Tuning time classes [42].
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"1128",leadTitle:null,fullTitle:"Structure and Function of Food Engineering",title:"Structure and Function of Food Engineering",subtitle:null,reviewType:"peer-reviewed",abstract:"This book conveys many significant messages for the food engineering and allied professions: the importance of working in multidisciplinary teams, the relevance of developing food engineering based on well-established principles, the benefits of developing the field by bringing together experts from industry, academia and government, and the unparalleled advantage of working as globally as possible in the understanding, development, and applications of food engineering principles. I am delighted to welcome this book to the Series and I am convinced colleagues from all parts of the world will gain great value from it.",isbn:null,printIsbn:"978-953-51-0695-1",pdfIsbn:"978-953-51-4288-1",doi:"10.5772/1615",price:139,priceEur:155,priceUsd:179,slug:"structure-and-function-of-food-engineering",numberOfPages:416,isOpenForSubmission:!1,isInWos:1,hash:"f34c50135f0247fd4120af8b18ee0405",bookSignature:"Ayman Amer Eissa",publishedDate:"August 22nd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1128.jpg",numberOfDownloads:92659,numberOfWosCitations:173,numberOfCrossrefCitations:76,numberOfDimensionsCitations:244,hasAltmetrics:1,numberOfTotalCitations:493,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 6th 2011",dateEndSecondStepPublish:"January 10th 2012",dateEndThirdStepPublish:"April 15th 2012",dateEndFourthStepPublish:"July 14th 2012",dateEndFifthStepPublish:"August 13th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,8",editedByType:"Edited by",kuFlag:!1,editors:[{id:"32499",title:"Prof.",name:"Ayman",middleName:"Hafiz",surname:"Amer Eissa",slug:"ayman-amer-eissa",fullName:"Ayman Amer Eissa",profilePictureURL:"https://mts.intechopen.com/storage/users/32499/images/706_n.jpg",biography:"Professor Ayman Amer Eissa received his BSc in 1986, and MSc in 1992, both from Minoufiya University, Egypt. He received his PhD from Martin Luther University, Germany and Minoufiya University, in 1999, and completed fellowships in biosystems engineering and quality control in Germany, in 2007. Professor Amer Eissa previously served as the Director of the Center of Marketing Service, Minoufiya University, and is currently teaching food process engineering at the same University, as well as food process engineering at the Department of Agricultural Systems Engineering, College of Agriculture and Food Sciences, King Faisal University, Saudi Arabia. His research is directed at machine vision processing and the development of different package systems and transportation for food products. Professor Amer Eissa has authored and co-authored of over 40 Journal articles, and more than four books. He has served as a member of different honorary societies in food engineering ,and is a technical reviewer for most journals in the field. He also supervises of",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Menoufia University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"334",title:"Food Engineering",slug:"food-science-food-engineering"}],chapters:[{id:"38353",title:"Antioxidant, Anticancer Activity, and Other Health Effects of a Nutritional Supplement (Galaxy(r))",doi:"10.5772/51250",slug:"antioxidant-anticancer-activity-and-other-health-effects-of-a-nutritional-supplement-galaxy-r-",totalDownloads:5108,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Gary M. Booth, Tory L. Parker and Christopher M. Lee",downloadPdfUrl:"/chapter/pdf-download/38353",previewPdfUrl:"/chapter/pdf-preview/38353",authors:[{id:"147899",title:"Dr.",name:"Gary",surname:"Booth",slug:"gary-booth",fullName:"Gary Booth"}],corrections:null},{id:"38354",title:"Oxygen Scavengers: An Approach on Food Preservation",doi:"10.5772/48453",slug:"oxygen-scavengers-an-approach-on-food-preservation",totalDownloads:15330,totalCrossrefCites:6,totalDimensionsCites:30,signatures:"Renato Souza Cruz, Geany Peruch Camilloto and Ana Clarissa dos Santos Pires",downloadPdfUrl:"/chapter/pdf-download/38354",previewPdfUrl:"/chapter/pdf-preview/38354",authors:[{id:"144206",title:"Dr.",name:"Renato",surname:"Cruz",slug:"renato-cruz",fullName:"Renato Cruz"},{id:"144215",title:"Dr.",name:"Ana Clarissa",surname:"Pires",slug:"ana-clarissa-pires",fullName:"Ana Clarissa Pires"},{id:"144219",title:"MSc.",name:"Geany",surname:"Camilloto",slug:"geany-camilloto",fullName:"Geany Camilloto"}],corrections:null},{id:"38355",title:"Protein-Based Edible Films: Characteristics and Improvement of Properties",doi:"10.5772/48167",slug:"protein-based-edible-films-characteristics-and-improvement-of-properties",totalDownloads:5348,totalCrossrefCites:22,totalDimensionsCites:56,signatures:"Thawien Wittaya",downloadPdfUrl:"/chapter/pdf-download/38355",previewPdfUrl:"/chapter/pdf-preview/38355",authors:[{id:"139906",title:"Dr.",name:"Thawien",surname:"Wittaya",slug:"thawien-wittaya",fullName:"Thawien Wittaya"}],corrections:null},{id:"38356",title:"Staphylococcus aureus: Characterisation and Quantitative Growth Description in Milk and Artisanal Raw Milk Cheese Production",doi:"10.5772/48175",slug:"staphylococcus-aureus-characterisation-and-quantitative-growth-description-in-milk-and-artisanal-raw",totalDownloads:8657,totalCrossrefCites:4,totalDimensionsCites:18,signatures:"Alžbeta Medveďová and Ľubomír Valík",downloadPdfUrl:"/chapter/pdf-download/38356",previewPdfUrl:"/chapter/pdf-preview/38356",authors:[{id:"139980",title:"Prof.",name:"Ľubomír",surname:"Valík",slug:"ubomir-valik",fullName:"Ľubomír Valík"},{id:"143466",title:"Dr.",name:"Alžbeta",surname:"Medveďová",slug:"alzbeta-medvedova",fullName:"Alžbeta Medveďová"}],corrections:null},{id:"38357",title:"Rice Starch-Based Biodegradable Films: Properties Enhancement",doi:"10.5772/47751",slug:"rice-starch-based-biodegradable-films-properties-enhancement",totalDownloads:3626,totalCrossrefCites:12,totalDimensionsCites:23,signatures:"Thawien Wittaya",downloadPdfUrl:"/chapter/pdf-download/38357",previewPdfUrl:"/chapter/pdf-preview/38357",authors:[{id:"139906",title:"Dr.",name:"Thawien",surname:"Wittaya",slug:"thawien-wittaya",fullName:"Thawien Wittaya"}],corrections:null},{id:"38358",title:"Botulinum Toxin Complex: A Delivery Vehicle of Botulinum Neurotoxin Traveling Digestive Tract",doi:"10.5772/46023",slug:"botulinum-toxin-complex-a-delivery-vehicle-of-botulinum-neurotoxin-traveling-digestive-tract",totalDownloads:2264,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Yoshimasa Sagane, Ken Inui, Shin-Ichiro Miyashita, Keita Miyata, Tomonori Suzuki, Koichi Niwa and Toshihiro Watanabe",downloadPdfUrl:"/chapter/pdf-download/38358",previewPdfUrl:"/chapter/pdf-preview/38358",authors:[{id:"141250",title:"Prof.",name:"Toshihiro",surname:"Watanabe",slug:"toshihiro-watanabe",fullName:"Toshihiro Watanabe"},{id:"144109",title:"Dr.",name:"Yoshimasa",surname:"Sagane",slug:"yoshimasa-sagane",fullName:"Yoshimasa Sagane"},{id:"144110",title:"Prof.",name:"Koichi",surname:"Niwa",slug:"koichi-niwa",fullName:"Koichi Niwa"},{id:"144257",title:"Mr.",name:"Ken",surname:"Inui",slug:"ken-inui",fullName:"Ken Inui"},{id:"144258",title:"Mr.",name:"Shin-Ichiro",surname:"Miyashita",slug:"shin-ichiro-miyashita",fullName:"Shin-Ichiro Miyashita"},{id:"144259",title:"Dr.",name:"Keita",surname:"Miyata",slug:"keita-miyata",fullName:"Keita Miyata"},{id:"144260",title:"Dr.",name:"Tomonori",surname:"Suzuki",slug:"tomonori-suzuki",fullName:"Tomonori Suzuki"}],corrections:null},{id:"38359",title:"Climate Change: Implication for Food-Borne Diseases (Salmonella and Food Poisoning Among Humans in R. Macedonia)",doi:"10.5772/46183",slug:"climate-change-implication-for-food-borne-diseases-salmonella-and-food-poisoning-among-humans-in-r-m",totalDownloads:3176,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Vladimir Kendrovski and Dragan Gjorgjev",downloadPdfUrl:"/chapter/pdf-download/38359",previewPdfUrl:"/chapter/pdf-preview/38359",authors:[{id:"133634",title:"Prof.",name:"Dragan",surname:"Gjorgjev",slug:"dragan-gjorgjev",fullName:"Dragan Gjorgjev"},{id:"133635",title:"Prof.",name:"Vladimir",surname:"Kendrovski",slug:"vladimir-kendrovski",fullName:"Vladimir Kendrovski"}],corrections:null},{id:"38360",title:"Mycotoxin Decontamination Aspects in Food, Feed and Renewables Using Fermentation Processes",doi:"10.5772/46184",slug:"mycotoxin-decontamination-aspects-in-food-feed-and-renewables-using-fermentation-processes",totalDownloads:3556,totalCrossrefCites:9,totalDimensionsCites:26,signatures:"Grazina Juodeikiene, Loreta Basinskiene, Elena Bartkiene and Paulius Matusevicius",downloadPdfUrl:"/chapter/pdf-download/38360",previewPdfUrl:"/chapter/pdf-preview/38360",authors:[{id:"144537",title:"Prof.",name:"Elena",surname:"Bartkiene",slug:"elena-bartkiene",fullName:"Elena Bartkiene"}],corrections:null},{id:"38361",title:"Possible Risks in Caucasians by Consumption of Isoflavones Extracts Based",doi:"10.5772/47837",slug:"possible-risks-in-caucasians-by-consumption-of-isoflavones-extracts-based",totalDownloads:1919,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Maria Graça Campos and Maria Luísa Costa",downloadPdfUrl:"/chapter/pdf-download/38361",previewPdfUrl:"/chapter/pdf-preview/38361",authors:[{id:"146028",title:"Prof.",name:"Maria",surname:"Campos",slug:"maria-campos",fullName:"Maria Campos"}],corrections:null},{id:"38362",title:"Understanding Color Image Processing by Machine Vision for Biological Materials",doi:"10.5772/50796",slug:"understanding-color-image-processing-by-machine-vision-for-biological-materials",totalDownloads:7358,totalCrossrefCites:3,totalDimensionsCites:10,signatures:"Ayman H. Amer Eissa and Ayman A. Abdel Khalik",downloadPdfUrl:"/chapter/pdf-download/38362",previewPdfUrl:"/chapter/pdf-preview/38362",authors:[{id:"32499",title:"Prof.",name:"Ayman",surname:"Amer Eissa",slug:"ayman-amer-eissa",fullName:"Ayman Amer Eissa"}],corrections:null},{id:"38363",title:"Pulsed Electric Fields for Food Processing Technology",doi:"10.5772/48678",slug:"pulsed-electric-fields-for-food-processing-technology",totalDownloads:27581,totalCrossrefCites:7,totalDimensionsCites:48,signatures:"Maged E.A. Mohamed and Ayman H. Amer Eissa",downloadPdfUrl:"/chapter/pdf-download/38363",previewPdfUrl:"/chapter/pdf-preview/38363",authors:[{id:"147638",title:"Dr.",name:"Maged",surname:"Mohammed",slug:"maged-mohammed",fullName:"Maged Mohammed"}],corrections:null},{id:"38364",title:"Public Health Policies and Functional Property Claims for Food in Brazil",doi:"10.5772/50506",slug:"public-health-policies-and-functional-property-claims-for-food-in-brazil",totalDownloads:3024,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Paulo César Stringueta, Maria da Penha Henriques do Amaral, Larissa Pereira Brumano, Mônica Cecília Santana Pereira and Miriam Aparecida de Oliveira Pinto",downloadPdfUrl:"/chapter/pdf-download/38364",previewPdfUrl:"/chapter/pdf-preview/38364",authors:[{id:"139675",title:"Dr.",name:"Paulo",surname:"Stringheta",slug:"paulo-stringheta",fullName:"Paulo Stringheta"},{id:"144224",title:"Prof.",name:"Miriam Aparecida",surname:"Oliveira Pinto",slug:"miriam-aparecida-oliveira-pinto",fullName:"Miriam Aparecida Oliveira Pinto"},{id:"159581",title:"Prof.",name:"Maria Da Penha",surname:"Henriques Do Amaral",slug:"maria-da-penha-henriques-do-amaral",fullName:"Maria Da Penha Henriques Do Amaral"},{id:"159582",title:"Ms.",name:"Larissa",surname:"Pereira Brumano",slug:"larissa-pereira-brumano",fullName:"Larissa Pereira Brumano"},{id:"159583",title:"Ms.",name:"Mônica Cecília",surname:"Santana Pereira",slug:"monica-cecilia-santana-pereira",fullName:"Mônica Cecília Santana Pereira"}],corrections:null},{id:"38365",title:"The Emerging Role of the Yeast Torulaspora delbrueckii in Bread and Wine Production: Using Genetic Manipulation to Study Molecular Basis of Physiological Responses",doi:"10.5772/46024",slug:"the-emerging-role-of-the-yeast-torulaspora-delbrueckii-in-bread-and-wine-production-using-genetic-ma",totalDownloads:2757,totalCrossrefCites:6,totalDimensionsCites:14,signatures:"Andreia Pacheco, Júlia Santos, Susana Chaves, Judite Almeida, Cecília Leão and Maria João Sousa",downloadPdfUrl:"/chapter/pdf-download/38365",previewPdfUrl:"/chapter/pdf-preview/38365",authors:[{id:"95657",title:"Prof.",name:"Judite",surname:"Almeida",slug:"judite-almeida",fullName:"Judite Almeida"},{id:"120049",title:"Prof.",name:"Maria João",surname:"Sousa",slug:"maria-joao-sousa",fullName:"Maria João Sousa"},{id:"120052",title:"Prof.",name:"Cecília",surname:"Leão",slug:"cecilia-leao",fullName:"Cecília Leão"},{id:"148362",title:"MSc.",name:"Júlia",surname:"Santos",slug:"julia-santos",fullName:"Júlia Santos"},{id:"148363",title:"Dr.",name:"Andreia",surname:"Pacheco",slug:"andreia-pacheco",fullName:"Andreia Pacheco"},{id:"148364",title:"Dr.",name:"Susana",surname:"Chaves",slug:"susana-chaves",fullName:"Susana Chaves"}],corrections:null},{id:"38366",title:"Nucleic Acid-Based Methods to Identify, Detect and Type Pathogenic Bacteria Occurring in Milk and Dairy Products",doi:"10.5772/49937",slug:"nucleic-acid-based-methods-to-identify-detect-and-type-pathogenic-bacteria-occurring-in-milk-and-dai",totalDownloads:2981,totalCrossrefCites:4,totalDimensionsCites:11,signatures:"Vincenzina Fusco and Grazia Marina Quero",downloadPdfUrl:"/chapter/pdf-download/38366",previewPdfUrl:"/chapter/pdf-preview/38366",authors:[{id:"139770",title:"PhD.",name:"Vincenzina",surname:"Fusco",slug:"vincenzina-fusco",fullName:"Vincenzina Fusco"},{id:"157456",title:"Dr.",name:"Grazia Marina",surname:"Quero",slug:"grazia-marina-quero",fullName:"Grazia Marina Quero"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1936",title:"Trends in Vital Food and Control Engineering",subtitle:null,isOpenForSubmission:!1,hash:"90c8c82796e6d5ab1ec2239459aff1b9",slug:"trends-in-vital-food-and-control-engineering",bookSignature:"Ayman Hafiz Amer Eissa",coverURL:"https://cdn.intechopen.com/books/images_new/1936.jpg",editedByType:"Edited by",editors:[{id:"32499",title:"Prof.",name:"Ayman",surname:"Amer Eissa",slug:"ayman-amer-eissa",fullName:"Ayman Amer Eissa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4653",title:"Food Production and Industry",subtitle:null,isOpenForSubmission:!1,hash:"594525624cedb1e236bca2a13e2997cf",slug:"food-production-and-industry",bookSignature:"Ayman Hafiz Amer Eissa",coverURL:"https://cdn.intechopen.com/books/images_new/4653.jpg",editedByType:"Edited by",editors:[{id:"32499",title:"Prof.",name:"Ayman",surname:"Amer Eissa",slug:"ayman-amer-eissa",fullName:"Ayman Amer Eissa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9020",title:"Food Processing",subtitle:null,isOpenForSubmission:!1,hash:"4ec2cdd3d6127695e24ca587a854e6a9",slug:"food-processing",bookSignature:"Romina Alina Marc, Antonio Valero Díaz and Guiomar Denisse Posada Izquierdo",coverURL:"https://cdn.intechopen.com/books/images_new/9020.jpg",editedByType:"Edited by",editors:[{id:"275077",title:"Dr.Ing.",name:"Romina Alina",surname:"Marc",slug:"romina-alina-marc",fullName:"Romina Alina Marc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8544",title:"Food Preservation and Waste Exploitation",subtitle:null,isOpenForSubmission:!1,hash:"510c0be10ee47559ddfd296740e24517",slug:"food-preservation-and-waste-exploitation",bookSignature:"Sonia A. Socaci, Anca C. F?rca?, Thierry Aussenac and Jean-Claude Laguerre",coverURL:"https://cdn.intechopen.com/books/images_new/8544.jpg",editedByType:"Edited by",editors:[{id:"191241",title:"Ph.D.",name:"Sonia A.",surname:"Socaci",slug:"sonia-a.-socaci",fullName:"Sonia A. Socaci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8313",title:"Food Engineering",subtitle:null,isOpenForSubmission:!1,hash:"f34f0100db8038cd838a4a03fb56de6a",slug:"food-engineering",bookSignature:"Teodora Emilia Coldea",coverURL:"https://cdn.intechopen.com/books/images_new/8313.jpg",editedByType:"Edited by",editors:[{id:"220490",title:"Ph.D.",name:"Teodora Emilia",surname:"Coldea",slug:"teodora-emilia-coldea",fullName:"Teodora Emilia Coldea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66301",slug:"corrigendum-to-denim-fabrics-woven-with-dual-core-spun-yarns",title:"Corrigendum to: Denim Fabrics Woven with Dual Core-Spun Yarns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66301.pdf",downloadPdfUrl:"/chapter/pdf-download/66301",previewPdfUrl:"/chapter/pdf-preview/66301",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66301",risUrl:"/chapter/ris/66301",chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]}},chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]},book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10369",leadTitle:null,title:"Applications of RNA-Seq in Biology and Medicine",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe advent of next-generation sequencing along with the development of bioinformatics tools has opened avenues to explore this technology in numerous fields of biomedical research. This book evaluates and comprehensively summarizes the scientific findings which have been achieved through RNA-Seq technology. RNA-Seq allows us to accurately capture all subtypes of RNA molecules, in any sequenced organism or single-cell type, under different experimental conditions. RNA-Seq transcriptome profiling of healthy and diseased tissues allows understanding the alterations in cellular phenotypes through the expression of differentially spliced RNA isoforms. Assessment of gene expression by RNA-Seq provides new insight into host response to pathogens, drugs, allergens, and other environmental triggers.
\r\n\r\n\tRNA-sequencing becomes even more powerful when combined with other assays. Merging genomics and transcriptomic profiling provides novel information underlying causative DNA mutations and the cellular effects of genetic variants caused by SNPs, indels, etc. Combining RNA-Seq with immunoprecipitation and cross-linking techniques is a clever multi-Omics strategy assessing transcriptional, posttranscriptional and posttranslational levels of gene expression regulation. The optimization of RNA-Seq technology will allow countless opportunities in our pursuit of achieving the goals of individualized medicine.
",isbn:"978-1-83962-815-3",printIsbn:"978-1-83962-686-9",pdfIsbn:"978-1-83962-816-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"62399ea4ed0544b946dcbd1853b2d1b8",bookSignature:"Prof. Irina Vlasova-St. Louis",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10369.jpg",keywords:"RNA-Seq, Genomics, Transcriptomics, Gene Expression, Transcriptome Profiling, Genetic Variation, Single-Cell Genomics, Single-Cell Genome, Data Mining, Bioinformatics, Transcriptomic Biomarkers, Inherited and Somatic Diseases",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 25th 2020",dateEndSecondStepPublish:"October 23rd 2020",dateEndThirdStepPublish:"December 22nd 2020",dateEndFourthStepPublish:"March 12th 2021",dateEndFifthStepPublish:"May 11th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. St. Louis conducts discovery research in several key areas including infectious diseases, immunology, and oncology. By integrating specific areas of expertise - genomics, transcriptomics, proteomics, ribonomics, and bioinformatics - Irina’s group is studying normal and pathological conditions at the molecular, cellular, and organismal levels.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"211159",title:"Prof.",name:"Irina",middleName:null,surname:"Vlasova-St. Louis",slug:"irina-vlasova-st.-louis",fullName:"Irina Vlasova-St. Louis",profilePictureURL:"https://mts.intechopen.com/storage/users/211159/images/system/211159.png",biography:"Irina St. Louis earned her M.D. and Ph.D. degrees from Ural State Medical Academy, Yekaterinburg, Russia. She completed her residency in lab pathology at Russian Medical Academy for Postgraduate Education, Moscow. She joined the Department of Microbiology at the University of Minnesota, as a postdoctoral trainee, followed by fellowships at the University of Minnesota Supercomputing Institute and Lymphoma Research Foundation.\r\nPresently, Dr. St. Louis is appointed as an Assistant Professor at the Department of Medicine at the University of Minnesota. \r\nDr. St. Louis conducts discovery research in several key areas including infectious diseases, immunology, and oncology. By integrating specific areas of expertise - genomics, transcriptomics, proteomics, ribonomics, and bioinformatics - Irina’s group is studying normal and pathological conditions at the molecular, cellular, and organismal levels.\r\nThe basic research in Dr. St. Louis’ laboratory is centered on post-transcriptional gene expression regulation, specifically, through messenger RNA turnover. Her translational research focuses on immune restoration disorders (IRD). Dr. St. Louis is engaged in a number of clinical studies, within the Global Health & International Medicine Program. These studies involve the stratification of AIDS patients, for optimal treatment regimens. The studies also include searches for biomarkers of immune reconstitution inflammatory syndrome (IRIS). Additionally, Dr. St. Louis’ lab collaborates with the Division of Hematology-Oncology and Transplantation, on virus-specific immune reconstitution after various hematopoietic cell transplantation regimens. This collaborative research aims to define the parameters and conditions for favorable post-transplant immune restoration and functional recovery in adult patients.",institutionString:"University of Minnesota",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Minnesota",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"259492",firstName:"Sara",lastName:"Gojević-Zrnić",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/259492/images/7469_n.png",email:"sara.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67205",title:"Age-Related Thymic Atrophy: Mechanisms and Outcomes",doi:"10.5772/intechopen.86412",slug:"age-related-thymic-atrophy-mechanisms-and-outcomes",body:'The thymus gland is the primary central lymphoid organ involved in development and selection of T lymphocytes (T cells) [1]. It is also responsible for the establishment of central T cell immune tolerance, which includes two mechanisms: thymocyte negative selection, through which most self (auto)-reactive T cells are depleted [2], and the generation of CD4 single positive (CD4SP)FoxP3+ regulatory T (Treg) cells [3], which act to suppress self-reactive T cell-mediated reactions in the periphery [4]. It is thought that Treg cells provide some level of compensation for imperfections in negative selection that allow some self-reactive T cells to escape this protective process [5]. As part of the aging process, the thymus undergoes progressive involution or atrophy in most vertebrates, exhibiting not only morphological changes, but also a functional decline resulting in [6, 7] significantly lowered thymic output [8].
The theoretical causes of this age-related diminishment of thymopoiesis are two-fold. First, is the notion of a hematopoietic defect. This stems from the observations that there are reduced numbers of hematopoietic stem cell (HSC) progenitors produced by the bone marrow with age, [9] that could cause a reduction in early T-cell progenitors (ETP) entering the thymus [10]. Second, is the notion of a non-hematopoietic defect, which suggests that the primary age-related atrophy of the thymus is derived from HSC niche cells [11, 12] and thymic stromal cells, or ETP niches [13, 14]. The myriad of changes that characterize thymic atrophy first occur within the thymic niche and then extend to the ETPs as a result of age. We believe that these substantial age-related alterations in thymic microstructure and microenvironment, which provide important thymic factors, contribute more heavily to the diminished thymopoiesis observed in the elderly [7, 13] The primary thymic stromal cells are thymic epithelial cells (TECs), including two subpopulations distinct in their localization, function, and molecular expression patterns, namely medullary TECs (mTECs) and cortical TECs (cTECs) [15]. Compelling evidence show that age-related thymic atrophy is tightly associated with postnatal TEC homeostasis, which is regulated by TEC autonomous transcription factors (TFs), such as Forkhead box N1 (FoxN1) [16].
Age-related changes to immune system function, often referred to as immunosenescence [17, 18, 19, 20], are generally thought of as immune insufficiency, such as reduced anti-infection and vaccine immunity [21] and reduced tumor surveillance [22, 23]. However, self-reactive immune responses are elevated in the elderly, which is a result of inflammaging, a chronic, low-grade, systemic inflammatory phenotype in the absence of acute infection observed in aged individuals [24, 25, 26, 27, 28, 29, 30, 31]. Immunosenescence and inflammaging are antagonistic phenotypes, but they actually comprise two sides of the same coin in terms of age-related immune dysregulation [19, 20, 32, 33]. It has been proposed that the basal inflammatory state defined by inflammaging greatly contributes to many age-related degenerative diseases, including neurodegenerative diseases, such as Alzheimer’s disease, metabolic diseases, and cardiovascular diseases, among others [30, 34, 35].
Here, we will outline the cellular and molecular mechanisms underlying the occurrence of age-related thymic atrophy including some of the aforementioned hallmarks, and its effects on general T cell output. We will also describe its effects on the establishment of central T cell immune tolerance via a combination of both mechanistic arms of central tolerance: thymocyte negative selection and thymic-derived CD4SPFoxP3+ T regulatory (tTreg) cell generation. We will discuss why we believe many aspects of the adaptive immune system’s role in the development of inflammaging can be attributed to these thymic manifestations. Finally, in light of new trends in T cell immune system aging, we will expand on some future research goals in the field of thymic atrophy interventions and therapeutics as a potential conduit for normalizing aged T cell-mediated immunity. This is of clinical significance for combating age-related neurological and cardiovascular diseases.
During aging, the thymus undergoes progressive atrophy [36]. In addition to a reduction in thymic mass (size and thymocyte numbers), there is substantial remodeling of the thymic microstructure. The thymus is characterized by two primary compartments, namely the cortex and the medulla. In between the cortex and medulla, there is a zone termed the corticomedullary junction (CMJ) (Figure 1a). These two compartments contain specialized thymic epithelial cells (TECs), cortical (cTECs) or medullary (mTECs), and these cellular compartments are responsible for different stages of thymocyte development and selection [37, 38]. Regarding thymic microstructure, the aged, involuted thymus, in addition to an overall decline in TEC-associated markers, such as keratin and major histocompatibility complex class-II (MHC-II), also manifests altered ratios of cTECs to mTECs, and an overt change in microstructure due to disrupted CMJ, resulting in a disorganized medullary region (Figure 1b). A decline in MHC-IIhi expressing TECs is a sign of the reduction of mature mTECs [39, 40]. Additionally, increased numbers of fibroblasts [39] and accumulation of adipose tissue in the thymus is also observed [40].
Thymic microstructural changes characterized by K8 and K5 fluorescent staining. In the aged thymus, the CMJ is not clear, because the medulla is disorganized and medullary TECs are dispersed and do not form a distinct compartmental region. Normally, K8+ TECs (green) are primarily localized in the cortical region, while K5+ TECs (red) are primarily localized in the medullary region. A) Young (~2 months old) murine thymus; B) aged (>18 months old) murine thymus. C = cortex, M = medulla, CMJ = corticomedullary junction, SC = subcapsule.
Increased senescent cells (β-Gal+, p21+, and TAP63+) [41] in the aged thymus are also present, and it has been demonstrated that TECs contribute to the senescence observed in the aged thymus [39, 41, 42]. This possibly contributes to an increased inflammatory environment (increased levels of IL-6, IL-1β, etc.) within the involuted thymus [30, 43]. Additionally, there is augmented apoptosis in TECs of the atrophied thymus, contributing to diminished stromal cellularity [39].
Perhaps the most noted outcome of age-related thymic atrophy is diminished thymic output and thymopoesis. This attracts attention and has led many groups to examine whether the bone marrow (BM) derived hematopoietic stem cell (HSC) lymphoid progenitors are sufficiently able to seed the thymus during aging. This is because HSCs are reduced [9] with a myeloid biased development in advanced age [44]. There have been many studies investigating this aspect of thymopoiesis and it is suggested that age-related HSCs contain defects [9] that could contribute to insufficient entry of early T-cell progenitors (ETPs) into the aged thymus [10]. Thus, this result could explain decreased thymic output with age [45].
Mechanisms of diminished thymic input resulting in thymic involution and declined thymic output are mainly based on bone marrow transplantation (BMT) experiments using mouse models. In these models, transferring aged HSCs into young mice could not rejuvenate the thymic involution induced by irradiation prior to bone marrow transplantation [46]. Additionally, the HSC progenitors have been shown to exhibit an age-related skewed proportion within the HSC pool towards myeloid lineage versus lymphoid lineage [44, 47, 48, 49]. It has also been observed that early stage thymocytes, defined as the ETPs in the triple negative-1 (TN1) thymocyte population, from aged mice demonstrated decreased differentiation after in vitro fetal thymic organ culture [10]. This group also reported declined proliferation and enhanced apoptosis of these early thymocytes taken from aged animals compared to young controls. The overall assertion was that the deficiency in thymocyte differentiation and development past this early stage was attributed to the production of the HSCs in the aged bone marrow [10]. Therefore, aged HSCs and ETPs were regarded as having an intrinsic defect [50].
Given the comprehensive microenvironments in young and aged animals, and the vulnerability of HSCs or ETPs during in vitro preparation, these experiments using BMT and ETP culture may not provide the necessary rigor for the conclusions drawn from them, and certainly do not adequately reflect physiological conditions. Therefore, we designed an age-mismatched experimental system with less in vitro preparation to reexamine these biological events [13, 51]. One design was to utilize young or aged IL-7R knockout mice as recipients [13, 52, 53], in which their BM niche is relatively open and available to accept exogenous BM cells without irradiation [52, 54]. After grafting young BM cells into young and aged IL-7R knockout mice, the young BM cells produced a young profile in young recipients, but the same young BM cells produced an old profile in aged recipients [13], which implies that the microenvironment directs BM cell aging, rather than the HSCs themselves [14]. The other design was to utilize mouse fetal thymus transplantation into young or aged mice, in which BM progenitors from young or aged recipients seed the grafted young thymus in vivo [51]. After grafting fetal thymic lobes into young and aged wild-type recipient mice, BM progenitors from young and old mice were able to grow equally well in the engrafted thymus (with young thymic microenvironment) [51]. In addition, aged HSCs seeding the engrafted thymus did not demonstrate any intrinsic defects [13, 55]. These comprehensive experiments provide solid evidence that the non-hematopoietic microenvironment, rather than HSCs, direct hematopoietic progenitor aging [14], thereby mediating the kinetics of thymic involution [7].
An important fact linking these potential mechanisms is the unique cross-talk or interaction that occurs between the developing hematopoietic progenitors (such as thymocytes) and the stromal microenvironment (such as TECs) in the thymus [15]. For example, there are reports that several key thymic factors involved in this cross-talk are adversely impacted by age-related thymic atrophy. One such factor is IL-7, secreted by TECs, which is important for thymopoiesis and has been shown to be reduced in the aged thymus [56]. Interestingly, direct exogenous supplementation of IL-7 helped to improve aged thymopoiesis [57]. On the other hand, thymocytes provide signals to promote TEC development, at least during thymic organogenesis [58, 59], but the dynamics of this phenomenon during thymic aging remain unknown.
In general, adult organ size is governed by the tissue-specific stem cell pool [60, 61]. It is known that there are two types of tissue-specific stem pools: infinite pools, such as in the liver, and restricted pools, such as in the pancreas. For example, if the liver is injured, its infinite stem pool can expand at a high capacity; whereas, if the pancreas is injured, the expansion of its tissue-specific stem cell pool is very limited due to its restricted and finite epithelial progenitor pool. The thymic epithelial progenitor pool has characteristics of the restricted, finite epithelial progenitor pool [61]. Therefore, it is conceivable that aging TECs exhibit limited turnover compared to mobile thymocytes, which are periodically entering from the BM [62, 63].
Taken together, deficiencies in thymocyte-TEC interactions in the thymus [15] promote thymic atrophy during aging. However, given the fact that thymocytes are mobile with a relatively short period of thymic residency, while TECs have permanent residency in the thymus, experimental evidence [13, 51] and the “seed and soil” theory describing how the soil (stem niche) directs seed (HSC) fate [64, 65, 66], lead us to conclude that age-related thymic involution begins with defects in the TEC compartment.
In light of the aforementioned evidence of age-related TEC defects and the decline in total TEC numbers in the aged, atrophied thymus, we now move to discuss the underlying mechanisms of these alterations. Many studies have been conducted to identify factors involved in the cellular and molecular aspects of TEC aging (cytokines, transcription factors, microRNAs, sex steroids, etc.). The single most predominant factor currently accepted as significantly contributing to this phenomenon is the TEC autonomous transcription factor FoxN1. This idea was based on the athymic nude mouse phenotype [67, 68]. FoxN1 is expressed mainly in epithelial cells of the thymus and skin to regulate epithelial cell differentiation in these organs [67]. It is thereby responsible for thymic organogenesis and subsequent T cell development in the thymus [16], as well as hair follicle development in the skin [69, 70]. Many past and current studies utilize nude mice, which exhibit a null mutation in FoxN1 resulting in the lack of hair and the thymus, which explains the lack of T cells in these mice [71, 72].
FoxN1 is noted to be reduced in expression in the age-related atrophied thymus and has even been described as one of the first markers of the onset of thymic involution [73, 74]. The question is whether this reduced FoxN1 expression is due to TEC aging, which results in a decline in many TEC-associated genes, or if primary FoxN1 decline with aging induces a TEC defect that then results in age-related thymic involution. This cause-and-effect relationship had been substantially debated prior to the generation of a conditional knock-out (cKO) FoxN1 mouse model [75]. In this model, the murine FoxN1 gene is loxP-floxed and the uCreERT is introduced through crossbreeding [76]. In this model, the tamoxifen (TM)-inducible ubiquitous Cre-recombinase (uCreERT) transgene has a low level of spontaneous activation, even without TM induction [77, 78], causing gradual excision of the FoxN1flox/flox gene over time. This results in progressive loss of FoxN1 with age and thymic involution that is positively correlated with reduced FoxN1 levels [79]. Supplying exogenous FoxN1, such as via plasmid [79] or transgene [80, 81], into the aged thymus greatly reduces thymic atrophy and improves function. Additionally, the use of FoxN1 reporter mice has enabled further elucidation of the timeline and kinetics of thymic atrophy with age [82]. For example, one group recently published a study demonstrating that the reduction in FoxN1 initiates the onset of thymic involution, beginning predominantly in the cTEC compartment [82]. Therefore, a decline in FoxN1 expression with aging causally induces flaws in TEC homeostasis, thereby resulting in age-related thymic atrophy, as opposed to the notion that age-induced thymic atrophy causes FoxN1 decline in the thymus.
Overt outcomes of age-related thymic atrophy include reduction of functional naïve T cells, which is related to a decline in T cell receptor (TCR) repertoire diversity [8, 55, 83, 84]. However, the atrophied thymus is still functioning, albeit with limitations, in the elderly, continuing to select T cells for the lifetime of the individual. This causes a potential for the atrophied thymus to generate harmful T cells that could increase autoimmune predisposition the elderly [26]. Therefore, we will review recent research progress regarding this area of concern.
As stated previously, the most readily observed outcome of age-related thymic involution is the decline in thymic output, which includes reduced naïve conventional T (Tcon) cell output over time [85] and fewer recent thymic emigrants (RTEs) [8]. However, peripheral T cell numbers are not decreased in aged individuals [36, 86, 87]. The actual effect is an overall diminished TCR repertoire diversity observed in the aged peripheral T cell pool [8, 55, 83, 84], which is due to oligoclonal expansion of memory T cells along with insufficient RTE output. This has been suggested to contribute to the decreased capacity for new immune responses to infection and poor vaccination efficacy, which are typical phenotypes of immunosenescence [17, 18, 19, 20], observed in the elderly [35].
This phenotype has been recapitulated in FoxN1 cKO mice, which have accelerated aging in the thymus, but maintain a young periphery, as they exhibit impaired peripheral T cell responses in infection with influenza virus [88]. This study also demonstrated a direct role for thymic atrophy in the impairment of T cell function during aging.
In light of the alterations in thymocyte number and diminished naïve T cell output with age-related thymic atrophy, it is of paramount importance to understand the effects of the altered thymic micro-environment on central tolerance establishment of the thymocytes that are still being developed in the atrophied thymus.
Under the current paradigm, negative selection is the process by which thymocytes with high affinity for self-peptides presented by MHC are deleted from the developing thymocyte repertoire via apoptosis [2, 38, 89]. Studies also show that when these high affinity TCRs receive strong signaling, negative selection takes place [90, 91]. However, the TCR signaling strength is not based solely on TCR affinity, but is also influenced by avidity, or the quantity of interactions between self-peptide/MHC (self-pMHC) complexes and the TCR (Figure 2). Therefore, if the thymocyte-intrinsic factors (i.e., TCR affinity and number), of self-reactive thymocytes are unchanged, the TCR signaling strength varies based on the ability of effective self-pMHC-II expression. In other words, if self-antigen can be normally presented in the MHC-II groove, the reciprocal TCR signaling should be produced through a strong interaction. We know that MHC-II is expressed on mTECs, however, aging induces mTEC defects (Figure 1b), resulting in reduced capacity for self-pMHC-II ligand expression. Therefore, we suggest that a strong signaling strength shifts either to an intermediate strength, which favors CD4SPFoxP3+ tTreg cell generation (Figure 2, arrow-a), or to a low strength, which results in the generation of self-reactive thymocytes (Figure 2, arrow-b). The self-reactive thymocytes via this pathway are neither depleted nor shifted to Treg cells, but become Tcon cells that are released to the periphery. If they encounter specific self-tissues, they may become effector T (Teff) cells that can attack self-tissues and induce pathological inflammation.
Signaling strength decides self-reactive CD4SP T clone fates. Interaction between self-pMHC on mTEC and self-reactive TCR on CD4SP thymocyte produces thress types of signaling strength: a strong signal leads to negative selection, resulting in depletion, an intermediate signal leads to tTreg generation, and a weak signal results in thymocyte survival to differentiate into Tcon. Thymic aging (green arrow—a) shifts signaling strength from strong to intermediate and relatively enhances polyclonal tTreg generation; while some antigen-specific interactions exhibit an extremely weak signal, resulting in diminished antigen-specific tTreg cells and increased antigen-specific Tcon cells (green arrow—b).
The FoxN1 cKO mouse model is a useful model for studying the capacity for efficient self-pMHC-II ligand expression, because it exhibits a defect in the non-hematopoietic TECs, but maintains intrinsically normal hematopoietic lineage cells and a young periphery. We demonstrated that thymic involution perturbs negative selection, as revealed by the enhanced release of autoreactive interphotoreceptor retinoid-binding protein (IRBP)-specific Tcon cells from the atrophied thymus of FoxN1 cKO mice compared to the thymus from young normal controls [25]. This result is presumably due to decreased self-pMHC-II expression, confirmed via assessment of a mock self-antigen in normal versus atrophied thymus [92].
As mentioned earlier, central tolerance establishment encompasses two mechanisms. The first mechanism, negative selection, is not entirely perfect [5] resulting in some self-reactive T clones being released into the periphery as Tcon cells. The second defense against self-reactivity is CD4SPFoxP3+ peripheral Treg (pTreg) cell-mediated autoimmune suppression. It is believed that 80–95% of pTreg cells are generated within the thymus, as thymic-derived T regulatory (tTreg) cells [93, 94, 95]. Under the current paradigm, the processes of both negative selection and tTreg generation in the thymus utilize the same set of agonist self-peptides [93, 96]. Whether self-reactive thymocytes developing in the thymus are negatively selected or develop into tTreg cells depends on TCR signaling strength, or the sum of TCR affinity and avidity, (or the number of TCR interactions with self-peptide/MHC) when all other variables, such as IL-2, etc., are fixed. Put simply, strong signaling induces the apoptosis of self-reactive thymocytes, intermediate signaling leads to tTreg generation, and weak signaling results in the survival of thymocytes that differentiate into Tcon cells (Figure 2). This paradigm implies that depletion or survival for thymocytes is dependent on overall TCR signaling strength [38, 93].
Although there are cell extrinsic factors that can impact thymocyte development, such as the thymic cytokine milieu (IL-2 [97, 98], TGF-β [98, 99], etc.), we propose that there are two cell types that directly regulate TCR signaling strength. One is intrinsic to thymocytes and the other is intrinsic to TECs. When the TCR binds to self-peptide/MHC on an antigen presenting cell, the immunoreceptor tyrosine-based activation motifs (ITAMs) are activated and the Zap70 kinase is subsequently phosphorylated. A mouse model with a knock-in allele of TCR zeta (ζ) chain gene with tyrosine-to-phenylalanine mutations in 6 out of 10 ITAMs led to a 60% decrease in TCR signaling potential [100]. This mouse model exhibited a defect in negative selection, but an increase in tTreg generation [100]. The second variable is the relative expression level of self-peptide/MHC on TECs. Transgenic expression of a microRNA targeting the MHC class-II transactivator (CIITA) resulted in reduced MHC-II on mTECs [37], leading to insufficient mTEC presentation of self-peptides thus reducing the overall avidity of the TCR interaction with self-peptide/MHC. This also resulted in the enhancement of tTreg generation at the expense of negative selection [37].
In the aged thymus, as we mentioned earlier, mTECs are flawed and self-antigen cannot be normally presented in the MHC-II groove, which results in a diminished interaction with TCRs on developing thymocytes. This is similar to the second scenario described above, in which a defect exists in the TEC compartment causing reduced TCR signaling strength. We observed a relatively enhanced tTreg generation in the atrophied thymus, exhibiting no change in overall tTreg numbers, but an increased ratio of tTreg to tTcon cells in the aged, atrophied thymus compared to young controls [92]. This is probably a demonstration of the atrophied thymus attempting to compensate for defective negative selection [25] in order to maintain central T cell tolerance in the elderly.
If self-reactive TCR signaling strength is too low these thymocytes may neither be depleted nor form tTreg cells, but rather may directly differentiate into self-reactive Tcon cells. As an artifact of impaired promiscuous self-antigen expression in mTECs through an autoimmune regulator (Aire) knock-out model, the Aire-dependent TCAF3 epitope of prostate antigen cannot be promiscuously expressed on mTECs [101]. This resulted in prostate-specific thymocytes, which should be negatively selected, but in contrast were redirected into prostate-reactive Tcon cells. The authors observed loss of prostate-specific tTreg cells for this same epitope, and heightened prostate-reactive Tcon cells that infiltrated the prostate of these mice causing auto-inflammatory lesions [102, 103]. Defects in self-peptide expression on mTECs due to protein knock-out [104], are beginning to suggest that some of the same impairments exhibited by the atrophied thymus, may impact antigen-specific (monoclonal) tTreg generation, meanwhile increasing this same self-antigen specific Tcon generation, despite an unchanged or increased total (polyclonal) tTreg population [105]. It will be interesting to see what further subtle implications the aging thymus has on central tolerance establishment via potentially altering certain self-tissue specific tTreg populations and altering the overall aged Treg TCR repertoire, in spite of a relatively increased aged polyclonal Treg population [92].
Inflammaging or the age-related, persistent increase in basal pro-inflammatory phenotype, has long been thought to be primarily a result of senescent somatic cells exhibiting senescence-associated secretory phenotype (SASP) [30, 31, 34, 106]. However, it is has come to be appreciated that chronic immune activation in the elderly contributes to a pro-inflammatory secretory milieu. This activation in the elderly includes chronic innate immune activation, which may result from immunosenescence related to accumulation of memory T cells. Chronic innate immune activation is also attributed to long-term virus, such as cytomegalovirus (CMV) [29, 107, 108], infection; or a degeneration-associated autotoxic reaction [109]. However, age-related autoimmune predisposition (an adaptive immune activation), induced by adaptive immune reaction to self-tissues by self-reactive T cells, has recently been recognized as a potential factor and/or synergistic cause of chronic inflammation in the elderly [25, 34]. Therefore, the role of the adaptive immune system in mediating inflammaging, as a result of self-reactive T cell immune responses to self-tissue that increases with age, is directly related to the atrophied thymus [25, 34].
Since it has recently been confirmed that the involuted thymus releases self-reactive Tcon cells as a result of perturbed negative selection, the direct implications of age-related thymic atrophy on the risks of inflammaging and the associated subclinical increase in the pro-inflammatory milieu has become more clear [25].
Subsequent alterations in tTreg development may also play an unappreciated role in the increased self-reactivity associated with aging, as changes in the tTreg repertoire may in fact impair sufficient suppression of appropriate self-reactivity in the periphery, however, this still remains largely uninvestigated.
Rejuvenation of aged thymic function is one of the strategies to reduce inflammaging because it can reduce self-reactive Tcon cell release and potentially readjust tTreg cell function so that the adaptive immune aspects of inflammaging may be ameliorated. Several strategies to rejuvenate the atrophied thymus have been reported, including: (1) TEC stem cell-based strategies, including utilization of human embryonic/pluripotent stem cells [110, 111, 112], FoxN1eGFP/+ knock-in epithelial cells [113], young TEC-based [114] or inducible TEC-based [115] strategies; (2) cytokine-to-TEC based therapy, such as keratinocyte growth factor (KGF) [116, 117] and IL-22 [118, 119, 120]; (3) genetically-based methods (enhancement of exogenous FoxN1 expression with FoxN1 cDNA plasmid and FoxN1 transgene) [79, 80, 81], and (4) epigenetically-based methods (via exosomes extracted from young healthy serum) [121].
As to the genetic rejuvenation strategy via exogenous FoxN1, intrathymic injection of plasmid vectors carrying FoxN1-cDNA into middle-aged and aged mice was able to partially rescue thymic atrophy and function. The investigators observed increased thymic size and thymocyte number in the treated group compared to mice receiving empty vector [79]. Another group utilized an inducible FoxN1 overexpression reporter gene system, and it was demonstrated that in vivo upregulation of FoxN1 expression in middle-aged and aged mice resulted in increased thymic size and thymocyte numbers as well as increased numbers of early thymic progenitor cells [81]. Additionally, the ratio of mTECs to cTECs, which is normally declined, was restored to normal levels [81].
As to cell-based therapy, this has also been investigated as a potential source of thymic rejuvenation via the use of exogenous TECs from newborn thymi. The investigators, after observing that circulating factors alone (via a heterochronic parabiosis model, in which young and aged mice are surgically joined resulting in mutual influence of blood-borne factors [122, 123, 124, 125, 126, 127, 128, 129, 130]) did not rejuvenate the aged thymus, utilized a model of direct transplantation of TECs from newborn mice intrathymically into middle-aged recipients [114]. This group observed renewed growth of the thymus as well as enhanced T cell generation [114].
Other groups are investigating the use of reprogrammed mouse embryonic fibroblasts (MEF), as sources of exogenous FoxN1, as a means of generating de novo ectopic thymus. One such group generated induced TECs (iTECs) from MEF cells by initiating FoxN1 expression that converted MEF cells into epithelial-like cells in vitro [115]. Then, these iTECs, after some testing, were re-aggregated and grafted under the kidney capsule of syngenic adult mice to evaluate the ability of these iTECs to develop into a functional thymus-like organ. Interestingly, the grafts were seeded by host T cell progenitors and reflected thymocyte distributions associated with the normal thymus at endpoint (4 weeks after engraftment). Additionally, typical thymus microstructure was observed in these grafts [115].
The overarching conclusions taken from these cytokine, cellular, genetic, or epigenetically-based rejuvenation strategies are that FoxN1 expression is a key target for rejuvenating TECs, resulting in a more functional thymus able to produce normal T cells. However, we need to recognize that any rejuvenation therapy has its pitfalls. For example, intrathymic injection of newborn TECs can rejuvenate middle-aged thymus [114], but the source of newborn TECs is limited and may not be ideal as a translational therapy. Additionally, generation of an ectopic de novo thymus under the kidney capsule [115] can generate naïve T cells, but this does not remedy the increased self-reactive T cells released by the original atrophied thymus remaining in the host. Also, the use of cytokines may help revitalize the thymus, but as a systemic therapy could present various detrimental side-effects. Therefore, further studies to develop practical and effective therapies are necessary.
In conclusion, age-related thymic atrophy is a dynamic process beginning early in life that shapes T cell development and the establishment of central T cell tolerance. There is substantial clinical significance in further exploring the underlying mechanisms of its effects on the various subsets of T cells developed in the atrophied thymus, namely Treg and Tcon cells. Also, continued investigation into potential avenues of thymic rejuvenation are striving to reverse the adverse effects of age-related thymic atrophy on the aged T cell immune system, since increased self-reactive T cells are observed with age, contributing to inflammaging. Moreover, there are numerous areas still to explore in this field with far-reaching applications.
We would like to thank Dr. Rance Berg (Department of Microbiology, Immunology and Genetics, UNTHSC) for critical reading of this manuscript.
The authors have no conflict of interest.
Supported by NIH/NIAID grant R01AI121147 to D-M. S. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
There have been growing concerns regarding the increasing number of unprecedented bandwidth-intensive mobile applications and services being experienced by the Internet. A notable cause of the increase in the traffic and the subsequent pressure on the network is the Internet of things (IoT) technologies. For instance, massive IoT (mIoT) schemes have caused remarkable revolutions in the amount of mobile devices and applications in the networks. This is in an effort to enhance the user experience in delivering enhanced mobile broadband (eMBB) services and providing ultra-reliable low-latency communication (uRLLC) for critical communication and control services. In theory, IoT comprises universal existence of a collection of things like mobile PCs, tablets, smartphones, actuators, sensors, wireless routers, as well as radio-frequency identification (RFID) tags. It is remarkable that these devices are capable of cooperating not only with each other but also with their neighbors. By this approach, they are able to achieve common network goals by means of unique addressing scheme [1, 2]. Furthermore, it has been predicted that massive number of mobile devices on which various bandwidth-intensive applications and services will be operating and will be Internet connected [3]. In actual fact, there is a tremendous demand for effective systems that are capable of delivering various services in a cost-effective manner while meeting the essential network demands. Consequently, in an effort to accomplish the next-generation mobile network technical demands, there have been intensive researches on viable solutions that can satisfy the network requirements.
Additionally, to support the anticipated massive devices, there has been general consensus that the fifth-generation (5G) wireless communication system is the viable and promising solution. Meanwhile, massive multiple-input multiple-output (M-MIMO) antenna and millimeter-wave (mm-wave) technologies are anticipated to be integrated into the 5G networks, so as to enhance the wireless system bandwidth. This is due to the fact that radio-frequency (RF)-based wireless system transmission speeds are highly constrained by the regulated RF spectrum. This limitation can be attributed to numerous advanced wireless systems and standards such as UWB (IEEE 802.15), iBurst (IEEE 802.20), WiMAX (IEEE 802.16), Wi-Fi (IEEE 802.11), as well as the cellular-based 3G and 4G. On the other hand, there is a vast amount of unexploited and underutilized frequency at high bands [2, 4] as expatiated in Section 2. Nevertheless, the radio propagation at higher frequency bands is comparatively demanding. Consequently, advanced scheme like beamforming (BF) technique is essential for radio operation at the bands. The technique will help in compensating mm-wave band inherent path loss in the radio access network (RAN) [5, 6, 7].
In addition, owing to several innovative technologies that have been implemented in the optical communications, significant improvements have been noted in the network performance [8]. Among the remarkable improvements are the increase in the network reach, optical system capacity, and the number of users that can be effectively supported. This is as a result of cutting-edge optical fiber-based technologies. The optical schemes have been increasingly advancing deeper into different access networks, in order to provide various services such as mobile backhaul/fronthaul and multitenant fiber to the X (FTTX) with some variants of fiber-based broadband network architectures as discussed in Section 3. For instance, the optical broadband network architectures, such as fiber to the curb or cabinet (FTTC), fiber to the node (FTTN), fiber to the building (FTTB), fiber to the premise (FTTP), and fiber to the home (FTTH), proffer commercial solutions to the communication network performance bottleneck, by progressively delivering services in close proximity to the numerous subscribers [2].
It is noteworthy that various 5G use cases like uRLLC and eMBB can be effectively achieved by radio elements and BSs that are not far-off the end users or wireless devices. This is due to the fact that close proximity helps in facilitating better signal quality, with lower latency and higher data rates in the system [9]. This can be effectively realized by means of passive optical network (PON) technologies such as gigabit PON (GPON), 10Gbps PON (XG-PON), as well as Ethernet PON (EPON). It is noteworthy that one of the key issues is the process of supporting different service demands with the intention of realizing ubiquitous and elastic connections. As a result, optical and wireless networks convergence is very indispensable. This is not only a cost-effective approach but also enables high-network penetration, in order to achieve the envisaged ubiquitous feature of the next-generation network (NGN) [2]. Based on this, there is a growing consensus of opinion that high-capacity optical fronthaul scheme is one of potential solutions for addressing the network demands. For instance, if the CPRI standard is to be directly employed for the transportation of a considerable number of long-term evolution-advanced (LTE-A) and/or 5G radio signals, an enormous aggregate bandwidth will be required on the backhaul/fronthaul networks [10].
Furthermore, it has been observed that the reference system architectures for the 5G standardizations are based on the notion of heterogeneous networks where mm-wave small cells are overlaid on the larger macrocells [9]. This will enable the RAN to handle the growing traffic demands. In addition, to contain the massive deployment of small-cell BSs, cloud RAN (C-RAN) has been adopted as a promising architecture to ensure effective scalability regarding deployment cost as well as energy consumption [11, 12, 13, 14]. The C-RAN offers an innovative architecture that is really different from the traditional distributed RAN (DRAN). In the C-RAN architecture, the baseband unit (BBU) is shifted away from the cell sites where it is normally located in the DRAN. Consequently, BBU collections that are usually referred to as BBU pools are centralized at the central office (CO). With this configuration, the remote radio heads (RRHs) are left at the cell sites.
As a result, C-RAN implementation offers significant benefits such as improved system spectral efficiency and better flexibility for further RRH deployments than the DRAN. Likewise, with the centralized BBUs, C-RAN supports greener infrastructure, enhanced interference mitigation/coordination, better resource pooling, improved BS virtualization, as well as simplified management and operation. Besides, multiple technologies can be supported with smooth and scalable evolution. Furthermore, in the C-RAN architecture, the BBU pools are connected via the fronthaul network to the RRHs. It is remarkable that the de facto air interface standard that is usually employed for connecting the BBU pools to the RRHs is the common public radio interface (CPRI) protocol. This is an interface that helps in the digital baseband sample distribution on the C-RAN fronthaul. However, stringent requirements concerning jitter, latency, and the bandwidth are imposed on the fronthaul network for seamless connectivity. This makes the CPRI-based fronthaul links to be prone to flexibility and bandwidth limitations, which may prevent them from being visible solutions for the next-generation networks [11, 12]. Meanwhile, it has been noted that the 5G systems will impose higher requirements on the transport network regarding latency, bandwidth, reliability, connectivity, and software-defined networking (SDN) capability openness [15]. A number of approaches such as cooperative radio resource allocation and data compression technologies have been adopted to address the challenges; however, the fronthaul capacity demand is still considerable high [11, 12].
The viable means of addressing the capacity requirement is through the implementation of passive optical network (PON) solutions such as wavelength division multiplexed PON (WDM-PON) and ultradense WDM-PON (UDWDM-PON). The PON architectures are compatible with the 5G networks and are capable of supporting both wired and wireless services. Based on the PON architecture, individual RRH has the chance to communicate with the BBU pools using a dedicated wavelength. Besides, in the upstream direction, the aggregate wavelengths can be further multiplexed into a single shared fiber infrastructure at the remote node (RN). They can eventually be de-multiplexed at the CO [11, 12]. As aforementioned and as depicted in Figure 1, optical and wireless network convergence is a promising scheme for exploiting the optical system inherent bandwidth and the mobility advantage of wireless connectivity, which can help in realizing the 5G network envisaged capacity and energy efficiency. In addition, optical wireless communication (OWC) is another feasible and attractive optical broadband access solution that is capable of supporting high-capacity, high-density, and low-latency networks. Therefore, it can effectively address the network requirements for different applications and services at a comparatively lower cost. So, it has been seen as an alternative and/or complementary solution for the existing wireless RF solutions [4, 16, 17, 18]. This chapter presents optical wired and wireless networking solutions for high-capacity, high-density, and low-latency networks. Furthermore, because of its potential for intense revolution and salient advantages, we focused on the second standard of the next-generation PON (NG-PON2) system. In addition, with the exploitation of notable features of photonic integration, we design and develop the physical (PHY) layer architecture of the NG-PON2 system. The proposed NG-PON2 architectures offer an enabling platform for active device integration into the chip to ensure a significantly low propagation loss. We also present simulation results for model validation. This helps in demonstrating the potential of photonic integration for optical architectures.
A scenario for optical and wireless access networks convergence (adapted from Alimi et al. [2]).
Furthermore, with concise information on the enabling optical wired and wireless technologies and the need for alleviating the stringent requirements in the network being introduced, we present comprehensive overview of the fronthaul transport solutions in Section 2. The salient needs for PON in the envisaged ultradense network deployments are considered in Section 3. In Section 4, a practical method for network investment optimization by the operators based on PON system coexistence is discussed. In Section 5, we present a number of viable schemes for alleviating the imposed stringent requirements in the system. The NG-PON2 PHY architecture design and development based on photonic integration are demonstrated in Section 6. In Section 7, the obtained simulation results with further discussion are presented. Section 8 concludes the chapter.
The fronthaul protocol can be transported by different viable means. Apart from the usually employed small form pluggable and serial constant bit rate CPRI specification that is based on digital radio over fiber (D-RoF) implementation, there are other innovative and standard fronthaul interfaces such as Open Base Station Architecture Initiative (OBSAI), next-generation fronthaul interface (NGFI), open radio interface (ORI), and enhanced CPRI (eCPRI) that can be used [19, 20, 21]. In [11], we give an overview of various prospective and standard fronthaul interfaces. In this chapter, for reference purposes, we focus on the extensively employed CPRI protocol. However, it should be noted that the transport methods to be discussed in this section are applicable to other fronthaul interfaces. The transport methods discussed in this section are grouped into wired and wireless fronthaul solutions.
Wireless transport schemes are very viable fronthaul solutions that have resulted into tremendous evolutions in the communication systems. This is due partly to the inherent advantages such as operational simplicity, ease of deployment, scalability, roaming support, effective collaboration, and cost-effectiveness. Furthermore, it is an appropriate scheme for complementing fiber-based fronthaul solutions. However, their susceptibility to transmission channel conditions makes their implementation effective for short range. Besides, the current solution can only support few CPRI interface options. This brings about bandwidth limitation for this solution. Moreover, to alleviate this, promising wireless technologies like mm-wave and wireless fidelity (Wi-Fi) can be employed in the fronthaul [11, 22, 23].
As aforementioned in Section 1, there is a huge amount of unexploited and underutilized frequency at high bands. The fronthaul in which mm-wave is being employed is feasible due to the availability of various compact and high-dimensional antenna arrays for commercial use in the band. Besides, as a result of 60 GHz standards like 802.11ad, 802.15.3c, and WirelessHD that have been issued, considerable attention has been given to mm-wave communications. Nonetheless, the inherent high propagation losses of the mm-wave communications give rise to comparatively shorter transmission range [11, 22, 24, 25].
In addition, as stated in Section 1, RF-based system transmission speeds are substantially limited due to a number of advanced wireless systems being deployed in the network. Consequently, to meet the demands of the current and future wireless networks, many chipset suppliers and wireless operators have been paying significant attention to the unlicensed spectrum. The major focus is in the 2.4 GHz and 5 GHz frequency bands that are under implementation by the Wi-Fi. This is being used for the 5G LTE-Unlicensed communication systems [11, 26]. With this implementation, the unlicensed spectrum resources could be effectively allotted to the LTE system, in order to have more capacity for supporting the Wi-Fi users [27].
Furthermore, it is remarkable that the Wi-Fi unlicensed spectrum is a promising solution for the fronthaul network. A notable advantage of exploiting the unlicensed spectrum for the fronthaul network is due to the fact that separate frequency procurement for the fronthaul might not be necessary for the network providers. Besides, the same spectrum could be effectively reused in the access and fronthaul links. This can be accomplished by means of time-division multiplexing (TDM) and frequency-division multiplexing (FDM) schemes. Another way of achieving this is through opportunistic fronthauling, in which unlicensed spectrum can be sensed. For instance, the RRH can sense unlicensed spectrum that is available (unused unlicensed spectrum) and then employ it for fronthauling. Besides, in a situation where the active user signal is considerably lower than the predefined threshold, the RRH can also make use of the spectrum. In addition, the fronthaul link constraints could be effectively eased via the Wi-Fi. This is majorly due to the fact that it can be employed for offloading [26]. Although Wi-Fi networks are capable of offering relatively high-data rates, they exhibit limited mobility and coverage. The drawbacks can be reduced by employing Wi-Fi mesh networks [11, 28].
The wired network offers a number of advantages such as low interference, enhanced coverage, low latency, and high reliability and security. Due to these advantages, they have been able to stand the test of time and continue to be relevant despite the advent of wireless systems. Some of the fronthaul solutions that are based on wired links are dark fiber, passive WDM, WDM-PON, WDM/optical transport network (OTN), and Ethernet. In this subsection, we present potential wired-based fronthaul solutions that can support the network requirements.
Dark fiber offers an attractive fronthaul solution. With this implementation, transmission equipment is not required between the BBU pools and the radio remote units (RRUs), consequently resulting in easiest deployment solution with least possible latency. Nevertheless, since dark fiber solution is based on point-to-point (P2P) direct connections, it lacks the required network protection, making it not a good candidate to support 5G use cases such as uRLLC services in which high reliability is required. Besides, its implementation demands huge amount of fiber resources. In the 5G systems in which ultradense networks are envisaged, the required amount of fiber is even more challenging. So, the fiber resources may be inadequate to support mIoT devices and other envisaged multimedia devices. Therefore, availability of fiber and the associated deployment cost may be the limiting factors for the dark fiber solution employment. This inefficiency can be addressed with the aids of different WDM and Ethernet solutions [11, 22, 23, 29].
In Ethernet-based fronthaul solution, packet technologies that encourage statistical multiplexing feature are employed. This helps in achieving traffic convergence and in enhancing the line bandwidth usage. Besides, considerable fiber resources can be saved due to its support for point-to-multipoint (P2M) transmission. Nevertheless, a number of issues such as identification as well as fast forwarding of low latency services deserve considerable research attention in this approach. Also, further efforts are required for backward compatibility with CPRI transmission and high-precision synchronization. Based on these, the Institute of Electrical and Electronics Engineers (IEEE) has established a task group known as time-sensitive networking (TSN) which is a part of the IEEE 802.1 working group, to study the latency-sensitive Ethernet forwarding technology. Reasoning along the same lines, the IEEE 1914 next-generation fronthaul interface (NGFI) working group has been established not only for the development of the NGFI transport architectures and the associated requirements but also for the definition of radio signal encapsulation specification into Ethernet packets [11, 29].
The requirement for low-latency transmission in the range of 10-Gb/s makes WDM-based network the usually adopted option for the fronthaul links. At large, WDM-based fronthaul methods can be grouped into two solutions which are active and passive. In active solution, other protocols are used for the CPRI traffic encapsulation, before being multiplexed on the fronthaul network. Also, the solution offers robust network topologies with considerable flexibility. Moreover, with optical amplifiers, the network reach can be significantly extended. Another important distinguishing feature of an active solution is that the cell site demarcation point requires power supply for operation. On the other hand, a passive solution mainly depends on CPRI link passive multiplexing (MUX)/demultiplexing (DEMUX). Besides, this solution’s demarcation point can function effectively without any battery backup and power supply. Nonetheless, active equipment can be employed for the system monitoring at the CO demarcation point [11, 22, 23, 29].
In general, the main dissimilarities between the passive and active solutions can be recognized in the nature of their routing table and switching granularity. For instance, unlike the active solution, routing table can be statically and dynamically configured as well as associated with the interface; that of passive solution is fixed and lacks configuration capability. Likewise, the passive solution switching granularity is based on spectrum or time slot as being implemented in the TWDM-PON, while an active solution presents finer switching granularity which can be based on packet or frame switching. Consequently, the active solution offers better configuration flexibility; however, it is power-consuming and relatively complicated [12]. In the following, we expatiate on different WDM-based fronthaul solutions.
In this approach, a passive optical MUX/DEMUX is employed for multiplexing a number of wavelengths on a shared optical fiber infrastructure for onward transmission. Therefore, the implementation can save considerable fiber resources via the support for multiple channels per fiber. Also, the employed optical components introduce negligible latency, so, the stipulated jitter and latency requirements for CPRI transport can be effectively met. Moreover, due to the passive nature, power supply is not required for the associated equipment operation. This brings about high power efficiency in the network. Besides, this approach is not only a cost-effective solution but also offers simple maintenance. Nevertheless, the cost implication of the wireless equipment deserves significant attention. This is due to the required colored optical interfaces at the BBU and RRU. Also, factors that need consideration are the limited transmission range and inadequate optical power budget of a relatively complex topology such as chain or ring network. This can be attributed to the accumulated insertion loss owing to multiple passive WDM components. Besides, the approach offers no robust operations, administration, and maintenance (OAM) potentials, and usually, line protection is not provided. Passive WDM implementation can also be limited by the need for well-defined network demarcation points [11, 22, 23, 29].
When WDM/OTN scheme is employed, multiplexed and transparent signal transmissions can be achieved over the fronthaul link to multiple sites. Thus, the fiber capacity is increased by enabling multiple channels on a shared fiber infrastructure [11, 23, 29]. This can be realized by encapsulating the inphase and quadrature component (I/Q) data by means of OTN frame; this is subsequently multiplexed to the WDM wavelength. Consequently, any wavelength can be employed for routing the resulting frame to the destination port [12]. Apart from being able to save fiber resources, other notable advantages of this solution are provision for OAM capabilities, network protection, service reliability, as well as service level agreement (SLA) management and network demarcation. Furthermore, this solution presents attractive features regarding low latency and high bandwidth. It is also a good approach for attending to the required colored optical interface at BBU and RRU by the passive WDM. Since colored optical interface is not demanded, wireless equipment deployment challenges are alleviated drastically by the WDM/OTN solution. Another significant advantage of the approach is the offered easy scalability. This is due to the fact that there is no need for replacing the wireless equipment optical interfaces while upgrading from non-C-RAN to the C-RAN architecture. Notwithstanding, the major drawback of the solution is the relatively higher cost of the equipment. Although power supply is not required for WDM transport in the approach, it is essential for wavelength translation and active management [11, 23, 29].
In addition, the WDM-based systems such as coarse WDM (CWDM) and dense WDM (DWDM) exhibit promising features for the fronthaul transport applications. For instance, apart from the offered high throughput and low latency, CWDM is very cost-effective regarding fiber resource usage and equipment expenses. Also, DWDM is widely known for the higher channel counts that can be efficiently supported. This can help further in increasing the number of small cells and the associated RRHs that can be deployed effectively. Furthermore, it helps in improving the fiber resource efficiency.
It is remarkable that WDM-based schemes can be used in conjunction with PON technology in order to further enhance the system performance. This scheme is highly appropriate for the anticipated massive RRHs and ultradense small cell deployment as explicated in Section 3. It should be noted that, for RAN to be well deployed, especially in the urban environments, the radio elements should be, as much as possible, in close proximity to the subscribers. So, the remote elements could be mounted on different places such as buildings and street lamp poles. Therefore, the arbitrary nature of the remote element placement can be efficiently supported with the implementation of WDM schemes.
Furthermore, as discussed, there are a number of ways by which the C-RAN fronthaul can be realized; nonetheless, the imposed stringent requirements make fiber-based method the widely adopted in the C-RAN. However, optical fiber implementation for ultradense networks, besides being time-consuming, may render the C-RAN schemes uneconomical and less flexible. It is remarkable that wireless fronthaul offers attractive and flexible solutions for information exchange between the centralized unit (CU) and distributed unit (DU). This is owing majorly to the offered advantages such as higher flexibility, lower cost, and undemanding deployment when than the fixed wired fronthaul counterparts. Therefore, innovative optical wireless solutions with good scalability and operational simplicity, coupled with easy of deployment, are really desirable [11].
In addition, apart from physical fiber-based methods being discussed, OWC system, also known as a free-space optical (FSO) communication system, is another attractive and feasible optical wireless fronthaul. The FSO provides a range of benefits such as low latency and high capacity that make it viable for addressing network requirements in a cost-effective manner [4, 16, 17, 18]. The potentials for the FSO implementation in the fronthaul network and different innovative concepts that are appropriate for improving the FSO system performance, while easing the stringent system requirements, are discussed in Section 5. Different potential 5G fronthaul solutions are depicted in Figure 2.
Potential 5G fronthaul solutions: (a) microwave, (b) point-to-point, (c) WDM-PON, (d) OTN, and (e) Ethernet.
The existing fiber-based methods as well as active P2P Ethernet might unable to meet the envisaged bandwidth-intensive traffic requirements by the 5G and beyond networks. For instance, ultradense network deployments with the associated huge network resources are envisaged in the 5G network. As illustrated in Figure 3, PON system can make better use of the current fiber infrastructures than the existing P2P system such as CPRI. This helps considerably in reducing the required number of interfaces in the network. As a result, it aids not only in reducing the site space, but also substantial amount of system power can be saved [30]. As explained in Section 2, PON technology has been deemed as an attractive access network solution owing to the presented advantages such as low-operation cost, high bandwidth, and low-maintenance cost [11, 31, 32].
Potential fronthaul solutions (a) CPRI-based and (b) PON-based schemes.
It should be noted that the PON architectures have been experiencing continuous and gradual evolution, so as to considerably enhance the service availability and the related data rates. The offered technological options and the intrinsic benefits have been attracting the operators in deploying a number of PON systems. It has been observed that the most widely deployed one is the gigabit PON (GPON) system. Moreover, the first standard 10 Gbps PON technology, the next-generation PON (NG-PON) system, known as 10-gigabit PON (XG-PON1) has also been gaining considerable attention. With continuous demand for further capacity, there are innovative PON generations such as 10-gigabit symmetric PON (XGS-PON) and the second standard of NG-PON (NG-PON2) that are now becoming the target of various providers [33]. In PON system, WDM and TDM techniques are normally employed to further enhance the capacity and fiber efficiency. Based on these techniques, the PON system can be broadly grouped into WDM-PON and TDM-PON.
Moreover, it is noteworthy that the TDM-PON is capable of giving considerable greater bandwidth for various data applications; however, availability of the resources that can be delivered to the end users is limited. In contrast, the issue can be effectively addressed with the WDM-PON scheme. This can be done by assigning a peculiar wavelength per subscriber. As a result of this, a distinct, high-data rate, as well as secure P2P channel, can be delivered over a high-capacity and longer optical reach, between each of the subscriber and the CU. Consequently, a WDM-PON scheme is suitable for partitioning the ONUs into a number of distinctive virtual P2P links over the shared physical optical infrastructure by multiple operators. This attribute facilitates fiber efficiency compared to P2P Ethernet. Similarly, in relation to TDM-based systems, it gives lower latency. These features make WDM-PON a disruptive solution that is very appropriate for FTTX as well as mobile backhaul and fronthaul applications. This will eventually aid the operators not only in developing converged networks but also in enhancing the current access networks. As a consequence of this, some redundant COs can be eliminated in an attempt to enhance the network performance in cost-effective ways [11, 31, 32]. Moreover, it is remarkable that advantages of both WDM-PON and TDM-PON can be effectively exploited though joint application of the schemes. This results in the TWDM-PON architecture. The potential PON architectures and their applications in telecommunication systems are presented in the subsequent subsections.
The TDM-PON can be grouped into broadband PON (BPON), asynchronous transfer mode (ATM) PON (APON), Ethernet PON (EPON), and GPON. In the existing telecommunication networks, GPON and EPON are the widely adopted schemes. Therefore, in the following, we focus on both schemes.
The data traffic being encapsulated in the Ethernet frames as defined by the IEEE 802.3 standard is transported by the EPON solution. Different network elements such as optical network unit (ONU), optical line terminal (OLT), and optical distribution network (ODN) are the building blocks of a standard EPON system and other PON architectures. In the EPON solution, PON topology is exploited for getting the Ethernet access. Based on the joint schemes, EPON solution is capable of offering high bandwidth and good network scalability. Besides, due to the fact that it is highly compatible with Ethernet, network management can be supported in cost-effective manners. Likewise, as illustrated in Figure 4, FTTB, FTTC, and FTTH network architectures can be supported depending on the ONU deployments and demarcation point between the copper cable and optical fiber termination [32].
FTTX architectures.
Typically, ONUs can be deployed beside the telegraph pole junction boxes, or else, at roadside when FTTC system is employed. Also, different types of twisted pair cables can be utilized for connecting the ONUs and the respective customer. It has been observed that FTTC technology offers a cost-effective and practical solution for delivering narrowband services. However, FTTC solution is not an ideal scheme, when broadband and narrowband services are to be incorporated [32].
Moreover, the ONU deployment can be made closer to the users in the FTTB solution. So, it can be located inside the buildings through further optical fiber penetration into customer homes. This can be achieved by means of cables, local area networks (LANs), or asymmetric digital subscriber line (ADSL) broadband communication technologies. Relatively, FTTB employs more optical fiber in the connection than FTTC solution. This makes it more appropriate for broadband/narrowband service integration [32].
Furthermore, ONU deployment can take place right inside the subscribers’ homes or offices in the FTTH solution. This facilitates a fully transparent network in which the ONUs are independent of the wavelength, bandwidth, as well as transmission mode and technology. These benefits enable FTTH scheme to be very ideal for access network implementations [32].
In addition, the discussed IEEE 802.3 Ethernet is a 1-Gbit/sec EPON standard. It is remarkable that there is a 10G EPON standard that is capable of supporting 10G/10G symmetric DS and US transmission. In another effort to attend to the system requirement, the IEEE 802.3ca task force has been working relentlessly on the development of 25G/50G/100G EPON standards. A notable feature of the entire EPON standards is that they are designed to be both backward and forward compatible. This is to ensure that legacy service, as well as innovative higher-speed service, can be effectively supported using the same ODN [34].
Furthermore, to address the growing traffic demands, XG-PON1 has been presented. The XG-PON1 is capable of delivering higher data transmission than the legacy GPON system. Moreover, in an effort to keep the existing investments, it is backward compatible with the GPON. Also, the GPON ODN, as well as framing and management, is inherited by the XG-PON1. This encourages the reuse of the existing network elements [35].
The WDM-PON enables multiple-wavelength transmission through the multiple operators’ shared optical fiber infrastructure rather than one wavelength in the PON system. This helps in ensuring that WDM-PON meets the huge subscribers’ bandwidth demands. Furthermore, it presents various merits such as high wavelength efficiency and relatively simpler network management. This encourages support for various services than the TDM-PON. Besides, all anticipated services can be delivered over a shared communication network infrastructure.
In addition, it can effectively support different access networks such as FTTB, FTTH, and FTTC. Also, both small-scale and large-scale subscribers can be concurrently supported as well. Based on the inherent huge bandwidth, different types of BS bandwidth requirements can be appropriately met. Its implementation can also help in the network reach extension and in the current EPON network transition. This will help in keeping the current network investment while enhancing the network scalability [32]. In addition, UDWDM-PON offers a wavelength grid that is relatively denser for the WDM scheme. This helps not only in supporting a huge amount of aggregated wavelengths per fiber but also in accommodating higher number of RRHs per feeder fiber. Nonetheless, with the envisaged NGN stringent transport network requirements, UDWDM will be unable to maintain the high per-wavelength bit rates resourcefully. For instance, subcarriers’ aggregation for high-speed services usually bring about considerable latency. Therefore, UDWDM implementation is preferred in situations where there are ultradense RRH deployments and inadequate feeder fiber accessibility. Besides, it also finds application in antenna sites which demand a low-peak but high sustainable rate [6]. As discussed in subsection 3.3, WDM-PON can be employed along with TDM-PON to achieve a hybrid WDM-TDM-PON solution known as time and wavelength division multiplexed (TWDM-PON) scheme. Apart from being efficient for both small-scale and large-scale subscribers, the hybrid scheme offers a promising solution for applications in telecommunication environment.
It is notable that TDM-PON implementation in the 4G networks offers a very cost-efficient solution for a wavelength channel sharing between the cell sites, by means of diverse time slot allocations for different cell sites. However, with the evolution of mobile networks, the major ITU-defined application scenarios such as eMBB, uRLLC, and massive machine-type communications (mMTC) could make TDM-PON solution unsuitable for the fronthaul transport network in the 5G and beyond networks. As aforementioned, a hybrid TWDM-PON scheme is a feasible solution with abundant bandwidth capable of supporting the fronthaul demands.
With the scheme, time slots, as well as wavelength resources, can be allocated dynamically between the RRHs. The offered centralized and virtualized PON BS can considerably help in the system energy savings. Likewise, the virtualized scheme presents a number of advantages such as low handover delay, excessive handover reduction, and better network reliability. This results in cost saving, cell-edge user throughput improvement, and enhanced mobility management [32, 36, 37]. The associated multiple wavelengths, as well as potential for wavelength tenability, give TWDM-PON unprecedented means of improving the network functionalities compared with the basic TDM-PONs [36, 37]. Likewise, orthogonal frequency-division multiplexed PON (OFDM-PON) is another promising PON solution. With OFDM, there is a comparable high potential for flexible bandwidth resource sharing as experienced in the TWDM. On the other hand, regarding the reach, the OFDM variants in which direct detection is employed usually present poor performance. Similarly, variants in which coherent detection is implemented are comparatively too expensive [6]. Furthermore, it is noteworthy that among its counterparts such as standard WDM-PON, optical code division multiplexed PON (OCDM-PON), and OFDM-PON that are capable of offering 40 Gb/s or higher (80 Gb/s) aggregated bandwidth, the full service access network (FSAN) community has chosen TWDM-PON as a major broadband solution. Apart from the inherent huge capacity with 1:64 splitting ratio, it has a long reach of 40 km. The salient features enable TWDM-PON system to meet the future broadband service requirements [37, 38, 39].
A typical TWDM-PON system architecture is depicted in Figure 5. In a conventional TWDM-PON solution, multiple wavelengths can effectively coexist in a shared ODN by means of WDM. Moreover, each of the wavelengths is capable of serving multiple ONUs through TDM access. With reference to the ITU-T recommendation, 4–8 wavelengths in L band (1590–1610 nm) and C band (1520–1540 nm) can be employed for the downstream (DS) and upstream (US) transmissions, respectively. Also, each of the DS wavelengths can operate at 10 Gb/s, while the US can function each at 2.5 or 10 Gb/s data rate [32, 37].
Typical TWDM-PON architecture.
In addition, the TWDM-PON ONUs employ colorless tunable transceivers for selective transmission/reception of any US/DS wavelengths (data) via a pair of US/DS wavelengths. With this approach, the ONU inventory issue can be prevented. In essence, the transceiver features help in easing network deployment as well as inventory management. Furthermore, load balancing can be supported effectively in the TWDM-PON system. Besides, with dynamic wavelength and bandwidth allocation (DWBA) implementation, large bandwidth can be flexibly exploited. It is remarkable that TWDM-PON is a stack of four 10-gigabit PONs (XG-PONs) with four pairs of wavelengths. In the stack, each XG-PON is operating on different wavelengths. Also, as stated earlier, the GPON and XG-PON GEM frames are compatible with and can be employed in the TWDM-PON solution. Based on this and the ability for coexistence with existing PON solutions, it is a viable scheme for optical access network swift evolution [11, 32, 37]. Consequently, TWDM-PON has been adopted for the NG-PON2. In NG-PON2, TWDM-PON can be employed with optional P2P WDM overlay extension. It is remarkable that DWDM scheme will enable NG-PON2 to deliver multiple unshared P2P connections, while TDM scheme simultaneously offers multiple P2M connections. This will enable the operators to efficiently support both fronthaul/backhaul and business services with the P2P WDM overlay technology, by using dedicated wavelengths [11, 40, 41].
In addition, based on the inherent colorless tunable transceivers of the TWDM-PON ONUs, three classes of wavelength channel tuning time have been specified for the NG-PON2 by the physical media dependent layer recommendation (ITU-T G.989.2). Table 1 illustrates the specified tuning time classes by the G.989.2 recommendation. It should be noted that different innovative technologies can be exploited by the wavelength tunable devices in order to have the capability for supporting various classes. This will enable a number of potentials for the NG-PON2 system at relatively different costs. Out of the defined three classes, Class 3 is based on the slowest tunable devices. Consequently, it is applicable in scenarios with occasional tuning operations or in applications that can tolerate short service disruption. On the other hand, Class 1 wavelength tunable devices present the shortest tuning time. This feature makes them attractive for offering DWBA feature in the network. Besides, with this class implementation, the ONU transmission wavelengths can be dynamically controlled by the OLT for wavelength hopping between the transmission periods [42].
Class | |||
---|---|---|---|
1 | 2 | 3 | |
Tuning time | <10 μs | 10 μs to 25 ms | 25 ms to 1 s |
Tuning time classes [42].
Although a TWDM-PON offers effective bandwidth resource allocation among multiple clients, meeting the low latency and jitter requirements of certain services may be challenging. Consequently, its implementation for the NGN RAN transport network depends mainly on the RAN use cases and deployment scenario requirements [6]. In Section 5, we present a number of viable means for alleviating the growing stringent requirements in the system. Furthermore, as aforementioned, the NG-PON2 system employs multiple wavelengths that demand for tunable transceivers at the ONUs. However, this requirement might hinder its implementation as the existing optical tunable transceivers are uneconomical. Based on this, a number of operators have been looking for ways around this by envisaging provisional scheme adoption before the full NG-PON2 migration. This will enable them to have a seamless transition with least possible or no disruption in the offered services. One of viable solution is the XGS-PON. It offers an improved commercial solution as a result of the less costly elements being employed.
The XGS-PON presents a novel technology that offers a generic solution for the NG-PON system. It can be viewed as an uncomplicated variant of TWDM-PON in which the wavelength tunability and mobility are eliminated for a more cost-effective reason. In addition, there can be an efficient coexistence between the XGS-PON and TWDM-PON using the same fiber infrastructure, since the employed wavelengths by each technology are different. Consequently, the operators can exploit the lower-cost XGS-PON for quick delivery of 10 Gbps services. This will also enable them to seize 10 Gbps services opportunities for immediate deployments. With XGS-PON, there can be cost-efficient, gradual upgrade, and well-controlled transition to a full TWDM-PON system, with minimum or no disruption to the offered services. It can also facilitate TWDM-PON system by enabling its deployment using the wavelength by wavelength approach. This will really help in pay-as-you-grow scheme for effective system upgrade and migration [33, 43].
Besides its capability for delivering 10 Gbps in both US and DS directions, XGS-PON has high potential for the dual rate transmission support as well [44]. Based on this, the 10/2.5G XG-PON ONUs and 10/10G XGS-PON ONUs can be coupled to the same OLT port via a native dual US rate TDMA scheme. It is remarkable that XGS-PON dual rate presents a comparable cost to XG-PON; nonetheless, it is capable of providing 4 times of the XG-PON US bandwidth. In addition, XGS-PON has been seen as a transitional scheme to NG-PON2 due to its ability for offering the associated NG-PON2 high-data rates in conjunction with the XG-PON1 CAPEX efficiency [33, 43]. Furthermore, it should be noted that the GPON employs 1490 and 1310 nm in the DS and UP, respectively. Likewise, XGS-PON utilizes 1578 and 1270 nm in the DS and UP, respectively. This implies that the XGS-PON service can be effectively overlaid on the same infrastructure as that of GPON. Similarly, the G.989 standard is employed in NG-PON2. The G.989 supports TWDM technologies and it is a multiwavelength access standard [44].
In addition, NG-PON2 is not only a state-of-the-art PON technology with the potential for intense revolution in the operational models of providers but also offers them flexible platform that is capable of enhancing their agility to the market demands as never before. Besides, it has the ability for cost-effective support for both the scale and capacity of the existing gigabit services while at the same time having more than enough room for the multi-gigabit bandwidth requirements of the future networks [38]. Consequently, based on the aforementioned advantages and its proficiency for multiple networks converging with outstanding performance, in this work, we focus on the NG-PON2 system. Its PHY architecture and development are presented in Section 6.
Furthermore, in an effort to make considerable profit, different operators have been developing high-bandwidth demanding applications and services. Good examples of such notable ultra-broadband systems are high-definition television (TV) and mIoT. It has been envisaged that there will be a further increase in the bandwidth demand due to the innovative services such as online gaming, home video editing, interactive e-learning, next-generation 3D TV, and remote medical services. However, it should be noted that NG-PON system deployment entails huge initial investments. For instance, in the greenfield FTTH systems, out of the total network investments, the ODN deployment takes between 70 and 76%. Therefore, network investment optimization can be achieved by the operators with the existing ODN exploitation. Besides, compatibility between the NG-PON evolution and the present GPON system is highly essential [35, 44].
Moreover, efficient support for bandwidth-intensive applications and services depends on coexistence of different PON technologies. The coexistence will help in the network investment optimization when the existing ODNs are shared. For instance, a network in which service delivery is being offered by GPON and needs upgrade in order to support new FTTH access technologies can coexist with the PON technologies such as XGS-PON and NG-PON2. This can be realized with the aids of a coexistence element. Based on the desired scenario, various ONT and OLT generations can effectively coexist over a shared ODN fiber infrastructure. Besides, optical time-domain reflectometer (OTDR) and RF signals can also coexist with the PON systems. This is mainly due to the fact that there is no wavelength overlap between each of the technologies. So, this permits in-band measurement without any service interruption [34, 45]. Different ODN optical path loss classes are presented in Table 2.
Class | |||||||||
---|---|---|---|---|---|---|---|---|---|
A | B | B+ | C | N1 | N2 | E1 | E2 | ||
Loss | Min. (dB) | 5 | 10 | 13 | 15 | 14 | 16 | 18 | 20 |
Max. (dB) | 20 | 25 | 28 | 30 | 29 | 31 | 33 | 35 |
It is remarkable that, apart from the fact that the existing GPON subscribers can be kept together with higher-bandwidth services, the coexistence will also give the operators the profound chance to take advantage of different approaches such as asymmetrical and symmetrical data rates. They also have deployment flexibility by operating on fixed or tunable wavelengths in order to offer appropriate operations and services at suitable costs. It will also assist the operators in the NG-PON evolution path not only by allowing them to upgrade their networks accordingly but also for gradual migration to the evolving PON technologies that are capable of offering the full optical potential. Thus, they have the liberty of adopting the cost and deployment pace that best fit their precise business requirements [43]. Moreover, this will enable the operators in making further revenue by exploiting flexible bandwidth and wavelength plans in order to support any service type as well as any business need. Figure 6 depicts a PON system coexistence for a gradual and pay-as-you-grow expansion [33].
PON system coexistence.
As explained in Section 1, C-RAN is envisioned to be a promising candidate for efficient management of the access network and the associated emergent complexity. This is due in part to its cost-effectiveness and remarkable flexibility for the network element deployments. Normally, the inphase and quadrature (I/Q) component stream transmission in this architecture is via the D-RoF-based CPRI. It is remarkable that CPRI-based fronthaul demands huge bandwidth which could be a limiting factor in the 5G and beyond networks in which mm-wave and massive MIMO are anticipated to be implemented. Consequently, an advanced optical transmission technology such as analog RoF (ARoF) has to be employed for an efficient fronthaul solution realization [11, 13, 14].
The RoF schemes offer efficient and economical methods for modulated RF signal transmission. For instance, it can be used for transmission from the CO, to a number of distributed RRHs, through low-loss optical fiber networks, by employing an optical carrier. In addition, as aforementioned in Section 1, optical and wireless network convergence is highly imperative for scalable and cost-effective broadband wireless networks. The envisaged convergence for the next-generation mobile communication networks can be efficiently achieved with the implementation of RoF. This is due to its simplicity and efficiency in conveying wireless signal via an optical carrier. Furthermore, the inherent low attenuation and huge bandwidth of optical link can effectively support multiple wireless services on a shared optical fronthaul network. Moreover, with RoF implementation, the CUs and DUs can be well-supported. This offers effective centralized network control that subsequently presents advantages such as easy upgrade, simple maintenance, and efficient resource sharing [11, 47, 48].
It should be noted that there are various RoF options that can be employed in the network. Furthermore, each of the viable options presents related distinct merits and demerits. Out of the variants, the highly spectrally efficient scheme is the ARoF. Besides, its implementation results in a most power-efficient and least complex RRH design. Nevertheless, it is susceptible to intermodulation distortion which is as a result of optical and microwave component nonlinearity. This results in relatively shorter operating distance. Moreover, the transmitter components such as oscillators, digital to analog converters (DACs), and mixers consume a considerable amount of power. On the other hand, with D-RoF implementation, the ARoF-associated nonlinearity issue can be effectively mitigated. However, in a scenario where high baud rates and high carrier frequencies are required, the DAC power consumption and expenditure are excessively high. Also, if upconversion is required or implemented at the RRHs, it turns out to be substantially high. Consequently, having a fixed phase relation among various RRHs is really challenging. Besides, digitized sample transmission, rather than the analog signal, brings about a significantly low spectral efficiency. The aforementioned drawbacks can be more challenging when densely distributed RRHs are to be supported [11, 47, 48]. Therefore, to address the challenges, a hybrid scheme that is capable of exploiting the ARoF and D-RoF schemes can be employed. One of notable techniques for a hybrid scheme is based on the implementation of sigma-delta-over-fiber (SDoF). This scheme helps in ensuring digital transmission that can support simple and power-efficient RRHs. Besides, there is no need for high-resolution and high-speed DACs with its implementation [47].
It is noteworthy that the RoF scheme employment is contingent on physical optical fiber availability. On the other hand, for the envisaged ultradense small-cell deployment, fiber deployment is not only time-consuming but also capital intensive. Likewise, there could be inappropriate system deployment due to the associated right-of-way acquisition. For these reasons, as well as limited number of the deployed fiber, the FSO system practicability has been considered [11, 13, 14].
FSO communication presents an alternative technology for optical fiber systems. It is based on RF signal transmission between the CU and the DU apertures via the free space. Therefore, being an optical wireless technology, the fiber media are not required, and, consequently, trenches are unnecessary for its implementation. Moreover, like a well-developed, viable, and widely employed RoF technology, FSO scheme is capable of supporting multiple RF signal transmission. Apart from having inherent optical fiber features like RoF, FSO scheme offers additional merits regarding time-saving and cost-effectiveness, since there is no need for physical fiber deployment. This makes it to be very applicable in scenarios where physical network connectivity through optical fiber media is challenging and/or unrealistic. Besides, it is capable of delivering broadband services in rural area where there is an inadequate fiber infrastructure [11, 13, 14]. It is noteworthy that, when employed as a complementary solution for fronthauling, FSO can be a promising mobile traffic offloading scheme for alleviating the stringent requirements of bandwidth-intensive services transmission via the mobile networks.
In addition, the FSO scheme offers a number of benefits such as high bit rates, ease of deployment, full duplex transmission, license-free operation, improved protocol transparency, and high-transmission security. These salient merits enable the FSO scheme to be considered as a viable broadband access technology. It is capable of addressing various services and applications’ bandwidth requirements at low cost for the NGNs. Based on these, the RF signals over FSO (RoFSO) idea have been presented. This is in an effort to exploit the inherent massive transport capacity of optical systems and the related deployment simplicity of wireless networks [11, 13, 14].
Furthermore, a DWDM RoFSO scheme implementation has the capability of supporting concurrent multiple wireless signal transmission [49]. Nevertheless, the FSO systems have some drawbacks due to their susceptibility to the atmospheric turbulence and local weather conditions. The effects of these can cause beam wandering, as well as scintillation, which in due course results in the received optical intensity fluctuation. Consequently, the system reliability and availability can be determined by the extent of the effects. As a result, FSO technology is relatively unreliable like the normal optical fiber technology. Therefore, apart from the fact that these can limit the RoFSO system performance, its employment for uRLLC applications might also be limited as well. Consequently, the drawbacks hinder the FSO scheme as an effective standalone solution. Therefore, for the FSO scheme to be effective, the associated turbulence-induced fading has to be alleviated [2, 17, 18, 50]. Based on this, several PHY layer ideas like maximum likelihood sequence detection, diversity schemes, adaptive optics, and error control coding with interleaving have been presented to address the issue [11, 50, 51]. Besides, innovative schemes such as relay-assisted transmission and hybrid RF/FSO technologies can be implemented to enhance the system performance regarding capacity, reliability, and availability [11].
A hybrid RF/FSO scheme exploits the inherent high-transmission bandwidth of the optical wireless system and the related deployment simplicity of wireless links [2]. In addition, the hybrid RF/FSO system idea does not only base on concurrent means of attending to the hybrid scheme related limitations, but it also entails ways of exploiting both approaches for a reliable heterogeneous wireless service delivery. The hybrid scheme is able to achieve this by incorporating the RF solutions’ scalability and cost-effectiveness with the FSO solutions’ high data rate and low latency. Consequently, the technology is able to address the high throughput, cost-effectiveness, and low-latency requirements of the system. Besides, it presents a heterogeneous platform for wireless service provisioning for the envisaged 5G and beyond networks [11, 13, 14, 52, 53].
One of feasible methods of turbulence-induced fading mitigation is the spatial diversity scheme. In this technique, there are multiple deployed apertures at the receiver and/or transmitter sides. This is in an effort to realize extra degrees of freedom in the spatial domain. It is remarkable that spatial diversity is an appealing fading mitigation scheme, owing to the presented redundancy feature. On the other hand, multiple-aperture deployment in the system causes a number of challenges like an increase in the cost and system complexity. Moreover, in order to prevent the spatial correlation detrimental effects, the aperture separation should be sufficiently large. Furthermore, a notable approach for simplified spatial diversity implementation is a dual-hop relaying scheme. It is noteworthy that there has been extensive implementation of the scheme in the RF and wireless communication systems. Application of the scheme in these fields not only aids in improving the receive signal quality but also helps considerably in the network range extension [2, 11, 13, 14].
Conceptually, multiple virtual aperture systems are generated in the relay-assisted transmission with the intention of realizing salient MIMO technique features. The architecture takes advantage of the RF and FSO features for an efficient and reliable service delivery. In addition, a relay-assisted transmission system is an innovative communication technique known as a mixed RF/FSO dual-hop communication system. The dual-hop scheme meaning can be easily understood from its architecture. In the architecture, the transport networks from the source to the relay system are RF links; however, the transport networks between the relay system and the associated destination node(s) are FSO links. Hence, in a dual-hop system, RF is used for signal transmission at one hop, while FSO transmission is implemented at the other. The FSO link mainly functions to facilitate the RF users’ communication with the backbone network. This is purposely for filling the connectivity gap between the backbone and the last-mile access networks. Accordingly, the offered architecture can efficiently address the system-related last-mile transmission bottleneck. This can be effectively achieved by supporting multiplexed users with RF capacities. The users can also be aggregated onto a shared high-capacity FSO link. This will help in harnessing the inherent huge bandwidth of an optical communication system. Another outstanding advantage of this scheme is that any kind of interference can be easily inhibited via its implementation. This is due mainly to the fact that the RF and FSO operating frequency bands are completely different. Consequently, it offers better performance than the traditional RF/RF transmission schemes [2, 11, 13, 14].
The RAN functional split is another innovative and practical scheme for alleviating the imposed fronthaul requirements by the C-RAN architecture [11, 54]. For instance, to address the drawbacks of CPRI-based fronthaul solutions, an eCPRI specification presents additional physical layer functional split options and a packet-based solution. Consequently, unlike the conventional constant data rate CPRI in which the stream significantly depends on the carrier bandwidth, as well as the number of antennas, the eCPRI stream does not depend on either of the factors but on the actual traffic load. In essence, apart from being able to alleviate the stringent bandwidth demands, multiple eCPRI stream can also be multiplexed onto a wavelength for onward transmission over the fronthaul network [12].
In addition, with recent network architecture development, the traditional BBU and RRU have been reformed into different functional entities which are the CU, DU, and RRU/active antenna unit (AAU). With the configuration, the CU majorly focuses on non-real time and part of the traditional Evolved Packet Core functionalities. This involves high-level protocol processing like dual connectivity and radio resource management. In addition, the DU is responsible for the real-time media access control layer functions like HARQ flow and physical layer function processing. Also, when massive MIMO antennas are to be employed, certain parts of the physical layer functions can also be shifted to the RRU/AAU. The implementation will not only aid in lessening the associated transmission bandwidth between the RRU/AAU and DUs but will also help in reducing the transmission cost considerably. Therefore, a number of functional split options have been presented in order to reduce the processing and network resource cost considerably. As shown in Figure 7, each of the option is categorized according to the demarcation point between the CU and the DU. Therefore, depending on the deployment scenarios and use cases, each option offers different degrees of flexibility regarding resource allocation for different service requirements [12, 29].
Functional split options between CU and DU with emphasized PHY layer.
The NG-PON2 physical layer requirements are very challenging. Besides, the requirements are even more strict than the legacy PON technologies. For instance, when compared with the GPON taken into consideration the related spectrum, GPON employs only one channel for the transmission and one for the reception, with a very wide wavelength allocation (up to 100 nm). On the other hand, in NG-PON2, there are <4 nm to accommodate four channels. Consequently, this means that the thermal control must be very precise in order to keep each channel inside the specified channel space (which is +/−20 GHz). As aforementioned, there are multiple channels in NG-PON2 transmission; therefore, the receiver must be tunable so as to work for any one of them at a particular time while others are rejected. This requirement implies that there is a need for a very tight band-pass filter too for efficient operation. Also, the tuning time classes, already presented in Table 1 in Section 3, are likewise strict and difficult to achieve on the hardware side. Besides, one of the major related issues is the amount of the required optical-electrical-optical (OEO) conversions, which can bring about an unviable and unsustainable system [55].
The optical communications evolution has initiated enhanced photonic integrated circuits (PICs) that present a cost-effective alternative to data transmission. With PIC technology implementation, a number of optical components such as modulators, lasers, amplifiers, detectors, etc. can be merged/integrated on a single chip. Consequently, it helps in optical system design simplification, system reliability enhancement, as well as significant power consumption and space reduction. In addition, there can be considerable reduction in the amount of OEO converters required for the system implementation. This subsequently results in the total network cost reduction [55]. Thus, it is anticipated to be an enabling and viable technology with immense flexibility and reconfigurability in a number of fields [56]. A PIC has numerous advantages over the traditional optical sub-assemblies (OSAs). For instance, considering the occupied volume, the PICs allow a very dense architecture in a small area, passing also by the optical losses; however, the losses in the OSAs are higher because of the internal free-space alignment between each optical component. Also, other notable advantages of the PICs compared with the OSAs are lower power consumption, lower footprint, and cost-effectiveness. Therefore, PICs have the capability of permitting flexible and high data rate solutions [39, 55].
In the following, for the system realization, we propose three different architectures: the ONU architecture, the OLT architecture, and the architecture that can perform both functions just by hardware selection. It should be noted that all of these architectures have the transmit and the receive parts.
The ONU transceiver architecture is represented in Figure 8. This is a very simple structure regarding the optical setup, but the electrical control is very tough, mostly because of the tunability (both on the transmitter and on the receiver). In this example, there is one tunable laser. The laser can be tuned by temperature and can be directly or externally modulated (the latter would also need a modulator after the laser). On the receiver part, there is an optical band-pass filter which has to be tunable to allow one of the downstream channels and cut the rest of the spectrum. The tunable band-pass filter is followed by an optical receiver.
ONU transceiver architecture.
As explained before, the OLT is not tunable; both transmitter and receiver should work on the same fixed wavelength pair, as depicted in Figure 9. Consequently, four pairs of optical devices will be needed. Since it is very difficult to encapsulate everything on the same transceiver, the solution that is being followed commercially is having four different transceivers, one for each wavelength pair, and the wavelength multiplexer (WM) device is external. This WM should, in each port, allow one wavelength pair, meaning that in each port, it should pass only one downstream and the respective upstream channel.
OLT transceiver architecture.
The architectures presented in Figures 8 and 9 are the basic ones to have functional devices for NG-PON2. But taking advantage of photonic integration, it is possible to develop a much more complex circuit with more functionalities, which is being presented next. Figure 10 illustrates the block diagram of an architecture that can be used both as ONU and OLT. This helps in exploiting the advantage of both functionalities on a single chip. The purpose (OLT or ONU) to be served can be achieved just by hardware selection. This proposed architecture fits inside a 4 4.6 mm indium phosphide (InP) PIC. In the following subsection, we present the final design and some obtained simulation results.
Block diagram of OLT/ONU transmission architecture.
The architecture comprises four lasers, four Mach-Zehnder modulators (MZM), and a number of filters. Two of the filters are for changing the operational frequency band (C band for upstream transmission and L band for downstream). Also, one filter is employed for tuning the four lasers to the correct wavelength. Besides, at the output, there is one filter working as a combiner of the four lasers. The band selection is made using the two semiconductor optical amplifiers (SOAs) that are placed after the band filters. It is noteworthy that the two SOAs are working as switches and determine the chip’s operating mode (i.e., OLT or ONU). Therefore, one of the SOAs is amplifying the light (active SOA), while the other is absorbing (passive SOA). Consequently, by this configuration, only one band filter is contributing to the setup. The employed lasers are built using laser cavities which contain SOAs that are being used for gain purposes, filters, and reflectors on both sides. The C + L band filter helps in the selection of the downstream or upstream channel [39].
Moreover, the architecture includes also a multimode interferometer reflector (MMIR) before the band selection and another one after each gain SOA. These reflectors define the laser cavity limits. The second MMIR, after the gain SOAs, only reflects 50% of the light, and the remaining 50% is the laser cavity output and is sent to the MZM for modulation. After the modulation on the MZMs, all four channels are combined in just one, and the resulting light signal is sent to the output of the PIC, where a fiber will be aligned to collect the light, and subsequently, it will be sent to the network [39].
This PIC has also a receiver circuit, but it is a simple one, with just a wavelength division multiplexer (WDM) filter which receives the light from the network and routes each NG-PON2 channel for a different PIN. The receiver circuit schematic is depicted in Figure 11.
Receiver block diagram.
Using the photonic design kit (PDK) from the foundry Smart Photonics and a software for PIC design (Phoenix Software at the time, meantime bought by synopsis) for the implementation, the final circuit masks of the chip are shown in Figure 12.
OLT/ONU integrated transceiver design masks.
In this section, we present the obtained simulation results with further discussion on NG-PON2 physical layer architecture design and development based on PICs. Figure 13 shows the spectral simulation results obtained using advanced simulator for photonic integrated circuits (Aspic) software from filarete. On the left figure, there is the downstream operation (L band selected), and on the right there is the upstream (C band selected). In the figure, the spectra in blue, pink, orange, and green are the four channels. In both cases, it is possible to conclude that there is about 30 dB of suppression of replicas. The suppression facilitates smooth operation of the system by preventing intra-channel interference.
Optical spectra at the transmitter output (a) downstream and (b) upstream.
The reason for using laser cavities is due to the limitations on the foundry. During the chip’s design period, the Smart Photonics did not offer lasers on their process design kit (PDK). Consequently, improvements in the architecture can be undertaken to potentiate the results. For instance, the laser cavities could be replaced by distributed feedback (DFB) or distributed Bragg reflector (DBR) lasers that have narrow linewidth and a stable single mode operation. In this case, the cavity would disappear, and the filtering should be done after the lasing. In addition, the architectures can be simplified using only one modulator; nevertheless, it would not be possible to transmit the four channels simultaneously; this implies that only one channel can be transmitted at a time. The proposed and developed architectures demonstrate the potential of photonic integration for optical architectures. Consequently, the architectures not only have the ability of supporting high data rates, high density, and flexible solutions but also offer advantages such as low power consumption, improved functionality, low footprint, and cost-effectiveness.
The 5G based system is a promising solution for attending to the growing concerns about the traffic pressure on the network. Also, the envisaged massive number of deployment scenarios and use cases to be supported brings about high-bandwidth and low-latency requirements for the 5G networks. The small-cell-based C-RAN approach can efficiently attend to the associated ultradense deployment. However, the C-RAN-based approach imposes stringent requirements regarding jitter, bandwidth, and latency for the mobile transport networks. In this book chapter, we have presented wired and wireless transport solutions that are capable of addressing the C-RAN-based stringent requirements and, consequently, the 5G mobile transport network demands. Furthermore, owing to its significant and inherent advantages for the 5G and beyond networks, we have focused on the NG-PON2 system. We have exploited the salient advantages and the low footprint platform offered by the PICs in the NG-PON2 system design and implementation. Based on these technologies, the proposed architectures are capable of alleviating the associated losses in the system while also helping in increasing the system power budget. In addition, employment of the proposed architectures can help the device makers, service/network providers, and infrastructure and chip vendors, in lowering the footprint of network elements.
This work is funded by Fundação para a Ciência e a Tecnologia (FCT) through national funds under the scholarships PD/BD/105858/2014. It is also supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Lisbon (POR LISBOA 2020) and the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the Portugal 2020 framework, Project 5G (POCI-01-0247-FEDER-024539), ORCIP (CENTRO-01-0145-FEDER-022141), and SOCA (CENTRO-01-0145-FEDER-000010). It is also funded by Fundação para a Ciência e a Tecnologia (FCT) through national funds under the project COMPRESS-PTDC/EEI-TEL/7163/2014 and by FEDER, through the Regional Operational Program of Centre (CENTRO 2020) of the Portugal 2020 framework [Project HeatIT with Nr. 017942 (CENTRO-01-0247-FEDER-017942)] and [Project Virtual Fiber Box with Nr. 033910 (POCI-01-0247-FEDER-033910)]. Additional support is provided by the COST action CA16220 European Network for High Performance Integrated Microwave Photonics (EUIMWP) and IT (UID/EEA/50008/2013).
Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.
',metaTitle:"Odredbe i uvjeti",metaDescription:"Ove Odredbe i uvjeti ističu pravila i regulacije u svezi korištenja IntechOpenove stranice www.intechopen.com i svih poddomena u vlasništvu IntechOpena, tvrtke sa sjedištem u 5 Princes Gate Court, London, SW7 2QJ, Ujedinjeno Kraljevstvo.",metaKeywords:null,canonicalURL:"/page/cro-terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\\n\\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\\n\\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\\n\\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\\n\\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\\n\\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\\n\\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\\n\\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\\n\\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\\n\\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\\n\\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\\n\\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\\n\\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\\n\\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\\n\\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\\n\\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Pristupom na stranicu www.intechopen.com slažete se s ovim odredbama, sa svim primjenjivim zakonskim odredbama, te se slažete s poštovanjem svih lokalnih zakona. Korištenje i/ili pristup ovoj stranici temelji se na potpunom prihvaćanju ovih odredbi. Svi materijali na ovoj stranici zaštićeni su primjenjivim zakonima o autorskim pravima i žigu.
\n\nSljedeća terminologija odnosi se na Odredbe i uvjete, te na sve naše ugovore:
\n\nKlijent, stranka, vi, vaš odnosi se na vas, osobu koja pristupa ovoj stranici i prihvaća IntechOpenove Odredbe i uvjete;
\n\nKompanija, tvrtka, mi, naše odnosi se na tvrtku IntechOpen;
\n\nStranke, strane odnosi se na klijenta i na nas, ili samo na klijenta ili nas.
\n\nSve odredbe koje se odnose na ponudu, prihvat ili razmatranje plaćanja, a za koja mi pružamo asistenciju klijentu, bilo na ugovoreni ili fiksni način, a s ciljem da se ostvare potrebe i želje klijenta u svezi s našim uslugama, su podložne zakonskim odredbama Ujedinjenog Kraljevstva.
\n\nOsim ako nije suprotno navedeno, IntechOpen i/ili svi davatelji licence vlasnici su intelektualnog vlasništva nad svim materijalima na www.intechopen.com. Sva prava intelektualnog vlasništva su pridržana. Stranice sa www.intechopen.com možete gledati, preuzimati, dijeliti, dijeliti poveznice i printati za osobnu uporabu, a temeljem pravila sadržanih u ovim Odredbama i uvjetima.
\n\nMi koristimo kolačiće. Korištenjem IntechOpenove stranice slažete se s korištenjem kolačića u skladu s IntechOpenovom Politikom privatnosti. Većina modernih, interaktivnih stranica koristi kolačiće kako bi omogućila ponovno pronalaženje korisničkih detalja kod svakog posjeta. Na našoj stranici kolačići se uglavnom koriste kako bi omogućili funkcionalnost i olakšali posjetiteljima korištenje stranice.
\n\nIntechOpen ili njegovi suradnici niti u jednom slučaju neće biti odgovorni za štete (štete uključuju gubitak podataka ili profita, druge poslovne prekide, te sve ostale štete) koje nastanu zbog korištenja materijala na IntechOpenovoj stranici ili nemogućnosti da se iste koriste, čak i ako je IntechOpen ili njegov predstavnik o takvoj šteti obaviješten pismenim ili usmenim putem. Neke jurisdikcije ne dozvoljavaju ograničenja garancija ili ograničenja obveza za posljedične ili slučajne štete pa se u tom slučaju ova ograničenja možda ne odnose na vas.
\n\nMaterijali koji se pojavljuju na IntechOpenovoj stranici mogu sadržavati manje greške, tipfelere ili fotografske greške. IntechOpen može napraviti promjene na bilo kojem materijalu koji se nalazi na stranici u bilo koje vrijeme.
\n\nIntechOpen nije formalno povezan niti s jednom vanjskom stranicom čije poveznice vode na www.intechopen.com, osim ako to nije izravno navedeno. Iz tog razloga IntechOpen nije odgovoran za sadržaj koji se pojavljuje na takvim stranicama. Poveznica na IntechOpenovu stranicu ne implicira povezanost sa IntechOpenom. Korištenje takvih poveznica isključiva je odgovornost korisnika.
\n\nZadržavamo pravo vlasništva nad cjelokupnom stranicom www.intechopen.com i nad svim materijalom na toj stranici. Koristeći se našim uslugama, slažete se da maknete sve poveznice na našu stranicu odmah nakon što to od vas zatražimo. Također, zadržavamo pravo da ove Odredbe i uvjete, i politiku o poveznicama izmjenimo u bilo koje vrijeme. Koristeći se poveznicama na naše stranice slažete se s ovim Odredbama i uvjetima.
\n\nAko smatrate da je bilo koja poveznica na našoj stranici sumnjiva iz bilo kojeg razloga, molimo vas da nas kontaktirate. U tom slučaju razmotrit ćemo micanje poveznice s naše stranice, iako nismo obvezni to napraviti.
\n\nBez prethodne privole i izričite pisane dozvole, ne možete stvarati okvire oko naših stranica ili koristiti druge tehnike koje na bilo koji način mogu promijeniti prezentaciju ili izgled naše stranice.
\n\nIntechOpen može ove Odredbe izmijeniti u bilo koje vrijeme i bez prethodne obavijesti. Koristeći ovu stranicu vi se slažete s trenutnim Odredbama i uvjetima koje su na snazi.
\n\nOve Odredbe i uvjeti su sastavljeni u skladu s odredbama prava Ujedinjenog Kraljevstva, a za sve sporove nadležan je sud u Londonu, Ujedinjeno Kraljevstvo.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117096},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:63},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1201",title:"Pharmacokinetics",slug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology-pharmacokinetics",parent:{title:"Pharmacology",slug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology"},numberOfBooks:6,numberOfAuthorsAndEditors:128,numberOfWosCitations:117,numberOfCrossrefCitations:78,numberOfDimensionsCitations:184,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology-pharmacokinetics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10143",title:"Molecular Pharmacology",subtitle:null,isOpenForSubmission:!1,hash:"2b2fce4ff393dff0d0f0581c7818087c",slug:"molecular-pharmacology",bookSignature:"Angel Catala and Usama Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10143.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8700",title:"Anticoagulation Drugs",subtitle:"the Current State of the Art",isOpenForSubmission:!1,hash:"436d368db26a1bb7c56a32524819feb2",slug:"anticoagulation-drugs-the-current-state-of-the-art",bookSignature:"Mina Kelleni",coverURL:"https://cdn.intechopen.com/books/images_new/8700.jpg",editedByType:"Edited by",editors:[{id:"247606",title:"Dr.",name:"Mina",middleName:"T.",surname:"Kelleni",slug:"mina-kelleni",fullName:"Mina Kelleni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4491",title:"Basic Pharmacokinetic Concepts and Some Clinical Applications",subtitle:null,isOpenForSubmission:!1,hash:"734981bb43ff02efc24997bed7e09853",slug:"basic-pharmacokinetic-concepts-and-some-clinical-applications",bookSignature:"Tarek A Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/4491.jpg",editedByType:"Edited by",editors:[{id:"175649",title:"Dr.",name:"Tarek A",middleName:null,surname:"Ahmed",slug:"tarek-a-ahmed",fullName:"Tarek A Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1515",title:"Readings in Advanced Pharmacokinetics",subtitle:"Theory, Methods and Applications",isOpenForSubmission:!1,hash:"19852157f4023e3c603cf420d40092d8",slug:"readings-in-advanced-pharmacokinetics-theory-methods-and-applications",bookSignature:"Ayman Noreddin",coverURL:"https://cdn.intechopen.com/books/images_new/1515.jpg",editedByType:"Edited by",editors:[{id:"98260",title:"Dr.",name:"Ayman",middleName:"M.",surname:"Noreddin",slug:"ayman-noreddin",fullName:"Ayman Noreddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"549",title:"Antihypertensive Drugs",subtitle:null,isOpenForSubmission:!1,hash:"876ded2432bdba8db384bc19409c11c4",slug:"antihypertensive-drugs",bookSignature:"Hossein Babaei",coverURL:"https://cdn.intechopen.com/books/images_new/549.jpg",editedByType:"Edited by",editors:[{id:"106830",title:"Prof.",name:"Hossein",middleName:"-",surname:"Babaei",slug:"hossein-babaei",fullName:"Hossein Babaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"672",title:"Topics on Drug Metabolism",subtitle:null,isOpenForSubmission:!1,hash:"bd8cec6a42109231eaa7a07ed1d58c71",slug:"topics-on-drug-metabolism",bookSignature:"James Paxton",coverURL:"https://cdn.intechopen.com/books/images_new/672.jpg",editedByType:"Edited by",editors:[{id:"67175",title:"Dr.",name:"James",middleName:"William",surname:"Paxton",slug:"james-paxton",fullName:"James Paxton"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,mostCitedChapters:[{id:"29240",doi:"10.5772/31087",title:"Oral Absorption, Intestinal Metabolism and Human Oral Bioavailability",slug:"oral-absorption-intestinal-metabolism-and-human-oral-bioavailability-",totalDownloads:24739,totalCrossrefCites:17,totalDimensionsCites:39,book:{slug:"topics-on-drug-metabolism",title:"Topics on Drug Metabolism",fullTitle:"Topics on Drug Metabolism"},signatures:"Ayman El-Kattan and Manthena Varma",authors:[{id:"85539",title:"Dr.",name:"Ayman",middleName:null,surname:"El-Kattan",slug:"ayman-el-kattan",fullName:"Ayman El-Kattan"},{id:"88221",title:"Dr.",name:"Manthena",middleName:null,surname:"Varma",slug:"manthena-varma",fullName:"Manthena Varma"}]},{id:"29245",doi:"10.5772/30015",title:"Anticancer Drug Metabolism: Chemotherapy Resistance and New Therapeutic Approaches",slug:"anticancer-drug-metabolism-chemotherapy-resistance-and-new-therapeutic-approaches",totalDownloads:8586,totalCrossrefCites:7,totalDimensionsCites:18,book:{slug:"topics-on-drug-metabolism",title:"Topics on Drug Metabolism",fullTitle:"Topics on Drug Metabolism"},signatures:"Hanane Akhdar, Claire Legendre, Caroline Aninat and Fabrice More",authors:[{id:"80375",title:"Dr.",name:"Fabrice",middleName:null,surname:"Morel",slug:"fabrice-morel",fullName:"Fabrice Morel"},{id:"82193",title:"Dr.",name:"Hanane",middleName:null,surname:"Akhdar",slug:"hanane-akhdar",fullName:"Hanane Akhdar"},{id:"82195",title:"Dr.",name:"Claire",middleName:null,surname:"Legendre",slug:"claire-legendre",fullName:"Claire Legendre"},{id:"82197",title:"Dr.",name:"Caroline",middleName:null,surname:"Aninat",slug:"caroline-aninat",fullName:"Caroline Aninat"}]},{id:"35687",doi:"10.5772/34087",title:"Bioavailability of Citrus Polymethoxylated Flavones and Their Biological Role in Metabolic Syndrome and Hyperlipidemia",slug:"the-bioavailability-of-citrus-polymethoxylated-flavones",totalDownloads:5518,totalCrossrefCites:6,totalDimensionsCites:15,book:{slug:"readings-in-advanced-pharmacokinetics-theory-methods-and-applications",title:"Readings in Advanced Pharmacokinetics",fullTitle:"Readings in Advanced Pharmacokinetics - Theory, Methods and Applications"},signatures:"Malkanthi Evans, Prachi Sharma and Najla Guthrie",authors:[{id:"98622",title:"Dr.",name:"Malkanthi",middleName:null,surname:"Evans",slug:"malkanthi-evans",fullName:"Malkanthi Evans"},{id:"98649",title:"BSc.",name:"Najla",middleName:null,surname:"Guthrie",slug:"najla-guthrie",fullName:"Najla Guthrie"},{id:"98650",title:"MSc.",name:"Prachi",middleName:null,surname:"Sharma",slug:"prachi-sharma",fullName:"Prachi Sharma"}]}],mostDownloadedChaptersLast30Days:[{id:"49459",title:"Pharmacokinetics of Drugs Following IV Bolus, IV Infusion, and Oral Administration",slug:"pharmacokinetics-of-drugs-following-iv-bolus-iv-infusion-and-oral-administration",totalDownloads:12843,totalCrossrefCites:8,totalDimensionsCites:12,book:{slug:"basic-pharmacokinetic-concepts-and-some-clinical-applications",title:"Basic Pharmacokinetic Concepts and Some Clinical Applications",fullTitle:"Basic Pharmacokinetic Concepts and Some Clinical Applications"},signatures:"Tarek A. Ahmed",authors:[{id:"175649",title:"Dr.",name:"Tarek A",middleName:null,surname:"Ahmed",slug:"tarek-a-ahmed",fullName:"Tarek A Ahmed"}]},{id:"48805",title:"Biopharmaceutics and Pharmacokinetics",slug:"biopharmaceutics-and-pharmacokinetics",totalDownloads:24516,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"basic-pharmacokinetic-concepts-and-some-clinical-applications",title:"Basic Pharmacokinetic Concepts and Some Clinical Applications",fullTitle:"Basic Pharmacokinetic Concepts and Some Clinical Applications"},signatures:"S. Lakshmana Prabu, T.N.K. Suriyaprakash, K. Ruckmani and R.\nThirumurugan",authors:[{id:"91590",title:"Dr.",name:"Sakthivel",middleName:null,surname:"Lakshmana Prabu",slug:"sakthivel-lakshmana-prabu",fullName:"Sakthivel Lakshmana Prabu"},{id:"128690",title:"Dr.",name:"Suriyaprakash",middleName:null,surname:"Tnk",slug:"suriyaprakash-tnk",fullName:"Suriyaprakash Tnk"}]},{id:"48275",title:"Drug Distribution and Drug Elimination",slug:"drug-distribution-and-drug-elimination",totalDownloads:3510,totalCrossrefCites:4,totalDimensionsCites:9,book:{slug:"basic-pharmacokinetic-concepts-and-some-clinical-applications",title:"Basic Pharmacokinetic Concepts and Some Clinical Applications",fullTitle:"Basic Pharmacokinetic Concepts and Some Clinical Applications"},signatures:"Seng Kok-Yong and Lee Lawrence",authors:[{id:"171077",title:"Dr.",name:"Lawrence",middleName:null,surname:"Lee",slug:"lawrence-lee",fullName:"Lawrence Lee"},{id:"171298",title:"Dr.",name:"Kok-Yong",middleName:null,surname:"Seng",slug:"kok-yong-seng",fullName:"Kok-Yong Seng"}]},{id:"29241",title:"Phase II Drug Metabolism",slug:"phase-ii-drug-metabolism",totalDownloads:12355,totalCrossrefCites:2,totalDimensionsCites:14,book:{slug:"topics-on-drug-metabolism",title:"Topics on Drug Metabolism",fullTitle:"Topics on Drug Metabolism"},signatures:"Petra Jančová and Michal Šiller",authors:[{id:"80316",title:"PhD.",name:"Petra",middleName:null,surname:"Jancova",slug:"petra-jancova",fullName:"Petra Jancova"},{id:"80386",title:"Dr.",name:"Michal",middleName:null,surname:"Siller",slug:"michal-siller",fullName:"Michal Siller"}]},{id:"29240",title:"Oral Absorption, Intestinal Metabolism and Human Oral Bioavailability",slug:"oral-absorption-intestinal-metabolism-and-human-oral-bioavailability-",totalDownloads:24739,totalCrossrefCites:17,totalDimensionsCites:39,book:{slug:"topics-on-drug-metabolism",title:"Topics on Drug Metabolism",fullTitle:"Topics on Drug Metabolism"},signatures:"Ayman El-Kattan and Manthena Varma",authors:[{id:"85539",title:"Dr.",name:"Ayman",middleName:null,surname:"El-Kattan",slug:"ayman-el-kattan",fullName:"Ayman El-Kattan"},{id:"88221",title:"Dr.",name:"Manthena",middleName:null,surname:"Varma",slug:"manthena-varma",fullName:"Manthena Varma"}]},{id:"29245",title:"Anticancer Drug Metabolism: Chemotherapy Resistance and New Therapeutic Approaches",slug:"anticancer-drug-metabolism-chemotherapy-resistance-and-new-therapeutic-approaches",totalDownloads:8586,totalCrossrefCites:7,totalDimensionsCites:18,book:{slug:"topics-on-drug-metabolism",title:"Topics on Drug Metabolism",fullTitle:"Topics on Drug Metabolism"},signatures:"Hanane Akhdar, Claire Legendre, Caroline Aninat and Fabrice More",authors:[{id:"80375",title:"Dr.",name:"Fabrice",middleName:null,surname:"Morel",slug:"fabrice-morel",fullName:"Fabrice Morel"},{id:"82193",title:"Dr.",name:"Hanane",middleName:null,surname:"Akhdar",slug:"hanane-akhdar",fullName:"Hanane Akhdar"},{id:"82195",title:"Dr.",name:"Claire",middleName:null,surname:"Legendre",slug:"claire-legendre",fullName:"Claire Legendre"},{id:"82197",title:"Dr.",name:"Caroline",middleName:null,surname:"Aninat",slug:"caroline-aninat",fullName:"Caroline Aninat"}]},{id:"71907",title:"Potassium Channels as a Potential Target Spot for Drugs",slug:"potassium-channels-as-a-potential-target-spot-for-drugs",totalDownloads:163,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"molecular-pharmacology",title:"Molecular Pharmacology",fullTitle:"Molecular Pharmacology"},signatures:"Vladimir Djokic and Radmila Novakovic",authors:[{id:"313382",title:"Ph.D.",name:"Radmila",middleName:null,surname:"Novakovic",slug:"radmila-novakovic",fullName:"Radmila Novakovic"}]},{id:"35687",title:"Bioavailability of Citrus Polymethoxylated Flavones and Their Biological Role in Metabolic Syndrome and Hyperlipidemia",slug:"the-bioavailability-of-citrus-polymethoxylated-flavones",totalDownloads:5518,totalCrossrefCites:6,totalDimensionsCites:15,book:{slug:"readings-in-advanced-pharmacokinetics-theory-methods-and-applications",title:"Readings in Advanced Pharmacokinetics",fullTitle:"Readings in Advanced Pharmacokinetics - Theory, Methods and Applications"},signatures:"Malkanthi Evans, Prachi Sharma and Najla Guthrie",authors:[{id:"98622",title:"Dr.",name:"Malkanthi",middleName:null,surname:"Evans",slug:"malkanthi-evans",fullName:"Malkanthi Evans"},{id:"98649",title:"BSc.",name:"Najla",middleName:null,surname:"Guthrie",slug:"najla-guthrie",fullName:"Najla Guthrie"},{id:"98650",title:"MSc.",name:"Prachi",middleName:null,surname:"Sharma",slug:"prachi-sharma",fullName:"Prachi Sharma"}]},{id:"71546",title:"Allosteric Modulators for GPCRs as a Therapeutic Alternative with High Potential in Drug Discovery",slug:"allosteric-modulators-for-gpcrs-as-a-therapeutic-alternative-with-high-potential-in-drug-discovery",totalDownloads:145,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"molecular-pharmacology",title:"Molecular Pharmacology",fullTitle:"Molecular Pharmacology"},signatures:"Arfaxad Reyes-Alcaraz, Emilio Y. Lucero Garcia-Rojas, Richard A. Bond and Bradley K. McConnell",authors:[{id:"317795",title:"Dr.",name:"Arfaxad",middleName:null,surname:"Reyes-Alcaraz",slug:"arfaxad-reyes-alcaraz",fullName:"Arfaxad Reyes-Alcaraz"}]},{id:"47977",title:"The Impact of Pharmacokinetic Mismatched Antimalarial Drug Combinations on the Emergence and Spread of Drug Resistant Parasites",slug:"the-impact-of-pharmacokinetic-mismatched-antimalarial-drug-combinations-on-the-emergence-and-spread-",totalDownloads:1447,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"basic-pharmacokinetic-concepts-and-some-clinical-applications",title:"Basic Pharmacokinetic Concepts and Some Clinical Applications",fullTitle:"Basic Pharmacokinetic Concepts and Some Clinical Applications"},signatures:"Qigui Li and Mark Hickman",authors:[{id:"171095",title:"Dr.",name:"Qigui",middleName:null,surname:"Li",slug:"qigui-li",fullName:"Qigui Li"}]}],onlineFirstChaptersFilter:{topicSlug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology-pharmacokinetics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/110860/guillermo-cisneros",hash:"",query:{},params:{id:"110860",slug:"guillermo-cisneros"},fullPath:"/profiles/110860/guillermo-cisneros",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()