"179628",title:"Prof.",name:"Dima",middleName:null,surname:"Jamali",slug:"dima-jamali",fullName:"Dima Jamali",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSAIlQAO/Profile_Picture_2022-03-07T08:52:23.jpg",institutionString:null,institution:{name:"University of Sharjah",institutionURL:null,country:{name:"United Arab Emirates"}}},{id:"170206",title:"Prof.",name:"Dr. Orhan",middleName:null,surname:"Özçatalbaş",slug:"dr.-orhan-ozcatalbas",fullName:"Dr. Orhan Özçatalbaş",profilePictureURL:"https://mts.intechopen.com/storage/users/170206/images/system/170206.png",institutionString:null,institution:{name:"Akdeniz University",institutionURL:null,country:{name:"Turkey"}}},{id:"250347",title:"Associate Prof.",name:"Isaac",middleName:null,surname:"Oluwatayo",slug:"isaac-oluwatayo",fullName:"Isaac Oluwatayo",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVIVQA4/Profile_Picture_2022-03-17T13:25:32.jpg",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},{id:"141386",title:"Prof.",name:"Jesús",middleName:null,surname:"López-Rodríguez",slug:"jesus-lopez-rodriguez",fullName:"Jesús López-Rodríguez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRBNIQA4/Profile_Picture_2022-03-21T08:24:16.jpg",institutionString:null,institution:{name:"University of A Coruña",institutionURL:null,country:{name:"Spain"}}},{id:"208657",title:"Dr.",name:"Mara",middleName:null,surname:"Del Baldo",slug:"mara-del-baldo",fullName:"Mara Del Baldo",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLMUQA4/Profile_Picture_2022-05-18T08:19:24.png",institutionString:"University of Urbino Carlo Bo",institution:null}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}}]},publishedBooks:{paginationCount:6,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/116214",hash:"",query:{},params:{id:"116214"},fullPath:"/profiles/116214",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()