A comparison between the proposed controllers.
\r\n\t
",isbn:"978-1-83968-388-6",printIsbn:"978-1-83968-387-9",pdfIsbn:"978-1-83968-389-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"61ec2bad4fc3f7060fd64b91fa12e82c",bookSignature:"Ph.D. Vicente Vanaclocha",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10574.jpg",keywords:"Prevalence, Incidence, Worldwide Differences, Red Flags, Moyamoya and School Performance, Medical Treatment, Surgical Treatment, Genetic Markers, Immunologic Factors, Recommended Anesthetic Agents, Source of Intraoperative Complications, Post-Operative ICU Management",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 23rd 2020",dateEndSecondStepPublish:"October 21st 2020",dateEndThirdStepPublish:"December 20th 2020",dateEndFourthStepPublish:"March 10th 2021",dateEndFifthStepPublish:"May 9th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Vicente Vanaclocha is a Chief of Neurosurgery at the University Hospital of Navarra and head of Neurosurgery Service of San Jaime Hospital in Torrevieja. He has over 25 years of experience in neuro-oncology and minimally invasive surgery techniques. He is a pioneer in many areas in neurosurgery (treatment of brain tumors, Chiari Malformation, and sacroiliac joint disorders).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"199099",title:"Ph.D.",name:"Vicente",middleName:null,surname:"Vanaclocha",slug:"vicente-vanaclocha",fullName:"Vicente Vanaclocha",profilePictureURL:"https://mts.intechopen.com/storage/users/199099/images/system/199099.jpeg",biography:"Vicente Vanaclocha is Chief of Neurosurgery. Doctor of Medicine from the University of Valencia, he has over 25 years experience in neuro-oncology, minimally invasive and minimally invasive surgery techniques. Specialist in neurosurgery both nationally and internationally (including the General Medical Register of England and stay at the Groote Schuur Hospital in Cape Town, South Africa) has been Chief of Neurosurgery at the University Hospital of Navarra and head of Neurosurgery Service of San Jaime Hospital in Torrevieja. He was also associate professor of neurosurgery at the Faculty of Medicine of the University of Navarra and is a professor of neuroanatomy at the Catholic University of Valencia also serving as an editorial board member of repute.\nCurrently he is Associate Professor at the University of Valencia.",institutionString:"University of Valencia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Valencia",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6546",title:"Treatment of Brachial Plexus Injuries",subtitle:null,isOpenForSubmission:!1,hash:"24a8e7c7430e86f76fb29df39582855a",slug:"treatment-of-brachial-plexus-injuries",bookSignature:"Vicente Vanaclocha and Nieves Sáiz-Sapena",coverURL:"https://cdn.intechopen.com/books/images_new/6546.jpg",editedByType:"Edited by",editors:[{id:"199099",title:"Ph.D.",name:"Vicente",surname:"Vanaclocha",slug:"vicente-vanaclocha",fullName:"Vicente Vanaclocha"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"63775",title:"Fundamental Research on Unmanned Aerial Vehicles to Support Precision Agriculture in Oil Palm Plantations",doi:"10.5772/intechopen.80936",slug:"fundamental-research-on-unmanned-aerial-vehicles-to-support-precision-agriculture-in-oil-palm-planta",body:'Malaysia is the world’s second largest exporter of palm oil (Figure 1) with approximately 5.08 million ha of land under cultivation [1]. Major percentage of these plantations is owned by small-scale private farmers that have huge demands to affordable low-cost autonomous platforms for applications, such as scouting, palm census, yield monitoring, spraying, and most importantly health assessment and disease detection. The ability to collect high spatial resolution aerial images using drones is changing the way the oil palm growers are approaching the business [2]. Conventional methods of practicing precision agriculture (PA) in oil palm plantations such as remote sensing and spraying are being replaced by integrated fixed-wing or multirotor unmanned aerial vehicles (UAV) [3], allowing collection of information to be instantly accessible for immediate decisions. Precision farming for increasing oil palm yield requires optimization of returns on inputs while preserving resources based on sensing, measuring, and health assessment of the plantations [4]. Relying on satellites images of palms, there is a substantial lag in terms of accessing the data quickly enough. Professionals have been using satellite and piloted airplane remote sensing platforms [5] for plantation scouting applications, such as vegetation cover assessment [6], vegetation mapping [7], crop monitoring [8], and forest fire applications [9]; however, the difference that drone technology [10] and agricultural robotics [11, 12, 13] have made is around the speed and accuracy of delivering that information. Digital agriculture [4] offers great opportunities for mechanization and automation of farming tasks in oil palm plantations through automation of data collection by means of ground or aerial surveillance and data processing software to predict or estimate palms yields.
Comparison between world exports of palm oil, with Malaysia as the second largest exporter. (data: [1]).
Conventional scouting of oil palms on a regular basis (Figure 2), as well as palm census and quantification of the amount of fresh fruit bunches (FFB) for yield monitoring, is a labor-intensive task that is either ignored or carried out manually by the use of hand counters. Traditional scouting of palms is an ineffective practice that requires expert knowledge and postprocessing lab equipment. It involves spending hours and hours of human observation inside the unpleasant hot and humid plantation and does not provide accurate and comprehensive information because several parameters are ignored due to measurements difficulties (i.e., tasks that involve climbing trees, measuring canopy diameter, etc.). Other than the inaccuracy and biases statistics, manual scouting involves additional costs for each extra observation, hazards, and safety issues (i.e., falling from trees, bugs, snake bites, etc.). Satellite imaging services are extremely costly, and they can take images only once a day and have to be ordered in advance. The resolution of these images is low and can be influenced greatly with certain sky cloud conditions. Ground sensing platforms are also time consuming and are limited to small fields of view. Yield reduction due to high-density palm areas that cause etiolation is an issue in plantation management. Palm densities are an important and limiting factor for growth, nutritional status, fruiting, and hence for the plantation yield. Optimal palm densities depend on different factors, such as cultivars, climate, soil characteristics, and land preparation. Refilling of palm gaps and correction of nonoptimal densities are of high priority for a good plantation management. Conventional methods that are solely based on visual observation are inaccurate, particularly when coverage is large and dominant topography is hillocky.
Tedious field work with conventional scouting of oil palm plantation.
Precision agriculture of oil palm is one of the largest markets in Malaysia that will be hit by UAV and robotics. These devices are the future of PA and are sometimes referred to as the next step in data-driven agriculture. UAV/drones carrying multi-spectral and multimodal data acquisition devices face adaptation challenges to satisfy information, accuracy, and timeliness as the bases of a successful precision agriculture (PA) operation. These platforms have contributed to significant reductions of in-field walking costs and observational experiments. UAVs are defined as “an aircraft that is equipped with necessary data processing units, sensors, automatic control, and communications systems and is capable of performing autonomous flight missions without the interference of a human pilot” [14]. The global market for agricultural UAV drones is estimated to reach 3.7 billion US dollars by the year 2022 (Source: Radiant Insight Research firm). Aerial photography from UAS has bridged the gap (see the schematic diagram shown in Figure 3) between ground-based observations and remotely sensed imagery of conventional aircraft and satellite platforms and has made possible great improvements in crop scouting, yield mapping, field boundary mapping, soil sampling and soil property mapping, weeds and pest control and mapping, vehicle’s guidance, navigation control, and spraying. These devices are easy to use and are typically flexible, low cost, light-weight, and low airspeed aircraft. They have revolutionized smart farming and precision agriculture, from planting to harvesting, from seeding to sensing, and from scouting to spaying. UAS drones are widely available on demand, and their functionalities can be customized for different farming applications and can provide a cost-effective monitoring platform without requiring an expert operator. With this technology, several problems associated with the data resolution from piloted aircraft and satellite imaging have been solved. They are capable of providing live data from a wide range of sensors, such as those shown in Figure 3 (multispectral, NIR, LiDAR, etc.) at precision resolutions measured as centimeters per pixel. Such information contributes to the in-depth analysis for the crop health assessment or the inventory management databases. With the UAV technology, the following can be achieved: information about accurate planted area for replanting or thinning, palm census for creating inventory database, calculating the total land area in use, finding distances between each palm to specific spots, calculating canopy diameter, palm height, and palm density, creating 2D, 3D, GIS, NDVI maps for plantation, identifying palm status based on Orthomosaics and digital elevation models, detecting healthy and unhealthy palms (stress assessment), monitoring exposed soil for variable rate technology application, quantification of fresh fruit bunches and mature fruits for yield calculation, monitoring chlorophyll content and nutrient estimation, and measuring leaf area index, drought assessment, biomass indication, weed detection, and inventory management. Data and information such as these are useful for developing decision support systems and yield prediction models.
Typical components of a UAV-based remote sensing platform for precision agriculture of oil palm.
UAV drones can be well adapted for oil palm plantations, where field work is tedious. They allow observation of individual palm trees and can operate unnoticed and below cloud cover that prevents larger high-altitude aircraft and satellites from performing the same mission. Moreover, they can be deployed quickly and repeatedly, and they are less costly and safer than piloted aircraft, are flexible in terms of flying height and timing of missions, and can obtain very high-resolution imagery. As an aerial remote sensing platform, a UAV drone must be adapted to satisfy the basic requirements of image data collection from oil palm plantation. Other than the selection of proper sensors, the stability and accuracy are vital to provide geo-referenced images for extraction of useful information. Adaptation of UAV technology for oil palm plantations involves integration of vision sensors, machine vision algorithms, and control system for (i) yield monitoring and yield mapping, (ii) automated airborne pest monitoring using thermal cameras, (iii) identification and counting of specific insects from very high-resolution optical images, (iv) development of decision support system (DSS) using geo-referenced images as a basis for a GIS-based system giving oil palm growers the possibility to incorporate data directly to their precision farming platforms, (v) identification and mapping of Ganoderma disease using hyperspectral camera, (vi) automated retrieving of oil palm canopy chlorophyll and nutrient content from multispectral and hyperspectral UAV acquired images, and (vii) dynamic Web mapping and inventory management of oil palm productivity using in situ sensors. This paper is the first of series reporting on design and development of an affordable fixed-wing UAV to be used as a flexible scouting test bed for oil palm plantations. Schematic diagram illustrating the early stages of technological development for introducing a UAV platform to local farmers and the general steps and procedure involved with setting up a UAV remote sensing platform for agricultural applications are shown in Figures 4 and 5, respectively.
Schematic diagram illustrating the early stages of technological development for introducing a UAV platform to local farmers (source: Adaptive AgroTech Consultancy International).
General steps and procedure involved with setting up a UAV remote sensing platform for agricultural applications.
A comprehensive document including recommendation for choosing the best UAV drone for precision agricultural and smart farming applications is available in [15]. Specifications of sample multirotor and fixed-wing UAV recommended for precision agriculture of oil palm are also provided in the Appendix. Compared with piloted airplanes and satellite imaging, the ability of UAVs in collecting higher resolution aerial images at a significantly lower cost can provide oil palm growers with more accurate information on palm height, crown size, and normalized difference vegetation index (NDVI), enabling practicing of data-driven techniques for early and accurate yield estimation and health assessment. While a typical UAV may cost as little as USD1000, it can be integrated with custom instrumentations, controllers, sensors, and software to operate as a flexible remote sensing or variable rate technology platform to contribute to plantation management, growth, and soil condition assessment mapping application (i.e., 2D, 3D, GIS, NDVI), risk/hazard/safety management, spraying application, and academic and research application. In specific, UAV remote sensing in oil palm precision agriculture can contribute to automatic palm detection and counting, automatic measurements of palm height and crown diameter measurements, calculation of planted and unplanted areas for replanting or thinning, analyzing palm status based on Orthomosaics and digital elevation models, inventory management and health assessment based on physical appearances and vegetation indices, model-based yield prediction, yield monitoring and mapping, rapid estimation of nutrient contents, and disease detection. It should be noted that agricultural UAV activity is considered commercial operation with a high-tech platform for data acquisition or spraying applications that should be carried out by licensed professionals or certified pilots. Price range for a complete package is between USD1500 to over USD25000 depending on the application. Multicopter drones can fly for 3–45 minutes on a one battery charge and are more suitable for regular use in small-scale plantation without the requirement to special takeoff and landing areas. Fixed-wing UAVs need to be planned for mission flights and reliable landing for use in larger plantations. It is better to purchase drones that can be controlled via mobile or tablets or are fully autonomous from takeoff to landing (i.e., the entire mission can be performed by a single start button). For a multicopter, it is also important to check for the live standstill view feed. This feature allows plantation managers to find specific spots and issues for closer inspection. One of the key considerations in purchasing scouting UAV is the NDVI and NIR camera options. For the sake of cost saving, an affordable regular 3D camera with two lenses can be purchased for less than USD300 and modified slightly with a blue plastic filter to produce NIR images. However, a more expensive UAV that can collect data faster will compensate the extra costs in a long run.
Health assessment in oil palm plantations is crucial for spotting fungal infection and bacterial disease on the palms. By aerial scanning the plantation using visible RGB camera, NIR, hyperspectral, and multispectral sensors, it is possible to identify temporal and spatial reflectance variations before they can be detected by naked eyes and associate these changes with palms heaths for an early response. For instance, NDVI cameras can calculate the vegetation index describing the relative density and health of the palms, and thermal camera can show the heat signature of different spots in the plantations. A conceptual demonstration of a UAV remote sensing platform equipped with NDVI sensor for oil palm health assessment is shown in Figure 6.
Conceptual demonstration of a UAV-remote sensing platform for oil palm health assessment with NDVI camera.
The platform shown in Figure 7 can be customized and integrated with hyperspectral camera as shown in Figure 8, for the detection of Ganoderma boninense, which is a serious threat to oil palm plantations in Malaysia and has caused great losses to healthy palms. This disease causes both basal stem rot and upper stem rot and remains South East Asia’s most devastating oil palm diseases, with direct loss of the stand, reduced yield of diseased palms, and the resultant requirement for earlier replanting. Using naked eye, the Ganoderma disease can only be recognized at a very late stage with serious symptoms of foliar chlorosis and breakage at older fronds, the presence of decayed tissues at palm base, and production of fruiting bodies. When symptoms of the disease appear on young palms, it is too late and younger palms die within 6 to 24 months, whereas mature palms may survive for 3 years. Reports also indicate that the basal stem rot can kill up to 80% of the total standing palms. Despite the several efforts in controlling this disease, the available methods are slow, and current strategies are still immature. To our knowledge, no effective method or a robust sensing instrumentation has been commercialized for early detection of this disease at an early stage. Research reports have highlighted that oil palm yields are highly correlated with most of the nutrients. There are extensive publications on the hyperspectral analysis of images with application in agriculture that shows promising methods to be adapted for early detection of Ganoderma disease in oil palm. In order to adapt a UAV remote sensing platform for this purpose, several questions should be addressed as follow: (i) at what stages of infection can the hyperspectral imaging detect the Ganoderma disease symptoms? (ii) what are the unique spectral characteristics of Ganoderma spectral reflectance data? (iii) what statistical or mathematical methods are the best for analyzing the Ganoderma spectral data? and (iv) how well can a low-cost multiband radiometer assist a scouting crew to detect the suspicious HLB-infected trees? We can begin with a hypothesis that wavelet analysis of reflectance data can improve detection of nutrient concentration in oil palm. This hypothesis can be studied by the use of the Matlab Wavelet CIR images Toolbox. Preliminary studies have demonstrated the potential of wavelet analysis for retrieving foliar nitrogen content and photosynthetic pigment concentrations from leaf and canopy reflectance spectra, but further research is needed to develop the approach. Our research will contribute to saving of more palm trees and consequently a higher yield which has a significant impact on large scale plantations and the economy of Malaysia. A project can be proposed with the long-term goal of developing a fast UAV-based screening technique that can assist oil palm growers in detecting suspicious Ganoderma-infected palms. Such a project may involve the following systematic steps and methodology: (i) study the spectral characteristics of GB in lab conditions, (ii) developing a classification method to identify the disease and separate it from other palm stresses and other diseases with similar symptoms, (iii) evaluating the possibility of using a low-cost spectral radiometer for fast screening of Ganoderma-infected palms, (iv) developing an instrumented platform for collecting and geo-referencing hyperspectral images in the plantations, and (v) conducting a field trial to evaluate the effectiveness of hyperspectral imagery for detecting the disease in the plantations. Reflectance spectra of vegetation, measured in the visible and infrared region, contain information on plant pigment concentration, leaf cellular structure, and leaf moisture content. In this research, we propose to study the capability of hyperspectral imaging and spectroscopy in the range of 300-2500 nm for early detection of anomalies in oil palm trees as a result of Ganoderma infection. Preliminarily hyperspectral imaging data indicated that Ganoderma-infected leaves have different spectral characteristics compared to healthy leaves. A quick and efficient method of detecting and mapping Ganoderma at the field level will assist growers to better manage and control this disease and can financially benefit growers. In the first year of the study, we will study the spectral characteristics of Ganoderma-infected oil palm leaves in laboratory conditions and compare them with other nutrient deficiency symptoms. Accordingly, we will develop a classification method to identify the symptoms of Ganoderma and separate it from plant stresses and other diseases with similar symptoms. Also, in the first year, we will study how well a low-cost spectral radiometer can detect Ganoderma symptoms. Based on the results from the first year of the study, we will develop an instrumented platform for collecting and geo-referencing hyperspectral images and evaluate the effectiveness of hyperspectral imagery for detecting suspicious Ganoderma-infected palm trees in the grove.
Feasibility of using autonomous UAV-based hyperspectral imaging for detection of Ganoderma boninense disease in oil palms.
Thermal camera and night vision (top row figures) and high-resolution RGB images approach (bottom row figures) for UAV based pest monitoring in oil palm plantations.
Oil Palm growers lose some portion of their yields to insects and pests infestation. Traditional methods of locating pests in thousands of hectare plantations are not effective. For example, early detection of an invasive pest like rats in palm plantations with labor requires a great amount of time and luck. Obviously, conventional methods are not accurate, and plantation managers have to make an educated guess before sending the crew to a large field to check for infested spots. For the purpose of pest monitoring, a solution is to have a UAV imagery platform equipped with a thermal camera and high-resolution RGB vision sensors for accurate identification of the spots in the oil palm plantations fields that are diagnosed with specific insects and pests. This approach may also involve development of a decision support system (DSS) using georeferenced insect count as a basis for a GIS-based system, giving plantation managers the possibility to incorporate data directly to their precision farming platforms. Specific steps involve (i) platform setup, that is integration of the UAV, vision sensor, and control system, (ii) perception which refers to the development of a real-time machine vision algorithm for pest monitoring (to refine the aerial images captured by the UAV in order to provide plantation managers with the most usable data), and (iii) action stage, which is the development of the DSS for creation of the prescription map. When pests are spotted, spraying UAV can be used for dropping a targeted load of pesticide. The spraying UAV can be equipped with distance-measuring and light detection sensors such as lasers, ultrasonic echoing, or LiDAR methods to scan the ground and adjust the flight altitude with the varying topography of the plantation and therefore apply the correct amount of spraying liquids for even coverage and avoid collisions. This practice will result in an increased efficiency while reducing the amount of penetrating spray chemical in the soil and groundwater. It is estimated that UAV spraying is five times faster than conventional tractor and machinery equipment.
The FLIR Vue Pro thermal camera shown in Figure 8 is designed for small UAVs and can be used for agricultural applications. It has different lens options for different type of view and specific applications. The thermal sensor resolution of this camera is 640 by 512 pixels and records 30 frames per second for smooth video. The light weight and small size of this camera will not affect the UAV center of gravity during the flight or sacrifice the flight time. It comes with the mounting accessories that can be used with most UAV platforms. It can also be used with transmitters for live feeds. The FLIR Vue Pro thermal camera does not have a separate battery and can be charged through a 6 V power from the UAV. Image data are stored on a standard micro SD card. An application connects the camera with the computer via Bluetooth. The thermal imager Optris PI 640 shown in the figure is the smallest measuring VGA infrared camera available. With an optical resolution of 640 × 480 pixels, the PI 640 delivers pin-sharp radiometric pictures and videos in real time. With a body sized 45 × 56 × 90 mm and weighing only 320 grams (lens included), the optris PI 640 counts among the most compact thermal imaging cameras on the market. Temperature range is between −20 and 900°C (optional up to 1500°C), spectral range is between 7.5 and 13 μm, and frame rate up is to 125 Hz. For the purpose of validation, images taken at varying heights and resolutions will be compared with the ground truth pictures taken on the ground with a mobile device. The research findings may lead to new pest management strategies that use UAV and other imaging technologies for detecting invasive pests in other farm fields, e.g., oil palm plantations. The thermal camera can also be used for spotting the areas that are drier and require attention.
Quantification of FFB from UAV stream images for yield map creation is the first step toward practicing PA in oil palm plantations. With the available high-tech imaging sensors and using real-time image processing and remote sensing techniques (i.e., pixel-based or object-based [16], template matching [17, 18, 19] image analysis, learning algorithms methods for classification [20, 21] and for extracting useful information from an image), it is possible to measure oil palm yield on much smaller scales. One of the benefits of using autonomous UAV is their affordable price and lower cost per each mission flight that make them suitable for academic research in yield monitoring applications. The idea is to evaluate the feasibility of having UAV agent robots that can fly over and inside oil palm plantations and collect high-resolution detailed photos from different angles for automated creation of yield maps. These maps can tell growers where and when to apply the optimal amount of inputs (i.e., fertilizer, pesticide, water) for creating further sustainability. Of course, mobile robots with camera and sensors mounted on top of them can also be used for such application; however as mentioned earlier, we are proposing a research idea that involves a swarm or fleet of small-scale UAVs similar to what is shown in the figure that simultaneously fly inside the plantation for image data collection. By using different sensor-based measurement and imaging techniques on each UAV, a real-time machine-vision system can be developed for accurate identification of the amount of FFB on the palms. Such technology is highly demanded by oil palm growers as a fast, accurate, and reliable tool for estimating palm numbers and FFB in large-scale plantations. In determining instantaneous oil palm yield, two parameters must be known, weight and coordination of FFB on each palm. The weight of the FFB can be estimated using a machine vision algorithm that quantifies the number of fruits on each palm (Figure 5). These estimated weights are then georeferenced with coordinates of the corresponding palm using computer programs for the creation of database and yield map. Collected data will be processed by custom-built GIS software for creation of yield map and inventory database. A conceptual illustration of integrated fixed-wing UAV-based inventory management and health assessment system with mobile application and cloud computing is shown in Figure 9.
Feasibility of UAV imaging system for yield monitoring of oil palm (top) and a proposed methodology for UAV-based yield monitoring of apple and orange fruits using deep learning algorithms [22].
One of the limitations of doing research on oil palm plantation is the lack of accurate data and input variables for modeling and simulation purposes. UAV technology can be integrated with image acquisition techniques for three-dimensional reconstruction of the environment and creation of virtual plantations. Examples of 3D reconstructed plantation are shown in Figure 10. The information extracted from these 3D models can lead to the development of dynamic Web inventory management and mapping system. A 3D reconstruction model of oil palm plantation can be created by using range data methods or depth map using laser range finder sensors and 3D scanner instrumentations. This approach is however costly and not affordable by local oil palm farmers. Alternatively, passive methods, also called image-based reconstruction methods (i.e., photogrammetry technique), have been introduced using a normal camera and image sensors, which do not interfere with the reconstructed object. In this method, a UAV equipped with a normal RGB camera will collect images of the oil palm plantations from different views and angles. Computer software will then process these images to create a 3D model, and filter specific wavelength to generate images that corresponds to vegetation index and palm health. For example, a red edge image can describe nitrogen content and water stress. The potential of UAV image data to simulate the physical process of palm photosynthesis as a result of different crown sizes and densities intercepting different amounts of light radiation can be evaluated using virtual plantations. A virtual plantation can be used to estimate palm height, crown size, and inventory database (Figure 11) for generating dynamic Web maps and yield prediction models. These maps can identify how different palm height, crown sizes, plantation densities, and row orientations in different locations can affect the water and fertilizer demand. Moreover, mathematical models can be established based on the validated information from virtual plantations for estimating nitrogen demand and fertilizer application. These maps also provide precision rich data for academic and educational purposes. Researchers can access to detailed measurements of palm trunk and crown size and the spacing between different palms, leaf area index, and crown density as a preliminary study for the possibility of autonomous variable rate applications and robotic harvesting.
Example of virtual plantation generated by UAV imaging [23].
Conceptual illustration of a fixed-wing UAV Web mapping system integrated with mobile application and cloud computing for yield prediction and inventory management in oil palm plantation.
For the purpose of a sensor Web-based approach for dynamic Web mapping, observations from a UAV can be combined with in situ sensor data to derive typical information offered by a dynamic Web mapping service (WMS). This will provide daily maps of vegetation productivity for oil palm plantation with a spatial resolution of 250 m. Results will present the vegetation productivity model, the sensor data sources, and the implementation of the automated processing facility. An evaluation will be made of the opportunities and limitations of sensor Web-based approaches for the development of Web services, which combine both UAV and in situ sensor sources. A conceptual illustration is provided in Figure 11. A yield estimation model can be developed by establishing performing regression analysis between palm height (x1), crown size (x2), palm age (x3), vegetation index (x4), nutrient content (x5), and soil parameters (x6): Yield = func(x1, x2,…, x6). This model will be based on comprehensive information of each palm location, size, and health, will provide managers with an estimation of yield, and make decisions for sustainable practices methods for production increase without necessary needs for expanding the plantation into natural forests.
The fixed-wing Osprey drone shown in Figure 11 is a commercially available, low-cost experimental flight test bed manufactured by Unmanned Aerial Research (Florida, USA) that is suitable for investigating novel control approaches [24] and is a flexible platform for remote sensing research applications in precision agriculture of oil palm. An example application can be found in the work of [25], where the fixed-wing J-HAWK UAV was used for palm tree counting at Melaka Pindah oil palm plantation in Malaysia. This drone can carry large payloads while maintaining excellent performance with virtually no degradation in handling qualities. It is a well-constructed, durable aircraft with mission versatility and a cavernous payload volume that is easily accessible, featuring two long aluminum tracks on the floor for mounting payloads in limitless configurations. Some of the specifications according to the manufacturing website are as follows: payload capacity: 31.75 kg, empty weight: 15.87 kg, payload volume 0.0566 m3 (0.203H × 0.304 W × 0.889 L), max cruise: 90 kts, landing speed (no flaps): 25 kts, power (DA-100): 10 hp by a reliable custom desert aircraft 100 cc motor with 3-blade carbon fiber propeller, wingspan 3.352 mm, and length 2.362 m. We begin with dynamic analysis and controller design for this drone in the presence of actuator limits and sensor noise for autonomous flight missions with greater accuracy and stability. The communication architecture, modules, and designed control system is shown in Figure 12.
Architecture, modules, and control system for a the proposed UAV in precision agriculture of oil palm.
For the purpose of this paper, we have concentrated our analysis on controller design for two outputs, velocity and pitch rate, by adjusting two control inputs, the elevator and the thrust. In specific, our control objective was to design a single controller, i.e., proportional-integral-derivative (PID), Linear-quadratic regulator (LQR) full state feedback, (
where
We first perform open-loop analysis to determine possible control strategies. The open-loop responses (Figure 13) from each of the four TFs were then analyzed individually. According to the TF in (1) and (2), the terms with the highest coupling can be obtained by considering the simple steady state case. Substituting jω = 0, in all the terms, it can be observed that the static gain relationship is high for
Open-loop step response analysis of the Osprey drone velocity and pitch rate for the elevator and thrust inputs.
For the PID controller design shown in Figure 14, the system was set at initial conditions [
Simulink blocks for the PID controller in the absence and presence of noise and actuator limits.
The LQR controller is the solution of the optimization problem that optimizes the cost of errors and the cost of actuation effort, with appropriately weighted states. The optimization function is defined as
Simulink blocks for the designed LQR controller with full state feedback.
It is noted that the control effort for pitch is the most optimized parameter in Q. This value was selected on the basis that pitch is the most influential state variable and controlling pitch translates control of all the other parameters. In addition, the weight for pitch rate is low because the effort to control pitch rate is harder and introduced more oscillations in the system.
For the LQR controller with observer (Figure 16), the observer design allows controller to use full-state feedback techniques in situations where only a subset of states is available to the controller. The observer matrix L adds gain to the feedback loop, in order to ensure stability and quicker response of the state observer system. While this helps stability, the L gain adversely amplifies the sensor noise. Therefore, a trade-off has to be made on the noise resilience versus the system’s robustness. The matrix L was determined through these steps: (i) the system output states were checked for controllability and observability using Matlab code
LQR controller with observer block.
It can be seen that the value of pitch gains in the Q is four times smaller than the previous case. The gains were reduced to take control over noise in the system. In the other words, these reductions help eliminate the noise in the system. From step three of the observer design, we know that the observer matrix L adds gain to feedback loop. This gain helps amplifying the noise and then feeding them into the control loop back again. Noise introduces similar problems faced with the PID controller. With high gains, the noise amplifies and combined with actuator nonlinearities drives the system into instability. With lesser gains and actuator effort, noise is damped and absorbed by the system.
Results of the simulation for the designed controllers are shown in Figure 17 through Figure 20. It can be seen from Figure 17 that the step change applied at time 60 s has an effect on the pitch, and the PID controller is managed to minimize this effect. When noise is introduced to the system (Figure 18), because the coupling gain between pitch and velocity are very high, the pitch rate sensor noise distorts the response considerably. Moreover, since the tuned gains exploited the infinite actuator capabilities, the response of the system was quick and the steady state error was almost zero; however, due to the nonlinearities, the system had to be tuned again. Since elevation was directly related to the pitch rather than the pitch rate and to avoid the dynamics of the “rate” signal, pitch was compared against the elevator angle to generate the error signal. To accomplish this, the pitch rate was simply integrated using an ideal integrator (1/s).
PID performance without noise and actuator limits.
PID performance with noise and actuator nonlinearities.
It can be seen from the results that the state variables pitch and velocity are closely coupled variables. The coupling terms connecting these two quantities exhibit every high gains, hence the control design was challenging in regulating these variables independent of the other. This coupling needed special attention during control design. It should be noted that on the basis of tuning complexity, only two PID controllers were used in the control problem, as if the system was a weakly coupled system. Since PID control is ideally suited for single-input single-output systems (SISO) and only for weakly coupled MIMO systems, a perfect performance was not expected to achieve with the two PID controllers. Nevertheless, a reasonable performance was still achieved when the system was considered ideal, i.e., free from nonlinearities and noise. When noise was introduced to the system, the velocity suffered because of high noise content in the pitch signal. The noise also introduced dangerous oscillations in the system, limiting controller gains significantly and hence slowing down the overall system. Several instabilities caused due to the rate limit and saturation were evident. The integral gain of the PID acted on error build-up caused by saturation and hence pushing the system into instability. After reducing the gains in the loop, the controller was then tuned by trial and error procedures. The relative performance of PID with respect to other controllers is summarized in Table 1.
Model | Price ($) | Weight (Kg) | Size (mm) | Camera resolution | Coverage | Flight time (min) | Max altitude (m) | Flight speed (km/h) |
---|---|---|---|---|---|---|---|---|
Parrot Disco Pro AG Drone | 6875 | UAV: 0.78 Take-Off: 0.94 | Wing span: 1150 × 580 × 120 | — | — | — | — | — |
RF70 UAV | 3000 | Payload: 3 | — | 1080 P | 600 acres/hour | 45–60 | — | 18 |
AgDrone UAS | 10,000 | — | — | 1080 P | — | 60 | — | |
DT-26 Crop mapper | 120,000 | — | — | 1080 P | — | 60 | — | 110 |
Quad Indigo | 25,000 | — | — | 1080 P | — | 45 | — | |
E384 Mapping Drone | 2400 | UAV: 2.5 Payload: 1 | Wingspan: 1900 Length: 1300 | — | 1000 acres in 100 minutes at 5 cm resolution | 90 | — | 47 |
PrecisionHawk Lancaster 5 | — | Payload: 1 | — | 1 cm/pixel | 300 acres/flight | 45 | — | — |
Xena observer | — | Take-Off: 5 | — | — | — | 27 | 5000 | — |
Xena thermo | — | Take-Off: 4.6 | — | — | — | 32 | 5000 | — |
AEE AP10 Drone | 299 | — | — | 1080 P Full HD Video at 60 FPS | — | 25 | 500 | 71 |
UAV drone crop sprayer | UAV: 9 Payload: 10 Take-Off: 13 | 800 × 800 × 70 (L.W.H) | — | — | 16 | 1000 | — | |
DJI drone sprayer | 15,000 | — | — | — | 7–10 acres/hour | — | — | 29 |
Yamaha’s helicopters spray & survey | 130,000 | UAV: 71 Payload: 30 | — | — | 10 acres | — | — | — |
JMR-V1000 6-rotor 5 L | 665–3799 | UAV: 6.5 Take-Off: 18 | 875 × 1100 × 480 (L.W.H) | — | — | 14–18 | — | 11–22 |
AG-UAV Sprayers1 | — | UAV: 8 Payload: 6 | Height: 650 | — | — | 8–15 | — | — |
AG-UAV Sprayers2 | — | UAV: 14.2 Payload: 20 | Height: 650 | — | — | 15–30 | — | — |
AG-UAV Sprayers3 | — | UAV: 9.5 Payload: 10 | Height: 650 | — | — | 10–20 | — | — |
DJI AGRAS MG-1 Sprayer | 7999 | Payload: 10 | — | — | 7–10 Acres Per Hour | — | — | — |
Hercules Heavy Lift UAV (HL6) | — | UAV: 8 Payload: 6 | Height: 660 | — | — | 30 | — | 37 |
Hercules Heavy Lift UAV (HL10) | — | UAV: 9.5 Payload: 10 | Height: 660 | — | — | 30 | — | 37 |
Hercules Heavy Lift UAV (HL20) | — | UAV: 14 Payload: 20 | Height: 660 | — | — | 60 | — | 37 |
Multirotor UAVs | — | — | — | — | — | 10–40 | — | — |
AgStar GoPro FPV Camera Payload | 1950 | — | — | — | — | — | — | |
DJI Phantom 3 | 469 | — | — | 2.7 K HD videos, 12 MP photo | — | 25 | — | — |
Fixed Wing UG-II | — | UAV: 11 Take-Off: 15 | 2240 × 1600 × 650 (L.W.H) | — | — | 180 | — | 65–110 |
Professional Electric Six Rotor Drone UA-8 Series | — | Payload: 3 | 860 × 860 × 540 | — | — | 28 | 5000 | 36 |
Yuneec H520 Hexacopter | 2500–4500 | — | — | 4 K/2 K/HD video or 20 MP images | — | — | — | — |
Ag-drone AK-61 | 6999 | Take-Off: 22 Payload: 10 | — | — | — | 10–15 | 0.5–5 m | 18–36 |
YM-6160 | 5000 | Take-Off: 21.9 Payload: 10 | — | — | — | 10–15 | 0.5–5 m | 18–36 |
Skytech TK110HW | 32–52 | — | — | 0.3 MP | — | 6–7 | — | — |
JJRC H8D 5.8G FPV RTF RC | 169–175 | UAV: 0.023 | 330 × 330 × 115 | — | 8 | — | — | |
X810 Long Range Uav Sprayer | 4000–6500 | Payload: 10 | 2490 × 1645 × 845 (L.W.H) | — | — | 25–40 | — | — |
Syma X8C | 68.99 | — | 508 × 508 × 165 (L.W.H) | 2 MP HD Camera | — | 5–8 | — | — |
Controller | Noise | Actuator limits | Rise time (s) | Settling time (s) | Overshoot (%) |
---|---|---|---|---|---|
PID | — | — | 0.61 | 0.95 | 4.2 |
PID | Y | Y | 1.28 | Inf | 10.1 |
LQR | — | Y | 1.01 | 1.9 | 2.1 |
LQR | Y | Y | 3.3 | 3.95 | 0 |
Observer | Y | Y | 1.9 | Inf | 34.5 |
A comparison between the proposed controllers.
LQR controllers however work in the state-space and are suited for MIMO control. It assumes full state feedback; that is, all the system’s states are available for the controller to take decisions, even though this might not be a case in reality. Therefore, we designed the observer to deal with this issue. The outputs of the LQR controlled system response with actuator dynamics are shown in Figures 19 and 20. Unlike the PID controller, the LQR handles actuator dynamics inconsequentially. Appropriate waiting matrices were assigned, and the LQR controller matrix was obtained by using the MATLAB
LQR full state feedback response without noise.
LQR with observer response with noise.
From the plots of LQR with observer (Figure 20), it can be seen that the system is in the verge of instability and the noise content of the pitch signal disturbs the velocity severely. The relative stability of the given system can be discussed in terms of the gain margin and phase margin. Based on the Bode plots analysis of the open-loop system (plots not provided for the sake of paper page limits), the differential term in the elevator input to output relationships reduces the phase margin of system considerably. Model errors and disturbance in the pitch rate could easily drive the system to instability. This agrees with the findings in the controller design exercised.
Health assessment and conventional scouting of oil palms on a regular basis, as well as palm census and quantification of the amount of fresh fruit bunches (FFB) for yield monitoring, are labor-intensive tasks that are either ignored in large scale plantations or are carried out manually by the use of labor force. Traditional scouting is not only an ineffective practice but also requires expert knowledge and post-processing lab equipment to provide useful information. Advances in aerospace engineering, control system, and computing have contributed significantly to the improvement of UAV-based remote sensing platforms. This paper discussed some of the potential applications of UAVs for precision agriculture of oil palm plantations. We also highlighted some of the adaptation challenges faced by UAV drones, including platform stability due to the flight dynamics parameters and winds, climate factors and light reflection degrading quality of the acquired images, and regulations and restrictions law by the Federal Aviation Administration. As a response to the needs of small-scale plantation owner for an affordable UAV platform, a fixed-wing Osprey drone was proposed and used in designing an auto-flight control. The aircraft can be externally actuated by controlling the thrust (
Names and specifications of sample multi-rotor and fixed-wing UAV recommended for precision agriculture of oil palm.
Intraocular lenses (IOL) are implanted in the eye in order to treat refractive errors produced by extraction of the lens as a standard procedure in cataract surgery.
\nIOL is designed and composed of optic—central part, and the haptics—side structures that keep the lens inside the capsular bag.
\nThe first intraocular lens was inserted in 1949 after cataract surgery by Sir Harold Ridley in St Thomas Hospital in London [1]. The material the first IOLs were composed of was polymethyl methacrylate (PMMA). It was a rigid nonfoldable material making the placement of the IOL challenging [2]. In the 1970s, the new lighter posterior chamber IOLs were designed and had propylene haptics for better stabilization and ciliary sulcus fixation and the IOL insertion after cataract surgery began to be a standard procedure.
\nIn the early 1980s, Epstein began to use lenses made of silicone with the intention to make them foldable. That way they could be inserted into the eye through the small incisions of 3 mm and less compared to 5–7 mm incisions needed for nonfoldable IOLs insertion [3, 4]. The practice of IOL implantation was revolutionized in 1984 when Thomas Mazzocco began folding and implanting the plate haptic silicone IOLs [5].
\nCurrent materials used for IOL optics are of two types—acrylic and silicone. Acrylic materials can be rigid (PMMA) and foldable made of hydrophobic acrylic materials (AcrySof - Alcon Laboratories, Sensar – Advanced Medical Optics –AMO) and hydrophilic acrylics (Centerflex, Akreos).
\nEach foldable acrylic lens design is made from a different copolymer acrylic with a different refractive index, glass transition temperature, water content, mechanical properties and other attributes.
\nHydrophobic acrylic lenses and silicone lenses have very low water content (less than 1%). But there are hydrophobic acrylic materials with higher water content about 4% also available. Hydrophilic acrylic lenses are made from copolymers with higher water content ranging from 18 to 38%.
\nThe first silicone material that was used in the industry of IOLs was polydimethylsiloxane, with refractive index of 1.41 while the new silicone materials have higher refractive indexes.
\nRefractive index in foldable acrylics is 1.47 or greater, and for silicone lenses is lower—1.41 and higher. Therefore acrylic lenses are thinner than silicone ones with the same refractive power.
\nThe biocompatibility of a material is dependent of a biological response to a foreign body material and it depends on the design and the material of the implant. The material should be chemically inert, physically stable, noncarcinogenic, non-allergenic, capable of fabrication in the required form, and have no foreign body reaction [6]. Materials used in ophthalmology should also be optically transparent for long period of time, have a high resolving power or refractive index, and should block ultraviolet rays.
\nThe reaction of lens epithelial cells and the capsule to IOL material and design is capsular biocompatibility. The uvea’s reaction to the IOL is uveal biocompatibility [7]. During cataract surgery the blood-aqueous barrier is disrupted and proteins and cells are released in the aqueous humor. Proteins then adsorb on the IOL surface and this will influence subsequent cellular reactions on the IOL [8].
\nGlistenings are a phenomenon caused by penetration of aqueous humor into the IOL material causing vacuole formation in the IOLs optic [9].
\nGlistenings are fluid-filled microvacuoles that form within the IOL optic when the lens is in an aqueous environment. They can be observed with any type of IOL more often in association with hydrophobic acrylic lenses.
\nFactors that may influence the formation of glistenings include IOL material, manufacturing technique and packaging and also the associated conditions of the eye-glaucoma, conditions leading to breakdown of the blood-aqueous barrier and use of ocular medications.
\nSome theories refer glistenings as a cavitation within the IOL from slow moving hydrophilic impurities within the IOL. An osmotic pressure difference between the aqueous solution within a cavity and the external media in which the lens is immersed leads to growth of the cavity [10].
\nGlistening develop over time and indicate a dynamic process within the lens/eye system. Causes and long-term outcomes are not entirely clear [11].
\nHydrophobic acrylic IOL have the highest degree of lens glistening in comparison to the silicone and the HSM-PMMA IOL 11.3–13.4 years after surgery. The HSM-PMMA IOL had almost no lens glistenings. Lens glistening do not interfere with the dioptric power of the hydrophobic acrylic lens IOL [12].
\nHydrophobicity is a measure of material’s tendency to separate itself from water. Every material has its measurable hydrophobicity that is graded using contact-angle measurements and it is a surface property [13, 14, 15]. It ranges from only a few degrees for almost perfectly hydrophilic surfaces, such as bare silica glass prepared with dangling hydroxyl groups [16] to almost 180° for super-hydrophobic surfaces [14].
\nHydrophobicity is highly dependent of the material’s chemistry since the oxygen–hydrogen bonds in water are highly polar. Partial electric charges on the atoms tend to be attracted to opposite charges. That way water dissolves salts and is attracted to materials that also have partially charged bonds. Polymers consist primarily of nonpolar carbon–carbon and carbon–hydrogen bonds, which is why they are not generally hydrophilic and is attracted to materials with partially charged bonds.
\nHygroscopy explains a material’s tendency to absorb and hold water. A highly hygroscopic material draws water into itself. In ophthalmology the hydrophobicity has been used to describe both the surface and interior of IOLs. The interaction of an IOL’s surface with water is a measure of hydrophobicity and the ability of IOLs to draw water into their interior a hygroscopy.
\nThe first IOL, implanted in 1949, was made of PMMA. There have been reports of original lenses implanted by Ridley remaining perfectly clear and centered for more than 28 years [3]. There were also reports of some spontaneous dislocations into the vitreous [5].
\nIt is a rigid, nonfoldable material with less than 1% water content and therefore hydrophobic. PMMA IOLs are usually single pieced, large and therefore nowadays rarely used. They have a refractive index of 1.49 and usual optic diameter 5–7 mm. They are s too rigid to fold and therefore the lens cannot pass through the small incisions used phacoemulsification.
\nSilicon IOLs were designed to allow implanting through the incision smaller than the optics diameter. Implantation of silicone IOLs was introduced in 1984 [17]. Silicone is a hydrophobic material of refractive index 1.41–1.46 and the optic diameter of 5.5–6.5 mm. Models are three-piece design with PMMA, polyvinyl difluoride (PVDF) and polyamide haptics. The problem with silicone is an abrupt opening in the anterior chamber following implantation which may cause rupture of the posterior capsule.
\nSilicone IOL-s suspected to favor bacterial adhesion and therefore having the higher risk of postoperative infections [18]. Silicone oil droplets adhere well to silicone IOL in patients with silicone oil tamponade used in retinal detachment or diabetic retinopathy surgery [19]. Therefore silicon IOL should not be implanted in highly myopic eyes in risk of retinal detachment.
\nNowadays the silicone IOLs are less frequently used because they are not suitable for microincision cataract surgery (MICS).
\nThere are also a light adjustable lens-two component silicone IOL where power is adjusted after implantation with UV-exposure in use [20, 21].
\nGlistenings can happen with silicone optics while the aqueous humor can penetrate the silicon material [12].
\nAcrylic hydrophobic IOLs are modern foldable IOLs most widely used nowadays. They are designed of copolymers of acrylate and methacrylate derived from PMMA. The intention of the new design is to make the IOL foldable. They can be manipulated during the surgery and always turning back to its original shape [22] in a short period of time. First implanted IOL was in year 1993. Hydrophobic Foldable Acrylic can be of three piece and one piece design, with optic diameter 5.5–7 mm, and overall length 12–13 mm, transparent or colored—yellow. Refractive index can be 1.44–1.55.
\nSingle and multi-piece hydrophobic IOLs can be implanted through small incision, not lover than 2.2 mm and have to be positioned properly since they have low self-centering ability. PCO is significantly lower than in PMMA IOLs but generally a bit higher for hydrophobic acrylic lenses compared with silicone [23].
\nThey have higher incidence of photopsias than other acrylic IOLs because of high refractive index and low anterior curvatures and some of them develop glistenings since some are easily penetrated by aqueous humor but are not always clinically relevant unless when are dense or multifocal [24]. New materials of IOLs are prehydrated to equilibrium and will not accept further water, they are hydrophobic with the contact angle with water that of hydrophobic acrylic and are packaged in BSS to absorb the eventual water content before implantation [25].
\nHydrophilic foldable acrylic is a combination of hydroxyethylmethacrylate (polyHEMA) and hydrophilic acrylic monomer [26] material and it was introduced in 1980 with several modifications since. The IOLs made of this materials are usually single pieced and designed for capsular bag implantation. Refractive index of the material is 1.43, with water content ranging from 18 to 34% [27, 28].
\nThey are soft, compressible with excellent biocompatibility for its hydrophilic surface. They can be implanted through a small incisions, lower than 2 mm and therefore ideal for MICS [29]. The folding of poly-HEMA chains depends on the level of hydration, and so the physical and optical properties of the polymer change as a function of water content. As the lenses hydrate, they absorb water and become soft and transparent.
\nThe main disadvantage is the higher rate of optic opacification than in other materials and lower resistance for capsular bag contraction [30, 31].
\nConsidering the new knowledge and technological improvements and achievements, we can expect the new materials and designs of IOLs. In order to improve biocompatibility and refractive quality we expect some changes in shape of the IOLs (discoid, plate-lamellar, ball shaped) and therefore some novelties in implantation possibilities. The new neuro-ophthalmological knowledge and knowledge about adaptation and perception, industries based on robotic approach and innovations give us the right to expect some new and completely different IOLs in their shape, materials and functioning principle [32, 33]. In conclusion, in the future, we can expect some new, different and innovative approaches in the IOLs design and materials and refractive ophthalmology.
\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, below is a more detailed description of IntechOpen's Advertising Policy.
",metaTitle:"Advertising Policy",metaDescription:"IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.",metaKeywords:null,canonicalURL:"/page/advertising-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\\n\\n2. All advertisements and commercially sponsored publications are independent from editorial decisions and are linked to reader behaviour.
\\n\\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\\n\\n4. IntechOpen has blocked all the inappropriate types of advertising.
\\n\\n5. IntechOpen has blocked advertisement of harmful products or services.
\\n\\n6. Advertisements and editorial content are clearly distinguishable.
\\n\\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\\n\\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or search topic.
\\n\\n9. Please send any complaints about advertising to: info@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\n\n2. All advertisements and commercially sponsored publications are independent from editorial decisions and are linked to reader behaviour.
\n\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\n\n4. IntechOpen has blocked all the inappropriate types of advertising.
\n\n5. IntechOpen has blocked advertisement of harmful products or services.
\n\n6. Advertisements and editorial content are clearly distinguishable.
\n\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\n\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or search topic.
\n\n9. Please send any complaints about advertising to: info@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"163",title:"Applied Mathematics",slug:"applied-mathematics",parent:{title:"Mathematics",slug:"mathematics"},numberOfBooks:33,numberOfAuthorsAndEditors:628,numberOfWosCitations:318,numberOfCrossrefCitations:241,numberOfDimensionsCitations:484,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"applied-mathematics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9325",title:"Mathematical Theorems",subtitle:"Boundary Value Problems and Approximations",isOpenForSubmission:!1,hash:"38c88a4ec0ff6c0184a6694c21ddedc5",slug:"mathematical-theorems-boundary-value-problems-and-approximations",bookSignature:"Lyudmila Alexeyeva",coverURL:"https://cdn.intechopen.com/books/images_new/9325.jpg",editedByType:"Edited by",editors:[{id:"232525",title:"Prof.",name:"Lyudmila",middleName:"Alexeyevna",surname:"Alexeyeva",slug:"lyudmila-alexeyeva",fullName:"Lyudmila Alexeyeva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8521",title:"Multicriteria Optimization",subtitle:"Pareto-Optimality and Threshold-Optimality",isOpenForSubmission:!1,hash:"05baea741edde509bab2259dad7f6384",slug:"multicriteria-optimization-pareto-optimality-and-threshold-optimality",bookSignature:"Nodari Vakhania and Frank Werner",coverURL:"https://cdn.intechopen.com/books/images_new/8521.jpg",editedByType:"Edited by",editors:[{id:"202585",title:"Prof.",name:"Nodari",middleName:null,surname:"Vakhania",slug:"nodari-vakhania",fullName:"Nodari Vakhania"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7428",title:"Advances on Tensor Analysis and their Applications",subtitle:null,isOpenForSubmission:!1,hash:"2339ac5eb978557d01451489e961b102",slug:"advances-on-tensor-analysis-and-their-applications",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/7428.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7662",title:"Nonlinear Systems",subtitle:"Theoretical Aspects and Recent Applications",isOpenForSubmission:!1,hash:"fdcb3bf6de1d84506ffc6aa9e5b691b3",slug:"nonlinear-systems-theoretical-aspects-and-recent-applications",bookSignature:"Walter Legnani and Terry E. Moschandreou",coverURL:"https://cdn.intechopen.com/books/images_new/7662.jpg",editedByType:"Edited by",editors:[{id:"199059",title:"Dr.",name:"Walter",middleName:"Edgardo",surname:"Legnani",slug:"walter-legnani",fullName:"Walter Legnani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8656",title:"Probability, Combinatorics and Control",subtitle:null,isOpenForSubmission:!1,hash:"9993ec9b59bcb38d206f2e31125028b7",slug:"probability-combinatorics-and-control",bookSignature:"Andrey Kostogryzov and Victor Korolev",coverURL:"https://cdn.intechopen.com/books/images_new/8656.jpg",editedByType:"Edited by",editors:[{id:"148322",title:"Dr.",name:"Andrey",middleName:null,surname:"Kostogryzov",slug:"andrey-kostogryzov",fullName:"Andrey Kostogryzov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9324",title:"Dynamical Systems Theory",subtitle:null,isOpenForSubmission:!1,hash:"413cbcf9c048bb251eca1b5e32bbc640",slug:"dynamical-systems-theory",bookSignature:"Jan Awrejcewicz and Dariusz Grzelczyk",coverURL:"https://cdn.intechopen.com/books/images_new/9324.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",middleName:null,surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7776",title:"Research Advances in Chaos Theory",subtitle:null,isOpenForSubmission:!1,hash:"e9646ec4b2bff873ce958ed4d5ad7248",slug:"research-advances-in-chaos-theory",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7776.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7751",title:"Fault Detection, Diagnosis and Prognosis",subtitle:null,isOpenForSubmission:!1,hash:"d54796f7da58f58fa679b94a2b83af00",slug:"fault-detection-diagnosis-and-prognosis",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/7751.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8345",title:"Boundary Layer Flows",subtitle:"Theory, Applications and Numerical Methods",isOpenForSubmission:!1,hash:"14d9725e87983a03938f073f6c5ee815",slug:"boundary-layer-flows-theory-applications-and-numerical-methods",bookSignature:"Vallampati Ramachandra Prasad",coverURL:"https://cdn.intechopen.com/books/images_new/8345.jpg",editedByType:"Edited by",editors:[{id:"146601",title:"Dr.",name:"Vallampati",middleName:null,surname:"Ramachandra Prasad",slug:"vallampati-ramachandra-prasad",fullName:"Vallampati Ramachandra Prasad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7653",title:"Wavelet Transform and Complexity",subtitle:null,isOpenForSubmission:!1,hash:"74bd7559ad44e50940d35974905e98ee",slug:"wavelet-transform-and-complexity",bookSignature:"Dumitru Baleanu",coverURL:"https://cdn.intechopen.com/books/images_new/7653.jpg",editedByType:"Edited by",editors:[{id:"105623",title:"Dr.",name:"Dumitru",middleName:null,surname:"Baleanu",slug:"dumitru-baleanu",fullName:"Dumitru Baleanu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8181",title:"Applied Mathematics",subtitle:null,isOpenForSubmission:!1,hash:"85b873324d4e1af230fea39738ba9be5",slug:"applied-mathematics",bookSignature:"Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/8181.jpg",editedByType:"Edited by",editors:[{id:"92921",title:"Dr.",name:"Bruno",middleName:null,surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7293",title:"Fractal Analysis",subtitle:null,isOpenForSubmission:!1,hash:"136b50bd77fedb29057889faaca37947",slug:"fractal-analysis",bookSignature:"Sid-Ali Ouadfeul",coverURL:"https://cdn.intechopen.com/books/images_new/7293.jpg",editedByType:"Edited by",editors:[{id:"103826",title:"Dr.",name:"Sid-Ali",middleName:null,surname:"Ouadfeul",slug:"sid-ali-ouadfeul",fullName:"Sid-Ali Ouadfeul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:33,mostCitedChapters:[{id:"14634",doi:"10.5772/15998",title:"The Application of FT-IR Spectroscopy in Waste Management",slug:"the-application-of-ft-ir-spectroscopy-in-waste-management",totalDownloads:6014,totalCrossrefCites:16,totalDimensionsCites:27,book:{slug:"fourier-transforms-new-analytical-approaches-and-ftir-strategies",title:"Fourier Transforms",fullTitle:"Fourier Transforms - New Analytical Approaches and FTIR Strategies"},signatures:"Ena Smidt, Katharina Böhm and Manfred Schwanninger",authors:[{id:"20376",title:"Dr.",name:"Katharina",middleName:null,surname:"Böhm",slug:"katharina-bohm",fullName:"Katharina Böhm"},{id:"22840",title:"Dr.",name:"Ena",middleName:null,surname:"Smidt",slug:"ena-smidt",fullName:"Ena Smidt"},{id:"22915",title:"Dr.",name:"Manfred",middleName:null,surname:"Schwanninger",slug:"manfred-schwanninger",fullName:"Manfred Schwanninger"}]},{id:"15157",doi:"10.5772/15959",title:"Fourier Transform Mass Spectrometry for the Molecular Level Characterization of Natural Organic Matter: Instrument Capabilities, Applications, and Limitations",slug:"fourier-transform-mass-spectrometry-for-the-molecular-level-characterization-of-natural-organic-matt",totalDownloads:3740,totalCrossrefCites:5,totalDimensionsCites:21,book:{slug:"fourier-transforms-approach-to-scientific-principles",title:"Fourier Transforms",fullTitle:"Fourier Transforms - Approach to Scientific Principles"},signatures:"Rachel L. Sleighter and Patrick G. Hatcher",authors:[{id:"22676",title:"Dr.",name:"Rachel L.",middleName:null,surname:"Sleighter",slug:"rachel-l.-sleighter",fullName:"Rachel L. Sleighter"},{id:"23168",title:"Dr.",name:"Patrick G.",middleName:null,surname:"Hatcher",slug:"patrick-g.-hatcher",fullName:"Patrick G. Hatcher"}]},{id:"40430",doi:"10.5772/50403",title:"Mathematical Modelling and Numerical Investigations on the Coanda Effect",slug:"mathematical-modelling-and-numerical-investigations-on-the-coanda-effect",totalDownloads:4579,totalCrossrefCites:12,totalDimensionsCites:18,book:{slug:"nonlinearity-bifurcation-and-chaos-theory-and-applications",title:"Nonlinearity, Bifurcation and Chaos",fullTitle:"Nonlinearity, Bifurcation and Chaos - Theory and Applications"},signatures:"A. Dumitrache, F. Frunzulica and T.C. Ionescu",authors:[{id:"151443",title:"Dr.",name:"Dumitrache",middleName:null,surname:"Alexandru",slug:"dumitrache-alexandru",fullName:"Dumitrache Alexandru"},{id:"151449",title:"Dr.",name:"Frunzulica",middleName:null,surname:"Florin",slug:"frunzulica-florin",fullName:"Frunzulica Florin"},{id:"151451",title:"Dr.",name:"Ionescu",middleName:null,surname:"Tudor",slug:"ionescu-tudor",fullName:"Ionescu Tudor"}]}],mostDownloadedChaptersLast30Days:[{id:"54366",title:"Solution of Differential Equations with Applications to Engineering Problems",slug:"solution-of-differential-equations-with-applications-to-engineering-problems",totalDownloads:5253,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"dynamical-systems-analytical-and-computational-techniques",title:"Dynamical Systems",fullTitle:"Dynamical Systems - Analytical and Computational Techniques"},signatures:"Cheng Yung Ming",authors:[{id:"191017",title:"Dr.",name:"Cheng",middleName:null,surname:"Y.M.",slug:"cheng-y.m.",fullName:"Cheng Y.M."}]},{id:"53524",title:"Fourier Analysis for Harmonic Signals in Electrical Power Systems",slug:"fourier-analysis-for-harmonic-signals-in-electrical-power-systems",totalDownloads:3243,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"fourier-transforms-high-tech-application-and-current-trends",title:"Fourier Transforms",fullTitle:"Fourier Transforms - High-tech Application and Current Trends"},signatures:"Emmanuel Hernández Mayoral, Miguel Angel Hernández López,\nEdwin Román Hernández, Hugo Jorge Cortina Marrero, José\nRafael Dorrego Portela and Victor Ivan Moreno Oliva",authors:[{id:"187793",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Hernández",slug:"emmanuel-hernandez",fullName:"Emmanuel Hernández"},{id:"202757",title:"Dr.",name:"Miguel Angel",middleName:null,surname:"Hernández López",slug:"miguel-angel-hernandez-lopez",fullName:"Miguel Angel Hernández López"},{id:"202758",title:"Dr.",name:"Hugo Jorge",middleName:null,surname:"Cortina Marrero",slug:"hugo-jorge-cortina-marrero",fullName:"Hugo Jorge Cortina Marrero"},{id:"202759",title:"Dr.",name:"Edwin Román",middleName:null,surname:"Hernández",slug:"edwin-roman-hernandez",fullName:"Edwin Román Hernández"},{id:"202760",title:"Dr.",name:"Victor Iván Moreno",middleName:null,surname:"Oliva",slug:"victor-ivan-moreno-oliva",fullName:"Victor Iván Moreno Oliva"},{id:"202761",title:"Dr.",name:"José Rafael Dorrego",middleName:null,surname:"Portela",slug:"jose-rafael-dorrego-portela",fullName:"José Rafael Dorrego Portela"}]},{id:"64463",title:"Fractal Analysis of Time-Series Data Sets: Methods and Challenges",slug:"fractal-analysis-of-time-series-data-sets-methods-and-challenges",totalDownloads:1692,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"fractal-analysis",title:"Fractal Analysis",fullTitle:"Fractal Analysis"},signatures:"Ian Pilgrim and Richard P. Taylor",authors:[{id:"262574",title:"Ph.D.",name:"Ian",middleName:null,surname:"Pilgrim",slug:"ian-pilgrim",fullName:"Ian Pilgrim"},{id:"262816",title:"Prof.",name:"Richard",middleName:null,surname:"Taylor",slug:"richard-taylor",fullName:"Richard Taylor"}]},{id:"57673",title:"Kalman Filter for Moving Object Tracking: Performance Analysis and Filter Design",slug:"kalman-filter-for-moving-object-tracking-performance-analysis-and-filter-design",totalDownloads:2151,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"kalman-filters-theory-for-advanced-applications",title:"Kalman Filters",fullTitle:"Kalman Filters - Theory for Advanced Applications"},signatures:"Kenshi Saho",authors:[{id:"209334",title:"Associate Prof.",name:"Kenshi",middleName:null,surname:"Saho",slug:"kenshi-saho",fullName:"Kenshi Saho"}]},{id:"51962",title:"Application of Lean Methodologies in a Neurosurgery High Dependency Unit",slug:"application-of-lean-methodologies-in-a-neurosurgery-high-dependency-unit",totalDownloads:1017,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"operations-research-the-art-of-making-good-decisions",title:"Operations Research",fullTitle:"Operations Research - the Art of Making Good Decisions"},signatures:"Ricardo Balau Esteves, Susana Garrido Azevedo and Francisco\nProença Brójo",authors:[{id:"26862",title:"Prof.",name:"Susana",middleName:"Garrido",surname:"Azevedo",slug:"susana-azevedo",fullName:"Susana Azevedo"}]},{id:"71158",title:"A Shamanskii-Like Accelerated Scheme for Nonlinear Systems of Equations",slug:"a-shamanskii-like-accelerated-scheme-for-nonlinear-systems-of-equations",totalDownloads:214,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"nonlinear-systems-theoretical-aspects-and-recent-applications",title:"Nonlinear Systems",fullTitle:"Nonlinear Systems -Theoretical Aspects and Recent Applications"},signatures:"Ibrahim Mohammed Sulaiman, Mustafa Mamat and Umar Audu Omesa",authors:[{id:"299084",title:"Dr.",name:"Mustafa",middleName:null,surname:"Mamat",slug:"mustafa-mamat",fullName:"Mustafa Mamat"},{id:"316957",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Sulaiman",slug:"ibrahim-sulaiman",fullName:"Ibrahim Sulaiman"}]},{id:"60097",title:"Robust Optimization: Concepts and Applications",slug:"robust-optimization-concepts-and-applications",totalDownloads:1761,totalCrossrefCites:10,totalDimensionsCites:14,book:{slug:"nature-inspired-methods-for-stochastic-robust-and-dynamic-optimization",title:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization",fullTitle:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization"},signatures:"José García and Alvaro Peña",authors:[{id:"227809",title:"Ph.D.",name:"Jose",middleName:null,surname:"Garcia",slug:"jose-garcia",fullName:"Jose Garcia"},{id:"240407",title:"Dr.",name:"Alvaro",middleName:null,surname:"Peña",slug:"alvaro-pena",fullName:"Alvaro Peña"}]},{id:"51209",title:"A Review and Comparative Study of Firefly Algorithm and its Modified Versions",slug:"a-review-and-comparative-study-of-firefly-algorithm-and-its-modified-versions",totalDownloads:2079,totalCrossrefCites:5,totalDimensionsCites:8,book:{slug:"optimization-algorithms-methods-and-applications",title:"Optimization Algorithms",fullTitle:"Optimization Algorithms - Methods and Applications"},signatures:"Waqar A. Khan, Nawaf N. Hamadneh, Surafel L. Tilahun and Jean\nM. T. Ngnotchouye",authors:[{id:"180330",title:"Dr.",name:"Surafel",middleName:null,surname:"Tilahun",slug:"surafel-tilahun",fullName:"Surafel Tilahun"},{id:"180784",title:"Dr.",name:"Waqar Ahmed",middleName:null,surname:"Khan",slug:"waqar-ahmed-khan",fullName:"Waqar Ahmed Khan"},{id:"185148",title:"Dr.",name:"Nawaf",middleName:null,surname:"Hamadneh",slug:"nawaf-hamadneh",fullName:"Nawaf Hamadneh"},{id:"185149",title:"Dr.",name:"Jean M. T.",middleName:null,surname:"Ngnotchouye",slug:"jean-m.-t.-ngnotchouye",fullName:"Jean M. T. Ngnotchouye"}]},{id:"65729",title:"Unconstrained Optimization Methods: Conjugate Gradient Methods and Trust-Region Methods",slug:"unconstrained-optimization-methods-conjugate-gradient-methods-and-trust-region-methods",totalDownloads:813,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"applied-mathematics",title:"Applied Mathematics",fullTitle:"Applied Mathematics"},signatures:"Snezana S. Djordjevic",authors:null},{id:"67141",title:"A Review on Fractional Differential Equations and a Numerical Method to Solve Some Boundary Value Problems",slug:"a-review-on-fractional-differential-equations-and-a-numerical-method-to-solve-some-boundary-value-pr",totalDownloads:1015,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"nonlinear-systems-theoretical-aspects-and-recent-applications",title:"Nonlinear Systems",fullTitle:"Nonlinear Systems -Theoretical Aspects and Recent Applications"},signatures:"María I. Troparevsky, Silvia A. Seminara and Marcela A. Fabio",authors:[{id:"296689",title:"Dr.",name:"Maria Ines",middleName:null,surname:"Troparevsky",slug:"maria-ines-troparevsky",fullName:"Maria Ines Troparevsky"},{id:"296690",title:"Prof.",name:"Silvia Alejandra",middleName:null,surname:"Seminara",slug:"silvia-alejandra-seminara",fullName:"Silvia Alejandra Seminara"},{id:"296691",title:"Prof.",name:"Marcela Antonieta",middleName:null,surname:"Fabio",slug:"marcela-antonieta-fabio",fullName:"Marcela Antonieta Fabio"}]}],onlineFirstChaptersFilter:{topicSlug:"applied-mathematics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/114926/sendil-can",hash:"",query:{},params:{id:"114926",slug:"sendil-can"},fullPath:"/profiles/114926/sendil-can",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()