\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"5382",leadTitle:null,fullTitle:"Cytoskeleton - Structure, Dynamics, Function and Disease",title:"Cytoskeleton",subtitle:"Structure, Dynamics, Function and Disease",reviewType:"peer-reviewed",abstract:"The cytoskeleton is a highly dynamic intracellular platform constituted by a three-dimensional network of proteins responsible for key cellular roles as structure and shape, cell growth and development, and offering to the cell with \"motility\" that being the ability of the entire cell to move and for material to be moved within the cell in a regulated fashion (vesicle trafficking). The present edition of Cytoskeleton provides new insights into the structure-functional features, dynamics, and cytoskeleton's relationship to diseases. The authors' contribution in this book will be of substantial importance to a wide audience such as clinicians, researches, educators, and students interested in getting updated knowledge about molecular basis of cytoskeleton, such as regulation of cell vital processes by actin-binding proteins as cell morphogenesis, motility, their implications in cell signaling, as well as strategies for clinical trial and alternative therapies based in multitargeting molecules to tackle diseases, that is, cancer.",isbn:"978-953-51-3170-0",printIsbn:"978-953-51-3169-4",pdfIsbn:"978-953-51-4836-4",doi:"10.5772/62622",price:139,priceEur:155,priceUsd:179,slug:"cytoskeleton-structure-dynamics-function-and-disease",numberOfPages:342,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"f1c57584a4107ef50eefd39ceb1c8e64",bookSignature:"Jose C. Jimenez-Lopez",publishedDate:"May 17th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5382.jpg",numberOfDownloads:23771,numberOfWosCitations:32,numberOfCrossrefCitations:18,numberOfCrossrefCitationsByBook:3,numberOfDimensionsCitations:56,numberOfDimensionsCitationsByBook:4,hasAltmetrics:1,numberOfTotalCitations:106,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 16th 2016",dateEndSecondStepPublish:"April 6th 2016",dateEndThirdStepPublish:"July 11th 2016",dateEndFourthStepPublish:"October 9th 2016",dateEndFifthStepPublish:"November 8th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez",profilePictureURL:"https://mts.intechopen.com/storage/users/33993/images/system/33993.jpg",biography:"Dr. Jose C. Jimenez-Lopez, BS. Biochemistry (1998), BS. Biological Sciences (2001), MS. Agricultural Sciences (2004), University of Granada, Spain; and Ph.D. Plant Cell Biology (2008) at CSIC. He was a Postdoctoral Research Associate at Purdue University, USA (2008-2011), and Marie Curie Research Fellow (EU - FP7) (2012-2015) at the University of Western Australia and CSIC. Currently, he is a Senior Research Fellow (Ramon y Cajal research program, 2016 - present), working in the functionality, health benefits, and molecular allergy aspects of seed proteins from crop species of agro-industrial interest (mainly legumes). He is the author of more than 65 journal articles, 29 book chapters, 2 patents, and more than 130 international congresses. He is an active member of different Scientific Societies and editor of multiple books.",institutionString:"Spanish National Research Council",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"Spanish National Research Council",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"414",title:"Cytology",slug:"cytology"}],chapters:[{id:"54202",title:"Reorganization of Vegetal Cortex Microtubules and Its Role in Axis Induction in the Early Vertebrate Embryo",doi:"10.5772/66950",slug:"reorganization-of-vegetal-cortex-microtubules-and-its-role-in-axis-induction-in-the-early-vertebrate",totalDownloads:1375,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:1,abstract:"In vertebrate species, induction of the embryonic axis is initiated by the transport of maternally supplied determinants, initially localized to the vegetal pole of the egg, toward the prospective organizer in the animal region. This transport process remains incompletely understood. Here, we review studies involving embryonic manipulations, visualization, and functional analysis of the cytoskeleton and loss- and gain-of-function conditions, which provide insights in this process. Transport of dorsal determinants requires cytoskeletal reorganization of a vegetal array of microtubules, microtubule motors, and an off-center movement of the vegetal cortex with respect to the inner egg core, a so-called cortical rotation. Additional mechanisms may be used in specific systems, such as a more general animally directed movement found in the teleost embryo. Initial polarity of the microtubule movement depends on early asymmetries, which are amplified by the movement of the outermost cortex. An interplay between microtubule organization and axis specification has also been reported in other animal species. Altogether, these studies show the importance of cytoskeletal dynamic changes, such as bundling, force-inducing motor activity, and regulated cytoskeletal growth, for the intracellular transport of maternally inherited factors to their site of action in the zygote.",signatures:"Elaine Welch and Francisco Pelegri",downloadPdfUrl:"/chapter/pdf-download/54202",previewPdfUrl:"/chapter/pdf-preview/54202",authors:[{id:"177209",title:"Prof.",name:"Francisco",surname:"Pelegri",slug:"francisco-pelegri",fullName:"Francisco Pelegri"},{id:"201614",title:"Dr.",name:"Elaine L.",surname:"Welch",slug:"elaine-l.-welch",fullName:"Elaine L. Welch"}],corrections:null},{id:"53714",title:"Actin-Microtubule Interaction in Plants",doi:"10.5772/66930",slug:"actin-microtubule-interaction-in-plants",totalDownloads:1717,totalCrossrefCites:1,totalDimensionsCites:8,hasAltmetrics:0,abstract:"Interactions between actins and microtubules play an important role in many fundamental cellular processes in eukaryotes. Although several studies have shown actins and microtubules to be involved in specific cellular activities, little is known about how actins and microtubules contribute together to a given process. Preprophase band formation, which plays an essential role in plant division site determination, is a cellular process that lends itself to studies of actin-microtubule interactions and how they contribute to important cellular functions. Recently, we have analyzed microtubule-associated microfilaments during preprophase band formation in onion cotyledon epidermal cells using a combination of high-pressure freezing/freeze substitution and electron tomography. Quantitative analysis of our electron tomography data showed that relatively short single microfilaments form bridges between two adjacent microtubules in the process of narrowing of the preprophase microtubule band. Two types of microtubule-microfilament-microtubule connections are observed, and these microfilament-microtubule interactions suggest a direct role of F-actins in microtubule bundling. Based on these observations, we discuss how different actin-microtubule linkers might contribute to preprophase band narrowing and to other changes in microtubule organization in plant cells.",signatures:"Miyuki Takeuchi, L. Andrew Staehelin and Yoshinobu Mineyuki",downloadPdfUrl:"/chapter/pdf-download/53714",previewPdfUrl:"/chapter/pdf-preview/53714",authors:[{id:"146804",title:"Dr.",name:"Yoshinobu",surname:"Mineyuki",slug:"yoshinobu-mineyuki",fullName:"Yoshinobu Mineyuki"},{id:"148615",title:"Prof.",name:"Andrew",surname:"Staehelin",slug:"andrew-staehelin",fullName:"Andrew Staehelin"},{id:"189638",title:"Dr.",name:"Miyuki",surname:"Takeuchi",slug:"miyuki-takeuchi",fullName:"Miyuki Takeuchi"}],corrections:null},{id:"53734",title:"Morphological and Functional Aspects of Cytoskeleton of Trypanosomatids",doi:"10.5772/66859",slug:"morphological-and-functional-aspects-of-cytoskeleton-of-trypanosomatids",totalDownloads:1593,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Trypanosomatidae are protozoans that include monogenetic parasites, such as the Blastocrithidia and Herpetomonas genera, as well as digenetic parasites, such as the Trypanosoma and Leishmania genera. Their life cycles alternate between insect vectors and mammalian hosts. The parasite’s life cycle involves symmetrical division and different transitional developmental stages. In trypanosomatids, the cytoskeleton is composed of subpellicular microtubules organized in a highly ordered array of stable microtubules located beneath the plasma membrane, the paraflagellar rod, which is a lattice-like structure attached alongside the flagellar axoneme and a cytostome-cytopharynx. The complex life cycle, the extremely precise cytoskeletal organization and the single copy structures present in trypanosomatids provide interesting models for cell biology studies. The introduction of molecular biology, FIB/SEM (focused ion beam scanning electron microscopy) and electron microscopy tomography approaches and classical methods, such as negative staining, chemical fixation and ultrafast cryofixation have led to the determination of the three-dimensional (3D) structural organization of the cells. In this chapter, we highlight the recent findings on Trypanosomatidae cytoskeleton emphasizing their structural organization and the functional role of proteins involved in the biogenesis and duplication of cytoskeletal structures. The principal finding of this review is that all approaches listed above enhance our knowledge of trypanosomatids biology showing that cytoskeleton elements are essential to several important events throughout the protozoan life cycle.",signatures:"Juliana Cunha Vidal and Wanderley de Souza",downloadPdfUrl:"/chapter/pdf-download/53734",previewPdfUrl:"/chapter/pdf-preview/53734",authors:[{id:"161922",title:"Dr.",name:"Wanderley",surname:"De Souza",slug:"wanderley-de-souza",fullName:"Wanderley De Souza"},{id:"188230",title:"Dr.",name:"Juliana",surname:"Vidal",slug:"juliana-vidal",fullName:"Juliana Vidal"}],corrections:null},{id:"53526",title:"The Interplay between Cytoskeleton and Calcium Dynamics",doi:"10.5772/66862",slug:"the-interplay-between-cytoskeleton-and-calcium-dynamics",totalDownloads:1541,totalCrossrefCites:3,totalDimensionsCites:7,hasAltmetrics:0,abstract:"Cell motility is a complex cellular event that involves reorganization of cytoskeleton. This reorganization encompasses the transient polarization of the cell to facilitate the plasma membrane ruffling, a rearrangement of cortical actin cytoskeleton required for the development of cellular protrusions. It is known that extracellular Ca2+ influx is essential for cell migration and for the positive-feedback cycle that maintains leading-edge structures and ruffling activity. The aim of this review is to summarize our knowledge regarding the Ca2+-dependent signaling pathways, Ca2+ transporters and sensors involved in cell migration. Also, we show here reported evidences that support for a crosstalk between Ca2+ transport and the reorganization of the cytoskeleton required for cell migration. In this regard, we will analyze the role of store-operated Ca2+ entry (SOCE) as a modulator of cytoskeleton and cell migration, but also the modulation of this Ca2+ entry pathway by microtubules and the actin cytoskeleton. As a main conclusion, this review will show that data reported in the last years support a role for SOCE in shaping cytoskeleton, but at the same time, SOCE is strongly dependent on cytoskeletal proteins, in an interesting interplay between cytoskeleton and Ca2+ dynamics.",signatures:"Francisco Javier Martin-Romero, Aida M. Lopez-Guerrero, Carlos\nPascual-Caro and Eulalia Pozo-Guisado",downloadPdfUrl:"/chapter/pdf-download/53526",previewPdfUrl:"/chapter/pdf-preview/53526",authors:[{id:"186585",title:"Dr.",name:"Francisco Javier",surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero"},{id:"186588",title:"Dr.",name:"Eulalia",surname:"Pozo-Guisado",slug:"eulalia-pozo-guisado",fullName:"Eulalia Pozo-Guisado"},{id:"186603",title:"Dr.",name:"Aida M.",surname:"Lopez-Guerrero",slug:"aida-m.-lopez-guerrero",fullName:"Aida M. Lopez-Guerrero"},{id:"186604",title:"Dr.",name:"Carlos",surname:"Pascual-Caro",slug:"carlos-pascual-caro",fullName:"Carlos Pascual-Caro"}],corrections:null},{id:"52365",title:"Role of Band 3 in the Erythrocyte Membrane Structural Changes Under Isotonic and Hypotonic Conditions",doi:"10.5772/64964",slug:"role-of-band-3-in-the-erythrocyte-membrane-structural-changes-under-isotonic-and-hypotonic-condition",totalDownloads:1235,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"An attempt was made to discuss and connect various modeling approaches which have been proposed in the literature in order to shed further light on the erythrocyte membrane relaxation under isotonic and hypotonic conditions. Roles of the main membrane constituents: (1) the actin‐spectrin cortex, (2) the lipid bilayer, and (3) the transmembrane protein band 3 and its course‐consequence relations were considered to estimate the membrane relaxation phenomena. Cell response to loading conditions includes the successive sub‐bioprocesses: (1) erythrocyte local or global deformation, (2) the cortex‐bilayer coupling, and (3) the rearrangements of band 3. The results indicate that the membrane structural changes include: (1) the spectrin flexibility distribution and (2) the rate of its changes influenced by the number of band 3 molecules attached to spectrin filaments, and phosphorylation of the actin‐spectrin junctions. Band 3 rearrangement also influences: (1) the effective bending modulus and (2) the band 3‐bilayer interaction energy and on that base the bilayer bending state. The erythrocyte swelling under hypotonic conditions influences the bilayer integrity which leads to the hemolytic hole formation. The hemolytic hole represents the excited cluster of band 3 molecules.",signatures:"Ivana Pajic‐Lijakovic and Milan Milivojevic",downloadPdfUrl:"/chapter/pdf-download/52365",previewPdfUrl:"/chapter/pdf-preview/52365",authors:[{id:"186758",title:"Dr.",name:"Ivana",surname:"Pajic-Lijakovic",slug:"ivana-pajic-lijakovic",fullName:"Ivana Pajic-Lijakovic"},{id:"193437",title:"Dr.",name:"Milan",surname:"Milivojevic",slug:"milan-milivojevic",fullName:"Milan Milivojevic"}],corrections:null},{id:"53565",title:"Dystrophin–Glycoprotein Complex in Blood Cells",doi:"10.5772/66857",slug:"dystrophin-glycoprotein-complex-in-blood-cells",totalDownloads:1045,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The Dystrophin-Associated Protein Complex (DAPC), known as the Dystrophin–Glycoprotein Complex (DGC), comprises an array of glycoproteins that are essential for the normal function of striated muscle, in which they were first described, and for many other tissues, including blood. Understanding the role that these molecules play in muscle function has increased over the last decade, and some of the knowledge derived can be applied to other biological systems. However, there is no doubt that to date, some progress has been achieved in blood cells.",signatures:"Doris Cerecedo",downloadPdfUrl:"/chapter/pdf-download/53565",previewPdfUrl:"/chapter/pdf-preview/53565",authors:[{id:"101372",title:"Dr.",name:"Doris",surname:"Cerecedo",slug:"doris-cerecedo",fullName:"Doris Cerecedo"}],corrections:null},{id:"53560",title:"Biophysics of Fish Sperm Flagellar Movement: Present Knowledge and Original Directions",doi:"10.5772/66863",slug:"biophysics-of-fish-sperm-flagellar-movement-present-knowledge-and-original-directions",totalDownloads:1528,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"A fish spermatozoon has a minimalist structure: head, mid-piece and flagellum with the active inner core, called “axoneme”. The axoneme represents a cylindrical scaffold of microtubular doublets arranged around a pair of single microtubules and assorted along the entire length with the dynein-ATPase motors. The mechanisms of wave generation along the flagellum becomes possible due to sliding of microtubules relative to each other and their propagation is a result of a balance between mechanical constraints and intra-flagellar biochemical actors that generate force.",signatures:"Galina Prokopchuk and Jacky Cosson",downloadPdfUrl:"/chapter/pdf-download/53560",previewPdfUrl:"/chapter/pdf-preview/53560",authors:[{id:"187828",title:"Dr.",name:"Galina",surname:"Prokopchuk",slug:"galina-prokopchuk",fullName:"Galina Prokopchuk"},{id:"188281",title:"Dr.",name:"Jacky",surname:"Cosson",slug:"jacky-cosson",fullName:"Jacky Cosson"}],corrections:null},{id:"53382",title:"Cytoskeleton Rearrangements during the Execution Phase of Apoptosis",doi:"10.5772/66865",slug:"cytoskeleton-rearrangements-during-the-execution-phase-of-apoptosis",totalDownloads:1563,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Apoptosis is a regulated energy‐dependent process for the elimination of unnecessary or damaged cells during embryonic development, tissue homeostasis and many pathological conditions. Apoptosis is characterized by specific morphological and biochemical features in which caspase activation has a pivotal role. During apoptosis, cells undergo characteristic morphological reorganizations in which the cytoskeleton participates actively. Traditionally, this cytoskeleton rearrangement has been assigned mainly to actinomyosin ring contraction, with microtubule and intermediate filaments both reported to be depolymerized at early stages of apoptosis. However, recent results have shown that microtubules are reformed during the execution phase of apoptosis forming an apoptotic microtubule network (AMN). Current hypothesis proposes that AMN is required to maintain plasma membrane integrity and cell morphology during the execution phase of apoptosis. AMN disruption provokes apoptotic cell collapse, secondary necrosis and the subsequent release of toxic molecules which can damage surrounding cells and promote inflammation. Therefore, AMN formation in physiological or pathological apoptosis is essential for tissue homeostasis.",signatures:"Jesús Porcuna Doncel, Patricia de la Cruz Ojeda, Manuel OropesaÁvila,\nMarina Villanueva Paz, Isabel De Lavera, Mario De La Mata,\nMónica Álvarez Córdoba, Raquel Luzón Hidalgo, Juan Miguel\nSuarez Rivero, David Cotán and José Antonio Sánchez‐Alcázar",downloadPdfUrl:"/chapter/pdf-download/53382",previewPdfUrl:"/chapter/pdf-preview/53382",authors:[{id:"77267",title:"Dr.",name:"José Antonio",surname:"Sánchez-Alcázar",slug:"jose-antonio-sanchez-alcazar",fullName:"José Antonio Sánchez-Alcázar"},{id:"175111",title:"Dr.",name:"Manuel",surname:"Oropesa Ávila",slug:"manuel-oropesa-avila",fullName:"Manuel Oropesa Ávila"},{id:"175112",title:"Dr.",name:"David",surname:"Cotán",slug:"david-cotan",fullName:"David Cotán"},{id:"175113",title:"Mr.",name:"Mario",surname:"De La Mata",slug:"mario-de-la-mata",fullName:"Mario De La Mata"},{id:"175114",title:"Ms.",name:"Marina",surname:"Villanueva Paz",slug:"marina-villanueva-paz",fullName:"Marina Villanueva Paz"},{id:"175116",title:"Ms.",name:"Isabel",surname:"De Lavera",slug:"isabel-de-lavera",fullName:"Isabel De Lavera"},{id:"175757",title:"Ms.",name:"Mónica",surname:"Álvarez Córdoba",slug:"monica-alvarez-cordoba",fullName:"Mónica Álvarez Córdoba"},{id:"194503",title:"M.Sc.",name:"Jesús",surname:"Porcuna Doncel",slug:"jesus-porcuna-doncel",fullName:"Jesús Porcuna Doncel"},{id:"194504",title:"BSc.",name:"Patricia",surname:"De La Cruz Ojeda",slug:"patricia-de-la-cruz-ojeda",fullName:"Patricia De La Cruz Ojeda"},{id:"194505",title:"BSc.",name:"Raquel",surname:"Luzón Hidalgo",slug:"raquel-luzon-hidalgo",fullName:"Raquel Luzón Hidalgo"},{id:"194506",title:"BSc.",name:"Juan Miguel",surname:"Suarez Rivero",slug:"juan-miguel-suarez-rivero",fullName:"Juan Miguel Suarez Rivero"}],corrections:null},{id:"54949",title:"How are Dynamic Microtubules Stably Tethered to Human Chromosomes?",doi:"10.5772/intechopen.68321",slug:"how-are-dynamic-microtubules-stably-tethered-to-human-chromosomes-",totalDownloads:1460,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:1,abstract:"During cell division, microtubules capture and pull chromosomes apart into two equal sets. Without the establishment of proper chromosome-microtubule attachment, microtubules cannot impart the pulling forces needed to separate sister chromatid pairs. How are chromosomes captured along microtubule walls? How is the attachment of chromosomes to dynamic microtubule-ends achieved and monitored? We discuss these key questions by considering the roles of kinetochore-bound microtubule regulating proteins and also the complex regulatory loops of kinases and phosphatases that control chromosome-microtubule attachment and ensure the accurate segregation of chromosomes.",signatures:"Duccio Conti, Madeleine Hart, Naoka Tamura, Roshan Shrestha,\nAsifa Islam and Viji M. Draviam",downloadPdfUrl:"/chapter/pdf-download/54949",previewPdfUrl:"/chapter/pdf-preview/54949",authors:[{id:"188482",title:"Dr.",name:"Viji",surname:"Draviam",slug:"viji-draviam",fullName:"Viji Draviam"},{id:"206119",title:"Ph.D. Student",name:"Madeleine",surname:"Hart",slug:"madeleine-hart",fullName:"Madeleine Hart"},{id:"206120",title:"Dr.",name:"Duccio",surname:"Conti",slug:"duccio-conti",fullName:"Duccio Conti"},{id:"206121",title:"Dr.",name:"Roshan",surname:"Shrestha",slug:"roshan-shrestha",fullName:"Roshan Shrestha"},{id:"206122",title:"Dr.",name:"Asifa",surname:"Islam",slug:"asifa-islam",fullName:"Asifa Islam"},{id:"206123",title:"Dr.",name:"Naoka",surname:"Tamura",slug:"naoka-tamura",fullName:"Naoka Tamura"}],corrections:null},{id:"54157",title:"Muscle Fibers Lacking Desmin in the Extraocular Muscles: A Paradigm Shift",doi:"10.5772/66928",slug:"muscle-fibers-lacking-desmin-in-the-extraocular-muscles-a-paradigm-shift",totalDownloads:1084,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The extraocular muscles are highly specialized muscles responsible for the complex movements of the eyeball. They differ from other skeletal muscles in many respects, including fundamental components of the contractile apparatus and the extracellular matrix. Using immunohistochemistry and a battery of well-characterized antibodies, we have investigated the composition of the cytoskeleton of their myofibers with respect to desmin, vimentin, and nestin. In the adult and fetal human extraocular muscles, a subgroup of the slow tonic muscle fibers is lacking desmin. These fibers, which are multiply innervated, show a normal myofibrillar arrangement, maintained mitochondrial distribution, and sarcolemma integrity. Desmin, the most abundant intermediate filament protein in muscle, has been considered a ubiquitous protein in skeletal muscle fibers where it links adjacent myofibrils and the myofibrillar network to the sarcolemma, the mitochondria and the membrane of the nuclei. The functional implications of the lack of desmin remain to be determined, but these findings represent a paradigm shift, as desmin has been regarded a ubiquitous protein of the cytoskeleton of muscle fibers.",signatures:"Fatima Pedrosa Domellöf",downloadPdfUrl:"/chapter/pdf-download/54157",previewPdfUrl:"/chapter/pdf-preview/54157",authors:[{id:"188144",title:"Prof.",name:"Fatima",surname:"Pedrosa Domellöf",slug:"fatima-pedrosa-domellof",fullName:"Fatima Pedrosa Domellöf"}],corrections:null},{id:"53586",title:"The Actomyosin Network and Cellular Motility: A S100A4 Regulatory View into the Process",doi:"10.5772/66940",slug:"the-actomyosin-network-and-cellular-motility-a-s100a4-regulatory-view-into-the-process",totalDownloads:1381,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Cell migration is a fundamental process responsible for numerous physiological and physiopathological conditions such as inflammation, embryogenesis and cancer. This central aspect of cell biology has seen quantum leaps in our understanding of the coordinated regulations, both spatial and temporal of numerous cytoskeletal proteins and their orchestrations. At the molecular level, this dynamic cellular process can be naively summarised as an engineered cycle composed of three distinct phases of (1) formation of cellular protrusion to initiate contact followed by (2) the adhesion with the external environment/cell-extracellular established connection and (3) the actomyosin force generation to consequently remodel the cytoskeleton. A prominent factor that regulates cellular motility is S100A4, a protein that has received constant attention for its significant role in cellular migration. Consequently, and in order to focus further the impact of this work, the present chapter aims to review some of the actomyosin proteins/complexes that have been demonstrated to be crucial players of the cyclic migration process but are also S100A4 interactors. In doing so, this chapter aims to capture a picture of how expression of this small, calcium-binding protein may, in essence, remodel at different levels the actin organisation and fulfil the motility engineered cycle of protrusion, attachments and contractions.",signatures:"Stephane R. Gross",downloadPdfUrl:"/chapter/pdf-download/53586",previewPdfUrl:"/chapter/pdf-preview/53586",authors:[{id:"187744",title:"Dr.",name:"Stephane",surname:"Gross",slug:"stephane-gross",fullName:"Stephane Gross"}],corrections:null},{id:"53691",title:"Intermediate Filaments as a Target of Signaling Mechanisms in Neurotoxicity",doi:"10.5772/66926",slug:"intermediate-filaments-as-a-target-of-signaling-mechanisms-in-neurotoxicity",totalDownloads:1299,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"In this chapter, we deal with the current knowledge and important results on the cytoskeletal proteins and their differential regulation by kinases/phosphatases and Ca2+‐mediated mechanisms in developmental rat brain. We focus on the misregulation of the phosphorylating system associated with intermediate filament proteins of neural cells and its relevance to cell and tissue dysfunction. Taking into account our findings, we propose that intermediate‐filament proteins are dynamic structures whose regulation is crucial for proper neural cell function. Given their relevance, they must be regulated in response to extracellular and intracellular signals. The complexity and connection between signaling pathways regulating intermediate‐filament dynamics remain obscure. In this chapter, we get light into some kinase/phosphatase cascades downstream of membrane receptors disrupting the dynamics of intermediate filaments and its association with neural dysfunction. However, intermediate filaments do not act individually into the neural cells. Our results evidence the importance of misregulated cytoskeletal crosstalk in disrupting cytoskeletal dynamics and cell morphology underlying neural dysfunction in experimental conditions mimicking metabolic diseases and nongenomic actions of thyroid hormones and as an end point in the neurotoxicity of organic tellurium.",signatures:"Ariane Zamoner and Regina Pessoa-Pureur",downloadPdfUrl:"/chapter/pdf-download/53691",previewPdfUrl:"/chapter/pdf-preview/53691",authors:[{id:"186612",title:"Dr.",name:"Regina",surname:"Pessoa-Pureur",slug:"regina-pessoa-pureur",fullName:"Regina Pessoa-Pureur"},{id:"187776",title:"Dr.",name:"Ariane",surname:"Zamoner",slug:"ariane-zamoner",fullName:"Ariane Zamoner"}],corrections:null},{id:"53572",title:"Acting on Actin During Bacterial Infection",doi:"10.5772/66861",slug:"acting-on-actin-during-bacterial-infection",totalDownloads:1710,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:"Bacterial resistance to antibiotics is becoming a major threat to public health. It is imperative to find new therapeutic interventions to fight pathogens. Thus, deciphering host-pathogen interactions may allow defining targets for new strategies for effective treatments of infectious diseases. This chapter focuses on the bacterial manipulation of the host cell actin cytoskeleton. We discuss three infectious processes. The first is pathogen establishment of infection/invasion, explaining cellular uptake pathways that rely on actin, such as phagocytosis and macropinocytosis. The second process focus on the establishment of a replication niche, a process that subverts cytoskeletal functions associated with membrane trafficking namely phagosome maturation and cellular innate immune responses. Finally, pathogen dissemination is an emerging field that microfilaments have shown to participate: pathogen motility through the cytoplasm and from cell-to-cell or on the outer surface of the plasma membrane mimicking a receptor tyrosine kinase signaling pathway that helps the projection of pathogens to neighboring cells. It also establishes a connection with the innate immunity related with induction of cell signaling to inflammation, inflammasome activation, and programmed cell death. These studies revealed several potential targets related to actin cytoskeleton manipulation to design new therapeutic strategies for bacterial infections.",signatures:"Elsa Anes",downloadPdfUrl:"/chapter/pdf-download/53572",previewPdfUrl:"/chapter/pdf-preview/53572",authors:[{id:"78473",title:"Prof.",name:"Elsa",surname:"Anes",slug:"elsa-anes",fullName:"Elsa Anes"}],corrections:null},{id:"53624",title:"Heterotrimeric G Proteins and the Regulation of Microtubule Assembly",doi:"10.5772/66929",slug:"heterotrimeric-g-proteins-and-the-regulation-of-microtubule-assembly",totalDownloads:1544,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Microtubules (MTs), a major component of cell cytoskeleton, exhibit diverse cellular functions including cell motility, intracellular transport, cell division, and differentiation. These functions of MTs are critically dependent on their ability to polymerize and depolymerize. Although a significant progress has been made in identifying cellular factors that regulate microtubule assembly and dynamics, the role of signal transducing molecules in this process is not well understood. It has been demonstrated that heterotrimeric G proteins, which are components of G protein-coupled receptor (GPCR) signaling pathway, interact with microtubules and play important roles in regulating assembly/dynamics of this cytoskeletal filament. While α subunit of G proteins (Gα) inhibits microtubule assembly and accelerates microtubule dynamics, Gβγ promotes tubulin polymerization. In this chapter, we review the current status of G-protein modulation of microtubules and cellular and physiological aspects of this regulation. Molecular, biochemical, and cellular methodologies that have been used to advance this field of research are discussed. Emphasis has been given on G-protein-microtubule interaction in neuronal differentiation as significant progress has been made in this field. The outcome from this research reflects the importance of GPCRs in transducing extracellular signals to regulate a variety of microtubule-associated cellular events.",signatures:"Sukla Roychowdhury and Jorge A. Sierra-Fonseca",downloadPdfUrl:"/chapter/pdf-download/53624",previewPdfUrl:"/chapter/pdf-preview/53624",authors:[{id:"187126",title:"Dr.",name:"Sukla",surname:"Roychowdhury",slug:"sukla-roychowdhury",fullName:"Sukla Roychowdhury"},{id:"196958",title:"Dr.",name:"Jorge",surname:"Sierra-Fonseca",slug:"jorge-sierra-fonseca",fullName:"Jorge Sierra-Fonseca"}],corrections:null},{id:"53708",title:"Novel Insights into the Role of the Cytoskeleton in Cancer",doi:"10.5772/66860",slug:"novel-insights-into-the-role-of-the-cytoskeleton-in-cancer",totalDownloads:2179,totalCrossrefCites:4,totalDimensionsCites:5,hasAltmetrics:1,abstract:"The cytoskeleton is a complex network of highly ordered intracellular filaments that plays a central role in controlling cell shape, division, functions, and interactions in human organs and tissues, but dysregulation of this network can contribute to numerous human diseases, including cancer. To clarify the various functions of the cytoskeleton and its role in cancer progression, in this chapter, we will discuss the microfilament (actin cytoskeleton), microtubule (β‐tubulin), and intermediate filament (keratins, cytokeratins, vimentin, and lamins) cytoskeletal structures; analyze the physiological functions of the cytoskeleton and its regulation of cell differentiation; and investigate the roles of the cytoskeleton in cancer progression, the epithelial‐mesenchymal transition process (EMT), and the mechanisms of multidrug resistance (MDR) in relation to the cytoskeleton. Importantly, the cytoskeleton, as a key regulator of the transcription and expression of many genes, is known to be involved in various physiological and pathological processes, which makes the cytoskeleton a novel and highly effective target for assessing the response to antitumor therapy in cancer.",signatures:"Xuan Zhang, Zenglin Pei, Chunxia Ji, Xiaoyan Zhang, Jianqing Xu\nand Jin Wang",downloadPdfUrl:"/chapter/pdf-download/53708",previewPdfUrl:"/chapter/pdf-preview/53708",authors:[{id:"188127",title:"Prof.",name:"Jin",surname:"Wang",slug:"jin-wang",fullName:"Jin Wang"},{id:"194290",title:"Ms.",name:"Xuan",surname:"Zhang",slug:"xuan-zhang",fullName:"Xuan Zhang"},{id:"194291",title:"Dr.",name:"Zenglin",surname:"Pei",slug:"zenglin-pei",fullName:"Zenglin Pei"},{id:"194292",title:"Ms.",name:"Chunxia",surname:"Ji",slug:"chunxia-ji",fullName:"Chunxia Ji"},{id:"194293",title:"Prof.",name:"Xiaoyan",surname:"Zhang",slug:"xiaoyan-zhang",fullName:"Xiaoyan Zhang"},{id:"194294",title:"Prof.",name:"Jianqing",surname:"Xu",slug:"jianqing-xu",fullName:"Jianqing Xu"}],corrections:null},{id:"53741",title:"Targeting the Cytoskeleton with Plant-Bioactive Compounds in Cancer Therapy",doi:"10.5772/66911",slug:"targeting-the-cytoskeleton-with-plant-bioactive-compounds-in-cancer-therapy",totalDownloads:1520,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:"In this overview we describe the main plant-derived bioactive compounds used in cancer therapy which has the cell cytoskeleton as therapeutic target. Three major classes of these compounds are described: antimitotics with microtubule-destabilizing and—stabilizing effects, plant-bioactive compounds that interact with intermediate filaments/actin, and plant-bioactive compounds that interact with intermediate filaments like keratins and vimentin. We also focus on the molecular aspects of interactions with their cellular targets: microtubules, intermediate filaments, and microfilaments. Some critical aspects of cardiac side effects of cancer chemotherapy are also discussed, focusing on cardiac cytoskeleton and protective effect of plant-derived compounds. The application of plant bioactives in the treatment of cancer has resulted in increased therapeutic efficacy through targeting the cytoskeleton, respectively, prevention of the injury of cytoskeletal components elicited by chemotherapeutics.",signatures:"Anca Hermenean and Aurel Ardelean",downloadPdfUrl:"/chapter/pdf-download/53741",previewPdfUrl:"/chapter/pdf-preview/53741",authors:[{id:"174395",title:"Prof.",name:"Aurel",surname:"Ardelean",slug:"aurel-ardelean",fullName:"Aurel Ardelean"},{id:"179323",title:"Prof.",name:"Anca",surname:"Hermenean",slug:"anca-hermenean",fullName:"Anca Hermenean"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6096",title:"Seed Biology",subtitle:null,isOpenForSubmission:!1,hash:"0929ebc410ef5c25efdf938e3d34b6b2",slug:"advances-in-seed-biology",bookSignature:"Jose C. Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/6096.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1819",title:"Biochemical Testing",subtitle:null,isOpenForSubmission:!1,hash:"bab205c706b0f34b0dfcfa1196437fcf",slug:"biochemical-testing",bookSignature:"Jose C. Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/1819.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8033",title:"Seed Dormancy and Germination",subtitle:null,isOpenForSubmission:!1,hash:"8dc6f520dc664e8fd07db7658931dc2d",slug:"seed-dormancy-and-germination",bookSignature:"Jose Carlos Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/8033.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2983",title:"Current Insights in Pollen Allergens",subtitle:null,isOpenForSubmission:!1,hash:"c96b836dac36192bcd83fbe72693b972",slug:"current-insights-in-pollen-allergens",bookSignature:"Jose C. Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/2983.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7337",title:"Legume Seed Nutraceutical Research",subtitle:null,isOpenForSubmission:!1,hash:"a01ad0ca780f39f3aefd09f00cd0b7a3",slug:"legume-seed-nutraceutical-research",bookSignature:"Jose C. Jimenez-Lopez and Alfonso Clemente",coverURL:"https://cdn.intechopen.com/books/images_new/7337.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9699",title:"Grain and Seed Proteins Functionality",subtitle:null,isOpenForSubmission:!1,hash:"9268519d1e294c5edf8e964a122e4c91",slug:"grain-and-seed-proteins-functionality",bookSignature:"Jose Carlos Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/9699.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2617",title:"Molecular Regulation of Endocytosis",subtitle:null,isOpenForSubmission:!1,hash:"dfd1b4de49c737272c722b73a0d7facb",slug:"molecular-regulation-of-endocytosis",bookSignature:"Brian Ceresa",coverURL:"https://cdn.intechopen.com/books/images_new/2617.jpg",editedByType:"Edited by",editors:[{id:"48114",title:"Dr.",name:"Brian",surname:"Ceresa",slug:"brian-ceresa",fullName:"Brian Ceresa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"729",title:"Metabolomics",subtitle:null,isOpenForSubmission:!1,hash:"4fae9ba692c101455b3001980a3d85b4",slug:"metabolomics",bookSignature:"Ute Roessner",coverURL:"https://cdn.intechopen.com/books/images_new/729.jpg",editedByType:"Edited by",editors:[{id:"85077",title:"Dr.",name:"Ute",surname:"Roessner",slug:"ute-roessner",fullName:"Ute Roessner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3545",title:"Autophagy - A Double-Edged Sword",subtitle:"Cell Survival or Death?",isOpenForSubmission:!1,hash:"62f2a3697cfbfa51f5d78b86b07140aa",slug:"autophagy-a-double-edged-sword-cell-survival-or-death-",bookSignature:"Yannick Bailly",coverURL:"https://cdn.intechopen.com/books/images_new/3545.jpg",editedByType:"Edited by",editors:[{id:"164577",title:"Dr.",name:"Yannick",surname:"Bailly",slug:"yannick-bailly",fullName:"Yannick Bailly"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"570",title:"Cell Metabolism",subtitle:"Cell Homeostasis and Stress Response",isOpenForSubmission:!1,hash:"1edda5867b826ab2fd845eff2da7a11f",slug:"cell-metabolism-cell-homeostasis-and-stress-response",bookSignature:"Paula Bubulya",coverURL:"https://cdn.intechopen.com/books/images_new/570.jpg",editedByType:"Edited by",editors:[{id:"47827",title:"Dr.",name:"Paula",surname:"Bubulya",slug:"paula-bubulya",fullName:"Paula Bubulya"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-robust-optimal-power-distribution-for-hyperthermia-cancer-treatment",title:"Corrigendum to: Robust Optimal Power Distribution for Hyperthermia Cancer Treatment",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66777.pdf",downloadPdfUrl:"/chapter/pdf-download/66777",previewPdfUrl:"/chapter/pdf-preview/66777",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66777",risUrl:"/chapter/ris/66777",chapter:{id:"59062",slug:"robust-optimal-power-distribution-for-hyperthermia-cancer-treatment",signatures:"Nafiseh Shariati, Dave Zachariah, Johan Karlsson and Mats\nBengtsson",dateSubmitted:"November 11th 2017",dateReviewed:"December 19th 2017",datePrePublished:null,datePublished:"February 27th 2019",book:{id:"6655",title:"Medical Internet of Things (m-IoT)",subtitle:"Enabling Technologies and Emerging Applications",fullTitle:"Medical Internet of Things (m-IoT) - Enabling Technologies and Emerging Applications",slug:"medical-internet-of-things-m-iot-enabling-technologies-and-emerging-applications",publishedDate:"February 27th 2019",bookSignature:"Hamed Farhadi",coverURL:"https://cdn.intechopen.com/books/images_new/6655.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"171143",title:"Dr.",name:"Hamed",middleName:null,surname:"Farhadi",slug:"hamed-farhadi",fullName:"Hamed Farhadi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"233776",title:"Dr.",name:"Nafiseh",middleName:null,surname:"Shariati",fullName:"Nafiseh Shariati",slug:"nafiseh-shariati",email:"nafiseh.shariati@ericsson.com",position:null,institution:{name:"Ericsson (Sweden)",institutionURL:null,country:{name:"Sweden"}}},{id:"233777",title:"Dr.",name:"Dave",middleName:null,surname:"Zachariah",fullName:"Dave Zachariah",slug:"dave-zachariah",email:"dave.zachariah@it.uu.se",position:null,institution:{name:"Uppsala University",institutionURL:null,country:{name:"Sweden"}}},{id:"233778",title:"Dr.",name:"Johan",middleName:null,surname:"Karlsson",fullName:"Johan Karlsson",slug:"johan-karlsson",email:"johan.karlsson@math.kth.se",position:null,institution:null},{id:"233779",title:"Prof.",name:"Mats",middleName:null,surname:"Bengtsson",fullName:"Mats Bengtsson",slug:"mats-bengtsson",email:"mats.bengtsson@kth.se",position:null,institution:{name:"Royal Institute of Technology",institutionURL:null,country:{name:"Sweden"}}}]}},chapter:{id:"59062",slug:"robust-optimal-power-distribution-for-hyperthermia-cancer-treatment",signatures:"Nafiseh Shariati, Dave Zachariah, Johan Karlsson and Mats\nBengtsson",dateSubmitted:"November 11th 2017",dateReviewed:"December 19th 2017",datePrePublished:null,datePublished:"February 27th 2019",book:{id:"6655",title:"Medical Internet of Things (m-IoT)",subtitle:"Enabling Technologies and Emerging Applications",fullTitle:"Medical Internet of Things (m-IoT) - Enabling Technologies and Emerging Applications",slug:"medical-internet-of-things-m-iot-enabling-technologies-and-emerging-applications",publishedDate:"February 27th 2019",bookSignature:"Hamed Farhadi",coverURL:"https://cdn.intechopen.com/books/images_new/6655.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"171143",title:"Dr.",name:"Hamed",middleName:null,surname:"Farhadi",slug:"hamed-farhadi",fullName:"Hamed Farhadi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"233776",title:"Dr.",name:"Nafiseh",middleName:null,surname:"Shariati",fullName:"Nafiseh Shariati",slug:"nafiseh-shariati",email:"nafiseh.shariati@ericsson.com",position:null,institution:{name:"Ericsson (Sweden)",institutionURL:null,country:{name:"Sweden"}}},{id:"233777",title:"Dr.",name:"Dave",middleName:null,surname:"Zachariah",fullName:"Dave Zachariah",slug:"dave-zachariah",email:"dave.zachariah@it.uu.se",position:null,institution:{name:"Uppsala University",institutionURL:null,country:{name:"Sweden"}}},{id:"233778",title:"Dr.",name:"Johan",middleName:null,surname:"Karlsson",fullName:"Johan Karlsson",slug:"johan-karlsson",email:"johan.karlsson@math.kth.se",position:null,institution:null},{id:"233779",title:"Prof.",name:"Mats",middleName:null,surname:"Bengtsson",fullName:"Mats Bengtsson",slug:"mats-bengtsson",email:"mats.bengtsson@kth.se",position:null,institution:{name:"Royal Institute of Technology",institutionURL:null,country:{name:"Sweden"}}}]},book:{id:"6655",title:"Medical Internet of Things (m-IoT)",subtitle:"Enabling Technologies and Emerging Applications",fullTitle:"Medical Internet of Things (m-IoT) - Enabling Technologies and Emerging Applications",slug:"medical-internet-of-things-m-iot-enabling-technologies-and-emerging-applications",publishedDate:"February 27th 2019",bookSignature:"Hamed Farhadi",coverURL:"https://cdn.intechopen.com/books/images_new/6655.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"171143",title:"Dr.",name:"Hamed",middleName:null,surname:"Farhadi",slug:"hamed-farhadi",fullName:"Hamed Farhadi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12194",leadTitle:null,title:"The Thalassemia Syndromes - New Insights",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThalassemias are a diverse group of hereditary anemias caused by decreased or absent production of one type of globin chain—most commonly either the α or β globin chain. Thus α-thalassemia is characterized by deficient synthesis of α globin, and β-thalassemia is characterized by reduced or absent production of β globin. The resulting syndromes range from asymptomatic to severe microcytic anemias. Recognition of these disorders is important for the obstetrician to provide appropriate care for patients with thalassemia syndrome. Genetic counseling, prenatal diagnosis, and newborn screening are all issues of importance in these inherited disorders. This book intends to provide the reader with a comprehensive overview of thalassemia syndromes regarding types, methods for diagnosis, and early detection and screening for different types of thalassemia syndromes for better management and satisfactory outcome. We hope that the reader will get more knowledge and experience about this very important topic of thalassemia syndromes.
\r\n\t
Intimate apparel is a kind of garment which is worn next to the skin, and thus it behaves as human’s second skin. Conventional bra, underwear, sports bra, pantyhose, swimwear, mastectomy bra as well as maternity underwear, body shaper, and corset are described as intimate apparel, and this kind of apparel is an interdisciplinary subject involving body beauty, human anatomy and anthropometrics, pattern design, textile engineering, as well as health science [1]. As intimate apparel contacts with the skin directly, its comfort characteristics are more important than that of outerwear, and from this point of view in this chapter, comfort performances of intimate apparels were discussed.
\nComfort is a complex state of mind that depends on many physical, physiological, and psychological factors [2]. Slater defined comfort as “a pleasant state of physiological, psychological and physical harmony between a human being and the environment” [3]. The impact of clothing on comfort and performance of individuals at work or sport is of particular importance because physiological loads may decline the physical and mental capacity of the person [4]. Also, various consumers consider comfort as one of the most important attributes in their purchase of apparel products; therefore companies tend to focus on the comfort of apparel products [2]. Intimate wear, which is described as human’s second skin, requires the comfort issue to be maintained perpetually than that of outerwear due to the contact to the skin directly. Also, the daily performance and good feeling of a person are synonymous with intimate apparel comfort characteristics.
\nWear comfort can be divided into four main aspects such as thermal comfort, sensorial comfort, body movement comfort, and aesthetic comfort. Thermal comfort is the satisfaction of a person with the thermal environment, and to do so there is a thermal balance between the human body and the environment and the proper balance between body heat production and heat loss. Thus, the person feels neither too cold nor too warm. In addition to heat transfer, moisture transport through the body-clothing-environment system is the main topic of the thermal comfort [2, 5]. Sensorial comfort refers to neural sensations when a fabric or garment comes into contact with human skin. It includes the warmth/coolness, prickliness, surface roughness, and electrical properties (e.g., static) of fabric against skin. Body movement comfort refers to the ability of a textile to allow freedom of movement [2]. Aesthetic comfort is the subjective perception by visual sensation which is influenced by color, style, garment fitting, fashion compatibility, fabric construction, and finish [1, 6].
\nFemale consumers, regardless of age and social status, are concerned with keeping up with the fashion trends though fashion items such as laced bras and thongs may be less comfortable to wear than daily bras and basic underwear. Despite an inherent incapacity to display the product, consumers feel they want it to be relevant and fashionable [7]. Thus, intimate apparel is invisible to the public, but it is considered as “inconspicuous fashion” [8].
\nBras allow the wearer to express their personality as they contribute to the final breast shape and contour visible through outer clothing that constructs a social identity [8]. Women may lose their youthful appearance after pregnancy, aging, or menopause. So, they would need a bra that makes the breasts look firm, round, and natural. The bra should uplift the drooping breasts to a desirable position with necessary fullness, coverage, and cleavage. On the other hand, the woman who has a plus size breast may suffer from social anxiety, low comfort level, and difficulty in their self-esteem, thinking that her outstanding breast causes shame [9]. Thus, many brands including Berlei, Victoria’s Secret, Triumph, and Bonds carry a wide range of bras that provide suitable comfort, support, and fit according to the needs of growing teens, working women, nursing mothers, and older women. Brands have also distinguished between different bra-wearing behaviors by differentiating the product into usage patterns, such as occasions and benefits sought (e.g., T-shirt bra designed for seamless everyday wear, push-up bras for enhanced cleavage, convertible bras for strapless or halter neck outfits, and sports bra for physical activities) [10].
\nThe main property of clothing is to build a stable microclimate next to the skin in order to maintain the body’s thermoregulatory system at different environmental and physical activity conditions, and provision of thermal balance is a function of the clothing in all wear situations. It acts as a barrier to heat and vapor transfer between skin and environment. Thermal comfort depends on several factors, heat and vapor transport, sweat absorption, and drying ability [4, 11], and it is an important criterion for intimate apparel in terms of feeling comfortable. Intimate apparel, being an inner layer in between the skin and outerwear, should be capable of maintaining heat balance between the excess heat produced by the wearer and the capacity of the clothing to dissipate body heat and perspiration. However, it exists within a narrow temperature range [12].
\nHuman body is homoeothermic and has to maintain its core temperature around 37°C, with a skin temperature between 30.7 and 35.6°C [13]. The body cells, especially in the organs and the muscles, produce heat that is partly released to the environment. This metabolic heat production can largely vary depending on the activity, from about 80 W at rest to over 1000 W during most strenuous efforts [2]. At an extreme activity, the heat produced in the muscles creates the greatest thermal stress. A large amount of this heat is often stored in the body resulting in an increase in body temperature [13, 14]. Then, the central nervous system gives indication to the hypothalamus of brain which controls the thermoregulation process. It sends signals to human organs, muscles, glands, and the nervous system. The excess heat is liberated to the outer environment by means of heat loss mechanism process [15]. Heat transfer continues until the two media are the same temperature and have reached equilibrium. The rate of the energy transferred depends on temperature difference and the degree of resistance between the two media [12]. Heat transfer from the body to the environment occurs in several ways [2, 13, 16]:
Dry heat transfer conduction (heat transfer between two surfaces in contact with each other), convection (heat exchange between a surface and a surrounding fluid, e.g., air or water), and radiation (emission or absorption of electromagnetic waves)
Evaporation of sweat
Heat transfer by respiration
In order to maintain the thermoregulation of a human body, heat generation and heat loss should ideally be equal. This principle can be expressed in a heat balance equation (Eq. (1)) (in W or W/m2) for the human body [2]:
\nwhere M is metabolic rate of the body, W is mechanical work, E is heat transfer by evaporation, R is heat transfer by radiation, C is heat transfer by convection, K is heat transfer by conduction, and S is heat storage.
\nThe enclosed still air and external air movement are the major factors that affect the heat transfer through fabric, and it is influenced by fabric construction, thickness, and material [4]. Fibers in a fabric structure serve two main functions in providing thermal insulation. Firstly, they develop air spaces and prevent air movement. Secondly, they provide a shield to heat loss from radiation. The efficiency of the thermal insulation of a fabric depends on fiber physical properties, such as fineness and shape, as well as the structure of fabric [5]. The higher the volume of dead air within a textile structure, the lower will be the thermal transmittance which results in higher thermal resistance [15]; man-made fibers can be produced with a degree of crimp or surface irregularity that increases thermal resistance [5]. Fabrics or garments made from hollow fibers can also provide better thermal insulation values due to the larger trapped air volume provided. Previous research shows that the amount of contact an item of clothing (such as a sports bra) has with the skin may affect thermoregulation. When the clothing fits tightly, there is less exchange of air beneath the clothing with the environment (“flushing”), and this can negatively affect thermoregulation [13]. Therefore, a sports bra, for example, can represent a physical advantage but a thermal disadvantage [13].
\nEvaporation is the body’s main method of heat dissipation during exercise and in hot environments [13]. Heavy sweat is formed in the body that leads to the accumulation of a lot of moisture or a thin film on the skin due to heat dissipation [4]. Sweating majorly acts as a heat loss mechanism of the body and cools where the sweat is being evaporated. Clothing actively affects the amount of sweat produced and the level of evaporation [13]. When fabric is subjected to heavy sweating conditions, not all the sweat absorbed by fabric can be given off to the atmosphere instantaneously. Thus to prevent the wearer from feeling wet and clammy [17], the sweat should be transported away from the skin surface body. The transportation of sweat may be in the form of liquid or vapor so that the fabric touching the skin feels dry [11, 15].
\nIn that respect, water vapor permeability is an important property that determines the capability of transporting perspiration through a textile material [15]. Water vapor permeability plays a very important role when there is only little sweating or insensible perspiration. The garment should have the ability to release the moisture vapor held in the microclimate to the atmosphere to reduce the dampness at the skin [4]. Impermeable structures, i.e., not permitting passage of water vapor to the surrounding atmosphere, increase the relative humidity of the microclimate inside the clothing and thermal conductivity of the insulating air, causing coolness and dampness. Water vapor transfer through textile materials may occur due to diffusion (driven by a water vapor concentration gradient) and convection (driven by an air pressure gradient) mechanisms [12]. Moisture transfer also involves adsorption, absorption, or desorption between the fibers and the surrounding air as well as the movement of condensed liquid water as a result of external forces, such as capillary pressure and gravity. Adsorption occurs when water molecules are attracted to the surface of a solid. A larger fiber surface area within a fabric can increase the amount of water adsorbed. In absorption, molecular moisture diffuses through the material. Desorption is the process of moisture release from adsorbed or absorbed water. The process of moisture absorption or desorption within textile materials absorbs or releases heat, which further complicates the heat transfer process [5]. The sweat absorption, spreading, and drying which determine how quickly the skin can be dried after sweating of a fabric decide the thermophysiological comfort property of the garment [18]. Therefore, fabrics with good moisture transport and drying properties are essential for intimate apparel which contact with skin directly.
\nDuring heavy activity when liquid perspiration production becomes high, to feel comfortable the clothing should possess good liquid transmission property. Wicking is an important property to uphold a feel of comfort during sweating conditions and is affected by fabric properties [4]. Discomfort is linked to the presence of liquid on the skin, and the removal of this, either by optimized evaporation or by wicking the moisture away from the skin, is thus a relevant factor [19]. Wicking is the spontaneous flow of liquid in a porous substrate, driven by capillary forces produced in the fabric. This is due to the wetting of fibers, and it causes the liquid to reach the spaces in between the fibers which gives a capillary action. Wicking fabrics can benefit comfort and cooling in two ways. When a person starts to sweat in garment, this sweat can be absorbed by fabric, spreading over a bigger area and thus facilitating evaporation. Also, by removing the liquid from the skin and transporting it away from the skin-fabric interface, clinging of clothing with its associated discomfort is reduced [4, 19]. The transport of liquid moisture is a complex mechanism dependent on the hydrophilic properties of the material (fibers), the inter- and intra-yarn capillaries, as well as the water absorption capacity (hygroscopicity) of fibers. These phenomena depend on the liquid surface tension, the size of the interstices, and wettability of fiber surface. The capillaries (interstices) in a fabric must form a continuous channel with the proper size. Parameters, such as fabric count, yarn linear density, and yarn twist, affect the size and number of fabric interstices. Fabrics with larger interstices normally allow rapid diffusion of water [20]. Sweat forming on the skin can be transported from the skin surface to the outer surface of the fabric by fabric wicking, where it evaporates to the environment and keeps the skin dry [5]. The spreading of liquid moisture can basically occur in two directions: spreading into the surface of the fabric (lateral wicking effect) or transfer of liquid from one side to the other (vertical wicking effect [2]). Also, moisture regain of a fiber affects wicking performance such that fiber with a larger moisture regain tends to decrease the wicking effect. In addition to these, the radius of capillaries is the key factor in deciding capillary effects [5].
\nDryarn, Coolmax, FIELDSENSOR™, fibers from Meryl product line, AKWATEK, Moiscare™ fibers, and the others, which will be discussed in detail in following section, provide high thermal comfort performance.
\nPeople must be able to move in the clothing that they wear. If clothing restrains movement, discomfort may result due to the pressure exerted on the body by the garment, and the clothing may fail [21]. A simple and ordinary body movement expands the skin by about 10–50%. Therefore, the strenuous movements require the least resistance from garment and instant recovery [22]. The dramatic difference between the skin’s elasticity and the lack of elasticity in conventional fabrics results in restriction of movement to the wearer and loss of shape, and consequent performance, of garments [9]. Minimizing a garment’s resistance to the body’s demands in movement can be achieved through increased fabric fullness in the pattern or through fabric stretch. Increasing the fabric’s stretch means garments can be cut to achieve a more streamlined appearance and can conform better to the body while still maintaining comfort for the wearer in motion [21]. Thus, intimate apparel should have stretch and elastic recovery to provide sufficient fit and freedom of movement to the wearer.
\nFitting is a crucial factor of wearing comfort particularly for the next-to-skin stretch garment. Despite attempts to standardize size, every female’s body shape is unique, which complicates the design process [8]. A good bra should fit the 3D complex body contours, to support the breast weight and to provide appropriate tension by well-fitted bottom band, straps, and cups [23]. However, perfect fit for bras is very difficult to achieve because it involves tedious trials and errors on manipulating the shape and support provided to the soft breasts of a live model [9]. Moreover, many pattern adaptations may be required to try different grain lines in the pattern and tension of fabric or changing the fabric and trims for better tension recovery [24]. However, women go through great difficulties to find a perfect-fitting bra to mold the body in a desirable silhouette [9]. A research conducted across western countries reports that at least around 70% of women wears the wrong size of bras [23]. This is not surprising because even within the same brand the bra size and thus bra fit change with the different styles [24]. The big problem of wearing the wrong bra contributes to poor posture due to the lack of support for the chest, and muscles have to do all the breast work. The breast is pulled by weight bra and causes pain on the back, neck, and back pain [9]. According to a study, the ability of a sports bra is reduced due to the poor bra fit which causes an increased breast discomfort [24].
\nCreating irritation in skin areas, bruises, and deep creases on the skin by elastic pressing the wrong place make the user feel uncomfortable [9]. It was found that the highest pressure was at the top of the shoulders and under the front elastic band. Costantakos and Watkins [23] suggested that a well-designed bra should prevent concentration of pressure on the sensitive areas such as veins and arteries near the skin surface. To limit the force generation and increase breast comfort level, the positive correlation between the mass of the breast and the vertical displacement suffering in their day by day has to be found. Also, the plus size bra can be the cause of numerous health problems related to the arms, neck, back, and head pain. For a plus size bra, it is advisable to use powernet or more than 20% elastane or lining for the wing or band part. The percentage of elastane will increase support in plus size breast that can be improved with the placement of a bone on the lateral side fitting [9]. Moreover, in the particular stage of a woman’s life, with the breast sagging, to create the right bra and the user choosing a more appropriate model, it is important to retain the biomechanical considerations. For pregnant women suffering from low back pain, maternity under garments could provide certain abdominal support and distribute the growing weight of fetus to the shoulder and the upper torso, which may help to relieve back pain and improve the wearer’s mobility [23].
\nGarments including fibers such as LYCRA® W from the Lycra Company, the Meryl Elite® from Nylstar, and ISCRA-S from Sorona offer comfort in terms of fit, shape retention, and freedom of movement.
\nSensorial comfort is the sensation of how the fabric feels when it is worn near to the skin. The tribology of skin in contact with textiles is important in connection with the comfort of clothing, because the tactile properties of fabrics are closely related to their surface and frictional properties. Sensorial comfort is very difficult to predict as it involves a large number of different factors, and this feeling addresses properties of the fabric like prickling, itching, stiffness, or smoothness [2]. In addition, a good performance of movements is always combined with the use of suitable materials and intimate apparel; the proportion of the body has to be assessed so that the product used is the most appropriate for those wearing it [9]. In addition, wet skin is much more easily irritated than dry skin.
\nExperimental studies showed that raw materials and structural properties of fabrics are important in the determination of tactile properties of fabrics. Suda and Tamura [23] tried to estimate comfort with the help of the tactile sensations like smoothness, softness, and stickiness of underwear fabrics despite the change in air temperature. According to Nielsen et al. [25], knit structures of the underwear influenced sensations of humidity significantly, but not sensations of temperature. The various sensations of temperature correlated best with core temperature, whereas the sensations of humidity correlated with skin wetness. The study which assesses the tactile comfort according to 10 descriptors (soft, thin, smooth, warm, dry, light, loose, sheer, stiff, and pleasant tactile sensation) conducted by Kweon et al. [23] implied that men usually preferred all cotton, while women selected man-made fabrics. In addition, at intimate apparel lace and embroidery are used so often which prick the skin. Also, poor seam coverings or loose threads also bring skin irritation. To minimize the seams and stitches, various sew-free technologies have been widely applied. The bra cup seams have been eliminated by molded cups; the elastic band has been replaced by Bemis thermoplastic polyurethane (TPU) film or Lycra 2.0 polyurethaneurea (PUU) heat-activated elastic adhesive tape. Thread and stitches disappear when the hemming operation uses ultrasonic bonding with hooks and eyes integrally attached onto the inner surface of the back wing panel. Brand and size labels are seamlessly printed [23]. A study of 1285 female marathon runners found 28% frequently experienced problems with sports bras rubbing or chaffing which is a typical example of the importance of sensorial comfort which if ignored may lead to minor injuries [24]. Moreover, women have sensitive skin especially during puberty and pregnancy.
\nTACTEL® fiber from Invista, Sensil® Body Fresh, and chitin are some examples for the novel fibers that maintain good sensorial comfort.
\n“A fiber is a unit of matter, either natural or manufactured, characterized by flexibility, fineness and a high ratio of length to thickness” [26]. The use of natural fibers dates back to 4000 years ago, and they were the fibers used first. Cotton, wool, silk, and all other animal and plant fibers fall in the category of natural fibers. The first attempt to make an artificial fiber was done in the year 1664. However, it was almost 200 years later when the first success was achieved. Man-made fibers became a significant alternative to natural fibers after the 1950s. The development of these fibers opened up fiber applications to various fields like medicine, agriculture, home furnishing, modern apparels, etc. [27, 28]. The timetable of fibers covers four generations [29]:
Before the 1950s, natural fibers were used, and they are termed as first-generation fibers.
After the 1950s, second-generation fibers, man-made regenerated and synthetic ones, were introduced.
Third-generation fibers came in the 1980s. This generation covered specialty fibers, high-performance/high functional fibers, and high technology fibers.
Super fibers, smart fibers, and nanofibers, which are called new fibers, are the fourth-generation fibers that came after 1985. These fibers give a new dimension to the use of textiles.
As of today, latest trends and innovations in man-made fiber and textile industry can be roughly identified and classified as follows [30]:
Sustainability
Development of functional textile
Development of smart textile
Manufacturing innovations
Materials engineering
Unconventional applications
High-technology fiber is a general term used for fibers made by different methods from ordinary methods, and they are the ones which have improved performance such as high melting point and high decomposition temperature. These high-function fibers are developed according to needs of the user and provide higher comfort, easy-care properties. Functional textiles have additional functionalities like flame resistance, breathability, thermoregulation, stain resistance, being antimicrobial, electro conductivity, etc. [31].
\nCommon types of fibers currently used in intimate apparel are cotton, silk, rayon, nylon, polyester, and spandex. Performance and versatility of intimate apparel such as easy-care properties, light weight, durability, ease of movement, having antibacterial or anti-odor properties, and good moisture management are further improved by the use of new fibers. In this section the latest developments in fibers used in the manufacturing of intimate apparel products and their contribution to clothing comfort are discussed [32].
\nFibers which attribute ease of movement to intimate garments have superior stretch and recovery properties:
\nLYCRA® is a synthetic elastane fiber that can stretch up to about six times its initial length and return to its original state repeatedly. Garments including LYCRA® fiber offer comfort, fit, shape retention, and freedom of movement. The fiber can be used in close-to-the-body garments such intimate apparel as well as pantyhose, hosiery, active wear, and swimwear [33].
\nLYCRA® W technology offered by the Lycra Company elevates the performance of intimate apparel made from warp or circular knit fabrics. “W” elastane fibers with luster permit the garments to deliver outstanding whiteness, whiteness retention, uniformity, and dye pickup for deeper, richer colors. Fabrics made with these fibers also have better resistance to elastane yellowing from heat-setting, exposure to fumes, and UV light [34].
\nFor intimates, body wear, sportswear, etc., different types of polyamide microfibers are offered by Nylstar through the Meryl® product line.
\nMeryl Elite provides a convenient partnership to elastane in single and double covered yarns (Figure 1) offering a good performance for tights, socks, and leggings. Microfilaments of Meryl Elite give lightness, smoothness, high elasticity, durability, and comfort to the garments [35].
\nCovered yarn structure [
ISCRA-S is a highly elastic material-like spandex. It is a bicomponent fiber from Sorona, a material extracted from corn, and PET. After the finishing processes are applied, it gains a spring-like structure (Figure 2) [36].
\nISCRA-S fiber before and after finishing process [
The fiber is suitable to be used in underwear, sportswear, outdoor wear, etc. due to its comfort stretch and good stretch recovery as well as quick moisture absorbing and drying properties.
\nECOWAY-Sorona from corn is a soft touch fiber from shape memory material recommended for intimate apparel. Textiles from ECOWAY-Sorona are naturally crumpled and smoothly unfolded due to the shape memory property [37].
\nTo improve moisture management properties of intimate apparel, breathable fibers with modified cross section have been developed to enhance the wearer’s comfort. Fibers and yarns that possess improved moisture management properties are discussed in the following section:
\nTENCEL™ Intimate cellulosic fibers, lyocell, and modal are produced by sustainable processes from natural, renewable raw material, wood. TENCEL™ lyocell fibers absorb moisture more effectively than synthetic fibers, and there is less moisture formed on the fiber. The fibrils of cellulosic fibers regulate the absorption and release of moisture. This leads to less favorable media for bacterial growth, and consequently better hygienic qualities are offered. This also enhances breathability of the garment and keeps the skin cool and dry. One of the key factors in choosing materials for intimate apparel is softness. The smooth surface of TENCEL™ Intimate cellulosic fibers also offers a gentle touch to the skin. High flexibility and low rigidity of fine TENCEL Modal fibers result in a soft feeling twice as soft as cotton [38].
\nFIELDSENSOR™, developed by Toray, applies the principles of capillary transport to the structure of knitwear enabling absorption, movement, dispersion, and evaporation of perspiration from the skin. By this way, the perspiration-induced stickiness and clinginess of traditional materials are eliminated. It offers good moisture management functions for running, fitness, and training suits [39, 40].
\nFlat multi-microfibers as fine as 0.45 dpf (dtex per filament) of Meryl® Sublime, from Nylstar’s Meryl® product line, quickly draw perspiration away from the skin to the exterior of the fabric. The fiber is highly demanded for intimates and swimwear due to its special handle, silky touch, light weight, and breathability [41].
\nMeryl® Nateo is an air-textured polyamide yarn with a round cross section. The main properties of Meryl Nateo, namely, UV productivity, water absorption, breathability, and stretch ability, make the fiber suitable to be used in body wear, sport, swimwear, or intimates [42].
\nTrilobal cross section of Meryl Satiné reflects the light perfectly and provides garments with a remarkable shine comparable to silk (Figure 3). Meryl Satiné is preferred for many applications due to its excellent moisture-wicking properties, breathability, and natural elasticity [43].
\nTrilobal cross section of Meryl Satiné [
Dryarn is a breathable “isostatic polypropylene microfiber” which offers intense performance in terms of lightness, drying, and wicking, with no penalty in the thermal insulation properties specific to polypropylene. It also has a higher capacity for removing moisture compared to polyester [44, 45].
\nNILIT®, a manufacturer of nylon 6.6 fibers, offers fashion body wear, active wear, legwear, and intimate apparel. Sensil is a new Nylon 6.6 brand created by NILIT®. Sensil® Aquarius has built-in moisture management properties thanks to its special triple T-cross section which forms special micro-channels in the fiber and increases the surface area for improved moisture management (Figure 4) [46, 47].
\nT-cross section of Sensil® Aquarius [
Supplex®, a registered trademark of Invista and licensed by NILIT® for nylon fiber products, provides functional benefits for intimate apparel, active wear/fitness, etc. with an exceptionally smooth, natural hand due to the presence of finer, multiple nylon filaments and dries up to four times faster than cotton. Supplex® also has permanent protection due to the intrinsic UPF protection qualities [49].
\nCoolmax is an advanced polyester yarn mainly used for thermoactive underwear, intimate apparel, sport underwear, and sportswear. A capillary transport system maintained by special four- or six-channeled fiber morphology pulls moisture away from the skin, transfers to the outer layer of the fabric, and dries quickly. It’s much convenient for sport applications due to high thermal control under physical stress [50, 51].
\nCoolmax freshFX, on the other hand, is a suitable fiber for intimate apparel which combines the Coolmax® moisture management and odor shield antimicrobial fiber technologies. Coolmax® freshFX™ is designed by incorporating a silver-based additive to Coolmax. Coolmax® freshFX™ fabrics actively suppress the growth of bacteria which are responsible for body odor and related smells. Coolmax® freshFX™ garments keep the wearer cool and dry while keeping clothes smelling clean and fresh longer [52].
\nTACTEL® fiber from Invista is a form of nylon fiber which is widely used in women’s intimate apparel because of its soft and lightweight nature, quick drying, easy care, breathability, and abrasion-resistant properties [53, 54].
\nNike Dri-FIT technology uses microfibers to support the body’s natural cooling system by wicking away sweat. The moistures is, then, dispersed evenly throughout the surface of the garment and evaporates quickly. Dri-FIT fabrics can be made of nylon, polyester, spandex, or a blend of all three but mostly in the form of microfibers. It is proposed that it should be worn next to the skin to keep the body dry [55].
\nConsumers’ awareness of hygiene and active lifestyle has created an increasing demand for antimicrobial/anti-odor textiles. Bacteriostatic fabrics prevent the proliferation of microorganisms and production of unpleasant odor. The formation of fungal growth is also slowed down by the use novel fibers offered.
\nNormally, some amount of bacteria is present on human skin. Not only the presence of a high level of bacteria but also its complete absence creates various problems such as allergy, odor, illness, etc. While exercising, bacteria are transferred to the textile and with conventional nylon fibers; these bacteria can proliferate and grow very quickly. With the inherent silver microparticles, Meryl Skinlife prevents bacteria growth, maintains the natural balance of the skin, and reduces unpleasant odor [56].
\nMeryl Nexten from Nylstar is a hollow polyamide fiber with inherent silver microparticles (Figure 5). Its hollow structure provides the production of 20% lighter fabrics with the same thickness and insulation of the body against temperature variations. The presence of silver microparticle Meryl Nexten offers an antimicrobial effect [57].
\nHollow polyamide fiber Meryl Nexten from Nylstar [
Chitin is a biocompatible compound obtained from the shell of crab and shellfish. Chitosan is a product derived from Chitin. A new fiber Crabyon® is a blend of chitosan and viscose which has permanent antibacterial functions. The fiber is suitable for weak and sensitive skin since it prevents the skin from drying out. Due to Crabyon’s velvety touch and other properties, it is recommended to be used in intimate apparel [58].
\nSensil® Body Fresh makes sure the garments do not have unpleasant odor thanks to the antibacterial additive embedded in the fiber [59].
\nWith its excellent disinfection power due to the silver ions held in the acrylic fibers, PURECELL™ and a deodorizing fiber preventing unpleasant smell by absorbing the ammonia CELFINEN™ are fibers recommended for underwear by TOYOBO [60, 61].
\nX-STATIC® silver fiber from Noble Fiber Technologies also utilizes the power of silver to inhibit the growth of bacteria on fabrics and to eliminate human-based odor. 99.9% metallic silver is bonded to the surface of a fiber X-STATIC® permanently. One hundred percent coverage area of silver on the fiber gives products with X-STATIC® a maximized performance with soft, flexible, and comfortable features [62].
\nTruFresh from Unifi is recommended for yoga pants, socks, hosiery, etc., for its odor-killing performance by inhibiting the growth of odor-causing bacteria, mold, mildew, and algae on fabrics. For optimal performance, it is recommended that the fabric contains at least 30% TruFresh by weight [63].
\nThermal comfort is related to the efficiency of heat dissipation from a clothed human body. One of the primary functions of underwear is to act as a buffer against environmental changes to maintain a thermal balance between the body heat and the heat lost to the environment while allowing the skin to remain free of liquid water. Thermal comfort is provided by the use of recently developed fibers [1].
\nAKWATEK is a modified polyester fiber with active surface layer with anionic end groups. The active surface transports water molecules and releases them to the atmosphere before they can form liquid water. Thanks to AKWATEK’s enhanced properties, thermoregulatory actions of the body are duplicated, and moisture is pulled away from the body much faster than capillary action fabrics. AKWATEK has the ability of keeping the wearer cool in warm temperatures and warm in cold temperatures. It is used in fabrics with Lycra—for apparel tops and tank tops, sport bras, turtlenecks, tights, and leggings [23, 64].
\nQuick transfer of heat from the body is maintained by the wide surface area of the fiber with flat cross section, and comfort is enhanced by the cooling effect and efficient ventilation of Sensil® Breeze (Figure 6). The presence of inorganic micron particles in the polymer further increases the surface area and contributes to the cooling effect [65].
\nSensil® Breeze [
The use of Sensil® Heat in knitted garments provides a delay in heat transfer from the body to the outside. Coffee charcoal, from coffee bean shell residue, is integrated in the yarn together with an oxide additive which captures and keeps body heat. It is claimed that the insulation activity is most effective when the fabric is used nearest to the body [65].
\nAnother fiber recommended for underwear, sports apparel, bed clothes, etc. is an acrylate fiber, Moiscare™, which is a registered trademark of the Japanese firm TOYOBO. The fiber has heat-generating ability when absorbing moisture. It is claimed that the exothermic energy is about three times higher than that of wool. Depending on the atmospheric conditions, it can absorb and release moisture repeatedly. It also has the ability of deodorizing ammonium gas and others [67].
\nThermolite FIR technology from Invista is a spun-dyed black fiber in which special ceramic pigments are embedded. The fiber, recommended for legwear, absorbs the wearer’s infrared radiation and reflects it back as heat energy and raises skin temperature by around 1°C [68].
\nOutlast® technology manages moisture by reacting to sweat and pulling it away from the skin and proactively manages heat while controlling the production of moisture before it begins. It utilizes phase change materials (PCM) that absorb, store, and release heat for optimal thermal comfort. Outlast® phase change materials can be located inside the fiber. In-fiber applications are for products being worn next to or very close to the skin. Outlast® viscose is a versatile fiber commonly used for underwear, shirts, dresses, sleepwear, work wear, and sportswear (Figure 7). The fiber provides softness and comfort similar to cotton or silk [69, 70].
\nOutlast® viscose fiber [
Intimate apparel ensures primarily the comfort of people as it contacts with the skin directly and forms an inner layer between the skin and outerwear. To provide intimate apparel comfort, thermal, aesthetical, sensorial, hygienic, and motional performances are required which are mostly related to fiber properties. Thus, the investigations to develop new fibers which provide better comfort performances are carried on by major fiber manufacturers. This chapter presents a detailed review of comfort from intimate apparel side, and also developed novel fibers which are recommended to be used for performing intimate apparel comfort were introduced.
\nEvery aspect of our lives includes some form of supply chain and logistics, so the impact of these activities on the environment is of significant importance. The objective of this chapter is to introduce principles and practices that facilitate sustainable logistics operations in a holistic manner and consider factors of logistics affecting the natural environment beyond the usual factors of distance traveled, fuel use, and carbon dioxide (CO2) emissions that have been well discussed in freight transportation literature. Global business is more dominant these days, for example, many manufacturers produce their goods in lesser-developed countries, and then shipped all around the world. This requires global logistics to ensure timely and efficient global distribution of goods from producers to consumers. Logistics and supply chain management (SCM) activities have a significant economic impact on countries and their societies. Grant et al. [1] reported these activities accounted for 8.3 percent of US gross domestic product (GDP) or US $1.45 trillion in 2014 and 6.8 percent of GDP (€876 billion) across the European Union’s (EU) 27 countries in 2012.
This chapter covers sustainable logistics. It starts by presenting an overview of logistics in the second section. The third section discusses the basics of sustainable development and sustainability. The fourth section introduces the basic concept of sustainable business as minimizing costs, which covers the three aspects of business: environmental, financial, and human. The fifth section discusses sustainable supply chain and logistics. As business is becoming more challenging these days, companies need to be aware of and practice sustainable supply chain management to stay competitive. Sustainable supply chain management is about environment protection, social responsibilities, economic growth, and profitability in the long term. It wraps up with a brief section on the evaluation of logistic operations. In addition to cost and speed criteria, sustainability should be introduced in the evaluation criteria.
Effective logistics largely contributes to the success of business through quick deliveries in minimum time and cost. Logistics is the process of getting material, product, and service where and when they are needed. It works to determine the temporal and spatial positioning of raw materials, work in progress, and finished inventories where they are needed and when they are required. Logistics can be categorized into subsistence logistics, operation logistics, and system logistics. Subsistence logistics is concerned with the basic human needs of food, clothing, and shelter within any given conditions, and it provides the foundation of operations logistics. Operations logistics goes beyond subsistence to systems involved in producing luxuries; it incorporates the raw material required by the enterprise in the production. System logistics includes all resources required in keeping a system in operating condition. These resources include personnel, test and support equipment, spare parts for maintenance, technical publication, and facilities. Thus, logistics systems consist of four main activities: purchasing management, inventory management, warehousing management, and transportation management.
Logistics is defined by the Council of Logistics Management (CLM) as “the process of planning, implementing and controlling the efficient, effective flow and storage of goods, services and related information from the point of origin to the point of consumption for the purpose of conforming to customer requirements” [2].
Effective logistics minimizes the cost of transportation, inventory, material handling, and other distribution-related activities. In light of the new trends in business, logistics have gained great importance. New trends include high production efficiency, change in inventory philosophy, high transportation cost, production lines replication, propagation of computers and technology, retails fast-growing, globalization, and reduction in economic regulations. Efficient logistics systems throughout the world business are a basis for trade and a better economy. It allows a geographical region to exploit its inherent advantage by focusing its productive efforts on those products in which it has been an advantage, which will result in competitive production cost, logistics cost, and quality compared to other regions.
Global logistics is growing and playing a vital role in international business. It ensures timely and efficient global distribution of goods from producers to consumers through a connection of critical components of the supply chain from a product’s point of origin to its point of consumption. It was reported that global container trade has increased on average 5 percent per year over the last 20 years and at its peak in the mid-2000s comprised 350 million 20-foot equivalent units (TEU) a year [1].
Advancements in information technology and communication, transportation and material handling, and high volume data processing and transmission are revolutionizing logistics control systems. The use of big data tools in logistics and supply chain management gives great advantages as it provides better decision making, improved efficiency, cost reduction, better risk management, and better visibility and competition [3]. Communication technology enables better, faster, and reliable supply chains, communications take place between any firm, suppliers, customers, and other members involved in the chain.
Different people or organizations might have different understandings or definitions for sustainability, depending on their area of specialty or function. Many people think the word sustainability is synonymous with “going green,” or limit their understanding of sustainability to the environment. However, the word sustain means causing or allowing something to continue over a period of time. In the same logic, an unsustainable process or act assumes that it will come to an end sooner rather than later. The World Commission on Environment and Development (WCED), known by the name of its Chair, Gro Harlem Brundtland, published its report “Our Common Future,” in 1987 [1] and proposed the concept of sustainable development as an ideal for the global economy and corporations. Sustainability was defined as development that meets the needs of the present generation without compromising the ability of future generations to meet their needs. Based on the WCED definition of sustainability, focusing only on the environmental aspects of sustainability is short-sighted and partial. In addition to the environment, sustainability embraces several arenas including economics, materials, industry, human behavioral science, laws and legislation, social sciences, and finance, as depicted in Figure 1.
Arenas of sustainability.
To achieve sustainable development, there are three goals that need to be fulfilled: waste elimination or minimization, optimization of resources, and cost minimization. Achieving the three goals will lead to environmental sustainability, economic sustainability, and social sustainability, which are the three pillars of sustainability. From a business viewpoint, sustainability is about reducing costs in every conceivable form, which will lead to profitability, competitiveness, and continuity. These costs consist of the costs of raw materials, waste, deficits in resources, poor product design, inefficient production process, climate change, and unemployment. These costs can be grouped into three categories that represent the three aspects of business: Environmental, Economic, and Social.
Sustainable business is about minimizing costs, which covers the three aspects of business: environmental, financial, and human. There are several challenges business need to consider to better compete in the market. The volatile energy prices is a major challenge for business, all options need to be considered to reduce the energy bill and consequently the business’s dependence on oil. The prices of raw material increases due to increase in the world’s population. Increases in waste and disposal costs are becoming critical to business. Most countries of the world have passed laws and regulations for waste regulation and recycling. Plastic, cans, papers, and other recyclable materials are kept away from landfill sites to avoid waste. The legislation to control CO2 pollution is active in many countries, manufacturers and industrial companies not only face a real challenge to keep their level of CO2 within limits, but investors are avoiding investing in companies that are not willing to comply and watch the high cost of change in environment. Customer and business demands and expectations are becoming different, buyers are so much aware of prices and sustainability initiatives. Retailers are concerned with their supply chains, where the majority of their environmental footprint is centered. They are interested to optimize prices of energy, material, and supply chains. Companies that are committed to low-cost sustainable operations gain the best market share; this will put such companies on a competitive advantage compared to others. Nowadays, customers expect companies to be transparent, which is done through two channels: voluntary where information passing from company to customers, or involuntary where information is shared by consumer watchdog groups. There are companies that are making it possible for customers to have online access to follow up on products from concept to material sourcing, to manufacturing and delivery. Companies share ingredients of their products by providing online lists.
Commitment to sustainability helps companies to recruit, and retain smart employees who think about things other than money. Those employees work with pride and purpose, want to feel the ability to make difference and accomplishment. The longer a company takes an action, the higher the cost is, and the further behind it will be in terms of market share, profitability, and innovation. Hidden costs exist, such costs could be building-related low productivity, and sickness resulting from poor ventilation and lighting. In addition, there are costs related to laying off employees, which include the loss of investment in human capital, economic and social ex-communication, and reduction in national economic growth.
As business is becoming more challenging these days, companies need to be aware of and practice sustainable supply chain management to stay competitive. Sustainable supply chain management is about environment protection, social responsibilities, and economic growth and profitability in the long term. Figure 2 depicts the relationships between the three goals that need to be fulfilled: waste elimination or minimization, optimization of resources, and cost minimization, sustainable development with its three dimensions: economic sustainability, environmental sustainability, and social sustainability, and sustainable logistics with its components: logistics concepts, methods, and functions. To achieve sustainable development, integration of its three dimensions is required; any defect in the three dimensions of sustainable development will not lead to its achievement. Logistics is involved in all aspects of business as well daily life of individuals. Sustainable logistics is tied to sustainable development in general, sustainability criteria should be included in the logistic evaluation, in addition to another criterion such as cost and speed. Sustainable logistics is at the intersection of its concepts, methods, and functions. The goal is to eliminate environmental problems in the areas of logistics, which can be achieved by eliminating or minimizing negative impacts of logistics on the environment. Starting from the concepts, these activities include designing sustainable packaging, and reuse of, recycling waste, reducing energy and the pollution caused by transport.
Sustainability framework.
Several concepts and terms of logistics resulted from strict environmental regulations. Reverse logistics is defined as “the process of planning, implementing and controlling the efficient and cost-effective flow of raw materials, semi-finished and finished products, together with the related information flows, from the point of consumption to the point of origin, in order to recover the value or proper management” [4]. Disposal logistics – “the application of the concept of logistics for the residue, to induce their efficient, economically and ecologically, movements, while the space-time transformation, including changes in the amount and type of” [5]. Recirculation logistics – “suggests that product or packaging, is circulated repeatedly in a closed-loop supply chain” [6]. Downcycling – “process of waste or useless products transformation into new materials or products, having lower quality and functionality” [6]. Green logistics is defined as a “management approach” aimed at minimizing the negative impact on the ecosystem of logistics flows. The problems of excessive environmental degradation concern companies, operating in each market sector. In particular, however, apply to freight forwarders and carriers. The concept of green logistics associated with the strategy consists in the use of their resources in the most efficient and environmentally friendly way. It is a trend that stems from the need to care for the global environment [7].
Logistics includes “efforts to acquire materials and finished products distribution to the right place, at the right time and in the right amount. Typical elements of the logistics system are customer service, demand forecasting, distribution communications, inventory control, warehousing, procurement processes, parts and service support, site selection magazine, shopping, packing, handling complaints, waste management, transport, and storage” [8]. To improve logistic operations, companies collaborate with suppliers, shippers, distributors, and customers. As a result, logistic cost will be reduced and business performance will be improved.
Sustainable supply chain management covers all activities, functions, processes, and relationships, where materials, products, services, information, and monetary transactions move among enterprises. The first step in the implementation of sustainable supply chain management starts with product design. In addition to optimizing quality and cost, the design will allow recycling of products. Sustainable production is the second step, which can be achieved through utilizing clean production methods, use of new technology, reducing raw materials, and resources. Sustainable marketing helps companies to enhance their relationships with stakeholders. Maintaining biological balance, paying more attention to environment, and waste management leads to cost reduction and improved competitiveness. Sustainable transportation is a major element in achieving sustainable supply chain management. Utilizing renewable energy, modes of transport, infrastructure, and operational management practices can be considered to achieve sustainable transportation. Sustainable purchase leads to minimizing waste, hazardous materials, and sources of pollution.
Hammer and Somers [9] discussed concepts that provide possibilities of using resources more productively. The lean methods involve following a product through factory or service operation with the objective to reduce waste of energy and materials. Unlike profit per ton, the concept of profits per hour takes into account the time dimension in production process. This concept enables companies to make wise decisions and choices regarding resources and productivity.
Advanced analytic techniques help companies navigate and sort within different variables such as equipment configuration, raw materials, and process changes. Comprehensive change management effort is required for resource productivity, which ensures that employees create more value from less. Think circular is a sustainable logic that creates new value for companies and societies. This logic relies on looping products, components, and materials back into the production process.
Rothenberg [10] promoted the concept of “servicizing,” where suppliers could focus on providing services instead of selling products as their business models. This will lead to reduced material use as a strategic opportunity. This is in line with the World Commission on Environment and Development definition of “sustainable development.” The author presented the case study of three companies; Gage Products, PPG Industries, and Xerox. The three companies are taking the servicizing approach; they adopted business models that help customers purchase less of their products. The three companies have attracted new customers with their new business models. In addition, they have built stronger customer relationships. This closure customer relationship has led to expanding the range of products they sell, attracting new customers who are impressed with the company’s sustainable social commitment, and usually, customers are less likely to change suppliers.
Similar to other large-scale initiatives for change, moving to servicing is faced with challenges. Changing the culture from selling more products to helping customers to use fewer products is not an easy task. There will be internal resistance at different levels to this change. Managing this change falls into six categories: (1) utilizing existing strengths (2) restructuring profit in contractual agreements (3) introducing the new business model (4) new incentive schemes (5) introducing new skills and (6) expressing major significance and special interest of environmental advantage.
Paine [11] discussed the importance of corporate responsibility to their long-term success. Nike’s corporate committee’s role in supporting innovation was described. The committee was created in 2001 as a result of board member Jill Ker Conway’s lobbying. The committee advises on issues such as labor practices, resource sustainability, innovation, and acquisitions. The author concluded that corporate responsibility committee could help companies in several ways such as a source of knowledge and expertise, accountability, driver of innovation, a source for the full board and constructive critic.
Nidumolu et al. [12] discussed the idea of collaboration, as is a necessity for business sustainability. They introduce four models for systematic sustainability using case studies. The models have two common features; stakeholder inclusion and innovation in either operating processes or business outcomes. Companies can work together on issues such as climate change, depletion of resources, and ecosystem. Two types of collaborations focus on business processes and outcomes. First, is corporate collaboration, which includes all players in business such as manufacturers, suppliers, distributors, and retailers. Second, extended collaborations, which covers business and non-corporate partners such as government, NGOs, and academics.
Companies can identify and share operational processes that will minimize consumption of resources and waste, which will lead to natural resources protection. In addition, companies can share defined outcomes that minimize environmental impact. To explain the proposed models, the authors discussed several case studies. Processes were the center of corporate collaborations in the case of Dairy Management Inc. and case of an action to accelerate recycling. The corporate collaboration’s focus was on outcomes in the case of sustainable coalition, and Latin American water funds partnership.
Authors stated seven next practices for successful collaborations in sustainability. (1) Starting with small committed group (2) link self-interest to shared interest (3) monetize system value (4) create a clear path with quick wins (5) acquire independent project management expertise (6) build in structured competition, and (7) nurture a culture of trust.
Doorey [13] describes the case study of Nike and Levis. The contribution of factory disclosure was evaluated, and tracking the change from resistance to transparency in supply chain was tracked. Information disclosure is a tool that is used in business and it affects its behavior. Business leaders can change harmful behavior with transparency and empowering private watchdogs. This is clear from the private movement that took place in the late 1990s to pressure corporations to disclose and declare their global suppliers. It was believed that such disclosure would improve working conditions and labor practices. For example, Nike and Levis published their suppliers list in 1995, which was a surprise to the business community. Information systems were introduced to track information about labor practices including global suppliers’ databases.
Unlike Nike and Levis, many other companies are not welcoming the idea of supplier transparency. Some of these companies cannot track their suppliers, which will lead to ignorance of labor practices. In such case, the role of private actors becomes essential to apply the needed pressure to create transparent supply chains.
New [14] discussed the importance of transparent supply chain. When supply chain is not transparent, trouble will arise. Many companies consider provenance very important, H&M for example declares that labor practices and environmental effects of its suppliers’ suppliers are very important. Origin is considered an important and essential feature of what a customer may buy. Companies such as Wal-Mart are using new technologies to provide origin data. For example, bar codes that can be read with mobile phones, genetic markers for agricultural products and labeling have been transformed by microscopic electronic devices.
Customers have an interest in origins and authenticity. Providing them with information about provenance will become part of the marketing strategy. Provenance is important on downstream and upstream sides of the supply chain. Both customers and suppliers can access this internet of things that gather provenance information.
Until recently, logistic operations were evaluated based on cost and speed criteria. The situation is different now, where sustainability was introduced in the evaluation criteria [15]. Logistics is a human activity and impacts the environment through its components purchasing, inventory, warehousing, and transportation. Decision-making becomes more important in logistic and supply chain management, which may vary from single quantitative criterion to multi-criteria problems. Many problems in logistic management such as supplier selection, purchasing, manufacturing, distribution, collaboration, performance management, and design are covered by suitable multiple criteria decision-making approaches. Mohsen and Murat [16] developed an analytical hierarchy process (AHP) methodology to perform a multi-criteria evaluation of freight forwarders. It analyzes different criteria that would be employed in the evaluation and selection of forwarders.
Companies’ competitiveness rely on their ability to ship their products around the globe at the right time in a perfect physical situation. It is suggested that logistic evaluation is based on a multi-criteria in terms of transit time, quality of service, expertise and specialized service, network, competitive prices, technology and information, and sustainability criteria.
In logistics, quality of service is not about responding to emails or calls anymore. The quality of service pertains to such areas as expertise in providing relevant services, ability to work with one point of contact, meeting unique customer requirements, dependability and assurance of the international shipping service, flexibility and ability to provide a wide range of services, and meeting deadlines. Quality of service is about supporting customers to gain a competitive edge against their competitors by using innovative systems, utilizing big data, and advising on the market conditions and logistics trends. Huang et al. (2019) explore some practical business solutions to enhance customer service level of the international freight forwarders. Providing high-quality service is a key objective in this business sector to enhance customer satisfaction since competition is extremely critical.
Ability to provide specialized service is very critical for customers needing special and expert handling of their sensitive cargo. For example, the shipment of a pharma product requires a forwarder who knows the regulations and has proven record experience in handling pharma when it comes to temperature monitoring during the shipping and warehousing requirements.
Network for the logistics partner is defined as the existence of the company around the globe. It is important to deal with a company that has a strong network around factories to the distribution centers to make sure they guarantee space for cargo, and on the other hand to be committed to the agreed transit time. Network dimension concerns such factors as international deployment, number of branches worldwide, and number of countries in which the international shippers are represented.
Price might be critical to some industries, especially for low-value products. Hence, customers seek the most competitive rates in the market to increase their profitability. On the other hand, other industries’ shipping pricing might not be as critical as for pharma and high technology because of the need for special handling and expertise which might not be available in all logistic companies. So, you need to check your industry and value of your product before negotiations. In all cases, the ability to offer service with attractive prices will continue to be an important criterion.
No doubt that technology is so important nowadays, finding a partner with advanced technology would help to have efficient and effective operations. The ability to access and interface with the international shippers’ information technology is a very important factor in evaluating the freight forwarder. Finding a partner with advanced technology will give the company a competitive edge against your competitors by utilizing their big data.
Some shippers have really advanced technology to level that they have platforms, which allow you to predict the economy for every quarter of the year per region by utilizing the big data of logistics (import & export), this will be very helpful, especially for newly launched products.
Saving the environment is everyone’s concern nowadays, all companies giving more attention to sustainability and they made a lot of initiatives to save environment. Finding a logistics partner who cares about sustainability will help the company in its strategy. Some of the logistic and transport companies generate reports for CO2 emission, which will help you in your strategy.
Logistics is a required function for all types of businesses. It covers many actions and activities performed by the companies involved in managing the flow of raw material, unfinished products, and final products. This wide range allows to introduce and use many tools, solutions, or actions that led to the creation of Sustainable Logistics Management term.
Sustainability is the future for logistics and supply chain businesses. It is important to understand the level of social, environmental, and economic impact and viability that suppliers and customers have. It is beyond going green and being environmentally friendly, it has an influence on manufacturing processes, starting from where raw materials are obtained, processes involved, use, and potential recycling of the product or service. In analyzing the problem of selecting a freight forwarder, sustainability will be one amongst other criteria for evaluation. Selecting a logistics partner who cares about sustainability will help in achieving company’s strategy. Some of the logistic and transport companies generate reports for CO2 emission, which will help in achieving specific targets and strategies.
As business is becoming more challenging these days, companies need to be aware of and practice sustainable supply chain management to stay competitive. Sustainable logistic and supply chain management is about environment protection, social responsibilities, and economic growth and profitability in the long term.
In addition to cost and speed criteria, sustainability should be introduced in the evaluation criteria. It is suggested that logistic evaluation is based on a multi-criteria in terms of transit time, quality of service, expertise and specialized service, network, competitive prices, technology and information, and sustainability criteria.
IntechOpen has always supported new and evolving ideas in scholarly publishing. We understand the community we serve, but to provide an even better service for our IntechOpen Authors and Academic Editors, we have partnered with leading companies and associations in the scientific field and beyond.
",metaTitle:"Partnerships",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/partnerships",contentRaw:'[{"type":"htmlEditorComponent","content":"\\n"}]'},components:[{type:"htmlEditorComponent",content:'
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium difficile",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11818",title:"Uveitis",subtitle:null,isOpenForSubmission:!0,hash:"f8c178e6f45ba7b500281005b5d5b67a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11818.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11837",title:"Ecology and Geography of the Mediterranean",subtitle:null,isOpenForSubmission:!0,hash:"bbb25987a982d61da4f47fb13614ba3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:29},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:12},{group:"topic",caption:"Computer and Information Science",value:9,count:7},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:11},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:4},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:5},{group:"topic",caption:"Medicine",value:16,count:79},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:1},{group:"topic",caption:"Psychology",value:21,count:6},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:22}],offset:12,limit:12,total:230},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:82,numberOfSeries:0,numberOfAuthorsAndEditors:2179,numberOfWosCitations:1878,numberOfCrossrefCitations:1631,numberOfDimensionsCitations:3534,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"13",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10874",title:"Insights on Antimicrobial Peptides",subtitle:null,isOpenForSubmission:!1,hash:"23ca26025e87356a7c2ffac365f73a22",slug:"insights-on-antimicrobial-peptides",bookSignature:"Shymaa Enany, Jorge Masso-Silva and Anna Savitskaya",coverURL:"https://cdn.intechopen.com/books/images_new/10874.jpg",editedByType:"Edited by",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11006",title:"Disinfection of Viruses",subtitle:null,isOpenForSubmission:!1,hash:"d7f3f66e22e16c3751989918a43b3210",slug:"disinfection-of-viruses",bookSignature:"Raymond W. Nims and M. Khalid Ijaz",coverURL:"https://cdn.intechopen.com/books/images_new/11006.jpg",editedByType:"Edited by",editors:[{id:"104702",title:"Dr.",name:"Raymond W.",middleName:null,surname:"Nims",slug:"raymond-w.-nims",fullName:"Raymond W. Nims"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10442",title:"Cyanobacteria",subtitle:"Recent Advances in Taxonomy and Applications",isOpenForSubmission:!1,hash:"2fec78743d3f973c80881957ce3e6d79",slug:"cyanobacteria-recent-advances-in-taxonomy-and-applications",bookSignature:"Wael N. Hozzein",coverURL:"https://cdn.intechopen.com/books/images_new/10442.jpg",editedByType:"Edited by",editors:[{id:"189233",title:"Prof.",name:"Wael N.",middleName:"Nabil",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,isOpenForSubmission:!1,hash:"31d6882518ca749b12715266eed0a018",slug:"advances-in-candida-albicans",bookSignature:"Xinhui Wang",coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",editedByType:"Edited by",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8043",title:"Monoclonal Antibodies",subtitle:null,isOpenForSubmission:!1,hash:"91da3371c910d66deb7b8c434948b834",slug:"monoclonal-antibodies",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/8043.jpg",editedByType:"Edited by",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,isOpenForSubmission:!1,hash:"c31366ba82585ba3ac91d21eb1cf0a4d",slug:"human-microbiome",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",editedByType:"Edited by",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9665",title:"Pseudomonas aeruginosa",subtitle:"Biofilm Formation, Infections and Treatments",isOpenForSubmission:!1,hash:"00e9f0f41cf8cd97ff33fac3bcea14cb",slug:"pseudomonas-aeruginosa-biofilm-formation-infections-and-treatments",bookSignature:"Theerthankar Das",coverURL:"https://cdn.intechopen.com/books/images_new/9665.jpg",editedByType:"Edited by",editors:[{id:"179493",title:"Dr.",name:"Theerthankar",middleName:null,surname:"Das",slug:"theerthankar-das",fullName:"Theerthankar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:82,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"62553",doi:"10.5772/intechopen.79371",title:"Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance",slug:"antibiotic-use-in-poultry-production-and-its-effects-on-bacterial-resistance",totalDownloads:7333,totalCrossrefCites:43,totalDimensionsCites:92,abstract:"A surge in the development and spread of antibiotic resistance has become a major cause for concern. Over the past few decades, no major new types of antibiotics have been produced and almost all known antibiotics are increasingly losing their activity against pathogenic microorganisms. The levels of multi-drug resistant bacteria have also increased. It is known that worldwide, more than 60% of all antibiotics that are produced find their use in animal production for both therapeutic and non-therapeutic purposes. The use of antimicrobial agents in animal husbandry has been linked to the development and spread of resistant bacteria. Poultry products are among the highest consumed products worldwide but a lot of essential antibiotics are employed during poultry production in several countries; threatening the safety of such products (through antimicrobial residues) and the increased possibility of development and spread of microbial resistance in poultry settings. This chapter documents some of the studies on antibiotic usage in poultry farming; with specific focus on some selected bacterial species, their economic importance to poultry farming and reports of resistances of isolated species from poultry settings (farms and poultry products) to essential antibiotics.",book:{id:"6978",slug:"antimicrobial-resistance-a-global-threat",title:"Antimicrobial Resistance",fullTitle:"Antimicrobial Resistance - A Global Threat"},signatures:"Christian Agyare, Vivian Etsiapa Boamah, Crystal Ngofi Zumbi and\nFrank Boateng Osei",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"261271",title:"MSc.",name:"Crystal Ngofi",middleName:null,surname:"Zumbi",slug:"crystal-ngofi-zumbi",fullName:"Crystal Ngofi Zumbi"},{id:"261272",title:"MSc.",name:"Frank Boateng",middleName:null,surname:"Osei",slug:"frank-boateng-osei",fullName:"Frank Boateng Osei"},{id:"261273",title:"Dr.",name:"Vivian Etsiapa",middleName:null,surname:"Boamah",slug:"vivian-etsiapa-boamah",fullName:"Vivian Etsiapa Boamah"}]},{id:"39599",doi:"10.5772/50046",title:"Encapsulation Technology to Protect Probiotic Bacteria",slug:"encapsulation-technology-to-protect-probiotic-bacteria",totalDownloads:12461,totalCrossrefCites:45,totalDimensionsCites:87,abstract:null,book:{id:"3145",slug:"probiotics",title:"Probiotics",fullTitle:"Probiotics"},signatures:"María Chávarri, Izaskun Marañón and María Carmen Villarán",authors:[{id:"150285",title:"Dr.",name:"María",middleName:null,surname:"Chávarri Hueda",slug:"maria-chavarri-hueda",fullName:"María Chávarri Hueda"},{id:"151613",title:"MSc.",name:"Izaskun",middleName:null,surname:"Marañon",slug:"izaskun-maranon",fullName:"Izaskun Marañon"},{id:"151621",title:"Dr.",name:"Mª Carmen",middleName:null,surname:"Villarán",slug:"ma-carmen-villaran",fullName:"Mª Carmen Villarán"}]},{id:"39607",doi:"10.5772/50121",title:"Recent Application of Probiotics in Food and Agricultural Science",slug:"recent-application-of-probiotics-in-food-and-agricultural-science",totalDownloads:10177,totalCrossrefCites:32,totalDimensionsCites:78,abstract:null,book:{id:"3145",slug:"probiotics",title:"Probiotics",fullTitle:"Probiotics"},signatures:"Danfeng Song, Salam Ibrahim and Saeed Hayek",authors:[{id:"107905",title:"Prof.",name:"Salam",middleName:null,surname:"Ibrahim",slug:"salam-ibrahim",fullName:"Salam Ibrahim"},{id:"150202",title:"Dr.",name:"Danfeng",middleName:null,surname:"Song",slug:"danfeng-song",fullName:"Danfeng Song"},{id:"151025",title:"MSc.",name:"Saeed",middleName:null,surname:"Hayek",slug:"saeed-hayek",fullName:"Saeed Hayek"}]},{id:"51065",doi:"10.5772/63499",title:"Role of the Biofilms in Wastewater Treatment",slug:"role-of-the-biofilms-in-wastewater-treatment",totalDownloads:6856,totalCrossrefCites:28,totalDimensionsCites:63,abstract:"Biological wastewater treatment systems play an important role in improving water quality and human health. This chapter thus briefly discusses different biological methods, specially biofilm technologies, the development of biofilms on different filter media, factors affecting their development as well as their structure and function. It also tackles various conventional and modern molecular techniques for detailed exploration of the composition, diversity and dynamics of biofilms. These data are crucial to improve the performance, robustness and stability of biofilm-based wastewater treatment technologies.",book:{id:"5197",slug:"microbial-biofilms-importance-and-applications",title:"Microbial Biofilms",fullTitle:"Microbial Biofilms - Importance and Applications"},signatures:"Shama Sehar and Iffat Naz",authors:[{id:"180364",title:"Dr.",name:"Iffat",middleName:null,surname:"Naz",slug:"iffat-naz",fullName:"Iffat Naz"},{id:"183345",title:"Dr.",name:"Shama",middleName:null,surname:"Sehar",slug:"shama-sehar",fullName:"Shama Sehar"}]},{id:"49246",doi:"10.5772/61300",title:"Chitosan as a Biomaterial — Structure, Properties, and Electrospun Nanofibers",slug:"chitosan-as-a-biomaterial-structure-properties-and-electrospun-nanofibers",totalDownloads:4727,totalCrossrefCites:27,totalDimensionsCites:63,abstract:"Chitosan is a polysaccharide derived from chitin; chitin is the second most abundant polysaccharide in the world, after cellulose. Chitosan is biocompatible, biodegradable and non-toxic, so that it can be usedin medicalapplications such as antimicrobial and wound healing biomaterials. It also used as chelating agent due to its ability to bind with cholesterol, fats, proteins and metal ions.",book:{id:"4648",slug:"concepts-compounds-and-the-alternatives-of-antibacterials",title:"Concepts, Compounds and the Alternatives of Antibacterials",fullTitle:"Concepts, Compounds and the Alternatives of Antibacterials"},signatures:"H. M. Ibrahim and E.M.R. El- Zairy",authors:[{id:"90645",title:"Dr.",name:"Hassan",middleName:null,surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"},{id:"175694",title:"Dr.",name:"Enas",middleName:null,surname:"El- Zairy",slug:"enas-el-zairy",fullName:"Enas El- Zairy"}]}],mostDownloadedChaptersLast30Days:[{id:"65613",title:"The Methods for Detection of Biofilm and Screening Antibiofilm Activity of Agents",slug:"the-methods-for-detection-of-biofilm-and-screening-antibiofilm-activity-of-agents",totalDownloads:9277,totalCrossrefCites:15,totalDimensionsCites:26,abstract:"Biofilm producer microorganisms cause nosocomial and recurrent infections. Biofilm that is a sticky exopolysaccharide is the main virulence factor causing biofilm-related infections. Biofilm formation begins with attachment of bacteria to biotic surface such as host cell or abiotic surface such as prosthetic devices. After attachment, aggregation of bacteria is started by cell-cell adhesion. Aggregation continues with the maturation of biofilm. Dispersion is started by certain conditions such as phenol-soluble modulins (PSMs). By this way, sessile bacteria turn back into planktonic form. Bacteria embedded in biofilm (sessile form) are more resistant to antimicrobials than planktonic bacteria. So it is hard to treat biofilm-embedded bacteria than planktonic forms. For this reason, it is important to detect biofilm. There are a few biofilm detection and biofilm production methods on prosthetics, methods for screening antibacterial effect of agents against biofilm-embedded microorganism and antibiofilm effect of agents against biofilm production and mature biofilm. The aim of this chapter is to overview direct and indirect methods such as microscopy, fluorescent in situ hybridization, and Congo red agar, tube method, microtiter plate assay, checkerboard assay, plate counting, polymerase chain reaction, mass spectrometry, MALDI-TOF, and biological assays used by antibiofilm researches.",book:{id:"8427",slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",fullTitle:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods"},signatures:"Sahra Kırmusaoğlu",authors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}]},{id:"62553",title:"Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance",slug:"antibiotic-use-in-poultry-production-and-its-effects-on-bacterial-resistance",totalDownloads:7327,totalCrossrefCites:43,totalDimensionsCites:92,abstract:"A surge in the development and spread of antibiotic resistance has become a major cause for concern. Over the past few decades, no major new types of antibiotics have been produced and almost all known antibiotics are increasingly losing their activity against pathogenic microorganisms. The levels of multi-drug resistant bacteria have also increased. It is known that worldwide, more than 60% of all antibiotics that are produced find their use in animal production for both therapeutic and non-therapeutic purposes. The use of antimicrobial agents in animal husbandry has been linked to the development and spread of resistant bacteria. Poultry products are among the highest consumed products worldwide but a lot of essential antibiotics are employed during poultry production in several countries; threatening the safety of such products (through antimicrobial residues) and the increased possibility of development and spread of microbial resistance in poultry settings. This chapter documents some of the studies on antibiotic usage in poultry farming; with specific focus on some selected bacterial species, their economic importance to poultry farming and reports of resistances of isolated species from poultry settings (farms and poultry products) to essential antibiotics.",book:{id:"6978",slug:"antimicrobial-resistance-a-global-threat",title:"Antimicrobial Resistance",fullTitle:"Antimicrobial Resistance - A Global Threat"},signatures:"Christian Agyare, Vivian Etsiapa Boamah, Crystal Ngofi Zumbi and\nFrank Boateng Osei",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"261271",title:"MSc.",name:"Crystal Ngofi",middleName:null,surname:"Zumbi",slug:"crystal-ngofi-zumbi",fullName:"Crystal Ngofi Zumbi"},{id:"261272",title:"MSc.",name:"Frank Boateng",middleName:null,surname:"Osei",slug:"frank-boateng-osei",fullName:"Frank Boateng Osei"},{id:"261273",title:"Dr.",name:"Vivian Etsiapa",middleName:null,surname:"Boamah",slug:"vivian-etsiapa-boamah",fullName:"Vivian Etsiapa Boamah"}]},{id:"65914",title:"Introductory Chapter: The Action Mechanisms of Antibiotics and Antibiotic Resistance",slug:"introductory-chapter-the-action-mechanisms-of-antibiotics-and-antibiotic-resistance",totalDownloads:4428,totalCrossrefCites:6,totalDimensionsCites:10,abstract:null,book:{id:"8427",slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",fullTitle:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods"},signatures:"Sahra Kırmusaoğlu, Nesrin Gareayaghi and Bekir S. Kocazeybek",authors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"},{id:"248288",title:"Prof.",name:"Bekir",middleName:null,surname:"Kocazeybek",slug:"bekir-kocazeybek",fullName:"Bekir Kocazeybek"},{id:"406463",title:"Dr.",name:"Nesrin",middleName:null,surname:"Gareayaghi",slug:"nesrin-gareayaghi",fullName:"Nesrin Gareayaghi"}]},{id:"50992",title:"Probiotics: A Comprehensive Review of Their Classification, Mode of Action and Role in Human Nutrition",slug:"probiotics-a-comprehensive-review-of-their-classification-mode-of-action-and-role-in-human-nutrition",totalDownloads:5429,totalCrossrefCites:16,totalDimensionsCites:28,abstract:"Probiotics are live microorganisms that live in gastrointestinal (GI) tract and are beneficial for their hosts and prevent certain diseases. In this chapter, after a complete introduction to probiotics, definition, mechanism of action, and their classification, currently used organisms will be discussed in detail. Moreover, different kinds of nutritional synthetic products of probiotics along with their safety and drug interaction will be noticed. This chapter mentions all clinical trial studies that have been done to evaluate probiotic efficacy with a focus on gastrointestinal diseases.",book:{id:"5193",slug:"probiotics-and-prebiotics-in-human-nutrition-and-health",title:"Probiotics and Prebiotics in Human Nutrition and Health",fullTitle:"Probiotics and Prebiotics in Human Nutrition and Health"},signatures:"Amirreza Khalighi, Reza Behdani and Shabnam Kouhestani",authors:[{id:"179560",title:"Dr.",name:"Amirreza",middleName:null,surname:"Khalighi",slug:"amirreza-khalighi",fullName:"Amirreza Khalighi"},{id:"185238",title:"Dr.",name:"Reza",middleName:null,surname:"Behdani",slug:"reza-behdani",fullName:"Reza Behdani"},{id:"185239",title:"Dr.",name:"Shabnam",middleName:null,surname:"Kouhestani",slug:"shabnam-kouhestani",fullName:"Shabnam Kouhestani"}]},{id:"56849",title:"Physiology and Pathology of Innate Immune Response Against Pathogens",slug:"physiology-and-pathology-of-innate-immune-response-against-pathogens",totalDownloads:6226,totalCrossrefCites:21,totalDimensionsCites:28,abstract:"Pathogen infections are recognized by the immune system, which consists of two types of responses: an innate immune response and an antigen-specific adaptive immune response. The innate response is characterized by being the first line of defense that occurs rapidly in which leukocytes such as neutrophils, monocytes, macrophages, eosinophils, mast cells, dendritic cells, etc., are involved. These cells recognize the pathogen-associated molecular patterns (PAMPs), which have been evolutionarily conserved by the diversity of microorganisms that infect humans. Recognition of these pathogen-associated molecular patterns occurs through pattern recognition receptors such as Toll-like receptors and some other intracellular receptors such as nucleotide oligomerization domain (NOD), with the aim of amplifying the inflammation and activating the adaptive cellular immune response, through the antigenic presentation. In the present chapter, we will review the importance of the main components involved in the innate immune response, such as different cell types, inflammatory response, soluble immune mediators and effector mechanisms exerted by the immune response against bacteria, viruses, fungi, and parasites; all with the purpose of eliminating them and eradicating the infection of the host.",book:{id:"5975",slug:"physiology-and-pathology-of-immunology",title:"Physiology and Pathology of Immunology",fullTitle:"Physiology and Pathology of Immunology"},signatures:"José Luis Muñoz Carrillo, Flor Pamela Castro García, Oscar\nGutiérrez Coronado, María Alejandra Moreno García and Juan\nFrancisco Contreras Cordero",authors:[{id:"214236",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Muñoz-Carrillo",slug:"jose-luis-munoz-carrillo",fullName:"Jose Luis Muñoz-Carrillo"},{id:"216080",title:"Dr.",name:"Alejandra",middleName:null,surname:"Moreno-García",slug:"alejandra-moreno-garcia",fullName:"Alejandra Moreno-García"},{id:"216081",title:"Dr.",name:"Oscar",middleName:null,surname:"Gutiérrez-Coronado",slug:"oscar-gutierrez-coronado",fullName:"Oscar Gutiérrez-Coronado"},{id:"216082",title:"Dr.",name:"Pamela",middleName:null,surname:"Castro-García",slug:"pamela-castro-garcia",fullName:"Pamela Castro-García"},{id:"220717",title:"Dr.",name:"Juan Francisco",middleName:null,surname:"Contreras Cordero",slug:"juan-francisco-contreras-cordero",fullName:"Juan Francisco Contreras Cordero"}]}],onlineFirstChaptersFilter:{topicId:"13",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"83067",title:"Multiplicity in the Genes of Carbon Metabolism in Antibiotic-Producing Streptomycetes",slug:"multiplicity-in-the-genes-of-carbon-metabolism-in-antibiotic-producing-streptomycetes",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.106525",abstract:"Streptomycetes exhibit genetic multiplicity, like many other microorganisms, and redundancy occurs in many of the genes involved in carbon metabolism. The enzymes of the glycolytic pathway presenting the greatest multiplicity were phosphofructokinase, fructose 1,6-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase. The genes that encode citrate synthase and subunits of the succinate dehydrogenase complex are the ones that show the greatest multiplicity, while in the phosphoenolpyruvate-pyruvate-oxaloacetate node, only malic enzymes and pyruvate phosphate dikinase present two copies in some Streptomyces. The extra DNA from these multiple gene copies can be more than 50 kb, and the question arises whether all of these genes are transcribed and translated. As far as we know, there is few information about the transcription of these genes in any of this Streptomyces, nor if any of the activities that are encoded by a single gene could be limiting both for growth and for the formation of precursors of the antibiotics produced by these microorganisms. Therefore, it is important to study the transcription and translation of genes involved in carbon metabolism in antibiotic-producing Streptomyces growing on various sugars.",book:{id:"10893",title:"Actinobacteria",coverURL:"https://cdn.intechopen.com/books/images_new/10893.jpg"},signatures:"Toshiko Takahashi, Jonathan Alanís, Polonia Hernández and María Elena Flores"},{id:"82972",title:"Actinomycosis: Diagnosis, Clinical Features and Treatment",slug:"actinomycosis-diagnosis-clinical-features-and-treatment",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.104698",abstract:"Actinomycosis is a filamentous bacterium that forms part of the normal human flora of the gastrointestinal, oropharynx and female genitalia. This indolent infection is characterized by abscess formation, widespread granulomatous disease, fibrosis, cavitary lung lesions and mass-like consolidations, simulating an active malignancy or systemic inflammatory diseases. It is subacute, chronic and variable presentation may delay diagnosis due to its capability to simulate other conditions. An accurate diagnostic timeline is relevant. Early diagnosis of pulmonary actinomycosis decreases the risk of indolent complications. Proper treatment reduces the need for invasive surgical methods. Actinomycosis can virtually involve any organ system, the infection spread without respecting anatomical variables as metastatic disease does, making malignancy an important part of the differential diagnosis. As it is normal gastrointestinal florae, it is difficult to cultivate, and share similar morphology to other organisms such as Nocardia and fungus. It is often difficult to be identified as the culprit of disease. Its true imitator capability makes this infectious agent a remarkable organism within the spectra of localized and disseminated disease. In this chapter, we will discuss different peculiarities of actinomycosis as an infectious agent, most common presentation in different organ systems, and challenging scenarios.",book:{id:"10893",title:"Actinobacteria",coverURL:"https://cdn.intechopen.com/books/images_new/10893.jpg"},signatures:"Onix J. Cantres-Fonseca, Vanessa Vando-Rivera, Vanessa Fonseca-Ferrer, Christian Castillo Latorre and Francisco J. Del Olmo-Arroyo"},{id:"82412",title:"Potential of Native Microalgae from the Peruvian Amazon on the Removal of Pollutants",slug:"potential-of-native-microalgae-from-the-peruvian-amazon-on-the-removal-of-pollutants",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.105686",abstract:"Environmental pollution is a severe and common problem in all the countries worldwide. Various physicochemical technologies and organisms (e.g., plants, microorganisms, etc.) are used to address these environmental issues, but low-cost, practical, efficient, and effective approaches have not been available yet. Microalgae offer an attractive, novel, and little-explored bioremediation alternative because these photosynthetic organisms can eliminate pathogenic microorganisms and remove heavy metals and toxic organic compounds through processes still under study. Our research team has conducted some experiments to determine the bioremediation potential of native microalgae on some pollutant sources (i.e., leachate and wastewater) and its ability to remove hazardous chemical compounds. Therefore, in this chapter, we provide the results of our research and updated information about this exciting topic. Experiments were conducted under controlled culture conditions using several native microalgae species, variable time periods, different pollutant sources, and hazardous chemicals such as ethidium bromide. The results indicated that native microalgae can remove pollutants (i.e., phosphorus, ammonia, etc.) of wastewater, leachate, and some hazardous chemical compounds such as ethidium bromide. In conclusion, native microalgae have an excellent potential for removing several pollutants and, consequently, could be used to develop bioremediation technologies based on native microalgae from the Peruvian Amazon.",book:{id:"11366",title:"Microalgae",coverURL:"https://cdn.intechopen.com/books/images_new/11366.jpg"},signatures:"Marianela Cobos, Segundo L. Estela, Carlos G. Castro, Miguel A. Grandez, Alvaro B. Tresierra, Corayma L. Cabezudo, Santiago Galindo, Sheyla L. Pérez, Angélica V. Rios, Jhon A. Vargas, Roger Ruiz, Pedro M. Adrianzén, Jorge L. Marapara and Juan C. Castro"},{id:"81859",title:"Respiratory Syncytial Virus",slug:"respiratory-syncytial-virus",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.104771",abstract:"Respiratory Syncytial Virus (RSV)-driven bronchiolitis is one of the most common causes of pediatric hospitalization. Every year, we face 33.1 million episodes of RSV-driven lower respiratory tract infection without any available vaccine or cost-effective therapeutics since the discovery of RSV eighty years before. RSV is an enveloped RNA virus belonging to the pneumoviridae family of viruses. This chapter aims to elucidate the structure and functions of the RSV genome and proteins and the mechanism of RSV infection in host cells from entry to budding, which will provide current insight into the RSV-host relationship. In addition, this book chapter summarizes the recent research outcomes regarding the structure of RSV and the functions of all viral proteins along with the RSV life cycle and cell-to-cell spread.",book:{id:"11369",title:"RNA Viruses Infection",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg"},signatures:"Sattya Narayan Talukdar and Masfique Mehedi"},{id:"82148",title:"Mosquito Population Modification for Malaria Control",slug:"mosquito-population-modification-for-malaria-control",totalDownloads:12,totalDimensionsCites:0,doi:"10.5772/intechopen.104907",abstract:"Malaria is a mosquito-borne disease that kills millions of people every year. Existing control tools have been insufficient to eliminate the disease in many endemic regions and additional approaches are needed. Novel vector-control strategies using genetic engineering to create malaria-resistant mosquitoes (population modification) can potentially contribute a new set of tools for mosquito control. Here we review the current mosquito control strategies and the development of transgenic mosquitoes expressing anti-parasite effector genes, highlighting the recent improvements in mosquito genome editing with CRISPR-Cas9 as an efficient and adaptable tool for gene-drive systems to effectively spread these genes into mosquito populations.",book:{id:"11379",title:"Mosquito Research - Recent Advances in Pathogen Interactions, Immunity, and Vector Control Strategies",coverURL:"https://cdn.intechopen.com/books/images_new/11379.jpg"},signatures:"Rebeca Carballar-Lejarazú, Taylor Tushar, Thai Binh Pham and Anthony James"},{id:"81934",title:"Lactobacillus Use for Plant Fermentation: New Ways for Plant-Based Product Valorization",slug:"lactobacillus-use-for-plant-fermentation-new-ways-for-plant-based-product-valorization",totalDownloads:16,totalDimensionsCites:0,doi:"10.5772/intechopen.104958",abstract:"Today, plant production is increasing, but most industrial processes generate a lot of waste and by-products for which, in the current context, it is a priority to recycle or valorize them. One of the cheapest valorization routes is fermentation, in particular lactic fermentation by Lactobacillus species, which produces lactic acid and other molecules of industrial interest such as bioactive compounds such as anthocyanin, organic acid, peptides, or phenol, which are widely found in the plant matrix, mainly in cereals, grass, fruits, and vegetables. Bioactive compounds may exert beneficial health effects, such as antioxidant, anti-inflammatory, antimicrobial, or prebiotic activities. In addition, lactic acid fermentation can improve existing products and lead to new applications in food, livestock feeding and biotechnology, such as the production of lactic acid, protein, or silage. This chapter reviews the use of Lactobacillus strains in the fermentation process of many plant bioresources or by-products through their different bioactivities, active molecules, and applications.",book:{id:"11372",title:"Lactobacillus - A Multifunctional Genus",coverURL:"https://cdn.intechopen.com/books/images_new/11372.jpg"},signatures:"Morgan Le Rouzic, Pauline Bruniaux, Cyril Raveschot, François Krier, Vincent Phalip, Rozenn Ravallec, Benoit Cudennec and François Coutte"}],onlineFirstChaptersTotal:102},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:"2753-6580",scope:"