Products from the various substrates by recombinant 3NTDO.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"5075",leadTitle:null,fullTitle:"Modern Electron Microscopy in Physical and Life Sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",subtitle:null,reviewType:"peer-reviewed",abstract:"This book brings a broad review of recent global developments in theory, instrumentation, and practical applications of electron microscopy. It was created by 13 contributions from experts in different fields of electron microscopy and technology from over 20 research institutes worldwide.",isbn:null,printIsbn:"978-953-51-2252-4",pdfIsbn:"978-953-51-5063-3",doi:"10.5772/60494",price:119,priceEur:129,priceUsd:155,slug:"modern-electron-microscopy-in-physical-and-life-sciences",numberOfPages:300,isOpenForSubmission:!1,isInWos:1,hash:"e13d28339466917a0d43e0621dd19fb2",bookSignature:"Milos Janecek and Robert Kral",publishedDate:"February 18th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5075.jpg",numberOfDownloads:38525,numberOfWosCitations:17,numberOfCrossrefCitations:29,numberOfDimensionsCitations:89,hasAltmetrics:1,numberOfTotalCitations:135,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 2nd 2015",dateEndSecondStepPublish:"April 23rd 2015",dateEndThirdStepPublish:"July 28th 2015",dateEndFourthStepPublish:"October 26th 2015",dateEndFifthStepPublish:"November 25th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"15744",title:"Dr.",name:"Milos",middleName:null,surname:"Janecek",slug:"milos-janecek",fullName:"Milos Janecek",profilePictureURL:"https://mts.intechopen.com/storage/users/15744/images/4976_n.jpg",biography:"Miloš Janeček is a professor and researcher at the Charles University in Prague, Czech Republic. His expertize includes transmission and scanning electron microscopy and electron diffraction and analytical techniques of microstructure investigation and mechanical properties of light metals and alloys. He was a visiting research fellow at the University of Manitoba in Winnipeg, Canada, and at the INP Grenoble, France, and a visiting professor at the Technical University in Clausthal, Germany.\nHe has published more than 130 scientific papers in referred journals and about 50 conference papers and 2 book chapters. He graduated and obtained his PhD degree at the Charles University in Prague. Currently he is the head of the Department of Physics of Materials at the Faculty of Mathematics and Physics, Charles University in Prague. His current scientific interests include investigation of microstructure, mechanical and physical properties of ultrafine-grained materials processed by severe plastic deformation, and phase transformations in metastable Ti alloys. He is the member of the Editorial Board of Materials Science and Engineering and the TMS Ti International Committee.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"177105",title:"Dr.",name:"Robert",middleName:null,surname:"Kral",slug:"robert-kral",fullName:"Robert Kral",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Robert Král is an associate professor and researcher at the Charles University in Prague",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1224",title:"Life Science",slug:"life-science"}],chapters:[{id:"49537",title:"Electron Diffraction",doi:"10.5772/61781",slug:"electron-diffraction",totalDownloads:8129,totalCrossrefCites:6,totalDimensionsCites:19,signatures:"Mohsen Asadi Asadabad and Mohammad Jafari Eskandari",downloadPdfUrl:"/chapter/pdf-download/49537",previewPdfUrl:"/chapter/pdf-preview/49537",authors:[{id:"176352",title:"Dr.",name:"Mohsen",surname:"Asadi Asadabad",slug:"mohsen-asadi-asadabad",fullName:"Mohsen Asadi Asadabad"},{id:"177600",title:"Dr.",name:"Mohammad",surname:"Jafari Eskandari",slug:"mohammad-jafari-eskandari",fullName:"Mohammad Jafari Eskandari"}],corrections:null},{id:"49619",title:"Spatiotemporal Calibration of Electron Microscopes",doi:"10.5772/61947",slug:"spatiotemporal-calibration-of-electron-microscopes",totalDownloads:1121,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Abed Malti",downloadPdfUrl:"/chapter/pdf-download/49619",previewPdfUrl:"/chapter/pdf-preview/49619",authors:[{id:"176529",title:"Dr.",name:"Abed",surname:"Malti",slug:"abed-malti",fullName:"Abed Malti"}],corrections:null},{id:"49846",title:"Scanning Electron Microscopy with a Retarded Primary Beam",doi:"10.5772/62054",slug:"scanning-electron-microscopy-with-a-retarded-primary-beam",totalDownloads:1412,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Luděk Frank",downloadPdfUrl:"/chapter/pdf-download/49846",previewPdfUrl:"/chapter/pdf-preview/49846",authors:[{id:"16460",title:"Dr.",name:"Ludek",surname:"Frank",slug:"ludek-frank",fullName:"Ludek Frank"}],corrections:null},{id:"49519",title:"Microstructure Evolution in Ultrafine-grained Magnesium Alloy AZ31 Processed by Severe Plastic Deformation",doi:"10.5772/61611",slug:"microstructure-evolution-in-ultrafine-grained-magnesium-alloy-az31-processed-by-severe-plastic-defor",totalDownloads:1318,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jitka Stráská, Josef Stráský, Peter Minárik, Miloš Janeček and Robert\nKrál",downloadPdfUrl:"/chapter/pdf-download/49519",previewPdfUrl:"/chapter/pdf-preview/49519",authors:[{id:"15744",title:"Dr.",name:"Milos",surname:"Janecek",slug:"milos-janecek",fullName:"Milos Janecek"},{id:"177105",title:"Dr.",name:"Robert",surname:"Kral",slug:"robert-kral",fullName:"Robert Kral"},{id:"177102",title:"Dr.",name:"Jitka",surname:"Stráská",slug:"jitka-straska",fullName:"Jitka Stráská"},{id:"177103",title:"Dr.",name:"Josef",surname:"Strasky",slug:"josef-strasky",fullName:"Josef Strasky"},{id:"177104",title:"Dr.",name:"Petr",surname:"Minarik",slug:"petr-minarik",fullName:"Petr Minarik"}],corrections:null},{id:"49876",title:"Combined Transmission Electron Microscopy – In situ Observation of the Formation Process and Measurement of Physical Properties for Single Atomic-Sized Metallic Wires",doi:"10.5772/62288",slug:"combined-transmission-electron-microscopy-in-situ-observation-of-the-formation-process-and-measureme",totalDownloads:1811,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hideki Masuda",downloadPdfUrl:"/chapter/pdf-download/49876",previewPdfUrl:"/chapter/pdf-preview/49876",authors:[{id:"173931",title:"Dr.",name:"Hideki",surname:"Masuda",slug:"hideki-masuda",fullName:"Hideki Masuda"}],corrections:null},{id:"49526",title:"Focused Ion Beams (FIB) — Novel Methodologies and Recent Applications for Multidisciplinary Sciences",doi:"10.5772/61634",slug:"focused-ion-beams-fib-novel-methodologies-and-recent-applications-for-multidisciplinary-sciences",totalDownloads:3278,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Meltem Sezen",downloadPdfUrl:"/chapter/pdf-download/49526",previewPdfUrl:"/chapter/pdf-preview/49526",authors:[{id:"176338",title:"Associate Prof.",name:"Meltem",surname:"Sezen",slug:"meltem-sezen",fullName:"Meltem Sezen"}],corrections:null},{id:"49520",title:"Immunogold Techniques in Electron Microscopy",doi:"10.5772/61719",slug:"immunogold-techniques-in-electron-microscopy",totalDownloads:4021,totalCrossrefCites:1,totalDimensionsCites:6,signatures:"Mogana Das Murtey",downloadPdfUrl:"/chapter/pdf-download/49520",previewPdfUrl:"/chapter/pdf-preview/49520",authors:[{id:"176330",title:"Dr.",name:"Mogana",surname:"Murtey",slug:"mogana-murtey",fullName:"Mogana Murtey"}],corrections:null},{id:"49652",title:"Sample Preparations for Scanning Electron Microscopy – Life Sciences",doi:"10.5772/61720",slug:"sample-preparations-for-scanning-electron-microscopy-life-sciences",totalDownloads:7968,totalCrossrefCites:16,totalDimensionsCites:49,signatures:"Mogana Das Murtey and Patchamuthu Ramasamy",downloadPdfUrl:"/chapter/pdf-download/49652",previewPdfUrl:"/chapter/pdf-preview/49652",authors:[{id:"176330",title:"Dr.",name:"Mogana",surname:"Murtey",slug:"mogana-murtey",fullName:"Mogana Murtey"},{id:"181159",title:"Mr.",name:"Patchamuthu",surname:"Ramasamy",slug:"patchamuthu-ramasamy",fullName:"Patchamuthu Ramasamy"}],corrections:null},{id:"49496",title:"Evaluation of the Glomerular Filtration Barrier by Electron Microscopy",doi:"10.5772/61811",slug:"evaluation-of-the-glomerular-filtration-barrier-by-electron-microscopy",totalDownloads:2185,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Diogo Benchimol de Souza, Bianca Martins Gregório, Marlene\nBenchimol and Fernanda Amorim de Morais Nascimento",downloadPdfUrl:"/chapter/pdf-download/49496",previewPdfUrl:"/chapter/pdf-preview/49496",authors:[{id:"176343",title:"Dr.",name:"Diogo Benchimol",surname:"De Souza",slug:"diogo-benchimol-de-souza",fullName:"Diogo Benchimol De Souza"},{id:"176436",title:"Prof.",name:"Bianca Martins",surname:"Gregório",slug:"bianca-martins-gregorio",fullName:"Bianca Martins Gregório"},{id:"176437",title:"Prof.",name:"Fernanda Amorim De Morais",surname:"Nascimento",slug:"fernanda-amorim-de-morais-nascimento",fullName:"Fernanda Amorim De Morais Nascimento"},{id:"177637",title:"Prof.",name:"Marlene",surname:"Benchimol",slug:"marlene-benchimol",fullName:"Marlene Benchimol"}],corrections:null},{id:"49583",title:"TEM as an Important Tool to Study Aquatic Microorganisms and their Relationships with Ecological Processes",doi:"10.5772/61804",slug:"tem-as-an-important-tool-to-study-aquatic-microorganisms-and-their-relationships-with-ecological-pro",totalDownloads:1899,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"Thiago P. Silva, Juliana P. Gamalier and Rossana C.N. Melo",downloadPdfUrl:"/chapter/pdf-download/49583",previewPdfUrl:"/chapter/pdf-preview/49583",authors:[{id:"176472",title:"Prof.",name:"Rossana",surname:"Melo",slug:"rossana-melo",fullName:"Rossana Melo"},{id:"176754",title:"MSc.",name:"Thiago",surname:"Silva",slug:"thiago-silva",fullName:"Thiago Silva"},{id:"176755",title:"MSc.",name:"Juliana",surname:"Gamalier",slug:"juliana-gamalier",fullName:"Juliana Gamalier"}],corrections:null},{id:"49627",title:"Observation of Fungi, Bacteria, and Parasites in Clinical Skin Samples Using Scanning Electron Microscopy",doi:"10.5772/61850",slug:"observation-of-fungi-bacteria-and-parasites-in-clinical-skin-samples-using-scanning-electron-microsc",totalDownloads:2953,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Ran Yuping, Zhuang Kaiwen, Hu Wenying, Huang Jinghong, Feng\nXiaowei, Chen Shuang, Tang Jiaoqing, Xu Xiaoxi, Kang Daoxian, Lu\nYao, Zhang Ruifeng, Ran Xin, Wan Huiying, Lama Jebina, Dai Yalin\nand Zhang Chaoliang",downloadPdfUrl:"/chapter/pdf-download/49627",previewPdfUrl:"/chapter/pdf-preview/49627",authors:[{id:"174134",title:"Dr.",name:"Yuping",surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran"}],corrections:null},{id:"49805",title:"Structure and Dynamics of Macromolecular Assemblies from Electron Microscopy Maps",doi:"10.5772/62085",slug:"structure-and-dynamics-of-macromolecular-assemblies-from-electron-microscopy-maps",totalDownloads:1099,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Xiongwu Wu and Bernard R. Brooks",downloadPdfUrl:"/chapter/pdf-download/49805",previewPdfUrl:"/chapter/pdf-preview/49805",authors:[{id:"104593",title:"Dr.",name:"Xiongwu",surname:"Wu",slug:"xiongwu-wu",fullName:"Xiongwu Wu"},{id:"177586",title:"Dr.",name:"Bernard",surname:"Brooks",slug:"bernard-brooks",fullName:"Bernard Brooks"}],corrections:null},{id:"49929",title:"Development of Myeloid Dendritic Cells under the Influence of Sexual Hormones Visualized using Scanning and Transmission Electron Microscopy",doi:"10.5772/62310",slug:"development-of-myeloid-dendritic-cells-under-the-influence-of-sexual-hormones-visualized-using-scann",totalDownloads:1336,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Josef Neumüller, Sylvia Emanuela Neumüller-Guber, Johannes\nHuber, Adolf Ellinger and Thomas Wagner",downloadPdfUrl:"/chapter/pdf-download/49929",previewPdfUrl:"/chapter/pdf-preview/49929",authors:[{id:"173717",title:"Prof.",name:"Thomas",surname:"Wagner",slug:"thomas-wagner",fullName:"Thomas Wagner"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64890",slug:"erratum-emergency-operations-of-sudden-water-pollution-accidents",title:"Erratum - Emergency Operations of Sudden Water Pollution Accidents",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64890.pdf",downloadPdfUrl:"/chapter/pdf-download/64890",previewPdfUrl:"/chapter/pdf-preview/64890",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64890",risUrl:"/chapter/ris/64890",chapter:{id:"64626",slug:"emergency-operations-of-sudden-water-pollution-accidents",signatures:"Jin Quan, Lingzhong Kong, Xiaohui Lei and Mingna Wang",dateSubmitted:null,dateReviewed:"October 15th 2018",datePrePublished:"December 1st 2018",datePublished:"December 19th 2018",book:{id:"8874",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",subtitle:null,fullTitle:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",publishedDate:"December 19th 2018",bookSignature:"Xiaohui Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8874.jpg",licenceType:"CC BY-NC 4.0",editedByType:"Edited by",editors:[{id:"282118",title:"Dr.",name:"Xiaohui",middleName:null,surname:"Lei",slug:"xiaohui-lei",fullName:"Xiaohui Lei"}],productType:{id:"4",title:"Compact",chapterContentType:"compact",authoredCaption:"Authored by"}},authors:[{id:"280923",title:"Dr.",name:"Lingzhong",middleName:null,surname:"Kong",fullName:"Lingzhong Kong",slug:"lingzhong-kong",email:"lzkong@126.com",position:null,institution:null}]}},chapter:{id:"64626",slug:"emergency-operations-of-sudden-water-pollution-accidents",signatures:"Jin Quan, Lingzhong Kong, Xiaohui Lei and Mingna Wang",dateSubmitted:null,dateReviewed:"October 15th 2018",datePrePublished:"December 1st 2018",datePublished:"December 19th 2018",book:{id:"8874",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",subtitle:null,fullTitle:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",publishedDate:"December 19th 2018",bookSignature:"Xiaohui Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8874.jpg",licenceType:"CC BY-NC 4.0",editedByType:"Edited by",editors:[{id:"282118",title:"Dr.",name:"Xiaohui",middleName:null,surname:"Lei",slug:"xiaohui-lei",fullName:"Xiaohui Lei"}],productType:{id:"4",title:"Compact",chapterContentType:"compact",authoredCaption:"Authored by"}},authors:[{id:"280923",title:"Dr.",name:"Lingzhong",middleName:null,surname:"Kong",fullName:"Lingzhong Kong",slug:"lingzhong-kong",email:"lzkong@126.com",position:null,institution:null}]},book:{id:"8874",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",subtitle:null,fullTitle:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",publishedDate:"December 19th 2018",bookSignature:"Xiaohui Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8874.jpg",licenceType:"CC BY-NC 4.0",editedByType:"Edited by",editors:[{id:"282118",title:"Dr.",name:"Xiaohui",middleName:null,surname:"Lei",slug:"xiaohui-lei",fullName:"Xiaohui Lei"}],productType:{id:"4",title:"Compact",chapterContentType:"compact",authoredCaption:"Authored by"}}},ofsBook:{item:{type:"book",id:"9978",leadTitle:null,title:"Machine Translation",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"e286b224949e6dae5821290f2d43d624",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9978.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 7th 2019",dateEndSecondStepPublish:"June 28th 2019",dateEndThirdStepPublish:"August 27th 2019",dateEndFourthStepPublish:"November 15th 2019",dateEndFifthStepPublish:"January 14th 2020",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49190",title:"Bioremediation of Nitroaromatic Compounds",doi:"10.5772/61253",slug:"bioremediation-of-nitroaromatic-compounds",body:'
Microbes are empowered to degrade environmental pollutants under different conditions to perform unusual metabolic and physiological activities [1]. The metabolic versatility of the microbes helps them utilize a range of organic/inorganic compounds for their growth. This metabolic versatility has been exploited for human benefit in various industrial products like cheese (dairy industry), insulin, antibiotics (pharmaceutical industry), etc. Microbial enzyme systems have also been used for the development of suitable biocatalysts for green chemistry applications [2]. Whole microbes have also been tested for their potential in bioremediation [3]. Organic aromatic compounds have been the main source of pollution in several water bodies [4]. Thus, a remediation and degradation study of aromatics has been a focus of intensive study. In this review, we will focus only on nitroaromatic compounds.
Nitroaromatic compounds have at least one nitro group attached to the aromatic ring, like nitrobenzene, nitrotoluenes, nitrophenols, etc. In nature, nitroaromatic compounds are mostly found in natural products from different plants, fungi, and bacteria [5, 6]. The best known example of this is chloramphenicol, which is produced by Streptomyces venezuelae [7–9]. The role of some nitroaromatic compounds in cellular signaling has also been established. For example, 2-nitrophenol and 4-methyl-2-nitrophenol are well-known pheromones for ticks that enable them to aggregate and attach to mammals [5, 10] (Figure 1).
Nitroaromatics as cell signaling molecules.
In nature, several nitroaromatic compounds are produced by the incomplete combustion of fossil fuel, which releases hydrocarbons. These hydrocarbons produce nitroaromatic compounds after nitration with nitrogen dioxide present in the atmosphere. Mixtures of nitro-polyaromatic hydrocarbons can be produced to form 3-nitrobiphenyl,1- and 2-nitronaphthalene,3-NT and nitrobenzene by a hydroxyl radical-initiated mechanism [11–15].
The versatile chemistry of the nitro group ensures that nitroaromatic compounds serve as important feed stocks in different industrial processes. These compounds are commonly used in the manufacture of pharmaceuticals. For example, substituted nitrobenzenes and nitropyridines are used in the production of indoles, which are active components of several drugs and agrochemicals [16]. Paracetamol (an analgesic and antipyretic) is synthesized in a one-step reductive acetamidation from 4-nitrophenol [17]. Nitrobenzenes or halonitrobenzenes are used in the synthesis of derivatives of phenothiazines, a large class of drugs with antipsychotic properties [18, 19].
Some nitroaromatics like nitrobenzene, nitrotoluene, and nitrophenols are used in the synthesis of pesticides. For example, fluorodifen [20], bifenox, parathion [21], and carbofuran [22] are synthesized from nitrophenols. Some dinitrophenols like 2,5-dinitro-o-cresol have been used in the synthesis of herbicides, insecticides, fungicides, etc. [5, 23].
Aromatic amines are the largest feedstock group for chemical industries. It is estimated that the worldwide consumption of aniline is approximately 3 million tons [5]. This consumption grew by 7% annually till 2014 and is expected to reach 6.2 million tons in 2015 (Global Analysts report 2014 on aniline production). Aniline is used in the synthesis of drugs, pesticides, and explosives and used as a building block for the production of polyurethane foams, rubber, azo dyes, photographic chemicals, and varnishes [24].
Some nitroaromatics are used in the production of explosives like trinitrotoluene (TNT), which is produced by sequential nitration of toluenes. 1,3,5-Trinitrophenol (picric acid), which was prepared in 1771 as a yellow dye for fabrics [25], has also been used in explosive shells. The methyl group of TNT can be eliminated to produce trinitrobenzene (TNB), a high-energy explosive with decreased shock sensitivity [26].
The estimated annual production of nitroaromatic compounds is 108 tons (http:www.ucl/agro/abi/gebi). Chemical industries release these compounds into the environment through various sources, like the use of pesticides and the improper handling or storage of chemicals. The leakage into industrial effluents by improper disposal or through accidental spills by explosive ammunitions are commonly responsible for these compounds to find their way into the environment [27]. A recent example of an industrial accident is from China, where about 100 tons of benzene and nitrobenzene were released to Songhua River because of an accidental explosion in the factory of China National Petroleum, Jilin City, on November 13, 2005 [28].
The electron withdrawing property of the nitro groups creates a charge on the molecule. It is a unique property that makes the nitro group an important functional group for different industrial synthetic processes. Simultaneously, the same property makes these molecules hazardous to the environment. This is why these compounds are given hazardous rating 3 (HR 3), where 3 shows the highest level of toxicity [29]. These are toxic to most living organisms, including humans, fishes, algae, and microorganisms [30, 31]. Their toxicity principally manifests itself due to their ability to uncouple photo or oxidative phosphorylation processes [32, 33]. Some of these compounds are also known for their ecotoxicity [34, 35], immunotoxicity [36], carcinogenicity [37], mutagenicity [38, 39], and teratogenicity [40, 41]. Some nitroaromatics are also converted into carcinogens and mutagens when metabolized by liver or intestinal microflora [42, 43].
Different physical methods are available for the treatment of these toxic chemicals, like adsorption, incineration, photo-oxidation, hydrolysis, volatilization, etc. During adsorption, these compounds are only adsorbed on resins and separated but not destroyed completely. In incinerations, these compounds are treated at very high temperatures, which is neither cost effective nor eco-friendly because toxic NOx fumes are often released in the environment in this process. There are various reports on advanced oxidation processes (AOPs) that utilize ozone, UV radiation, hydrogen peroxide, or combinations of all these for the treatment of nitroaromatic compounds [44–47]. The use of hydrogen peroxide in these processes generates toxic intermediates and is therefore not cost-effective [48]. Because of limitations of these methods, biodegradation has emerged as a viable alternative.
Bioremediation involves biological agents to catalyze the degradation and transformation of recalcitrant molecules to simpler structures. Few common terms used in these processes are defined as follows:
Biodegradation is the breakdown of organic pollutants due to microbial activity. In this process, the microbe feeds on the pollutant to grow. The degradation of contaminant generates energy and microbe utilizes this energy for its growth.
Biomineralization is the process of complete biodegradation. The organic contaminants are degraded completely through a series of degradation steps and finally converted to inorganic molecules like H2O and CO2. In the process, organic molecule provides both carbon and energy to the microbe, and if organic molecule is nitroaromatic, it provides nitrogen as well.
Biotransformation is the process where in one organic molecule is modified by the action of biological agents. Sometimes, biotransformation occurs with cometabolism, where a microbe uses a substrate for its growth but transforms another substrate, which is not utilized by microbe for its growth.
Microbes have been isolated from almost all the parts of biosphere. Further, their adoptability for different environmental conditions and ability to utilize even recalcitrant compounds for their foods make them suitable agents for bioremediation.
General principle of aerobic aromatic catabolism in bacteria. The three stages are as follows: the conversion of the growth substrate to catechol (or substituted catechol), then ring cleavage, and finally metabolism of the ring cleavage product to central metabolites by either the ortho or meta pathways. (Adapted from Williams and Sayers [51])
Biodegradation gained worldwide attention to treat toxic compounds [49]. This is because of its eco-friendliness. Supplementing the medium with readily utilizable carbon sources can enhance degradation processes. Thus, toxic intermediates are not generated and complete removal of toxic compounds is possible. During the last few decades, extensive research has been carried out for isolation of microbes with the abilities of degrading wide range of toxic nitroaromatic compounds and has been reviewed nicely [5, 49, 50]. Some common routes adopted by bacterial strains in nature during the degradation of aromatic compounds are described here.
The pathway for catabolism of aromatic compound basically has three stages (Figure 2) [51–53]. In the first stage, the substrate undergo changes in its substituent groups by the action of mono- or dioxygenases to form catechols (or substituted catechols). The catechols then serve as substrates for the second stage of catabolism, that is, the ring opening. This process is facilitated by the action of dioxygenases, which breaks carbon–carbon bond by adding molecular oxygen and produce unsaturated aliphatic acid.
Central catechol pathway for the aerobic degradation of aromatics.
There are two families of ring opening enzymes, ortho or intradioldioxygenases, which produce cis,cis muconic acid (or its derivative), and meta or extradioldioxygenases, which produce 2-hydroxymuconic semialdehyde (or derivative). Both pathways (ortho and meta cleavage) are shown in Figure 3 and meta cleavage pathway for methylcatechols is shown in Figure 4. The third stage of catabolism is the conversion of the ring cleavage products into smaller compounds that can enter into central metabolic routes.
In general, aromatic compounds are initially catabolized by various pathways (known as peripheral pathways), which converge on a limited number of common intermediates (catechols or its derivatives). These intermediates are further utilized by a small number of common pathways (central pathways).
The meta cleavage pathway of methylcatechols.
When a nitroaromatic compound is exposed to the environment, its biodegradation takes place either by anaerobic route or by aerobic route. Different strategies applied for the degradation of nitroaromatic compounds by bacterial strains are shown in Figure 5.
Different strategies of microbial remediation of nitroaromatics. (Adapted from Kulkarni and Chaudhari [49])
In this process, nitro group is reduced to nitroso derivative, hydroxyl amines, or amines by the action of nitroreductases. The degradation of most of the (poly)nitroaromatic compounds occurs only under anaerobic conditions [49, 54, 55]. The complete mineralization of nitroaromatic by a single anaerobic strain is very rare [56]. There are several reports showing that the initial step during the degradation of mono-, di-, and trinitroaromatic compounds is the reduction of nitro groups to amino groups [56–60].
Mono- and dinitroaromatics are mainly subjected to aerobic biodegradation and achieve to complete mineralization. Here nitroaromatics serve as source of carbon, nitrogen, and energy for the microbe. During the past few decades, several reports came up with isolation of microbes mineralizing different nitroaromatic compound and their degradation pathway. Few of them are extensively studied and characterized. There are different strategies in the aerobic degradation of nitroaromatics [61], which is used in nature as shown in Figure 5.
Mono-oxygenases are known to add single oxygen atom at a time and cause the release of nitro group. Simpson and Evans [62] reported the role of mono-oxygenase in a Pseudomonas sp., where 4-nitrophenol was converted to hydroquinone with the concomitant release of nitrite. Subsequently, Spain and Gibson (1991) reported accumulation of hydroquinone and release of nitrite from 4-nitrophenol by partially purified mono-oxygenase from a Moraxella sp.
Dioxygenases are known to add two -OH groups simultaneously on the benzene ring of nitroaromatic compounds with the release of nitro group as nitrite. This type of mechanism is reported for 2,6-dinitrotoluene biotransformation by Alcaligenes eutrophus [63]. Other examples include the degradation of 2-NT [64, 65], 3-NT [66], nitrobenzene [67], and 2,4-DNT [68].
The addition of a hydride ion to the aromatic ring of nitroaromatic compound leads to the formation of a Meisenheimer complex [27]. The complex rearomatizes after the release of nitrite anion [69].
In this mechanism, the nitro group is partially reduced to the corresponding hydroxylamine, which upon hydrolysis yields ammonia. This mechanism was reported in Comamonas acidovorans, where 4-nitrobenzoate is converted to 4-hydroxyl-aminobenzoate [69].
The aerobic degradation of nitrobenzene involves two major pathways: a most commonly found partial reductive pathway and a dioxygenase catalyzed pathway (Figure 6). In the oxidative degradation of NB, degradation starts with the action of nitrobenzene-1,2-dioxygenase, which converts nitrobenzene into catechol. This catechol is further cleaved by the action of catechol 2,3-dioxygenase and degraded by the meta cleavage pathway. This type of pathway is reported in Comamonas JS 765, Acidovorax sp. JS42, and Micrococcus sp. strain SMN1.
Degradation pathways for nitrobenzene. Aerobic dioxygenation route is reported in Comamonas JS765 [67]. The aerobic partial reductive pathway is from Pseudomonas pseudoalkaligenes JS45 [61].
Different bacterial strains have been isolated from various sources, which can utilize nitrotoluenes as carbon source or both carbon and nitrogen source. There are several reports on different degradation pathways for mononitrotoluenes as described here.
Nitrotoluenes may be subjected to reductive pathways (formation of aminotoluenes) [70] or partial reductive pathway, wherein a nitro group is reduced to hydroxyl amino group and finally releases ammonia [71–72]. For example, during the degradation of 4-NT by Pseudomonas sp., initially 4-NT is converted into 4-nitrobezoic acid via the formation of 4-nitrobenzyl alcohol and 4-nitrobenzaldehyde. Then the nitro group is partially reduced to hydroxylamino derivative (rather than amino derivative), which is further converted to protocatechuate without the utilization of oxygen and release of ammonia [71, 72]. This type of mechanism was first reported for the degradation of 4-nitrobenzoate by C. acidovorans NBA-10 [69]. In yet another mechanism of 4-NT metabolism by Micobacterium sp., 4-NT was first converted to 4-hydoxyl aminotoluene followed by 6-amino-m-cresol. Here ammonia is released only after the ring cleavage [72].
An oxidative pathway is reported for 2-NT degradation by Acidovorax JS42 (Figure 7), wherein the initial oxidation of the aromatic ring takes place to form methylcatechols by simultaneous incorporation of both atoms of molecular oxygen and subsequent removal of the nitro group as nitrite by the action of a dioxygenase enzyme [64, 65, 73].
The role of mono-oxygenases and dioxygenases in the removal of nitro group from p-nitrophenol has also been reported from a Pseudomonas sp. [74–76].
Degradation of 2-NT by the formation of 3-methylcatechol in Acidovorax sp. JS 42.
The toluene mono-oxygenase encoded by TOL plasmid oxidizes only the methyl group of 3-NT and 4-NT but not of the 2-NT [77]. Toluene dioxygenase from Pseudomonas putida F1 and Pseudomonas sp. strain JS-150 oxidatively attacks on the methyl group of 2- and 3-NT to form corresponding nitrobenzylalcohols. The enzyme, however, attacks on the aromatic ring of 4-NT to produce 2-methyl-5-nitrophenol and 3-methyl-6-nitrocatechol [81]. In both cases (either with toluene mono-oxygenase or dioxygenase as described above), the nitro group was not removed from the benzene ring and mononitrotoluene isomers did not serve as growth substrate. Degradations of monosubstituted 2-, 3-, and 4-nitrotoluenes were also reported from an adapted activated sludge system [79].
The two strains of Comamonas JS47 and JS46 capable of degrading 4-nitrobenzoate and 3-nitrobenzoate respectively were immobilized on alginate beads jointly and separately, and these beads were loaded in the reactor and fed to different regimes of alternating nitrobenzoate isomer or mixed nitrobenzoate isomer. Through this experiment, it was deduced that same beads containing both strains were able to recover faster from change in input composition than different beads containing different strains [80].
Two different pathways are reported in bacterial strains (as shown in Figure 8). In aerobic methyl group oxidation (Pseudomonas sp. strain TW3), initially 4-NT is converted to 4-nitrobenzoic acid, and then the nitro group is partially reduced to hydroxylamine derivative, which is further converted to protocatechuate without the utilization of oxygen but with concomitant release of ammonia [81]. In another mechanism, 4-NT degradation is followed by the formation of 4-hydroxylaminotoluene.
Degradation pathways for 4-nitrotoluene. Aerobic partial reduction rout is present in Mycobacterium sp. strain HL-4NT-1. Aerobic methyl group oxidation rout is reported in Pseudomonas strains TW3 and strain 4NT.
There are few well-characterized bacterial strains that degrades or biotransforms more than one mono-nitro compounds. 2-NT and 4-NT could transform to their corresponding aminotoluenes and hydroxyl nitrotoluenes (pathways A and B, Figure 9) in P. putida OU83. Both oxidative as well as reductive attack is reported during metabolism of 3-NT [71]. Here 70% of the 3-NT was reduced to aminotoluene, whereas 30% was converted to 3-nitrophenol via the formation of 3-nitrobenzylalcohol, 3-nitrobenzaldehyde, and 3-nitrobenzoic acid. 3-Nitrophenol was further metabolized with the release of nitrite (pathway C, Figure 9).
Degradation of mononitrotoluenes by Pseudomonas putida strain OU83 [82]. The strain converts 2- and 4-nitrotoluenes to corresponding aminotoluenes and hydroxyl nitrotoluenes (pathways A and B), whereas 70% of 3-NT was converted to 3-aminotoluene and 30% was degraded via the formation of the 3-nitrophenol (pathway C).
There are very few reports available on complete mineralization of mono-nitroaromatics by single bacterial strains. The isolation and characterization of three Diaphorobacter sp. strains DS1, DS2, and DS3, which are capable of mineralizing and utilizing 3-NT as the sole source of carbon, nitrogen, and energy, was reported by our group [66]. The mineralization of 3-NT by Diaphorobacter sp. strain DS2 was found by the initial reaction catalyzed by a dioxygenase with the formation of mixtures of 3- and 4-methylcatechols. These methylcatechols were further degraded by the meta cleavage pathway. This strain was able to degrade other compounds like 2-NT, 4-NT, nitrobenzene (NB), 2CNB, and 3CNB through an oxidative degradation route. Cloning and sequencing of first enzyme of the pathways showed the presence of a multicomponent dioxygenase, i.e., 3NTDO. This 3NTDO gene was found to be present on the genomic DNA of the strain on a 5-kb DNA stretch. Its subunits were identified as a reductase, a ferredoxin, an oxygenase large and small subunit, and a regulatory gene product [83]. Subunits of 3NTDO were individually expressed in E. coli and purified by various purification techniques. To get active enzyme, all the subunits were mixed together in a certain proportion with added NADH. Its active recombinant-reconstituted enzyme showed the conversion of nitrotoluenes and nitrobenzenes to methylcatechols and catechols as measure products with the release of nitrite [84]. Some other minor products are also formed as shown in Table 1. Products other than (methyl)catechols are dead-end products and observed in the culture broth during the degradation of its corresponding substrates with the Diaphorobacter sp. strain DS2. This strain did not grow on any dinitrotoluenes (2,4 or 2,6), but recombinant-reconstituted 3NTDO released nitrite from 2,6-dinitrotoluene.
\n\t\t\t\t | \n\t\t
Products from the various substrates by recombinant 3NTDO.
Burkholderia sp. strain DNT and strain R34 mineralized 2,4-DNT with a nitrite removal pathway involving dioxygenase and mono-oxygenase enzyme. Here both nitro groups are not removed simultaneously but in a stepwise fashion. First, dinitrotoluene dioxygenase (DNTDO) attacks on the benzene ring converting DNT into 4-methyl-5-nitrocatachol (4M5NC) with the simultaneous removal of a nitrite group. Further, MNC mono-oxygenase removes another nitrite and converts the substrate into 2-hydroxy-5-methylquinone. These dioxygenase and mono-oxygenase enzymes have been cloned and characterized [68, 85]. This 2-hydroxy-5-methylquinone eventually leads to the formation of 2,4,5-trihydroxytoluene, a reaction that is catalyzed by HMQ reductase. Ring fission of 2,4,5-trihydroxytoluene likely occurs at position 5,6 of the aromatic ring to yield 2,4-dihydroxy-5-methyl-6-oxo-hexa-2,4-dienoic acid as ring cleavage product (Figure 10).
Nishino et al. [61, 86] isolated Burkholderia cepacia strain JS850 and Hydrogenophaga paleronii strain JS863 that were able to mineralize 2,4-DNT in the same way but degraded 2,6-DNT in a different way. When 2,4- and 2,6-DNT were used as the sole source of carbon and nitrogen together, the dioxygenation of 2,6-DNT to 3-methyl-4-nitrocatachol (3M4NC) was the initial reaction, accompanied by the release of nitrite. 3M4NC was then subjected to meta-ring cleavage (Figure 11) without releasing the second nitro group prior to the ring cleavage. Although 2,4-DNT-degrading strains also could convert 2,6-DNT to 3M4NC, further catabolism was halted at the point. The pathway for 2,4-DNT degradation was different from that for 2,6-DNT degradation. In the latter case, 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoic acid was the first ring fission product. How 3M4NC is converted to 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoic acid is unknown. In this pathway, the second nitrite group is released at the latter stages of the pathway. Position 3 methyl group appears as the determinant recognized by the initial dioxygenase to produce highly specific 3M4NC in the 2,6-DNT pathway proposed. The gene encoding this dioxygenase showed a nucleotide sequence similar to the α subunit among nitroarene dioxygenase.
The genes for the initial dioxygenases involved in 2,4-DNT and 2,6-DNT degradation are all closely related, but the enzymes are produced at low constitutive levels [27, 86]. After initial dioxygenation, the two pathways appear to diverge (Figures 10 and 11).
How does DNT degradation get affected by the presence of both isomers is important since 2,4-DNT and 2,6-DNT are produced in a 4:1 ratio [87]. These are often present together in munitions plant wastewater. Lendenmann and Spain [88] initially failed to observe the degradation of 2,4-DNT and 2,6-DNT simultaneously. Subsequently, an aerobic biofilm, initially fed with low concentrations of DNT mixture, was tested. These concentrations were then gradually increased and exhibited mineralization rates of 98% and 94% for 2,4- and 2,6-DNT, respectively. The nitrogen was released as nitrite, reflecting oxidative bacterial activity. Isomer concentration needed to be kept below inhibitory levels as high concentrations of each isomer inhibited the degradation of the other. The simultaneous degradation of 2,4- and 2,6-DNT may be unpredictable until an adapted population is established [87].
2,4-DNT metabolism pathway in Burkholderia sp. strain DNT and strain R34.
Although nitrotoluene degraders are widely distributed at contaminated sites, the contaminants still persist for very long periods, leaving unanswered questions as to why biodegradation is ineffective to remove them. Efficient anaerobic pathways for the degradation either of mono- or dinitrotoluenes are not known, and 2,3-DNT currently does not appear to be degradable [87].
2,6-DNT metabolism pathway in Burkholderia\n\t\t\t\t\t\t\t\tcepacia strain JS850 and Hydrogenophaga paleroni strain JS863.
Bae et al. [89] found that in an anaerobic fluidized-bed granular carbon bioreactor, 2,4 DNT can be converted completely to 2,4-diamino toluene, which subsequently mineralized in batch activated sludge reactor. Paca et al. [90] took a mixture of microbes found in the mononitrotoluene, 2,4-dintrotoluene, and 2,6-dinitrotoluene contaminated soil. These microbes were extracted and immobilized on the packing material of the packed bed reactor (PBR). Varying concentrations of 2,4-DNT and 2,6-DNT were used. In this case, two types of packing material were used out of which the reactor packed with Poraver removed 97% DNT in 11 days and the one packed with fine clay achieved the efficiency of 78%. After 20 days, the metabolites detected were 2-amino-4-nitrotoluene and 2,4-diamino toluene.
Wang et al. [91] reported that in wastewater enriched with contaminated DNT taken from Qingyang chemical industry with a DNT concentration of 3.55–95.65 mg/L, ethanol was mixed in the wastewater to act as an electron donor. The reactor in this case was made of polymethyl metacrylate containing polyurethane foams for microorganism immobilization. The microorganism used was B925. Initially, the reactors were domesticated and immobilized with microorganism for first 10 days, and then the whole system was further operated for 140 more days, gradually increasing the concentration of 2,4 DNT. DNT was then transformed to 2-amino-4-nitrotoluene and 4-amino-2 nitrotoluene and 2,4-diaminotoluene.
Trinitrotoluene (TNT) is very difficult to degrade [87]. The three nitro groups with a nucleophilic aromatic ring structure make TNT vulnerable to reductive attack but resistant to oxygenase attack from aerobic organisms [92]. In most current reports, the reductive mechanism predominates in TNT degradation. New evidence indicates that TNT could be reduced by carbon monoxide dehydrogenase from Clostridium thermoaceticum [93] and by the manganese-dependent peroxidase (MnP) from the white-rot fungus Phlebia radiata [94]. Based on the discovery of pentaerythritoltetranitrate (PETN) reductase from Enterobacter cloacae PB2, French et al. [95] found that this strain could grow slowly on 2,4,6-TNT under aerobic conditions as the sole nitrogen source without the production of dinitrotoluene as an intermediate and catalyzed conversion of the TNT via a hydride–Meisenheimer complex with the nitro group released as nitrite.
Bacteria basically tends to biotransform TNT to aminonitroaromatic compounds through aerobic degradation, which in many cases turn out to be the dead-end products, and this reduced dead-end products sometimes react with themselves and form azotetranitrotoluene [96].
The removal of nitro group from the ring is essential to allow the dioxygenase to act upon it. There are very rare cases where the complete usage of TNT as the sole carbon nitrogen and energy source has also been reported. In general, most bacteria are only capable of transforming TNT to other simpler and less toxic compounds.
Due to the absence of oxygen in anaerobic processes, the formation of azonitrotoluene does not take place, thereby making the degradation through bacteria more feasible and efficient. Reduction product of TNT is very prominent in case of anaerobic process, which easily forms triaminotoluene, which is far less toxic and more soluble in water than TNT (Figures 12 and 13).
Different reductive pathways in different bacteria: (A) Clostridium acetobutylicum, Escherichia coli, Lactobacillus sp. [97]; (B) Clostridium bifermentans CYS-1 [98]; (C) Clostridium bifermentans LJP-1 [99]; (D) Disulphovibriosp strain B [100]; (E) Disulphovibrio sp. [101]; (F) Disulphovibrio sp. [102]; (G) Methanococcus sp. strain B [103]; (H) Veillonella alkalescens [57].
Complete representation of the aerobic pathway of TNT conversion to its products performed by the group of bacteria shown in the figure: (A) Bacillus sp., Pseudomonas aeruginosa, Staphylococcus sp. [104]; (B) Enterobacter cloacae PB2 [105]; (C) Enterobacter sp. [89]; (D) Pseudomonas aeruginosa MA101 [106]; (E) Pseudomonas florescence [107]; (F) Pseudomonas florescence B3468 [108]; (G) Pseudomonas florescence [109]; (H) Pseudomonas pseudoalcaligenes [110]; (I) Rhodococcus erythropolis [111]; (J) Serratia marcensens [112].
Collie et al. [116] observed the biodegradation of TNT in the liquid phase bioreactor by four different bacterial strain having pure TNT in a liquid medium. The initial concentration of TNT (70mg/L) was periodically extracted from the bioreactor for by-product identification with the help of HPLC. The bacteria used were one strain of Enterobacter, one strain of Pseudomonad, and two strains of Alcaligenes. Two basic intermediates, i.e., 2-amino-4,6-DNT and 4-amino-2,6 DNT, were observed with all the bacteria after 12 hours.
A bench-scale reactor by Cho and coworkers [114] used P. putida HK6 (collected from RDX-contaminated soils). This was used for the degradation of several nitroaromatic compounds simultaneously in one go, i.e., TNT–RDX–atrazine–simazine (TRAS). Cells were grown in a liquid media composed of 30–100 mg TNT, 5–15 mg RDX, 20–50 mg atrazine, and 5–15 mg simazine and other basal salts like K2HPO4, NaH2PO4, MgSO4 7H2O, CaCl2 2H2O, FeCl3 6H2O in appropriate quantities, and subsequent experiments on the utilization of nitroaromatic compounds were carried out using a 2.5-L bottom driving type bench-scale reactor with a water condenser at 5°C and operated at 30°C at 150 rpm. A 10% inocula of test culture was grown with nitroaromatic compound, and the turbidity observed showed that the bacteria P. putida HK6 was able to degrade 100 mg/l TNT, 15 mg/l RDX, 50 mg/l atrazine, and simazine in 4, 24, 2, and 4 days after incubation, respectively. In this experiment, it is noteworthy that the presence of Tween-80 in the culture led to the complete degradation of TRAS compounds, whose otherwise partial degradation was TNT (80%), RDX (35%), and simazine (78%) during the incubation period [114].
Similarly, the degradation of some other nitroaromatic compounds was reported on the basis of field trials. A highly active microbial consortium was chosen by Oh et al. [115] for field trials to degrade the wastewater samples having 4,6-dinitro-ortho-cresol (DNOC) [116]. Fixed bed column reactors were employed to increase the volume density of active biomass and to degrade DNOC in wastewater stream. In this case, glass bead matrix was used to immobilize the bacterial colonies. The mixed bacterial culture CDNOC1-3 metabolizes DNOC with concomitant liberation of nitrate. The efficiency of the bioreactor was 86%. This was substantially higher over a batch culture mode (60–65%). The following schematic diagram (Figure 14) shows the fixed bed column reactor system [116].
A similar kind of experiment was performed in year 1999 in which B. cepacia strain PB4 was isolated from 4-aminobenzoate. This also possessed the capability to degrade 4-nitrobenzoate. Thus, considering both classes of the contamination to be toxic and mutagenic, an efficient strategy of decontamination was applied because B. cepacia was able to use both as the sole source of carbon, nitrogen, and energy. In order to prevent toxic effects, these compounds were supplied in lower concentration, i.e., 10–100 ppm and also in order to increase the efficiency of the procedure at such low concentration the degradative bacteria was immobilized on porous diatomaceous celite. This degradation was carried out in a packed bed reactor (PBR). The bioreactor consisted of a glass tube (296 × 41 mm) filled with 150 mm packed bed of celite-grade R-633 or R-635, which was placed at 30°C. It was shown that the nitroaromatic and aromatic amino compounds, which are otherwise unlikely to degrade together if present in any affected area, had been degraded simultaneously by single microorganism supply.
Schematic representation of the reactor used for the degradation of 4-nitrobenzoate and 4-aminobenzoate by B. cepacia PB4 in the abovementioned study [59].
The eventual objective of all the biochemical and molecular characterization of the bacterial degradation of pollutants is to develop strains, which could be used in the bio remediation process. In this respect, another good field trial experiment was described by Labana et al. [117, 118] with bacterial strain Arthrobacter protophormiae RKJ100. The result clearly showed that the disappearance of the nitroaromatic pollutants.
Similarly, Pseudomonas sp. ST53 was also used as a microbe to degrade TNT and other explosives, but it is best suited on land and water only when the contamination is low [119]. Qureshi et al. [120] reported a bacterial strain Arthrobacter sp. HPC1223, which was capable of degrading 2,4,6-trinitrophenol prominently. This also poses the capability to degrade dinitrophenol and mononitrophenol showing broad substrate specificity.
Nitroaromatics are recent compounds present in the environment and bacterial strains that adapted themselves for the removal of these compounds. This was possible only through evolution of its degradation system at a genetic level.
Substrate profile of an existing enzyme may be altered by point mutations in its corresponding genes [124]. The reasons for changes in primary DNA sequences are slippage of DNA polymerase while replications, erroneous DNA repair, and gene conversion [122]. However, results of these changes are relatively smaller. These alone cannot be accountable for adaptation to the new environment by bacteria [123, 121].
The rearrangement of genes for the development of new pathway may take place by the help of cells own recombination system. Gene segments can be exchanged between two positions flanked by homologous sequences, insertion elements, transposons, and even sequence identities of four base pairs are sufficient to facilitate this process [122].
Horizontal gene transfer is reported as the main source of evolution of pathways in bacteria [123, 124]. Sequencing results of genomes from different bacterial strains have revealed the presence of acquired genes in mosaic like fashion throughout bacterial genomes. Their presence varies from almost negligible (Rickettsia prowazekii and Mycobacterium genitalium) to about 17% (in Synechocystis strain) [123]. Plasmids also play a major role in carrying catabolic genes during horizontal gene transfer [125]. Transposons are also known to facilitate the catabolic gene transfer processes [126].
A role model to study evolution of microbial pathways is to study the degradation of nitroaromatic compounds in different bacteria.
Nitroaromatic compounds are relatively new to the environment, but bacterial systems have already evolved the ability to metabolize them. This cannot be possible only by spontaneous, independent evolution of several new enzymes in a single bacterium. Horizontal gene transfer has to play a key role in combination with the mutagenesis of the existing enzymes to facilitate rapid evolution of new pathways. Evolution of diverse pathways for the degradation of different nitroaromatics thus stands testament to this.
A good example of this is the evolution of chloronitrobenzene dioxygenase system from a chloronitrobenzene degrading strain Pseudomonas stutzeri [127]. It has several insertion sequences embedded between the gene clusters, which proves such involvement in its evolution. In its dioxygenase enzyme system, reductase and ferredoxin seems to have come from different origins because its reductase and ferredoxin share maximum identity with anthranilate dioxygenase, which is a type IV oxygenase, whereas its oxygenase subunits show a maximum identity with nag (naphthalene degradation gene) and nitroarene dioxygenase, which falls under type III oxygenase systems. This enzyme system thus best illustrates the evolution of catabolic genes best because its upper pathway enzymes seem to have originated from a nitroarene degradation pathway and its lower pathway genes have evolved from some chloroaromatic compound degradation pathway. The genes responsible for these pathways are present in a patchwork like assembly in P. stutzeri [127]. The presence of insertion elements in the gene cluster confirms its role in the formation of a modular assembly and its role in evolution of the gene cluster.
Another example is the origin of 2,4-DNT degradation pathway in B. cepacia R34 where enzymes for the degradation pathway have originated from at least three different sources [128]. The first enzyme in the degradation pathway (DNTDO), which removes the first nitrite from 2,4-DNT, seems to have originated from naphthalene degradation pathway like in Ralstonia sp. strain U2. [129]. However, 4-methyl-5-nitrocatechol mono-oxygenase, which facilitates the removal of the second nitrite, appears to be derived from a pathway for degradation for chloroaromatic compounds [128]. The last enzyme of the pathway could have originated from a gene cluster for amino acid degradation. This is known as progressive compaction of the genes. However, the presence of ORFs without any known role in 2,4-DNT degradation and truncated transposons in the regions suggests that compaction is probably in an intermediate stage in the evolution of such an optimal system with the genetic materials from different bacterial origin.
A good example of similar type of evolution is reported in diphenylamine degrader Burkholderia sp. strain JS665 [130]. In this pathway, diphenylamine is converted to catechol and aniline. An analysis of this sequence of diphenylamine degrading enzyme system showed that it has evolved by recruiting two pathway enzymes, one of which is from dioxygenase and the other is from nitroaniline degradation pathway enzymes in a much more recent evolution event [127].
Another example of evolution of genes for nitrotoluenes degradation is the evolution of 3NTDO in Diaphorobacter sp. strain DS2. Five complete ORFs were identified by probable ORF finding program and by homology to polypeptide sequences from several previously reported multicomponent dioxygenase systems. The predicted translation products from ORFs were designated as a putative regulatory protein, a ferredoxin reductase subunit, a ferredoxin subunit, an oxygenase large, and a small subunit based on their homology. A 571-bp DNA stretch was present in between reductase and ferredoxin subunits. In its gene structure, the regulatory protein is divergently transcribed from the other four ORFs. The organization of gene cluster and its similarity with other known dioxygenases is shown in Figure 15.
It has been suggested in several reports that Ralstonia sp. strain U2 [129] is the progenitor of all the nitroarene dioxygenases because it has the entire functional gene in its gene assembly. This seems true for the 3NTDO as well because the sequence present in between the reductase and the ferredoxin is truncated into parts of two functional ORFs present in the Ralstonia sp. strain U2. The regulatory protein sequence of 3NTDO (MntR) differs only at three amino acid positions from NagR of Ralstonia sp. strain U2 out of which two are uniquely present in strain DS2 only.
Comparison of gene arrangements in various multicomponent dioxygenases.
The different components (reductase, ferredoxin, and oxygenase) of 3NTDO show different levels of sequence identity with components from similar multicomponent enzyme systems of different organisms. Its reductase subunit (MntAa) shares a high amino acid sequence identity with those of DNTDO from B. cepacia [128] and NDO of Ralstonia sp. strain U2 (99%) [129], but its ferredoxin subunit (MntAb) is 100% identical to the ferredoxin of dinitrotoluene dioxygenase from Burkholderia sp. strain DNT and Burkholderia sp. strain R34. Its large oxygenase subunit (MntAc) showed more identity with chloronitrobenzene dioxygenase (CnbAc, 96%) from P. stutzeri ZWLR2-1, whereas the small oxygenase subunit (MntAd) showed more identity with PahAd of Comamonas testosteroni (96%) and NTDO from Acidovorax sp. strain JS42. It is known that oxygenase large subunit controls substrate specificity. If we compare important active site residues in oxygenase large subunit (MntAc) of strain DS2 with well-characterized oxygenase systems, it contains amino acid combinations of other systems, in which the sequence retains His293, which is present in NDO system of P. putida 9816-4, Ralstonia U2, C. testosteroni H, and Burkholderia sp. C3. Position 350 is occupied by Valine, which is reported in the DNTDO of Burkholderia sp. strain R34. Thus, the above facts seem to indicate that 3NTDO gene in Diaphorobacter sp. strain DS2 came through a horizontal gene transfer from ancestors common to strains like Ralstonia U2 or Burkholderia sp. strain R34, and then its catalytic subunit has been diversely evolved to degrade other nitroaromatic compounds.
The mechanism by which enzymes for the degradation of synthetic compounds have evolved so rapidly still cannot be explained only by horizontal gene transfer and mutations. It can be explained in part by the term promiscuity. Promiscuity refers to the ability of a protein to perform dual functions using same active site [131, 132]. Protein evolution toward a new function based on promiscuity involves transition of an existing specialized enzyme to a generalized intermediate enzyme and then into a new specialized enzyme (Figure 16). A good example of this is transcriptional regulator found in nitroarene dioxygenases [133].
Evolution of new specialized enzymes from existing one. (Modified from Ju et al. [134])
The correct functioning of a pathway depends not only on having enzymes with appropriate catalytic activity but also on regulators, which control the expression of the catabolic genes in response to the compounds to be degraded. For example, ntdR, which controls 2NTDO expression in Acidovorax JS42, is supposed to have evolved from an ancestral nagR regulator of naphthalene degradation pathway present in Ralstonia U2. NtdR differs only by five amino acids with nagR. Ju et al. [134] showed how ntdR like regulator could be created from nagR by making mutations at each of the five positions separately and in combinations in a stepwise manner. They also showed that each mutation broadened the effectors range in a stepwise manner without losing the original activity. Both NagR and NtdR can activate transcription in the presence of salicylate, which is a natural inducer of naphthalene degradation genes in strain Ralstonia sp. U2, but ntdR could have gained a broader effector specificity to recognize several nitroaromatic compounds too [134]. Hence, the evolution of the regulatory system of the 2NTDO is in an intermediate stage because it can be induced in response to several nonmetabolizable compounds. Thus, the selection of ntdR variant with high specificity for 2NT with loss of specificity for salicylate would enable the identification of mutations that can lead to the specialized transcription factor from an intermediate stage. Another regulator was reported by Singh et al. [83], where the regulatory protein sequence of 3NTDO (MntR) differs only at three amino acid positions from NagR of Ralstonia sp. strain U2, out of which two are uniquely present in strain DS2 only.
It can be concluded that the gene evolution in these dioxygenase systems cannot be explained by considering only one mode of evolution. All the modes of evolution (like horizontal gene transfer, selective mutation, and promiscuity) are responsible for the evolution of a dioxygenase system [133, 135]. Further, the presence of truncated ORFs (which is not required for enzyme activity) reveals that gene evolution is in an intermediate stage of the so-called progressive compaction of the genes.
We thank IIT Kanpur and our collaborators for their help during this work on Diaphorobacter isolation and characterization. KM thanks CSIR for a senior research fellowship.
In the last years, the problem with crude oil depletion has arisen. Intensive research has been carried out to find out alternative to fossil fuels. Alternative fuels are derived from resources different from petroleum. When used in internal combustion engines (ICE), these fuels generate lower air pollutants compared to petrol fuel, and a majority of them are more economically beneficial compared to fossils fuels. They are also renewable. The most common fuels that are used as alternative fuels are natural gas, propane, methanol, ethanol, and hydrogen. Regarding engine operating with blended fuels, a lot of papers have been written about these blended fuels; but a small number of works have compared some of these fuels together in the same engine [1, 2, 3, 4]. Low contents of ethanol or methanol have been added to gasoline since at least the 1970s, when there was a reduction in oil supplies and scientists began searching for alternative energy carriers in order to replace petrol fuels. In the beginning, ethanol and methanol were thought to be the most attractive alcohols to be added to gasoline. Ethanol and methanol can be manufactured from natural products or waste materials, whereas gasoline fuel which is a nonrenewable energy resource cannot be manufactured [5, 6]. An important feature is that methanol and ethanol can be used without requiring any significant changes in the structure of the engine. Being part of the various alcohols, ethanol and methanol are known as the most suitable fuels for spark-ignition (SI) engines.
The use of blended fuels is crucial since many of these blends can be used in engines with the aim to improve its performance, efficiency, and emissions. The oxygenates are one of the most important fuel additives to improve fuel efficiency (organic oxygen-containing compounds). A few oxygenates have been used as fuel additives, such as ethanol, methanol, methyl tertiary butyl alcohol, and tertiary butyl ether [7]. The process of using oxygenates makes more oxygen available in the combustion process and has a great potential to reduce SI engine exhaust emissions.
Regarding the combustion process, the flash point and autoignition temperature of methanol and ethanol are higher than pure gasoline, which makes it safer for storage and transportation. The latent heat of ethanol of evaporation is three to five times higher than pure gasoline; this leads to increase the volumetric efficiency because temperature of the intake manifold is lower. The heating value of ethanol is lower than gasoline. Consequently, 1.6 times more alcohol fuel is needed to achieve the exact same energy output. The stoichiometric air-fuel ratio of ethanol is around two-third of the pure gasoline; therefore, for complete combustion, the needed amount of air is lesser for ethanol [8]. Ethanol has several advantages compared to gasoline, e.g., lowering of unburned HC emissions, CO, and much better antiknock characteristics [9]. Ethanol and methanol have a lot higher octane number compared to pure gasoline fuel [10]. This enables higher compression ratios of engines and, as a result, increases its thermal efficiency [11]. The production of methanol can be from natural gas at no great cost and is easy to blend with gasoline fuel. These properties of methanol make it as an attractive additive. Methanol is aggressive to some materials, like plastic components and some of the metals in the fuel system. When using methanol it is necessary that precautions had to be taken when handling it [12].
There are many publications with different blends of alcohols and gasoline fuel. For example, Palmer [13] examined the influence of blends of ethanol and gasoline in spark-ignition engine. The obtained results pointed out that ethanol addition (10%) leads to 5% increase in the engine power and 5% octane number increase for each 10% ethanol added. The result showed that 10% of ethanol addition to gasoline fuel lead to reduction the emissions of CO up to 30%. In another study, Bata et al. [9] examined different blends of ethanol and gasoline and discovered that ethanol reduced the UHC and CO emissions. The lowered CO emissions are caused by the oxygenated characteristic and wide flammability of ethanol. Other researchers [14] studied that the potentialities for ethanol production are equivalent to about 32% of the total gasoline consumption worldwide, when used in 85% ethanol in gasoline for a passenger vehicle. In another study, Shenghua et al. [15] examined a gasoline engine with various percentages of methanol blends (from 10 to 30%) in gasoline. The results showed that engine torque and power decreased, whereas the brake thermal efficiency improved with the increase of methanol percentage in the fuel blend. Other authors [16] have studied the influence of methanol-gasoline blends on the gasoline engine performance. The results showed that the highest brake mean effective pressure (BMEP) was obtained from 5% methanol-gasoline blend. In another study, Altun et al. [17] researched the influence of 5 and 10% methanol and ethanol blending in gasoline fuel on engine performance and emissions. The best result in emissions showed blended fuels. The HC emissions of E10 and M10 are reduced by 13 and 15% and the CO emissions by 10.6 and 9.8%, respectively. An increased CO2 emission for E10 and M10 was observed. The methanol and ethanol addition to gasoline showed an increase in the brake-specific fuel consumption (BSFC) and a decrease in break thermal efficiency compared to gasoline.
It can be seen in the literature survey that the exhaust emissions for ethanol-gasoline and methanol-gasoline blends are lower than that of pure gasoline fuel [9, 13, 14, 17]. The engine performance and exhaust emissions with ethanol-gasoline blends resemble those with methanol-gasoline blends.
From the reviewed literature, a conclusion was made that the exhaust emission and engine performance of various blends of methanol and ethanol in gasoline engines have not been investigated sufficiently. Therefore, the objective of this work is to investigate the effects of methanol-gasoline and ethanol-gasoline fuel blends on the performance and exhaust emissions of a gasoline engine under various engine speeds, comparing them with those of pure gasoline.
The simulation tools are the most used in recent years owing to the continuous increase in computational power. The use of engine simulations enables optimization of engine combustion, geometry, and operating characteristics toward improving specific fuel consumption and exhaust emissions and reducing engine development time and costs. Consequently, it can be expected that the use of engine simulations during engine construction will continue to increase. Engine modeling is a fruitful research area, and therefore many laboratories have their own engine thermodynamic models with varying degrees of complexity, scope, and ease to use [18].
Computer simulation is becoming an important tool for time and cost efficiency in engine’s development. The simulation results are challenging to be obtained experimentally. Using computational fluid dynamics (CFD) has allowed researchers to understand the flow behavior and quantify important flow parameters such as mass flow rates or pressure drops, under the condition that the CFD tools have been properly validated against experimental results. Many processes in the engine are three-dimensional; however, it requires greater knowledge and large computational time. Thus, simplified one-dimensional simulation is occasionally used. Hence, simulating the complex components by means of a three-dimensional code and modeling the rest of the system with a one-dimensional code are the right choice to save computational time, i.e., the ducts. This way, a coupling methodology between the one-dimensional and the three-dimensional codes in the respective interfaces is necessary and has become the aim of numerous authors [19, 20, 21].
The aim of the present chapter is to develop the one-dimensional model of four-stroke port fuel injection (PFI) gasoline engine for predicting the effect of methanol-gasoline (M0–M50) and ethanol-gasoline (E0–E50) addition to gasoline on the exhaust emissions and performance of gasoline engine. For this, simulation of gasoline SI engine (calibrated) as the basic operating condition and the laminar burning velocity cor relations of methanol-gasoline and ethanol-gasoline blends for calculating the changed combustion duration was used. The engine power, specific fuel consumption, and exhaust emissions were compared and discussed [22, 23].
The one-dimensional SI engine model is created by using the AVL BOOST software and has been employed to examine the performance and emissions working on gasoline, ethanol-gasoline, and methanol-gasoline blends.
In Figure 1, PFIE symbolizes the engine, while C1–C4 is the number of cylinders of the SI engine. The cylinders are the main element in this model, because they have many very important parameters to settle: the internal geometry, bore, stroke, connecting rod, length and compression ratio, as well as the piston pin offset and the mean crankcase pressure. The measuring points are marked with MP1–MP18. PL1–PL4 symbolizes the plenum. System boundary stands for SB1 and SB2. CL1 represents the cleaner. R1–R10 stands for flow restrictions. CAT1 symbolizes catalyst and fuel injectors—I1–I4. The flow pipes are numbered 1–34.
Schematic of the gasoline PFI engine model.
The calibrated gasoline engine model was described by Iliev [23], and its layout is shown in Figure 1 with engine specification shown in Table 1.
Engine parameters | Value |
---|---|
Bore | 86 (mm) |
Stroke | 86 (mm) |
Compression ratio | 10.5 |
Connection rod length | 143.5 (mm) |
Number of cylinder | 4 |
Piston pin offset | 0 (mm) |
Displacement | 2000 (cc) |
Intake valve open | 20 BTDC (deg) |
Intake valve close | 70 ABDC (deg) |
Exhaust valve open | 50 BBDC (deg) |
Exhaust valve close | 30 ATDC (deg) |
Piston surface area | 5809 (mm2) |
Cylinder surface area | 7550 (mm2) |
Number of stroke | 4 |
Engine specification.
Table 2 presents a comparison between the properties of gasoline, ethanol, and methanol. As shown in Table 2, compared with gasoline and ethanol, methanol has a higher elemental oxygen content and a lower heating value, molecular weight, elemental carbon, hydrogen content, and stoichiometric air/fuel ratio (AFR).
Properties | Gasoline | Methanol | Ethanol |
---|---|---|---|
Chemical formula | C8H15 | CH3OH | C2H5OH |
Molecular weight | 111.21 | 32.04 | 46.07 |
Oxygen content (wt%) | — | 49.93 | 34.73 |
Carbon content (wt%) | 86.3 | 37.5 | 52.2 |
Hydrogen content (wt%) | 24.8 | 12.5 | 13.1 |
Stoichiometric AFR | 14.5 | 6.43 | 8.94 |
Lower heating value (MJ/kg) | 44.3 | 20 | 27 |
Heat of evaporation (kJ/kg) | 305 | 1.178 | 840 |
Research octane number | 96.5 | 112 | 111 |
Motor octane number | 87.2 | 91 | 92 |
Vapor pressure (psi at 37.7 OC) | 4.5 | 4.6 | 2 |
Destiny (g/cm3) | 0.737 | 0.792 | 0.785 |
Normal boiling point (OC) | 38–204 | 64 | 78 |
Autoignition temperature (OC) | 246–280 | 470 | 365 |
Comparison of fuel properties.
In this research, two-zone model of Vibe was chosen for the combustion simulation and analysis. The combustion chamber was divided into two regions: unburned gas region and burned gas regions [17]. For the burned charge and unburned charge, the first law of thermodynamics is applied:
where
Moreover, the sum of the zone volumes must be equal to the cylinder volume, and the sum of the volume changes must be equal to the cylinder volume change:
The amount of burned mixture at each time setup is obtained from the Vibe function. For all other terms, for instance, wall heat losses, etc., models similar to the single-zone models with an appropriate distribution on the two zones are used [24].
In AVL BOOST, the model of formation on NOx is based on AVL List Gmbh [24], which incorporates the Zeldovich mechanism [25]. The rate of NOx production was obtained using Eq. (5):
where
In the above equation,
The NOx formation model in AVL Boost is based on Onorati et al. [26]:
In Eq. (6),
The unburned HC has different sources. A complete description of HC formation still cannot be given, and the achievement of a reliable model within a thermodynamic approach is definitely prevented by the fundamental assumptions and the requirement of reduced computational times. Still, a phenomenological model which accounts for the main formation mechanisms and is able to capture the HC trends as function of the engine operating parameter may be proposed. The following important sources of unburned HC can be identified in SI engines [21]:
During the intake and compression stroke, fuel vapor is absorbed into the oil layer and deposits on the cylinder walls. The following desorption occurs when the cylinder pressure decreases during the expansion stroke and complete combustion cannot take place anymore.
A fraction of the charge enters the crevice volumes and is not burned since the flame quenches at the entrance.
Occasional complete misfire or partial burning takes place when combustion quality is poor.
Quench layers on the combustion chamber wall which are left as the flame extinguishes prior to reaching the walls.
The flow of fuel vapor into the exhaust system during valve overlap in gasoline engines.
The first two mechanisms and in particular the crevice formation are considered to be the most important and need to be accounted for in a thermodynamic model. Partial burn and quench layer effect cannot be physically described in a quasi-dimensional approach, but may be included by adopting tunable semiempirical correlations.
The formation of unburned HC in the crevices is described by assuming that the pressure in the cylinder and in the crevices is the same and that the temperature of the mass in the crevice volumes is equal to the piston temperature.
The mass in the crevices at any time is described by Eq. (7):
In Eq. (7),
The second important source of HC is the presence of lubricating oil in the fuel or on the walls of the combustion chamber. During the compression stroke, the fuel vapor pressure increases so, by Henry’s law, absorption occurs even if the oil was saturated during the intake. During combustion the concentration of fuel vapor in the burned gases goes to zero so the absorbed fuel vapor will desorb from the liquid oil into the burned gases. Fuel solubility is a positive function of the molecular weight, so the oil layer contributed to HC emissions depending on the different solubility of individual hydrocarbons in the lubricating oil.
The assumptions made in the development of the HC absorption/desorption are the following:
Fuel is constituted by a single hydrocarbon species, completely vaporized in the fresh mixture.
The oil film temperature is at the same as the cylinder wall.
Traverse flow across the oil film is negligible.
Oil is represented by squalane (C30H62), whose characteristics resemble those of the SAE5W20 lubricant.
Diffusion of the fuel in the oil film is the limiting factor, for the diffusion constant in the liquid phase which is 104 times smaller than the corresponding value in the gas phase.
The radial distribution of the fuel mass fraction in the oil film can be determined by solving the diffusion Eq. (8):
In Eq. (8),
The present research focused on the performance and emission characteristics of the methanol and ethanol-gasoline blends. Various concentrations of the blends 0% methanol (ethanol) M0 (E0), 5% methanol (ethanol) M5 (E5), 10% methanol (ethanol) M10 (E10), 20% methanol (ethanol) M20 (E20), 30% methanol (ethanol) M30 (E30), 50% methanol (ethanol) M50 (E50), and 85% methanol (ethanol) M85 (E85) by volume were analyzed.
The results of the brake power and specific fuel consumption for ethanol-gasoline blended fuels at different engine speeds are shown on Figures 2 and 3.
Influence of ethanol-gasoline blended fuels on brake power.
Influence of ethanol-gasoline blended fuels on brake-specific fuel consumption.
The brake power is one of the important factors that determine the performance of an engine. The variation of brake power with speed was obtained at full load conditions for E5, E10, E20, E30, E50, and pure gasoline E0. The ethanol content in the blended fuel increased, and the brake power decreased for all engine speeds. The gasoline brake power was higher than E5–E50 for all engine speeds. The ethanol’s heat of evaporation is higher in comparison to gasoline fuel, providing air-fuel charge cooling and increasing the density of the charge. The blended fuel causes the equivalence ratio of blend approaches to stoichiometric condition which can lead to a better combustion. However, the ethanol heating value is lower compared to gasoline, and it can neutralize the previous positive effects. Consequently, a lower power output is obtained.
Figure 3 shows the changes of the BSFC for ethanol-gasoline blends under various engine speeds. The figure shows that the BSFC increased as the ethanol percentage increased. Heating value and stoichiometric air-fuel ratio are the smallest for these two fuels, which means that for specific air-fuel equivalence ratio, more fuel is needed. The highest specific fuel consumption is obtained at E50 ethanol-gasoline blend.
Moreover, there is a slight difference between the BSFC when using pure gasoline and when using blends (E5, E10, and E20). The lower energy content of blended fuels causes some increment in BSFC of the engine.
Figure 4 shows the influence of methanol-gasoline blended fuels on engine brake power. The variation of brake power with speed was obtained at full load conditions for M5, M10, M20, M30, M50, and pure gasoline M0. When the methanol content in the blended fuel was increased (M10, M20, and M30), there was not a significant increase in engine brake power.
Influence of methanol-gasoline blended fuels on brake power.
The engine brake power may be due to the increase of the indicated mean effective pressure for higher methanol content blends. The methanol’s heat of evaporation is higher compared to that of gasoline, thus providing air-fuel charge cooling and increasing the density of the charge. Therefore, a higher power output is obtained. The engine brake power was higher in operation with gasoline in comparison to M50 for all engine speeds.
Figure 5 shows the variations of the BSFC for methanol-gasoline blended fuels under various engine speeds. As shown in this figure, the BSFC increased as the methanol percentage increased. This can be described with heating value, and stoichiometric air-fuel ratio is the smallest for these two fuels, which means that for specific air-fuel equivalence ratio, more fuel is needed. The specific fuel consumption of M50 methanol-gasoline blend was highest compared to those of gasoline for all engine speeds.
Influence of methanol-gasoline blended fuels on engine brake power.
Furthermore, there is a small difference between the BSFC when using gasoline and when using methanol-gasoline blended fuels (M5–M30). As engine speed increased reaching 2000 rpm, the BSFC decreased reaching its minimum value.
The results of the brake power and specific fuel consumption for ethanol- and methanol-gasoline blended fuels at different engine speeds are presented in Figures 6 and 7.
Effect of blended fuels on engine brake power.
Influence of blended fuels on engine fuel consumption.
When there was an increase in the ethanol content in the blended fuel, the brake power decreased for all engine speeds. The brake power of gasoline fuel was higher than those of E5–E50. The heating value of ethanol is lower than pure gasoline fuel, and the heating value of the blends decreases with the increase of the ethanol percentage. Consequently, a lower power output is obtained [22, 23].
By increasing the percentage of methanol in the blends (M5 and M10), the brake power slightly increased, which can be explained by better combustion efficiency of oxygenated fuels. By increasing the methanol content in the blends (M30 and M50), the engine brake power decreased for all engine speeds. The blended fuel heating value decreases with the increase of the percentage of methanol. This results in a lower power output. The gasoline brake power was higher compared to blend M50.
Figure 7 shows the changes of the BSFC for blended fuels under different engine speeds. The BSFC increased as the ethanol and methanol percentage increased. The reason has been known—the heating value and stoichiometric air-fuel ratio are the smallest for this fuel, which means that more fuel is needed for specific air-fuel equivalence ratio. The highest specific fuel consumption is obtained at E50 (M50) blended fuel.
What is more, there is small difference between the BSFC when using pure gasoline and blended fuels (E5 (M5), E10 (M10), and E20 (M20)). The lower energy content of ethanol blended fuels makes some increment in BSFC.
The result of the ethanol-blended fuels on CO emissions is shown in Figure 8.
Influence of ethanol-gasoline blended fuels on CO emissions.
A conclusion, which can be made by Figure 8, is that when ethanol content increases, the CO emission decreases. The reason for this could be explained with the enrichment of oxygen owing to the ethanol, in which an increase in the proportion of oxygen will promote the further oxidation of CO during the engine exhaust process. One of the other significant reasons for this reduction is that ethanol (C2H5OH) has less carbon than gasoline (C8H18).
The result of the ethanol gasoline blends on HC emissions is shown in Figure 9. The figure shows that when ethanol percentage increases, the HC concentration decreases. The HC emission decreases with the increase of the relative air-fuel ratio. The decrease of HC can be explained similarly to that of CO concentration described above.
Influence of ethanol-gasoline blended fuels on HC emissions.
The effect of the ethanol gasoline blends on NOx emissions for various engine speeds is shown in Figure 10. When the combustion process is closer to stoichiometric, flame temperature increases. As a result, the NOx emissions are increased.
Influence of ethanol-gasoline blended fuels on NOx emissions.
The effect of the methanol-gasoline blends on CO emissions for various engine speeds can be seen in Figure 11. When methanol percentage increases, the CO concentration decreases. This can be explained with the enrichment of oxygen because of the methanol and less carbon of methanol than gasoline.
Influence of methanol-gasoline blended fuels on CO emissions.
The effect of the methanol-gasoline blends on HC emissions is visible in Figure 12. When methanol percentage increases, the HC concentration decreases. The concentration of HC emissions decreases with the increase of the relative air-fuel ratio. The reason for the decrease of HC concentration resembles that of ethanol.
Influence of methanol-gasoline blended fuels on HC emissions.
The effect of the methanol-gasoline blends on NOx emissions can be seen in Figure 13. When methanol percentage increases, the NOx concentration increases. When combustion process is closer to stoichiometric, flame temperature increases and the NOx emissions increase as well.
Influence of methanol-gasoline blended fuels on NOx emissions.
The effect of the ethanol- and methanol-gasoline blends on CO emissions can be viewed in Figure 14. By increasing the methanol and ethanol content in the blended fuel, the CO emission decreases. The reason can be the enrichment of oxygen because of the ethanol and methanol, in which an increase in the proportion of oxygen will promote the further oxidation of CO during the engine exhaust process. Another major reason for this reduction is that ethanol (C2H5OH) and methanol (CH3OH) have less carbon than gasoline (C8H18). The lowest CO emissions are obtained with blended fuel containing methanol (M50).
Influence of ethanol- and methanol–gasoline blended fuels on CO emissions.
The effect of the ethanol- and methanol-gasoline blends on HC emissions is visible in Figure 15. When there is an increase in the ethanol and methanol percentage, the HC concentration decreases.
Influence of blended fuels on HC and NOx emissions.
When the relative air-fuel ratio increases, the concentration of HC emissions decreases. The reason for the decrease in HC emissions is similar to that of CO described above. The comparison between the decrease in HC emissions and the blended fuels indicates that methanol is more effective than ethanol. The lowest HC emissions are obtained with methanol-blended fuel (M50). When more combustion is complete, it will result in lower HC emissions.
Figure 15 shows the influence of the blended fuels on NOx emissions. It is noticeable that when methanol and ethanol percentage increases up to 30% E30 (M30), the NOx emission increases, after which it decreases with increasing the percentage of the methanol (ethanol).
The reason is that the improved combustion results in increased temperature in combustion chamber. The higher methanol (ethanol) content in the blends lowers the temperature in combustion chamber. The lower temperature is due to:
Latent heat of evaporation of alcohols, which decreases the temperature in combustion chamber during the vaporization.
The more triatomic molecules are produced: the higher the gas heat capacity and the lower the combustion gas temperature will be. However, the low temperature in combustion chamber can also lead to an increment in the unburned combustion product.
The purpose of the present chapter is to demonstrate the influence of ethanol and methanol addition to gasoline on spark-ignition engine performance and emission characteristics. The summarized results from this study are the following:
With the increase of the percentage of ethanol in the blended fuel, the engine brake power decreased for various engine speeds.
With the increase of the percentage of methanol in the blends M5 and M10, the brake power slightly increased, and with the increase of the percentage of methanol in the blends M30 and M50, the brake power decreased.
As the ethanol (methanol) percentage increased, the BSFC increased. The blended fuels show higher BSFC and lower engine brake power than pure gasoline. Furthermore, there is a slight difference between the BSFC in comparison of gasoline and gasoline blended fuels (E5, E10, and E20 and M5, M10, and M20).
When there is an increase in ethanol and methanol percentage, the CO and HC concentration decreases. The lowest CO and HC emissions are obtained with blended fuel containing methanol (M50).
Increasing the percentage of ethanol and methanol leads to a significant increase in NOx emissions.
When there is an increase in the ethanol and methanol percentage up to 30% E30 (M30), there is an increase in the NOx concentration, followed by a decrease, after which it decreases with increasing ethanol (methanol) percentage. The lowest NOx emissions are obtained with gasoline.
The present chapter has been written with the Project No 2018-RU-07’s financial assistance. We are also eternally grateful to AVL-AST, Graz, Austria, for granting the use of AVL BOOST under the university partnership program.
As this section deals with legal issues pertaining to the rights of individual Authors and IntechOpen, for the avoidance of doubt, each category of publication is dealt with separately. Consequently, much of the information, for example definition of terms used, is repeated to ensure that there can be no misunderstanding of the policies that apply to each category.
",metaTitle:"Copyright Policy",metaDescription:"Copyright is the term used to describe the rights related to the publication and distribution of original works. Most importantly from a publisher's perspective, copyright governs how authors, publishers and the general public can use, publish and distribute publications.",metaKeywords:null,canonicalURL:"/page/copyright-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Copyright is the term used to describe the rights related to the publication and distribution of original Works. Most importantly from a publisher's perspective, copyright governs how Authors, publishers and the general public can use, publish, and distribute publications.
\\n\\nIntechOpen only publishes manuscripts for which it has publishing rights. This is governed by a publication agreement between the Author and IntechOpen. This agreement is accepted by the Author when the manuscript is submitted and deals with both the rights of the publisher and Author, as well as any obligations concerning a particular manuscript. However, in accepting this agreement, Authors continue to retain significant rights to use and share their publications.
\\n\\nHOW COPYRIGHT WORKS WITH OPEN ACCESS LICENSES?
\\n\\nAgreement samples are listed here for the convenience of prospective Authors:
\\n\\n\\n\\nDEFINITIONS
\\n\\nThe following definitions apply in this Copyright Policy:
\\n\\nAuthor - in order to be identified as an Author, three criteria must be met: (i) Substantial contribution to the conception or design of the Work, or the acquisition, analysis, or interpretation of data for the Work; (ii) Participation in drafting or revising the Work; (iii) Approval of the final version of the Work to be published.
\\n\\nWork - a Chapter, including Conference Papers, and any and all text, graphics, images and/or other materials forming part of or accompanying the Chapter/Conference Paper.
\\n\\nMonograph/Compacts - a full manuscript usually written by a single Author, including any and all text, graphics, images and/or other materials.
\\n\\nCompilation - a collection of Works distributed in a Book that IntechOpen has selected, and for which the coordination of the preparation, arrangement and publication has been the responsibility of IntechOpen. Any Work included is accepted in its entirety in unmodified form and is published with one or more other contributions, each constituting a separate and independent Work, but which together are assembled into a collective whole.
\\n\\nIntechOpen - Registered publisher with office at 5 Princes Gate Court, London, SW7 2QJ - UNITED KINGDOM
\\n\\nIntechOpen platform - IntechOpen website www.intechopen.com whose main purpose is to host Monographs in the format of Book Chapters, Long Form Monographs, Compacts, Conference Proceedings and Videos.
\\n\\nVideo Lecture – an audiovisual recording of a lecture or a speech given by a Lecturer, recorded, edited, owned and published by IntechOpen.
\\n\\nTERMS
\\n\\nAll Works published on the IntechOpen platform and in print are licensed under a Creative Commons Attribution 3.0 Unported License, a license which allows for the broadest possible reuse of published material.
\\n\\nCopyright on the individual Works belongs to the specific Author, subject to an agreement with IntechOpen. The Creative Common license is granted to all others to:
\\n\\nAnd for any purpose, provided the following conditions are met:
\\n\\nAll Works are published under the CC BY 3.0 license. However, please note that book Chapters may fall under a different CC license, depending on their publication date as indicated in the table below:
\\n\\n\\n\\n
LICENSE | \\n\\t\\t\\tUSED FROM - | \\n\\t\\t\\tUP TO - | \\n\\t\\t
\\n\\t\\t\\t Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) \\n\\t\\t\\t | \\n\\t\\t\\t\\n\\t\\t\\t 1 July 2005 (2005-07-01) \\n\\t\\t\\t | \\n\\t\\t\\t\\n\\t\\t\\t 3 October 2011 (2011-10-03) \\n\\t\\t\\t | \\n\\t\\t
Creative Commons Attribution 3.0 Unported (CC BY 3.0) | \\n\\t\\t\\t\\n\\t\\t\\t 5 October 2011 (2011-10-05) \\n\\t\\t\\t | \\n\\t\\t\\tCurrently | \\n\\t\\t
The CC BY 3.0 license permits Works to be freely shared in any medium or format, as well as the reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as the source Work is cited and its Authors are acknowledged in the following manner:
\\n\\nContent reuse:
\\n\\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\\n\\nContent adaptation & reuse:
\\n\\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\\n\\nReposting & sharing:
\\n\\nOriginally published in {full citation}. Available from: {DOI}
\\n\\nRepublishing – More about Attribution Policy can be found here.
\\n\\nThe same principles apply to Works published under the CC BY-NC-SA 3.0 license, with the caveats that (1) the content may not be used for commercial purposes, and (2) derivative works building on this content must be distributed under the same license. The restrictions contained in these license terms may, however, be waived by the copyright holder(s). Users wishing to circumvent any of the license terms are required to obtain explicit permission to do so from the copyright holder(s).
\\n\\nDISCLAIMER: Neither the CC BY 3.0 license, nor any other license IntechOpen currently uses or has used before, applies to figures and tables reproduced from other works, as they may be subject to different terms of reuse. In such cases, if the copyright holder is not noted in the source of a figure or table, it is the responsibility of the User to investigate and determine the exact copyright status of any information utilised. Users requiring assistance in that regard are welcome to send an inquiry to permissions@intechopen.com.
\\n\\nAll rights to Books and all other compilations published on the IntechOpen platform and in print are reserved by IntechOpen.
\\n\\nThe copyright to Books and other compilations is subject to separate copyright from those that exist in the included Works.
\\n\\nAll Long Form Monographs/Compacts are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others.
\\n\\nCopyright to the individual Works (Chapters) belongs to their specific Authors, subject to an agreement with IntechOpen and the Creative Common license granted to all others to:
\\n\\nUnder the following terms:
\\n\\nThere must be an Attribution, giving appropriate credit, provision of a link to the license, and indication if any changes were made.
\\n\\nNonCommercial - The use of the material for commercial purposes is prohibited. Commercial rights are reserved to IntechOpen or its licensees.
\\n\\nNo additional restrictions that apply legal terms or technological measures that restrict others from doing anything the license permits are allowed.
\\n\\nThe CC BY-NC 4.0 license permits Works to be freely shared in any medium or format, as well as reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as it is not used for commercial purposes. The source Work must be cited and its Authors acknowledged in the following manner:
\\n\\nContent reuse:
\\n\\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\\n\\nContent adaptation & reuse:
\\n\\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\\n\\nReposting & sharing:
\\n\\nOriginally published in {full citation}. Available from: {DOI}
\\n\\nAll Book cover design elements, as well as Video image graphics are subject to copyright by IntechOpen.
\\n\\nEvery reproduction of a front cover image must be accompanied by an appropriate Copyright Notice displayed adjacent to the image. The exact Copyright Notice depends on who the Author of a particular cover image is. Users wishing to reproduce cover images should contact permissions@intechopen.com.
\\n\\nAll Video Lectures under IntechOpen's production are subject to copyright and are property of IntechOpen, unless defined otherwise, and are licensed under the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. This grants all others the right to:
\\n\\nShare — copy and redistribute the material in any medium or format
\\n\\nUnder the following terms:
\\n\\nUsers wishing to repost and share the Video Lectures are welcome to do so as long as they acknowledge the source in the following manner:
\\n\\n© {year} IntechOpen. Published under CC BY-NC-ND 4.0 license. Available from: {DOI}
\\n\\nUsers wishing to reuse, modify, or adapt the Video Lectures in a way not permitted by the license are welcome to contact us at permissions@intechopen.com to discuss waiving particular license terms.
\\n\\nAll software used on the IntechOpen platform, any used during the publishing process, and the copyright in the code constituting such software, is the property of IntechOpen or its software suppliers. As such, it may not be downloaded or copied without permission.
\\n\\nUnless otherwise indicated, all IntechOpen websites are the property of IntechOpen.
\\n\\nAll content included on IntechOpen Websites not forming part of contributed materials (such as text, images, logos, graphics, design elements, videos, sounds, pictures, trademarks, etc.), are subject to copyright and are property of, or licensed to, IntechOpen. Any other use, including the reproduction, modification, distribution, transmission, republication, display, or performance of the content on this site is strictly prohibited.
\\n\\nPolicy last updated: 2016-06-08
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Copyright is the term used to describe the rights related to the publication and distribution of original Works. Most importantly from a publisher's perspective, copyright governs how Authors, publishers and the general public can use, publish, and distribute publications.
\n\nIntechOpen only publishes manuscripts for which it has publishing rights. This is governed by a publication agreement between the Author and IntechOpen. This agreement is accepted by the Author when the manuscript is submitted and deals with both the rights of the publisher and Author, as well as any obligations concerning a particular manuscript. However, in accepting this agreement, Authors continue to retain significant rights to use and share their publications.
\n\nHOW COPYRIGHT WORKS WITH OPEN ACCESS LICENSES?
\n\nAgreement samples are listed here for the convenience of prospective Authors:
\n\n\n\nDEFINITIONS
\n\nThe following definitions apply in this Copyright Policy:
\n\nAuthor - in order to be identified as an Author, three criteria must be met: (i) Substantial contribution to the conception or design of the Work, or the acquisition, analysis, or interpretation of data for the Work; (ii) Participation in drafting or revising the Work; (iii) Approval of the final version of the Work to be published.
\n\nWork - a Chapter, including Conference Papers, and any and all text, graphics, images and/or other materials forming part of or accompanying the Chapter/Conference Paper.
\n\nMonograph/Compacts - a full manuscript usually written by a single Author, including any and all text, graphics, images and/or other materials.
\n\nCompilation - a collection of Works distributed in a Book that IntechOpen has selected, and for which the coordination of the preparation, arrangement and publication has been the responsibility of IntechOpen. Any Work included is accepted in its entirety in unmodified form and is published with one or more other contributions, each constituting a separate and independent Work, but which together are assembled into a collective whole.
\n\nIntechOpen - Registered publisher with office at 5 Princes Gate Court, London, SW7 2QJ - UNITED KINGDOM
\n\nIntechOpen platform - IntechOpen website www.intechopen.com whose main purpose is to host Monographs in the format of Book Chapters, Long Form Monographs, Compacts, Conference Proceedings and Videos.
\n\nVideo Lecture – an audiovisual recording of a lecture or a speech given by a Lecturer, recorded, edited, owned and published by IntechOpen.
\n\nTERMS
\n\nAll Works published on the IntechOpen platform and in print are licensed under a Creative Commons Attribution 3.0 Unported License, a license which allows for the broadest possible reuse of published material.
\n\nCopyright on the individual Works belongs to the specific Author, subject to an agreement with IntechOpen. The Creative Common license is granted to all others to:
\n\nAnd for any purpose, provided the following conditions are met:
\n\nAll Works are published under the CC BY 3.0 license. However, please note that book Chapters may fall under a different CC license, depending on their publication date as indicated in the table below:
\n\n\n\n
LICENSE | \n\t\t\tUSED FROM - | \n\t\t\tUP TO - | \n\t\t
\n\t\t\t Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) \n\t\t\t | \n\t\t\t\n\t\t\t 1 July 2005 (2005-07-01) \n\t\t\t | \n\t\t\t\n\t\t\t 3 October 2011 (2011-10-03) \n\t\t\t | \n\t\t
Creative Commons Attribution 3.0 Unported (CC BY 3.0) | \n\t\t\t\n\t\t\t 5 October 2011 (2011-10-05) \n\t\t\t | \n\t\t\tCurrently | \n\t\t
The CC BY 3.0 license permits Works to be freely shared in any medium or format, as well as the reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as the source Work is cited and its Authors are acknowledged in the following manner:
\n\nContent reuse:
\n\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\n\nContent adaptation & reuse:
\n\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\n\nReposting & sharing:
\n\nOriginally published in {full citation}. Available from: {DOI}
\n\nRepublishing – More about Attribution Policy can be found here.
\n\nThe same principles apply to Works published under the CC BY-NC-SA 3.0 license, with the caveats that (1) the content may not be used for commercial purposes, and (2) derivative works building on this content must be distributed under the same license. The restrictions contained in these license terms may, however, be waived by the copyright holder(s). Users wishing to circumvent any of the license terms are required to obtain explicit permission to do so from the copyright holder(s).
\n\nDISCLAIMER: Neither the CC BY 3.0 license, nor any other license IntechOpen currently uses or has used before, applies to figures and tables reproduced from other works, as they may be subject to different terms of reuse. In such cases, if the copyright holder is not noted in the source of a figure or table, it is the responsibility of the User to investigate and determine the exact copyright status of any information utilised. Users requiring assistance in that regard are welcome to send an inquiry to permissions@intechopen.com.
\n\nAll rights to Books and all other compilations published on the IntechOpen platform and in print are reserved by IntechOpen.
\n\nThe copyright to Books and other compilations is subject to separate copyright from those that exist in the included Works.
\n\nAll Long Form Monographs/Compacts are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others.
\n\nCopyright to the individual Works (Chapters) belongs to their specific Authors, subject to an agreement with IntechOpen and the Creative Common license granted to all others to:
\n\nUnder the following terms:
\n\nThere must be an Attribution, giving appropriate credit, provision of a link to the license, and indication if any changes were made.
\n\nNonCommercial - The use of the material for commercial purposes is prohibited. Commercial rights are reserved to IntechOpen or its licensees.
\n\nNo additional restrictions that apply legal terms or technological measures that restrict others from doing anything the license permits are allowed.
\n\nThe CC BY-NC 4.0 license permits Works to be freely shared in any medium or format, as well as reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as it is not used for commercial purposes. The source Work must be cited and its Authors acknowledged in the following manner:
\n\nContent reuse:
\n\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\n\nContent adaptation & reuse:
\n\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\n\nReposting & sharing:
\n\nOriginally published in {full citation}. Available from: {DOI}
\n\nAll Book cover design elements, as well as Video image graphics are subject to copyright by IntechOpen.
\n\nEvery reproduction of a front cover image must be accompanied by an appropriate Copyright Notice displayed adjacent to the image. The exact Copyright Notice depends on who the Author of a particular cover image is. Users wishing to reproduce cover images should contact permissions@intechopen.com.
\n\nAll Video Lectures under IntechOpen's production are subject to copyright and are property of IntechOpen, unless defined otherwise, and are licensed under the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. This grants all others the right to:
\n\nShare — copy and redistribute the material in any medium or format
\n\nUnder the following terms:
\n\nUsers wishing to repost and share the Video Lectures are welcome to do so as long as they acknowledge the source in the following manner:
\n\n© {year} IntechOpen. Published under CC BY-NC-ND 4.0 license. Available from: {DOI}
\n\nUsers wishing to reuse, modify, or adapt the Video Lectures in a way not permitted by the license are welcome to contact us at permissions@intechopen.com to discuss waiving particular license terms.
\n\nAll software used on the IntechOpen platform, any used during the publishing process, and the copyright in the code constituting such software, is the property of IntechOpen or its software suppliers. As such, it may not be downloaded or copied without permission.
\n\nUnless otherwise indicated, all IntechOpen websites are the property of IntechOpen.
\n\nAll content included on IntechOpen Websites not forming part of contributed materials (such as text, images, logos, graphics, design elements, videos, sounds, pictures, trademarks, etc.), are subject to copyright and are property of, or licensed to, IntechOpen. Any other use, including the reproduction, modification, distribution, transmission, republication, display, or performance of the content on this site is strictly prohibited.
\n\nPolicy last updated: 2016-06-08
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"9496",title:"Dyslipidemia",subtitle:null,isOpenForSubmission:!0,hash:"1d1174ff4ed8ad553c944e99add28154",slug:null,bookSignature:"Dr. Wilbert S. Aronow",coverURL:"https://cdn.intechopen.com/books/images_new/9496.jpg",editedByType:null,editors:[{id:"164597",title:"Dr.",name:"Wilbert S.",surname:"Aronow",slug:"wilbert-s.-aronow",fullName:"Wilbert S. Aronow"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10585",title:"Interleukin",subtitle:null,isOpenForSubmission:!0,hash:"6d4ebb087fdb199287bc765704246b60",slug:null,bookSignature:"Ph.D. Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/10585.jpg",editedByType:null,editors:[{id:"45803",title:"Ph.D.",name:"Payam",surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10300",title:"Breast Cancer",subtitle:null,isOpenForSubmission:!0,hash:"bcf3738b16b0a4de6066853ab38b801c",slug:null,bookSignature:"Dr. Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/10300.jpg",editedByType:null,editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9589",title:"Depigmentation as a Disease or Therapeutic Goal",subtitle:null,isOpenForSubmission:!0,hash:"3e1efdb1fc8c403c402da09b242496c6",slug:null,bookSignature:"Dr. Tae-Heung Kim",coverURL:"https://cdn.intechopen.com/books/images_new/9589.jpg",editedByType:null,editors:[{id:"121353",title:"Dr.",name:"Tae-Heung",surname:"Kim",slug:"tae-heung-kim",fullName:"Tae-Heung Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9608",title:"Myasthenia Gravis",subtitle:null,isOpenForSubmission:!0,hash:"db6c84e3aa58f3873e1298add7042c44",slug:null,bookSignature:"Dr. Nizar Souayah",coverURL:"https://cdn.intechopen.com/books/images_new/9608.jpg",editedByType:null,editors:[{id:"162634",title:"Dr.",name:"Nizar",surname:"Souayah",slug:"nizar-souayah",fullName:"Nizar Souayah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8485",title:"Weather Forecasting",subtitle:null,isOpenForSubmission:!0,hash:"eadbd6f9c26be844062ce5cd3b3eb573",slug:null,bookSignature:"Associate Prof. Muhammad Saifullah",coverURL:"https://cdn.intechopen.com/books/images_new/8485.jpg",editedByType:null,editors:[{id:"320968",title:"Associate Prof.",name:"Muhammad",surname:"Saifullah",slug:"muhammad-saifullah",fullName:"Muhammad Saifullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10542",title:"Molecular Epidemiology Study of Mycobacterium Tuberculosis Complex",subtitle:null,isOpenForSubmission:!0,hash:"29279e34f971687dc28de62534335ac4",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10542.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10552",title:"Montmorillonite",subtitle:null,isOpenForSubmission:!0,hash:"c4a279761f0bb046af95ecd32ab09e51",slug:null,bookSignature:"Prof. Faheem Uddin",coverURL:"https://cdn.intechopen.com/books/images_new/10552.jpg",editedByType:null,editors:[{id:"228107",title:"Prof.",name:"Faheem",surname:"Uddin",slug:"faheem-uddin",fullName:"Faheem Uddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!0,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10304",title:"Giant-Cell Arteritis",subtitle:null,isOpenForSubmission:!0,hash:"b144271ebc5d331aab73de18a7f9f4f5",slug:null,bookSignature:"Dr. Imtiaz A. Chaudhry",coverURL:"https://cdn.intechopen.com/books/images_new/10304.jpg",editedByType:null,editors:[{id:"66603",title:"Dr.",name:"Imtiaz",surname:"Chaudhry",slug:"imtiaz-chaudhry",fullName:"Imtiaz Chaudhry"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10539",title:"Ginseng in Medicine",subtitle:null,isOpenForSubmission:!0,hash:"5f388543a066b617d2c52bd4c027c272",slug:null,bookSignature:"Prof. Christophe Hano and Dr. Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editedByType:null,editors:[{id:"313856",title:"Prof.",name:"Christophe",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10482",title:"Human Teeth – Structure and Composition of Dental Hard Tissues and Developmental Dental Defects",subtitle:null,isOpenForSubmission:!0,hash:"82a91346a98d34805e30511d6504bd4c",slug:null,bookSignature:"Dr. Ana Gil De Bona and Dr. Hakan Karaaslan",coverURL:"https://cdn.intechopen.com/books/images_new/10482.jpg",editedByType:null,editors:[{id:"203919",title:"Dr.",name:"Ana",surname:"Gil De Bona",slug:"ana-gil-de-bona",fullName:"Ana Gil De Bona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:164},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1005",title:"Clinical Pathology",slug:"clinical-pathology",parent:{title:"Diagnostics",slug:"diagnostics"},numberOfBooks:2,numberOfAuthorsAndEditors:69,numberOfWosCitations:28,numberOfCrossrefCitations:13,numberOfDimensionsCitations:40,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"clinical-pathology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7905",title:"Saliva and Salivary Diagnostics",subtitle:null,isOpenForSubmission:!1,hash:"ae7cd7860043968aa88daae89795a591",slug:"saliva-and-salivary-diagnostics",bookSignature:"Sridharan Gokul",coverURL:"https://cdn.intechopen.com/books/images_new/7905.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1959",title:"Biomarker",subtitle:null,isOpenForSubmission:!1,hash:"3fa6155a28277c6ce2e169f338c9bbcf",slug:"biomarker",bookSignature:"Tapan Kumar Khan",coverURL:"https://cdn.intechopen.com/books/images_new/1959.jpg",editedByType:"Edited by",editors:[{id:"113568",title:"Prof.",name:"Tapan",middleName:"Kumar",surname:"Khan",slug:"tapan-khan",fullName:"Tapan Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"36390",doi:"10.5772/38822",title:"Potential Muscle Biomarkers of Chronic Myalgia in Humans - A Systematic Review of Microdialysis Studies",slug:"potential-muscle-biomarkers-of-chronic-myalgia-in-humans-a-systematic-review-of-microdialysis-studie",totalDownloads:1709,totalCrossrefCites:6,totalDimensionsCites:16,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Björn Gerdle and Britt Larsson",authors:[{id:"119711",title:"Prof.",name:"Bjorn",middleName:null,surname:"Gerdle",slug:"bjorn-gerdle",fullName:"Bjorn Gerdle"},{id:"138423",title:"Prof.",name:"Britt",middleName:null,surname:"Larsson",slug:"britt-larsson",fullName:"Britt Larsson"}]},{id:"36394",doi:"10.5772/36750",title:"8-Nitroguanine, a Potential Biomarker to Evaluate the Risk of Inflammation-Related Carcinogenesis",slug:"8-nitroguanine-a-potential-biomarker-to-evaluate-the-risk-of-inflammation-related-carcinogenesis",totalDownloads:1782,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Ning Ma, Mariko Murata, Shiho Ohnishi, Raynoo Thanan, Yusuke Hiraku and Shosuke Kawanishi",authors:[{id:"71918",title:"Dr.",name:"Yusuke",middleName:null,surname:"Hiraku",slug:"yusuke-hiraku",fullName:"Yusuke Hiraku"},{id:"109629",title:"Prof.",name:"Ning",middleName:null,surname:"Ma",slug:"ning-ma",fullName:"Ning Ma"},{id:"120432",title:"Dr.",name:"Shiho",middleName:null,surname:"Ohnishi",slug:"shiho-ohnishi",fullName:"Shiho Ohnishi"},{id:"120433",title:"Prof.",name:"Mariko",middleName:null,surname:"Murata",slug:"mariko-murata",fullName:"Mariko Murata"},{id:"120434",title:"Prof.",name:"Shosuke",middleName:null,surname:"Kawanishi",slug:"shosuke-kawanishi",fullName:"Shosuke Kawanishi"},{id:"121961",title:"Dr.",name:"Raynoo",middleName:null,surname:"Thanan",slug:"raynoo-thanan",fullName:"Raynoo Thanan"}]},{id:"36392",doi:"10.5772/36793",title:"Biomarkers and Therapeutic Drug Monitoring in Psychiatry",slug:"biomarkers-and-therapeutic-drug-monitoring-in-psychiatry",totalDownloads:1709,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"R. Lozano, R. Marin, A. Pascual, MJ. Santacruz, A. Lozano and F. Sebastian",authors:[{id:"109838",title:"Dr.",name:"Roberto",middleName:null,surname:"Lozano Ortiz",slug:"roberto-lozano-ortiz",fullName:"Roberto Lozano Ortiz"},{id:"115991",title:"Dr.",name:"Reyes",middleName:null,surname:"Marin",slug:"reyes-marin",fullName:"Reyes Marin"},{id:"115992",title:"Dr.",name:"Asuncion",middleName:null,surname:"Pascual",slug:"asuncion-pascual",fullName:"Asuncion Pascual"},{id:"115993",title:"Ms.",name:"Francisca",middleName:null,surname:"Sebastian",slug:"francisca-sebastian",fullName:"Francisca Sebastian"},{id:"115994",title:"Ms.",name:"Maria Jesus",middleName:null,surname:"Santacruz",slug:"maria-jesus-santacruz",fullName:"Maria Jesus Santacruz"}]}],mostDownloadedChaptersLast30Days:[{id:"66233",title:"Functions of Saliva",slug:"functions-of-saliva",totalDownloads:986,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Narendra Maddu",authors:[{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu"}]},{id:"67299",title:"Salivary Diagnostics in Oral Diseases",slug:"salivary-diagnostics-in-oral-diseases",totalDownloads:512,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Manohar Bhat and Devikripa Bhat",authors:[{id:"280750",title:"Dr.",name:"Manohara",middleName:null,surname:"Bhat",slug:"manohara-bhat",fullName:"Manohara Bhat"},{id:"296530",title:"Dr.",name:"Devikripa",middleName:null,surname:"Bhat",slug:"devikripa-bhat",fullName:"Devikripa Bhat"}]},{id:"66416",title:"Salivary Diagnostics",slug:"salivary-diagnostics-1",totalDownloads:426,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Varsha Pathiyil and Rahul Udayasankar",authors:[{id:"281226",title:"Dr.",name:"Varsha",middleName:null,surname:"Pathiyil",slug:"varsha-pathiyil",fullName:"Varsha Pathiyil"},{id:"290603",title:"Dr.",name:"Rahul",middleName:null,surname:"Udayasankar",slug:"rahul-udayasankar",fullName:"Rahul Udayasankar"}]},{id:"36391",title:"Genotoxicity Biomarkers: Application in Histopathology Laboratories",slug:"genotoxicity-biomarkers-application-in-histopathology-laboratories",totalDownloads:2078,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Carina Ladeira, Susana Viegas, Elisabete Carolino, Manuel Carmo Gomes and Miguel Brito",authors:[{id:"109595",title:"Prof.",name:"Susana",middleName:null,surname:"Viegas",slug:"susana-viegas",fullName:"Susana Viegas"},{id:"110391",title:"Ph.D.",name:"Carina",middleName:null,surname:"Ladeira",slug:"carina-ladeira",fullName:"Carina Ladeira"},{id:"110393",title:"Prof.",name:"Miguel",middleName:null,surname:"Brito",slug:"miguel-brito",fullName:"Miguel Brito"},{id:"117579",title:"Prof.",name:"Elisabete",middleName:null,surname:"Carolino",slug:"elisabete-carolino",fullName:"Elisabete Carolino"},{id:"117581",title:"Prof.",name:"Manuel",middleName:null,surname:"Carmo Gomes",slug:"manuel-carmo-gomes",fullName:"Manuel Carmo Gomes"}]},{id:"67113",title:"Introductory Chapter: Saliva - The Future of Disease Diagnostics",slug:"introductory-chapter-saliva-the-future-of-disease-diagnostics",totalDownloads:249,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Gokul Sridharan",authors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}]},{id:"36394",title:"8-Nitroguanine, a Potential Biomarker to Evaluate the Risk of Inflammation-Related Carcinogenesis",slug:"8-nitroguanine-a-potential-biomarker-to-evaluate-the-risk-of-inflammation-related-carcinogenesis",totalDownloads:1782,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Ning Ma, Mariko Murata, Shiho Ohnishi, Raynoo Thanan, Yusuke Hiraku and Shosuke Kawanishi",authors:[{id:"71918",title:"Dr.",name:"Yusuke",middleName:null,surname:"Hiraku",slug:"yusuke-hiraku",fullName:"Yusuke Hiraku"},{id:"109629",title:"Prof.",name:"Ning",middleName:null,surname:"Ma",slug:"ning-ma",fullName:"Ning Ma"},{id:"120432",title:"Dr.",name:"Shiho",middleName:null,surname:"Ohnishi",slug:"shiho-ohnishi",fullName:"Shiho Ohnishi"},{id:"120433",title:"Prof.",name:"Mariko",middleName:null,surname:"Murata",slug:"mariko-murata",fullName:"Mariko Murata"},{id:"120434",title:"Prof.",name:"Shosuke",middleName:null,surname:"Kawanishi",slug:"shosuke-kawanishi",fullName:"Shosuke Kawanishi"},{id:"121961",title:"Dr.",name:"Raynoo",middleName:null,surname:"Thanan",slug:"raynoo-thanan",fullName:"Raynoo Thanan"}]},{id:"66564",title:"Salivary Biomarkers to Assess Breast Cancer Diagnosis and Progression: Are We There Yet?",slug:"salivary-biomarkers-to-assess-breast-cancer-diagnosis-and-progression-are-we-there-yet-",totalDownloads:381,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Charles F. Streckfus",authors:[{id:"29033",title:"Prof.",name:"Charles",middleName:"F.",surname:"Streckfus",slug:"charles-streckfus",fullName:"Charles Streckfus"}]},{id:"36396",title:"Salivary Hormones, Immunes and Other Secretory Substances as Possible Stress Biomarker",slug:"salivary-hormones-immunes-and-other-secretory-substances-as-possible-stress-biomarker",totalDownloads:1563,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Shusaku Nomura",authors:[{id:"100031",title:"Prof.",name:"Shusaku",middleName:null,surname:"Nomura",slug:"shusaku-nomura",fullName:"Shusaku Nomura"}]},{id:"67237",title:"Advantages of Salivary DNA in Human Identification",slug:"advantages-of-salivary-dna-in-human-identification",totalDownloads:297,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Raluca Dumache, Veronica Ciocan, Camelia Muresan, Ramona Parvanescu and Alexandra Enache",authors:[{id:"179199",title:"Dr.",name:"Raluca",middleName:null,surname:"Dumache",slug:"raluca-dumache",fullName:"Raluca Dumache"},{id:"181860",title:"Prof.",name:"Alexandra",middleName:null,surname:"Enache",slug:"alexandra-enache",fullName:"Alexandra Enache"},{id:"195502",title:"Dr.",name:"Veronica",middleName:null,surname:"Ciocan",slug:"veronica-ciocan",fullName:"Veronica Ciocan"},{id:"298285",title:"Dr.",name:"Camelia",middleName:null,surname:"Muresan",slug:"camelia-muresan",fullName:"Camelia Muresan"},{id:"298644",title:"Dr.",name:"Ramona",middleName:null,surname:"Parvanescu",slug:"ramona-parvanescu",fullName:"Ramona Parvanescu"}]},{id:"36388",title:"Inorganic Signatures of Physiology: The X-Ray Fluorescence Microscopy Revolution",slug:"inorganic-signatures-of-physiology-the-x-ray-fluorescence-microscopy-revolution",totalDownloads:1619,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Lydia Finney",authors:[{id:"109543",title:"Dr.",name:"Lydia",middleName:null,surname:"Finney",slug:"lydia-finney",fullName:"Lydia Finney"}]}],onlineFirstChaptersFilter:{topicSlug:"clinical-pathology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/115603/rasha-tawhid",hash:"",query:{},params:{id:"115603",slug:"rasha-tawhid"},fullPath:"/profiles/115603/rasha-tawhid",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()