\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"47",leadTitle:null,fullTitle:"Recent Advances in Brain-Computer Interface Systems",title:"Recent Advances in Brain-Computer Interface Systems",subtitle:null,reviewType:"peer-reviewed",abstract:"Brain Computer Interface (BCI) technology provides a direct electronic interface and can convey messages and commands directly from the human brain to a computer. BCI technology involves monitoring conscious brain electrical activity via electroencephalogram (EEG) signals and detecting characteristics of EEG patterns via digital signal processing algorithms that the user generates to communicate. It has the potential to enable the physically disabled to perform many activities, thus improving their quality of life and productivity, allowing them more independence and reducing social costs. The challenge with BCI, however, is to extract the relevant patterns from the EEG signals produced by the brain each second.\nRecently, there has been a great progress in the development of novel paradigms for EEG signal recording, advanced methods for processing them, new applications for BCI systems and complete software and hardware packages used for BCI applications. In this book a few recent advances in these areas are discussed.",isbn:null,printIsbn:"978-953-307-175-6",pdfIsbn:"978-953-51-5978-0",doi:"10.5772/579",price:119,priceEur:129,priceUsd:155,slug:"recent-advances-in-brain-computer-interface-systems",numberOfPages:236,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:null,bookSignature:"Reza Fazel-Rezai",publishedDate:"February 4th 2011",coverURL:"https://cdn.intechopen.com/books/images_new/47.jpg",numberOfDownloads:32715,numberOfWosCitations:50,numberOfCrossrefCitations:28,numberOfCrossrefCitationsByBook:11,numberOfDimensionsCitations:43,numberOfDimensionsCitationsByBook:13,hasAltmetrics:1,numberOfTotalCitations:121,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 4th 2010",dateEndSecondStepPublish:"June 1st 2010",dateEndThirdStepPublish:"October 6th 2010",dateEndFourthStepPublish:"November 5th 2010",dateEndFifthStepPublish:"January 4th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"1995",title:"Dr.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",profilePictureURL:"https://mts.intechopen.com/storage/users/1995/images/1627_n.jpg",biography:"Dr. Reza Fazel-Rezai received his BSc. and M.Sc. in Electrical Engineering and Biomedical Engineering in 1990 and 1993, respectively. He received his Ph.D. in Electrical Engineering from the University of Manitoba in Winnipeg, Canada in 1999. From 2000 to 2002 he worked in industry as a senior research scientist and research team manager. Then he joined academia at Sharif University of Technology and later the University of Manitoba as Assistant Professor in 2002 and 2004, respectively. Currently he is Assistant Professor and the Director of Biomedical Signal Processing Laboratory at the Department of Electrical Engineering, University of North Dakota, USA. His research interests include biomedical signal and image processing, brain computer interface, EEG signal processing, seizure detection and prediction, neurofeedback, and human performance evaluation based on EEG signals.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of North Dakota",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"567",title:"Computer Surveillance",slug:"computer-surveillance"}],chapters:[{id:"13492",title:"Hardware/Software Components and Applications of BCIs",doi:"10.5772/14174",slug:"hardware-software-components-and-applications-of-bcis",totalDownloads:3769,totalCrossrefCites:8,totalDimensionsCites:10,hasAltmetrics:0,abstract:null,signatures:"Christoph Guger, Günter Edlinger and Gunther Krausz",downloadPdfUrl:"/chapter/pdf-download/13492",previewPdfUrl:"/chapter/pdf-preview/13492",authors:[{id:"17051",title:"Dr.",name:"Christoph",surname:"Guger",slug:"christoph-guger",fullName:"Christoph Guger"},{id:"17054",title:"Dr.",name:"Günter",surname:"Edlinger",slug:"gunter-edlinger",fullName:"Günter Edlinger"},{id:"19484",title:"Prof.",name:"Gunther",surname:"Krausz",slug:"gunther-krausz",fullName:"Gunther Krausz"}],corrections:null},{id:"13493",title:"Applied Advanced Classifiers for Brain Computer Interface",doi:"10.5772/14294",slug:"applied-advanced-classifiers-for-brain-computer-interface",totalDownloads:2719,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"José Luis Martínez, Antonio Barrientos",downloadPdfUrl:"/chapter/pdf-download/13493",previewPdfUrl:"/chapter/pdf-preview/13493",authors:[{id:"17401",title:"Dr.",name:"Disam-Upm / Jose Luis",surname:"Martinez",slug:"disam-upm-jose-luis-martinez",fullName:"Disam-Upm / Jose Luis Martinez"}],corrections:null},{id:"13494",title:"Feature Extraction by Mutual Information Based on Minimal-Redundancy-Maximal-Relevance Criterion and Its Application to Classifying EEG Signal for Brain-Computer Interfaces",doi:"10.5772/13935",slug:"feature-extraction-by-mutual-information-based-on-minimal-redundancy-maximal-relevance-criterion-and",totalDownloads:2992,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Abbas Erfanian, Farid Oveisi and Ali Shadvar",downloadPdfUrl:"/chapter/pdf-download/13494",previewPdfUrl:"/chapter/pdf-preview/13494",authors:[{id:"16334",title:"Prof.",name:"Abbas",surname:"Erfanian",slug:"abbas-erfanian",fullName:"Abbas Erfanian"}],corrections:null},{id:"13495",title:"P300-based Brain-Computer Interface Paradigm Design",doi:"10.5772/14858",slug:"p300-based-brain-computer-interface-paradigm-design",totalDownloads:6022,totalCrossrefCites:14,totalDimensionsCites:23,hasAltmetrics:0,abstract:null,signatures:"Reza Fazel-Rezai and Waqas Ahmad",downloadPdfUrl:"/chapter/pdf-download/13495",previewPdfUrl:"/chapter/pdf-preview/13495",authors:[{id:"1995",title:"Dr.",name:"Reza",surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai"}],corrections:null},{id:"13496",title:"Brain Computer Interface Based on the Flash Onset and Offset Visual Evoked Potentials",doi:"10.5772/14078",slug:"brain-computer-interface-based-on-the-flash-onset-and-offset-visual-evoked-potentials",totalDownloads:2674,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Po-Lei Lee, Yu-Te Wu, Kuo-Kai Shyu and Jen-Chuen Hsieh",downloadPdfUrl:"/chapter/pdf-download/13496",previewPdfUrl:"/chapter/pdf-preview/13496",authors:[{id:"15452",title:"Dr.",name:"Po-Lei",surname:"Lee",slug:"po-lei-lee",fullName:"Po-Lei Lee"},{id:"16725",title:"Prof.",name:"Yu-Te",surname:"Wu",slug:"yu-te-wu",fullName:"Yu-Te Wu"},{id:"16726",title:"Prof.",name:"Kuo-Kai",surname:"Shyu",slug:"kuo-kai-shyu",fullName:"Kuo-Kai Shyu"},{id:"16727",title:"Prof.",name:"Jen-Chuen",surname:"Hsieh",slug:"jen-chuen-hsieh",fullName:"Jen-Chuen Hsieh"}],corrections:null},{id:"13497",title:"Usability of Transient VEPs in BCIs",doi:"10.5772/14171",slug:"usability-of-transient-veps-in-bcis",totalDownloads:3092,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Natsue Yoshimura and Naoaki Itakura",downloadPdfUrl:"/chapter/pdf-download/13497",previewPdfUrl:"/chapter/pdf-preview/13497",authors:[{id:"17042",title:"Prof.",name:"Natsue",surname:"Yoshimura",slug:"natsue-yoshimura",fullName:"Natsue Yoshimura"},{id:"23917",title:"Dr.",name:"Naoaki",surname:"Itakura",slug:"naoaki-itakura",fullName:"Naoaki Itakura"}],corrections:null},{id:"13498",title:"Visuo-Motor Tasks in a Brain-Computer Interface Analysis",doi:"10.5772/13556",slug:"visuo-motor-tasks-in-a-brain-computer-interface-analysis",totalDownloads:2096,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Vito Logar and Aleš Belič",downloadPdfUrl:"/chapter/pdf-download/13498",previewPdfUrl:"/chapter/pdf-preview/13498",authors:[{id:"15141",title:"Dr.",name:"Vito",surname:"Logar",slug:"vito-logar",fullName:"Vito Logar"},{id:"18945",title:"Prof.",name:"Aleš",surname:"Belič",slug:"ales-belic",fullName:"Aleš Belič"}],corrections:null},{id:"13499",title:"A Two Dimensional Brain-Computer Interface Associated with Human Natural Motor Control",doi:"10.5772/14386",slug:"a-two-dimensional-brain-computer-interface-associated-with-human-natural-motor-control",totalDownloads:2382,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Dandan Huang, Xuedong Chen, Ding-Yu Fei and Ou Bai",downloadPdfUrl:"/chapter/pdf-download/13499",previewPdfUrl:"/chapter/pdf-preview/13499",authors:[{id:"15950",title:"Prof.",name:"Ou",surname:"Bai",slug:"ou-bai",fullName:"Ou Bai"},{id:"17661",title:"Dr.",name:"Dandan",surname:"Huang",slug:"dandan-huang",fullName:"Dandan Huang"},{id:"17662",title:"Prof.",name:"Xuedong",surname:"Chen",slug:"xuedong-chen",fullName:"Xuedong Chen"},{id:"17663",title:"Prof.",name:"Ding-Yu",surname:"Fei",slug:"ding-yu-fei",fullName:"Ding-Yu Fei"}],corrections:null},{id:"13500",title:"Advances in Non-Invasive Brain Computer Interfaces for Control and Biometry",doi:"10.5772/13530",slug:"advances-in-non-invasive-brain-computer-interfaces-for-control-and-biometry",totalDownloads:2785,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Nuno Figueiredo, Filipe Silva, Pétia Georgieva and Ana Tomé",downloadPdfUrl:"/chapter/pdf-download/13500",previewPdfUrl:"/chapter/pdf-preview/13500",authors:[{id:"15028",title:"Dr.",name:"Filipe",surname:"Silva",slug:"filipe-silva",fullName:"Filipe Silva"},{id:"19463",title:"Prof.",name:"Pétia",surname:"Georgieva",slug:"petia-georgieva",fullName:"Pétia Georgieva"},{id:"19464",title:"PhD.",name:"Nuno",surname:"Figueiredo",slug:"nuno-figueiredo",fullName:"Nuno Figueiredo"},{id:"24160",title:"Prof.",name:"Ana",surname:"Tomé",slug:"ana-tome",fullName:"Ana Tomé"}],corrections:null},{id:"13501",title:"State-of-the-Art in BCI Research: BCI Award 2010",doi:"10.5772/15017",slug:"state-of-the-art-in-bci-research-bci-award-2010",totalDownloads:4188,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Christoph Guger et al.",downloadPdfUrl:"/chapter/pdf-download/13501",previewPdfUrl:"/chapter/pdf-preview/13501",authors:[{id:"17051",title:"Dr.",name:"Christoph",surname:"Guger",slug:"christoph-guger",fullName:"Christoph Guger"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3532",title:"Brain-Computer Interface Systems",subtitle:"Recent Progress and Future Prospects",isOpenForSubmission:!1,hash:"5005164831ec70d92d9d69788277eb20",slug:"brain-computer-interface-systems-recent-progress-and-future-prospects",bookSignature:"Reza Fazel-Rezai",coverURL:"https://cdn.intechopen.com/books/images_new/3532.jpg",editedByType:"Edited by",editors:[{id:"1995",title:"Dr.",name:"Reza",surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2241",title:"Biomedical Engineering",subtitle:"From Theory to Applications",isOpenForSubmission:!1,hash:"933a7a2f008c47fd232180ef1b3f0a8c",slug:"biomedical-engineering-from-theory-to-applications",bookSignature:"Reza Fazel-Rezai",coverURL:"https://cdn.intechopen.com/books/images_new/2241.jpg",editedByType:"Edited by",editors:[{id:"1995",title:"Dr.",name:"Reza",surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"508",title:"Biomedical Engineering",subtitle:"Frontiers and Challenges",isOpenForSubmission:!1,hash:"7f5bfc734fd607df80a0dc2fe965b313",slug:"biomedical-engineering-frontiers-and-challenges",bookSignature:"Reza Fazel-Rezai",coverURL:"https://cdn.intechopen.com/books/images_new/508.jpg",editedByType:"Edited by",editors:[{id:"1995",title:"Dr.",name:"Reza",surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3786",title:"Advances in Human Computer Interaction",subtitle:null,isOpenForSubmission:!1,hash:"b1eb4ba3bda75266f3509c41949dff16",slug:"advances_in_human_computer_interaction",bookSignature:"Shane Pinder",coverURL:"https://cdn.intechopen.com/books/images_new/3786.jpg",editedByType:"Edited by",editors:[{id:"252217",title:"Dr.",name:"Shane",surname:"Pinder",slug:"shane-pinder",fullName:"Shane Pinder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3167",title:"Applications of Self-Organizing Maps",subtitle:null,isOpenForSubmission:!1,hash:"e9d75ec4b405059c7edf889ad434a7cb",slug:"applications-of-self-organizing-maps",bookSignature:"Magnus Johnsson",coverURL:"https://cdn.intechopen.com/books/images_new/3167.jpg",editedByType:"Edited by",editors:[{id:"14004",title:"Dr.",name:"Magnus",surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"440",title:"Speech and Language Technologies",subtitle:null,isOpenForSubmission:!1,hash:"f09f63aefa849a15cc4d5268207be9fd",slug:"speech-and-language-technologies",bookSignature:"Ivo Ipsic",coverURL:"https://cdn.intechopen.com/books/images_new/440.jpg",editedByType:"Edited by",editors:[{id:"10238",title:"Prof.",name:"Ivo",surname:"Ipsic",slug:"ivo-ipsic",fullName:"Ivo Ipsic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5249",title:"Human-Computer Interaction",subtitle:null,isOpenForSubmission:!1,hash:"aeaff3ae678fbd79431e526cbf1f9165",slug:"human-computer-interaction",bookSignature:"Inaki Maurtua",coverURL:"https://cdn.intechopen.com/books/images_new/5249.jpg",editedByType:"Edited by",editors:[{id:"990",title:"Mr.",name:"Inaki",surname:"Maurtua",slug:"inaki-maurtua",fullName:"Inaki Maurtua"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1975",title:"Speech Enhancement, Modeling and Recognition- Algorithms and Applications",subtitle:null,isOpenForSubmission:!1,hash:"e5001fc052cc367bd092b2c412888a7b",slug:"speech-enhancement-modeling-and-recognition-algorithms-and-applications",bookSignature:"S. Ramakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/1975.jpg",editedByType:"Edited by",editors:[{id:"116136",title:"Dr.",name:"Srinivasan",surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5325",title:"State of the Art in Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"8045e37f9f5a19f658562957f0cb74ca",slug:"state_of_the_art_in_face_recognition",bookSignature:"Dr. Mario I. Chacon M.",coverURL:"https://cdn.intechopen.com/books/images_new/5325.jpg",editedByType:"Edited by",editors:[{id:"5024",title:"Dr.",name:"Mario I.",surname:"Chacon Murguía",slug:"mario-i.-chacon-murguia",fullName:"Mario I. Chacon Murguía"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1372",title:"Face Analysis, Modeling and Recognition Systems",subtitle:null,isOpenForSubmission:!1,hash:"71c9fb38fdc6f61f0af8839a3102ac3f",slug:"face-analysis-modeling-and-recognition-systems",bookSignature:"Tudor Barbu",coverURL:"https://cdn.intechopen.com/books/images_new/1372.jpg",editedByType:"Edited by",editors:[{id:"33538",title:"Dr.",name:"Tudor",surname:"Barbu",slug:"tudor-barbu",fullName:"Tudor Barbu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74392",slug:"corrigendum-to-sustainable-solid-waste-management-in-morocco-co-incineration-of-rdf-as-an-alternativ",title:"Corrigendum to: Sustainable Solid Waste Management in Morocco: Co-Incineration of RDF as an Alternative Fuel in Cement Kilns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74392.pdf",downloadPdfUrl:"/chapter/pdf-download/74392",previewPdfUrl:"/chapter/pdf-preview/74392",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74392",risUrl:"/chapter/ris/74392",chapter:{id:"73967",slug:"sustainable-solid-waste-management-in-morocco-co-incineration-of-rdf-as-an-alternative-fuel-in-cemen",signatures:"Aziz Hasib, Abdellah Ouigmane, Otmane Boudouch, Reda Elkacmi, Mustapha Bouzaid and Mohamed Berkani",dateSubmitted:"June 25th 2020",dateReviewed:"September 8th 2020",datePrePublished:"November 7th 2020",datePublished:"April 21st 2021",book:{id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,fullTitle:"Strategies of Sustainable Solid Waste Management",slug:"strategies-of-sustainable-solid-waste-management",publishedDate:"April 21st 2021",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"166445",title:"Prof.",name:"Aziz",middleName:null,surname:"Hasib",fullName:"Aziz Hasib",slug:"aziz-hasib",email:"azhasib@yahoo.fr",position:null,institution:null},{id:"237725",title:"Prof.",name:"Reda",middleName:null,surname:"Elkacmi",fullName:"Reda Elkacmi",slug:"reda-elkacmi",email:"redakcm@gmail.com",position:null,institution:null},{id:"325462",title:"Dr.",name:"Abdellah",middleName:null,surname:"Ouigmane",fullName:"Abdellah Ouigmane",slug:"abdellah-ouigmane",email:"ouigmaneabdellah@gmail.com",position:null,institution:null},{id:"325463",title:"Prof.",name:"Otmane",middleName:null,surname:"Boudouch",fullName:"Otmane Boudouch",slug:"otmane-boudouch",email:"oboudouch@gmail.com",position:null,institution:null},{id:"325528",title:"Prof.",name:"Mustapha",middleName:null,surname:"Bouzaid",fullName:"Mustapha Bouzaid",slug:"mustapha-bouzaid",email:"bozidstof@yahoo.fr",position:null,institution:null},{id:"325529",title:"Prof.",name:"Mohammed",middleName:null,surname:"Berkani",fullName:"Mohammed Berkani",slug:"mohammed-berkani",email:"m.berkani@gmail.com",position:null,institution:null}]}},chapter:{id:"73967",slug:"sustainable-solid-waste-management-in-morocco-co-incineration-of-rdf-as-an-alternative-fuel-in-cemen",signatures:"Aziz Hasib, Abdellah Ouigmane, Otmane Boudouch, Reda Elkacmi, Mustapha Bouzaid and Mohamed Berkani",dateSubmitted:"June 25th 2020",dateReviewed:"September 8th 2020",datePrePublished:"November 7th 2020",datePublished:"April 21st 2021",book:{id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,fullTitle:"Strategies of Sustainable Solid Waste Management",slug:"strategies-of-sustainable-solid-waste-management",publishedDate:"April 21st 2021",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"166445",title:"Prof.",name:"Aziz",middleName:null,surname:"Hasib",fullName:"Aziz Hasib",slug:"aziz-hasib",email:"azhasib@yahoo.fr",position:null,institution:null},{id:"237725",title:"Prof.",name:"Reda",middleName:null,surname:"Elkacmi",fullName:"Reda Elkacmi",slug:"reda-elkacmi",email:"redakcm@gmail.com",position:null,institution:null},{id:"325462",title:"Dr.",name:"Abdellah",middleName:null,surname:"Ouigmane",fullName:"Abdellah Ouigmane",slug:"abdellah-ouigmane",email:"ouigmaneabdellah@gmail.com",position:null,institution:null},{id:"325463",title:"Prof.",name:"Otmane",middleName:null,surname:"Boudouch",fullName:"Otmane Boudouch",slug:"otmane-boudouch",email:"oboudouch@gmail.com",position:null,institution:null},{id:"325528",title:"Prof.",name:"Mustapha",middleName:null,surname:"Bouzaid",fullName:"Mustapha Bouzaid",slug:"mustapha-bouzaid",email:"bozidstof@yahoo.fr",position:null,institution:null},{id:"325529",title:"Prof.",name:"Mohammed",middleName:null,surname:"Berkani",fullName:"Mohammed Berkani",slug:"mohammed-berkani",email:"m.berkani@gmail.com",position:null,institution:null}]},book:{id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,fullTitle:"Strategies of Sustainable Solid Waste Management",slug:"strategies-of-sustainable-solid-waste-management",publishedDate:"April 21st 2021",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12181",leadTitle:null,title:"Pituitary Gland",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"45e0396c8aa799f51b191c2cce848761",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12181.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 7th 2022",dateEndSecondStepPublish:"March 28th 2022",dateEndThirdStepPublish:"May 27th 2022",dateEndFourthStepPublish:"August 15th 2022",dateEndFifthStepPublish:"October 14th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68639",title:"Social Media and Young People’s Mental Health",doi:"10.5772/intechopen.88569",slug:"social-media-and-young-people-s-mental-health",body:'\n
In England Anne Longfield, England’s Children’s Commissioner, has written to the biggest social media companies, urging them to commit to tackling issues of disturbing content. Her letter follows the suicide of 14-year-old Molly Russell, who tragically killed herself after viewing distressing self-harm images on Instagram. The letter urges social media companies to back the introduction of a statutory duty of care where they would have to prioritise the safety and wellbeing of children using their platforms. Ms. Longfield’s letter ends with the following message to the digital industry:
\n\n \n
According to literature use of the internet has risen rapidly in the last decade [1]. The way in which young people interact has changed significantly over the last decade. Social media enables them to develop online connections with people within their immediate friendship group but also to form connects with people who are more geographically dispersed. As a result of the digital revolution in recent years, young people are now able to communicate with others more efficiently and gain access to knowledge and advice more rapidly. For those living in rural communities, social media can facilitate social communications which otherwise would not be possible.
\nMy own discussions with young people in schools indicates that social media is an extremely important part of their daily lives. It brings many benefits but is also exposes them to risks. Young people are often very aware of these risks and understand how to keep themselves safe. However, sadly this does not prevent all of them from harm, as is evident through recent cases of teenage suicides as a result of social media, which have been highlighted in the media in the United Kingdom (UK) and more widely.
\nThis chapter highlights some of the detrimental and positive effects of social media use on children and young people’s mental health. The implications for schools, parents, social media and advertising companies and the government are addressed. This chapter highlights that schools cannot solve all of the problems and that other stakeholders also have a responsibility to keep young people safe when they are online.
\nResearch suggests that social media use is far more prevalent among young people than older generations [1]. Young people aged 16–24 are the most active social media users with 91% using the internet for social media [1]. Young people use social media for a variety of purposes, including for entertainment, to share information and network with others and to gain support and health information [1].
\nEvidence suggests that social media use can result in young people developing conditions including anxiety, stress and depression [1]. There are various reasons for this, and this section will explore the contributing factors. Research has found that four of the five most used social media platforms make young people’s feelings of anxiety worse [1]. Research suggests that young people who use social media heavily, i.e., those who spend more than 2 hours per day on social networking sites are more likely to report poor mental health, including psychological distress [2].
\nCyber-bullying is a significant problem which affects young people. Evidence suggests that seven in 10 young people experience cyberbullying [1]. Cyberbullying exists in a variety of forms. It can include the posting of hurtful comments online, threats and intimidation towards others in the online space and posting photographs or videos that are intended to cause distress. This is not an exhaustive list. Cyberbullying is fundamentally different to bullying which takes place in person. The victim of the bullying may find it difficult to escape from because it exists within the victim’s personal and private spaces such as their homes and bedrooms. Additionally, the number of people witnessing the bullying can be extremely large because of the potential of social media for online posts to be shared across hundreds, thousands and millions of people. For the victim this can be significantly humiliating and result in a loss of confidence and self-worth. Humiliating messages, photographs and videos can be stored permanently online, resulting in the victim repeatedly experiencing the bullying every time they go online. Victims of cyberbullying can experience depression, anxiety, loss of sleep, self-harm and feelings of loneliness [3].
\nSocial media has also been associated with body image concerns. Research indicates that when young girls and women in their teens and early twenties view Facebook for only a short period of time, body image concerns are higher compared to non-users [4]. Young people view images of “ideal” bodies and start to make comparisons with their own bodies. This can result in low body-esteem, particularly if young people feel that their own bodies do not compare favourably to the “perfect” bodies they see online. Young people are heavily influenced by celebrities and may desire to look like them. If they feel that this is unattainable it can result in depression, body-surveillance and low body-confidence. Young people can then start to develop conditions such as eating disorders. The issue of body image is not just a female issue. Young males are also vulnerable and influenced by the muscular, well-toned bodies that they see online. We now live in an age when males are taking increasing interest in their appearance and viewing images of muscular, toned bodies can result in them putting their bodies through extensive fitness regimes and males are also vulnerable to developing eating disorders.
\nThe opportunity for people to use digital editing software to edit their appearance on photographs can also result in young people developing a false sense of beauty. It is worrying that there is a rise in the number of young people seeking to obtain cosmetic surgery [1] and the popularity of “selfies” in recent years has resulted in an increase in images which portray beauty and perfection. These images can have a negative impact on body-esteem and body-confidence.
\nResearch demonstrates that increased social media use has a significant association with poor sleep quality in young people [5]. It seems that young people enjoy being constantly connected to the online world. They develop a “Fear of Missing Out” (FoMO) which is associated with lower mood and lower life satisfaction [6]. This can result in young people constantly checking their devices for messages, even during the night, resulting in broken sleep. Sleep is particularly important during adolescence and broken sleep can result in exhaustion and lack of opportunity for the brain to become refreshed. Lack of sleep quality can have a range of detrimental effects, but it can also impact on school performance and their behaviour. My own conversations with school leaders suggest that many adolescents demonstrate signs of tiredness during the school day. This can result in disengagement in lessons, thus having a detrimental effect on academic attainment.
\nThe link between social media use, self-harm and even suicide is particularly worrying [1]. The fact that young people can access distressing content online that promotes self-harm and suicide is a significant cause for concern. This content attempts to “normalise” self-harm and suicide and can result in young people replicating the actions that they are exposed to.
\nResearch suggests that young people are increasingly using social media to gain emotional support to prevent and address mental health issues [7]. This is particularly pertinent for young people who represent minority groups, including those who identify as lesbian, gay, bisexual or transgender (LGBT), those with disabilities and those representing black and minority ethnic groups. The use of social media to form online digital communities with others who share similar characteristics can be extremely powerful. Young people from minority groups are able to become “global citizens,” thus reducing isolation. Participating in online networks presents them with an opportunity to meet with others who share their identities, to gain mutual support and advice and to gain solidarity. These networks can reduce feelings of loneliness and support the development of a positive, personal identity. They can also support young people to become more resilient to adverse situations which can help them to stay mentally healthy.
\nWhile online communities can be beneficial, they also bring associated risks. For example, members of the LGBT networks can become easy targets for abuse, discrimination, harassment and prejudice. It is therefore critical that young people understand how to keep themselves safe online and develop appropriate digital resilience to enable them to address these challenges.
\nSocial media use can allow young people to express themselves positively, letting young people put forward a positive image of themselves [8]. The problem with this is that people tend to use social media to present the best version of themselves and of their lives. This can result in others making unhealthy comparisons between their own lives and the idealised lives that are depicted on the internet, resulting in low self-esteem.
\nSocial media platforms enable young people to share creative content and express their interests and passions with others [1]. This can help to strengthen the development of a positive identity among young people and provide them with numerous opportunities to experiment with a range of interests. This is particularly important for young people who live in rural communities who may find it more challenging to develop social connections in the offline world.
\nStudents living in boarding schools benefit from using social media platforms because it enables them to maintain contact with family members and friends at home. This is particularly important because students living away from home may experience isolation and homesickness and social media platforms facilitate these connections.
\nSocial media platforms offer young people a useful tool to make, maintain or build social connections with others [1]. Additionally, research suggests that strong adolescent friendships can be enhanced by social media interactions [9]. Thus, young people can use social media to cement the friendships that they have formed in the offline world and to develop new friendships that would not have been possible in the offline word due to geographical restrictions.
\nSchools play a critical role in keeping children safe online. A well-planned digital curriculum should cover themes such as digital resilience and digital citizenship so that young people know how to respond to distressing content and how to behave responsibly online. The curriculum should also provide digital literacy skills so that children and young people have the skills to keep their own accounts safe through privacy settings, blocking perpetrators of abuse, reporting abuse and setting passwords. Schools should also support children and young people to critically engage with content they see online. They should be taught to question and interrogate content for accuracy, exploitation, abuse and discrimination.
\nSchools also play a critical role in developing young people’s mental health literacy. This should cover common mental health conditions, including stress, anxiety, depression, self-harm and cyberbullying. Educating young people about mental health is essential and reduces the stigma that has traditionally been associated with mental health conditions. Young people also need to have strategies for managing their own mental health. If their mental health is adversely affected by their experiences online, they need to be taught strategies to self-regulate their emotions and strategies to aid digital resilience. Some young people who have negative experiences online respond by closing down their social media accounts. This situates the control with the perpetrators of abuse and removes control from the victim because they are disadvantaged. Developing practical approaches to aid digital resilience in the face of adversity must be a key component of the digital curriculum that schools provide. Young people need to know how to respond to abuse, who to report it to and how to block the accounts of perpetrators. In addition, they need to be taught about the importance of maintaining secure social media accounts and how to keep themselves safe by not sharing personal information.
\nSchools need to provide a social need to provide a social media curriculum which is progressive and age appropriate. Given the prevalence of fake content online and content which has been digitally edited, young people need to be taught to critically evaluate content that appears online so that they understand the harmful effects of some content. Themes including exploitation, body-esteem and gender stereotyping can be addressed through critically evaluating online content.
\nChildren and young people often have a good understanding of the issues associated with social media because they are the users of it. Therefore, they experience the issues, sometimes frequently. Working in partnership with young people through empowering them to lead on aspects of social media education is a powerful way of developing student partnership and empowers them to be leaders. Often, young people understand the online applications better than teachers and they are acutely aware of the issues that occur online. Student-led events such as student-led workshops and conferences, which highlight the issues that relate to social media and mental health, are powerful ways of providing ownership to students. Developing digital ambassadors who act as peer mentors to younger students is also a powerful strategy for developing students’ confidence and leadership skills. Young people who need someone to talk to about the issues that they are experiencing online can be paired with a digital ambassador who can provide them with confidential advice. Processes for recruiting digital ambassadors would need to be carefully considered by schools and the scheme would need to be properly led and managed by a member of staff to monitor its effectiveness. Student-led peer mentoring schemes are valuable because some students prefer to talk to peers about the issues that they are experiencing rather than teachers or parents.
\nSchools also play a critical role in educating parents about the relationship between social media and mental health. It is important that parents understand the online applications that their children are using, and schools can play a critical role in developing their understanding. Schools can also provide guidance to parents on the signs and symptoms of mental ill health so that they are better able to identify mental health problems in their child. Schools can provide guidance to parents on how to support their child’s mental health at home and guidelines about responsible use of social media in the home. It is critical that parents understand the association between poor sleep quality, mental health and academic attainment and schools can play an important role in this. Schools also play a crucial role in developing parents’ knowledge about how to be a good social media role model for their child.
\nSchools cannot solve the problems associated with social media in isolation. This section outlines the responsibilities of parents, social media companies and advertising companies. The responsibilities of the government are also outlined.
\nParents are in a unique position to influence their child’s social media use. They should establish clear expectations about the amount of time their child spends online. However, imposing rules on children can lead to conflict and the breakdown of relationships between parents and children. It is far more effective for parents and children to negotiate the rules jointly so that young people have ownership of determining the boundaries of acceptable and unacceptable behaviour. If rules are imposed rather than negotiated it is likely that young people will find ways to break the rules and therefore adopting a top-down approach may not be the most effective way of encouraging young people to develop healthy social media use.
\nSome parents may try to restrict their child’s use of social media by installing filters or by disconnecting the internet supply at specific times of the day or week. However, young people will find ways to subvert this and policing their use of the internet in this way is unlikely to foster digital responsibility. It might be more effective for parents to talk to their child about what it means to be a digitally responsible citizen and to explain why it is important to restrict screen time, particularly during the night. Families might want to consider allocating specific time each day or week when no-one accesses technology.
\nIn addition, parents also need to be role models. They cannot expect their child to demonstrate the skills of digital citizenship and digital responsibility if they are not prepared to demonstrate these skills. It is therefore important for parents to model healthy online behaviours so that their children can then replicate these. It is also important for parents to develop their own digital literacy, so they are aware of the platforms and software that their child is interacting with. Parents also need to develop knowledge of the risks that their children are exposed to, given that these are constantly changing. If parents do not keep abreast of developments, they will not be able to support their child effectively.
\nParents should negotiate rules with their children about what constitutes appropriate use of the internet. Imposing rules on children is unlikely to be effective because young people will find ways to resist or subvert these. It is also important that parents provide their children with a degree of autonomy about their internet use. It is unlikely to be helpful if parents continually monitor what their children are doing online. However, it is reasonable for parents to set some rules for appropriate use to protect their child from harm. Examples include:
not using technology during the night;
restricting technology use during mealtimes or other social occasions;
limiting the amount of screen time which children are exposed to.
It will be more effective if young people are involved in discussions with their parents about what might constitute appropriate use of the internet.
\nSocial media companies have a responsibility to protect young people from harm. They can do this in a variety of ways by:
establishing strict and robust policies on the age at which users can access platforms;
blocking accounts of perpetrators of abuse;
reporting abuse to the police;
removing inappropriate content immediately;
filtering specific content before it goes live;
producing information to service users about responsible and safe use of social media;
generating warning messages when users have exceeded reasonable levels of screen time;
responding rapidly to reports of abuse.
This is not an exhaustive list. However, it illustrates the sorts of actions that can be adopted by social media companies to protect children and young people from harm. Companies have not responded quickly enough to reports of abuse or inappropriate content as cases of suicide in the UK suggest that social media companies have failed to protect young people from harm. The government also has a clear responsibility to hold companies to account which fail to protect children and young people from harm. Simply fining companies is not enough and will not necessarily address the problem. The government needs to take firmer action against social media companies which breach their safeguarding responsibilities.
\nIn addition, advertising companies have a responsibility to ensure that young people do not develop low body confidence. They can achieve this in a variety of ways. These include:
providing warning messages that images may have been digitally edited;
ensuring that images of bodies on products represent a range of body types, including a range of body sizes, disabled bodies and people of colour;
avoiding gender-stereotypes when advertising products;
producing warning messages about the dangers associated with product-use so that young people are aware of the risks;
portraying natural bodies without make-up on some products.
Our own research in Cambridge [10] with students in secondary schools demonstrates that they had a good understanding of the benefits and risks associated with social media. Focus groups demonstrated that the students had developed an excellent understanding of the benefits of social media and the relationship between social media use and mental ill health, including sleep deprivation, cyberbullying and low body-esteem. They had also developed a better understanding of how to keep themselves safe online. The quotes and Figure 1 below are taken from our research report [10].
\nStudents’ perspectives on social media.
\n
\n
\n
\n
\n
\n
\n
\n
\n
\n
\n
\n
The students summarised the advantages and disadvantages of social media below:
\nCyberbullying is bullying which takes place in the online world, including bullying which takes place on social media. It takes multiple forms. These include:
posting hurtful comments;
posting videos which are targeted directly at a person to cause distress;
posting photographs which are designed to cause distress;
inciting others to make hurtful comments aimed at a person;
sending hurtful text messages using a mobile phone;
sending hurtful private messages to a person [11].
According to Glazzard and Mitchell [11]:
\n\n
Forms of cyberbullying are outlined below and taken from Glazzard and Mitchell [11]:
\nsilent calls;
insulting and threatening texts;
abusive verbal messages;
cases of stolen identities [11]
pressurising someone to do something they do not wish to do;
making someone take their clothes off;
pressurising someone to engage in sexual conversations;
pressurising someone to take naked photographs of themselves;
making someone engage in sexual activity via the internet [11].
Groomers may spend a long time establishing a “relationship” with the victim by using the following strategies:
pretending to be someone they are not, for example, saying they are the same age online;
offering advice or understanding;
buying gifts;
giving the child attention;
using their professional position or reputation;
giving compliments;
taking them on trips, outings or holidays [11].
The following text is taken from our blog [12].
\n\n
\n
\n
\n
Statistics demonstrate the risks of internet use on young people’s lives. Key statistics are summarised below [13]:
year on year increases in the numbers and rates of police-recorded online child sexual offences in England and Wales and Northern Ireland
increases in police-recorded offences of obscene publications or indecent photos in all four UK nations over the last 5 years
increases in the number of URLs confirmed by the Internet Watch Foundation (IWF) as containing child sexual abuse imagery since 2015
less than half of children aged 12–15 say they know how to change their settings to control who can view their social media
the majority of parents, carers and members of the public agree that social networks should have a legal responsibility to keep children safe on their platforms.
Additionally:
a total of 5161 crimes of sexual communication with a child have been recorded in 18 months [14];
in 2019 there has been almost a 50% increase in offence in offences recorded in latest 6 months compared to same period in previous year [14];
in 2010 there has been a 200% rise in recorded instances in the use of Instagram to target and abuse children over the same time period [14];
there have been over 5000 online grooming offences recorded in 18 months [14].
Social media use can have a detrimental impact on children and young people’s mental health. It can result in anxiety, depression, body image concerns, self-harm, substance abuse and even death. However, for young people social media is a tool for networking, keeping in touch with friends, exchanging information, a source of support and advice and a rich source of knowledge. Preventing children and young people from using social media is not an appropriate solution, given all the benefits that come with it. Schools, parents and the digital industry need to do all they can to keep children safe from harm through adopting a proactive approach rather than a reactive approach when crises occur.
\nWe wish to thank Leeds Beckett University and the Carnegie Centre of Excellence for Mental Health in Schools for facilitating this research.
\nThe authors declare no conflict of interest.
Superhydrophobic properties were first observed in nature and on the surface of
Superhydrophobicity in nature [
Higher WCA values mean that a water droplet tends to maintain a spherical shape on the surface. On the other hand, lower WCA shows the tendency of a water droplet to spread on the surface. WCA is not the only parameter that is important to evaluate a superhydrophobic surface; other parameters like sliding angle and contact angle hysteresis are also important, which will show how slippery or sticky the surface is against a water droplet. These parameters will be discussed in depth later.
First, it is important to specify an ideal superhydrophobic coating. An ideal superhydrophobic coating has WCA higher than 150° (up to 180°, which is the theoretical limit), and also the sliding angle and contact angle hysteresis must be lower than 10° to guarantee low stickiness of the superhydrophobic surface against water.
This special wetting behavior will provide various special applications such as self-cleaning, anti-icing, antibacterial, oil-water separation, corrosion resistance, etc. for superhydrophobic surfaces and coatings.
As mentioned before superhydrophobic surfaces and coatings have a special wetting behavior against water droplets which leads to various industrial applications. But one might ask: what hinders the application of these properties in industries?
Superhydrophobic coatings and surfaces are rather new due to their unique wetting behavior against water in comparison to other traditional coatings currently used in industries like powder and sol-gel coatings and other organic, inorganic, and metallic coatings. The traditional coatings do not possess high water contact angle and are usually hydrophilic, and more time is needed to improve quality and production costs of the superhydrophobic coatings.
The superhydrophobic coatings and surfaces must have two main features to achieve superhydrophobicity:
Hierarchical micro- and nanoscale roughness on the surface
Low surface energy
These two must be considered to fabricate a superhydrophobic surface. Various fabrication methods have been presented: These techniques are divided into two main categories including top-down and bottom-up. The top-down approach includes template-based techniques, lithography, and surface treatment by plasma. In the bottom to top approach, the structure is self-assembled and includes layer-by-layer deposition, chemical deposition, and colloidal assemblies. The methods to achieve superhydrophobicity are not limited to these methods, and there are several others like electrospinning, templating, chemical etching method, chemical vapor deposition, phase separation, electroless galvanic coating, sol-gel method, and thermal spray methods.
The main shortcoming of superhydrophobic coatings and surfaces is the low stability of the superhydrophobic properties or high cost of fabrication or lack of high-scale production capabilities. This leads to the limited use of superhydrophobic coatings. Although several promising approaches have been taken recently to increase mechanical stability, which will be discussed further in this chapter.
To investigate surface wettability, three main parameters are used. These three parameters are the water contact angle, contact angle hysteresis, and sliding angle. WCA is not enough alone to understand surface wetting behavior, and at least one (the CAH or SA) is needed to know how much water droplets stick to the surface. The definition of each parameter is provided below.
Atoms and molecules of liquid and solid have higher energy on the surface because there are fewer chemical bonds on the surface. This energy is known as the surface tension or the surface free energy and shown by
In this equation, WSL is the adhesion work per unit area, ɣSA is the surface free energy between air and solid, ɣLA is the surface energy between air and liquid, and ɣSL is the surface free energy between liquid and solid.
When a water droplet is placed on the surface of the solid, these two will reach equilibrium, and the water droplet makes a specific angle with the surface known as water contact angle (
In this equation, ALA and ASL are, respectively, liquid/air interface and liquid/solid interface. In this situation regardless of gravitational potential energy and in constant volume and pressure in the equilibrium, dEtotal is considered equal to zero.
For a droplet with constant volume,
Then according to these equations, Cos
To define contact angle hysteresis, first advancing (
Consider a water droplet on the surface; if water droplets withdrawn or somehow evaporated from the surface, at first the surface area between the water droplet and surface does not change, but after a while, it starts to recede from the surface with a constant water contact angle equal to
If at a controlled condition, the volume of water droplet increases by a syringe or is cooled down on the surface, at first, the volume increases without change in surface area in contact with the solid until it begins to advance on the surface with a constant water contact angle equal to
Both advancing and receding contact angles on a surface depend on surface chemistry and topography, and a metastable droplet can have a contact angle between these two values which indicates the importance of measuring both of these values to evaluate surface wetting behavior [4].
Now consider a droplet on a tilted surface. While the droplet is moving downwards on a tilted surface, in the front, it expands, which will occur with a constant contact angle of
Schematics indicating the
The sliding angle is another parameter to evaluate the wetting behavior of the surface in which a droplet with a certain weight is dropped onto the surface and the sliding angle is the critical angle that a droplet starts to move and slide downwards. Sliding angle and contact angle hysteresis are both used to evaluate adhesion of droplet to surface. Contact angle hysteresis is more detailed and difficult to measure than the sliding angle [5].
Several wetting models have been defined to calculate contact angle on the surface. The first wetting model is Young’s equation that was just mentioned. This model does not consider surface roughness of the solid surface. Below Young’s equation is shown.
In this equation
It is obvious that in most cases the surface is not smooth, so Young’s equation is not able to calculate the contact angle properly, so the Wenzel equation was introduced. In this equation, it is considered that the surface wetting occurs uniformly:
In this equation
As mentioned before wetting is considered to be uniform in Wenzel’s equation, or in other words, it is considered that water went through all surface cavities and there is no dry part. On the other hand, there is another wetting model which considers that the wetting is not uniform and air packets do not let water get into the surface cavities. In this case, water is in contact with solid and air packets, and water contact angle with air is equal to 180
In the above equations,
Schematics showing the difference between (a) young, (b) Wenzel, and (c) Cassie-Baxter wetting models.
In case of a hydrophobic surface or coating surface wettability respects to one of Wenzel or Cassie-Baxter models. In an ideal condition, a superhydrophobic coating should be seen in the Cassie-Baxter model. In the Cassie-Baxter model as mentioned before the topography and surface energy is in a way that droplet cannot penetrate through the empty space between micro- and nanoscale pillars on the surface while in Wenzel model the surface structure is large enough for water droplets to penetrate. Droplet adhesion to surface is more considerable in the Wenzel model than in the Cassie-Baxter model due to penetration of droplet into the micro- and nanoscale grooves on the surface.
Change in surface roughness and energy will lead to a transition from the Wenzel to the Cassie-Baxter model, which depends on the hierarchical micro- and nanoscale roughness on the surface. An easy way to evaluate whether the transition between Wenzel and Cassie-Baxter model has occurred or not is to measure the sliding angle. A noticeable decrease in sliding angle will be observed after the transition from the Wenzel to the Cassie-Baxter model due to increase in surface roughness and fabrication of hierarchical micro- and nanoscale roughness.
Superhydrophobic surfaces and coatings as mentioned have a unique behavior against water droplets. This unique behavior results in a new set of applications including self-cleaning, anti-icing, antibacterial, oil-water separation, corrosion resistance, etc.
There have been many reports of oil contaminations in sea waters and rivers due to leak of factory waste into nature and accidents like Deep Water Horizon and Sanchi oil tanker collision. Removing oil contaminations from the water was always challenging and expensive, so different methods have been introduced by scientists to remove the oil contaminations. These methods are categorized into three main groups including water removal, oil removal, and smart controllable separators [6]. The water removing filters are superhydrophilic and superoleophobic; this kind of filter works underwater, and when they get wet by water, the presence of the water on the surface of the filter prevents oil to pass from the filter pores. The category in the oil removing method is a more efficient way because the amount of oil is always less than the amount of water, so it is logical that we try to remove the oil from water and not water from oil. To remove oil from water, the material should be superhydrophobic and superoleophilic; this mostly depends on the surface energy. The surface energy should be lower than the water surface tension (72.8 mN m−1) and higher than the oil surface tension (30 mN m−1). The oil removing method has two subcategories including oil removing filters and oil absorbents (like oil absorbent sponges, etc.)
Superhydrophobic oil removing filters are the main part of the oil removing category. Feng et al. [7] used a TiO2-coated mesh to separate oil from water (see Figure 4a). Parkin et al. [8] used a silicone elastomer coating on a mesh to efficiently separate organic solvents like hexane, petroleum ether, and toluene from water. As shown in Figure 4b, the water droplet cannot pass through the filter, but toluene can easily pass through.
(A) Oil-water separation with the use of TiO2-coated superhydrophobic and superoleophilic mesh, (B) opposite behavior of silicone elastomer-coated mesh against water and toluene droplets [
Also, absorbent materials are considered as a part of this group that can collect oil and changes it from liquid to a semi-solid phase. Tai et al. [9] built a graphene base sponge with high sensitivity and suitable recyclability (Figure 5a). The sponge was able to absorb oil up to 165 times of its weight. Pan et al. [10] built a three-dimensional superhydrophobic material through a one-step immersion process. This material had a high oil absorption capacity and was able to separate oil from water efficiently (Figure 5b). Superhydrophobic sponges could be used up to 300 times without losing their properties in an ideal situation. Currently, there are several serious challenges in this field. One of the main problems is the instability of the hierarchical structure of the coating on sponges that could easily get damaged by mechanical stresses or by exposure to chemical pollutions (acids, etc.). Also, most of the studies in this field worked on separation of oils with low density, and very few studies have been done on high-density oils [6].
(a) Engine oil removing process using a superhydrophobic sponge [
There are several ways to protect a surface from corrosion. One of the ways is to use different coatings or to use some processes to add heavy materials like chrome onto the surface which is harmful to the environment [11]. During the past two decades, scientists have been using superhydrophobic nanocomposite coatings without any toxic materials to protect various surfaces from corrosion [12, 13, 14]. The corrosion protection capability of the superhydrophobic coatings mainly is because of the presence of air pockets between surface and corrosive solution, and these packets act like a barrier and prevent corrosive ion diffusion and protect the substrate [15].
Advincula et al. [16] built a superhydrophobic corrosion-resistant nanostructure coating by using a conductive polymer in a two-step process. This coating could be deposited on any metal surface. They studied the corrosion resistance of the nanocomposite coating by the use of polarization test in NaCl solution in different pH and temperatures for 7 days, and the corrosion protection efficiency was reported to be higher than 95%.
Zhang et al. [17] worked on superhydrophobic membranes with different morphologies and chemical compositions through the sol-gel method. Humid air test and polarization tests showed insufficient corrosion protection. They realized that surface morphology is more important than the chemical composition of the sol-gel coating. In another study on the corrosion resistance of coatings on the Mg-Mn-Se alloy, three types of coatings with different wettabilities from hydrophilic to superhydrophobic were deposited on substrates, and corrosion resistance of the coatings in 3% NaCl solutions was studied [18]. Corrosion potential is known to be a criterion for corrosion resistance; the higher potential shows higher corrosion resistance in general [19]. Superhydrophobic nanocomposite coating deposited with plasma electrolytic oxidation1 on Mg alloy showed the best results in polarization tests (Figure 6b). Li et al. [20] managed to build a superhydrophobic corrosion-resistant polyurethane coating containing Al2O3 nanoparticles. The water contact angle of the coating with 2 wt% PU was 151
(a) Coating with different wettability after humid air test [
The lotus leaf’s surface is always clean regardless of any contamination that may be present in its surrounding environment [21]. This leaf has a unique surface structure and is coated with wax and shows superhydrophobic properties, and the sliding angle is very low so water can easily slide on the surface of the leaf and remove any contamination. The aforementioned properties of superhydrophobic surfaces and coatings are called self-cleaning properties. Many superhydrophobic coatings were synthesized with different methods and used in industries, daily, or in military use [22, 23].
Lions et al. [24] produced a nanocomposite self-cleaning superhydrophobic high-density PE coating containing TiO2 nanoparticles. Results showed that water droplets could remove big alumina particles or small graphite particles from the surface of the coating (Figure 7a–c). On the other hand, high-density PE by itself had a smooth surface which resulted in water droplets sticking on the surface of the coating, and the coating could not have self-cleaning properties (Figure 7d). Rodriguez et al. [24] also managed to build a coating based on lotus leaf surface morphology. This coating was made by nanostructure template assembly, and the sliding angle was between 4
(a, b, c) Showing self-cleaning properties of the superhydrophobic high-density PE with TiO2 nanoparticles; (d) adhesion of water droplet to high-density PE coating while the sample is held vertically [
But the question is how a superhydrophobic surface has self-cleaning properties. The first reason is due to surface energy calculations. To explain how even hydrophobic particles can be collected by rolling drop will be further discussed.
When a spherical particle (pollution) is in contact with water on the sample surface (Figure 8), the area of the wetted surface can be calculated by the equation below in which 2Rs is the sphere diameter:
Schematic of the spherical particle that has moved from air into the water; the contact angle between the particle and water is shown [
Area of the wetted part of the particle on the surface (pollution) =
Also, the liquid will lose some of the area of itself that can be calculated through the below equation:
Lost area of the liquid =
The change in surface energy can be calculated by the below equation:
When the equivalent water contact angle is not 0
Chen et al. [26] introduced a unique mechanism for self-cleaning surfaces by inspiration from Cicada wings (Figure 9). On this surface, pollutions are automatically removed due to the bouncing movement of water droplets on the surface. The ability of the pollutant particle to bounce on the surface of the superhydrophobic coating mostly depends on the stability of the particle into the liquid phase. This unique coating shows there is a chance to produce and develop new self-cleaning coatings.
Self-cleaning properties of coating inspired from Cicada wing through bouncing movement of the pollutant particle on the surface [
Every year ice storms harm the electrical transmission equipment, communication systems, highways, etc. [27]. To reduce these kinds of damages, different methods of producing an anti-icing surface have been introduced [28]. Although there are other conventional methods like reducing icing temperature point and thermos electrical and mechanical methods, these methods use a lot of energy and are not economical.
In recent years superhydrophobic coatings have been suggested as an anti-icing coating. As mentioned before, the presence of air pockets on the superhydrophobic nanocomposite coating structure causes the water droplets to slide easily on the surface; therefore there will not be enough time for the droplet to frost on the surface [29, 30, 31]. In situations that the temperature is very low, superhydrophobic nanocomposite coatings can be used to prevent water from wetting the surface and cause frost and finally damage to the surface or equipment [32]. Chen et al. [33] deposited four types of coatings with different wettabilities from superhydrophilic to superhydrophobic on Al substrate. Dynamic studies of droplet impact to the superhydrophobic surface at low temperature showed that if the angle between the direction of droplet and surface of the coating is higher than 30
Comparison of ice growing rate on bare Al and Al with superhydrophobic nanocomposite coating containing multi-walled silicon nanotubes [
In another study, an easy and low-cost nanocomposite coating containing polydimethylsiloxane with different coupling agents was investigated [35]. As shown in Figure 11, the superhydrophobic coating is completely effective in reducing ice adhesion to the surface up to 97%.
Comparison of the uncoated and superhydrophobic coated sample at −5°C and high humidity [
Scientists have some disagreements about the relations between superhydrophobicity and anti-icing properties. Some believe that these two are not related to each other; on the other hand, some insist that superhydrophobicity will result in anti-icing properties [36]. These disagreements are because there is no specific standard that can be used to evaluate ice adhesion to surfaces; also the method of preparing ice for each study is different from the other, so by now it is not possible to have a definite answer to this matter [28]. The recent studies have helped to get a better understanding of the ice formation process on the superhydrophobic surface, but there is still much left unknown about the nucleation, growth, and adhesion to the surface which need more studies and information on this subject.
One of the main problems that a solid moving in water like a submarine is facing is the drag force; this force has resulted from the friction force between water and solid surface which is moving through water. There are several examples in nature which show antidrag properties [37]. By inspiration from shark skin and lotus leaf, several superhydrophobic coatings were fabricated [38]. Here, the positive effect of superhydrophobicity on drag reduction will be discussed. As mentioned before superhydrophobic coatings have some air pockets inside their hierarchical micro- and nanoscale surface structure which will reduce the contact between solid and liquid so the drag force will dramatically reduce [39]. Drag reduction phenomenon by superhydrophobic surfaces was first reported in 1991 [40]. Muan et al. [41] studied the effect of superhydrophobic nanocomposite coating on drag reduction in linear and turbulent streams. This superhydrophobic coating contained TiO2 nanoparticles and was deposited on the Al substrate, and the drag force on this sample was compared with non-coated sample. Results showed that superhydrophobic coating will reduce drag force up to 30% for linear and 15% for a turbulent stream. Chen et al. [42] coated a ball with superhydrophobic coating; then they used a stage as shown in Figure 12 to throw a ball with superhydrophobic coating and one without any coating; the ball with superhydrophobic coating had an average speed of 27.0 cm min−1, but the average speed of ball without coating on water was 12.5 cm min−1. This indicates that the superhydrophobicity is completely effective in the reduction of drag force and facilitates moving through water. On the other hand, Wei et al. [43] had a different opinion about this phenomenon. They believed that drag reduction is not because of the lower solid and liquid contact and the plastron effect is the main reason of this phenomenon. They fabricated a superhydrophobic coating by electrodeposition of gold on substrate. This superhydrophobic coating reduced the drag force up to 38.5% in speed of 0.46 m s−1 which is amazing. They said that reduction in water contact angle of the superhydrophobic coating will have a very small effect on drag reduction and will change it into 32.7%. They concluded that the main reason for drag reduction is not the high water contact angle but it is because of the plastron effect [44]. On a non-coated sample, the friction is just between solid and water, but on a superhydrophobic surface, there are three phases, water, solid, and trapped air between these two, so the friction will be drastically reduced in this situation that is known as the plastron effect.
(a) Schematic of set up to throw balls into the water in the same condition, (b) balls’ location-time diagram, (c, d, e) balls’ picture at t1 = 0 s, t2 = 0.61 s, and t3 = 1.11 s [
Antibacterial properties are essential in biosensors, implants, food packaging, and industrial and marine equipment [45, 46]. For example, one of the main reasons that cause infection in patients after surgery is bacteria that grow on implants [46]. To solve this problem, antibacterial coatings that reduce the bacterial adhesion to the surface or coatings containing antibacterial additives are suitable [47]. Schoenfisch et al. [47] produced a zero gel with the ability of nitrogen oxide release by spray method. In this case a combination of superhydrophobicity and nitrogen oxide release will result in a very strong antibacterial property. Nitrogen oxide showed a positive effect after some time and reduced the number of alive bacteria that had attached to the superhydrophobic surface. Ivanova and Philipchenko introduced an easy method to produce superhydrophobic coating by using chitosan nanoparticles. Antibacterial property is enhanced because of chitosan nanoparticles. Usage of nanosilver particles in superhydrophobic coatings also enhances the antibacterial properties; this enhancement is due to diffusion into the bacterial cell and damages the DNA structure from the inside [48]. There are still some doubts and questions about the mechanism of silver antibacterial properties. Heinonen et al. [49] fabricated a superhydrophobic coating containing silver nanoparticles through the sol–gel method. First silver nanoparticles were attached to ɣ-alumina by the Tollens process, and then the composite coating was functionalized with flouroalkyl silane2 to reduce the surface energy. The diagram in Figure 13 shows the number of bacteria on non-coated steel, superhydrophobic coated steel, and superhydrophobic coating with nanosilver particle steel after 1-day exposure to bacteria at 25°C; the superhydrophobic coating with silver nanoparticles reduced the alive bacteria on the surface up to 88%.
It shows the number of bacteria on non-coated steel (AISI304), superhydrophobic coated steel (SHP), and superhydrophobic coating with nanosilver particles steel (SHP + Ag) after 1-day exposure to bacteria at 25°C [
Xue et al. [50] used the same method to fabricate silver nanoparticles on cotton fibers. After that hexadecyltrimethoxysilane was used to modify these fibers, and superhydrophobicity was achieved. As shown in Figure 14, non-coated cotton fiber does not have any resistance against bacteria, but on the other hand, the superhydrophobic coated sample with nanosilver additives destroys almost all of the bacteria from its surface.
Comparison of antibacterial properties on non-coated cotton fiber (the white ones) and superhydrophobic coated fiber cottons (the gray ones) [
In general, superhydrophobic coatings are not an ideal antibacterial coating, and in some cases, instability, toxicity and low durability of these coatings make them a problematic method for antibacterial purposes. So, further studies in this field are needed to overcome the current problems.
Several techniques have been introduced to fabricate superhydrophobic surfaces. These techniques are divided into two main categories including top-down and bottom-up. The top-down approach includes template-based techniques, lithography, and surface treatment by plasma. In the bottom to top approach, the structure is self-assembled and includes layer-by-layer deposition, chemical deposition, and colloidal assemblies. The methods to achieve superhydrophobicity are not limited to these methods, and there are several others like electrospinning, templating, chemical etching method, chemical vapor deposition, phase separation, electroless galvanic coating, sol-gel method, and thermal spray methods.
Chemical etching and other methods like plasma etching can be used to introduce micro- and nanoscale roughness to the substrate. Also, this process can be combined with other methods of fabrication superhydrophobic coatings to improve special surface roughness that is needed. Almost in all studies, chemical etching and similar methods like that are followed by surface modification with low surface energy materials like fatty acids, fluoroalkyl silanes, etc. This kind of superhydrophobic surfaces only has laboratory usage. Because of their low stability, they are mainly used to study the behavior of superhydrophobic surfaces against water in different situations, but the combination of this method with others seems promising.
Song et al. [51] used CuCl2 solution to do chemical substitution reaction on Al substrate to make hierarchical micro- and nanoscale roughness on the Al substrate which is necessary to achieve superhydrophobicity. After the chemical etching, the surface was modified with a fluoroalkyl silane solution to increase the WCA to higher than 150
When the aluminum plate is immersed into the CuCl2 solution, the chemical substitution starts, and copper ions react with the aluminum element on the surface, and aluminum chloride will be made by this reaction. As a result, the copper element will deposit on the surface. The aluminum corrosion potential is lower than copper, so when copper deposits on the surface of the aluminum, a galvanic reaction will occur, and reaction speed will be increased. This reaction is exothermic and produces a lot of heat. In addition to this, the copper on the surface reacts with solution water, and hydrogen ions will be produced which will make the solution acidic and be able to remove aluminum from the substrate. When the hydrogen ions react with the aluminum on the surface of the sample, then a small hydrogen bubble will be made on the surface so during that time the copper ions cannot affect that part of the sample. As a result, the corrosion will not be uniform. This will be beneficial to achieve hierarchical micro- and nanoscale roughness. Below the reactions are mentioned.
The aluminum plate is a polycrystalline metal that has grain boundaries and dislocations; these places are ideal for corrosion and chemical substitution, so immediately after immersion of Al plate into the CuCl2 solution, the reaction will take place in these places. As a result, rectangular planes and nanoscale steps will be formed on the surface. In Figure 15, SEM image of the surface after chemical etching for different periods is shown. It is worth mentioning that the samples were washed in water by ultrasonic bath [51].
Efficient conditions to make a hierarchical structure on the Al substrate through chemical etching
SEM image of etched aluminum surface in CuCl2 solution in different periods of time: (a, b) 1 s, (c, d) 3 s, (e, f, g) 10 s, (h, i, j) 70 s [
In the aforementioned study, the effect of removal of deposited copper on the substrate was studied. In the results as can be seen in Figure 16 in which the copper had been removed from the surface through ultrasonic bath, the stability of the superhydrophobicity is higher [51].
Crucial role of surface modification after the chemical etching process
WCA measurement of the superhydrophobic samples during time (black line (with deposited copper), red line (without the deposited copper)) [
Chemical modification and reducing surface energy are necessary to achieve superhydrophobicity. Surface modification of the smooth surface with fluoroalkyl silane will increase the WCA up to 117 which indicates the effect of surface energy. Figure 17 shows WCA measurement results for samples with a different etching time which were chemically modified with fluoroalkyl silane solution before WCA measurements. As can be seen for etching time higher than 10 seconds, an enormous improvement in hydrophobicity is shown, and the superhydrophobicity was achieved. The reason for this improvement is the combination of hierarchical micro- and nanoscale roughness caused by chemical etching followed by low surface energy due to chemical modification with fluoroalkyl silane solution [51].
Change in WCA for different times of etching process (all samples were chemically modified with fluoroalkyl silane solution) [
This method has been used in various studies to fabricate superhydrophobic coatings on different substrates. The sol-gel coating can be applied on the surface by various methods like dip coating, spin coating, spraying, etc. To achieve superhydrophobicity, the sol-gel coating is modified with a low surface energy material. Different approaches were taken to build a superhydrophobic coating, and some of them are mentioned here. After that, a more detail study about the sol-gel process will be provided.
One of the sol-gel coatings is alumina sol in which the aluminum tri-sec-butoxide was used as a precursor, and the particle size in sol was about 80 nm. The sol was deposited on the glass substrate by spin coating and cured at 400°C. The presence of nanoalumina particles in coating makes peaks on the surface of the coating with a height of 1
(a) SEM image of nanoalumina coating surface after 5-minute immersion into boiling water, (b) FESEM image of modified SiO2 coating, which was deposited by electrospray method [
Mahadik et al. [53] used methyltrimethoxysilane as a precursor and fabricated a coating by the sol–gel method. The coating was deposited on the glass slides by dip coating and then cured at 150°C. After surface modification with trimethylchlorosilane, superhydrophobic properties were achieved. Coating WCA was 170 and it was stable up to 550°C but at temperatures higher than 600°C and after 2 h of exposure in this condition, the sample showed superhydrophilic properties which indicates that the surface chemical modification was destroyed. The superhydrophobicity was restored after doing the surface chemical modification with trimethylchlorosilane.
Kim et al. [54] fabricated a superhydrophobic silica coating by electrospraying of sol–gel solution on the substrate. Tetraethoxysilane and methyltriacetoxysilane were used as sol–gel precursors. To achieve superhydrophobicity and self-cleaning properties, the coating was modified by perfluoro-octyl silane (Figure 18b).
Various studies have been reported in which sol-gel method was used to fabricate a rough surface and the low surface energy materials were used to reduce the surface energy and reach superhydrophobic properties, but almost all of the coatings suffered from lack of superhydrophobic property stability [55].
Superhydrophobic properties have been achieved on aluminum and silicon substrates by first fabrication of a rough surface on the substrate by either chemical bath deposition or electrochemical deposition or chemical etching, and then low surface energy treatments were done by FAS-17, stearic acid, or rf-sputtering of PTFE films [56, 57, 58, 59, 60, 61].
Brassard et al. fabricated a superhydrophobic coating using the sol–gel method. They used the Stober process to fabricate SiO2 nanoparticles from TEOS precursor, and then the synthesized nanoparticles were functionalized by fluoroalkyl silane. The functionalized SiO2 nanoparticles were spin-coated in Al6061 substrate and dried at 70°C. The FTIR spectra results related to the functionalized SiO2 nanoparticles are shown in Figure 19. The peaks 610 cm−1, 730 cm−1, 960 cm−1, 1000 cm−1, and 1250 cm−1 are related to C▬F bonds in CF, CF2, or CF3 [62, 63, 64, 65]. Also, the peaks at 1145 cm−1 approve chemical bonding between SiO2 particles and fluoroalkyl silane. The peaks at 430 cm−1, 800 cm−1, and 1100 cm−1 are related to Si▬O▬Si bond.
FTIR spectra of fluorinated silica nanoparticles coated on Al substrate as (A) a function of the number of layers and (B) schematic of the functionalized silica nanoparticle [
The main problem with almost all the aforementioned superhydrophobic coatings is their lack of mechanical properties due to low adhesion and cohesion of the coatings. The articles about these kinds of superhydrophobic coatings do not consider the mechanical properties and stability, and they just focus on the effect of other coating parameters on the WCA of the coating. Khodaei and Shadmani [66] fabricated a superhydrophobic nanocomposite coating using the sol-gel method. The substrate was commercially available AA1050. The substrate was first sanded and washed by acetone and then chemically etched to achieve micro roughness on the surface. Several approaches were compared to observe the effect of TEOS and GPTMS hybrid sol-gel coating containing functionalized Al2O3 nanoparticles. They used functionalized nano-Al2O3 particles to improve surface micro- and nanoscale roughness and also improve mechanical properties of the superhydrophobic coating. In Figure 20 the manufacturing process and WCA measurements are reported. In total four samples were compared to each other: (a) chemically etched and then functionalized in FAS solution without sol-gel coating, (b) chemically etched substrate dip coated by sol-gel hybrid coating and then functionalized by FAS solution, (c) addition of Al2O3 to the hybrid sol-gel coating, and (d) addition of functionalized Al2O3 to the sol-gel coating. Results showed that functionalized nanoparticles had a uniform dispersion in coating and fabricated a uniform hierarchical micro- and nanoscale roughness which is ideal for superhydrophobicity and also acted as a shield during abrasion cycles and protected from the surface and superhydrophobic properties after 200 abrasion cycles with a total length of 300 cm.
Schematics of superhydrophobic coating fabrication and investigation of functionalized and non-functionalized nanoparticles addition to sol-gel coating. Four samples are (a) aluminum substrate, which was chemically etched and then functionalized by FAS solution without any sol-gel coating, (b) the aluminum substrate after chemical etching was dip coated in TEOS-GPTMS hybrid sol-gel coating and the functionalized by FAS solution, (c) the same process was done by a hybrid TEOS-GPTMS coating containing Al2O3 nanoparticles and (d) functionalized Al2O3 was added to the coating and water contact measurements are reported [
In this method, galvanic reactions are used to fabricate superhydrophobic coatings. The reaction starts with contact of metal ion with the surface of a metal with lower corrosion potential. The reaction would be spontaneous, so it is a low-cost and efficient method to make roughness on the surface of the metal. After this process, a low energy material is used to decrease the surface energy and achieve superhydrophobicity [67].
Xu et al. [68] fabricated a superhydrophobic feather-like silver coating on a copper substrate using electroless galvanic deposition method. The WCA was 169 and the sliding angle was 2. In Figure 21, the feather-like morphology of the silver coating is shown.
SEM image showing the feather-like morphology of superhydrophobic silver coating on copper substrate [
The electrodeposition method is one of the chemical-based methods used to achieve superhydrophobicity. The main advantages of this method are its low cost of production, capability of large-scale production, being independent from the shape and size of the sample, and great uniformity. Although it is worth mentioning that the electrodeposition technique fabricates a hierarchical micro- and nanoscale roughness on the surface of metal and a low energy material is needed to be coated on the surface after electrodeposition to reduce surface energy. A combination of the hierarchical structure on the surface and lowered surface energy by low energy material coatings like lauric acid, stearic acid, fluoropolymers, etc. will lead to superhydrophobicity. Also, several studies have been reported that used a two-step electrodeposition technique to fabricate ideal hierarchical micro- and nanoscale roughness on the surface [69, 70].
Jain et al. [71] fabricated a superhydrophobic copper substrate by electrodeposition technique followed by low surface energy modifications in stearic acid. The WCA was 162° ± 3° and the sliding angle was about 3°. The copper substrate was chosen due to its wide application in industries. In Figure 22, SEM images of surface morphology and WCA are shown at different values of voltages including 0.5 V, 0.7 V, 0.9 V, and 1.1 V, showing the formation of globular asperities on the surface at potentials over 0.7 V.
SEM images of surface morphology and WCA are shown at different values of voltages including 0.5 V, 0.7 V, 0.9 V, and 1.1 V [
The superhydrophobic surface fabricated by electrodeposition followed by stearic acid coating also showed self-cleaning properties. In Figure 23, superhydrophobic and ordinary surface are compared against an SiC particle dirt. As seen in the figure, the superhydrophobic sample cleaned completely by 55 drops of water.
Self-cleaning properties of superhydrophobic copper substrate fabricated by electrodeposition method and compared to the ordinary substrate (a) dirty samples by SiC particles, (b) 2, (c) 5, (d) 10, (e) 30, and (f) 55 drops of water.
In another study Xiang et al. [72] fabricated a superhydrophobic and superoleophilic mesh for oil-water separation using electrodeposition technique. The stainless-steel mesh was fist washed and degreased by ethanol and then etched by 8 M HCl to remove the oxidation layer from the surface. The prepared mesh then put into solution consists of ethanol, CuSO4, Na2SO4, NiSO4, NDM, and dopamine hydrochloride, and the electrodeposition was done at 0.6 A cm−2 for 20 min. The result was a stainless-steel mesh with hierarchical micro- and nanoscale roughness as shown in Figure 24. The WCA was 162° and OCA3 was 0°.
WCA and OCA on stainless steel substrate before (a) and after (b and c) electrodeposition process [
In Figure 25, a schematic of the final substrate after electrodeposition is shown. The Cu and Ni molecules are co-deposited by the conjugated pDOp-NDM. As mentioned before to achieve superhydrophobicity, hierarchical surface structure and low surface energy are needed at the same time. In this case, the pDOp-NDM molecules drastically reduced surface energy. Besides, the pDOp acts as a bonding agent which increases the bonding of Cu and Ni to the surface and also attaches them to the NDM. At last, the superhydrophobic and superoleophilic mesh had a high separation efficiency, good recyclability, and strong durability [72].
The conjugated pDOp-NDM anchored on Cu and nucleus [
Su et al. [73] fabricated a robust abrasion and corrosion-resistant superhydrophobic coating on copper substrate by electrodeposition method. The nickel electrodeposition in this study was obtained through Watts bath consisting of NiSO4, NiCl2.6H2O, and H3BO3. The electrodeposition current density was 0.75 A cm−2 and the duration time was 1 h. After that, the sample was put into a sealed reactor containing AC-FAS ethanol solution for 1 h at 110°C. In Figure 26, the schematic of the coating process is shown.
Schematics of Cu substrate electrodeposited by Ni followed by AC-FAS treatment [
The nickel coating on top provided a hierarchical structure on surface, and AC-FAS lowered the surface energy resulted in superhydrophobic properties with good mechanical properties and high corrosion resistance. In Figure 27, Nyquist and bode plots of pure copper substrate, electrodeposited Ni, and superhydrophobic surface are shown in which the superhydrophobic surface has much higher corrosion resistance [73].
Nyquist and bode plots of pure Cu substrate, electrodeposited Ni, and superhydrophobic surface [
Wu et al. [74] fabricated a ZnO-based surface on a glass slide in which a layer of ZnO was first deposited on the substrate, and then self-assembled monolayers4 were used to lower surface energy and achieve superhydrophobic properties. In Figure 28, the microstructure of the ZnO coating on the substrate is shown. The hierarchical micro- and nanoroughness of the ZnO coating followed by low surface energy treatment will lead to superhydrophobic properties.
FESEM image of the surface at (a) low magnification, (b) high magnification, (c) hexagonal nanorod, and (d) cross-sectional view [
Xu et al. [74] fabricated a superhydrophobic nanocomposite TiO2/polystyrene coating which can be deposited through simple spray coating. TiO2 nanoparticles were first functionalized by PFOA and then added to the polystyrene matrix and deposited on the substrate by spraying. It was found that usage of equal amounts of functionalized TiO2 and polystyrene led into optimum superhydrophobic properties with WCA of 166°.
Wang et al. [74] fabricated a superhydrophobic surface on PDMS using modified ZnO particles. The ZnO particles were fabricated through a CVD process, and then they were functionalized to reduce the chance of agglomeration. In Figure 29, as-prepared ZnO rods are shown which are greatly suitable to form hierarchical micro- and nanoscale roughness. Also, coating WCA and microstructure are shown.
(a, b, c) WCA, advancing and receding angles, (d, e) coating microstructure, (f and g) as-prepared ZnO rods [
Wu et al. [75] fabricated a superhydrophobic coating by simply adding functionalized silica nanoparticles. The silica nanoparticles are fist added to an ethanol solution containing PTES to form hydrophobic silica particles, and then they were added to the epoxy to form the nanocomposite coating. As shown in Figure 30, the coating deposition of the substrate is not limited to only one method, and it can be brushed, dipped, and sprayed to the substrate.
Superhydrophobic nanocomposite coating deposited on substrate through different methods and their microstructure and WCA measurements [
The lithography method is one of the well-known processes used to fabricate superhydrophobic coatings. This method includes light-assisted, soft, nano-, electron beam-assisted, X-ray, and colloidal lithography. In this method, superhydrophobic surface is generally made using a soft or hard surface as a reference and makes a new surface by copying the reference surface [76]. Different methods of lithography are not independent of each other, and it is possible two use two methods of lithography during the fabrication process. For example, light-assisted lithography is used during nanolithography [77].
Before in traditional lithography, a smooth surface was used as a reference, but now in the photolithography process, all the details of surface roughness can be identified by the use of X-ray and a photosensitive thin film. In soft lithography also an elastomer material is used for molding the surface, and then that is used for templating from the surface [78].
Templating method is one of the methods to fabricate superhydrophobic surfaces in which usually lithography method is used to build a template from the reference surface, and then that template will be used for templating procedure. The template surface can be a paper filter, insect wing, some animal’s skin, and plant leaf. From the chemical and morphological aspect, the template can even be a molecule or polymer [79, 80].
In general, this method includes making a template and molding from that and then building a surface by using that mold (see Figure 31). One of the ways to build a superhydrophobic surface is to use gecko’s feet as a template [81]. In Figure 31, the templating procedure from the lotus leaf is shown; in this procedure, first the lotus leaf is fixed on a prepared holder, and this leaf is coated with gold, and a nickel mold is used to build a mold from the lotus leaf.
Schematics of the templating procedure from lotus leaf [
This method includes deposition of gas on substrate by chemical reactions. To evaporate the material in the CVD process, plasma, laser, catalysts, etc. can be used to ease the process. Some works that have used this method to achieve superhydrophobic properties will be mentioned here. Borras et al. [83] used plasma-assisted CVD to achieve superhydrophobicity by Ag-TiO2 nanofibers on the surface of the substrate. The fibers included an Ag core wrapped with a TiO2 shell. The water contact angle of the surface depended on the shape of the fibers and space between them. In the best situation, WCA was reached to near 180
In another study, Jung and Bhushan [84] fabricated multi-walled CNT by catalyst-assisted CVD and then combined that with resin and sprayed it on the Si substrate with microstructural roughness. The WCA of the surface was 170
Many other studies have used CVD to fabricate superhydrophobic coating, but the process is very complicated, and it is not possible to control the resulting surface morphology completely.
This method is an easier method than CVD and plasma which does not need very special equipment. In this method, several layers of thin coating will be applied on the substrate by changing the electrical charge, and there is less limitation in the size of the sample than CVD. Layer-by-layer deposition is a relatively easy method to fabricate a hierarchical structure on the substrate. Usually, some nanoparticle additives are used to improve the surface roughness. Cohen and Rubner’s group [85, 86] used this method to fabricate superhydrophobic coatings. They used different kinds of solutions to fabricate three layers of the coating including adhesion, body, and top layer. In Figure 32, the schematic of the LBL process shows three solutions, consisting of polyallylamine hydrochloride5, sodium 4-styrenesulfonate6, and silica particles.
Schematic of the LBL method used to fabricate superhydrophobic coating [
This method is usually used to ease sol-gel, chemical deposition, and lithography processes to fabricate hierarchical micro- and nanoscale roughness. In this method, chemical and van der Waals bond between the dispersed particles and deposition of these particles on the surface will make a multilayer rough surface [87]. To fabricate these kinds of multilayer rough surface, immersion or spin coating is used. For example, Min et al. [88] fabricated colloidal particles with a controlled size of 70 nm which were possible to deposit on large surfaces using a spin coating method. In Figure 33a, the TEM image of synthesized silica nanoparticles is shown. In Figure 33b, the SEM image of coating surface structure after deposition on the substrate by spin coating with 10,000 rpm and for 10 minutes is shown. The thickness of the crystalline colloidal layer can be controlled by the speed and time of the spin coating process.
(a) TEM image of synthesized silica nanoparticles, (b, c) SEM image of the coating surface structure on substrate [
These two methods are similar to each other and are used to fabricate micro- or nanostructures. The electrospinning method is an easy way to fabricate continuous polymer fibers in micro- and nanoscale [89]. This method is suitable to make a roughened surface needed to achieve superhydrophobicity on the surface [90]. To produce uniform fibers, polymer molecular weight and solution concentration should be controlled [91].
On the other hand, the electrospraying method is not just limited to fibers, and the deposited polymer film can have different shapes from spheres to fibers [92]. Generally, polymeric fibers are produced through electrospinning, and films consist of spherical seeds, which are fabricated by electrospraying method [93].
Ding et al. [94] fabricated superhydrophobic nanostructured ZnO coating by the electrospinning method. The composite coating consisted of polyvinyl alcohol7 and ZnO nanofibers. After that to reduce surface energy, fluoroalkyl silane was used to modify the surface and lower the energy on the surface, and superhydrophobicity was achieved. The FESEM image of inorganic ZnO fibers is shown in Figure 34. Before surface modification with fluoroalkyl silane, WCA was 0°, and the surface was superhydrophilic, but after surface modification, the WCA was 165°, and the sliding angle was 5°.
FESEM image of ZnO fibers film (a, a’) before modification and (b, b’) after modification [
Burkarter et al. [95] fabricated a PTFE film by electrospray method on a glass substrate which had a fluorine-doped tin oxide coating. The result was a superhydrophobic coating with WCA equal to 160° and a sliding angle less than 2°. Actually, the electrospray method used in this study was very similar to the electrospinning, but because there was no need for PTFE fiber, then the electrospray method was used. The SEM image of hierarchical micro- and nanoscale roughness of the coating is shown in Figure 35.
SEM image of hierarchical micro- and nanoscale roughness of PTFE film deposited by electrospray method on a glass substrate which had a fluorine-doped tin oxide coating [
In this method, a surface pattern is made by separation solid phase from a semi-stable mixture by changing the temperature, pressure, or other environmental conditions. Phase separation method can also be involved in colloidal assembling. The surface structure in this method can be in macro-, micro-, or nanoscale [96]. This method is usually followed by sol-gel method to control resulted surface pattern [97]. Phase separation method can also be followed by other methods like plasma treatment, electrospinning, and self-aggregation to achieve superhydrophobicity. The phase separation method is partially related to colloidal polymerization [98].
There have been many improvements in the case of superhydrophobic coating fabrication and their stability, but there is still room to grow. Many studies on the superhydrophobic coatings do not consider mechanical properties as their focus or at least part of the study. Many of superhydrophobic coatings have poor bonding either to the substrate or to itself. Also, many other superhydrophobic coatings will lose their special wetting behavior during long-term use or in harsh environments. Also, almost in most superhydrophobic coatings, a low surface energy treatment is done, which does not have suitable bonding and stability on coating substrate and, in the case of fluorine-based materials, is toxic and harmful for environments. These weak points have hindered industrial application of superhydrophobic coatings.
IntechOpen books and journals are available online by accessing all published content on a chapter/article level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2022-04-14
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2022-04-14
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5911},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12562},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17573}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish'+rtrim('')+'"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4379},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"848",title:"Environmental Policy",slug:"environmental-sciences-ecology-environmental-policy",parent:{id:"126",title:"Ecology",slug:"environmental-sciences-ecology"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:29,numberOfWosCitations:60,numberOfCrossrefCitations:25,numberOfDimensionsCitations:75,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"848",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1639",title:"Agroforestry for Biodiversity and Ecosystem Services",subtitle:"Science and Practice",isOpenForSubmission:!1,hash:"65df65466494368c65448c2ab90f371d",slug:"agroforestry-for-biodiversity-and-ecosystem-services-science-and-practice",bookSignature:"Martin Leckson Kaonga",coverURL:"https://cdn.intechopen.com/books/images_new/1639.jpg",editedByType:"Edited by",editors:[{id:"95689",title:"Dr.",name:"Martin",middleName:"Leckson",surname:"Kaonga",slug:"martin-kaonga",fullName:"Martin Kaonga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"34871",doi:"10.5772/34524",title:"Improved Policies for Facilitating the Adoption of Agroforestry",slug:"improved-policies-for-facilitating-the-adoption-of-agroforestry",totalDownloads:3113,totalCrossrefCites:11,totalDimensionsCites:26,abstract:null,book:{id:"1639",slug:"agroforestry-for-biodiversity-and-ecosystem-services-science-and-practice",title:"Agroforestry for Biodiversity and Ecosystem Services",fullTitle:"Agroforestry for Biodiversity and Ecosystem Services - Science and Practice"},signatures:"Frank Place, Oluyede C. Ajayi, Emmanuel Torquebiau, Guillermo Detlefsen, Michelle Gauthier and Gérard Buttoud",authors:[{id:"100556",title:"Dr.",name:"Frank",middleName:null,surname:"Place",slug:"frank-place",fullName:"Frank Place"},{id:"105799",title:"Dr.",name:"Oluyede",middleName:null,surname:"Ajayi",slug:"oluyede-ajayi",fullName:"Oluyede Ajayi"},{id:"134300",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Torquebiau",slug:"emmanuel-torquebiau",fullName:"Emmanuel Torquebiau"},{id:"134301",title:"Dr.",name:"Guillermo",middleName:null,surname:"Detlefsen",slug:"guillermo-detlefsen",fullName:"Guillermo Detlefsen"}]},{id:"34866",doi:"10.5772/34877",title:"Consumption of Acorns by Finishing Iberian Pigs and Their Function in the Conservation of the Dehesa Agroecosystem",slug:"consumption-of-acorns-by-finishing-iberian-pigs-and-their-function-in-the-conservation-of-the-dehesa",totalDownloads:3521,totalCrossrefCites:6,totalDimensionsCites:25,abstract:null,book:{id:"1639",slug:"agroforestry-for-biodiversity-and-ecosystem-services-science-and-practice",title:"Agroforestry for Biodiversity and Ecosystem Services",fullTitle:"Agroforestry for Biodiversity and Ecosystem Services - Science and Practice"},signatures:"Vicente Rodriguez-Estevez, Manuel Sanchez-Rodriguez, Cristina Arce, Anton R. Garcia,\r\nJose M. Perea and A. Gustavo Gomez-Castro",authors:[{id:"101973",title:"Dr.",name:"Vicente",middleName:null,surname:"Rodríguez-Estévez",slug:"vicente-rodriguez-estevez",fullName:"Vicente Rodríguez-Estévez"},{id:"108544",title:"Dr.",name:"Manuel",middleName:null,surname:"Sánchez",slug:"manuel-sanchez",fullName:"Manuel Sánchez"},{id:"108546",title:"Dr.",name:"Antón R.",middleName:null,surname:"García",slug:"anton-r.-garcia",fullName:"Antón R. García"},{id:"108547",title:"Dr.",name:"A. Gustavo",middleName:null,surname:"Gómez-Castro",slug:"a.-gustavo-gomez-castro",fullName:"A. Gustavo Gómez-Castro"},{id:"152586",title:"Dr.",name:"Cristina",middleName:null,surname:"Arce",slug:"cristina-arce",fullName:"Cristina Arce"},{id:"152587",title:"Dr.",name:"José M.",middleName:null,surname:"Perea",slug:"jose-m.-perea",fullName:"José M. Perea"}]},{id:"34873",doi:"10.5772/33283",title:"Effectiveness of Grassroots Organisations in the Dissemination of Agroforestry Innovations",slug:"effectiveness-of-grassroots-organisations-in-the-dissemination-of-agroforestry-innovations-",totalDownloads:1640,totalCrossrefCites:5,totalDimensionsCites:15,abstract:null,book:{id:"1639",slug:"agroforestry-for-biodiversity-and-ecosystem-services-science-and-practice",title:"Agroforestry for Biodiversity and Ecosystem Services",fullTitle:"Agroforestry for Biodiversity and Ecosystem Services - Science and Practice"},signatures:"Ann Degrande, Steven Franzel, Yannick Siohdjie Yeptiep, Ebenezer Asaah, Alain Tsobeng and Zac Tchoundjeu",authors:[{id:"94737",title:"Dr.",name:"Ann",middleName:null,surname:"Degrande",slug:"ann-degrande",fullName:"Ann Degrande"},{id:"140127",title:"Dr.",name:"Steven",middleName:null,surname:"Franzel",slug:"steven-franzel",fullName:"Steven Franzel"},{id:"140129",title:"Mr.",name:"Yannick",middleName:null,surname:"Siohdjie Yeptiep",slug:"yannick-siohdjie-yeptiep",fullName:"Yannick Siohdjie Yeptiep"},{id:"140130",title:"Mr.",name:"Ebenezer",middleName:null,surname:"Asaah",slug:"ebenezer-asaah",fullName:"Ebenezer Asaah"},{id:"140131",title:"Mr.",name:"Alain",middleName:null,surname:"Tsobeng",slug:"alain-tsobeng",fullName:"Alain Tsobeng"},{id:"140132",title:"Dr.",name:"Zac",middleName:null,surname:"Tchoundjeu",slug:"zac-tchoundjeu",fullName:"Zac Tchoundjeu"}]},{id:"34870",doi:"10.5772/33288",title:"Shoot Pruning and Impact on Functional Equilibrium Between Shoots and Roots in Simultaneous Agroforestry Systems",slug:"shoot-pruning-and-impact-on-functional-equilibirum-between-shoots-and-roots-in-simultaneous-agrofore",totalDownloads:2984,totalCrossrefCites:2,totalDimensionsCites:5,abstract:null,book:{id:"1639",slug:"agroforestry-for-biodiversity-and-ecosystem-services-science-and-practice",title:"Agroforestry for Biodiversity and Ecosystem Services",fullTitle:"Agroforestry for Biodiversity and Ecosystem Services - Science and Practice"},signatures:"Patrick E. K. Chesney",authors:[{id:"94750",title:"Dr.",name:"Patrick",middleName:"E.K.",surname:"Chesney",slug:"patrick-chesney",fullName:"Patrick Chesney"}]},{id:"34869",doi:"10.5772/35120",title:"The Effects of Tree-Alfalfa Intercropped Systems on Wood Quality in Temperate Regions",slug:"the-effects-of-agroforestry-practices-on-wood-quality",totalDownloads:2648,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"1639",slug:"agroforestry-for-biodiversity-and-ecosystem-services-science-and-practice",title:"Agroforestry for Biodiversity and Ecosystem Services",fullTitle:"Agroforestry for Biodiversity and Ecosystem Services - Science and Practice"},signatures:"Hamid Reza Taghiyari and Davood Efhami Sisi",authors:[{id:"103044",title:"Dr.",name:"Hamid Reza",middleName:null,surname:"Taghiyari",slug:"hamid-reza-taghiyari",fullName:"Hamid Reza Taghiyari"},{id:"129541",title:"PhD.",name:"Davood",middleName:null,surname:"Efhami Sisi",slug:"davood-efhami-sisi",fullName:"Davood Efhami Sisi"}]}],mostDownloadedChaptersLast30Days:[{id:"34871",title:"Improved Policies for Facilitating the Adoption of Agroforestry",slug:"improved-policies-for-facilitating-the-adoption-of-agroforestry",totalDownloads:3113,totalCrossrefCites:11,totalDimensionsCites:26,abstract:null,book:{id:"1639",slug:"agroforestry-for-biodiversity-and-ecosystem-services-science-and-practice",title:"Agroforestry for Biodiversity and Ecosystem Services",fullTitle:"Agroforestry for Biodiversity and Ecosystem Services - Science and Practice"},signatures:"Frank Place, Oluyede C. Ajayi, Emmanuel Torquebiau, Guillermo Detlefsen, Michelle Gauthier and Gérard Buttoud",authors:[{id:"100556",title:"Dr.",name:"Frank",middleName:null,surname:"Place",slug:"frank-place",fullName:"Frank Place"},{id:"105799",title:"Dr.",name:"Oluyede",middleName:null,surname:"Ajayi",slug:"oluyede-ajayi",fullName:"Oluyede Ajayi"},{id:"134300",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Torquebiau",slug:"emmanuel-torquebiau",fullName:"Emmanuel Torquebiau"},{id:"134301",title:"Dr.",name:"Guillermo",middleName:null,surname:"Detlefsen",slug:"guillermo-detlefsen",fullName:"Guillermo Detlefsen"}]},{id:"34873",title:"Effectiveness of Grassroots Organisations in the Dissemination of Agroforestry Innovations",slug:"effectiveness-of-grassroots-organisations-in-the-dissemination-of-agroforestry-innovations-",totalDownloads:1641,totalCrossrefCites:5,totalDimensionsCites:15,abstract:null,book:{id:"1639",slug:"agroforestry-for-biodiversity-and-ecosystem-services-science-and-practice",title:"Agroforestry for Biodiversity and Ecosystem Services",fullTitle:"Agroforestry for Biodiversity and Ecosystem Services - Science and Practice"},signatures:"Ann Degrande, Steven Franzel, Yannick Siohdjie Yeptiep, Ebenezer Asaah, Alain Tsobeng and Zac Tchoundjeu",authors:[{id:"94737",title:"Dr.",name:"Ann",middleName:null,surname:"Degrande",slug:"ann-degrande",fullName:"Ann Degrande"},{id:"140127",title:"Dr.",name:"Steven",middleName:null,surname:"Franzel",slug:"steven-franzel",fullName:"Steven Franzel"},{id:"140129",title:"Mr.",name:"Yannick",middleName:null,surname:"Siohdjie Yeptiep",slug:"yannick-siohdjie-yeptiep",fullName:"Yannick Siohdjie Yeptiep"},{id:"140130",title:"Mr.",name:"Ebenezer",middleName:null,surname:"Asaah",slug:"ebenezer-asaah",fullName:"Ebenezer Asaah"},{id:"140131",title:"Mr.",name:"Alain",middleName:null,surname:"Tsobeng",slug:"alain-tsobeng",fullName:"Alain Tsobeng"},{id:"140132",title:"Dr.",name:"Zac",middleName:null,surname:"Tchoundjeu",slug:"zac-tchoundjeu",fullName:"Zac Tchoundjeu"}]},{id:"34872",title:"Mainstreaming Agroforestry Policy in Tanzania Legal Framework",slug:"mainstreaming-agroforestry-policy-in-tanzania-legal-framework",totalDownloads:3026,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"1639",slug:"agroforestry-for-biodiversity-and-ecosystem-services-science-and-practice",title:"Agroforestry for Biodiversity and Ecosystem Services",fullTitle:"Agroforestry for Biodiversity and Ecosystem Services - Science and Practice"},signatures:"Tuli S. Msuya and Jafari R. Kideghesho",authors:[{id:"106119",title:"Prof.",name:"Jafari",middleName:"Ramadhani",surname:"Kideghesho",slug:"jafari-kideghesho",fullName:"Jafari Kideghesho"},{id:"106122",title:"Dr.",name:"Tuli",middleName:null,surname:"Msuya",slug:"tuli-msuya",fullName:"Tuli Msuya"}]},{id:"34869",title:"The Effects of Tree-Alfalfa Intercropped Systems on Wood Quality in Temperate Regions",slug:"the-effects-of-agroforestry-practices-on-wood-quality",totalDownloads:2649,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"1639",slug:"agroforestry-for-biodiversity-and-ecosystem-services-science-and-practice",title:"Agroforestry for Biodiversity and Ecosystem Services",fullTitle:"Agroforestry for Biodiversity and Ecosystem Services - Science and Practice"},signatures:"Hamid Reza Taghiyari and Davood Efhami Sisi",authors:[{id:"103044",title:"Dr.",name:"Hamid Reza",middleName:null,surname:"Taghiyari",slug:"hamid-reza-taghiyari",fullName:"Hamid Reza Taghiyari"},{id:"129541",title:"PhD.",name:"Davood",middleName:null,surname:"Efhami Sisi",slug:"davood-efhami-sisi",fullName:"Davood Efhami Sisi"}]},{id:"34866",title:"Consumption of Acorns by Finishing Iberian Pigs and Their Function in the Conservation of the Dehesa Agroecosystem",slug:"consumption-of-acorns-by-finishing-iberian-pigs-and-their-function-in-the-conservation-of-the-dehesa",totalDownloads:3524,totalCrossrefCites:6,totalDimensionsCites:25,abstract:null,book:{id:"1639",slug:"agroforestry-for-biodiversity-and-ecosystem-services-science-and-practice",title:"Agroforestry for Biodiversity and Ecosystem Services",fullTitle:"Agroforestry for Biodiversity and Ecosystem Services - Science and Practice"},signatures:"Vicente Rodriguez-Estevez, Manuel Sanchez-Rodriguez, Cristina Arce, Anton R. Garcia,\r\nJose M. Perea and A. Gustavo Gomez-Castro",authors:[{id:"101973",title:"Dr.",name:"Vicente",middleName:null,surname:"Rodríguez-Estévez",slug:"vicente-rodriguez-estevez",fullName:"Vicente Rodríguez-Estévez"},{id:"108544",title:"Dr.",name:"Manuel",middleName:null,surname:"Sánchez",slug:"manuel-sanchez",fullName:"Manuel Sánchez"},{id:"108546",title:"Dr.",name:"Antón R.",middleName:null,surname:"García",slug:"anton-r.-garcia",fullName:"Antón R. García"},{id:"108547",title:"Dr.",name:"A. Gustavo",middleName:null,surname:"Gómez-Castro",slug:"a.-gustavo-gomez-castro",fullName:"A. Gustavo Gómez-Castro"},{id:"152586",title:"Dr.",name:"Cristina",middleName:null,surname:"Arce",slug:"cristina-arce",fullName:"Cristina Arce"},{id:"152587",title:"Dr.",name:"José M.",middleName:null,surname:"Perea",slug:"jose-m.-perea",fullName:"José M. Perea"}]}],onlineFirstChaptersFilter:{topicId:"848",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81234",title:"Cognitive Visual Tracking of Hand Gestures in Real-Time RGB Videos",doi:"10.5772/intechopen.103170",signatures:"Richa Golash and Yogendra Kumar Jain",slug:"cognitive-visual-tracking-of-hand-gestures-in-real-time-rgb-videos",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}},{id:"80937",title:"Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data",doi:"10.5772/intechopen.103089",signatures:"Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou",slug:"assessing-heterogeneity-of-two-part-model-via-bayesian-model-based-clustering-with-its-application-t",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},subseriesFiltersForOFChapters:[{caption:"Applied Intelligence",value:22,count:1,group:"subseries"},{caption:"Computer Vision",value:24,count:8,group:"subseries"},{caption:"Machine Learning and Data Mining",value:26,count:8,group:"subseries"}],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"8",type:"subseries",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11404,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",slug:"hitoshi-tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",slug:"marcus-vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:288,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/114058",hash:"",query:{},params:{id:"114058"},fullPath:"/profiles/114058",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()