Subgroups of clay minerals.
\r\n\t2) The divergence between the levels of reliability required (twelve-9’s are not uncommon requirements) and the ability to identify or test failure modes that are increasingly unknown and unknowable
\r\n\t3) The divergence between the vulnerability of critical systems and the amount of damage that an individual ‘bad actor’ is able to inflict.
\r\n\t
\r\n\tThe book examines pioneering work to address these challenges and to ensure the timely arrival of antifragile critical systems into a world that currently sees humanity at the edge of a precipice.
Unmanned aerial vehicles (UAVs), colloquially called drones, are currently the most innovative element used in support of various industrial sectors. The development rate of this industrial sector is catching up with expansion of the cellular or IT sector.
UAVs may be used in various types of activities of the public and private sector, namely:
Public administration: border guards or services providing assistance after disasters or military services
Enterprises: monitoring and maintenance of buildings, power companies, construction sites, agricultural facilities, farms, geological discoveries or aerial photographs
Clients: deliveries of goods, advertising, guided trips and games
To put shortly each UAV is assumed to consist of two main components—the machine as such and the terrestrial control station or a mobile one. On the other hand, the drone comprises a system controlled in real time, control software, interface module to simplify the exchange of data, sensors connected with the software and the avionics. Optionally it may also have an arm control system (if equipped with weapons) or an autopilot. The terrestrial control station comprises control software, interface modules and the controlling person.
Such public services, for example, the fire service, are executing their operations in many fields connected with prevention, rescuing and civil protection. This is a great advancement as compared to the scope of obligations dating a few decades back. The dynamics of those changes has required (and still requires) continuous staff advancement, modernisation of the equipment base and revising adopted solutions with respect to rescue actions.
Given a certain natural division, selected fire service units are specialised in specific domains: technical rescuing, high rescuing, chemical and ecological rescuing, etc. There is also an area connected with elimination of consequences of events of a greater magnitude. Search and rescue groups may go into the state of combat readiness in a few dozen of hours. If means and resources of local communities are insufficient to handle the disaster, the state can formally apply for assistance by launching, for example, a heavy urban search and rescue (HUSAR) group, which has the most extensive scope of competencies and a developed equipment base. The activity of the group may be proven by the most recent dispatches of the Polish HUSAR group:
Polish rescuers along with 12 dogs trained to search for survivors and 6 tonnes of equipment were used to search Nepal devastated by the earthquake. The action lasted 11 days. Almost 9000 persons have lost their lives during this incident [1]. For each urban search and rescue group that reached the scene, a particular area to be searched has been assigned. Taking into consideration the size of the disaster, the whole operations required immensely well-coordinated organisation. In fact, the survival of the victims was depending on hours between the incident and the USAR teams to localise the victim. In total, not many alive victims has been found. It is clear that the most valuable resource in case of man-made or natural disaster, where many victims need to be found and rescued, is time.
An earthquake of 7° in the Richter scale caused a few hundred thousand victims. A group of Polish rescuers comprising 54 officers and 10 snuffer dogs arrived in Port-Au-Price. High temperatures were not supportive for work of the rescuers [2]. As there were many USAR teams invited to support the operations, it was a difficult coordination task for local authorities. With extraordinary damages to the infrastructure, it caused significant delays in reaching some areas, especially distant, as the accessibility was limited.
Previously described disasters took place a couple of years ago. In both cases, but also in smaller incidents of regional/national range, the rescuers were fighting with the toughest enemy—the time. It is impossible to improve the deployment time; as the equipment must be prepared, members of USAR team must gather, and some further organisational arrangements must be made. The time necessary to transport these resources on the scene is also unavoidable. After arrival, reaching the scene might also be difficult, due to the infrastructural damages. That is why every minute after arrival might be crucial for the victims’ survival. If we cannot shorten the described above deployment/transportation time, it seems that the most important aspect to be considered is the effectiveness of the search and rescue operations.
Search and rescue action groups are generally considered a certain type of “elite units” in the fire service. They remain in constant readiness, go through training courses lasting several hours and also personally train their rescue dogs that are allowed to participate in the actions once they have passed a special exam. Together with such equipment, as inspection cameras or geophones, this is a highly effective way of searching for surviving victims, e.g. in the cited earthquakes. Can modern technologies replace those infallible traditional search methods? Absolutely not. Yet quite clearly they may enhance the effectiveness of conducted search actions. UAVs are a good example. At times of universal access to different types of mobile devices, almost every person carries a mobile phone. This could be used for search needs. A victim lying under the rubble may have a cell phone which would remain switched on until the battery becomes empty, provided it has not become damaged during the event as such. The telephone will try getting a connection with the closest base station. The question is, does having an own base station allow supporting rescue actions?
The response to this question will be presented in subsequent subchapters. It should be emphasised that although this chapter focuses primarily on the use of UAVs in the operation of search and rescue groups, the proposed solutions will easily facilitate implementation in the activity in other public services, such as protecting facilities of particular importance, control of state borders, and assuring security during mass events.
Actions of search and rescue groups are implemented according to strictly defined procedures, which may be basically divided into two categories: local (domestic) and international ones (e.g. under UN-INASARAG). Those procedures regulate among others such aspects as operating readiness and equipping and also regulate among others such aspects as operating readiness, equipping and the size of groups. In general terms, the operation performed by groups during an action may be divided into four basic phases [1]:
Mobilisation
Action
Demobilisation
End of mission
The second phase (action), which takes place on the area afflicted by the disaster, requires coordination of actions of all specialised groups present on the spot. To be able to provide effective help to victims, rescue activities performed on the disaster scene are divided into five consequent stages:
Reconnaissance, including identification of hazards and determination of the size of the hazard zone
Initial determination of the number of missing persons
Securing, including lighting of the scene
Finding persons present in inaccessible places
Reaching victims with the use of available equipment, granting competent first aid, evacuation of victims and persons at risk from the hazard zone
Each stage should be properly planned and implemented. The first step to be executed on the scene is among others the determination of the size of hazard zone. Given the nature of the activities, in many cases this stage may not be executed quickly or accurately. During large-scale building disasters, caused in particular by earthquakes, the size of hazard zones is considerable, and as an effect, reaching and identifying all areas requiring intervention, for example, owing to cutting off of transport routes, as a rule tend to be hindered.
For this reason one of the implementation methods of this task is a surface search, in other words an accelerated one. It consists in a rapid extensive surface search of the area afflicted by the disaster in order to find areas characterised by high survivability level, like persons immobilised by minor rubble. This solution is strictly connected with restrictions concerning the number of rescuers.
It is assumed that this state would remain unchanged, i.e. the number of rescuers on the scene would not be increased, and so to optimise the search process, it is necessary to have increasingly novel solutions deployed.
Advanced search methods with the use of modern technologies, such as geographic information system (GIS), rescuers’ communication and positioning systems, thermal vision, modern off-road vehicles or unmanned aerial vehicles, clearly improve the possibility of effective execution of a rescue action. Correct and effective search actions may be performed by thorough planning of activities and maximum usage of the available resources and means.
It should be assumed that at present modern solutions adopted by specialised search and rescue groups should comprise the following.
This type of maps may take into consideration all-terrain obstacles and the location of available resources and means, as well as data bases related to potential trends in the behaviour of missing persons, which in combination with local terrain and weather conditions at disposal of professional rescuers from the given region may significantly accelerate making appropriate decisions. Maps should be available at the command stand, both stationary ones and also of the mobile type, to allow handling data received from communication module-based GPS systems (or different ones) and their transfer to the base and to the database serving as the centre of the GIS. Particular elements may be visualised in the system and enable accurate identification of their type by verifying the equipment ID and its current position. The map displays the position of rescuers determined based on a signal sent from radiotelephones with an installed GPS receiver. The effectiveness of this type of solution is nevertheless limited by the necessity of preparing maps prior to the occurrence of the hazard. However during actions performed on the same area, this solutions gains on effectiveness with the number of events occurring on the area under protection. Consequently digital maps should be dedicated to rescue groups protecting the defined area, for example, mountain rescue service [2].
The equipping of search and rescue groups that facilitates the process of searching and locating missing persons, as well as their safe evacuation, comprised all types of mechanical vehicles having diverse type of drive equipped with wheels or tracks. Also, in this respect, novel structures are being developed to support rescuers in their actions. Evacuation may be executed also by air with the use of rescue helicopters; nevertheless difficult weather conditions, relatively high usage costs, lack of available landing place or safe handling of the victims and a considerably low number of such equipment units available make it necessary to seek other solutions that would be much cheaper and more resistant to adverse weather conditions and difficult terrain conditions. Such accessories comprise road vehicles or track and wheel vehicles, such as off-road vehicles, quads, all-terrain vehicles or amphibians (Figure 1) [4, 5].
Example of ground units (a) adapted to driving in a complex terrain trailer pulled by Land Rover Defender 110 [3], (b) all-terrain vehicle Swincar [4] and (c) ARGO 8 × 8 amphibious vehicle in a track and wheel version [5].
The use of unmanned aerial vehicles is becoming increasingly popular in actions performed by rescue groups. Most frequently used unmanned aerial vehicles are multicopters, which are capable of vertical take-off and hovering, as well as airplanes or motor gliders, which take off from roads or a special catapult. Selecting the appropriate type of UAVs entails certain advantages and drawbacks. The main drawback of multi-propeller airplanes is their available flight time, which as a rule tends to be within the range of 15–60 minutes depending on the battery size. On the other hand, the main advantage of multi-propeller airplanes is their manoeuvrability, which in combination with their furnishing with a dedicated camera may considerably reduce the impact of terrain conditions with the use of UAV for search activities, and their furnishing with thermal vision cameras allows finding people even after twilight (Figure 2). Unmanned aerial vehicles may also be used for drawing up orthophotos or to provide the view of the scene of actions from a close distance.
View from thermal vision camera provided on UAV—looking for missing persons [6].
The application of modern technologies in rescuing is highly desirable. Search and rescue groups, the specific nature of actions of which is connected with carrying out actions in difficult terrain conditions, have been found to have particular needs. Given the increasingly frequent access to modern technologies, more and more frequently use is being made of geolocation technologies, and the usage of unmanned aerial vehicles in actions, and consequently the combination of both strategies seems to be a natural step in the implementation of those solutions in rescue actions. The MOBNET system is implementing this trend by using cellular phone signals, the GALILEO system, the European navigation system to localise signals with an accuracy of even 10 cm and unmanned aerial vehicles. The rate and accuracy of localising offered by the system, which is made possible thanks to the fact that according to the Digital in 2017 Global Overview Report ca. 66% people worldwide use their mobile phones every day, are aimed at finding a tool to support considerable search and/or rescue actions.
In response to needs of the market, in the first place of rescue services in the context of enhancing the effectiveness of search actions, an idea was conceived of building an aerial vehicle dedicated to this particular type of activity. As the solution should be best tailored to needs of final users, in the first place, the target groups have been identified. The most important ones of them include the following:
Superior user: the fire service (search and rescue actions) as a consequence of building disasters, natural calamities, search of missing persons on larger areas and possibly also finding rescuers during diverse types of actions
Public order services (support during mass events, identification of persons inside a premise)
Border security services (detection of potential smugglers, persons crossing the border illegally)
Institutions that control access to specific facilities (protection of critical infrastructure, access control)
Other services (search for persons in isolated persons with hindered access)
The executed analysis allowed a detailed definition of receiver groups, at which surveys have been addressed. The objective of this kind of survey was to allow compiling opinions concerning current needs related to access to new technologies, such as UAVs. This was a determinant during the MOBNET system designing process. It also enabled the establishment of a data base of stakeholders in this solution thanks to describing project assumptions.
Key issues about which the respondents were asked included the following:
Personal and contact data (education, professional experience, nationality)
Potential use of the MOBNET system
Required accuracy of the location of the victim, number of concurrently located cell phones
System operating time (on internal power source)
System operating conditions (threshold, temperature, humidity, wind speed, precipitation, etc.)
Involvement of rescuers (number of persons who could handle the system in typical conditions, system weight, transport options)
Requirements concerning the user interface (display of specific data, visualisation, etc.)
Thanks to such structuring of the survey, its results allowed making a detailed delimitation of rules for system functioning. In addition the received responses served also as guidelines for designing the user interface.
Result of the survey allowed obtaining an image of the optimum solution—a system which would contribute to optimising search actions, in which use is made of a combination of the satellite positioning system (GPS) and cellular technology (DCT).
A total of approximately 300 surveys have been sent out to selected target groups. Sixty-seven responses were received from respondents from four member states of the European Union. Almost a half of them were firemen. Further 15% were border guards. The remaining professions of the respondents included members of search and rescue groups, policemen and soldiers. A median in the set containing the number of years of the respondents’ professional experience equalled to 19 years.
Below presented were selected results of the survey.
Figure 3 shows that the respondents did not care too much about the relatively low system inaccuracy. This arose from the nature of typical search and rescue actions. Firemen are, for example, forced to remove heavy structural elements, and so the indication of an area where a person is localised usually appears to sufficient.
Selected results of the conducted survey: system inaccuracy (to the left), minimum operating time (centre) and components of user interface (to the right).
It may naturally be expected that the longer the time of using of the system, the better. Taking into account the obtained responses, it may be assumed that an operating time of a few dozen minutes between subsequent charging and replacement of battery would be optimum. Furthermore, taking into account the nature of system operation, all signals would be detected almost in real time, which allows finishing the flight and turning over data to the commander of search actions. Representatives of other services, in particular of border guards, specified much longer times, which are the result of the system used that is most typical for them, namely, flights over the border area.
A question of particular importance for the project concerned information indispensable for UAV operator. Respondents specified in the first place the GPS position, preview of map of the land over the drone is moving, the flight trajectory and the video transmission. As regards categories included in the “other” section, they included among others wind speed, starting position of the UAV, number of detected signals, flight time and ambient temperature.
As regards the execution of actions, the respondents were asked for feedback concerning issues related to system operation in real time. The obtained responses have shown that the system should be capable of searching ca. 10,000 m2 during a 30-minute flight. It should be operating within the range of ambient temperature from −20 to +50°C, at a wind speed of even 10 m/s. Furthermore, the distance of the aerial vehicle from the operator should, in the opinion of respondents, be ca. 550 m horizontally and ca. 300 m vertically.
The majority of respondents were of the opinion that it would be possible to use their own operator (81%), while 66% of them saw the possibility of involving at least two rescuers in the operation of the system (during the execution of their typical activities).
A question of particular importance was one concerning the number of concurrently detected signals (mobile phones). In the opinion of almost 50% of respondents, it was sufficient to detect up to 10 signals during one mission. One third of the respondents marked the necessity of detecting up to 100 telephones simultaneously. Three respondents were convinced that the system should be capable of detecting more than 100 signals, yet this applies to the proposed system application during mass events (for needs of registration and potential control of the presence of a given person among participants of the event).
Unmanned aerial vehicles (UAVs) may be used to execute a wide spectrum of tasks, which helps reduce the risk that may take place during their implementation by manned aerial vehicles and potentially reduce costs of their usage. Basic structural types of UAVs include unmanned airplane, unmanned airplane with a possibility of rotor rotations, unmanned helicopter and gyroplanes (multicopter). Gyroplanes are capable of changing the flight direction in a brief time and have the capacity of zero-distance start and landing and precise spot hovering over the scene of an incident. They are also adapted to operating in very confined spaces.
The advantage of the drones is that it is no longer necessary for a person to be directly in the helicopter, but he may control it personally from a safe place. This also implies savings of means connected with production, operation and training, even though handling of such equipment also requires outlays connected with obtaining the relevant licences. On the other hand, one of the possible hazards is inexperienced operators unable to use them in a safe way.
In the context of finding victims, drones are not the only available solution. The methodology analysed in this chapter is based on measurements of the propagation force of radio waves that are emitted by cellular phones. An important assumption is that victims being rescued remain in the vicinity of their phones. The strength of signal coming from persons inside buildings is subject to nonlinear disturbances, which may cause significant deformations of the obtained estimated locations of victims. Alternative traditional methods of finding victims comprise search made by man or the usage of snuff dogs.
Drones are the perfect choice for use on contaminated areas, locations of difficult access or ones that pose a hazard for people. This may be illustrated by the example of the problem of cleaning up the contaminated nuclear power plant in Fukushima, even though in this particular case not drones, but unmanned robots were used. This is a scenario in which human abilities cannot be used directly. On the other hand, in such difficult conditions (given temperature and radiation), already 10 robots have been lost during the execution of works on this location (state as on March 11, 2017).
Thanks to their dimensions, drones are also less susceptible to changing weather conditions (this is determined by the type of machine), which makes them easier to use. They may be used during extreme weather conditions, as well as in locations with difficult access, eliminating a hazard for the pilot’s health and life. Another advantage is the fact that they may approach facilities or the ground more closely, which allows more accurate and easier diagnosis of potential damage. The deployment of this solution allows increasing the repeatability and accuracy of control and also significantly reduces the operation time.
The GPS system informs of the situation of UAV in the air and its flight direction. Thanks to satellite navigation, the installed GPS system finds the accurate position of UAV over the land surface. This system has been provided in the fuselage. In addition, UAV may be equipped with high-quality cameras that record images in real time and allow the location of a potential victim. High-resolution video recorders are not the only advantages offered by the drones. They are also furnished with thermal vision cameras that enable archiving images and recording thermal radiation emitted by almost each physical body. This allows them to operate during the night and in difficult weather conditions.
MOBNET has been established to localise victims during natural disasters and extraordinary circumstances, such as earthquakes, hurricanes or snow blizzards. It may also assist rescue services in such activities as the search and finding of missing persons. To ensure precise localisation, the device is compatible with the European satellite navigation system EGNSS, which is characterised by a small margin of error (ca. 1 m). Cellular phones emit a signal in the form of data at regular intervals, so the use of the DCT technology in the device will allow the detection and identification of victims during rescue actions. In the prototype being in the phase of development, the EGNSS and DCT technologies are fully synchronised to assure the most accurate finding possible. During works over the device, an effective and infallible communication link will be developed between unmanned aerial vehicles (UAV) and the terrestrial station. The objective is to obtain a data link which would enable incessant communication of commands between elements. The new system will allow making use of European global satellite navigation systems (EGNSS) including its earlier applications, such as Galileo, and EGNOS, and also digital cellular technologies (DCT), which is to enable the localisation of victims in situations in which access to them is hindered, dangerous or impossible. Figure 4 presents an operating diagram of the MOBNET system.
Operating concept of the MOBNET system [7].
Actions of search and rescue groups are challenging for many reasons. Above all those actions are carried out as a rule on an unknown area, in many cases abroad, and the terrain conditions tend to be complex. Given restrictions connected with personnel, new methods and technologies are being sought which may significantly affect the effectiveness of those actions. Enhancing the effectiveness of activities of search and rescue groups is strictly connected with performing a quick and precise determination of the size of the hazard zone and localisation of persons at risk. Consequently the MOBNET project, which makes use of a technology based on the system that localises signals of cellular telephone in a way which would eliminate any inconveniences connected with difficult terrain conditions, concurrently allowing obtaining a picture of the incident scene from above, seems to be a very good solution enhancing the effectiveness of actions performed by search and rescue groups.
Typical solutions for search and rescue actions comprise the usage of specially trained dogs, inspection cameras, geophones, etc. At a time of dynamic technological progress, new possibilities keep appearing. Innovative implementation of both the EGNNS technology and DCT opens new possibilities to public services. The identification of signals emitted by cellular phones naturally cannot replace proven traditional methods yet may to a large extent contribute to improving the effectiveness of the search actions. In particular in the case of vast areas, the MOBNET system may indicate the most important zones where resources and means would be sent as priority. This is due to the fact that in such situations, even mere minutes can determine the survival of the victims.
Under the MOBNET programme, a ready solution was offered for public services. The system has been extensively tested with view to integration of particular components. In February 2018, a demo meeting is to take place, during which detailed results of the project are to be presented. Tests in simulated conditions comprise scenarios of incidents typical for search and rescue groups.
By the time this manuscript was being prepared, the integration test took place. The results of in-field testing were satisfactory. The performance of MOBNET system fulfilled all prerequisites took at the beginning of the project. It is able to localise cell phones basing on an innovative approach connecting DCT and EGNSS technologies.
The conducted survey allowed the identification of structural limitations required by final users. The diversity of professions of the respondents also allowed obtaining suggestions concerning further development of the system and potential areas where the ready MOBNET system may be deployed.
It is important to notice that the system might be implemented not only in fire service. As the survey outcomes showed, there are many different potential fields of application. Other public services might use the MOBNET system, e.g. police might log the phones active in particular area, and boarder police might track the violation of boarder integrity. It might be used to control the areas of limited access for unauthorised personnel.
The popularity of smartphone usage is constantly growing. Most of us carry the device with ourselves during the whole day. Therefore it is highly probable that the localization of our cell phone will be equal with the localization of ourselves. And that is particularly identified gap that might be filled with the MOBNET system, in purpose to improve the effectiveness of search and rescue operations.
This publication is a part of MOBNET project dissemination activities. The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 687338.
Clays are inorganic, natural, earthy, and fine-grained materials that acquire plasticity when mixed with water [1]. For sedimentologists, a clay is a raw material whose grain size is less than 2 μm. Like clays, in turn, there are rocks made up of clay minerals and may contain other minerals such as quartz, feldspar, mica, calcite, hematite, and organic matter as accessories [2]. A clay, once ground and mixed with water, in addition to presenting excellent workability in the fresh state, after drying, becomes extremely rigid. After burning normally above 800°C, it acquires great resistance [3]. Clays are used worldwide in the ceramic industry, especially in bricks, coatings, and others. However, clays are formed from the weathering of explosion and can be contaminated with several minerals among them or carbonate, which can alter the shape that causes the following burns. Limestone may be present in colloidal form, or coarse particles. However, in all cases it is impossible to separate or calculate this. Some researchers have tried to reduce the size of the variations to improve the chemical changes. According to Barba et al. [4], calcium carbonate and magnesium carbonate are the main constituents of carbonate sedimentary rocks. Anionic carbonate groups are strongly activated units and share oxygen with each other. They are responsible for the properties of these minerals. The most important anhydrous carbonates belong to three isostructural groups: the calcite group, the aragonite group, and the dolomite group. Among these, the minerals most used in the ceramic industry are calcite and dolomite, as they are low-cost raw materials, in addition to having favorable physical and chemical properties and available deposits. Second, Padoa [5] adds that when CaCO3 is small, a decomposition can be complete and the calcium oxide reaches later with other mass components forming calcium silicates and silicon aluminates (wollastonite, anortite, gehlenite etc.) during sintering. Barba et al. [4] mentioned that the raw materials of clay when burned at high temperatures produce crystal phases that influence the properties of ceramic products. Calcite exerts a bleaching action on burnt products when added to a formulated mass of clays (in proportions above 5% and less than 30%) and at the same time decreases its expansion by legislation, as it forms crystalline and liquid phases, including cycles temperature and firing adopted. Calcite and dolomite are the most important representatives of carbonates in the ceramic industry. They are used as main components in the manufacture of ceramic tiles with high water absorption. These coatings include “porous coatings” or “tiles.” These products are designed or used on walls and are not suitable for application on floors, as they have undesirable technical characteristics, such as mechanical resistance, incompatibility with use. According to Amorós [6], properties of parts of a ceramic product are registered by crystalline phases formed based on calcium and magnesium as ghelenite (SiO2⋅Al2O3⋅2CaO) and anortite (2SiO2⋅Al2O3⋅CaO). To achieve these phases, use the dolomite calcium oxide and/or magnesium reaction with a remaining clay structure proven by its thermal decomposition.
The calculation in general can affect the ceramic product in two ways: low percentages (up to 3%) and high temperature (above 1180°C) result in flow agents, that is, materials that contribute to reduce water absorption and increase the resistance of ceramic products. Above 3%, they can act as a foundation at temperatures above 1170°C [7].
In this chapter, we will highlight properties of limestone clays and their application in the ceramic industry.
Clays are hydrated aluminum silicates with crystalline structure arranged in layers, consisting of continuous sheets of SiO4 tetrahedrons, ordered in a hexagonal shape, condensed with octahedral sheets of di and trivalent metal hydroxides, usually below 2 μm. They are materials that in contact with water become plastic, a fundamental characteristic for conformation of ceramic products because it provides mechanical resistance in the pressing, extrusion, or gluing process. Clays are mixtures of various clay minerals such as kaolinite, illite, and montmorillonite, which may or may not contain impurities [3, 8].
The kaolinite with structural formula Al2O3⋅2SiO2⋅2H2O has a dioctahedral structure, which consists of a tetrahedral layer linked by an octahedral layer. Pure kaolinites usually have low plasticity, see Figure 1.
Kaolinite structure. (a) Si▬O tetrahedra on the bottom half of the layer and Al▬O,OH octahedra on the top half. (b) Dioctahedral structure.
Montmorillonites are a set of family of clay minerals, composed of dioctahedral and trioctahedral silicate sheets, see Figure 2(a) and (b). The most outstanding feature of these minerals is their ability to absorb water molecules [8, 9]. It has 80% of exchangeable cations in the galleries and 20% on the lateral surfaces. The modification of montmorillonite clays has aroused scientific and technological interest for providing significant improvements when incorporated into pure polymeric materials and conventional composites. The clay modification process occurs preferably through the ionic exchange of the exchangeable cations of its crystalline structure.
Crystalline structure of a montmorillonite. (a) Montmorillonite structure, composed of Si, Al, and O. (b) Sheets of dioctahedral and trioctahedral silicates.
The basic structural unit of the illites is the same as that of the montmorillonites except that in illites, the silicon atoms in the silica layers are partially replaced by aluminum. Therefore, there are free valences in the boundary layers of the structural units, which are neutralized by K cations, arranged between the overlapping units. The structural scheme of the illites is shown in Figure 3. The K cation is the one that best adapts to the hexagonal meshes of the oxygen planes of the layers of silica tetrahedron and is not displaced by other cations. The water adsorption and cation exchange capacity is due only to the broken connections at the ends of the layers. The average diameter of the illites varies between 0.1 and 0.3 μm. When the replacement of silicon in the tetrahedron layers by aluminum in the illites is small, the connections between the structural units provided by the K cations may be deficient and will allow water to enter. When this occurs, the properties of the illites are close to the properties of montmorillonites [3].
Crystalline structure of an illite. (a) Silicon atoms in the silica layers partially replaced by aluminum in the illites. (b) Structural scheme of illites.
Chlorites are minerals made up of four hydrated aluminum and magnesium silicate layers, containing Fe (II) and Fe (III) as shown in Figure 4.
Crystalline structure of chlorite [9].
The most common clay minerals are interstratified, characteristic of mixtures of clay minerals, classified by subgroup and mineralogical species, see most common classification in Table 1. Clay minerals are divided into several classes. A large majority of clays do not have in just one crystalline phase. Two or more chemical species may be present.
Subgroup | Chemical species | Minerals |
---|---|---|
Kaolin Xn(Y2O5)(OH)4 | Kaolinites | Nacrite (Al2(Si2O5)(OH)4) Dikite (Al2(Si2O5)(OH)4) Livesite (Al2(Si2O5)(OH)4) Halloysite (Al2(Si2O5)(OH)4) |
Talc XB(Y2O5)(OH)2ZmH2O | Montmorillonites | Montmorillonites (Al1,51Fe0,07Mg0,60)(Al0,28Si3,72)O10(OH)2Na0,33 |
Beidellite (Al1,46Fe0,50Mg0,08)(Al0,36Si3,64)O10(OH)2Na0,4 | ||
Nontronite (Fe1,67Mg0,33)(Si4O10)(OH)2Na0,33 and Fe2,22(AlSi3O10)(OH)2Na0,33 | ||
Hectorite (Mg2,67Li0,33)(Si4O10)(F,OH)2Na0,33 | ||
Saponite Mg3(Al0,33Si3,67)O10(OH)2Na0,33 | ||
Illites | Wide variety of minerals | |
Chlorite | Chlorites | Chlorite |
X2n(Y2O5)2(OH)2 | [Mg2(Al,Fe(III))(OH)6][Mg3(AlSi3O10)(OH)2] |
The clays used in the ceramic manufacturing process can be classified into:
Carbonitic clays: they are formed by associations of illitic-chloritic and eventually illitic-kaolinite clay minerals. The amount of calcium carbonate present can be variable. These clays give the dough plasticity. Generally, after burning they have colors ranging from beige to orange [4].
Non-carbonitic clays: they are characterized by the almost total absence of carbonates. The clay minerals present are of the illitic-chloritic type. It has the function of giving plasticity to the dough, and generally after firing they give rise to well-sintered materials.
White plastic clays: the clay matrix is kaolinitic, with little illite. They give plasticity to the dough, and after burning they have a white color.
Kaolinitic clays: clays of low plasticity and normally free of fluxing oxides such as K2O and Na2O, therefore, with refractory characteristics.
According to Mackenzie [10], when a ceramic raw material is subjected to the action of heat, it experiences volumetric variations, usually permanent and irreversible, which can be classified as:
Oxidation of organic matter
Decomposition of compounds containing oxygen, such as sulfates, carbonates, etc.
Dehydroxylation of the clayey mineral
Crystallization by increasing the temperature
Vitreous phase formation
Solid solutions: adjacent crystals of two different materials but of similar structure can react with each other, forming a solid solution.
Kaolinitic clay: the scheme according to Figure 5 shows an endothermic peak between 560 and 590°C referring to the elimination of hydroxyls from the constitution water present in the clays, and an exothermic peak between 980 and 1000°C, due to the formation of mullite, which can be represented by the reactions 1 and 2 [8].
Differential thermal analysis of a kaolinitic clay [10].
Montmorillonite: montmorillonites have water that lodges in the mineral structure, that is, hydration water of adsorbed ions. The elimination of hydroxyl groups occurs at 700°C. At 850°C, a small endothermic peak may occur due to the loss of montmorillonite crystallinity. Illites can present loss of adsorbed water between 100 and 200°C and water loss in the constitution between 550 and 600°C, see Figure 6.
Differential thermal analysis of a montmorillonite clay [10].
Quartz: it appears in clays in colored or colorless round grains, whose percentage ranges from 0 to 60%. For high levels of quartz, the clay is called sandy and has low plasticity [11].
Hematite: iron can be present in the forms of hematite (α-Fe2O3), goethite (α-FeO⋅OH), and lemonade (a mixture of iron oxides and hydroxides of a weakly crystalline nature), or simply as Fe3+ ions in the clay structure. In the illite group, Fe3+ ions can replace Al3+ ions in the octahedral structure [11]. Fe2O3 is formed during sintering under oxidation conditions and from minerals in the clays, giving a reddish color to ceramic materials.
Feldspar: feldspars refer to a group of aluminum silicate minerals. The feldspar contained in the clays is a source of sodium and potassium oxides and plays an important role in ceramic materials with quality of flow agents, temperatures such as sintering temperatures, porosity after firing and facilitating phase formation [6]. The most representative are the orthoclase (KAlSi3O8) and albite (NaAlSi3O8).
Carbonates: calcium or magnesium carbonates can appear as coarse or small grains. If they are presented as large grains (>125 μm), they may not react completely and the resulting oxides may rehydrate causing expansion according to reactions [12, 13].
Ceramic enamels and frits: can be used in matte enamels as a source of CaO to form crystals such as wollastonite, anorthite, gehlenite or in transparent enamels giving shine.
Masses for ceramic coating: as a source of CaO up to the limit of 3%, CaCO3 assists in the formation of the vitreous phase. CaO levels that vary from 8 to 14% favor the formation of crystalline phases such as gehlenite, wollastonite, pseudo wollastonite, and anortite.
Putties for limestone porcelain: calcium carbonates provide the CaO that are used as a flux in limestone porcelain masses.
Ceramic pigments: the calcium carbonate provides calcium oxide, which together with SnO2 produces pink pigments.
Glasses: glasses based on NaOH and CaO use CaCO3 in their composition.
Obtaining settlement mortars: as a plasticizing agent for water retention and aggregate incorporation.
Steel: CaCO3 acts as a flux and pH regulator in water treatment and as lubricant for drawing steel rebars.
Sánchez et al. [14] defined some specification parameters for choosing raw materials for formulations of coating masses, as shown in Table 2 below.
Product | (%) of carbonates | Max. particle size of CaCO3 (μm) | Organic matter (%) | Sulfate content max. (%) | IP (%) |
---|---|---|---|---|---|
Stoned | ≤3 | ≤125 | ≤0.3 | 0.2 | 20–40 |
Porous | ≤40 | ≤125 | ≤0.3 | 0.2 | 20–40 |
Specifications for choosing raw materials.
IP: index of plasticity.
Calcium or magnesium carbonates can appear as coarse or small grains. If they are presented as large grains (>125 μm), they may not react completely, and the resulting oxides may rehydrate causing expansion.
In compositions of ceramic floor covering with low water absorption, CaCO3 acts as a flux until the limit of 3%; above this value, CaCO3 increases porosity and can be accepted up to 40% in porous coatings.
Enrique [15] recommends that the CaCO3 particle size should be less than 125 μm, because particles of larger sizes, the CaO resulting from the dissociation of carbonates when calcined at 900°C, do not react with the SiO2 present in the clays and feldspars that should form the pseudo-wollastonite and wollastonite phases, which can give rise to Ca(OH)2 formed by the hydration of CaO, when the part comes into contact with the humidity of the air, generating problems of expansion by humidity, with consequent cracking.
The ceramic tile and brick industry have grown enormously in recent years in Brazil. The clays must have sufficient plasticity to provide mechanical resistance when forming by pressing, in order to guarantee the integrity of the piece in the path between the press and the oven. The feldspar contained in the clays are sources of sodium and potassium oxides, acting as fluxes at temperatures above 800°C for bricks and above 1100°C for ceramic tiles, which facilitates the formation of a vitreous phase and reduces porosity [16, 17].
Quartz is mixed with clay during geological formation. If it is present in a smaller proportion, it helps in the formation of the vitreous phase, in the degassing of organic matter and water. However, large proportions of quartz lead to a drastic reduction in mechanical strength after firing [18]. Iron oxide is present in ceramic raw materials in the form of hematite or goethite, giving the finished product a red color.
Calcite, which appears in most clays used in the production process of ceramic tiles of type BIIb, is a mineral that needs special care in its use due to its high loss to fire. When present in a proportion equal to or less than 3%, this mineral acts as a flux. However, in higher proportions, calcite can cause an increase in the final porosity of the product. In addition, the size of the calcite particle for processing ceramics must be less than 125 μm. For larger sizes, it is observed that the CaO resulting from the dissociation of carbonates can hydrate after burning, promoting variations in the dimension of the piece. Therefore, the use of limestone clays is a challenge, requiring care in processing and control in the formulation and burning of coatings. To ensure the correct sintering of the product, proper grinding and pressing of the raw material are necessary, in addition to efficient, fast burning with the lowest possible energy consumption.
Table 3 shows the chemical compositions of a typical Brazilian limestone clay used in ceramics [19]. The chemical compositions of the raw materials were determined by X-ray fluorescence spectroscopy by wavelength dispersion (WDFRX), in a Bruker S8 Tiger equipment, in which the percentages of constituent oxides were estimated by the method semi-quantitatively. For these measurements, samples with a mass of 10.0 g were pressed as discs with 40.0 mm diameter and 4.0 mm thickness. During measurements, the samples were kept in a vacuum of 10−6 bar. A mixture of P-10 (90% argon and 10% methane) was used in the proportional counter.
Oxide (%) | C1 | C2 | C3 | C4 |
---|---|---|---|---|
SiO2 | 63.0 | 52.1 | 50.2 | 45.3 |
Al2O3 | 16.7 | 18.6 | 15.5 | 14.1 |
Fe2O3 | 4.7 | 6.8 | 6.2 | 7.1 |
CaO | 0.9 | 2.1 | 7.2 | 12.7 |
K2O | 3.8 | 4.7 | 3.2 | 3.2 |
Na2O | 0.6 | 0.4 | 0.5 | 0.7 |
MgO | 1.5 | 2.3 | 2.2 | 2.3 |
TiO2 | 0.6 | 0.8 | 0.7 | 0.8 |
L.O.I | 8.2 | 12.1 | 14.3 | 13.8 |
The results show that all clays are composed mainly of SiO2 and Al2O3. These elements are associated with clay minerals, quartz, and feldspar structures [17]. The highest amount of SiO2 was determined for sample C1. This component is important for the manufacture of ceramic tiles, as it improves workability and favors compaction. However, SiO2 can also cause low mechanical strength of sintered ceramic bodies, in addition to reducing shrinkage during firing.
The amount of Fe2O3 detected in the samples was between 4.7 and 7.1%. These values are acceptable for use in ceramic tiles, such as bricks and tiles, this element being responsible for the reddish color of the sintered pieces as well as being a powerful flux [20]. The high content of calcium oxide in C4 (12%) and C3 (7%) stands out, characterizing these clays as limestone [21]. C4 clay was previously studied in Alcântara [16], which reports the formation of stains on the ceramic bodies produced with this material, after sintering at 1120°C. This behavior was associated with a high content of CaO, estimated at 10%, which during the burning phase, the dissociation of CaCO3, promotes a high mass loss. C4 (13%) generates many pores, reducing water absorption and resistance of the final product. Thus, the higher the CaO content, the higher the CaCO3 content and in addition, the higher the mass loss.
Analyzing the levels of alkaline oxides, it is observed that the sample C2 has the highest concentration of K2O, while the concentration of Na2O is approximately the same in the four samples studied. Alkaline and alkaline earth compounds have a melting effect, which facilitates the formation of liquid phase and linear shrinkage during burning [13].
Table 4 was arranged according to the increasing amount of CaO present in the clays. Note that C1 and C2 have CaO content below 3%. According to Enrique [15], CaO acts as a flux until the limit of 3% in masses of ceramic coating. The percentage of alkali oxides (Na2O and K2O), also presented in Table 3, is another major factor for the densification process, due to the great tendency of liquid phase formation during burning. Considering the sum of the percentages of CaO and alkali oxides in samples C3 and C2, it can be concluded that C2 has a higher proportion of fluxing oxides, suggesting that this sample is the most promising. On the other hand, clays with a high limestone content, such as C3 and C4, tend to have greater porosity and less mechanical resistance after firing. Additionally, these two raw materials have lower alkaline oxide ratios than those observed for C3 and C2.
Clay | CaO (%) | Na2O + K2O (%) |
---|---|---|
C1 | 0.9 | 4.4 |
C2 | 2.1 | 5.1 |
C3 | 7.2 | 3.7 |
C4 | 12.7 | 3.9 |
The X-ray diffraction patterns of the clays are shown in Figure 7 and correlate positively with the results observed by X-ray fluorescence. The X-ray diffractometry (XRD) technique was used to determine the crystalline phases. The samples were dried in an oven at 110 °C for 24 h, ground, and passed through a 150-μm mesh sieve. The diffraction patterns were obtained in a Rigaku D-MAX 100 equipment, using Cu Kα1 radiation (λ = 1.5418 Å). All measurements were carried out in the continuous scanning mode with speed of 1°/min, in the range of 5 to 65° and in the range of 2 to 15° in samples saturated with ethylene glycol for 1 h to identify montmorillonite by displacing the diffraction peaks at smaller angles compared to dry sample testing. The crystalline phases were identified through Match! (Phase Identification by Powder Diffraction) in the demo version, according to the ICSD (Inorganic Crystal Structure Database).
X-ray diffraction patterns of the clays [19].
The main phases identified were quartz, kaolinite, muscovite, montmorillonite, calcite, feldspar, and hematite. Minerals from kaolinite and montmorillonite clay were identified in all analyzed clays. According to Celik [20], these clay minerals provide the necessary plasticity to guarantee conformation through the pressing process. The percentage of each crystalline phase present in the samples was estimated from the relative intensity of the main peaks in each phase. The values are shown in Table 5. The percentage of carbonates increases from 0.9% in C1 to 12.4% in C4.
Minerals (%) | C1 | C2 | C3 | C4 |
---|---|---|---|---|
Quartz | 55.7 | 51.8 | 65.1 | 57.1 |
Kaolinite | 6.3 | 10.7 | 7.4 | 5.5 |
Muscovite | 11.8 | 14.0 | 11.2 | 12.1 |
Montmorillonite | 5.6 | 4.9 | 4.6 | 6.7 |
Calcite | 8.6 | 2.8 | 1.1 | 13.7 |
Feldspar | 6.3 | 9.9 | 6.2 | 3.2 |
Hematite | 5.7 | 5.9 | 4.4 | 1.7 |
Mineralogical compositions of clays determined by XRD.
To verify the dimensional changes of expansion and thermal retraction of the samples, dilatometry tests were performed on a Netzsch dilatometer, model DIL 402PC, under synthetic air flow at 130 ml/min. For these analyses, the samples were compacted in a cylindrical shape, 12.0 mm in length and 6.0 mm in diameter. Under a constant heating rate of 10°C/min, the length of the compacted body is measured as a function of time and temperature, which varied from room temperature to 1150°C.
In Figure 8 we can observe a slight expansion in all curves up to approximately 850°C, and at 573°C, the expansion was more pronounced due to the transformation of α quartz to β [22, 23], except for C2, which presents a lower percentage of free quartz. From 573°C, there was a gradual reduction in the expansion rate, occurring or starting with sintering, followed by an exponential retraction [22].
Dilatometric curves of clays at a heating rate of 10°C/min [19].
The results shown in Table 5 with the percentages of CaO, Na2O, and K2O recommended by XRF measurements point out that sample C2 has a greater amount of funds (calcium carbonate up to a limit of 3% and alkaline oxides), or what is known as a greater linear shrinkage. Despite its advantages over the other samples, the C2 clay underwent deformation during firing up to 1150°C. This effect, known as pyroplastic deformation, may be due to the large proportion of funds in the sample, a high content of Fe2O3, and, even, the amount of organic matter [24]. One of the ways to control deformation during firing is to adjust the thermal cycle through the dilatometric curves, so that the plate remains within the required standards [25].
Clays containing limestone when subjected to burning, CaCO3 after heating, in the temperature range between 850 and 920°C, form CaO and release CO2. An intense endothermic peak of approximately 35–44% of the mass loss can be observed in differential thermal analysis. In ternary diagrams, it is observed that there is a eutectic point (above 1170°C), which reduces the dimensional stability in ceramic products, which can melt quickly (Figure 9).
Ternary diagram of CaO, SiO2, and Al2O3.
Clays when mixed with limestone can behave differently, as shown by Sánchez [25]. Figure 10 shows a standard clay with 5 and 10% of incorporated limestone. It was observed that as the limestone and temperature increase, respectively, the dimensional instability increases. In other words, the retraction increases constantly, when it undergoes an exponential increase, reaching the melting point.
Ceramic coating mass with incorporated calcite waste.
This phenomenon can be explained as follows: when exhibiting CaO up to the limit of 3%, this, associated with SiO2 and Al2O3 present in clays and feldspars, helps in the formation of eutectic systems at 1170°C, with consequent formation of liquid phase and contributing to obtain the desired mechanical strength and porosity. When introduced in percentages above 4%, CaCO3 levels are increased, and the composition moves from the eutectic line, forming crystalline phases such as CaSiO3 (pseudo-wollastonite) and 2CaO⋅Al2O3⋅SiO2 (gehlenite). So, a larger number of pores is left by the eliminated CO2. In this way, the porosity of the final product is increased, as shown in Figure 11. In Figure 12 is shown a photo of a clay mass with 10% calibration in which the porosity exerted can be observed.
Firing curve of a calcite clay.
Scanning electron microscopy of a ceramic with 10% of CaO.
Limestone is a contaminant for clay that above 125 μm can cause expansion and consequently cracks.
Rapid tests that mix clay with HCl can promote effervescence due to the release of CO2 and contribute to decrease the amount of limestone.
In the ceramic industry, wet grinding of components is carried out in ball mills and grinding will be more efficient if the sieves are 150 to 325 μm. In ceramic mass formulations, the amount of CaO up to 3% contributes to the formation of the vitreous phase, however, between 8 and 14%, it favors the formation of crystalline phases, reducing the absorption of water and increasing the mechanical resistance.
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5240},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15812}],offset:12,limit:12,total:118381},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"6,5"},books:[{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10750",title:"Solanum tuberosum - a Promising Crop for Starvation Problem",subtitle:null,isOpenForSubmission:!0,hash:"516eb729eadf0d1a9d1d2e6bf31e8e9c",slug:null,bookSignature:"Prof. Mustafa Yildiz and Dr. Yasin Ozgen",coverURL:"https://cdn.intechopen.com/books/images_new/10750.jpg",editedByType:null,editors:[{id:"141637",title:"Prof.",name:"Mustafa",surname:"Yildiz",slug:"mustafa-yildiz",fullName:"Mustafa Yildiz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10772",title:"Parasitic Plants",subtitle:null,isOpenForSubmission:!0,hash:"31abd439b5674c91d18ad77dbc52500f",slug:null,bookSignature:"Dr. Ana Maria Gonzalez and Dr. Hector Sato",coverURL:"https://cdn.intechopen.com/books/images_new/10772.jpg",editedByType:null,editors:[{id:"281854",title:"Dr.",name:"Ana Maria",surname:"Gonzalez",slug:"ana-maria-gonzalez",fullName:"Ana Maria Gonzalez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10737",title:"Equus",subtitle:null,isOpenForSubmission:!0,hash:"258ffafc92a7c9550bb85f004d7402e7",slug:null,bookSignature:"Associate Prof. Adriana Pires Neves",coverURL:"https://cdn.intechopen.com/books/images_new/10737.jpg",editedByType:null,editors:[{id:"188768",title:"Associate Prof.",name:"Adriana",surname:"Pires Neves",slug:"adriana-pires-neves",fullName:"Adriana Pires Neves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10777",title:"Plant Reproductive Ecology - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"3fbf391f2093649bcf3bd674f7e32189",slug:null,bookSignature:"Dr. Balkrishna Ghimire",coverURL:"https://cdn.intechopen.com/books/images_new/10777.jpg",editedByType:null,editors:[{id:"206647",title:"Dr.",name:"Balkrishna",surname:"Ghimire",slug:"balkrishna-ghimire",fullName:"Balkrishna Ghimire"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10749",title:"Legumes",subtitle:null,isOpenForSubmission:!0,hash:"49d3123cde96adbe706adadebebc5ebb",slug:null,bookSignature:"Dr. Jose Carlos Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/10749.jpg",editedByType:null,editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10751",title:"Bovine Science",subtitle:null,isOpenForSubmission:!0,hash:"9e3eb325f9fce20e6cefbce1c26d647a",slug:null,bookSignature:"Dr. Muhammad Abubakar",coverURL:"https://cdn.intechopen.com/books/images_new/10751.jpg",editedByType:null,editors:[{id:"112070",title:"Dr.",name:"Muhammad",surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:19},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:21},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:6},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:24},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5252},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"16",title:"Medicine",slug:"medicine",parent:{title:"Health Sciences",slug:"health-sciences"},numberOfBooks:1511,numberOfAuthorsAndEditors:39573,numberOfWosCitations:21767,numberOfCrossrefCitations:11544,numberOfDimensionsCitations:29307,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editedByType:"Edited by",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9406",title:"Clinical Implementation of Bone Regeneration and Maintenance",subtitle:null,isOpenForSubmission:!1,hash:"875a140c01518fa7a9bceebd688b0147",slug:"clinical-implementation-of-bone-regeneration-and-maintenance",bookSignature:"Mike Barbeck, Nahum Rosenberg, Patrick Rider, Željka Perić Kačarević and Ole Jung",coverURL:"https://cdn.intechopen.com/books/images_new/9406.jpg",editedByType:"Edited by",editors:[{id:"204918",title:"Dr.",name:"Mike",middleName:null,surname:"Barbeck",slug:"mike-barbeck",fullName:"Mike Barbeck"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editedByType:"Edited by",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9134",title:"Recent Advances in Digital System Diagnosis and Management of Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"ff00a5718f23cb880b7337b1c36b5434",slug:"recent-advances-in-digital-system-diagnosis-and-management-of-healthcare",bookSignature:"Kamran Sartipi and Thierry Edoh",coverURL:"https://cdn.intechopen.com/books/images_new/9134.jpg",editedByType:"Edited by",editors:[{id:"29601",title:"Dr.",name:"Kamran",middleName:null,surname:"Sartipi",slug:"kamran-sartipi",fullName:"Kamran Sartipi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1511,mostCitedChapters:[{id:"19013",doi:"10.5772/21983",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:9697,totalCrossrefCites:109,totalDimensionsCites:230,book:{slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"46479",doi:"10.5772/57353",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:1995,totalCrossrefCites:79,totalDimensionsCites:180,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]},{id:"25512",doi:"10.5772/30872",title:"Epidemiology of Psychological Distress",slug:"epidemiology-of-psychological-distress",totalDownloads:8066,totalCrossrefCites:57,totalDimensionsCites:145,book:{slug:"mental-illnesses-understanding-prediction-and-control",title:"Mental Illnesses",fullTitle:"Mental Illnesses - Understanding, Prediction and Control"},signatures:"Aline Drapeau, Alain Marchand and Dominic Beaulieu-Prévost",authors:[{id:"84582",title:"Dr.",name:"Aline",middleName:null,surname:"Drapeau",slug:"aline-drapeau",fullName:"Aline Drapeau"},{id:"84605",title:"Dr.",name:"Alain",middleName:null,surname:"Marchand",slug:"alain-marchand",fullName:"Alain Marchand"},{id:"84606",title:"Dr.",name:"Dominic",middleName:null,surname:"Beaulieu-Prévost",slug:"dominic-beaulieu-prevost",fullName:"Dominic Beaulieu-Prévost"}]}],mostDownloadedChaptersLast30Days:[{id:"43758",title:"Anxiety Disorders in Pregnancy and the Postpartum Period",slug:"anxiety-disorders-in-pregnancy-and-the-postpartum-period",totalDownloads:39763,totalCrossrefCites:11,totalDimensionsCites:20,book:{slug:"new-insights-into-anxiety-disorders",title:"New Insights into Anxiety Disorders",fullTitle:"New Insights into Anxiety Disorders"},signatures:"Roberta Anniverno, Alessandra Bramante, Claudio Mencacci and Federico Durbano",authors:[{id:"157077",title:"Dr.",name:"Federico",middleName:null,surname:"Durbano",slug:"federico-durbano",fullName:"Federico Durbano"},{id:"166382",title:"Dr.",name:"Roberta",middleName:null,surname:"Anniverno",slug:"roberta-anniverno",fullName:"Roberta Anniverno"}]},{id:"70711",title:"Fetal Growth Restriction",slug:"fetal-growth-restriction",totalDownloads:1706,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"growth-disorders-and-acromegaly",title:"Growth Disorders and Acromegaly",fullTitle:"Growth Disorders and Acromegaly"},signatures:"Edurne Mazarico Gallego, Ariadna Torrecillas Pujol, Alex Joan Cahuana Bartra and Maria Dolores Gómez Roig",authors:[{id:"202446",title:"Ph.D.",name:"Maria Dolores",middleName:null,surname:"Gómez Roig",slug:"maria-dolores-gomez-roig",fullName:"Maria Dolores Gómez Roig"},{id:"311835",title:"Dr.",name:"Edurne",middleName:null,surname:"Mazarico",slug:"edurne-mazarico",fullName:"Edurne Mazarico"}]},{id:"70405",title:"Hemostasis in Cardiac Surgery: How We Do it with Limited Resources",slug:"hemostasis-in-cardiac-surgery-how-we-do-it-with-limited-resources",totalDownloads:2694,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Contemporary Applications of Biologic Hemostatic Agents across Surgical Specialties - Volume 1",fullTitle:"Contemporary Applications of Biologic Hemostatic Agents across Surgical Specialties - Volume 1"},signatures:"Fevzi Sarper Türker",authors:null},{id:"64851",title:"Herbal Medicines in African Traditional Medicine",slug:"herbal-medicines-in-african-traditional-medicine",totalDownloads:9954,totalCrossrefCites:10,totalDimensionsCites:17,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Ezekwesili-Ofili Josephine Ozioma and Okaka Antoinette Nwamaka\nChinwe",authors:[{id:"191264",title:"Prof.",name:"Josephine",middleName:"Ozioma",surname:"Ezekwesili-Ofili",slug:"josephine-ezekwesili-ofili",fullName:"Josephine Ezekwesili-Ofili"},{id:"211585",title:"Prof.",name:"Antoinette",middleName:null,surname:"Okaka",slug:"antoinette-okaka",fullName:"Antoinette Okaka"}]},{id:"59779",title:"Effective Communication in Nursing",slug:"effective-communication-in-nursing",totalDownloads:6504,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"nursing",title:"Nursing",fullTitle:"Nursing"},signatures:"Maureen Nokuthula Sibiya",authors:[{id:"73330",title:"Dr.",name:"Nokuthula",middleName:null,surname:"Sibiya",slug:"nokuthula-sibiya",fullName:"Nokuthula Sibiya"}]},{id:"64858",title:"The Neurobiology of Anorexia Nervosa",slug:"the-neurobiology-of-anorexia-nervosa",totalDownloads:892,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"anorexia-and-bulimia-nervosa",title:"Anorexia and Bulimia Nervosa",fullTitle:"Anorexia and Bulimia Nervosa"},signatures:"Ashley Higgins",authors:null},{id:"63771",title:"The Role of Catheter Reshaping at the Angiographic Success",slug:"the-role-of-catheter-reshaping-at-the-angiographic-success",totalDownloads:536,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"angiography",title:"Angiography",fullTitle:"Angiography"},signatures:"Yakup Balaban",authors:[{id:"252647",title:"Associate Prof.",name:"Yakup",middleName:null,surname:"Balaban",slug:"yakup-balaban",fullName:"Yakup Balaban"}]},{id:"61866",title:"Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants",slug:"plants-secondary-metabolites-the-key-drivers-of-the-pharmacological-actions-of-medicinal-plants",totalDownloads:5564,totalCrossrefCites:13,totalDimensionsCites:32,book:{slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Rehab A. Hussein and Amira A. El-Anssary",authors:[{id:"212117",title:"Dr.",name:"Rehab",middleName:null,surname:"Hussein",slug:"rehab-hussein",fullName:"Rehab Hussein"},{id:"221140",title:"Dr.",name:"Amira",middleName:null,surname:"El-Anssary",slug:"amira-el-anssary",fullName:"Amira El-Anssary"}]},{id:"17956",title:"Sexual and Reproductive Function in Chronic Kidney Disease and Effect of Kidney Transplantation",slug:"sexual-and-reproductive-function-in-chronic-kidney-disease-and-effect-of-kidney-transplantation",totalDownloads:11790,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"after-the-kidney-transplant-the-patients-and-their-allograft",title:"After the Kidney Transplant",fullTitle:"After the Kidney Transplant - The Patients and Their Allograft"},signatures:"Mahboob Lessan-Pezeshki and Shirin Ghazizadeh",authors:[{id:"26564",title:"Prof.",name:"Mahboob",middleName:null,surname:"Lessan Pezeshki",slug:"mahboob-lessan-pezeshki",fullName:"Mahboob Lessan Pezeshki"},{id:"26571",title:"Prof.",name:"Shirin",middleName:null,surname:"Ghazizadeh",slug:"shirin-ghazizadeh",fullName:"Shirin Ghazizadeh"}]},{id:"64747",title:"Bone Development and Growth",slug:"bone-development-and-growth",totalDownloads:3711,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"osteogenesis-and-bone-regeneration",title:"Osteogenesis and Bone Regeneration",fullTitle:"Osteogenesis and Bone Regeneration"},signatures:"Rosy Setiawati and Paulus Rahardjo",authors:null}],onlineFirstChaptersFilter:{topicSlug:"medicine",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"75604",title:"Normal Puerperium",slug:"normal-puerperium",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96348",book:{title:"Midwifery"},signatures:"Subrat Panda, Ananya Das, Arindam Mallik and Surajit Ray Baruah"},{id:"75596",title:"The Use of a Dynamic Elastomeric Fabric Orthotic Intervention in Adolescents and Adults with Scoliosis",slug:"the-use-of-a-dynamic-elastomeric-fabric-orthotic-intervention-in-adolescents-and-adults-with-scolios",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.96391",book:{title:"Spinal Deformities in Adolescents, Adults and Older Adults"},signatures:"Martin Matthews and James Wynne"},{id:"75582",title:"Elimination of Plasmodium vivax Malaria: Problems and Solutions",slug:"elimination-of-plasmodium-vivax-malaria-problems-and-solutions",totalDownloads:1,totalDimensionsCites:null,doi:"10.5772/intechopen.96604",book:{title:"Current Topics and Emerging Issues in Malaria Elimination"},signatures:"Liwang Cui, Awtum Brashear, Lynette Menezes and John Adams"}],onlineFirstChaptersTotal:652},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/109387/jian-huang",hash:"",query:{},params:{id:"109387",slug:"jian-huang"},fullPath:"/profiles/109387/jian-huang",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()