Pseudocapacitance and conductivity of selected metal oxides.
\r\n\t
",isbn:"978-1-83969-545-2",printIsbn:"978-1-83969-544-5",pdfIsbn:"978-1-83969-546-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"c77f99db5569e8d0325b856cb7d75b17",bookSignature:"Prof. Maged Marghany",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10854.jpg",keywords:"Optical, Radar, Algorithm, Programming, Big Data, Deep Learning, Image Processing, Time Series Data Analysis, Large Scale Methods, Signal Processing, Computer Vision, Remote Sensing",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 18th 2021",dateEndSecondStepPublish:"March 18th 2021",dateEndThirdStepPublish:"May 17th 2021",dateEndFourthStepPublish:"August 5th 2021",dateEndFifthStepPublish:"October 4th 2021",remainingDaysToSecondStep:"9 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:'Prof. Marghany was recently ranked among the top two percent scientists in a global list compiled by the prestigious Stanford University. A pioneering scientist in microwave remote sensing invented a new theory Quantum Nonlinear Ocean Dynamics " Quantized Marghany\'s Front".',coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"96666",title:"Prof.",name:"Maged",middleName:null,surname:"Marghany",slug:"maged-marghany",fullName:"Maged Marghany",profilePictureURL:"https://mts.intechopen.com/storage/users/96666/images/system/96666.png",biography:"Prof.Dr. Maged Marghany, recently, ranked among the top two percent scientists in a global list compiled by the prestigious Stanford University. Prof.Dr. Maged Marghany is currently a Professor at the Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala Darussalam, Banda Aceh, Indonesia. He is the author of 5 titles including Advanced Remote Sensing Technology for Tsunami Modelling and Forecasting which is published by Routledge Taylor and Francis Group, CRC and Synthetic Aperture Radar Imaging Mechanism for Oil Spills, which is published by Elsevier, His research specializes in microwave remote sensing and remote sensing for mineralogy detection and mapping. Previously, he worked as a Deputy Director in Research and Development at the Institute of Geospatial Science and Technology and the Department of Remote Sensing, both at Universiti Teknologi Malaysia. Maged has earned many degrees including a post-doctoral in radar remote sensing from the International Institute for Aerospace Survey and Earth Sciences, a Ph.D. in environmental remote sensing from the Universiti Putra Malaysia, a Master of Science in physical oceanography from the University Pertanian Malaysia, general and special diploma of Education and a Bachelor of Science in physical oceanography from the University of Alexandria in Egypt. Maged has published well over 250 papers in international conferences and journals and is active in International Geoinformatics, and the International Society for Photogrammetry and Remote Sensing (ISPRS).",institutionString:"Syiah Kuala University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"9",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Syiah Kuala University",institutionURL:null,country:{name:"Indonesia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347259",firstName:"Karmen",lastName:"Daleta",middleName:null,title:"Dr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"karmen@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"5104",title:"Environmental Applications of Remote Sensing",subtitle:null,isOpenForSubmission:!1,hash:"6f91748e9b1463ce5e7352ea982c3128",slug:"environmental-applications-of-remote-sensing",bookSignature:"Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/5104.jpg",editedByType:"Edited by",editors:[{id:"96666",title:"Prof.",name:"Maged",surname:"Marghany",slug:"maged-marghany",fullName:"Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3838",title:"Advanced Geoscience Remote Sensing",subtitle:null,isOpenForSubmission:!1,hash:"74f648b4e5f6fb290baeb0642c037c1d",slug:"advanced-geoscience-remote-sensing",bookSignature:"Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/3838.jpg",editedByType:"Edited by",editors:[{id:"96666",title:"Prof.",name:"Maged",surname:"Marghany",slug:"maged-marghany",fullName:"Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5096",title:"Applied Studies of Coastal and Marine Environments",subtitle:null,isOpenForSubmission:!1,hash:"c69d748a6e4e39139e6f4be531b1f30e",slug:"applied-studies-of-coastal-and-marine-environments",bookSignature:"Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/5096.jpg",editedByType:"Edited by",editors:[{id:"96666",title:"Prof.",name:"Maged",surname:"Marghany",slug:"maged-marghany",fullName:"Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8395",title:"Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications, Tsunami Disasters, and Infrastructure",subtitle:null,isOpenForSubmission:!1,hash:"9a36595723f2490fd4e414bba3547a50",slug:"advanced-remote-sensing-technology-for-synthetic-aperture-radar-applications-tsunami-disasters-and-infrastructure",bookSignature:"Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/8395.jpg",editedByType:"Edited by",editors:[{id:"96666",title:"Prof.",name:"Maged",surname:"Marghany",slug:"maged-marghany",fullName:"Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"52281",title:"Nanostructured Metal Oxides-Based Electrode in Supercapacitor Applications",doi:"10.5772/65155",slug:"nanostructured-metal-oxides-based-electrode-in-supercapacitor-applications",body:'\nIn recent years, supercapacitors (or ultracapacitors) have attracted significant attention as a versatile solution to meet the increasing demands of energy storage because of their fast power energy delivery, long lifecycle, high power density and reasonably high energy density which are able to fill in the gap between the batteries and the conventional capacitors [1–3].
\nThe comparison of specific power and specific energy for different electrical energy storage devices is shown in the Ragone plot (Figure 1) [4]. The data illustrate that supercapacitors are able to store more energy than conventional capacitors and deliver more power than batteries. Owing to the different energy storage mechanism from conventional capacitors, the specific energy of supercapacitors can be thousands of times higher than it of conventional capacitors by forming an electric double layer at the interface of the electrode and electrolyte to store energy [5]. Thus, the high surface area of the electrode can be adequately utilized to collect amounts of positively and negatively charged ions from electrolyte when storing energy.
\nSpecific power and energy for various electrical energy storage devices show in Ragone plot [4].
On the other hand, as is well-known, rechargeable batteries mainly depend on chemical reactions to charge and discharge which significantly restrict their lifetime [6]. Compared to batteries, the energy storage process of supercapacitors is based on electrostatic storage in the electrical double layer and reversible faradaic redox reactions by means of electron charge transfer on the surface of electrode. Thus, supercapacitors are expected to have a capability of faster charge–discharge under high current and a longer cycle life than batteries because no or negligibly few chemical reactions are involved [7].
\nEven though major progress has been yielded in the theoretical and practical research and development of supercapacitors, few disadvantages of supercapacitors, including low energy density and high production cost, have been identified as major challenges for the furtherance of supercapacitors technologies [8].
\nTo overcome the obstacle of low energy density, one of the most intensive approaches is the development of new materials for supercapacitor electrodes. Most explored materials today are carbon particle-based materials, which have high surface areas for charge storage [3]. But in spite of these large specific surface areas, the charges physically stored on the carbon particles in porous electrode layers unfortunately limiting their electrochemical properties. Supercapacitors of this kind, called electrical double-layer supercapacitors (EDLS), have a limited specific capacitance and relative low energy density [9]. Supercapacitors with electrochemically active materials (polymers and metal oxides) as electrodes involving fast and reversible faradaic reactions on electrodes are called faradaic supercapacitors (FS). It has been demonstrated that faradaic or hybrid double-layer supercapacitors can yield much higher specific capacitance and energy density. Thus, regarding advanced supercapacitor materials, metal oxides are considered the most promising materials for the next generation of supercapacitors [10].
\nMechanisms of (a) pseudocapacitance and (b) hybrid capacitance [13].
The capacitance of a metal oxide-based supercapacitor is determined by two storage principles, one is double-layer capacitance and another one is pseudocapacitance. The mechanism of double-layer capacitance is shown in Figure 2a, when capacitor charged, electrostatic storage achieved by separation of charge in a double layer at the interface between the surface of a conductive electrode and an electrolyte. As a result, mirror image of charge distribution of ions in opposite polarity, called double-layer, is formed. When capacitor discharged, ions return and distribute randomly in the electrolyte. For pseudocapacitance, it stores electrical energy electrochemically by means of reversible faradaic redox reactions on the surface of suitable electrode materials in an electrochemical capacitor with an electric double-layer [11]. It can be seen in Figure 2b, pseudocapacitance is accompanied with an electron charge-transfer between electrolyte and electrode coming from a de-solvated and adsorbed ion whereby only one electron per charge unit is participating. This faradaic charge transfer originates via a very fast sequence of reversible redox, electrosorption or intercalation processes. The adsorbed ion has no chemical reaction with the atoms of the electrode. No chemical bonds arise, and only a charge-transfer takes place [12]. Even though both double-layer capacitance and pseudocapacitance contribute indivisibly to the total capacitance of metal oxide supercapacitors, the latter can be 10–100 times higher than the former.
\nIn general, metal oxide-based supercapacitors are able to possess higher specific capacitance and energy density than carbon materials and conducting polymer materials [14]. A series of metal oxides with high theoretical performances has been studied, such as RuO2, MnO2, NiO, Co3O4, V2O5, CuO and Fe3O4. Table 1 [15] lists the theoretical capacitance of some typical metal oxides as well as the charge storage reactions. However, the practical supercpacitive properties of these metal oxides are far behind their theoretical values due to their low conductivities, poor long-term stability, low surface areas and porosity.
Oxide | \nElectrolyte | \nCharge storage reaction | \nTheoretical capacitance (F g−1) | \nConductivity (S cm−1) | \n
---|---|---|---|---|
MnO2 | \nNa2SO4 | \nMnO2 + M+ + e− = MMnO2 (M could be H+, Li+, Na+, K+) | \n1380 | \n10−5 to 10−6 | \n
V2O5 | \nNaCl, Na2SO4 | \nV2O5 + 4M+ + 4e− = M2V2O5 (M could be H+, Li+, Na+, K+) | \n2120 | \n10−4 to 10−2 | \n
NiO | \nKOH, NaOH | \nNiO + OH− = NiOOH + e− | \n2584 | \n0.01 to 0.32 | \n
Co3O4 | \nKOH, NaOH | \nCo3O4 + OH− + H2O = 3CoOOH + e− CoOOH + OH− = CoO2 + H2O + e− | \n3560 | \n10−4 to 10−2 | \n
Pseudocapacitance and conductivity of selected metal oxides.
In this chapter, several important factors affecting the electrochemical properties of metal oxide-based electrodes are discussed firstly. Then various methods to fabricate nanostructured metal oxide electrode are summarized. Finally, advanced metal oxide-carbon composite electrodes are further described.
\nThe degree of crystallinity is one of pivotal factors affecting the pseudocapacitance of metal oxide materials. In general, an amorphous structure exhibits superior electrochemical performance than a well-crystallized structure due to the former can make the fast, continuous and reversible faradaic reaction take place not only on the surface but also inside of metal oxide particles [16]. This is because the amorphous structure with a highly porous morphology is benefit for ion accessibility and cation diffusion. In addition, these porous structures also result in a higher specific surface area which can support more redox reactions to enhance the specific capacitance. Nevertheless, it is well-known that the poorly crystallized metal oxide simultaneously leads to a lower electrical conductivity limiting its pseudocapacitance. Thus, it is necessary and a great challenge to explore the appropriate crystallinity with optimal conductivity and ionic transport.
\nOne method is to improve the electric conductivity of the amorphous metal oxide. It has been reported that annealing can significantly affect the electrical conductivity. For example, in [17], MnOx annealed at 200°C exhibited a higher specific capacitance at high scan rate than those without treated. Another effective approach is to optimize the structure of crystallized metal oxide in order to provide appropriate tunnels for the intercalation of cations.
\nCrystal structures of α-, β-, γ-, δ- and λ-MnO2 [18].
The crystal structure has a significant influence on the pseudocapacitance of metal oxide because it plays a crucial role in determining the cations intercalation. For instance, crystallized manganese oxide has different crystalline structures, including α-, β-, γ-, δ- and λ-MnO2 shown in Figure 3 [18]. It can be seen thatα-MnO2 forms 1D (2 × 2) and (1 × 1) tunnels; β-MnO2 forms a 1D (1 × 1) tunnel; γ-MnO2 is consist of 1D (1 × 2) and (1 × 1) tunnels; δ-MnO2 is a 2D layered structure; and λ-MnO2 is a three-dimensional (3D) spinel structure, respectively [11, 19]. It is reported by Brousse et al. [20] that α-MnO2 with a large tunnel size exhibited a relatively high specific capacitance of 110 F g−1 due to K+ cations could easily insert the tunnels. On the contrary, β-MnO2 with a narrow tunnel size which is smaller than K+ cations inhibited the diffusion process and leaded to a low specific capacitance value of only 110 μF cm−2. The result indicated that the limited performance was manly obtained on the surface of manganese oxide. Furthermore, the 2D δ-MnO2 with an interlayer separation of around 0.7 nm also obtained good capacitance value of 236 F g−1 which could be contributed to the sufficiently large layer space for a high rate insertion/extraction of K+ cations.
\nThus, the rational selection of crystal structures can effectively accelerate the charge storage process of metal oxide and improve its electrochemical properties.
\nThe pseuocapacitance of metal oxide depends on redox reactions which mainly take place on the surface area. Thus, the specific surface area is one of the most important factors for metal oxide-based supercapacitor applications. In general, the higher specific surface area can result in the higher the specific capacitance due to more active sites are capable of providing multiple redox reactions [21].
\nObviously, to explore the higher specific surface area is an effective approach to achieve better capacitive performance of metal oxide. Up to now, amounts of attempts have been made on metal oxides including decreasing the size of their particles, optimizing their morphologies and combining them with carbon materials which have high specific surface areas.
\nThe morphology of metal oxide is a crucial factor which closely relates to the specific surface area, the diffusion pathway, surface to volume ratios and therefore the supercapacitive performance. Thus, considerable efforts have been focused on various metal oxides with different morphologies such as nanowires, nanorods, nanotubes, nanoflowers, hollow spheres, nanopillar array and porous thin films.
\n(a) Co3O4 nanowires [22]; (b) NiO nanorods [23]; (c) NiO hollow spheres [25]; (d) Co3O4 hollow spheres [26]; (e) 3D highly nanoporous CuO [27]; and (f) 3D nanonet hollow structured Co3O4 [28].
Several morphologies of metal oxide and their supercapacitive performance are discussed in this part. The first morphology is one-dimensional nanostructured metal oxides which generally enhance the specific capacitance through offering short diffusion path lengths for both ions and electrons as well as a large specific surface area. Gao et al. [22] successfully synthesized Co3O4 nanowires on nickel foam via template-free method shown in Figure 4a. The nanowires, with diameters around 250 nm and the lengths up to around 15 μm, displayed a maximum specific capacitance of 746 F g−1 at a current density of 5 mA cm−2. In addition, Lu et al. [23] reported a slim (<20 nm) NiO nanorod structure (Figure 4b) had an ultrahigh specific capacitance of 2018 F g−1 (80% of the theoretical value) at a current density of 2.27 A g−1 and high power density of 1536 F g−1 at 22.7 A g−1. Generally, the diameter plays an important role in one-dimensional nanostructure. The smaller diameter can offer larger specific surface area and more active sites leading to a better specific capacitance. It is also reported that the porous nanotube structure of MnO2 could not only enhance the specific capacitance, but also improve the stability of electrode due to accommodating large volume charges during the charge-discharge cycle [24]. The second metal oxide structure should be noted is hollow spheres. Various metal oxides with hollow sphere morphologies have been successfully synthesized recently to pursue a high loosely mesoporous structure, large specific surface area and fast ion/electron transfer. For example, Yan et al. [25] fabricated hierarchically porous NiO hollow spheres composed of nanoflakes shown in Figure 4c with thicknesses of ∼10 nm via a powerful chemical bath deposition method. The specific capacitance of NiO hollow spheres can remain 346 F g−1 at 1 A g−1 after 2000 cycles indicating an excellent supercapacitive performance. Another example is [26] that Co3O4 hollow spheres prepared by a facile carbonaceous microsphere templated synthesis as shown in Figure 4d. The as-obtained Co3O4 hollow spheres are composed of nanoparticles and possess a high surface area of 60 m2 g−1 owing to their mesoporous structure. Such a unique hollow-sphere architecture can greatly contributed to the comparatively high capacitance and excellent cycling stability. The third type of metal oxide morphology is three-dimensional porous structure. It can be seen in Figure 4e that 3D highly ordered nanoporous CuO with interconnected bimodal nanopores were fabricated by Moosavifard and coworkers [27]. This morphology offered a large specific surface area of 149 m2 g−1 displayed an excellent specific capacitance of 431 F g−1 at 3.5 mA cm−2 due to the 3D porous structure providing facilitated ion transport, short ion and electron diffusion pathways and more active sites for electrochemical reactions. Moreover, 3D-nanonet hollow structured Co3O4, shown in Figure 4f, exhibited a maximum specific capacitance of 820 F g−1 at a scan rate of 5 mV s−1 and remained 90.2% of its initial capacitance after 1000 cycles [28]. The above results have proven that three-dimensional porous structured metal oxide is promising for supercapacitor applications.
\nAs mentioned above, the electrochemical properties of metal oxide-based supercapacitors are largely affected by the morphologies. The rational design of morphologies with high specific surface area and porous nanostructures is necessary for the development of metal oxide-based electrodes.
\nIt is well-known that the electronic conductivity of electrode materials is a vital factor to affect their high performance in supercapacitor applications. Unfortunately, the electronic conductivity of metal oxide materials is generally poor which largely limits ion and electron transfer. When the charge/discharge rate increases, the low conductivity would result in the localized charge/discharge process in a limited volume near the current collector, leading to low specific capacitance and low rate capability. For example, due to the low electronic conductivity (∼10−5 to 10−6 S cm−1), the realistic specific capacitance of manganese oxide is usually up to 350 F g−1 far behind its theoretic value of 1370 F g−1 [15, 29]. The same condition also takes place on other metal oxide materials such as NiO, Co3O4 and V2O5 [30, 31].
\nThus, it is urgent to improve the conductivity of metal oxide in order to an ideal supercapacitive performance. One effective approach is doping metal elements into metal oxide and compositing metal oxide with high conductive carbon materials and conducting polymer.
\nThe quantity of active materials loading on substrates can affect the specific capacitance, power and energy performance of metal oxide electrodes. On one hand, the large mass loading can cause longer transport paths for the diffusion of protons and an increase of thickness of metal oxide thin films resulting in lower electrical conductivity, limited access of electrolyte ions and higher series resistance. As a result, only partial active material on the surface of electrode film takes part in the charge storage leading to a lower specific capacitance of metal oxide. It is reported by Yang et al. [32] the specific capacitance of MnO2 thin films decreased from 203 to 155 F g−1 when the mass loading increased from 6 to 18 mg cm−2. On the other hand, a high mass loading is needed for high power and energy density, which thus makes the application of a light and durable supercapacitor possible [11]. Therefore, it is still a challenge for metal oxide to achieve both high mass loading and excellent specific capacitance.
\nNanostructured metal oxide materials have been intensively investigated due to their superior supercapacitive performance. The factors mentioned above are all related to the metal oxide fabrication processes and parameters. The main synthesis techniques exploited include hydrothermal, electrodeposition, sol–gel, microwave assisted as well as template assisted methods.
\nHydrothermal synthesis is well-known as one of the most outstanding approaches to prepare nanoparticles due to a serious of advantages such as fine powder (nanoscale), high purity, good dispersion, uniform, narrow distribution, without agglomeration, good crystal form and shape controllability. In a hydrothermal process, crystal grows by chemical reactions taking place at high temperature and pressure conditions in a sealed pressure vessel with water as solvent. Under hydrothermal conditions, water can act as a chemical component and participate in the reactions. Moreover, the solvent is not only a mineralizing agent but also a pressure medium. By the control of physical and chemical factors, the formation and modification of nanostructured metal oxide can be achieved. Up to now, hydrothermal method has been successfully used to synthesize metal oxide with various nanostructures, such as nanowires, nanorods, nanoflowers, nanospheres, nanosheets, nanotubes and so on.
\nPurushothaman and his group [33] successfully prepared NiO nanoparticles via the hydrothermal method, using SDS as a surfactant. The different temperatures (120, 140, 160 and 180°C) in hydrothermal processes have been studied to optimize the morphology and electrochemical properties of NiO. The high degree of phase purity of the NiO particles with nanosizes of 8–16 nm have been achieved under all selected temperatures. However, the morphologies and electrochemical properties were different. At 120 and 140°C, the assembly of nanosheets is slow and, hence, they probably assemble into microspheres under the assistance of a surfactant. A decrease in the surface tension with increasing preparation temperature results in weak electrostatic interaction. The reduced surface tension lowers the aggregation, enabling the formation of microspheres with well-resolved nanosheets at 160°C. The initial nucleation and growth rate will be faster at 180°C. The faster nucleation hinders the assembly of anion surfactant and cation, resulting in the formation of nanorod assembled thicker plates. In case of supercapacitance, the sample prepared at 120°C exhibited a specific capacitance of 871 F g−1, while the value of sample formed at 140°C was 925 F g−1. The maximum specific capacitance of 989 F g−1 was obtained at 160°C while the specific capacitance showed a reduced value of 496 F g−1 at 180°C. The formation of a nanosheet-like structure seem to have facilitated the ion exchange process by reducing the diffusion lengths for the electrolyte, yielding a superior redox process in the sample prepared at 160°C, which exhibited the best specific capacitance. The specific capacitance was lower at elevated temperatures (180°C) might because the crystallites of larger size were formed, and they limited the paths available for ion transport. Moreover, Xia et al. [34] synthesized hollow Co3O4 nanowire arrays through a facile hydrothermal method. The Co3O4 nanowires have an average diameter of 200 nm, and the hollow centers have a diameter of 25 nm. In addition, a hierarchically porous can be found in nanowires allowing easier electrolyte penetration. Such a novel structure with porous walls and hollow center possesses more sites for ions to enter and allows facile ion diffusion at high current density leading to superior specific capacitances of 599 F g−1 at a current density of 2 A g−1 and 439 F g−1 at 40 A g−1.
\nElectrochemical deposition is a simple, fast, nonpolluting and facile technique, thus becomes one of most commonly used approaches to prepare metal oxide thin films. An electrochemical synthesis is achieved by a series of procedures that electron transfer between two or more electrodes separated by electrolyte making the occurrence of oxidation or reduction in the electrode–electrolyte interface which finally results in thin films deposited on electrode substrates. Electrochemical deposition can be divided into two different methods: anodic deposition and cathodic deposition. For example, Aghazadeh [35] prepared nanostructured Co3O4 via a simple cathodic electrodeposition method. The porous Co3O4 nanoplates displayed the average pore diameter and the surface area of 4.75 nm and 208.5 m2 g−1, respectively. A good specific capacitance as high as 393.6 F g−1 at the constant current density of 1 A g−1 and an excellent capacity retention (96.5% after 500 charge-discharge cycles) was obtained. Deng et al. [36] have reported that the nanoarchitectured CuO electrodes with a 3D hierarchically porous structure were prepared by an anodic electrodeposition method. An exceptionally large specific capacitance of 880 and 800 F g−1 was obtained at scan rates of 10 and 200 mV s−1.
\nAccording to the different modes of external power supplying, three main electrochemical deposition techniques including potentiostatic, galvanostatic and pulse period methods have been used by researchers. These different deposition routes with different applied current, potential and time have a crucial impact on the surface morphologies and crystal structures of metal oxide thin films. For example, Lee et al. [37] electrodeposited manganese oxide using three different modes: constant potential (CP) at 1 V for 900 s, pulse potential (PP) at 1 and 0 V with 0.5 s/0.5 s on-off time for 10,000 s, and pulse reverse potential (PRP) at 1 V and −1 V with 0.5 s/0.5 s interval time for 10,000 s. The different deposition times are applied to obtain similar mass loading. The results demonstrated that the different electrodeposition methods have a significant influence on the morphologies of manganese oxide. A traditional bulk film composed of 100 nm particles was prepared by CP mode and exhibited relatively low specific capacitance of 184 F g−1 at a scan rate of 10 mV s−1. In case of PP mode, nanostructured MnOx with porous flower petals morphology was obtained and showed a higher specific capacitance of 227.7 F g−1. The highest specific capacitance of 448 F g−1 was achieved by PRP mode due to the formation of nanorods with the average diameter of 20 nm which can supply higher specific surface area and faster ion transfer.
\nThe sol–gel technique also attracts significant attention for the synthesis of nanostructured metal oxides because it offers controllable purity, composition, homogeneity of the products. Kim et al. [38] have reported that NiO nanostructures with three distinct morphologies were fabricated by a sol–gel method. The nanoflower structure was created in hexamethylene tetramine (HMTA) solution, while the nanoslice (diameters of 300–530 nm) was prepared in ammonium hydroxide (NH4OH) solution. The smaller nanoparticles with a diameter of around 50 nm were obtained when the reaction process took place in a strong basic LiOH. In addition, their morphology-dependent supercapacitor properties were exploited. Compared to the nanoslice and nanoparticle-shaped NiO, the nanoflower-shaped NiO showed the best supercapacitor properties (480 F g−1 at 0.5 A g−1) despite it having the lowest specific surface area. This is because that the flower-shaped nanostructure has the unique three-dimensional (3D) networks which can provide longer diffusion paths and the highest pore volume (0.66 cm3 g−1) which offers advantages in contact with and transport of the electrolyte.
\nYu and coworkers [39] successfully prepared the three-dimensional (3D) network mesoporous nanostructured α-MnO2 (MN-α-MnO2) powders using an inexpensive glucose–permanganate sol–gel method at room temperature and under ambient pressure. The MN-α-MnO2 exhibited high specific surface areas (ca. 220 m2 g−1) and narrow pore size distributions (5.6 nm) resulting in a good specific capacitance of 264 F g−1 after 1000 charge-discharge cycles.
\nRecently, microwave-assisted method has drawn large attention in the synthesis of oxide materials for supercapacitors application. Compared to conventional oil bath or hydrothermal heating, microwave heating can reduce the reaction time often by orders of magnitude, reduce the manufacturing cost and enhance product yield. An inverted temperature gradient takes place during the microwave-assisted process, and a rapid dielectric heating is generated internally within the material due to applied microwave radiation with a commonly used frequency of 0.3–2.45 GHz. Microwave-assisted synthesis has been adopted to prepare metal oxides with highly uniform nanostructures [40–42].
\nFor example, Zhang et al. [43] have successfully synthesized γ-MnO2 nanoparticles and α-MnO2 urchin-like nanostructures by the microwave-assisted reflux as short as 5 min under neutral and acidic conditions, respectively. The γ-MnO2 nanoparticles showed a smaller particle size, a higher specific surface area and a larger pore volume than those of α-MnO2 urchin-like nanostructures resulting in a higher capacitance of 311 F g−1 at a current density of 0.2 A g−1. The specific capacitance retention and coulombic efficiency after 5000 cycles at 1 A g−1 were about 93% and almost 100% for γ-MnO2 nanoparticles, respectively.
\nCao and coworkers [44] prepared flower-like NiO hollow nanosphere precursors via an efficient gas/liquid interfacial microwave-assisted process and were then transformed to NiO by simple calcinations. The wall of the sphere is composed of twisted NiO nanosheets that intercalated with each other. Such hollow structure is different from widely reported flower-like nanostructures with solid cores. These flower-like NiO hollow nanospheres have high surface area of 176 m2 g−1. Electrochemical properties show a high specific capacitance of 585 F g−1 at a discharge current of 5 A g−1 and excellent cycling stability.
\nHard templates are those materials which are either used as scaffolds for the deposition or employed not only as shape defined templates, but also as chemical reagents that react with other chemicals to produce desired nanomaterials. In the development of various metal oxide nanostructures, the hard template method is widely used and coupled with other methods, such as electrochemical deposition, solvothermal/hydrothermal and sol–gel methods. There are quite a lot of hard templates have been used for the synthesis of metal oxide nanostructures, such as porous anodic aluminum oxide (AAO), polycarbonate membranes (PC), carbon spheres, porous carbon, SiO2 spheres, mesoporous silica and naturally existing diatomite.
\nThe anodic aluminum oxide (AAO) film is also one of the attractive templates since it possesses very regular and highly anisotropic porous structures with pore diameters ranging from below 10 to 200 nm, pore length from 1 to 50 mm and pore densities in the range of 109–1011 cm−2 [45]. The pores have been found to be uniform and nearly parallel, which is useful for the synthesis of one-dimensional metal oxide nanostructures, affording short ion diffusion paths and fast kinetics during the electrochemical reactions. Using AAO as the template, Dar et al. [46] synthesized NiO nanotubes via electrochemical deposition and nanorods after 25 min annealing at 450°C. Due to a suitable combination of nanocrystalline grain size and the high surface area akin to the tubular structure, NiO nanotube exhibits an excellent supercapacitive performance with a maximum specific capacitance of 2093 F g−1 which approaches the theoretical value of NiO (2584 F g−1). In contrast, the NiO nanorod structure is characterized by lower performance (797 F g−1). Furthermore, both NiO nanotube and nanorod show high stabilities with almost no alteration to performance after 500 cycles at high current densities of 125 and 80 A g−1. It has also been reported by Xu et al. [47] that Co3O4 nanotubes were successfully prepared via the AAO template method. The Co3O4 nanotubes have an average diameter of 300 nm and thickness of 50 nm which mainly controlled by the pore size of the AAO template. A good specific capacitance of 574 F g−1 was also obtained at a current density of 0.1 A g−1. However, the high cost of AAO templates limits their large-scale application for the production of well-organized metal oxide nanostructured electrodes.
\nIn addition to the AAO template, carbon-based materials with different structures were also developed to prepare metal oxides. For instance, Du et al. [26] reported that Co3O4 hollow spheres composed of numerous small nanocrystals were prepared via one-pot hydrothermal carbonization and calcination method with carbon spheres as templates. The specific capacitance is 470 F g−1 at a current density of 1 A g−1, and no obvious capacitance decrease was observed over 1000 cycles of charge and discharge. Moreover, Yao et al. [48] synthesized nanostructured hierarchical mesoporous ribbon-like NiO via a hard-template method combining the calcination process. The mesoporous carbon was used as a hard template to control the structure growth and pore size distribution. A large surface area (147 m2 g−1) and high pore volume (0.2 cm3 g−1) were achieved when the molar ratio of Ni/C was 2/5. Notably, the outstanding pseudocapacitive performance was obtained with a high specific capacitance of 1260 F g−1 at a 1 A g−1 and only 5% deterioration of the initial capacitance after 5000 cycles.
\nPreparing metal oxide-carbon composites is one of the most effective approaches to improve the supercapacitive performance of metal oxide electrodes. In such composite structures, the carbon materials with large specific surface area and high electric conductivity can provide the channels for charge transfer and benefit to the rate capability. Among a series of carbon materials, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene and carbon nanofoams have been mostly studied to combine with metal oxide.
\nCNTs have outstanding pore structure, high electrical conductivity, and good mechanical and thermal stability which make them one of the most widely used carbon materials for supporting metal oxide. Thus, CNTs have been coupled with various metal oxides such as NiO, Co3O4, V2O5, MnO2, SnO2 and CuO to form the metal oxide–CNTs composite electrodes. It has been reported in 2005 that Lee et al. [49] synthesized NiO/CNTs nanocomposite via a hydrothermal method and explored the influences of CNT network existing in NiO. Compared to bare NiO, NiO/CNTs nanocomposite electrode exhibited a more rectangular shape in the CV curve and a smaller IR loss indicating a better supercapacitive performance. The specific capacitance increased from 122 to 160 F g−1 at a scan rate of 2 mV s−1 with the presence of 10% CNTs. The optimized properties owe to that CNTs can effectively improve the electrical conductivity of NiO and supply more active sites for redox reaction of NiO by increasing its specific surface area. After that, Lin et al. [50] prepared mesoporous sphere NiO nanostructures dispersing on the surface of CNTs and the maximum specific capacitance of 1329 F g−1 was observed at a very high current density of 84 A g−1. Gund et al. [51] fabricated highly flexible electrode with NiO/MWCNTs nanohybrid thin films on stainless steel substrate with an excellent specific capacitance of 1727 F g−1 at a current density of 5 mA cm−2 and good stability (91% retention after 2000 cycles).
\nThe advantages of the metal oxide-CNTs composite were further demonstrated. Cheng et al. synthesized nanocomposites of V2O5 nanowires and interpenetrating CNTs via a hydrothermal process. When the nanocomposite contained 33 wt% of the CNTs, the V2O5-CNTs showed the best specific capacitance of 530 F g−1 which was significantly higher than the V2O5 nanowires (146 F g−1). The improved conductivity and the increased specific surface area (from 83 to 125 m2 g−1) were considered to be responsible for the better properties. Moreover, Wang et al. [52] designed a Co3O4@MWCNT nanocable using multiwall carbon nanotubes (MWCNTs) as the core cable. Compared to the pristine Co3O4 which has a low specific capacitance less than 130 F g−1, the prepared Co3O4@MWCNT nanocable exhibits a better performance with a specific capacitance of 590 F g−1 at 15 A g−1 and 510 F g−1 even at 100 A g−1. Furthermore, many efforts have been made on the preparation of MnO2-CNTs nanocomposites in order to improve the supercapacitive performance of MnO2. For example, MnO2-CNTs composites were prepared through a modified one-pot reaction process by Li and coworkers [53]. This cross-linked MnO2 nanoflakes-CNTs structure showed a good specific capacitance of 201 F g−1 and remarkable cycle stability (no obvious decay after 10,000 cycles). It has also been reported by Chen et al. [54] that MnO2 nanoparticles were introduced into the inner wall of CNT channels by a wet-chemistry method. The result of electrochemical tests shows that the composite has a much higher specific capacitance of 225 F g−1 than MnO2 with a value of 13 F g−1.
\nCNFs are very attractive as the support for metal oxides in the composite electrodes due to their conductive networks with appropriate pore channels. Typically the metal oxides are coated on the CNFs surface to form a core–shell structure in which the CNFs can serves as the physical backbone support and offer the channel for efficient electron and ion transportation. Zhi and coworkers [55] reported the synthesis of CNFs/MnO2 nanocomposite with a coaxial cable structure as shown in Figure 5a. The CNFs with a diameter of 200 nm coated by 4-nm-thick MnO2 nanowhiskers sheath giving a high specific surface area could be seen in Figure 5b. The nanocomposite electrode showed a good specific capacitance of 311 F g−1 for the whole electrode and 900 F g−1 for the MnO2 shell at a scan rate of 2 mV s−1. In addition, Figure 5c and d indicated that this CNFs/MnO2 nanocomposite also exhibited good cycling stability (2.4% loss after 1000 cycles), high energy density (80.2 Wh kg−1) and high power density (57.7 kW kg−1). Moreover, a Fe3O4/CNFs nanocomposite was designed by Fu et al. [56] through a solvent thermal reaction. Compared to the low specific capacitance (4 F g−1) of pure Fe3O4, the calculated specific capacitance of Fe3O4/CNFs nanocomposite is as high as 127 F g−1 which indicates a better supercapacitive performance. The CNFs have not only improved the electronic/ionic conductivity of Fe3O4, but also prevented the aggregation of Fe3O4 nanosheets. CuO has also been used to fabricate composite with CNFs in order to improve its supercapacitive performance. As reported by Moosavifard [57], one-dimensional hierarchical hybrid CuO nanorod arrays-CNFs composite has been prepared via a solution method and an annealing treatment. The CuO nanorods with a length of around 300 nm and a diameter of around 15 nm are grown uniformly surrounding the CNFs. It should be noted that empty space existed among adjacent nanorods indicating a hierarchical array structure. The unique nanocomposite structure contributed to a high capacitance of 398 F g−1.
\nIn addition, carbon fibers can also form a paper. Ghosh et al. [58] prepared carbon nanofiber paper (CFP) with fiber diameters ranging from 100 to 300 nm by electrospinning the polyacrylonitrile (PAN) precursor. The CFP showed good conductivity (0.1 S cm−1), high porosity and large surface area of 700 m2 g−1 indicating its potential to be a promising material for supporting metal oxide. Using this carbon nanofiber paper as substrate, 3-nm-thick V2O5 was obtained by electrodeposition method. The V2O5-CFP composite exhibited a total specific capacitance of 214 F g−1. Recently, Yang et al. [59] have reported a CFP/Co3O4 paper electrode with an excellent specific capacitance of 1124 F g−1 at a high current density of 25.34 A g−1 in the NaOH electrolyte. The composite also displayed a remarkable electrochemical stability with around 94.4% retention after 5000 charge-discharge cycles. The outstanding supercapacitive performance was attributed to the unique 1D nanonet structure of the electrodes and the improved electronic conductivity as well as ion diffusion by CFP.
\nSince a mechanically exfoliated graphene monolayer was first observed and characterized in 2004, considerable research has been carried out in supercapacitor applications due to its large theoretical specific area (2630 m2 g−1), high electrical conductivity (104 S cm−2), abundant raw material resource and good electrochemical stability [60]. Therefore, graphene with these fascinating properties is expected as the potential supporting materials to improve the performance of metal oxide-based supercapacitors. Besides graphene, graphene oxide (GO) and reduced graphene oxide (rGO) have also attracted considerable attention due their unique physical and chemical properties. Until now, various metal oxides such as NiO, MnO2, CuO, V2O5, Co3O4 and TiO2 have been coupled with graphene materials to form supercapacitor electrodes for superior performance.
\n(a) TEM images of a single CNF@MnO2 nanostructure and (b) the MnO2 porous shell with nanowhiskers; (c) stability of the CNF@MnO2 electrodes; (d) Ragone plots of the CNF@MnO2 electrodes [55].
For example, Ge et al. [61] reported the preparation of 3D flower-like NiO and graphene sheets composite via incorporating a facile hydrothermal process with a thermal treatment process. The resultant composite exhibits a specific capacitance of 346 F g−1 (1.5 A g−1), a good rate performance and cycle stability in 2 M KOH. It should be noted that NiO in the composite could provide a specific capacitance as high as 778.7 F g−1, which far exceeded the bare NiO of only 220 F g−1. The magnitude of equivalent series resistances (ESR) are 0.71, 0.99 and 0.85 Ω cm−2 for graphene sheet, NiO and composite, respectively, indicating that the conductivity of the composite is improved by the presence of graphene sheets which could contribute to the superior supercapacitive performance of NiO. Wu et al. [62] successfully synthesized NiO particles/graphene oxide (GO) nanosheets composites. Compared with pure NiO and graphene, the composite electrode showed highest current response during CV scanning, reflecting the high capacitance value. The specific capacitance of the NiO/GO composite electrode (460 F g−1) is much higher than those of the bare graphene oxide electrode (13 F g−1) and NiO (40 F g−1) electrode at a current density of 10 A g−1. In addition, the capacitance retention of NiO/GO composite can remain nearly 100% after 3000 cycles which indicates excellent cycle-life stability. Moreover, Co3O4/graphene nanosheet (GNS) composite has been synthesized via a microwave-assisted method by Yan et al. [63]. The Co3O4 nanoparticles with a small size of 3–5 nm were uniformly distributed on the surface of graphene sheets. The electrochemical properties of composite were observed with a good specific capacitance of 243.2 F g−1 and an outstanding stability (only 4.3% loss after 2000 cycles).
\nRecently, the uniform rod-like V2O5 nanocrystals have been fabricated on the surface of reduced graphene oxide (rGO) to form the V2O5-rGO nanocomposites as the supercapacitor electrode [64]. The V2O5 nanoparticles on rGO were prepared by hydrolysing vanadium oxytripropoxide (VOTP) in ethanol solution with the existence of GO. For a comparative study, the pure V2O5 was also prepared in the same condition but without GO. The results have shown that the electrochemical performance of the V2O5-rGO nanocomposites with an excellent specific capacitance of 537 F g−1 at a current density of 1 A g−1 was much better than pure V2O5 which had a relatively low value of 202 F g−1. After 1000 charge-discharge cycles, the composite electrode could retain 84% of its initial capacitance while only 30% was retained for pure V2O5 indicating that V2O5-rGO nanocomposite electrode had a better electrochemical stability. In addition, the higher power and energy densities were also obtained in the composite. The synergistic effect of V2O5 nanorods and rGO has been considered to be responsible for the better supercapacitive performance. Firstly, the conductivity can be improved due to the presence of rGO. Secondly, the nanocomposites possess a larger surface area (49.16 m2 g−1) than that of pure V2O5 (37.57 m2 g−1). Thirdly, the rGO sheets can inhibit the disintegration of V2O5 and buffer the strain aroused by the volume expansion during the charging and discharging processes. Finally, the strong adhesion between V2O5 nanorods and rGO sheets may facilitate fast electron transfer through the highly conductive rGO sheets. Similarly, Xiang et al. [65] fabricated the rGO–TiO2 nanobelt composite by a hydrothermal processing in the ethanol solution. When the rGO/TiO2 mass ratio was 7:3, the composite obtained the best specific capacitance of 200 F g−1 which far exceeded pure TiO2 nanobelt (17 F g−1) and rGO (40 F g−1) in the Na2SO4 electrolyte at a scan rate of 2 mV s−1.
\nIn addition to high specific capacitance, high energy density and power density are also desirable for metal oxide-based supercapacitors. In general, increasing the mass loading can effectively store more energy and power. However, it is a challenge to load a large amount of materials on electrode without undermining the electrochemical performance. One promising approach is to form metal oxide-carbon nanofoams composite as electrodes. Three-dimensional (3D) carbon nanofoams with a through-connected pore network possess large specific surface areas allowing high metal oxide loading. Moreover, the high electric conductivity of carbon nanofoams can improve the electrochemical properties of metal oxide. Chen et al. [66] fabricated nanostructured MnO2 on CNT foams (or sponges) and the flower-like MnO2 nanoparticles were uniformly deposited on the skeleton of CNT sponges. An outstanding specific capacitance of 1270 F g−1 close to the theoretical value has been obtained and only 4% of degradation after 10,000 cycles at a charge-discharge current density of 5 A g−1. Furthermore, the specific power and energy of this composite are high with values of 63 kW kg−1 and 31 Wh kg−1, respectively. Dong and co-workers deposited Co3O4 nanowires on the 3D graphene foam in [67]. It can be seen in the figure, the graphene skeleton is fully and uniformly covered by the network of Co3O4 nanowires together provide a large accessible surface area. The composite electrode exhibited a high specific capacitance of ∼1100 F g−1 after 500 cycles at a current density of 10 A g−1 and stayed stable afterward indicating a good cycling stability.
\nThis chapter presents a relatively general understanding of the correlation between the composition, microstructure and electrochemical behaviors of metal oxide nanostructures-based electrodes for the applications of supercapacitors. The current possibility of controlled growth and self-assembly represents an important step toward the design and tuning of metal oxide nanocrystals, and also it will be a significant step to the applications of metal oxides as ideal electrodes in high performance electrochemical energy storage devices.
\nIn the past four decades, various technologies have been developed and implemented to improve the production from shale gas formation as it is a commercially feasible source of energy. Hydraulic fracturing is a technique applied to enhance hydrocarbon extraction from subsurface geological formations by injecting a fluid at pressure higher than formation pressure to crack open the hydrocarbon formation rock. The hydraulic fracturing technology is not new; first experiment was conducted in 1947, and the first industrial implementation was in 1949 [1]. Hydraulic fracturing has, since then, been used for stimulating unconventional reservoirs and enhancing oil and natural gas recoveries. The first operation of fracturing treatment was performed by gelled crude, and later gelled kerosene was used. By the end of year 1952, many fracturing treatments were carried out by processed and live crude oils. This type of fluids is low-cost and permitting greater volumes at lower cost. In 1953 water-based fluids began to be utilized as a fracturing fluid, and a number of gelling agent additives such as surfactants were added, to the fracturing fluids, to reduce emulsion with formation fluid. Subsequently, additional clay stabilizing agents were improved and incorporated with water and used as a hydraulic fracturing fluid to fracture many reservoir formations. Alcohol and foam were also used to improve water-based fracturing fluids and utilized to fracture more formations. Currently aqueous fluids such as acid, brines, and water are utilized as base fluids with around 96% of all fracturing treatments using a propping agent. During the early years of the 1970s, the key advance in using fracturing fluids was in applying metal-based cross-linking agents to increase the viscosity of gelled water-based fracturing fluids designed for deeper wells at higher-temperature conditions [1].
The key factor of technological revolution is due to the fast evolution of drilling and completion techniques as well as the improvement of the fracturing technology. From the primary explosion technology of nitroglycerin to the newest fracturing technology of synchrotron, the developed fracturing technology has gradually improved the shale gas recovery efficiency.
The earliest nitroglycerin explosion technology was used in the 1970s in a vertical well with an open-hole completion. This technique affected wellbore stability and caused very limited penetrations. In 1981, a new fracturing fluid combined of nitrogen (N2) and carbon dioxide (CO2) foam was utilized in vertical wells in shale gas formations. This implementation led to gas recovery increase by 3–4 times and reduced formation damage. Subsequently, in 1992 the first horizontal well was drilled in shale gas formation in Hammett basin. Horizontal wells then steadily supplanted the practice of vertical wells. A cross-linked gel was applied as a thickening or cross-linking agent during the period from the 1980s to the 1990s. The fracturing technique of horizontal wells can effectively generate fractured networks and increase the hydrocarbon flow area. This method is favorable because it minimizes the cost and increases hydrocarbon recovery. Thus, the development of large-scale hydraulic fracturing using horizontal wells contributed to the economic development of shale gas resources [2].
A major development was made in 1998 in fracturing technology by introducing a water-based liquid fluid instead of gel. This new fracturing fluid has a low sand (proppants) ratio of approximately 90% less than that used in the gelled fracturing. Thus, fracturing fluid associated cost was minimized by more than 50%. This type of fracture fluid can provide better fracturing performance that may increase the recovery efficiency up to 30% [2].
After the year 2000, a new technology called the segmental fracturing technology has been developed and utilized in horizontal wells during shale gas exploitation. This technology has further been developed and improved to include more than 20 segments leading to improvements in both the recovery efficiency and drainage area. Horizontal segmental fracturing technology is broadly used in the United States in the development of shale gas wells over the standard method by 85% [2].
After the year 2005 using both techniques of segmental fracturing technology and microseismic crack monitoring in shale gas development using fracture horizontal wells has significantly enhanced shale gas recovery. A new brand of fracturing technology was subsequently introduced in the year 2006 which is synchronous fracturing technology that has been utilized in the Barnett shale gas basin. Table 1 summarizes the development of drilling and completion methods and the history of shale gas development in the Barnett basin, United States [3].
Stage | Year | Total well number | Fracturing technology |
---|---|---|---|
Initial | 1979 | 5 | High-energy gas fracturing |
1981 | 6 | N2 and CO2 foam fracturing | |
1984 | 17 | Cross-linked gel fracturing, liquid quantity 105 gal (378 m3) | |
1985 | 49 | Cross-linked gel fracturing, liquid quantity 5 × 105 gal (1892 m3) | |
1988 | 62 | Cross-linked gel fracturing | |
1991 | 96 | Horizontal well and cross-linked gel fracturing | |
1995 | 200 | Horizontal well fracturing and cross-linked gel fracturing | |
1997 | 300 | Riverfracing treatment, liquid quantity 5 × 105 gal (1892 m3) | |
1999 | 450 | Riverfracing treatment, inclinometer fracture monitor | |
2001 | 750 | Riverfracing treatment, microseismic fracture monitor | |
2002 | 1700 | Horizontal well fracturing, riverfracing treatment | |
Development | 2003 | 2600 | New well configuration with 719 vertical wells, 85 horizontal wells, and 117 directional wells |
2004 | 3500 | 150 wells with horizontal well stage fracturing 2–4 stages | |
2005 | 4500 | 600 new horizontal wells where drilling time is greatly reduced | |
2006 | 5500 | Synchronous fracturing, lower development costs | |
2007 | 7000 | Horizontal well fracturing, synchronous fracturing | |
2008 | 9000 | Repeated fracturing | |
Steady | 2009 | 13,000 | Maintain capacity, lower costs, enhancing oil recovery |
Stimulation development of Barnett shale gas formation [3].
The mechanism of fracturing stimulation of shale gas reservoirs is not the same as a conventional or sandstone gas reservoir. Shale gas reservoirs, in general, cannot be found as conventional traps, but they are self-generating and self-storage gas reservoirs. The natural fracturing network can particularly enhance shale tight formation permeability [4]. Shale gas capacity can be attained through microfractures in shale formation. These fractures involve both a percolation path and a storage space of shale gas. They create the necessary communication and connectivity for the shale gas to reach the wellbore. Furthermore, shale gas recovery factor can be achieved through the existence of reservoir fractures’ and its density and characteristic and opening degree in the reservoir. Shale reservoirs are usually well stimulated and completed with good natural fractures and bedding. High brittleness is one of the significant parameters, which relates to the share failure during shale reservoir hydraulic fracturing process. It is responsible for the formation of complex fracture networks and the connections between natural fractures. Hence, the main purpose of utilizing stimulation technology on shale gas formation is to generate effective fracture networks to improve the reconstruction volume and enhance the reservoir capacity [5].
Fracturing technology of shale reservoirs can be classified based on the type of well fracturing into three categories, vertical, deviated, and horizontal fracturing wells, as shown in Figure 1. Fracturing technology can also be divided based on the type of fracturing fluid used such as gas, foam, gel, etc. Target zone can be fractured into different sections as single section and multi-section fracturing. Moreover, various factors should be taken into account while choosing the choice of fracturing fluid and fracturing technology such as the shale gas reservoir depth, capacity and formation sensitivity, natural fractures, and the well completion technology [6].
Sketch map of vertical well and horizontal well fracturing [4].
The most commonly used fracture technologies now are the multi-section fracturing, riverfracing, hydra-jet fracturing, fracture network fracturing, re-fracturing, and simultaneous fracturing. However, more attention is being given to CO2 and N2 fracturing. This fracturing technology’s features and application conditions are different as shown in Table 2.
Fracturing technology | Technical physical features | Application area |
---|---|---|
Stage fracturing |
|
|
Riverfracing treatment |
|
|
Hydra-jet fracturing |
|
|
Repeated fracturing |
|
|
Simultaneous fracturing |
|
|
Network fracturing |
|
|
CO2 and N2 foam fracturing |
|
|
Large hydraulic fracturing |
|
|
Technical characteristics and application of fracturing technologies [7].
Since it was proposed for the first time by Giger in 1985 [8], the concept of horizontal well fracturing has been widely practiced as a valuable technique to improve well production and increase the recovery of unconventional reservoirs. Horizontal well fracturing treatments in field generally create multi-fractures in selected intervals along the wellbore. Processes of fracture initiation and propagation in horizontal wells are different from those in vertical wells due to the larger contact surface area with the formations, thus resembling more complex reservoir situation. When multi-fractures are propagated, they often join or intersect with each other, forming patterns that are known as multi-fracture networks, which immensely increase the storage capacity and the fluid transmissibility of formations. Multi-fracture networks are not easy to be assessed or studied due to the complexity; however, they are evaluated using mathematical and statistical techniques and may be represented using fractals.
The classical hydraulic fracturing theory indicates that the main formed fracture is a symmetric bi-wing plane extending parallel to the direction of maximum principal stress. However, field hydraulic fracturing treatment is completely different as complex fracture networks take place where the main fracture and other smaller branch fractures simultaneously extend in the fracture propagation zone [9, 10, 11].
Microseismic mapping shows that hydraulic fracturing in shale forms a multi-fracture network system [12, 13, 14, 15] which consists of complex fractures as shown in Figure 2 [16]. It was concluded from the mapping that natural fractures’ direction was to the northwest and the propagation of the induced hydraulic fractures direction was to the northeast where they intersected with natural fractures. This led to many crosscutting linear features and formed a complex fracture. Based on fracture extension characteristic in shale reservoirs, hydraulic fractures are classified into four major types [16]: single plane bi-wing fracture, complex multiple fracture, complex multiple fracture with open natural fractures, and complex fracture network as shown in Figure 3.
Multi-fracture network extension in shale reservoirs during hydraulic fracturing (after Warpinski et al. 2008 [16]).
The hydraulic fracture classification complexity (after Warpinski et al. 2008 [16]).
Confirming field observation from seismic mapping, simulation experiments [17, 18, 19, 20, 21, 22] show that induced hydraulic fracture presents three types of extensions when intersecting with natural fractures: crossing the natural fractures, extending along the natural fractures or crossing, and extending along at the same time. It was concluded that fracture network would highly form during fracturing process of naturally fractured formations [23]. Moreover, several laboratory experiments confirmed that fracture network exists [24, 25] and found that the fracture network would easily form under low fluid viscosity injection [26, 27]. Other observations proposed that multi-fracture networks in shale reservoirs area are key to increase stimulated reservoir volume (SRV) where treatment success relies on whether hydraulic fracture could extend to form multi-fracture network [28, 29, 30].
Understanding fracture initiation and propagation rules are the main issues faced when commencing hydraulic fracturing because several important geological and engineering factors affecting the multi-fracture network formation are to be considered [31].
Mineral composition. Brittleness is controlled by mineralogy as brittleness mineral concentration, the rock brittleness gets higher, and the development of natural fractures becomes better (mineral concentration increase/decrease).
Mechanical properties. Poisson’s ratio and Young’s modulus are combined to reflect the rock ability to fail under stress (Poisson’s ratio) and maintain a fracture (Young’s modulus) once the rock fractures. The lower Poisson’s ratio and higher Young’s modulus value, the more brittle the rock, and the fracture extends into fracture network.
Distribution of natural fractures. As natural fractures have great effect on hydraulic fracture extension, the more developed the natural fractures are, the more complex is the extension of hydraulic fracture.
Horizontal stress field. Multi-fracture network is controlled by intersecting intensity between induced fractures and natural fractures. Hydraulic fracture would propagate along natural fractures under low horizontal stress and cross natural fractures under high horizontal stress conditions.
Net fracturing pressure. Greater fracturing pressure would cause more complex fractures where it is possible to induce branches of hydraulic fracture to form a complex fracture network.
Fluid viscosity. The viscosity has an important influence on the complexity of fracture extension; from the laboratory experiments, it is obvious if the fluid viscosity gets higher; the complexity of fracture is significantly reduced. The injection of high viscosity fluid in field treating will reduce the complexity of fracture network [32, 33, 34, 35].
Fracturing scale. The impact of fracturing scale can be seen on the production scale, as large amounts of the fracturing fluid volume are pumped; the longer the total length of fracture network, the more complex the resulted fracture network, and the higher the corresponding well production. Using large fracturing scale is an important measure to increase the SRV, which is essential to improve stimulation effect in the shale fracturing, where the bigger the SRV is, the higher the production.
The essential goal for the treatment is to get the most out of each stage and each cluster in the fracturing network. The optimization of fracturing fluid and minding the aforementioned factors can help achieving even flow distribution and network efficiency, both of which can help contribute to increased production. The practices over have realized that, in most cases where it has been measured, only 30–60% of the fractured clusters in a wellbore are providing measurable production [36].
Unconventional reservoirs show significant decline rates after few months of production compromising the economics and imposing the need for increasing or stabilizing production. The decline in production from the unconventional reservoirs is attributed to the closure and damage of the fracture networks within the formations. Hence, re-fracturing as an emerging technology has become a viable option for sustaining production and increasing reserves. Re-fracturing is a preferred option over drilling and completing new horizontal wells as it can be carried at only a fractional cost of up to 25–40% [37], thus minimizing the related financial and safety risks.
Production decline rates from unconventional reservoirs are more rapid than those in conventional reservoirs because of the ultralow permeability, limited reservoir contact, and the original completion strategy. The ability of re-fracturing technology provides a potential to extend the productive life of the unconventional reservoirs beyond the normal and up to an additional 20–30 years [38]. Re-fracturing restores production from underperforming formations by increasing fracturing networks, replacing damaged proppant, bypassing skin zones, and connecting old and new fractures [39]. Successful re-fracturing can increase the estimated ultimate recovery (EUR), shorten the capital return time, and increase the net present value (NPV) of the unconventional reservoirs. Decline curve analysis (DCA) showed that re-fractured wells achieved an average of 60% increase in NPV [40]; therefore, re-fracturing application helps reduce the variability in the unconventional reservoir performance and considered the best option for tackling production declines.
Re-fracturing literally means a second hydraulic fracturing through same or new perforations to repair or recreate fracture networks within the same formation. If a re-fracturing treatment was carried out after a re-fracturing, then it would be considered a tri-fracturing [41].
Practically, re-fracturing is carried out when the initial hydraulic fracturing treatment was undersized or when suspected skin damage exists [42]. It is possible to use the existing fractures for the re-fracture and still generate a new fracture network sufficient to increase production. In a formation with its low in situ stress anisotropy, pressure can be created within the fracture itself to cause the reservoir to be fractured in new directions. Reusing the existed fractures helps control the cost of re-fracturing. Therefore, another approach for re-fracturing is to add perforations between the existing fractures to create additional fracturing networks as shown in Figure 4.
(left) a hydraulic fracturing stimulation created a fracture network (right) after re-fracturing, and additional complex fracture network has developed (Allison & Parker 2014 [38]).
There are many ways available to perform re-fracturing; however, three most common re-fracturing methods are selected for consideration, namely, the diversion method, the coiled tubing fracturing method, and the mechanical isolation method [43]:
Diversion: This method uses diverting agents to plug the existed fractures or perforations, allowing re-fracturing reallocation to new areas. However, it is difficult to control which segment of the lateral would be stimulated that is why it’s also known as a “pump and pray method.” Yet, this method is the most widely used in the industry likely because it is the most cost-effective.
Coiled tubing: This method utilizes resettable packers where re-fracturing is targeted. However, at low rates through coiled tubing, this method is considered inadequate for open-hole environments.
Mechanical isolation: This method typically uses expandable liners and plugs. However, it requires new hardware for re-fracturing which increase costs substantially because it would often need to use a full new liner.
As re-fracturing technology gains popularity in unconventional reservoirs, the ability to isolate reservoir access points and redirect the fracturing fluids and proppant to different parts of the reservoir is crucial to achieving a successful treatment. All known methods have advantages and disadvantages; however, the often selected method is based on their ease of use, cost-effectiveness, and environmental impact.
Many wells are drilled with outdated completion designs; for that, they aren’t efficiently producing the reservoir formations. These wells are specifically targeted when engaging re-fracturing because it is an economical practice to mitigate the flow rate decline and maximize reservoir deliverability [44].
The process of choosing which well to re-fracture is known as “candidate selection” [45], and the following are criteria which are often considered [46]:
Logs or tracers indicating unproductive sections of wellbore
Initial completion used wrong fracture fluid or proppant type
Degree of production depletion
Degradation in fracture conductivity or propped half-length
Productivity of the reservoir
Performance of other nearby wells
The selection methodology must be customized to fit the particular needs of a given field where substantial incremental reserves can be added if the correct candidate selection process is followed [47].
After re-fracturing, a well may experience increase in production due to new fractures or extension of existing fracture networks. The success of re-fracturing can be determined by empirical parameters such as production rate 30 days before and following re-fracturing, EUR ratio based on DCA [48].
Computer programs can simulate re-fracturing scenarios at a considerable degree of accuracy despite the fact that all predictive methods lack robustness that accounts for the original production depletion and the conditions after re-fracturing. However, as technology advances, well performed computer models are able to generate trustworthy forecasts that allow decision-makers to confidently evaluate the economic success or failure of re-fracturing.
Simultaneous fracturing or multiple fracturing (simul-frac) technology is the hydraulic fracturing technique that fractures multiple wells simultaneously. Simultaneous fracturing applies a shortest well-to-well distance to allow both the proppants and fracturing fluid flow through the porous medium from well to well under high pressure as shown in Figure 5. The purpose of the multiple simultaneous process is to increase the recovery efficiency and productivity, of the wells, by increasing the surface area subject to flow through the newly created dense fractures. The typical practice of simultaneous fracturing initiates with two horizontal wells of the same depth; however, currently up to four wells can be simultaneously fractured [46].
An example of simultaneous fracturing [49].
Many researchers have performed different field experiments to examine the simultaneous fracture multiple adjacent horizontal wells to create complex fracture networks. Even though field attempts have shown significant improvement with simul-frac instead of stand-along wells [50], microseismic information [51], and numerical simulations [52, 53, 54, 55, 56, 57, 58] also demonstrate a complex fracture network made through simul-frac. However, the reasons behind its success are not yet well understood. Multiple hydraulic fracture technique is a complex method that requires considering not only the hydraulic fracturing procedure but also fracture interaction between multiple fractures. The hydraulic fracturing treatment is a typical hydromechanical fracture coupling problem, wherein the following three basic processes involve in [59]:
Rock deformation made by fluid pressure applied on fracture surface
Fluid flow into the fractures
Fracture growth
The fracture interaction between multiple fractures would significantly result in stress shadow effects that can cause stress field and fracture geometry alterations.
With the advance of computer processes, more numerical tools have been developed to become reliable and convenient techniques to investigate the treatment methods of hydraulic fracturing. Moreover, the numerical technique of finite element [60] is a well-established scheme to study rock engineering issues, and also it is frequently used in the last three decades to simulate hydraulic fracture propagation [61]. However, there are many scientific articles published on different finite element methods to numerically study the process of hydraulic fracturing [62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82].
Horizontal well fracturing technology is the main technology promptly utilized to low permeability reservoirs. However, in deep shale reservoirs, the use of traditional single stimulation cannot meet the production requirements. Thus, a new technology of horizontal well pressure cracking has been introduced. Zebo et al. [83] found that, based on the process and concerned parameters of horizontal well fracturing, increasing technical problems during reservoir exploration and development, horizontal section becomes popular where sub-fractured horizontal well technique has wide application potentials. Furthermore, the sub-fracturing technology is an important tool in the technology of staged fracturing. Packer as a completion tool does not consist of multicolumn zones, and supporting tools are necessary for safety and to increase the possibility of successful fracturing treatment.
The success of horizontal well fracture is mainly due to the mechanical properties of the rock, stress, shaft stress fracture initiation, and elongation mechanism. Moreover, the horizontal well sub-fracturing should be considered to obtain better fracturing design and to ensure treatment success and efficiency. To achieve the expected outcomes from well completion of a fracturing job, certain issues must be monitored such as the borehole or near wellbore area, permeability anisotropy, blocking natural cracks, and stimulation failure. Up to date, the horizontal well fracturing technique has become one of the preferred tools to solve these problems. Thus, the main applied technology of horizontal well fracturing consists of limited flow fracturing technique and sub-fracturing process. The following section will describe these techniques.
This technique limits the number of perforations and their diameter while injecting a large volume of fracturing fluid that causes increasing the bottom hole pressure on a large scale. Therefore, the fracturing fluid is forced to shunt into limited entries creating new fractures as shown in Figure 6 [85, 86]. The main advantages of this technique are a relatively simple operation, short operation time, the fact that multi-fractures are created in a single operation which is environmentally favorable for reservoir protection. However, this technique has some limitations including high perforation back pressure, difficult to control any single fracture, and fractures which may not form in perforations of long interval horizontal well.
Technique of the limited entry fracturing of a horizontal well [84].
An example where limited entry fracturing technology was applied in horizontal well is Zhao 57-Ping 35 of Daqing Oil Field [84]. The well was divided into 4 sections each containing 19 perforations, and an isolating packer was set above the kickoff point. Using two simultaneous pumping facilities, a total fracturing fluid volume of 374.3m3 with an average sand ratio of 35.6% was injected at a rate of 7.5 m3/min. The fracture initiation pressure was 30.5 MPa, four fractures were created, and the total fracture span was 400 m. The entire operation took 79 minutes. This treatment achieved success allowing the production after fracturing to increase 20–30 times and reach the production level of 4 vertical wells.
As limited entry fracturing cannot operate on all the target layers at one time, staged fracturing technique is used when the horizontal section is long and many layers are targeted for fracturing. Staged fracturing creates many fractures by utilizing packers and/or other segmenting materials. Operating a section by section at the time, one fracture is created in every section. The key points to achieve staged fracturing are tools and technique that fulfill the treatment requirements.
There are three types of staged fracturing techniques often used: the bridge plug fracturing, through coiled tubing fracturing with straddle packer and gel complex-slug fracturing as shown in Figure 7. Contrary to packer separation, the gel complex-slug fracturing avoids the risk of downhole tool stuck, but in the latter, the fracture initiation points are difficult to control.
Staged fracturing mechanism of horizontal wells [84].
An example where gel staged fracturing technology was applied in well Saiping-1 of Changqing Oil Field where four fractures were created. The process is briefly described as the following: perforating the end of horizontal well section, followed by first fracturing treatment, running a production test, and temporary plugging the first section by sand filling gel plug and, next, repeating the process in perforating the second, third, and fourth sections followed by a formation pressure and production tests.
The first hydraulic fracturing treatment was implemented in Hugoton Gas Field in Grand County, state of Kansas, during 1947. By the end of 1952, many fracturing treatments were performed with refined and crude oils. Thus oil-based fluids were the first fracturing fluid utilized for this purpose due to their benefits which are cheap and permitting greater volumes at a lower cost. But due to the safety and environmental issues, which are associated with their applications, it was encouraged that the industry move toward in developing an alternative fluid. At the beginning of 1953, for the first time, water fluid was used as a fracturing fluid; and a number of gelling agents were developed. However, water-based fluids with water-soluble polymers mixed to prepare a viscous solution are commonly used in the fracturing treatment. Since the late 1950s, more than 50% of the fracturing treatments were performed with fluids consisting of guar gums, high-molecular-weight polysaccharides composed of mannose and galactose sugars, or guar derivatives [87].
In 1964, surfactant agents were added to reduce the emulsion formation when in contact with the reservoir fluid; however, potassium chloride was added to decrease the effect on clays and other water-sensitive formation components. Later, additional clay stabilizing agents were developed to enhance the potassium chloride, allowing the use of water in different geological formations. In the early 1970s, a major revolution in fracturing fluids introduced the use of metal-based cross-linking agents to improve the viscosity of gelled water-based fracturing fluids for extreme reservoir condition (i.e., high temperature). Later a critical development was made on gelling agent to achieve a preferred viscosity. Also guar-based polymers are still used in fracturing jobs at reservoir temperatures below 150°C. Other fluid improvements, foams, and the addition of alcohol have enhanced the use of water in more geological reservoir formations. Moreover, various aqueous fluids, such as acid, gas, water, and brines, are currently used as the base fluid in approximately 96% of all fracturing treatments employing a propping agent [87].
As the hydrocarbon drilling and production have moved toward deeper reservoirs with high pressure and temperature condition, more fracturing treatments have been developed to be compatible with these conditions. Therefore, gel stabilizers and thermally stable polymers have been developed in which gel stabilizers can be utilized with around 5% methanol, but synthetic polymers have shown a sufficient viscosity at temperatures up to 230°C [88]. After that, chemical stabilizers have been developed and possibly used with or without a methanol. The improvements, which are made in cross-linkers and gelling agents, have led to systems that can permit the fluid to reach the well bottomhole in high-temperature condition before cross-linking, therefore, reducing the effects of high shear in the production tubing. Recently, nanotechnology has been introduced in the design of new, efficient hydraulic fracturing fluids [88]. For example, nanolatex silica is used to reduce the concentration of boron found in conventional cross-linkers. Recent advancement in nanotechnology is the use of small-sized silica particles [20 nm] suspended in guar gels to improve fracturing treatment [89]. Therefore, the following section will discuss the use of CO2 and N2 as fracturing fluid to enhance the hydrocarbon fluid production and to store CO2 into the geological formation to minimize the greenhouse emission. Also it will provide a brief information on hydra-jet fracturing.
In the ordinary fracturing, large amounts of freshwater, sand, and chemicals are injected into the ground at high pressure. It has been reported that up to 9.6 million gallons of water on average are used for a single well fracturing; this lead to the use of more than 28 times the water for wells before fracturing, putting farming, and drinking sources at risk in arid regions, especially during drought [90]. Some of the water used for fracking is brought back to the surface and recycled, but the most of it is lost deep into the formations. Thus, fracking can increase demand for water by up to 30 percent, and this can be a major increase for groundwater consumption.
To solve the water scarcity problem, the fracturing using water, carbon dioxide, and nitrogen is commonly referred to the process in where substantial quantities of both nitrogen and carbon dioxide are incorporated into the fracturing fluid. Amounts of nitrogen and carbon dioxide are incorporated separately into an aqueous-based fracturing fluid to provide a volume ratio of nitrogen to carbon dioxide within an estimated range between 0.2 and 1.0 at wellhead conditions. The volume ratio for the total of both carbon dioxide and nitrogen to the aqueous phase of the aqueous fracturing fluid ranges between 1 and 4. The aqueous fracturing fluid that contains the nitrogen and carbon dioxide is injected in the well under conditions in which the pressure required is high enough to implement hydraulic fracturing of the subterranean formation undergoing treatment. In order to provide a viscous aqueous-based fracturing fluid, a thickening agent may be added into water. Additionally, a propping agent is to be incorporated into a portion of the fracturing fluid. Only then can carbon dioxide and nitrogen be added to the fluid. Carbon dioxide is incorporated in its liquid phase and the nitrogen in its gaseous phase. The use of carbon dioxide and nitrogen as fracturing fluids is discussed briefly in this essay.
Currently, carbon dioxide fracturing is one of the most effective and cleanest approaches available in order to increase oil and gas production. To produce the viscous aqueous-based fracturing fluid, carbon dioxide is injected in its liquid state using conventional frac pumps. Injection rates for it can be improved by incorporating booster capacity. An upside of using carbon dioxide in this process is that it can carry high concentrations of proppant in foam form due to its density and is compatible with all treating fluids (including acids). Because of that density, it is also not susceptible to gravity separation. Additionally, carbon dioxide can be pumped with synthetic and natural polymers, lease crude, or diesel as a foam or microemulsion, increasing the hydrostatic head to or greater than that of fresh water and decreasing the viscosity of the system. This feature of carbon dioxide results in vastly reducing horsepower costs and a decrease in the applied treating pressures. Another benefit of carbon dioxide is that it dissolves in water which causes it to form carbonic acid that dissolves the matrix in carbonate rocks. It buffers water-based systems to a pH of 3.2 which can also control clay swelling and iron and aluminum hydroxide precipitation. Known to act as a surfactant to significantly reduce interfacial tension and resultant capillary forces, carbon dioxide thus removes fracturing fluid, connate water, and emulsion blocks. In regard to it being one of the cleanest approaches in increasing gas and oil productions, carbon dioxide provides the energy to remove formations fines, crushed proppant, reaction products, and mud that is lost during drilling. In addition to that, swabbing of treating fluids can be greatly reduced which will allow for saving in associated treatment costs. Lastly, unlike other agents a carbon dioxide treatment with a 70 quality foam job allows low amounts of the water to contact the formation, roughly 30 percent compared to a gelled water fracturing. This decrease chances of clay swelling and inhibited production. All these benefits of using carbon dioxide as a fracturing fluid in wells with low bottomhole pressure or sensitivity to certain fluids make it a strong alternative candidate.
Although containing different properties, nitrogen similar to carbon dioxide comes with many benefits for fracturing fluids. Nitrogen for the fracturing fluids can be supplied by air products and provides both performance and cost advantages over certain formations of water-based fluids. Although water-based fracturing fluids are commonly used for hydraulic fracturing due to their advanced proppant transport into the fracture, they do also come with disadvantages. Because they can cause water saturation around the fracture and clay swelling which can result in hindering the mass transport of hydrocarbons from the fracture to the wellbore, water-based fluids are often unsuitable for water-sensitive formations. Nitrogen fracking fluids are an excellent alternative to water-based fluids in water-sensitive formations, depleted reservoirs, and shallow formations as they do not result in any water saturation.
Four main types of nitrogen fracturing fluids are used commercially: pure gas, foam, energized, and ultrahigh quality (mists). Foam fracturing fluids typically consist of a water-based system and a gas phase of nitrogen volume in the range of 53 to 95%. Below 53% nitrogen, the fracturing fluid is considered energized. Above 95 percent nitrogen, the fracturing fluid is considered a mist. Cryogenic liquid nitrogen fracking fluid is considered to be the fifth type of nitrogen fracturing fluids used. However, it is rarely employed for commercial operations due to material restrictions and equipment requirements.
The process of hydra-jet fracturing combines hydra-jetting with hydraulic fracturing and involves running a specialized jetting tool on conventional or coiled tubing. Dynamic fluid energy jets form tunnels in the reservoir rock at precise locations to initiate the hydraulic fracture which is then extended from that point outwards. By repeating the process, one can create multiple hydraulic fractures along the horizontal wellbore [91, 92, 93]. The idea of hydra-jet fracturing is not a new one. In fact, it was used a century ago with low-pressure jets [94] where waterjets with erosive materials were used to cut rock and glass. Because erosion does not involve a backflow hindering the sand cutting process, cutting steel plates, wellheads during the Iraqi war, and rock quarries tend to be easily be done. Hydra-jet cutting may be mistakenly claimed as a result of a perforating process which can be seen when used on the rocks sandstone and limestone.
For these two rocks, assume that the jet is used to perforate formation rock. Also assume that the jetting process creates a perforation with a larger inside diameter than the jet nozzle. The velocity of the fluid flowing into the perforation tunnel would be incredibly elevated. Near the bottom of the perforation, the velocity of the flowing fluid would dramatically decrease. If the flow area is sustained and there is no presence of friction, the fluid pressure will be equal to the original jet pressure per the example. However, this tends to be an unlikely happening because pressure losses are typically high. To further explain this, jet boundary friction works to convert kinetic energy to heat loss causing jet flaring. This drastically reduces jet velocity, which in turn reduces the pressure per unit area of impact. This results in a low-pressure transformation efficiency. More importantly, rocks can still be fractured when enough pressure is applied to the jets even at this low of a pressure efficiency rate. An important note is that laboratory tests have shown that rock fracturing is commonplace when jet pressures are high. However, when high-pressure and low-energy transformation efficiencies are used hand in hand, they are technically and economically impractical.
The desired objective of fracturing is to develop and effectively produce from a shale reservoir. To ensure a successful fracturing treatment, a proper fracturing technology must be utilized based on the reservoir characteristics as the reservoir mineral content, physical properties, and geological condition. The utilized formation fracturing technique has a different desired environment to achieve the maximal recovery. During the process of fracturing treatment, the content of a fracturing fluid should be checked based on the formation mineral content and physical properties to improve reservoir permeability and reduce formation damage.
The forming of multi-fracture network is the key to obtain an effective hydraulic fracturing treatment in shale reservoirs. If higher treating net pressure is achieved, lower fluid viscosity is used, and larger fracturing scale attempt would be more helpful to form a fully fracture network. The reservoir geological factors also have high attributes, where brittleness index, elastic characteristic of rock mechanical properties, horizontal stress, and existence of natural fractures are useful to obtain better results of fractures developing into multi-fracture network.
Re-fracturing has the potential to re-energize natural fractures and extend and replace low conductivity existing fracture network. Utilizing re-fracture treatment successfully depends on technology that allows access to larger volumes of unconventional reservoirs. Monitoring the effectiveness of well completions helps guide technologies and methods to gain control of the wellbore to maximize EUR and NPV. Re-fracturing treatments have significant impact on production, and economics of unconventional reservoir development and consideration should be taken to determine the best way to achieve successful re-fracturing as production starts to decline.
IntechOpen Compacts provide a mid-length publishing format which bridges the gap between journal articles, book chapters and monographs, and cover content across all scientific disciplines. Compacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues or broader topics on the research subject.
",metaTitle:"IntechOpen Compacts",metaDescription:"IntechOpen Compacts present a mid-length publishing format which bridges the gap between journal articles, book chapters, and monographs and covers content across all scientific disciplines.",metaKeywords:null,canonicalURL:"/page/compacts",contentRaw:'[{"type":"htmlEditorComponent","content":"Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\\n\\nCOMPACTS-SHORT FORM MONOGRAPH
\\n\\nCOST
\\n\\n4,000 GBP Compacts Monograph - Short Form
\\n\\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview and description of the steps involved in the publishing process here.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\n\nCOMPACTS-SHORT FORM MONOGRAPH
\n\nCOST
\n\n4,000 GBP Compacts Monograph - Short Form
\n\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview and description of the steps involved in the publishing process here.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:19},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:21},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:6},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"103",title:"Geography",slug:"geography",parent:{title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:10,numberOfAuthorsAndEditors:293,numberOfWosCitations:96,numberOfCrossrefCitations:75,numberOfDimensionsCitations:165,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"geography",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9381",title:"Geographic Information Systems in Geospatial Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"069b444029eceaad8ff557eca7bd713e",slug:"geographic-information-systems-in-geospatial-intelligence",bookSignature:"Rustam B. Rustamov",coverURL:"https://cdn.intechopen.com/books/images_new/9381.jpg",editedByType:"Edited by",editors:[{id:"59174",title:"Dr.",name:"Rustam B.",middleName:null,surname:"Rustamov",slug:"rustam-b.-rustamov",fullName:"Rustam B. Rustamov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9846",title:"Spatial Variability in Environmental Science",subtitle:"Patterns, Processes, and Analyses",isOpenForSubmission:!1,hash:"cfa4fa7b982bbff46ffbe6fbdbffbdf1",slug:"spatial-variability-in-environmental-science-patterns-processes-and-analyses",bookSignature:"John P. Tiefenbacher and Davod Poreh",coverURL:"https://cdn.intechopen.com/books/images_new/9846.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9246",title:"Satellites Missions and Technologies for Geosciences",subtitle:null,isOpenForSubmission:!1,hash:"f23d04613b089dae40f81342c3e7c7f4",slug:"satellites-missions-and-technologies-for-geosciences",bookSignature:"Vladislav Demyanov and Jonathan Becedas",coverURL:"https://cdn.intechopen.com/books/images_new/9246.jpg",editedByType:"Edited by",editors:[{id:"154597",title:"Prof.",name:"Vladislav",middleName:null,surname:"Demyanov",slug:"vladislav-demyanov",fullName:"Vladislav Demyanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7304",title:"Geospatial Analyses of Earth Observation (EO) data",subtitle:null,isOpenForSubmission:!1,hash:"e90c7cda0e7f94a6620d6ec83db808ae",slug:"geospatial-analyses-of-earth-observation-eo-data",bookSignature:"Antonio Pepe and Qing Zhao",coverURL:"https://cdn.intechopen.com/books/images_new/7304.jpg",editedByType:"Edited by",editors:[{id:"99269",title:"Dr.",name:"Antonio",middleName:null,surname:"Pepe",slug:"antonio-pepe",fullName:"Antonio Pepe"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7362",title:"Geographic Information Systems and Science",subtitle:null,isOpenForSubmission:!1,hash:"b0ac3aa0063d6a10dd3fe90ff78cddd7",slug:"geographic-information-systems-and-science",bookSignature:"Jorge Rocha and Patrícia Abrantes",coverURL:"https://cdn.intechopen.com/books/images_new/7362.jpg",editedByType:"Edited by",editors:[{id:"145918",title:"Ph.D.",name:"Jorge",middleName:null,surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7262",title:"Spatial Analysis, Modelling and Planning",subtitle:null,isOpenForSubmission:!1,hash:"ed7c7f4193e3951e715569ca454f7077",slug:"spatial-analysis-modelling-and-planning",bookSignature:"Jorge Rocha and José António Tenedório",coverURL:"https://cdn.intechopen.com/books/images_new/7262.jpg",editedByType:"Edited by",editors:[{id:"145918",title:"Ph.D.",name:"Jorge",middleName:null,surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6396",title:"Urban Agglomeration",subtitle:null,isOpenForSubmission:!1,hash:"da1643c7ce5482ec846a188d34ce2839",slug:"urban-agglomeration",bookSignature:"Mustafa Ergen",coverURL:"https://cdn.intechopen.com/books/images_new/6396.jpg",editedByType:"Edited by",editors:[{id:"166961",title:"Dr.Ing.",name:"Mustafa",middleName:null,surname:"Ergen",slug:"mustafa-ergen",fullName:"Mustafa Ergen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5241",title:"Applications of Spatial Statistics",subtitle:null,isOpenForSubmission:!1,hash:"acc5941907640ecc7a3e350c5fe3df19",slug:"applications-of-spatial-statistics",bookSignature:"Ming-Chih Hung",coverURL:"https://cdn.intechopen.com/books/images_new/5241.jpg",editedByType:"Edited by",editors:[{id:"184413",title:"Dr.",name:"Ming",middleName:"Chih",surname:"Hung",slug:"ming-hung",fullName:"Ming Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3727",title:"Land Applications of Radar Remote Sensing",subtitle:null,isOpenForSubmission:!1,hash:"26e11b6e4cce4e245e6e28b281563139",slug:"land-applications-of-radar-remote-sensing",bookSignature:"Francesco Holecz, Paolo Pasquali, Nada Milisavljevic and Damien Closson",coverURL:"https://cdn.intechopen.com/books/images_new/3727.jpg",editedByType:"Edited by",editors:[{id:"13897",title:"Dr.",name:"Damien",middleName:null,surname:"Closson",slug:"damien-closson",fullName:"Damien Closson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2325",title:"Cartography",subtitle:"A Tool for Spatial Analysis",isOpenForSubmission:!1,hash:"3dca82349b9c5a9106966b58dfb803b3",slug:"cartography-a-tool-for-spatial-analysis",bookSignature:"Carlos Bateira",coverURL:"https://cdn.intechopen.com/books/images_new/2325.jpg",editedByType:"Edited by",editors:[{id:"131405",title:"Dr.",name:"Carlos",middleName:null,surname:"Bateira",slug:"carlos-bateira",fullName:"Carlos Bateira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,mostCitedChapters:[{id:"57824",doi:"10.5772/intechopen.72047",title:"Waste in the City: Challenges and Opportunities for Urban Agglomerations",slug:"waste-in-the-city-challenges-and-opportunities-for-urban-agglomerations",totalDownloads:1901,totalCrossrefCites:5,totalDimensionsCites:15,book:{slug:"urban-agglomeration",title:"Urban Agglomeration",fullTitle:"Urban Agglomeration"},signatures:"Jutta Gutberlet",authors:[{id:"188532",title:"Prof.",name:"Jutta",middleName:null,surname:"Gutberlet",slug:"jutta-gutberlet",fullName:"Jutta Gutberlet"}]},{id:"58196",doi:"10.5772/intechopen.72191",title:"The Multivariated Effect of City Cooperation in Land Use Planning and Decision-Making Processes: A European Analysis",slug:"the-multivariated-effect-of-city-cooperation-in-land-use-planning-and-decision-making-processes-a-eu",totalDownloads:547,totalCrossrefCites:2,totalDimensionsCites:11,book:{slug:"urban-agglomeration",title:"Urban Agglomeration",fullTitle:"Urban Agglomeration"},signatures:"Luís Carlos Loures, Rui Alexandre Castanho, José Manuel Naranjo\nGómez, Ana Vulevic, José Cabezas and Luis Fernández-Pozo",authors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"},{id:"215340",title:"Dr.",name:"Ana",middleName:null,surname:"Vulevic",slug:"ana-vulevic",fullName:"Ana Vulevic"},{id:"215341",title:"Prof.",name:"José",middleName:null,surname:"Cabezas Fernández",slug:"jose-cabezas-fernandez",fullName:"José Cabezas Fernández"},{id:"215342",title:"Prof.",name:"José Manuel",middleName:null,surname:"Naranjo Gómez",slug:"jose-manuel-naranjo-gomez",fullName:"José Manuel Naranjo Gómez"},{id:"222742",title:"Dr.",name:"Luis",middleName:null,surname:"Fernández-Pozo",slug:"luis-fernandez-pozo",fullName:"Luis Fernández-Pozo"},{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho"}]},{id:"46448",doi:"10.5772/58225",title:"Mapping of Ground Deformations with Interferometric Stacking Techniques",slug:"mapping-of-ground-deformations-with-interferometric-stacking-techniques",totalDownloads:3187,totalCrossrefCites:6,totalDimensionsCites:11,book:{slug:"land-applications-of-radar-remote-sensing",title:"Land Applications of Radar Remote Sensing",fullTitle:"Land Applications of Radar Remote Sensing"},signatures:"Paolo Pasquali, Alessio Cantone, Paolo Riccardi, Marco Defilippi,\nFumitaka Ogushi, Stefano Gagliano and Masayuki Tamura",authors:[{id:"168247",title:"Dr.",name:"Paolo",middleName:null,surname:"Pasquali",slug:"paolo-pasquali",fullName:"Paolo Pasquali"},{id:"168811",title:"Mr.",name:"Paolo",middleName:null,surname:"Riccardi",slug:"paolo-riccardi",fullName:"Paolo Riccardi"},{id:"168812",title:"Mr.",name:"Alessio",middleName:null,surname:"Cantone",slug:"alessio-cantone",fullName:"Alessio Cantone"},{id:"168813",title:"Mr.",name:"Marco",middleName:null,surname:"Defilippi",slug:"marco-defilippi",fullName:"Marco Defilippi"},{id:"168814",title:"Mr.",name:"Fumitaka",middleName:null,surname:"Ogushi",slug:"fumitaka-ogushi",fullName:"Fumitaka Ogushi"},{id:"168815",title:"Mr.",name:"Stefano",middleName:null,surname:"Gagliano",slug:"stefano-gagliano",fullName:"Stefano Gagliano"},{id:"170671",title:"Prof.",name:"Masayuki",middleName:null,surname:"Tamura",slug:"masayuki-tamura",fullName:"Masayuki Tamura"}]}],mostDownloadedChaptersLast30Days:[{id:"57824",title:"Waste in the City: Challenges and Opportunities for Urban Agglomerations",slug:"waste-in-the-city-challenges-and-opportunities-for-urban-agglomerations",totalDownloads:1897,totalCrossrefCites:5,totalDimensionsCites:15,book:{slug:"urban-agglomeration",title:"Urban Agglomeration",fullTitle:"Urban Agglomeration"},signatures:"Jutta Gutberlet",authors:[{id:"188532",title:"Prof.",name:"Jutta",middleName:null,surname:"Gutberlet",slug:"jutta-gutberlet",fullName:"Jutta Gutberlet"}]},{id:"70189",title:"GNSS High-Rate Data and the Efficiency of Ionospheric Scintillation Indices",slug:"gnss-high-rate-data-and-the-efficiency-of-ionospheric-scintillation-indices",totalDownloads:295,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"satellites-missions-and-technologies-for-geosciences",title:"Satellites Missions and Technologies for Geosciences",fullTitle:"Satellites Missions and Technologies for Geosciences"},signatures:"Vladislav V. Demyanov, Maria A. Sergeeva and Anna S. Yasyukevich",authors:[{id:"154597",title:"Prof.",name:"Vladislav",middleName:null,surname:"Demyanov",slug:"vladislav-demyanov",fullName:"Vladislav Demyanov"},{id:"299487",title:"Dr.",name:"Maria",middleName:null,surname:"Sergeeva",slug:"maria-sergeeva",fullName:"Maria Sergeeva"},{id:"307343",title:"Dr.",name:"Anna",middleName:null,surname:"Yasyukevich",slug:"anna-yasyukevich",fullName:"Anna Yasyukevich"}]},{id:"73592",title:"A Review of the Machine Learning in GIS for Megacities Application",slug:"a-review-of-the-machine-learning-in-gis-for-megacities-application",totalDownloads:253,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"geographic-information-systems-in-geospatial-intelligence",title:"Geographic Information Systems in Geospatial Intelligence",fullTitle:"Geographic Information Systems in Geospatial Intelligence"},signatures:"Nasim Tohidi and Rustam B. Rustamov",authors:[{id:"59174",title:"Dr.",name:"Rustam B.",middleName:null,surname:"Rustamov",slug:"rustam-b.-rustamov",fullName:"Rustam B. Rustamov"},{id:"317547",title:"Dr.",name:"Nasim",middleName:null,surname:"Tohidi",slug:"nasim-tohidi",fullName:"Nasim Tohidi"}]},{id:"52704",title:"Comparison of Spatial Interpolation Techniques Using Visualization and Quantitative Assessment",slug:"comparison-of-spatial-interpolation-techniques-using-visualization-and-quantitative-assessment",totalDownloads:2497,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"applications-of-spatial-statistics",title:"Applications of Spatial Statistics",fullTitle:"Applications of Spatial Statistics"},signatures:"Yi-Hwa (Eva) Wu and Ming-Chih Hung",authors:[{id:"181853",title:"Dr.",name:"Yi-Hwa",middleName:null,surname:"Wu",slug:"yi-hwa-wu",fullName:"Yi-Hwa Wu"}]},{id:"69962",title:"Nanosatellites and Applications to Commercial and Scientific Missions",slug:"nanosatellites-and-applications-to-commercial-and-scientific-missions",totalDownloads:748,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"satellites-missions-and-technologies-for-geosciences",title:"Satellites Missions and Technologies for Geosciences",fullTitle:"Satellites Missions and Technologies for Geosciences"},signatures:"Adriano Camps",authors:[{id:"299991",title:"Prof.",name:"Adriano",middleName:null,surname:"Camps",slug:"adriano-camps",fullName:"Adriano Camps"}]},{id:"59382",title:"Land and Infrastructure Development in Peri-Urban Areas: Case Study of Gomti Nagar, Lucknow, India",slug:"land-and-infrastructure-development-in-peri-urban-areas-case-study-of-gomti-nagar-lucknow-india",totalDownloads:1269,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"urban-agglomeration",title:"Urban Agglomeration",fullTitle:"Urban Agglomeration"},signatures:"Kana Ram Godha",authors:[{id:"214103",title:"Mr.",name:"Kana Ram",middleName:null,surname:"Godha",slug:"kana-ram-godha",fullName:"Kana Ram Godha"}]},{id:"67619",title:"Application of Topographic Analyses for Mapping Spatial Patterns of Soil Properties",slug:"application-of-topographic-analyses-for-mapping-spatial-patterns-of-soil-properties",totalDownloads:715,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"geospatial-analyses-of-earth-observation-eo-data",title:"Geospatial Analyses of Earth Observation (EO) data",fullTitle:"Geospatial Analyses of Earth Observation (EO) data"},signatures:"Xia Li and Gregory W. McCarty",authors:[{id:"55106",title:"Dr.",name:"Gregory",middleName:null,surname:"McCarty",slug:"gregory-mccarty",fullName:"Gregory McCarty"},{id:"286359",title:"Dr.",name:"Xia",middleName:null,surname:"Li",slug:"xia-li",fullName:"Xia Li"}]},{id:"38308",title:"Open Source Tools, Landscape and Cartography: Studies on the Cultural Heritage at a Territorial Scale",slug:"open-source-tools-landscape-and-cartography-studies-on-the-cultural-heritage-at-a-territorial-scale",totalDownloads:2199,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"cartography-a-tool-for-spatial-analysis",title:"Cartography",fullTitle:"Cartography - A Tool for Spatial Analysis"},signatures:"Pilar Chias and Tomas Abad",authors:[{id:"140533",title:"Prof.",name:"Pilar",middleName:null,surname:"Chias",slug:"pilar-chias",fullName:"Pilar Chias"}]},{id:"63765",title:"Introductory Chapter: Spatial Analysis, Modelling, and Planning",slug:"introductory-chapter-spatial-analysis-modelling-and-planning",totalDownloads:2164,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"spatial-analysis-modelling-and-planning",title:"Spatial Analysis, Modelling and Planning",fullTitle:"Spatial Analysis, Modelling and Planning"},signatures:"José António Tenedório and Jorge Rocha",authors:[{id:"145918",title:"Ph.D.",name:"Jorge",middleName:null,surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"},{id:"242032",title:"Dr.",name:"José António",middleName:null,surname:"Tenedório",slug:"jose-antonio-tenedorio",fullName:"José António Tenedório"}]},{id:"70180",title:"The Impact of Space Radiation Environment on Satellites Operation in Near-Earth Space",slug:"the-impact-of-space-radiation-environment-on-satellites-operation-in-near-earth-space",totalDownloads:429,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"satellites-missions-and-technologies-for-geosciences",title:"Satellites Missions and Technologies for Geosciences",fullTitle:"Satellites Missions and Technologies for Geosciences"},signatures:"Victor U. J. Nwankwo, Nnamdi N. Jibiri and Michael T. Kio",authors:[{id:"94563",title:"Dr.",name:"Nnamdi",middleName:null,surname:"Jibiri",slug:"nnamdi-jibiri",fullName:"Nnamdi Jibiri"},{id:"300878",title:"Dr.",name:"Victor",middleName:null,surname:"Nwankwo",slug:"victor-nwankwo",fullName:"Victor Nwankwo"},{id:"310318",title:"Dr.",name:"Michael",middleName:null,surname:"Kio",slug:"michael-kio",fullName:"Michael Kio"}]}],onlineFirstChaptersFilter:{topicSlug:"geography",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/111791/andrew-forbes",hash:"",query:{},params:{id:"111791",slug:"andrew-forbes"},fullPath:"/profiles/111791/andrew-forbes",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()