\r\n\t
",isbn:"978-1-83969-323-6",printIsbn:"978-1-83969-322-9",pdfIsbn:"978-1-83969-324-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"f9177ff0e61198735fb86a81303259d0",bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",keywords:"Ion Implantation, Photomask Fabrication, Photovoltaic Materials, Solar Thermal, Mass Spectrometric, Electrochemical, Molecular Thermodynamics, Sustainable Energy Conversion, Energy Production and Storage, Green Technologies, Bioenergy and Biofuels to the Storage, Bioinspired Materials and Systems",numberOfDownloads:32,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 17th 2020",dateEndSecondStepPublish:"February 17th 2021",dateEndThirdStepPublish:"April 18th 2021",dateEndFourthStepPublish:"July 7th 2021",dateEndFifthStepPublish:"September 5th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Professor Sadia Ameen is a Gold Medalist in academics and recipient of the Best Researcher Award. She has more than 130 peer-reviewed papers in the field of solar cells, catalysts, sensors, contributed to book chapters, edited books, and is inventor/co-inventor of patents.",coeditorOneBiosketch:"Associate professor at Jeonbuk National University, Korea. He is an expert in the synthesis of semiconductor nanomaterials, composite materials, polymer-based solid-state films, solid polymer electrolytes, and electrode materials, solar cells, small molecules based organic solar cells, and photocatalytic reactions.",coeditorTwoBiosketch:"Professor in School of Chemical Engineering, Jeonbuk National University, and also President of Korea Basic Science Institute (KBSI), Republic of Korea. The high impact of his work has been recognized by invitations to speak at international/national conferences and scientific meetings.",coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",middleName:null,surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen",profilePictureURL:"https://mts.intechopen.com/storage/users/52613/images/system/52613.jpeg",biography:"Professor Sadia Ameen obtained her Ph.D. in Chemistry (2008) and then moved to Jeonbuk National University. Presently she is working as an Assistant Professor in the Department of Bio-Convergence Science, Jeongeup Campus, Jeonbuk National University. Her current research focuses on dye-sensitized solar cells, perovskite solar cells, organic solar cells, sensors, catalyst, and optoelectronic devices. She specializes in manufacturing advanced energy materials and nanocomposites. She has achieved a gold medal in academics and is the holder of a merit scholarship for the best academic performance. She is the recipient of the Best Researcher Award. She has published more than 130 peer-reviewed papers in the field of solar cells, catalysts and sensors, contributed to book chapters, edited books, and is an inventor/co-inventor of patents.",institutionString:"Jeonbuk National University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Jeonbuk National University",institutionURL:null,country:{name:"Korea, South"}}}],coeditorOne:{id:"218191",title:"Dr.",name:"M. Shaheer",middleName:null,surname:"Akhtar",slug:"m.-shaheer-akhtar",fullName:"M. Shaheer Akhtar",profilePictureURL:"https://mts.intechopen.com/storage/users/218191/images/system/218191.jpg",biography:"Professor M. Shaheer Akhtar completed his Ph.D. in Chemical Engineering, 2008, from Jeonbuk National University, Republic of Korea. Presently, he is working as Associate Professor at Jeonbuk National University, the Republic of Korea. His research interest constitutes the photo-electrochemical characterizations of thin-film semiconductor nanomaterials, composite materials, polymer-based solid-state films, solid polymer electrolytes and electrode materials for dye-sensitized solar cells (DSSCs), hybrid organic-inorganic solar cells, small molecules based organic solar cells, and photocatalytic reactions.",institutionString:"Jeonbuk National University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Jeonbuk National University",institutionURL:null,country:{name:"Korea, South"}}},coeditorTwo:{id:"36666",title:"Prof.",name:"Hyung-Shik",middleName:null,surname:"Shin",slug:"hyung-shik-shin",fullName:"Hyung-Shik Shin",profilePictureURL:"https://mts.intechopen.com/storage/users/36666/images/system/36666.jpeg",biography:"Professor Hyung-Shik Shin received a Ph.D. in the kinetics of the initial oxidation Al (111) surface from Cornell University, USA, in 1984. He is a Professor in the School of Chemical Engineering, Jeonbuk National University, and also President of Korea Basic Science Institute (KBSI), Gwahak-ro, Yuseong-gu, Daejon, Republic of Korea. He has been a promising researcher and visited several universities as a visiting professor/invited speaker worldwide. He is an active executive member of various renowned scientific committees such as KiChE, copyright protection, KAERI, etc. He has extensive experience in electrochemistry, renewable energy sources, solar cells, organic solar cells, charge transport properties of organic semiconductors, inorganic-organic solar cells, biosensors, chemical sensors, nano-patterning of thin film materials, and photocatalytic degradation.",institutionString:"Jeonbuk National University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Jeonbuk National University",institutionURL:null,country:{name:"Korea, South"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:[{id:"75888",title:"Solar Energy in Industrial Processes",slug:"solar-energy-in-industrial-processes",totalDownloads:32,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6517",title:"Emerging Solar Energy Materials",subtitle:null,isOpenForSubmission:!1,hash:"186936bb201bb186fb04b095aa39d9b8",slug:"emerging-solar-energy-materials",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/6517.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7652",title:"Nanostructures",subtitle:null,isOpenForSubmission:!1,hash:"ad1e5c5f214960269e89371d1110cbc0",slug:"nanostructures",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/7652.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9305",title:"Graphene Production and Application",subtitle:null,isOpenForSubmission:!1,hash:"2ffaa7a52817a2243007f03345983404",slug:"graphene-production-and-application",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/9305.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17104",title:"Geological-Geomechanical Simulation of the Late Cenozoic Geodynamics in the Alpine-Mediterranean Mobile Belt",doi:"10.5772/25250",slug:"geological-geomechanical-simulation-of-the-late-cenozoic-geodynamics-in-the-alpine-mediterranean-mob",body:'Alpine-Mediterranean Mobile Belt, which currently ongoing to develop, is one of the best sites for studying of geodynamic mechanisms for formation of such regions. In this case we are dealing with "alive" tectonomagmatic processes, which are reflected in neotectonics, topography, geophysical fields, and the present-day magmatic activity. Last circumstance allows independent control of petrological processes in the underlying mantle of the belt. Comparison of geological-geophysical data available with the results of mechanic and mathematic simulation allows us to establish the relationships of all these processes and the character of their manifestation on the Earth\'s surface. This is the purpose of our study.
Alpine-Mediterranean Mobile Belt (Alpine Belt) represents the western part of the huge Alpine-Himalayan collision zone, which appeared in the late Cretaceous-early Paleogene after closure of the Tethys Ocean. The suture of this neotectonic zone is traced by chain of late Cenozoic andesite-latite volcanism, stretching across Eurasia from Mediterranean to the Indonesian Island Arc and back-arc seas of the Western Pacific as well as areas of continental rifting and areas of intraplate basaltic volcanism.
The most complicated structure of this belt is in its west, in the Alpine segment (Fig. 1), where there is a whole system of mountain ridges, andesite-latite volcanic arcs and back-arc basins with thinned crust of intermediate to oceanic-type (Alboran, Tyrrhenian, Aegean Sea, and Pannonian Basin) occurs. Despite the differences in the morphology of these structures, they have several common features: along their periphery volcanic arcs and fold-thrust belts which form arc-shaped mountain ridges are developed. Among their thrust slices are often observed deep-water sedimentary rocks of Tethys, ophiolitic complexes, and sometimes blocks of the lower crust and upper mantle. In general, the situation in many aspects is similar to that which takes place on the active margins of continents and oceans. Such structures are characterized mainly for the West Mediterranean, while for the Eastern Mediterranean, as well as for the Black and Caspian seas typical passive margin. For this reason, we divide the Alpine Belt into two segments: the eastern, or the Aegean-Caucasian, and western, or proper Alpine, which will be considered separately.
Development of the Late Cenozoic igneous rocks within the Alpine Belt1 – back-arc seas (A – Alboran, T – Tyrrhenian; Ae – Aegian) and “downfall” seas (B –Black, C – Caspian); 2 – back-arc sedimentary basins (P- Pannonian, Po – Po valley); 3 – Late Cenozoic andesite-latite volcanic arcs (in circles): 1 – Alboran, 2 – Cabil-Tell, 3 – Sardinian, 4 – South-Italian, 5 – Drava-Insubrian, 6 – Evganey, 7 – Carpatian, 8 – Balkanian, 9 – Aegian, 10-12 – Anatolia-Elbursian (10- Anatolia-Caucasian, 11 – zone of the Modern Caucasus volcanism, 12 – Caucasus-Elbursian); 4 – areas of flood basaltic volcanism (in square): 1 – South Spain and Portugal, 2 – Atlas, 3 – Eastern Spain, 4 – Central France massif, 5 – Rhine graben, 6 – Czech-Silesian, 7 – Pannonian, 8 – Western Turkey, 9 – northern Arabia; 5 – suture zones of major thrust structures interaction of a superplume head with mobile continental lithosphere. Good example of such situation is the TEB (Sharkov, this book), where processes of collision continue now. The main feature of this belt is wide spread of the Late Cenozoic-derived volcanism, which has displayed practically coeval conditions on all its length, presuming existence of a superplume (or asthenospheric rise) beneath it. The belt has the most complicated structure within the Alpine segment, where a system of andesite-latite volcanic arcs and back-arc basin, bordering by nappe-folded mountain ridges were observed. In front of these ridges in Western Europe, north-west Africa and Arabia, coeval rift systems and flood basaltic volcanism often occur
The Caucasus is located in the zone of the Arabian syntax (Burtman, 1989), where Arabian plate is subducted beneath Eurasian. Specific analog of deep-see trench is represented by the Mesopotamian trough here, which, beginning from the Eocene, is experiencing an active submergence, due to thick molasse accumulated (Ponikarov et al, 1969). The northern part of the Arabian plate began to rise above sea level in the late Oligocene and early Miocene, about 26-25 Ma when there began the development of basaltic volcanism (Sharkov, 2000) and the Red Sea rift opened up in southwest, separating Arabian plate from Africa. Rate of ascending movements sharply increased to the Miocene- Pliocene boundary, when Gulf of Aqaba opened approximately 5 Ma and Arabian plate began quickly shifted to the north along a large Levant Fault (Dead Sea transform) (Kopp, Leonov, 2000; Prilepin et al, 2001; Sharkov, this book). However, this displacement is hardly manifested in the Greater Caucasus shift and, moreover, GPS data indicate that the width of the central Caucasus is not decreasing but increasing (Shevchenko et al, 1999)
Specific structure occurred at the northern side of the Black Sea. Judging from the geological and geophysical data along the profile of Tuapse-Armavir, the Black Sea microplate is separated from the Eurasian by narrow subvertical zone of strong positive gravitational anomalies (Shempelev and et al, 2001). It concerned to large blocks of deformed and metamorphic rocks, close on the density to crust-mantle mixture. This zone can be traced to depth of 60-70 km and the Moho is not established here. The northern blocks move upward along their separating steeply-dipping faults, ensuring the existence of mountain relief of the Western Caucasus.
Formation of the Black Sea began, apparently, in the early Cretaceous, but significant deepening of the basin occurred at the Oligocene-Early Miocene boundary (Zonenshain, Le Pichon, 1986, Nikishin et al, 2001), followed in the Miocene by filling of the deep-water depressions by sediments and a gradual shallowing of the basin (Kazmin et al, 2000). Since the Pliocene-Quarternary new significant deepening of the Black Sea basin has occurred (Nikishin, Karataev, 2000), which occurred almost simultaneously with the uplift of the Caucasus and Crimea, which in the Oligocene-early Miocene were not expressed in the relief (Neotectonics…, 2000; Kostenko, Panina, 2001). The close sequence of events took place in the South Caspian Basin, which is a similar structure (Zonenshain, Le Pichon, 1986; Grachev, 2000).
Numerous deformations of extension in subhorizontal submeridional direction (strike-slip and normal faults, nappe-thrusts, grabens, etc.) are known in the Aegean basin and in adjacent parts of Greece and Turkey (Prilepin et al, 2001). At that for Balkan Mountains in the north are characteristic north-vergentes imbricate nappes and thrusts whereas for Hellenides-Aegides-Taurides they are south-vergent. Judging from the seismic data, the stress state of the subhorizontal N-S stretching is characteristic of only for the upper 50-60 km of the Aegean basin lithosphere, leading to its expansion. At greater depths within the mantle beneath the basin both in south and north are fixed compression conditions. The regions of extension and compression are in direct contact by subhorizontal section at depth of 70-80 km; probably, it is the boundary of lithosphere and plastic material of extended plume head.
Aegean volcanic arc is a Pleistocene in age, but the development of the Aegean Sea, started earlier, about 12 Ma (Evsyukov, 1998). Apparently, earlier the main subduction zone located north, and its residues were survived in Dinarides and western Asia Minor (Western Anatolian: Fig. 1).
Descent of the Eastern Mediterranean (Ionian Sea, underwater Medina Ridge, Levant Basin) began in the late Miocene (Evsyukov, 1999). Approximately at the middle Pliocene (about 3-3.5 Ma) processes reinforced on the east: judging by the results of the 5th Cruise of R/V “Akademik Strakhov”, Sinai plate descended here beneath the sea level to depths of 2-2.5 km (Geological…, 1994). Fragments of this plate are preserved in the form of Eratosthenes Seamount and smaller rises.
The northern part of the Eastern Mediterranean is separated from the southern part by zone of powerful deformations, which runs along the base of the Cyprus arc (Zverev, 2002). As in the case of the northern side of the Black Sea, large sub-vertical faults and a sharp increase in the boundary velocities up to 7-7.6 km/sec is recorded here. In the northern zone is observed uplift of blocks of basement, represented by ophiolites of Cyprus. This deformation zone begins at the northern end of the Arabian plate, and following along Periarabian ophiolite belt, comes to Cyprus and then, continuing to the west, joins the Aegean subduction zone (see Figure 1).
The situation on the eastern passive margin of the Mediterranean Sea also looks like northern passive margin of the Black Sea. System of subparallel mountain ranges (Lebanon, Anti-Lebanon, Jabal al-Ansari, Amanus, etc.), separated by a system of steeply dipping faults, occur along the coast here. The largest of the latter is the aforementioned Levant (Dead Sea) Transform Fault. Parallel to it, already under water, there is a zone of Pelizium faults bounding the east Levant deep depression (Khair, Tsokas, 1999). This depression has the oceanic crust, overlapping by thick (approximately 10 km) sequence of Phanerozoic sediments, and in this respect no different from the Black and Caspian seas.
Origin of within-plate Palmirides folded-thrusted zone of deformed platform cover is related to development of Levant Fault. According to Kopp and Leonov (2000), the formation of this structure was caused by braking of the western edge of the Arabian plate in the zone above the bending S-like curve of this fault at its motion to the north during the Neogene-Quaternary. Palmirides were formed under compression of the crust by approximately 20-25 km, compensating the northern Arabian plate movement that started in the Middle-Late Miocene and continues today.
Areas of intraplate moderate alkaline basaltic volcanism are widely developed in the northern Arabian plate, indicating the presence of a mantle plume here. Judging from the isotopic dating, basalt eruption began at the Eocene-Miocene boundary, about 25-26 Ma, and almost without interruption continued until historic times. The most powerful eruption occurred in the late Miocene-early Pliocene and Late Pliocene-Quaternary (Sharkov, 2000; Lustrino, Sharkov, 2006).
The Caucasus-Aegean segment in geophysical terms is characterized by two strong positive isostatic anomalies, one of which is confined to the area of the Aegean Sea, and the second – to the Transcaucasian zone of modern volcanism on the north of Eurasian-Arabian syntax. It likely evidence about uncompensated excess of mass beneath these structures, presumably associated with the kinematics of the mantle plume ascending and extending of its head. This is supported by seismic tomography data (Gök et al., 2003) and consistent with the wide development of the Neogene-Quaternary platobasaltic volcanism in the north Arabian plate (Trifonov et al., 2011) and more rare – in Transcaucasia. In this regard, attention is drawn to the isotopic characteristics of lavas of Mount Elbrus, for which was establish the impurity plume material increases with time (Chernyshev et al., 2002) Another indication of the existence of the plume under the South Caucasus is a found of a mantle helium in the Lake Van in the north-eastern Turkey (Kipfer et al., 1994).
However, under the Eastern Mediterranean and the Caspian Sea, conversely, are a strong minimum isostatic anomalies, indicating the mass deficit beneath them, which is probably due to the presence beneath them descending flows in the mantle.
Judging on geological data, the current structure of the Alpine segment was formed mainly in the late Cenozoic, largely on the continental crust of the African plate. Remnants of this plate commonly observed along the northern coast of the Mediterranean Sea, and formed south of Spain (Betic Cordillera), Balearic Islands, Corsica and Sicily and the Apennines, the southern part of the Alps, large parts of the Balkans and Asia Minor (Ricou, 1986).
For the Alpine segment, in contrast to the Caucasian, is characteristic of complex configurations of the major structures related to thrusting the African plate beneath the Eurasia. Andesite-latite volcanic arcs, which associated with compression zones, represented by ridges, partly bordering back-arc basins with thinned crust and with often well expressed basaltic volcanism (Fig. 1). The formation of these subduction-related arcs occurs mainly in middle-late Miocene and Pliocene, and South-Italian arc is active till now. The feature of these subduction zones is that they involved material continental crust (Pino, Helmberger, 1997: Morales et al., 1999; Marson et al., 1995). For these arcs is characteristic their distinct migration in space – Alboran arc has moved to westward (Morales et al., 1995), Carpathian – to the east (Royden, 1989), and the Tyrrhenian – to the southeast direction (Rehault al., 1987).
Back-arc basins of Alpine segment (Tyrrhenian and Alboran seas, Pannonian Basin), became formed around the same time (Marotta et al., 1995; Duggen et al., 2004). Originally the back-arc seas were developed as continental rifts, which submerged under the sea level approximately at the boundary of the Miocene and Pliocene. At the same time under the sea level began sink the South Balearic Basin, which became faster deeper in the late Miocene (Trifonov et al., 1999).
It is noteworthy that the region of the Alpine orogen, including all Western Mediterranean, is surrounded by a broad band of Late Cenozoic basaltic volcanism associated with rift structures of Central and Western Europe (grabens Rona, Rhine, Hessen, Polabian, etc.) as well as numerous basaltic plateaus, stretching to west from the French Massif Central via south of Spain to Portugal. It further extends beneath waters of the Atlantic Ocean (seamounts Amper, Josephine, and others), as well as on the islands of Madeira and Canary, boardering Alboran arc from the west. Powerful basaltic volcanism of Atlas occurs to the south of the arc. In the southwestern part of the Alpine segment basaltic volcanoes of islands Sicili (including Etna), Pantelleria, Lemos and seamount volcanoes on the Tunisia Threshold are occurred.
Together with platobasalts of Syria and southern Turkey, they form anorogenic circum-Mediterranean magmatism with common source – so-called Common Magmatic Reservoir (Lustrino, Wilson, 2007). It is, obviously, evidence about existence beneath the region a present-day mantle superplume; Alpine orogen with complicate combination of mountain ranges and basins is located in its inner part (Sharkov, this book). Earlier this entire basaltic volcanism was considered as the final, which appeared after the cessation of collision, but recent studies have shown that it is the beginning of a new distructive phase of the Europe development (Grachev, 2003).
The Alpine segment in geophysical terms represents a region with decreasing overall thickness of the earth\'s crust due to moving away of high-velocity layer of lower crust, characteristic of the East European Craton, and the high density of heat flow (Gize, Pavlenkova, 1988). The compression zones, represented by ridges, are characterized by deep roots (till 200 km in the Alps: Laubscher, 1988); part of lithoplastines, especially adjacent to the back-arc basins, has a steep attitude (Ricou, et al., 1986). In cases where the butt-end parts of lithoplastines come to the surface, within these contours are observed blocks of lower crust and even upper-mantle rocks lifted from 70-120 km, as it observed in Western and Eastern Alps and the Gibraltar arc (Magmatic... 1988; Harley, Carswell, 1995).
At the same time, oceanic crust, composes the floor of the newly formed seas of the Western Mediterranean, appeared due to thinning and rupture of continental lithosphere of the African plate. The latter survived along the periphery of these seas, in particular, the Tyrrhenian, where seismic data from the periphery to its center set reduction of crustal thickness from 20-30 to 6-8 km to the extent to complete disappearance of the "granite" layer (Royden et al., 1986; Marson et al., 1995). The development of this basin began from continental rifting in the middle-upper Miocene, and the open of the sea has occurred at the boundary of the Late Miocene and Pliocene and continues today (Bartole, 1995; Storti, 1996). In the Pannonian Basin reducing crust has the same trend - it is reduced from 30 to 18-20 km mainly at the expense of the "basaltic" layer (Nikolaev, 1988; Horváth et al., 2006). Develop-ment of the basin started in the Middle Miocene, 11-10.5 Ma, simultaneously with the appearance of basaltic volcanism here (Neotectonics…, 2000).
Attention is drawn to another feature of the back-arc basins of Alpine segment - they, as well as to the Aegean Sea, are associated with the maxima of isostatic anomalies of average (Alboran and Tyrrhenian seas) and large (Pannonian) intensity (Artemiev, 1971; Sparkman et al., 1993;\n\t\t\t\t\tArtemieva et al., 2006) (Fig. 2). As in the case of the Aegean-Caucasian segment, it may indicate uncompensated excess of mass beneath these structures associated with ascending of mantle plumes. These facts, along with materials on magmatism, show an essential deep mantle roots of observed geological processes here, as evidenced by extensive manifestations within the Alpine Belt epicenters of intermediate-focus earthquakes of the depths of 100 to 500 km (Tyrrhenian Sea, the Carpathians, Caucasus, etc.: Gize, Pavlenkova, 1988).
Thus, the formation of the major geological structures of the Alpine Belt began approximately at the boundary the Oligocene and Miocene and proceeded almost synchronously on all territory. At the first stage of development gentle uplift and subsidence of the relief of the region solid surface was dominated and began the formation of cavities of back-arc basins in the western Mediterranean, deepening of the Black and Caspian seas has occurred, platobasalt eruptions began in the north Arabian plate. An the second stage, which started in the late Miocene-early Pliocene, intense of tectonic activity increased sharply, began to form mountain ranges, as well as sharply increased basaltic volcanism along the periphery of the Alpine belt. All major features of the structure of the region were formed at that time (Trifonov et al, 1999), sharp deepening of the Black and Caspian seas, and the Eastern Mediterranean occurred; uplift of Caucasus and Crimea has begun as well as appearance of the Dead-Sea (Levant) Fault and Palmirides fold-thrusting structure. All of these processes has got impulse in the Pliocene-Quaternary, when finalized tendencies inherent in the current stage of the Alpine Belt development.
Distribution of major regional isostatic anomalies and areas of Cenozoic volcanism in the Alpine Belt. After M.
Almost simultaneous occurrence of all these tectonomagmatic processes on the vast territory assumes that in this place we are faced with combination of present-day continental collision zone and a mantle superplume (Sharkov, this book). The relief of the superplume head is complicated by numerous protuberances (local plumes), controlling the position of modern depressions in the Alpine Belt and are caused extended zones on the general context of compression. The presence of such superplume under Alpine Belt also supported by seismic tomography data (Anderson, Dzevonsky, 1984; Sparkman et al., 1993; Hearn et al., 1999). This uplift starts in the Eastern Atlantic, extending eastward into parts of Western and Central Europe (Hoerne et al., 1995).
Surface of the superplume head is highly variable, apparently reflecting the development of gravitational Rayleigh-Taylor instability at the boundary of the rigid lithosphere and the heated the superplume head. Judging by the foregoing isostatic anomalies, beneath the back-arc depressions of the Alpine orogen (Tyrrhenian, Aegean, and Alboran seas, Pannonian Basin, etc.) an excess of mass is occurred, obviously connected with the existence beneath them heads of local plumes (protuberances). Extending of these heads led to displacement of subduction zones and their andesite-latite volcanic arcs (Harangi et al., 2006). Judging from the observations in the Aegean region, the thickness of an extended plume head does not exceed 40-50 km, and its spreading leads to appearance of field strong subhorizontal strength in the lithosphere in its front (see above). These plumes at depths of 200-250 km are merged into a single asthenospere layer, corresponding, apparently, to body of Alpine superplume head, which is the major source of geodynamic activity in the region.
The exception to this general rule is the North-Arabian-Transcaucasian plume, where while there were no basin, but there is a clear shift of the Anatolian-Elbursian subduction zone to the north. Perhaps this is due to the spread of the plume head to the north and its relative youth. Obviously this is due to the current increase in the width of the Central Caucasus, to which attention was drawn above.
In contrast to these structures, the Eastern Mediterranean, as well as the Black and Caspian seas are characterized by negative isostatic anomalies, which evidence of downward mantle flows beneath them (“cool plumes”) located between ascended “hot plumes” (Sharkov, this book). Unlike the back-arc seas, all of them have typical passive margins and significant thickness of Meso-Cenozoic sediments. They look like "downfall", which cut-off earlier geological structures of the continent. Origin of such “cool plumes” obviously linked with appearance of excess of mantle material between extended plume heads.
Apparently, in these basins survived oceanic crust of Tethys. Judging from the northern sides of the Black Sea and Eastern Mediterranean, belts of strong positive gravity anomalies occurred along the sides of these basins. They formed by blocks of high-density rocks, separated by subvertical faults, receding into the mantle to the depths 60-70 km. These belts are reminiscent of similar zone of strong magnetic and gravitational anomalies developed along the passive margins of the Atlantic Ocean and are known as "seaward-dipping reflectors» (SDR) (Bogdanov, 2001; Larsen, 2002).
Very likely that such structures appear along the boundary between simultaneously active ascending (plumes) and descending currents in the mantle, due to rocks here are undergone by powerful deformation and metamorphism. As seen from the presented data, blocks, adjacent to the descending currents in the mantle are penetrated into its, and adjacent to the plume - ascended upstairs. Obviously, to the same circumstance, i.e., with the ascending of mantle plumes through the thickness of the lithosphere, can be related processes of exhumation of deep-seated rocks, large slices of which, as shown above, are observed in the mountain ridges on the periphery of plumes.
Thus, we can assume that the situation within the Alpine Belt defined by the presence beneath it the large (approximately 2000 x 5000 km) superplume head with a complex relief of surface. At the sites of the large uprising of this relief are usually placed back-arc basins now. The highest elevation of the superplume material is observed near the Tyrrhenian Sea, which probably can be interpreted as a modern center of activity of the whole zone. It is here very thin lithosphere (up to 30 km) and the maximum heat flux (above 3 E.T.P.) occurred. On the other hand, the most powerful isostatic anomalies are observed in areas of the Pannonian Basin and the Aegean Sea, which are reminiscent of the Tyrrhenian Sea at the early stages of its development, whereas the Caucasus syntax can be the very beginning of the process. Apparently, this implies that the center of activity will shift in the future.
However, it is possible to describe some of the characteristics of these structures, in particular areas of back-arc spreading over regional uplifts of the superplume surface relief even now. They exactly are the centers of deep-seated activity, which are very largely determined all the tectono-magmatic processes. For this analysis, we used the general model of high-viscosity incompressible fluid, the parameters of which vary from layer to layer (Zanemonets et al, 1974).
As it was shown above, depth of asthenosphere (superplume) surface under Alpine Belt changes from 30 km in the centre of Tyrrhenian sea up to 70-100 km in depressions of East Mediterranean, strongly changing on lateral. The characteristic size of depressions is 500-1000 km and more, distance between them is 1000-1500 km.
Hence we have characteristic parameters of a problem: h3 ~ 10 km - thickness of sedimentary cover, h2 ~ 100 km - thickness of lithosphere, L ~ 1000 km - horizontal scale,
Decomposing velocities and pressure in line on
Let us set a field of velocities and morphology of boundary 1 as:
where k, a characterize intensity of rifting: k-in the centre of structure, a - far from the centre; - allows to vary the form of rising plume; D - velocity of the plume rise
The given field of velocities qualitatively enough well reflects the basic features of a considered class of movements: rise of plume, rifting above it and lowering of substance on sufficient distance from the centre. Quantitative conformity at comparison with the available geological-geophysical data is achieved with the help of a variation of coefficients in a modelling field of velocities and their change during considered process at preservation of the general structure of movements. From the decision of system (I) we shall receive for enough big t:
C1 (t) is determined from balance of mass.
The analysis of the received equations shows, that there is a critical depth of rise of mantle plume h2= 2, when the characteristic form of the lithosphere layers changes. If h2>2, there is a deflection of a surface of the basement in the centre of rifting, that really takes place in considered back-arc seas. If h2<2 (depth of plume is insignificant) or velocity of its rise is essential (D>h2ak) then the swelling of the basement surface corresponds to swelling and rise of a surface of the mantle plume (fig. 3).
When on periphery of basin there are the conditions interfering free rifting of the lithosphere of region, for example, caused by collision of the Arabian-African and Eurasian plates, the field of velocities on the bottom boundary of layers can be modelled as:
For the greater presentation of result the coefficients in a modelling problem are omitted.
Then:
C (t) it is determined from balance of mass.
Now there are two critical depths of the asthenosphere upwelling, when cross-section of layers changes its structure. At h2 > 2/3 in the centre of structure the deflection is formed. At 1/2 <h2 <2/3 the surface of the basement is inclined, and at h2 < 1/2 it reflects the morphology of plume in the centre of rifting and forms concavity of the basement on periphery of basin (fig. 3b).
Characteristic cross-sections of layers of earth crust and subjacent lithosphere above ascending mantle plume: a – without lateral limitations (U0 = th kX), b – with lateral limitations (U0 = th kX / ch2 kX; D = 0)
The first type of velocity (2) can simulate the early stages of structures development, and the second type (3) - Alboran, Tyrrhenian and Aegean seas, as well as the Pannonian depression. The second type of activity, according to geological data, often accompanied by a extending of the local plume heads. Under conditions of the collision zone, at the boundary of the extended plume head and limiting its blocks of the continental lithosphere arise powerful strengths. It lead to formation of zones of deformations and metamorphism, which can later develop into zone of downward flowage of the material (subduction zone), to which involves an excess of crustal material, appeared as a result of displacing of the material. It is often activated already existed subduction zones also, as evidenced by the data on the Western Mediterranean (Morales et al., 1999). Change of regime of upwarping to structure of deep-water basin is confirmed by a number of geological factors: the change in the regime of sedimentation and the removal of terrigenous sediments, wedge-out of layers of sedimentary cover, changing the direction of flow paleorivers, evolution of paleodepths of basins, etc. (The crust..., 1982).
An example of the interaction of ascended plumes with the earth\'s crust in the absence of side limitations, apparently are intracontinental rifts such as Baikal Rift. As Grachev (1987) shown, during pre-rift stage of their development an overall rise of the territory occurs, and the on the rift stage itself – its descent with the formation of extensional structures – grabens and sedimentary basins. In contrast to the of collision zones, deep-water basins with oceanic crust are not formed. The case is usually limited to thinning of the crust and the relatively small submergence of the crystalline basement for some kilometers. Only in exceptional cases, when a powerful inflow of plume material may be breaking the crust with formation of structures such as the Red Sea.
Thus, the proposed model seems to adequately describe the mechanism of formation of geological structures associated with the plume tectonics. From this it follows that the formation of depressions over the ascending mantle plumes depends on the geodynamics of the deep-seated layers. Determinants are mechanical processes that reflect the general direction of movements from formation of upwarping to formation of basin with unidirectional motion (plume ascending). At that formation of deep basins do not require much stretching of the layers. Morphology of the deep-seated boundaries determined by the shape of the plume, the rate of its ascensing and the intensity of moving apart a material over it, i.e., effective viscosity of the lithosphere layers. For sufficiently large gradients of plume heads surface that ascending in areas of collision, above them are formed deep-water depressions such as the Tyrrhenian Sea.
The principal components of such systems a subduction zone accompanied by andesite-dacite magmatism and a newly formed back-arc basin with transitional to oceanic crust, formed originally on the continental crust (Bogatikov et al., 2009). Both structures generally seem to have been initiated and developed about the same time, possibly implying a common reason for their formation. However, the nature of back-arc basins and their role in geodynamic processes were largely overlooked until recently, even though these settings are likely to have played the most crucial role here. High heat flows, positive isostatic anomalies, extensive basaltic magmatism, and the presence of basalt-hosted mantle xenoliths suggest that the back-arc basins have developed above the asthenoshere rises or extended plume heads. This is in good agreement with seismic tomography results, which revealed that the back-arc basins are underlain by a hot mantle as deep as 400 km (Anderson et al., 2002). Some of Mediterranean basins (Alboran, Tyrrhenian, Aegean, and Pannonian) are also marked with large positive isostatic anomalies mostly confined to back-arc basins (Fig. 2). This suggests uncompensated excess mass which can be related to mantle plumes upwelling beneath these structures. Like the Pacific back-arc basins, Mediterranean’s back-arc basins are also characterized by extensive basaltic magmatism and intermediate- to deep-focus earthquakes of 100-500 km in depth.
During stretching of the relatively soft oceanic upper mantle (asthenosphere), its edges exert mechanical pressure on the continental block. The rotational motions of the continental block cause some part of the asthenospheric material to move beneath the softened base of the latter and then begin to ascend as an independent “asthenospheric” plume (Sharkov, Svalova, 2005). In our case, the role of asthenosphere plays material of superplume head and protuberances on its surface (local plumes). Above a certain depth, after reaching the buoyancy level, the plume head begins to spread out laterally to form an extensional zone, such as a continental rift zone developed above the plume, as was the case for the initial stages of the development of the Sea of Japan and Sea of Okhotsk (Lelikov, Emel’yanova, 2007). However, unlike the ordinary rift zones, where the situation is symmetric on either side of the spreading axis, here it is sharply asymmetric: on one side is the massive cold continental lithosphere, and on the other side is a less dense oceanic plate. Under such conditions, the spreading may have occurred in a different way, mainly oceanward, to the side of mechanical downdragging. Accordingly, the continental material transported by the spreading plume head is expected to move in the same direction, where both material flows, migrating from the ocean and continental side consequently, will eventually collide.
We consider the sequence of events on the basis of the mechanical-mathematical model for a multilayer viscous incompressible fluid, describing the dynamics of “granite” and “basalt” layers of the earth’s crust, lithosphere, and asthenosphere (Sharkov, Svalova, 1991; 2005). At the initial stages, when deflection of the layer boundaries from their original position is still insignificant, the base of the lithosphere always dives into the asthenosphere. In other words, during the early stages of structural evolution in zones where interaction between the plates is the most active, the lithosphere sinks into the less dense asthenospheric material to form a subduction zone. The calculations imply that the most dense rocks of the ancient continental lithosphere, its mantle and lower crust, made up of garnet granulites, which are much denser than rocks of oceanic crust, were first to begin descending. Much sialic material of the upper continental crust (its granitic layer) from the back-arc region, which was sandwiched between two subsiding plates (oceanic and lower continental crust), may have also been involved into the overall motion. Having a subduction rate of 7-10 cm/year, this motion causes rocks of this layer to be sucked in the subduction zone. As a result, a MORB-type oceanic lithosphere in a back-arc setting will develop when the old continental lithosphere is partially or fully removed to be involved in this subduction zone and buried in the deep mantle (Fig. 4).
As the subducting plate (slab) sinks, its rocks transform to high-dense amphibolites, garnet granulites, and eclogites as well as relatively light sedimentary rocks, volcanics, and gneisses (including granite-gneisses). Meanwhile the latter, being metamorphosed under ultrahigh pressure and moderate temperature (
Schematic view showing the evolution of back-arc spreading1) Young soft upper mantle (asthenospheric) beneath oceans; 2) lithospheric mantle beneath: (
Thus, the development of Late Cenozoic volcanic arcs and their adjacent back-arc basins, both in the Pacific and Mediterranean, have evolved in similar way. Their principal component is a back-arc mantle (asthenospheric rise or plume head) that possibly spreads out laterally towards the less dense lithosphere. At the place where the mantle flows collide, new subduction zones and back-arc basins at their rear have been formed. This results in the gradual deepening of the back-arc sea, thinning of its parental continental crust, and formation of transitional and oceanic type crust. At early stages, these systems might have looked like active continental margins, which then evolved in a complex arc-backarc system. Through continuous involvement in subduction processes, crustal material from the back-arc region is removed from the tectonosphere and stored in the “slab cemetery,” revealed in the mantle by seismic tomography (Karason, van der Hilst, 2000). Only a minor portion of crustal materials is returned to the surface in form of subduction-related magmatism.
So, asymptotic models provide an opportunity to explore the main features of the formation and development of geological structures. Ascending of mantle plumes determines the depth of the deep-water basins initiation. The lithospheric material above them (the uppermost mantle and crust) is moved apart to make room for an oceanic crust. As already mentioned, the resulted excess of this lithospheric material is involved in subduction zones with formation of volcanic arc-backarc basin system. The process of subduction depends on the difference in density of the lithospheric and plume material, and can only contribute to spreading, freeing up space for moved apart crust from the back-arc basin. However, existence of mantle plume itself, which occurred against the background zone of lithospheric plate collision, is the result of collision of deep-seated mantle flows, contributing to pumping and ascending of local protuberances in the form of plumes with the formation structures of extension over its extended heads. Relationship between the area of collision of mantle flows at the depth and the zone of collision of lithospheric plates, along with relative velocities and ratios of densities, determines the dippig of subduction slab also.
Thus, complex processes in the zone of lithospheric plates collision are interrelated and interdependent. The relative rapidity of the observed processes evidence about defining role of mechanical motions in the formation of structures, forced by the influence of thermal factors. The Alpine Belt is an area of elevated heat flows due to removal of abyssal heat by ascending of plumes caused by deep-seated (up to the core) mantle activity and complex interaction with the thinned lithosphere. Analysis of times of formation of the Mediterranean’s deep-water basins shows that the process of activation occurred from the periphery to the center, which was caused by compression and ascending of superplume material between lithospheric plates.
It is possible that a complex dynamic pattern of interaction between a plume and litho-sphere is not limited to the examples above. As seen in Fig. 1, volcanic arcs are lenticular in shape and are distributed in space fairly chaotic, which differ them from the Western Pacific island arcs or active margins of the both Americas. However, as it know, active continental margin occurred along the northern margin of northern Tethys in this place in the Mesozoic, where zone of subduction existed and there were a powerful eruptions of lavas of calc-alkaline series (Khain, 1984). In this regard, it has been suggested that this ancient subduction zone during early-middle Miocene split into two fragments, one of them roll back, forming the Tyrrhenian Sea and the modern Calabrian arc, and another rolled to west, forming Alboran Sea and Betik Reef arc (Lonengran, White, 1997).
Continuing this logic, one might think that one more fragment rolled to the north-east, forming the Carpathian arc. In this case the Anatolian-Caucasus-Elbursian arc may represent the eastern fragment of this old subduction zone. As already stated, under the central part of this arc the northern end of a mantle plume occurs with which probably connected the bend in place of Transcaucasian structure, where the area of modern magmatism of the Caucasus occurs. From this perspective, we can assume that in the near future two composing arcs (Anatolian-Caucasian and Caucasian-Elbursian) under the effect of the plume extending will be separated and will exist independently, like the most of Late Cenozoic arc of Alpine Belt. From this obviously implies that extended plume heads under conditions of large collision zone can impact not to only ancient lithosphere, but also to shift and even break off into individual pieces of existing subduction zone.
The Late Cenozoic Alpine-Mediterranean Mobile Belt (Alpine Belt) has appeared under condition of collision of lithospheric plates above superplume head. It’s surface is complicated by number of protuberances (local plumes), which are a cause of emergence of extending zones on the background of the overall structure of compression. Geological situation in the belt is considered with complex interaction of converging lithospheric plates with plastic plume material.
It is shown that two types of depression with a predominance of the oceanic crust occur within the belt: (1) newly-formed back-arc basins above extended heads of local plumes (Western Mediterranean, Aegean Sea, Pannonian Basin), and (2) fragments of ancient oceanic crust of the Tethys, which has descended under the influence of downward movements in the mantle between plumes (Eastern Mediterranean, Black and Caspian seas). The second type is characterized by basins with passive margins, along which are developed steep deep faults; these areas in their structure resembles the structure characteristic of Atlantic passive margins.
The exception is the region of the North-Arabian - Caucasus plume without depression above it. This plume, apparently bends to the north the surface of the subduction zone, ensuring the existence of Anatolian-Elbursian andesite-latite volcanic arc to form a transverse area of modern volcanism of the Caucasus.
Geodynamics of the Alpine Belt has developed from the periphery of this structure to its center, in other words to the central part of the superplume head. Maximum geodynamic activity is now in the Tyrrhenian Sea, where thickness of the lithosphere is minimal; in the future it will probably be moved into the region of the Aegean, Pannonian, and Caucasus, where the most powerful positive isostatic anomalies occur.
Asymptotic models provide an opportunity to explore the major features of formation and development of geological structures. Ascending of mantle plumes determines the depth of initiation of deep-water basins. The lithospheric material above them (the uppermost mantle and crust) is moved apart to make room for an oceanic crust. The resulted excess of this lithospheric material is involved in subduction zones with formation of volcanic arc-backarc basin system.
The process of subduction depends on the difference in density of the lithospheric and plume material. It can only contribute to back-arc spreading, freeing up space for moving apart ancient crust of the back-arc basin which involved in subduction and further buried in the deep mantle. Existence here of the mantle plume itself is a result of collision of deep-seated mantle flows, contributing to pumping and ascending of local protuberances in the form of plumes with the formation of extensional structures over their extended heads. Relationship between the area of collision of mantle flows at the depth and the zone of collision of lithospheric plates, along with relative velocities and ratios of densities, determines the dip of subduction slab also.
Complex processes in the zone of lithospheric plates collision are interrelated and interdependent. The relative rapidity of the observed processes evidence about defining role of mechanical motions in the formation of structures, forced by the influence of thermal factors. The Alpine Belt is an area of elevated heat flows due to removal of abyssal heat by ascending of plumes caused by deep-seated mantle activity (up to the core) in the complex interaction with the thinned lithosphere. Analysis of times of formation of the Mediterranean’s deep-water basins shows that the process of activation occurred from the periphery to the center, which was caused by compression and ascending of superplume material between lithospheric plates.
Modelling some aspects of our society is challenging at an individual and at a collective level. Every idea, every human feeling and every interaction is so unique that measuring and modelling human constructs such as freedom, love, traditions, friendship, power, or fear is defying from its basis. Obtaining a generalisation or an abstraction, such as physical laws, which apply at a social level is frequently not feasible. Two equal drops of water will act the same under similar circumstances, but no two individuals are so similar as to ensure they feel the same, think the same or react the same to some circumstances. Social settings, as opposed to physical observed ones, often lack of measuring instruments and units, it is almost impossible to repeat experiments and so transforming our knowledge about society into simple, absolute, and universal descriptions is often unimaginable [1]. Social models are inevitably incomplete and inaccurate, because of scientific limitations and a lack of data [2] and because conventional scientific approaches cannot be applied to many of the problems faced by our society [3]. Furthermore, just a few years ago it was impossible to use the right amount of data or to model more than just a few aspects of the individuals, but today we are capable of simulating large human systems [4] with more complex interactions between its members and its environment [5]; to understand the emergence of crowd behaviour in different situations and to challenge and, in some cases, to measure, some of the theories which are frequently applied across some scientific fields [6]. Models of collective human behaviour have gained interest as the need for them grows, their results get more and more applied in policy and decision-making and their implications are spread throughout more widely.
Models of social behaviour are complex. Many features observed at a social level are an emergent behaviour that results from interactions at a personal level and feedbacks between society and its individuals. Social behaviours are the result of collective individual actions. People adapt rapidly to new circumstances, transforming society as a whole on that process, for instance, by making it normal to maintain some physical distance with others or by wearing a facemask during the COVID-19 pandemic, but some of these social features synchronise our behaviours as well, by the constant feedback others provide.
Modelling society usually requires a substantial level of simplification at the microscopic, individual level in the hope to resemble the macroscopic, social behaviour [7]. The mathematical approach is usually to study the emergent collective patterns when thousands or millions of people -or events- are considered. For instance, a crime might be regarded as a point on a map, a friendship could be considered as a link in a network, or a driver could be modelled by its position and its speed; however, these simplifications made within a social context have helped us to understand the emergent patterns of criminal hotspots [8], the small-world phenomena observed in many social networks [9] or the formation of traffic jams despite efforts from drivers to avoid them [10].
Opinions and the ways they are updated is a complex social system. In general, individuals have an opinion about a specific topic, which is somehow updated when they are confronted with other ideas. Usually, a person gains some confidence in their views when they are reinforced by exposure to similar ideas or challenges their beliefs when they are exposed to different opinions. The exposure to distinct views is a social process and therefore, updating beliefs is mostly a social process as well, which happens perhaps during a simple conversation with others, when listening to what others say on the news, or what they publish on social media. And, as with other complex social systems, individuals transform their society with their opinion, but society transforms individuals as well. There are feedbacks between individual opinions and their collective perceptions and ideas.
Polarisation and the way it emerges is one of the key questions in opinion dynamics models [11]. An increasingly polarised society is observed in attitudes towards the COVID-19 pandemic, views in favour or against a vaccine [12], the consumption of media outlets, opinions on social media and many more. Increased exposure to ideas within an homogeneous community intensifies their tendency to be credulous, whether it is to scientific evidence, unsubstantiated rumours, inconclusive evidence or even fake news. Polarised opinions might foster confirmation bias, so that people with more extreme opinions tend to become more certain in their beliefs [13] and therefore, it contributes to the proliferation of fake news, whereby once an idea is adopted, is rarely corrected [14].
Frequently, individuals want to persuade others -even unintentionally- to adopt an idea and so there are active efforts to reach a consensual opinion. observing opinion dynamics only at a global scale and ignoring individual dynamics often lead opinions to a consensus state [15], in a similar way in which temperature differences tend to vanish. Yet, two or more contrasting ideas might be highly popular, even if all individual efforts try to reach a consensual opinion. Polarisation, or even fragmentation among many opinions, might be one of the emergent states of collective opinion dynamics, where contrasting ideas might co-exist as a steady state in a society.
Human factors such as the frequency at which we form ties with similar people (homophily), the tendency of having similar opinions as a result of social interactions (social influence), the fact that when presented with mixed evidence, individuals might perceive it as positive feedback for their initial position (biased assimilation), or interpreting the acceptance of an idea as reinforcement when sharing an opinion in a social environment (social feedback) are some of the causal mechanisms why the process in which ideas are updated might be polarising, meaning that final opinions are more divergent than initial opinions [11, 16].
Usually, a person interacts with others of similar age, income or other sociodemographic, behavioural, and intrapersonal characteristics, including opinions or views on a certain topic [17, 18]. If a population has polarised opinions, it means that, at a global level, there is a high probability that when two individuals are randomly picked, they share extreme different views. However, little is known with respect to the actual interactions. Individuals from a highly polarised society could almost always interact with people who share similar views if polarised bubbles rarely interact with each other. Yet, a different opinion process within the same polarised society is observed when people frequently interact with others who shared opposite views. On a polarised population, opinions have high
Opinions (represented by the different colours of the nodes) are shared between individuals who interact (if there is a link between the nodes). Different states in which opinions are distributed show a small polarisation (left part, where most individuals have similar views) or high polarisation (right part, where opinions are split in half) and might show low homophily (bottom part, where opposite opinions are frequently shared among interacting individuals) or high homophily (top part, where opposite opinions are rarely shared among connected nodes).
Polarisation between two opinions -or fragmentation among many- is detected when opinions are observed at a global scale, but to detect if opinions are homophilic, more local information with respect to the interactions is needed. For instance, in the 2016 UK referendum to remain in the European Union, 52% of the votes were to leave (a highly polarised election), but at a more local level, the area which voted most heavily in favour of one of the options was Gibraltar (where nearly 96% of the votes were to remain), whereas in Watford results were evenly distributed among leave and remain. Thus, Gibraltar had the lowest polarisation, where there was a near consensus for one of the options, but Watford had the highest polarisation between the leave and remain options. In Watford, however, with their highly polarised election outcome, interactions could still happen very frequently between people with similar views, if the opinion sharing process is highly homophilic and there are little interactions between the two voter groups.
A slightly polarised society does not have homophilic opinions, but a polarised society might have homophilic opinions, or not, depending on how individuals interact and the opinion profile. The relevance of opinion homophily stems from the fact that in a highly polarised population, most individuals might not be aware that so many people with different views even exist, whereas in a polarised society with little levels of homophily, encounters between people with opposite views happen frequently. Furthermore, a highly polarised society might be a steady state of some opinion dynamics but given the right circumstances (parameters) that state could be highly homophilic or a state in which most individuals interact frequently with people with different views.
Social media and other technological changes could increase exposure to diverse perspectives [19], but at the same time facilitate some mechanisms, such as the creation of links or friendships in the network, filter algorithms and rank information which may accelerate the formation of homophilic communities [16, 20]. People frequently aggregate in groups of interest, and those existent communities frequently adopt narratives from different topics, reinforcing polarisation across distinct themes, for instance, political ideology and perceptions with respect to the COVID-19 pandemic [21, 22]. People interacting with homogeneous communities tend to grow more extreme opinions and become more certain in their beliefs [13] which can favour the spread of misinformation from partisan media and increase animosity within the population [23]. For COVID-19, for example, most of the misinformation detected involves reconfigurations, where existing (often true) facts are adjusted to fit different narratives [24] which are then reproduced by large homophilic groups as facts. Massive misinformation is becoming one of the main threats to our society [14, 25, 26] which might be fostered by an increasingly homophilic opinion dynamic process and a polarised society.
Opinion formation has been studied from many angles and different mathematical techniques, including mean-field theory and kinetic models of opinion formation [27], or by agents on a social network. Individual opinions on a certain topic are usually modelled as a single-valued number contained in some closed interval which represents extreme (opposing) opinions, for example, left–right leaning voters [28], the level of production of an employee in a plant [7] or perceptions between security and insecurity [29]. The process of opinion updating then is modelled as the result of interaction with other views, a process of self-thinking, some memory loss, or external factors. Interactions between individuals are usually modelled on some social structure, such as a network, considering some spatial proximity, or considering some social aspects, such as the level of influence of one individual to others [30]. A long-term, steady distribution of opinions is usually obtained, either as an analytical solution to some differential equations or through simulations, which reveals among others, the formation of opinion clusters, political segregation [31], vaccine hesitancy [12], the use of certain tools [32], the spread of fear of crime more as a result of opinion dynamics than crime itself [29] or even the diffusion of fake news [14].
There are four ingredients in opinion dynamics models [30, 31]:
Although some analytical results are available [27, 28], the dynamics are usually simulated on a network. The technique allows considering individual aspects, such as assertiveness, persuasiveness, supportiveness, extremists or opinion volatility [28, 31, 34, 35].
A group might reach an agreement or
For opinions bounded inside the
Classification of collective opinions according to their distribution (represented as the height of each colour bar), from consensus (left) where
The process of opinion dynamics has a high level of
where
a metric suited for measuring homophily based on a continuous node attribute, such as opinions, with high values if individuals interact with others of similar views and has lower values (possibly negative) if interactions are more frequent between individuals of very different views. Notice that the metric depends on the opinion profile but also on the network topology. On a linear network, for instance, where all nodes have two neighbours, except for the two extremes, opinions in the
Consider a diffusion process of opinions on a network, where the four key ingredients (individual opinions, updating process due to individual or external forces, interactions, and the corresponding metrics) are defined as follows. Initially,
With this condition, a person with opinion
Individuals who accept some propaganda at time
so that if opinions are volatile (that is, individuals easily update their views, with a large value of
Probability of trusting any of the two types of propaganda,
A crucial element in the opinion models is the way in which interactions between individuals are structured. Society has opinion clusters -for example, a social media group in which information flows easily-, has opinion hubs -influencers, for example, who reach a large population- is likely to be strongly connected with many shortcuts between people who are not directly connected and therefore, the network in which propaganda is shared is also a key element in the model. Four network topologies with
The model has two parameters: the persuasiveness
The trajectory of a society in terms of its polarisation
Trajectories of social polarisation (horizontal axis) and homophily (vertical axis) simulated in four different network topologies. Each realisation for some persuasiveness,
For some of the trajectories, it is observed that the first few rounds of propaganda increase the polarisation and decrease the homophily. After many rounds of propaganda, the level of homophily might increase, indicating the formation of clusters of nodes with similar opinions, particularly on a proximity network. In some cases, polarisation might be decreased, but only after homophily has decreased (and not the other way around), meaning that first, the observed changes in opinion dynamics happen at a local level and then, they might be perceived at a global scale. Notice, however, that very few trajectories reach less polarisation than their starting point. Thus, propaganda or similar external forces tend to increase polarisation and frequently will produce a higher level of polarisation than the one observed with a random distribution of opinions.
The observed levels of polarisation and homophily depend on the persuasiveness of the propaganda
Observed levels of polarisation (left) and homophily (middle) on a proximity network according to some values of the persuasiveness of propaganda
For some values of
The first rounds of propaganda decrease the homophily of society so that people with some extreme view have frequent interactions with others with different views. As the number of propaganda rounds evolves, opinion clusters are formed, and so interactions become more and more frequent between individuals with similar views. Thus, even if at a global scale the level of polarisation is increasing, after many rounds of propaganda, people might be less aware of the existence and abundance of different views. Extreme opinions might become more frequent because of propaganda. A similar -although less pronounced- polarising and homophilic society might be frequently observed on a scale-free and a small-world network, although the presence of hubs and shortcuts in the network reduces the creation of opinion clusters (Figure 6).
Observed levels of polarisation (top) and homophily (bottom) according to some values of the persuasiveness of propaganda
The fully-connected network helps to observe the dynamics of opinions without any relevant network structure. With some level of persuasiveness
Social models are a simplification of very complex processes which happen at an individual level but might be able to capture some collective emergent aspects. In terms of opinion dynamics, modelling individual views as a number, simplifying external forces such as propaganda, simulating interactions and a process of opinion updating let us detect emergent patterns, including an increase in the global levels of polarisation and the frequency of homophilic interactions between individuals.
The network structure plays a significant role, as the emergence of homophilic clusters which reinforce their opinions is detected, particularly on a network where there is a large distance between nodes, such as a proximity network.
The observed results in terms of the trajectories and the observed levels of polarisation and homophily after many rounds of propaganda show that there might be a high sensitivity concerning the parameters. Two simulations under the same network structure and even the same initial opinions and parameters might follow different trajectories and end with substantially distinct levels of homophily and polarisation. The model initially exposes 1% of the population to some propaganda and depending on who is exposed, the dynamic changes and eventually reach very different states. For some regions in the parameter space, there is unpredictability in the state in which society will be after propaganda.
In the simulated networks, the average degree is 7.6 for the proximity network and 10 for the small-world and the scale-free network. The intensity of interactions, measured as the degree of the nodes, accelerates or frictions the diffusion of propaganda, and thus, accelerates of frictions polarisation and homophily as well. A less-connected society is more prone to the creation of homophilic clusters.
On a highly polarised society, individuals become “immune” to propaganda which does not support their views and dismiss it easily, whereas propaganda which supports their views is confirmation of their beliefs and takes individuals into even more extreme and plarised views. On a polarised society, even with little levels of homophily (meaning that individuals are likely to be exposed to both types of propaganda), individuals are eventually too biased in favour of any of the extreme views, which becomes too difficult to change.
On a society with little levels of polarisation, views could either have a consensus on one of the two extremes, in which case, propaganda in favour of any of the opinions has little impact. This case happens when one of the two views becomes dominant at early stages, in which case, individuals also become “immune” to propaganda (and since the first propaganda they are exposed is
However, the most frequently observed consensus is one in which barely anyone has extreme views, propaganda in favour of the two views flows between most individuals and they update their opinion accordingly, but not enough to reject further waves of propaganda and keep updating their opinion.
This chapter was completed with support from the PEAK Urban programme, funded by UKRI’s Global Challenge Research Fund, Grant Ref: ES/P011055/1.
The author declare no conflict of interest.
IntechOpen books are available online by accessing all published content on a chapter level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2021-02-26
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters are available OPEN ACCESS can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters can be read, copied and printed from the link location of the chapter and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2021-02-26
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"126408",title:"Prof.",name:"A",middleName:null,surname:"Chaves",slug:"a-chaves",fullName:"A Chaves",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal do Ceará",country:{name:"Brazil"}}},{id:"116458",title:"Prof.",name:"A. A.",middleName:null,surname:"Minzoni",slug:"a.-a.-minzoni",fullName:"A. A. Minzoni",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"90116",title:"Dr.",name:"Aaron",middleName:null,surname:"Flores-Gil",slug:"aaron-flores-gil",fullName:"Aaron Flores-Gil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Autonomous University of Carmen",country:{name:"Mexico"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"119935",title:"Prof.",name:"Abbas",middleName:null,surname:"Dandache",slug:"abbas-dandache",fullName:"Abbas Dandache",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Politécnica del Valle de México",country:{name:"Mexico"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5822},{group:"region",caption:"Middle and South America",value:2,count:5288},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10549},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15941}],offset:12,limit:12,total:7049},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"300"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:10},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:26},{group:"topic",caption:"Environmental Sciences",value:12,count:3},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:51},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5330},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9559",title:"Teamwork in Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"0053c2ff8d9ec4cc4aab82acea46a41e",slug:"teamwork-in-healthcare",bookSignature:"Michael S. Firstenberg and Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/9559.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7016",title:"Cardiovascular Risk Factors in Pathology",subtitle:null,isOpenForSubmission:!1,hash:"7937d2c640c7515de372282c72ee5635",slug:"cardiovascular-risk-factors-in-pathology",bookSignature:"Alaeddin Abukabda, Maria Suciu and Minodora Andor",coverURL:"https://cdn.intechopen.com/books/images_new/7016.jpg",editedByType:"Edited by",editors:[{id:"307873",title:"Ph.D.",name:"Alaeddin",middleName:null,surname:"Abukabda",slug:"alaeddin-abukabda",fullName:"Alaeddin Abukabda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"59b5ceeeedaf7449a30629923569388c",slug:"strategies-of-sustainable-solid-waste-management",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:"M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9893",title:"Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:"09ba24f6ac88af7f0aaff3029714ae48",slug:"automation-and-control",bookSignature:"Constantin Voloşencu, Serdar Küçük, José Guerrero and Oscar Valero",coverURL:"https://cdn.intechopen.com/books/images_new/9893.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10405",title:"River Basin Management",subtitle:"Sustainability Issues and Planning Strategies",isOpenForSubmission:!1,hash:"5e5ddd0f2eda107ce19c4c06a55a8351",slug:"river-basin-management-sustainability-issues-and-planning-strategies",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/10405.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"92",title:"Information and Knowledge Engineering",slug:"information-and-knowledge-engineering",parent:{title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:38,numberOfAuthorsAndEditors:776,numberOfWosCitations:703,numberOfCrossrefCitations:560,numberOfDimensionsCitations:1027,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"information-and-knowledge-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8779",title:"Linked Open Data",subtitle:"Applications, Trends and Future Developments",isOpenForSubmission:!1,hash:"5860ff20764f7549ff218e9d5e112fef",slug:"linked-open-data-applications-trends-and-future-developments",bookSignature:"Kingsley Okoye",coverURL:"https://cdn.intechopen.com/books/images_new/8779.jpg",editedByType:"Edited by",editors:[{id:"219803",title:"Dr.",name:"Kingsley",middleName:null,surname:"Okoye",slug:"kingsley-okoye",fullName:"Kingsley Okoye"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7780",title:"Ontological Analyses in Science, Technology and Informatics",subtitle:null,isOpenForSubmission:!1,hash:"72c8b15505d4716d94f299061496ef48",slug:"ontological-analyses-in-science-technology-and-informatics",bookSignature:"Andino Maseleno and Marini Othman",coverURL:"https://cdn.intechopen.com/books/images_new/7780.jpg",editedByType:"Edited by",editors:[{id:"219663",title:"Dr.",name:"Andino",middleName:null,surname:"Maseleno",slug:"andino-maseleno",fullName:"Andino Maseleno"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8850",title:"Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems",subtitle:null,isOpenForSubmission:!1,hash:"25ef9074be50f4e5c1f6cb7298e1b68d",slug:"harnessing-knowledge-innovation-and-competence-in-engineering-of-mission-critical-systems",bookSignature:"Ali G. Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/8850.jpg",editedByType:"Edited by",editors:[{id:"108303",title:"Prof.",name:"Ali G.",middleName:null,surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8141",title:"Social Media and Machine Learning",subtitle:null,isOpenForSubmission:!1,hash:"155aa6c54dc411b5d2a1498f10f9417e",slug:"social-media-and-machine-learning",bookSignature:"Alberto Cano",coverURL:"https://cdn.intechopen.com/books/images_new/8141.jpg",editedByType:"Edited by",editors:[{id:"200724",title:"Dr.",name:"Alberto",middleName:null,surname:"Cano",slug:"alberto-cano",fullName:"Alberto Cano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9470",title:"Open Scientific Data",subtitle:"Why Choosing and Reusing the RIGHT DATA Matters",isOpenForSubmission:!1,hash:"898ef46a10e74ff18d1253b5200741ab",slug:"open-scientific-data-why-choosing-and-reusing-the-right-data-matters",bookSignature:"Vera J. Lipton",coverURL:"https://cdn.intechopen.com/books/images_new/9470.jpg",editedByType:"Authored by",editors:[{id:"307100",title:"Dr.",name:"Vera",middleName:null,surname:"Lipton",slug:"vera-lipton",fullName:"Vera Lipton"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"5844",title:"Ontology in Information Science",subtitle:null,isOpenForSubmission:!1,hash:"922bcfea0d27e7e004542ce3adca6d20",slug:"ontology-in-information-science",bookSignature:"Ciza Thomas",coverURL:"https://cdn.intechopen.com/books/images_new/5844.jpg",editedByType:"Edited by",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5144",title:"Big Data on Real-World Applications",subtitle:null,isOpenForSubmission:!1,hash:"5c942ece49d87df7900f18463c798f26",slug:"big-data-on-real-world-applications",bookSignature:"Sebastian Ventura Soto, José M. Luna and Alberto Cano",coverURL:"https://cdn.intechopen.com/books/images_new/5144.jpg",editedByType:"Edited by",editors:[{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4792",title:"E-Learning",subtitle:"Instructional Design, Organizational Strategy and Management",isOpenForSubmission:!1,hash:"09c4d63ffc09c72a13ab15b442a9c2b6",slug:"e-learning-instructional-design-organizational-strategy-and-management",bookSignature:"Boyka Gradinarova",coverURL:"https://cdn.intechopen.com/books/images_new/4792.jpg",editedByType:"Edited by",editors:[{id:"78424",title:"Dr.",name:"Boyka",middleName:null,surname:"Gradinarova",slug:"boyka-gradinarova",fullName:"Boyka Gradinarova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2746",title:"Theory and Applications for Advanced Text Mining",subtitle:null,isOpenForSubmission:!1,hash:"ed74b8719e654014932e764fe1e57816",slug:"theory-and-applications-for-advanced-text-mining",bookSignature:"Shigeaki Sakurai",coverURL:"https://cdn.intechopen.com/books/images_new/2746.jpg",editedByType:"Edited by",editors:[{id:"150787",title:"Prof.",name:"Shigeaki",middleName:null,surname:"Sakurai",slug:"shigeaki-sakurai",fullName:"Shigeaki Sakurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2203",title:"Data Acquisition Applications",subtitle:null,isOpenForSubmission:!1,hash:"370ab36f6990188147fc3c2c758a9307",slug:"data-acquisition-applications",bookSignature:"Zdravko Karakehayov",coverURL:"https://cdn.intechopen.com/books/images_new/2203.jpg",editedByType:"Edited by",editors:[{id:"140529",title:"Prof.",name:"Zdravko",middleName:null,surname:"Karakehayov",slug:"zdravko-karakehayov",fullName:"Zdravko Karakehayov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2506",title:"Modern Information Systems",subtitle:null,isOpenForSubmission:!1,hash:"3e0a4cfa7da4c373806375837fac00f7",slug:"modern-information-systems",bookSignature:"Christos Kalloniatis",coverURL:"https://cdn.intechopen.com/books/images_new/2506.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2505",title:"Innovative Information Systems Modelling Techniques",subtitle:null,isOpenForSubmission:!1,hash:"6a88e4e4e63736e2bc6c4ba010a27883",slug:"innovative-information-systems-modelling-techniques",bookSignature:"Christos Kalloniatis",coverURL:"https://cdn.intechopen.com/books/images_new/2505.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:38,mostCitedChapters:[{id:"38735",doi:"10.5772/51066",title:"Biomedical Named Entity Recognition: A Survey of Machine-Learning Tools",slug:"biomedical-named-entity-recognition-a-survey-of-machine-learning-tools",totalDownloads:4715,totalCrossrefCites:18,totalDimensionsCites:31,book:{slug:"theory-and-applications-for-advanced-text-mining",title:"Theory and Applications for Advanced Text Mining",fullTitle:"Theory and Applications for Advanced Text Mining"},signatures:"David Campos, Sérgio Matos and José Luís Oliveira",authors:[{id:"72193",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Oliveira",slug:"jose-luis-oliveira",fullName:"Jose Luis Oliveira"},{id:"152991",title:"Dr.",name:"Sérgio",middleName:null,surname:"Matos",slug:"sergio-matos",fullName:"Sérgio Matos"},{id:"152992",title:"MSc.",name:"David",middleName:null,surname:"Campos",slug:"david-campos",fullName:"David Campos"}]},{id:"13173",doi:"10.5772/13222",title:"Glucose Prediction in Type 1 and Type 2 Diabetic Patients Using Data Driven Techniques",slug:"glucose-prediction-in-type-1-and-type-2-diabetic-patients-using-data-driven-techniques",totalDownloads:3223,totalCrossrefCites:0,totalDimensionsCites:24,book:{slug:"knowledge-oriented-applications-in-data-mining",title:"Knowledge-Oriented Applications in Data Mining",fullTitle:"Knowledge-Oriented Applications in Data Mining"},signatures:"Eleni I. Georga, Vasilios C. Protopappas and Dimitrios I. Fotiadis",authors:[{id:"14138",title:"Prof.",name:"Eleni",middleName:null,surname:"Georga",slug:"eleni-georga",fullName:"Eleni Georga"},{id:"16827",title:"Dr.",name:"Vasilios C.",middleName:null,surname:"Protopappas",slug:"vasilios-c.-protopappas",fullName:"Vasilios C. Protopappas"},{id:"16828",title:"Prof",name:"Dimitrios",middleName:null,surname:"Fotiadis",slug:"dimitrios-fotiadis",fullName:"Dimitrios Fotiadis"}]},{id:"13162",doi:"10.5772/13683",title:"Data Mining Using RFM Analysis",slug:"data-mining-using-rfm-analysis",totalDownloads:21102,totalCrossrefCites:12,totalDimensionsCites:24,book:{slug:"knowledge-oriented-applications-in-data-mining",title:"Knowledge-Oriented Applications in Data Mining",fullTitle:"Knowledge-Oriented Applications in Data Mining"},signatures:"Derya Birant",authors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}]}],mostDownloadedChaptersLast30Days:[{id:"37307",title:"Cyber Security",slug:"cybersecurity-in-the-real-world-implications-and-applications",totalDownloads:2274,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"security-enhanced-applications-for-information-systems",title:"Security Enhanced Applications for Information Systems",fullTitle:"Security Enhanced Applications for Information Systems"},signatures:"Barry Lunt, Dale Rowe and Joseph Ekstrom",authors:[{id:"110690",title:"Prof.",name:"Barry",middleName:null,surname:"Lunt",slug:"barry-lunt",fullName:"Barry Lunt"},{id:"124554",title:"Prof.",name:"Joseph",middleName:null,surname:"Ekstrom",slug:"joseph-ekstrom",fullName:"Joseph Ekstrom"},{id:"124555",title:"Prof.",name:"Dale",middleName:null,surname:"Rowe",slug:"dale-rowe",fullName:"Dale Rowe"}]},{id:"65993",title:"Automatic Speech Emotion Recognition Using Machine Learning",slug:"automatic-speech-emotion-recognition-using-machine-learning",totalDownloads:2749,totalCrossrefCites:9,totalDimensionsCites:20,book:{slug:"social-media-and-machine-learning",title:"Social Media and Machine Learning",fullTitle:"Social Media and Machine Learning"},signatures:"Leila Kerkeni, Youssef Serrestou, Mohamed Mbarki, Kosai Raoof, Mohamed Ali Mahjoub and Catherine Cleder",authors:[{id:"247090",title:"Ph.D. Student",name:"Leila",middleName:null,surname:"Kerkeni",slug:"leila-kerkeni",fullName:"Leila Kerkeni"}]},{id:"38040",title:"A Semantic-Based Framework for Summarization and Page Segmentation in Web Mining",slug:"a-semantic-based-framework-for-summarization-and-page-segmentation-in-web-mining",totalDownloads:4140,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"theory-and-applications-for-advanced-text-mining",title:"Theory and Applications for Advanced Text Mining",fullTitle:"Theory and Applications for Advanced Text Mining"},signatures:"Alessio Leoncini, Fabio Sangiacomo, Paolo Gastaldo and Rodolfo Zunino",authors:[{id:"151894",title:"Ph.D. Student",name:"Alessio",middleName:null,surname:"Leoncini",slug:"alessio-leoncini",fullName:"Alessio Leoncini"},{id:"153061",title:"MSc.",name:"Fabio",middleName:null,surname:"Sangiacomo",slug:"fabio-sangiacomo",fullName:"Fabio Sangiacomo"},{id:"153062",title:"Prof.",name:"Paolo",middleName:null,surname:"Gastaldo",slug:"paolo-gastaldo",fullName:"Paolo Gastaldo"},{id:"153064",title:"Prof.",name:"Rodolfo",middleName:null,surname:"Zunino",slug:"rodolfo-zunino",fullName:"Rodolfo Zunino"}]},{id:"51248",title:"Medical Big Data Analysis in Hospital Information System",slug:"medical-big-data-analysis-in-hospital-information-system",totalDownloads:2928,totalCrossrefCites:5,totalDimensionsCites:6,book:{slug:"big-data-on-real-world-applications",title:"Big Data on Real-World Applications",fullTitle:"Big Data on Real-World Applications"},signatures:"Jing-Song Li, Yi-Fan Zhang and Yu Tian",authors:[{id:"16649",title:"Dr.",name:"Jing-Song",middleName:null,surname:"Li",slug:"jing-song-li",fullName:"Jing-Song Li"},{id:"184262",title:"Ms.",name:"Yi-Fan",middleName:null,surname:"Zhang",slug:"yi-fan-zhang",fullName:"Yi-Fan Zhang"},{id:"184263",title:"Dr.",name:"Yu",middleName:null,surname:"Tian",slug:"yu-tian",fullName:"Yu Tian"}]},{id:"69743",title:"Literature Review on Big Data Analytics Methods",slug:"literature-review-on-big-data-analytics-methods",totalDownloads:791,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"social-media-and-machine-learning",title:"Social Media and Machine Learning",fullTitle:"Social Media and Machine Learning"},signatures:"Iman Raeesi Vanani and Setareh Majidian",authors:[{id:"296037",title:"Mrs.",name:"Setareh",middleName:null,surname:"Majidian",slug:"setareh-majidian",fullName:"Setareh Majidian"},{id:"296039",title:"Dr.",name:"Iman",middleName:null,surname:"Raeesi Vanaei",slug:"iman-raeesi-vanaei",fullName:"Iman Raeesi Vanaei"}]},{id:"48924",title:"Effective eLearning and eTeaching — A Theoretical Model",slug:"effective-elearning-and-eteaching-a-theoretical-model",totalDownloads:2022,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"e-learning-instructional-design-organizational-strategy-and-management",title:"E-Learning",fullTitle:"E-Learning - Instructional Design, Organizational Strategy and Management"},signatures:"Maureen Snow Andrade",authors:[{id:"96902",title:"Dr.",name:"Maureen",middleName:null,surname:"Snow Andrade",slug:"maureen-snow-andrade",fullName:"Maureen Snow Andrade"}]},{id:"51173",title:"Introduction to Big Data in Education and Its Contribution to the Quality Improvement Processes",slug:"introduction-to-big-data-in-education-and-its-contribution-to-the-quality-improvement-processes",totalDownloads:3163,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"big-data-on-real-world-applications",title:"Big Data on Real-World Applications",fullTitle:"Big Data on Real-World Applications"},signatures:"Christos Vaitsis, Vasilis Hervatis and Nabil Zary",authors:[{id:"178487",title:"M.Sc.",name:"Christos",middleName:null,surname:"Vaitsis",slug:"christos-vaitsis",fullName:"Christos Vaitsis"},{id:"179404",title:"MSc.",name:"Vasilis",middleName:null,surname:"Hervatis",slug:"vasilis-hervatis",fullName:"Vasilis Hervatis"},{id:"179405",title:"Associate Prof.",name:"Nabil",middleName:null,surname:"Zary",slug:"nabil-zary",fullName:"Nabil Zary"}]},{id:"59449",title:"Examples of Ontology Model Usage in Engineering Fields",slug:"examples-of-ontology-model-usage-in-engineering-fields",totalDownloads:1410,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"ontology-in-information-science",title:"Ontology in Information Science",fullTitle:"Ontology in Information Science"},signatures:"Larysa Globa, Rina Novogrudska, Alexander Koval and Vyacheslav\nSenchenko",authors:[{id:"105085",title:"Prof.",name:"Larysa",middleName:null,surname:"Globa",slug:"larysa-globa",fullName:"Larysa Globa"},{id:"219895",title:"Dr.",name:"Rina",middleName:null,surname:"Novogrudska",slug:"rina-novogrudska",fullName:"Rina Novogrudska"},{id:"219896",title:"Prof.",name:"Alexander",middleName:null,surname:"Koval",slug:"alexander-koval",fullName:"Alexander Koval"},{id:"221967",title:"Dr.",name:"Vyacheslav",middleName:null,surname:"Senchenko",slug:"vyacheslav-senchenko",fullName:"Vyacheslav Senchenko"}]},{id:"13162",title:"Data Mining Using RFM Analysis",slug:"data-mining-using-rfm-analysis",totalDownloads:21102,totalCrossrefCites:12,totalDimensionsCites:24,book:{slug:"knowledge-oriented-applications-in-data-mining",title:"Knowledge-Oriented Applications in Data Mining",fullTitle:"Knowledge-Oriented Applications in Data Mining"},signatures:"Derya Birant",authors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}]},{id:"50926",title:"Real-World Treatment Patterns and Outcomes among Elderly Acute Myeloid Leukemia Patients in the United States",slug:"real-world-treatment-patterns-and-outcomes-among-elderly-acute-myeloid-leukemia-patients-in-the-unit",totalDownloads:1655,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"big-data-on-real-world-applications",title:"Big Data on Real-World Applications",fullTitle:"Big Data on Real-World Applications"},signatures:"Sacha Satram- Hoang, Carolina Reyes, Deborah Hurst, Khang Q.\nHoang and Bruno C. Medeiros",authors:[{id:"178750",title:"Dr.",name:"Sacha",middleName:null,surname:"Satram-Hoang",slug:"sacha-satram-hoang",fullName:"Sacha Satram-Hoang"},{id:"184759",title:"Dr.",name:"Carolina",middleName:null,surname:"Reyes",slug:"carolina-reyes",fullName:"Carolina Reyes"},{id:"184760",title:"Dr.",name:"Deborah",middleName:null,surname:"Hurst",slug:"deborah-hurst",fullName:"Deborah Hurst"},{id:"184761",title:"Dr.",name:"Khang",middleName:null,surname:"Hoang",slug:"khang-hoang",fullName:"Khang Hoang"},{id:"184762",title:"Dr.",name:"Bruno",middleName:null,surname:"Medeiros",slug:"bruno-medeiros",fullName:"Bruno Medeiros"}]}],onlineFirstChaptersFilter:{topicSlug:"information-and-knowledge-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/111416/rodrigo-costa-felix",hash:"",query:{},params:{id:"111416",slug:"rodrigo-costa-felix"},fullPath:"/profiles/111416/rodrigo-costa-felix",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()